
Compact three-dimensional QED with au term and axionic confining strings

William E. Brown and Ian I. Kogan*

Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, United Kingdom
~Received 24 March 1997!

We discuss three-dimensional compact QED with au term due to an axionic field. The variational gauge-
invariant functional is considered and it is shown that the ground-state energy is independent ofu in a leading
approximation. The mass gap of the axionic field is found to be dependent uponu, the mass gap of the photon
field, and the scalar potential. The vacuum expectation of the Wilson loop is shown to be independent ofu in
a leading approximation, to obey the area law, and to lead to confinement. We also briefly discuss the
properties of axionic confining strings.@S0556-2821~97!05018-2#

PACS number~s!: 12.20.Ds, 11.15.Tk, 12.38.Aw

I. INTRODUCTION

Within quantum field theory one can add to any Lagrang-
ian of a field with a nontrivial topology a gauge- and
Lorentz-invariant ‘‘u term.’’ Such terms take the form of the
topological charge of the theory with a coefficient ofu, the
Fourier transform variable of the winding number, suitably
normalized. These terms arise naturally in any theory where
there are topologically nontrivial solutions of the classical
equations of motion, i.e., instantons. For example, see Ref.
@1# and the references therein. Theu term cannot be traced in
a perturbation theory because it has no effect upon the clas-
sical equations of motion. In this paper we shall consider the
effect of theu term in compact (211)-dimensional QED.

Much work has been carried out upon such theories and
their associated phenomena. (211)-dimensional QED was
studied by Polyakov@2#, for zerou, who found a mechanism
of confinement due to nonperturbative effects caused by
monopoles. This has led to its consideration as a simpler
~Abelian! model with many of the same characteristics as
QCD. Compact three-dimensional QED~QED3) with a non-
zerou was considered in a path-integral approach by Verge-
les @3# who found that the long-range interactions of the
monopoles and the antimonopoles were responsible for the
suppression of theu dependence of the vacuum energy of the
theory as a subleading term in volume~in the limit of large
volume!. This is in striking contrast to QCD, where theu
dependence of the vacuum energy in the absence of massless
quarks is firmly established.

Vergeles used the intuitive approach of a partition func-
tion of a gas ofN1Q monopoles andN antimonopoles, with
screening in the bulk and all excess monopoles deposited
upon the boundary, and summed overN andQ in the limit of
large volume. He found that theu dependence of the free
energy increased asV1/3 but, for large volume, that this is
suppressed as subleading by theu-independent part of the
free energy which increased withV.

The work of Vergeles was later generalized by Samuel
who proposed that, in a (311)-dimensional Yang-Mills

theory, if long-ranged interactions between instantons are
present theu parameter may relax to zero@4#. Zhitnitsky @5#,
also discussed these problems in (211)-dimensional QED
and (311)-dimensional gluodynamics. Both of these mod-
els possess long-range interactions of topological charges but
Zhitnitsky found that, because the pseudoparticles of
(311)-dimensional gluodynamics possess an additional
quantum number~apart from the topological charge!, only in
QED3 does the physics not depend onu.

Recently, Polