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Compact three-dimensional QED with a@ term and axionic confining strings
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We discuss three-dimensional compact QED with #&erm due to an axionic field. The variational gauge-
invariant functional is considered and it is shown that the ground-state energy is indepen@émiadeading
approximation. The mass gap of the axionic field is found to be dependentA)plom mass gap of the photon
field, and the scalar potential. The vacuum expectation of the Wilson loop is shown to be indepergiamt of
a leading approximation, to obey the area law, and to lead to confinement. We also briefly discuss the
properties of axionic confining stringsS0556-282(197)05018-3

PACS numbeis): 12.20.Ds, 11.15.Tk, 12.38.Aw

I. INTRODUCTION theory, if long-ranged interactions between instantons are
present thed parameter may relax to zefd]. Zhitnitsky[5],
Within quantum field theory one can add to any Lagrang-also discussed these problems ir{2)-dimensional QED
ian of a field with a nontrivial topology a gauge- and and (3+1)-dimensional gluodynamics. Both of these mod-
Lorentz-invariant ‘9 term.” Such terms take the form of the €ls possess long-range interactions of topological charges but
topological charge of the theory with a coefficient@fthe ~ Zhitnitsky found that, because the pseudoparticles of
Fourier transform variable of the winding number, suitably(3+1)-dimensional gluodynamics possess an additional
normalized. These terms arise naturally in any theory wherduantum numbefapart from the topological chargeenly in
there are topologically nontrivial solutions of the classical QEDs does the physics not depend 6n
equations of motion, i.e., instantons. For example, see Ref, Recently, Polyakov has used the compatt)heory as a

[1] and the references therein. Théerm cannot be traced in mod_el_ to cqnstruct the new type_ of strings, the so-called
a perturbation theory because it has no effect upon the clag-Onflnlng stringg6]. It is of natural interest to ask the ques-

. ) . . . ion of how the d term will reveal itself in this new string
sical equations of motion. In this paper we shall consider th ;
effect of thed term in compact (2 1)-dimensional QED. heory. In[6], Polyakov proposed the hypothesis that all

X . auge theories are equivalent to a certain nonstandard string
Much wgrk has been carried out_upon'such theories an eory, where different gauge groups are accounted for by
their associated phenomena.(2)-dimensional QED was 6 \yeights ascribed to the world sheets of different topolo-
studied by Polyakoy2], for zero#, who found a mechanism gies The string ansatz was established in the case of the
of confinement due to nonperturbative effects caused bWpelian gauge groups and conjectures were made concerning
monopoles. This has led to its consideration as a simplefhe non-Abelian generalization. The theories were consid-
(Abelian) model with many of the same characteristics asered in the absence of amterms, however, and we find that
QCD. Compact three-dimensional QEQED3) with anon-  our proposed low-energy Lagrangian for QEWith a ¢
zero 6 was considered in a path-integral approach by Vergeterm reproduces the results 8] with a #-dependent, but

les [3] who found that the long-range interactions of thesubleading in momentum cutoff, modification to the photon
monopoles and the antimonopoles were responsible for th@yass and a-dependent shift of the minimal surface. This
suppression of the@ dependence of the vacuum energy of themodification of the photon mass is in exact agreement with
theory as a subleading term in volurtia the limit of large  the results of our variational calculation.

volume. This is in striking contrast to QCD, where thee We follow the gauge-invariant functional variational
dependence of the vacuum energy in the absence of massleasthod of[7] to approach the problem of QEDwith a @
quarks is firmly established. term. Initially, the aim was to repeat the calculations of

Vergeles used the intuitive approach of a partition func-with nonzerod. Through the Hamiltonian formalism, how-
tion of a gas oN+Q monopoles antl antimonopoles, with  ever, it became obvious that, to introduce theterm in
screening in the bulk and all excess monopoles depositedED, and to be able to solve the theory at the space-time
upon the boundary, and summed oeandQ in the limitof  boundary, one has to introduce an extra degree of freedom. A
large volume. He found that thé dependence of the free scalar field must be added whose mass is a free parameter of
energy increased ag'® but, for large volume, that this is the theory. There are two very natural ways to see the form
suppressed as subleading by théndependent part of the that the Lagrangian including @ term should take.
free energy which increased with The first way is to see that () singular monopole solu-

The work of Vergeles was later generalized by Samuetions can be obtained from the original Georgi-Glashow
who proposed that, in a (81)-dimensional Yang-Mills model by breaking the internal symmetry down from(3U

to U(1) with a triplet of scalar fieldd2]. The new W1)
theory is compact becausdg1) is a subgroup of a compact
*On leave of absence from ITEP, B. Cheremyshkinskaya 25SU(2) internal symmetry group. The masses of the charged
Moscow 117259, Russia. vector bosons are a UV cutoff for this new theory but the
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mass of the third scalar field is independent of this cutoff andorm the variational calculation; examining t@elependence

may even be made zero in the Bogomol'nyi-Prasad-of the vacuum energies, the masses of the theory, and the

Sommerfield(BPS limit. Thus, the low-energy (1) theory  string tension. In Sec. VI, the modification of the Polyakov

has two degrees of freedom; the photon and the scalar fieldsiodel of the confining string, which we shall call the axionic

Without the § term there is no interaction between the scalarstring, will be considered and comparisons made to other

and the vector field. In the original $P) theory it is natural  recent papers on this specific topic.

to have the scalar and vector fields coupled withindterm

and this form is preserved when the internal symmetry is Il. A SIMPLE ONE-DIMENSIONAL MODEL

broken to yield the desired (21)-dimensional (1) theory. N . , ,

The term we find is the same as that proposed by Affleck, To deve!op some intuition for the f_ormahsm_re_quwed in

Harvey, and Witten for the Si2) Georgi-Glashow model order to write down the dependence in the variational an-

with fermions[8]. In the limit of a very massive scalar field, S&Z for the vacuum wave functional of more complex mod-

our model reduces to the purely gauge field model studied b§'S: Such as QEpand QCD, we shall first observe some

Polyakov and Vergeles, but it is in the BPS linitero po-  fesults from a well-known and much simpler one-

tential but nonzero vacuum expectation value for the scalafimensional model. The formalism of this section will be

field) that the scalar sector of our model becomes most inmodified slightly for the more sophisticated case of QED

teresting. but it is hoped that the reader will gain some insight from
The second way to obtain the same Lagrangian is to corfis Simple example. This model has many of the same char-

sider the compactification of a (1) theory from 3+1 to  acteristics as more complex theories, such asexm, and is

2+1 dimensions. The component of the vector field in thedefined by

direction of the compactified spatial dimension becomes the 1

scalar field and, although the coupling constants in the Sazf dt{—(¢)2+ 0p—\cosp|. 2.1

(3+1)-dimensional 1) theory are dimensionless, the 2

source of the mass dimensions of the coupling constants in i )

the (2+1)-dimensional theory becomes apparent. A few results are |mm_ed|§1tely appare_nt_ from the path-
Naively, one may assume that the addition of such a integral approach. The first is that the minima of the t'heory

term would make the dynamics of the fields dependent upoRCCUr at¢=(2n+1)7,n=0,£1,£2,.... Inanalogy with

6. We have found that the dynamically generated mass of thd1€ Georgi-Glashow model with zero scalar potenttaut
photon is independent of in the limit of large UV cutoff with a nonzero vacuum expectation of the scalar field which

momentum in QED with a scalar field and, in agreement is necessary to define the nontrivial topology of the thgory

with [3], that the vacuum energy of the photon is indepen V€ Shall continue to study the model in the limit of zero
dent of 6 in this limit. We have also found that the scalar Second, the second term is a total derivative which, after

field has a dynamically generated mass, the square of Whic‘i“f(p"Cit evalugtion of the integral, counts the solitons of the
has two terms; one is proportional & and the other is a system and gives2n wheren is the winding number of the

bare mass term involving the coefficient of the scalar poten'fIGId configuration. Hence, thig term IS completely analo-
tial. In the BPS limit the coefficient of the scalar potential is gous to those of more complex theories and gffqrds t_he Sym-
set to zero and the scalar mass becomes proportion@l to metry 6—6+1. Th|rd., we note that Eq(2.1) is mvan_ant .
The prediction of a dynamically generated scalar mass pro"-mderd’_’d’JFz”' which is analogous to the gauge invari-
portional to 6 is a new result and one that could be verified 2"¢€ of more complex. theories. I . .
through a lattice simulation. The dependence of the scalar We_shall proce_ec_i W.'th the Hamllto_ma_n formalism, hqvm_g
vacuum energy is also greatly suppressed. In the BPS limit ﬁStab“Shed the 5|mllgr|ty t_)etween this 5|mp_le theo.ry,.thh its
is suppressed in terms @(z%?) wherez~exg—A] and A gnalogues of gauge invariance and Eerm_wnh periodicity
is the UV cutoff of our theory. In the limit of a very massive in 6, and more gqmplex theo_rles._ In parquulz_ar, we shall see
scalar field the scalar, and hence the total, vacuum energy Eow the per|od|C|t)_/ Of.e’ which IS .eXpI'C't in t.he path-
independent of with all § dependence suppressed in Sub_lnte_gral approach, is displayed within the Hamiltonian for-
leading terms of the scalar mass. This is in agreement witfalism- .
[3]. We have also calculated the string tension and show that, 1€ Hamiltonian of the system is
independently o, this obeys the area law and so leads to 1
confinement as in the simple case of purely gauge field HHZ—(TF};— 6)?, (2.2
QED; [7]. 2
In the next section we shall describe a simple, one-
dimensional model which has many of the same Characteri§’yhere
tics as more complex theories, such as QEDhis section is ~
intended to have a pedagogical role as the study of this $p=2m+¢. 2.3
zmprl:qrgi?ggltg“ﬁr?t eS %?Vew:n:# g'%g; esnt(;)e;hcz Cg;ﬁg Jg:?;?l First, we see that thé term has been absorbed iEto a modi-
tional ansatz. We are unaware of any other instances in thiécation of the canonical momentum of the free figldvhich
literature of a term similar to the term we use and so we IS connected to the field$ in momentum space by
shall give some motivation for it in Sec. lll, where we shall ¢(k)=2mns(k) + ¢(k). Second, the Hamiltonian is inde-
also explain the form of our Hamiltonian. In Sec. IV we give pendent of and so is explicitly invariant under the transfor-
our ansatz for the wave functional. In Sec. V we shall perimationn—n+1. The invariance of the Hamiltonian under
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60— 6+ 1, however, is unclear. We note here that the freecan be obtained from breaking the internal symmetry of the

field ¢ fluctuates about its vacuum expectation value of zers>U(2) 't Hooft—Polyakov monopole and from the compacti-

which is centered at one of the minima ¢f fication of a (3+1)-dimensional W) theory. In the third
We require the solution of the Hamiltonian equation of subsection we shall discuss the Hamiltonian of the system.

the field ¢. This will be obtained as a modification of the But we shall first give our motivation for extending the
solution of the Hamilton equation for the fieEi model to include a scalar field. We follow the motivation for

the topological charge ifi3] to write a # term in the La-

Hly=E%, (2.4 grangian for purely gauge field QED
where we initially postulate the formt= %y, with ° sat- 1,
isfying HO»°=E®°. For this simple model)® is known, L==2Fu T 09€umd,Fun- 3.0

but for more complex theoriee.g., QCD it is not. We
therefore have y°=exdimé], E°=im?. When 6=0,
m=0,=1,=2, ... but fornonzeroé this is no longer cor-
rect. We will see that it is the coefficient of the fiefdin the

In the absence of any monopoles, theerm in this Lagrang-
ian is identically zero. The gauge group of the theory is
compact, however, and theé term is nonzero due to the

exponential ofys that must be an integer for nonzefo We
make the further requirement that
H?y" =y HC. (2.5)
In this case the solution of Eq2.5) is ¢’=exdiéd]. After
relabelingp=6#+m wherep=0,+1,+2,... wehave the

solution for the fieldg:
ey 4 1 2
y=exdipel, E'=5(p—0)". (2.6
We note that in the casé=0 the wave functional immedi-
ately reduces to the correct form and timtbecomes an

integer.
Rewriting in terms of¢, the form of the Hamiltonian

equation and, due to its periodicity, the wave functional are

noncommutability of derivatives acting upon the singular
component of the vector field. In other words, if we define
Fu=d,A,—d,A,, itis clear that in the continuum limit
6,LVM9,LF”:0 and that monopoles are singular configura-
tions for which it is hard to write down any continuum dy-
namics in the Hamiltonian formalism.

As usual, thef term may be treated as a total derivative
and written as

ggel'”’)\f dS,uFV)\ . (32)

Through the Hamiltonian formalism we, therefore, obtain

H= %f IX{[(E+ g€, 5(S,—x)*+B%, (3.3

unchanged. We obtain the solutign=exgip¢] with energy Where
E’=3(p—0)% . 0
We note thaty is invariant underp— ¢+ 2. It is clear Ei=—I 5_A.
from the # dependence of the energy that although each en- (3.4
ergy level is shifted, the entire energy spectrum of the theory B=¢;diA, -

is invariant underf— 6+ 1. We note also that the ground
state is not simply the minimum of one quadratic but a conHence the Hamiltonian is unchanged and the theory can be
tinuous function linking the minima of the quadratics cen-solved except at the limit of spatial infinity. We shall say no
tered at ¢=(2n+1)m,n=0,+1,+2,.... Although the more than the difficulties of treating theterm other than as
separate consideration here of the field at zero momentum total derivative with the immediate limitations suggest that
resulted in no modification of the form of the vacuum wavethere is an absence of a physical field upon which the deriva-
functional, the extra detail is included because the analogousg/e can act. This merely hints that the theory is incomplete
procedure in Sec. IV does result in a modified form of theas it is.

wave functional initially deduced for the scalar field of zero  we shall quickly show that this theory is independent of

vacuum expectation value. except at spatial infinity. Given this limitation we, therefore,
We propose the same formalism for more complex theoignore thes function and write Eq(3.3) as

ries; an explicitly gauge-invariant bud-dependent Hamil-
tonian with the solutiony= y%¢°, wherey? contains all the
6 dependence of the wave functiondl’ = ’H°, andy is
gauge invarianty? and ¢° cannot be individually gauge
invariant without making the theory trivially independent of This is identical to the Hamiltonian ¢7]. B is replaced by
6, which is well known not to be the general ca@eg., to ensure invariance of the Hamiltonian under large gauge
QCD). transformations as explained in Sec. Il C.

We require the action of a vortex creation operator upon
the trial wave functional to be

Hzéf d?x[E2+b?]. (3.5

lll. THE LAGRANGIAN AND HAMILTONIAN OF QED 3
WITH A 6 TERM )
V¥ =exdif]W. (3.6

In the next two subsections we shall show how the La-

grangian with a9 term for a (2+ 1)-dimensional 1) theory = From[7] we know
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V(X)B(Y)=B(y)V(X) + 27 8%(x—y)V(X), 1
(0B(y) =B(y)V(x) +2m8(x=y)V(x) 0= 5= | Pxepnd,Fur. (31

(3.7 The essential part of theterm in this theory is, therefore,
All constants may be absorbed indiaas it is a freely varying

VP O=y0 parameter. Using,,, $%9,F3% =0, we can therefore write

) ) o the 6 term of the U1) theory as
whereB= ¢€;;4;A; . Equation(3.6) is, therefore, satisfied by

1
\If=exp( §>dl €A )f DXexp<——AiXG‘1AiX :
292

(3.8)  where the derivative only acts upon the scalar field arid
the value of the scalar field for which the potential is a mini-
mum. The scalar field must behave such that at spatial infin-
ity ¢%=» but within that limit it can fluctuate. This is ex-
actly the topological term suggested by Affleck, Harvey, and
_ _ Witten[8], with the internal symmetry broken from %2) to
A. Breaking the internal symmetry U().
of the 't Hooft —Polyakov monopole We finally propose the low-energy(l) Lagrangian with
It may seem a step in the wrong direction but increasingf ¢ term to be
the complexity of the theory by including a scalar field re-
solves this problem. The SP) 't Hooft—Polyakov mono- ) 3 - -
pole has been extensively studidor a comprehensive treat- L%=-— F(F””) 50, = 5[(¢7) = 7]
ment sed9]) and so we shall only discuss the salient points. 9

1
\If°=J DXexp<——AiXG_1AiX ,
29?2

0
77 /.Lv)\é],u(lS FV}\’ (312

The contour of the integral in thé-dependent phase is taken
about the spatial plane and so @lldependence is seen to
reside only at spatial infinity.

The Lagrangian for the S@) non-Abelian vector and scalar 0 .
fields is —;emaﬂ&FM : (3.13
L=— iFayFaV—ED 2D , 2 —V(p2¢?), In principle, one can make the scalar field heavy so it will
4g% *v v 27H not affect the low-energy dynamics and only appear in@the

. term of the theory. Let us also note that in the BPS limit
F&,=0,A5—d,A%+ e AAS, (A=0) of the original SW2) theory the scalar field will be
(3.9 massless.
a— ag abcab ;c
D¢ =dud™t e TALEY B. Compactification of U(1) theory
from 3+1 to 2+ 1 dimensions

A
V(¢%d*)= §(¢a¢a_ 7°)%. We shall show that in the BPS limitn&0) exactly the
same form ofL? as above is obtained by compactifying a

The symmetry of the theory can be broken from(3Uo  U(1) theory with ad term from 3+ 1 to 2+ 1 dimensions. In
U(1) by choosing$? to point in a specific direction in isos- this case there is no explicit consideration of a scalar poten-
pace(e.g., p*= ¢°). After breaking the symmetry, there is tial but the vacuum expectation value of the scalar field is
one neutral vector field parallel to the direction #f (the taken to bes+0. The action in 3-1 dimensions is
photon) and two charged vector fields orthogonal ¢8 in
isospacdthe W= boson$. We shall consider the low-energy S_J’ d*x
spectrum only and hence the Lagrangian of the photon and N
the component of the scalar triplet in the chosen direction of
isospace. This scalar field has a mass proportionat/feand Where summation over repeated indices is over
a nonzero vacuum expectation value. ,v,\,p=0,1,2,3.6 ande are dimensionless parameters.

To define thed term we shall consider the gauge- mvarlant Compactification of the third spatial dimension yields
tensorF ,, introduced by 't Hooft,

. (314

1, 1
2P g0 F

2 pr 4 mvhpt pv

1 1
_Fa ¢a abc¢aDM¢ Dv¢c (3.10 S= f d?’XdR{ - EFIZN_ g(ﬁﬂAs)z— 0€,,0 0, AsF )
(3.1

Upon the breaking of SU(2)U(1), by choosing¢?= ¢,
F,, reduces to give the tensor of electromagnetismwhere now summation of repeated indices is over
F%V:aMAﬁ—&VAi. The interpretation oF ,,, is of magnetic ~ u,»,A=0,1,2.R is the radius of compactification and the
flux density. Therefore, the magnetic charge of the unbroke2+ 1 theory is obtained in the limit of smaR. The depen-
theory, which is topologically invariant and proportional to dence ofA, and A; upon the compactified coordinateg
the topological charge or winding number, is given by can be gauged away giving, after integration,
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) B o € (XTY);

(0,0)"— Oy ,0rdF 1, |, V(x)=exp i | d yWEi(Y) . (319

(3.16

S= f d3x
We therefore writéh in the Hamiltonian to ensure its invari-
whereg?=e?A, n°=Ale?, A¢=~A;, A=1/R, andA is the ance under the action &f(x) whereb is the singlet part of
UV cutoff. The origin of the mass dimensions of the cou-B andB=¢;;d;A;, as in[7]. So, if P is the projection op-
pling constants in the (21)-dimensional 1) theory is erator upon the whole compact gauge group, we can write
now clear. Given the transformatiap®= 7(1+ ¢), the La-  formally b?=PB?P. B does not commute witN(x) but b
grangian above is easily shown to be the same asEt3d  does.

in the BPS limit. Gauss’s law will also be satisfied by these operators. It is
given by
C. The Hamiltonian
The Hamiltonian is, therefore, exp[iJ deﬁiMX)Ei(X)]|‘1’>=|‘I’>7 (3.20
4
Hf=HA+H s, where\ here is a regular function.
0 1 ) ) 20 3 2 1 5 IV. THE VARIATIONAL ANSATZ FOR THE VACUUM
HA:EI dx| g EAi+7fjiaj¢ +?b : WAVE FUNCTIONAL
(3.1 In this paper we require the vacuum wave functional in

order to calculate the energy, or vacuum expectation value,

10, 32 2 .32 of the Hamiltonian. Through the functional variational tech-
H ya= EJ d*x +(4i47) "+ 7N $7)), nique, we calculate the expectation value of the energy with
our ansatz for the wave functional and minimize this with

where terms ofO(¢%) and greater have been omitted be-féspect to the propagators to find the forms of the masses,
cause we are interested only in the limit of small The  Propagators, and the vacuum energy of the theory. Hence,

Hamiltonian for the scalar sector can be written in terms ofthe form of our initial ansatz is of vital importance.
the field ¢, We work in analogy with Sec. Il but adopt a slightly

modified condition for¥?. We construct our wave func-
1 tional to be gauge invariant and have nontrivialdepen-
—(my—200)*+ nz(ai¢)2+4774>\¢21, dence in the following wayW /A", #®] contains all theg
7 dependence of W[A;,¢3]=3,WIA", 43 ]¥A", ¢%],
(3.18 where the sum oven is the sum over large gauge transfor-
mations. W[ A, ,¢?] is the solution of the equation

2

0
T 13— L—
Ty

1
0 _ 2

but information about the physical field® at zero momen-

tum is lost. . N HOWIA , ¢°1=E"V[A,4°], (4.1
As in the case of the simple one-dimensional model of

Sec. Il, the periodicity of is not explicit through the Hamil-  such that

tonian formalism. In both the one-dimensional case and in

QEDs, 6 is easily seen to be periodic in the path-integral EQZJ

formalism with the fundamental domains ef} < <3 for

the one-dimensional model ardl/2q< §<1/2q for QED4. , " "

In the one-dimensional case it became apparent that, under XWHTAY G THW AT ¢ TPAT , ¢°]

the transformatio— 6+ 1, it is only the entire spectrum of f

DAD#3 Y, WAl 4]

n’,n”

solutions which is invariant and each separate energy level is
not. But in our model of QER we are considering only the
low-energy Hamiltonian with an ansatz only for the vacuum " , "
or ground state of the system. Therefore, we do not expect XWIAT G TWO AT ¢ THOW AT ¢%],
this solution, but rather the entire energy spectrum, to be 4.2
invariant under the transformatia@h— 6+ 1/q and we restrict
6 to its fundamental domain throughout the rest of this cal-whereH® corresponds to the Hamiltonian of the system with
culation. #=0. Since the components aF cannot be individually

In the compact theory pointlike vortices with quantized gauge invariant without making the theory trivialtyinde-
magnetic flux 2rn cannot be detected by any measurementpendent, we have written explicitly the summation over large
Within the Hamiltonian formalism, this means that the cre-gauge transformations. We note here that each sector of the
ation operator of a pointlike vortex must be indistinguishabled=0 energy picks up &-dependent phase factor. From Sec.
from the unit operator. The operatM(x) creates such a Il C we know the form ofH? andH®. We shalll first of all
vortex; it generates a large transformation which belongs tavrite the wave functional in terms @f and then transform it
the compact gauge group and must, therefore, act triviallfo depend upow®, where#®= 7(1+ ¢), which can be con-
upon all physical states: sidered as just a modification of the field at zero momentum.

DAD®3 Y, WA, ¢3]

n’,n”
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From a previous calculatiofv], an ansatz is known for the Using this notation, we can write down a gauge-invariant
gauge sector of the theory wiih=0 and which, within the ansatz for the vacuum wave functional in terms of the field
variational framework, can be used to reproduce all thep, with nontrivial & dependence, which satisfies the above
known results of dynamical mass generation, Polyakov scaformalism:

ing, and nonzero string tensidﬁ.f’l, is just the Hamiltonian of
a free, massive scalar field which has the solution

[ d%k
exp{ —%f (Zw)z(k2+m2)l’2¢(k)¢(—k)].

VA '¢]:f D x,D xexd — 2i 0¢Eij‘9iA;(U]

1 7?
xexyg — Z—QZAiXG’lAiX— ?¢K*1¢

The combination of these two Gaussian factors gives the (4.10
wave functional
We now need to modify this wave functional to write it in
0 1 - terms of the field¢3, to ensure that the extra information
WA ¢]= | Dxexp — 2_92(Ai_‘7iX)G (Ai—dix) about the field of zero momentum is not lost. We write

2i 6
: (4.3 ‘I’[Ai1¢3]:f DXGXF{IT(&— 7)€ ;A"

2
n
T KT

1
whereG andK are, respectively, the propagators of the vec- Xexr{ — —ZAiXG‘lAf‘
tor and scalar fields. They are parameters of the functional 29
variational technique and so have no explicit form at this

stage. Equatior4.3) is satisfied by _ E((1,3_ DK Y37 |. (4.12)

o AN — > iOe.. (A — .
VAT 4] f D xexr 21 feji ¢3;(Ai= dix)] It can be seen clearly from consideration of the vacuum ex-

pectation of the Hamiltonian above that this ansatz reduces
to the desired form in the case 6# 0 and will reproduce all
the results of 7].

The phase functiory(x) is parametrized as

~ V. THE VARIATIONAL CALCULATION
xX(X)=x(x)+ x,(x), (4.9

The expectation value of any operat®A;,¢) in the
wherey is a smooth function ang,(x) contains all the Wwave functional(4.11) is
discontinuities and can be written as

n. n_ (O(A ,¢)>=z*1f DAD¢*DYx'Dx.DXx"Dx"
Xo= 2 0(X=Xo) = 2 0(X—Xp), (4.6 _
a=1 A=1 210 ,
X ex _7(¢ —n)€ijdi(Aj=dix,)
where 6(x—X,) is a polar angle on a plane centeredkat
The functional measure can be written as 1, ;1
xex _2_92AiX GIA = 5(6°= )

oo

fDx=JD}§ PO

ni=on=oni!n_! XK71(¢3—77)

2i0
O(A| ,¢)ex;{7(¢3— 7)

nyg n_
x[[l 311 d?x,02x A%, 4.7

l " "

X € 0i(Aj=diX,) exr{ - ;AiX G AY
with the explicit UV momentum cutoff\. 9
We adopt the following notation for convenience:

1
~ S (@K A=), (5.0

A= Ai(X) = 3 x(x) (4.8

If O(A;) is explicitly gauge invariant we may shift the inte-
gration variableAY — A, . With the redefinitiony= x' — x”

and{=x'+ x", and similarly fory andy,, the expectation
value reduces to

and, for a matrixM (x—y),

AiMAizf d?xd?y A (X)M (x—y)Ai(Y). (4.9
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172

<O(Ai,¢)>=Z‘1J DAD¢°*DZDxD{,Dy, zX:J D}?ex;{—%&i}Glﬁi}
g

— 2 1
=det 49 W?G

2i0
xexp{——(qf’— W)Eijai(Aj_&ij)} 1 1
7 ZV: DXVeX - _&iXVG aiXV
49?2

1 1
xexp — S AGTIAY - S(¢*=nK™! 6°
zg __ZeijaianVKEijaianV .
7
X(p3— 1) |O(A;, o) Details of the derivative transformation—used here and in
evaluation of the following Gaussian integrals over the sin-

2i0 gul:_’:lr fgnctionXV—that establi_she_s the connectiqn bgtween
Xex;{—(&— ﬂ)fijaiAj} derivatives ofy, and the distribution function of its singu-
n larities or vorticesp are given in Appendix A. Any singu-
larities in ¢(x) remaining after the change of variables are
Xex;{ _ izAiG_lAi _ %((ﬁg_ K tsziirI:en to gon'gribute an infinite action anc_i so are ignored. The
gularities iny,,, however, cannot be ignored.
To evaluateZ, we shall write it as a partition function of
a gas of vortices and use the standard trick2p10]

X (3= n)|. (5.2

0 n, n_

z,= > Il 11 d?x,d%x gz"+ -
. n,,n_=0 a=1 p=1

The integration oveD (=D {D/, just gives the volume of
the gauge group and so cancels with the denominator.

1
Xexp — —2[ E D(X,—Xgyr)+ E D(Xxg—Xg)
497 a.a’ BB
A. Calculation of the energy density

First we shall evaluaté: -> D(X,—Xp) } (5.6
a,B

- 2i0 : .
Z:f DAiD¢3DXDXyeXF{—(¢3— 7)€ X, where the vortex-vortex interaction potentla(x) and the
7 vortex fugacityz are given by

1 1 d? 292

— —AG A (32— K Y P3— )+ =9 xG A D(x):swzf k™G (k) + K (k) |cogkx),
g g (2m)? 7

_ia_ G La (5.3 =A2 ! D(0 5
292 iX iX|- . z=A“ex —8—92 (0) . (5.7

. . . We expect the UV behavior d&(k) andK (k) at large mo-
By completing the squares with the two changes of Va”ablementum to be the same as in the free theory

[G(k)—k ™1, K(k)—k™1]. The vortex fugacity is the small-

i6 2imh est variable in the theorng<g?<A, where, in the limit of
3. 113_ 43 — 43 ' '
P —¢' " =¢ —;éijﬂianuK—¢ _TPK’ weak coupling,
) T A 46%9?

1 z=Aexp — 53 1+—;

Ai_>Ai’ :Ai_ E(giX, (54) g 7

2 w A 46%g?

and omitting the dashes on the new variables, one obtains TATEXR Ty ?Jr A ’ 5.8
2=2,242,Z where we have identified =g» from the compactification
x=vo

of the U(1) theory from 31—2+1 dimensions or, alter-
natively, from the masses of the charged vector bosons of the
theory.

We will need to calculate correlation functions of the vor-
tex density and so, followinfj7], we write the vortex density
as

=defg*nG],

1
za=J DAiexr{ — —AGTA
g

2= [ Do —(47= K N )] del KT

55 p(X)Z% S(X—Xo) = 8(X—Xp). (5.9
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Introducing a source term the exponential factor including / g2 ) 5 )
the vortex fugacity in Eq(5.7) can be written as 7J d°X[Ep +20¢€id;(¢°— 1) ]
2(ny+n_) Com2 -1 : 2 - 2 1
A + f DXqu Zg XD X+|pX+|pJ} — g?z—lj DA|D¢3DXDXV _2TrG—l_ _2AiG—2Ai
(5.10 g g
and the sum over the number of vortices and antivortices 2i6 1 _
gives XeXF{—(Cbg_ 7)€ didix,— 5 AG A
7 g
_ 1
Zv:f DXeXW"Zgz(X‘J)D =) (K THGm aG A
+ | 2A%cosy(x 5.1 1 _
J 2aeos )] . (510 5 NG x| (5.17

Calculating the functional derivatives with respect to theCompIeting the squares and performing the functional inte-
source term yields grations gives

(p(X)p(y))=4g°D '(x-y)~ 166D XD x(y)).  1/g?[ .
5. v<?J d X[EAi+206ji(9](¢ _77)] >

The propagator ofy is easily calculated. First, the cosine 10 d2 1 72
potential is rewritten in the normal-ordered form :_J —— =G Yk) ——=k2C(k)G 2
2) (2m)?|2 9’
cosy= i:cos(:. (5.13 1 d% 47
A2 =—f G k) — —zk 2G (k) |. (5.18
4) (2m? g°

Therefore, to first order iz, the propagator of is L ) .
The Gaussian integral ovgf, is transformed into a correla-

. 1 D(K) tion function of p. This procedure is given in more detail in
f d>xe X (x () x(0)) =—5—— =— Appendix A.
49°D (k) +2z 4g Now for the magnetic term. In every gauge-invariant state
) (b?)=(B?) by definition. We will, therefore, calculat@?).
_ZD (k) +0o(2?) (5.14 But since it is not itself gauge invariant some care is needed
8g* ' ' with the integrals ovey and{:

To first order, the correlator of the vortex densities is then 1, 1 P |
—b*)=2 DAD¢°Dx'Dx,Dx"Dx,—
292 29°?
C(k)=f d2xe*(p(x)p(0))=2z+0(z%) (5.19 %0
X[GijaiAj]zeX[{—((ﬁs— 77)6”(9'(7]()(;—)(/;)
as in[7] but with a #-dependent modification . 7
Now, we can calculate the expectation value of the 1 1
Hamiltonian: A IAY - A G aY
292 1 1 2 |

(HY=(H{)+(H%)=2"1| DAD¢DXDy,
Mo J — (2= K Hp3— )

X ;{Zm(& )€ d;d ! AXGIAX 1
exg—(d°—n)€did x,|exXg — —S A -
" 7)E€ijoidix 292 i I Aj+_aj

=z—1f DAD$°DxD{—; €, >

1
29

1
= 5(°= KM@= ) |[HR+Hys]

2 laie
X({=x)(| ex 7(¢ —17)€i;9i9; X,

X ex —iA-G’lA-—E(&—n)K’1(¢3—77) 1 1
2g% " b2 — ——AGTIAY- ——AG A
292 29
(5.16

First, we shall consider the purely gauge field sector: —(pP— K Y- n)|. (5.19
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We have again useg=y'— x"” and{=x'+ x". The linear

term in ¢ disappears due to the symmetry of its measure. Thé< EJ d2\ (3 — 7])2>
term quadratic in¢ is independent of5, K, andd and so V2

contributes nothing of interest to either the energy or the

minimization equations. After completing the squares we ob- :Ef d’k [N 72K (K) — 16N 72622 K2(K) ] (5.23
tain 4 SLAT . .
(2m)

Therefore, for the scalar field we obtain
L P =z*1f DA-D¢3DXi[e--&-A-]2
V 292 a [ 292 17177 1<H0> 1J< dzk [K_l(k)+1677202

(VAR =/ami 2 2 Z

1] g dk v 4 (2m) 7
Xex _EAiG Ai —ZJ' (277)2k G(k) 77202
2 2 2
+| K(k)— 5—2KA(K) | (KN 7% ¢
(5.20

(5.29

So, for the purely gauge field sector, we obtain
B. Minimization of the vacuum energy density

1 1( d%k

—H9=—f G (k) +k?G(k
V< ») 4) (2m)? (k) (k) sity with respect to the vector field propaga®(k) and the
scalar field propagatdf (k) are given in Appendix B.

We obtain the simple minimization equations

2

47
- —sz‘ZG‘z(k) . (5.21)
g

1
0=7[K*~G (k)]
This is of the same form 45 but with the modified expres-

sion forz. w s 2 s
Following the procedure above we calculate the vacuum — —k “G (k)ZJ 5 5P G “(p)
expectation value of the Hamiltonian of the scalar field: 9 (2m)
2t —-2n—2 dzp 2 2 2
11, 20 \2 +——k %G %(k)z S[1-K2(p)(p*+ N 7)1,
vzfdx 7T¢3——b 7°9 (2m)
(5.29
1 -1 3N -1 3 -2 : ;
= EZ DAD¢°DxDy, [K "= (°— n)K with the solution
3 26 3 1 -1 G ?(k)= K
X(¢°—n)]ex 7(¢ — 1) €ijdidiX,— §AiG Ai K2+m2’
1 1 47t d’p
— (P K Y-+ =axG A-—— m?=—-z f G2
40292 de
X ixG rox ——zf S[1-K2(p)(p?+8A72)]
] (2m)
_f d2k -lK—l ) +277202C ’ (5.26
= | G aK o nd
J d2k '1K_1(k)+47r202 522 o 1[1677402 f dp | 262 49292[1 K2(p)
- Z z|. . =— p p)— —KAp
(2m)? 4 7’ 4l 292 ) 2m)?| 7’
Similarly, the terms quadratic igp give X(p2+A75?)] +(k2+)\n2)—K2(k)] , (5.27)
1/1 . .
V<§J’ d2x( 4, ¢3)2> with the solution
K~=2(k)=k2+m2+m?,
1 f d%k i 167262 KK o
= — - Z y
4) (2m)2 (k) e ( m(zﬁz)w;z, (5.28

Details of the functional minimization of the energy den-
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161462 d2p [ 46%g? The last term in each expression combines to give the exact
my=—— f 5| PT2G7%(p)— —-[1-K*(p) form of m2. It has been shown that tiedependence of is
9°n (2m? n a subleading term ir\, Eq. (5.8). Therefore, the gauge sec-
tor of the theory is manifestly independent &f The scalar
X(p2+ A 7?)] sector does have an explicit dependence ugobut it is
always suppressed by an orderzoflt is interesting to note,
however, that it is in the BPS limitN=0) and in the limit of
_ 46°9 2 a very massive scalar field that thedependence of the total
- 7 m=. vacuum energy density is most greatly suppressed. In the

BPS limit the total vacuum energy density is
Explicit evaluation of the photon mass gives

1 14 1 863%g3 192
3 2 2 _ (AN 3+ - 4+ — = 3| __ -2 2
m2=7T—42 A?—m?n A +2m viHY g 3" 3<1 7 m e
g m (5.32
46792 A2+ mi+m5 - -
_ 9 (M2 +m2)In " (5.29 where thef dependence of the scalar sector is suppressed in
2 \MgTMe/IM 55— |- 3l e : :
7 5+ mg terms ofO(z%?9). In the limit of a very massive scalar field

(N becomes largethe vacuum energy density is

The 6 dependence af has been shown to be subleading in
terms of A, Eq. (5.8). In the limit of a large UV cutoff 4 174 1 2 1 g2
H o\ — 3 3 21312 2 9 2
momentumA, all the # dependence df is, therefore, sup- V<H Y= %{5/\ + zM— 5()\7; e ¥/ A}— FTLLE

pressed in subleading terms &f In the BPS limit A =0), 4

the # dependence in Eq5.29 only occurs aO(z?) and so (533
is suppressed further.
In the BPS limit we can write, to first order in In the limit of a very massive scalar field, the ordydepen-
dence of the scalar sector is in the modified fornz,ofvhich
3 we have already shown to be subleading in termA& o080 in
m2=EA22, this limit we recover the exact result of Vergeles.
mf/)= 0, (5.30 D. Expectation value of the Wilson loop

Finally, we can calculate the expectation value of the Wil-
0292 son loop, as 7], to see how the? dependence affects
mj=4——m?, confinement:

We should note here that? is in agreement witti7] to first We= < exp( il fﬁCAidXi) > = < exr{ il JSBdS) > :
order inz. (5.34
C. Evaluation of the vacuum energy density wherel is an arbitrary integer and the integral is over the
Now, as we have the forms of the propagators and tha@reaS bounded by the loo. We have writterB rather than

masses for the fields we can consider thdependence of b, since this exponential operator is invariant under transfor-
the vacuum expectation value of the Hamiltonian. ThemationsB(x)— B(x)+ 2, generated by the vortex operator:
vacuum energy densities of the gauge and scalar sectors
evaluated in the limit of a large UV cutoff are

_ 2i0
) ) Wc:Z_lf DAiD¢DXDXVeXF{7(¢3— 7) €9 X,
1 ezizAsls_ dklk—z—zk
V(HA> 813 +-m zk *G™4(k),

3 (2m)? ¢? 1 1 . 1 »
a2 __ZAiG Ai+_2(7iXG Ai_F(giXG dix
1<H9> ! 2A3+1 Y 2+40292 2 g g 9
Vi e Tg g3 T3 M 2 M
K o —(¢3—77)K*1(¢3—77)+i|f55ds. (5.35
46°g°
+A7? A—()\nz—l— m? H
n After completing the squares,
d’k 4m%0?
f(z Eh— Z[1-KA(K)(K*+ X )] We=WoW,, (5.36
m° 7

(56.3)  where
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1 As in the instanton gas calculatiofig], the contribution of
Wozzglf DAexg — —2AiG*1Ai+iI f BdS|, one monopole at point is considered first:
g S
1 a H
1 46°g° Wy (x,C)xexpg — — i 7n(x,C) |,
Wyzzglf Dy, ex —pﬂixv G 1+ —— K | dix, g
g 7
: (X=y)
il X,C)= %d ALMOD) (y =J' d’o ,
- Ef deij(9if7ijdXi . (53D 77( ) C yM " ( y) 3c ,u(y) |X_y|3
S (6.2
In a weak couplingVy becomes where 5(x,C) is the solid angle formed by the poirtand

12 2 9 the contourC. X is an arbitrary surface bounded by the
Wozexp[ - _J (B(x)B(y))dzxdzy] =exp{ - _gm% contourC. a=Mye(\/g?) whereM,y,=g»=A as stated in

2 Jxy 4 Sec. lll. Forn=0, e(\/g?)=4. Summation over all pos-
(5.39 sible monopole configurations leads to the scalar field theory

in the limit k— 0. This term is independent &f and gives 1
the string tensiorr= (12g%/4)m. WM(C)ocf D¢ex;{—92f d3x(—(a¢)2+ m?

W, differs from unity only for odd, for which it can be 2
calculated,
X[1—cod ¢+ )]} |, 6.3

wW,= < ex;{ i Wf p(x)dzx> > = f DXeX[{ —29°xD 1y
S with m2?cexd —a/g?]. Rewriting this theory in terms of an

effective action by introducing a rank 2 antisymmetric tensor
+ f 2A2%cog x(x)— a(x)]), (5.39 field B, Polyakov suggested a new type of strings, which he

x called confining strings. Let us consider the axionic confin-
ing strings; the strings in our theory with an extra scalar

wherea(x) is zero outside anér inside the loop. Following

the normal ordering prescription for a scalar field given in(axionic) field coupled to the photon field in @term.
Sec. V A, and noting that the solution to the classical equa: We shall show that the proposed low-energy theory for

tions which contributes to the leading order result isQED3 W'th. ﬁ scalar.fﬂeld_ andfa;]terhm Is the equwalipt of
x(x)=0, we obtain the solutiohV,=exd—2zS. As in [7] Eqa(6.3) wit Iamod[ |ﬁatr|]on Obt e photon Imalas Wrc])r I\?Vgl
this is a subleading correction to the string tension<€2r) In direct analogy with the above, we calculate the Wilson

where thef dependence iz (and hence also in the factor loop:
z'2in m) is greatly suppressed as a subleading term in
W(C)=J DAMexp[—S(A,&)Jri fﬁdxMAM ,
VI. AXIONIC CONFINING STRINGS

Polyakov showed that purely gauge field compact QED 1 ., 1 2i0 —~
is equivalent to a nonstandard string the@6}. We shall S(A’¢3):f d*x 4_nguv+§(‘9u¢3)2+7‘?u¢3Fu
show in this section that our proposed Lagrangian for low-
energy compact QEpwith a scalar field and & term gives 1 1 2i 0 .
rise to the same nonstandard string theory but with a =J dx 4—92F,2w— §¢BD >~ 7¢33MFM

#-dependent modification of the mass of the photon. This
modification of the mass is a subleading term in the UV +2i6q, (6.4)
momentum cutoff and is as predicted in E§.8).

We shall first give a brief review of the relevant details \, oo "E,L:%L‘Wwa\ and q=fd28M'I5#. The ¢° field is

from [6]. The Wilson loop calculated in compact QB eliminated by Gaussian integration with the transformation

d3(X)— ' 3(X) = P3(X) + (2i 6/ n)Dfl(x)aﬂ'lfﬂ(x). Care is
) needed with the definition of the inverse D’Alembertian, the
action of which upon an arbitrary functidi{x) is,

W(C)=f DAMex;{—S(A)H édxﬂAM

S(A):if d?’XF2 . (61) -1 3yrm—1 ' ’
492 wy O (x)f(x)=J dex'0O0" (x—=x")f(x"). (6.5

HereF,,=d,A,—d,A,. In the calculation ofW(C) one  The action of the D’Alembertian gives the correct result al-
must include the monopole configurations of the vector fieldjowing the interpretation of1 ! as a Green'’s function:

As a result, Eg. (6.2 has the representation

W(C)=W;y(C)Wy(C) where the first factor comes from the Ox)O " Y(x—x")=86(x—x"). (6.6)
Gaussian integration over the vector field and the second

factor is from the contribution of the pointlike monopoles. Therefore, integrating out thé® field we obtain
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—1 in agreement with th&? modification ofz, Eq. (5.9).
S(A,¢3):j d3x —ZF/ZW— —f d3x'0?t From [2], we know the configuration of tha field due to
monopoles gives rise to
! T ’ T ; _ 1
X(x=x")d,F,(x")d,F,(x)|+2i6q. Fu=> x |3 —418,30(X3) 8(X1) 8(Xz) | (6.10
(6.7)

As in [2], each monopole is surrounded with a sphere of
We are working in the limit of zero scalar potential here. TheradiusR such thatM ' <R<|x,| Wherex,y, is the distance
contribution of one monopole at poirtis, therefore, between two monopoles, located at and x,,. Inside the
sphere, Eq.(6.10 is not valid and the influence of other
1 _a : monopoles may be neglected. This is the region that gives
WM(X'C)OCeXp< 2 +b+|[77(x,C)+26q]) . (68 rise to the so-called self-pseudoenergy of the monopales,
Monopoles of charge-1 are neglected as they can be con-
whereb comes from the evaluation of thé term in Eq.  sidered as the limit of two or more monopoles in close prox-
(6.7), which can be written as imity and these configurations have been shown to be ines-
0 202 ;entiaI[Z]. iny far separated monoples are important in the
3 f d3xd3x’D‘1(x—x’)aMEM(x’)aV'ﬁV(x). infrared region. For a large separation,

6.9 d9,F,=—2m8%x). (6.11)

Immediately, we see that E6.9) has the mass dimension of Writing Eqg. (6.9) in momentum space we obtain

2"2 4 fd3 d®x J o f dswf s k™ 2exp{i[K(x—x") +k'x" +K'x]} re (6.12
w expl X—X X X |y . .
(2m®) (2m3) (2m)® A

This is in direct agreement with Eq5.8). Our proposed 0

Lagrangian for low-energy QEPhence gives an equivalent t= o (6.14
form of Eq. (6.3 with the modifications ofm? replaced

by m’?2 and 7(x,C) replaced by »'(x,C) where m'? A ,

=mexg —constx 6°g%/A] and 7’ (x,C)=7(x,C)+26q. Ao —Oexr{ _a '

The modified form of the photon mass will not change the 4 g

rest of the formalism off6]. The constant shift iy will have

an effect upon the monopole configuration, or shape of thahereA, is the UV cutoff anda’ is a constant. To compare

surface3  that minimizes the action. Because of the inte-this with our calculation above we shall write the results of

gration over allx, which is equivalent to a sum over all [11]in a more convenient form:

angles, such a constant shift should have no effect within the

formalism of[6]. > 5 4e*¢? , | 4e*e?
It is interesting to contrast this result to that of Diaman- =Mgex (4m)*

tini, Quevedo, and Trugengerggtl], who introduced af

term in a four-dimensional compact U(1) theory and pro- A2 A2 2a’
ceeded to compute the low-energy effective action for the m§=—oc—oexp{ S (6.15
confining string in a derivative expansion. [Iii] the 6 term e’ 16e? 2

is written in the Kalb-Ramond action, )
We see that the results of the calculation above and those of

[11] are in qualitative agreement—the inclusion of aerm
EHMMHMWJF EBWBW in a compact 1) theory in 2+ 1 and 3+ 1 dimensions leads
to a #2 shift in the mass of the corresponding confining string
theory. Here we should also note another recent paper about
(6.13  the confining string corresponding to compact U(1) theory
in four Euclidean dimensionsl 2].

S(B,”)zf d*x

i6
+ @BP-VEMV&[;B“I; ,

which produces a shift in the mass of the field:
VII. CONCLUSION

mazﬂ 4_77 112 We have found that it is much more natural to include a
4m e? ' scalar Higgs field to consider é&term in QED;. The theory
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without a scalar field gives the same result of being indepen- 1

dent of 6 but excludes the limit of spatial infinity. From Z;lf Dth?iXVGzﬁiXyeXF{——zf?iXVG107iXV
consideration of the term in the non-Abelian Lagrangian of 49

the SU2) 't Hooft—Polyakov monopole we propose such a
term in QED; in which the gauge and scalar fields are
coupled. The term we propose is exactly of the form of the
topological term proposed by Affleck, Harvey, and Witten
[8]. We find that this term is expected if the We use the transformation

46°

- —2772pr . (A1)
7

i
Xv=— z;ﬁ

: (A4)

(2+1)-dimensional theory is considered as a result of di-
mensional reduction of a purely gaugélWtheory with a# dix,= €. (A2)
term in 3+1 dimensions. _ L : . .

The gauge sector of QEpis found to have a mass and a The singularities iny, are angular functions in two dimen-
vacuum energy that are independentddbr weak coupling ~ SIons and so we can use the standard definition
in the limit of large UV cutoff. The independence frofnof
the vacuum energy of the gauge sector is in agreement with In Z— 2, In Z—Zp (A3)
[3]. The nonperturbative dynamical mass generation for the z-z, Z__a '
photon, the vacuum energy density, and the expectation
value of the Wilson loop are all in agreement W[tfl. In The form of  is, therefore,
both [3] and [7], QED; was considered without a scalar
field. 1 1

Further, we find that the vacuum energy of the scalar field lﬂ:E In 1z—z,) —In 1z— 2,
is dependent upo#f, but that this dependence is suppressed. “p “ k
It is in the BPS limit of zero scalar potential and in the limit 2, . __ _2
of a very massive scalar fielthrge scalar potentiathat the S%thawj.‘//_h 2.77 p of, In rr;ome_ntumf Sﬁaw‘ . 2mp k.
8 dependence is most greatly suppressed. Hependence wherep is the dls_trlbutl_on unction of the vortices or singu-
is in terms ofO(z%?) in the BPS limit but, in the limit of a larities of x, and is defined as
very massive scalar field the scalar sector, and hence the total
vacuum energy, becomes independen®dh direct agree- p(X)=> S(X—X,)— (X—Xp). (A5)
ment with[3]. a.B

A nonperturbative dynamical mass proportional &as _
generated for the scalar field which does not disappear in the® Ed:(Al) is now transformed to
limit of zero scalar potential.

It is clear from the calculation of the string tension that 2 —2~—2 6.2 d’k oD
the expectation value of the Wilson loop obeys the area law ATKTIGTHp(X)p(y)) =87 f (277)2k Gz
and leads to confinement. Its dependence ug@as greatly (AB)
suppressed for weak coupling in the limit of a large UV
cutoff. (pp) is calculated taO(z) in Sec. V A.
An extension of Polyakov’s work on confining string3
has shown that our proposed Lagrangian for low-energy APPENDIX B

QED;, with a scalar field and @& term, is equivalent to a

nonstandard string theory. This string theory is of the same We shall functionally minimize the vacuum energy den-
form as that found by Polyakov to be equivalent to purelysity with respect to the scalar and vector propagators to ob-
gauge field compact QEpPwith a 62, but subleading in UV  tain the forms of the masses and propagators of the fields.
momentum cutoff, modification of the photon mass, and &rom Eq.(5.8) we note that

0-dependent shift of the shape of the minimal surface. The

modification of the photon mass is in direct agreement with oz 1 .,
our variational calculation. 5G(K) 4—92k G (Kk)z,
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5<Hf§> 1 2 5 472 o3
APPENDIX A 5G(k) 4 k“=G (k)+? 27k 2G3(k)

In this appendix we shall give details of the evaluation of

integrals over the singular functiog, by considering the _ 0z A
example 6G(k)

d’p
2 —-2n~-2
f(zw)zp G (p)H- (B2)
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Assuming that at large momen®(k) —k 1, the ratio of the

fourth term to the third term in EqB2) is

d?p
4 2] —26—2
oz ) (2me® LY

o —,
oG(k) 2zk 2G3(k) g%k

(B3)

This is much greater than 1, at weak coupling, for any value

of k and so we omit the third term from E(B2). Also, using

&Hye) 16m9> oz [ d’p
8G(k) 2 8G(K) ) (24)2

[1-KAp)(p*+A72)],
(B4)
we obtain the minimization equation

1 4
0= [K2—G2(K)]- = Kk 2G~2(K)z
2 "

d’p 46%m*
X “2G72(p)+ k=2G~?(k)z
f(zﬂ)zp (p) 70 (k)

d2p _ k2 2 2
xf(%)z[l K2(p)(p*+ 1 7). (85)

Now, consider the minimization with respect kKqk):

A am* oz [ dp
g2 oK(K)J (2m7)2

(B6)

3731

S(H%) 1 327262
¢ _ 7 2 2\ K ~2(k) —
SRl ~a) (A K- —

ZK(K)

X (k240 2)+6447402 5z J' d?p
TR KW (272

X[1-K2(p)(p*+A72)]|. (B7)

Assuming that at large moment&?(k)—k 2+k “a?,
wherea is the constant coefficient of the second term in the
expansion, the ratio of the penultimate to the last term in
S(H4Y K (K) is

K(K)(k2+ X\ 2?) K(1+X 7%k ?)
oC
6> [ d?p 62 '
2 2 2 2 2
7 (27T)2[1_K (P)(P*+A79)] —nz(a +A7%)InA

(B8)

This is much less than 1 for nonzegoin the UV limit for
any value of\ and so the penultimate term is ignored. So,
we obtain another simple minimization equation

1167 [ d’p [ 46°9°

= 2G4(p) - 1-K?
A g zf | PGP (1K)
X(PPH A7) | + (KA =K 2(K) |. (B9)
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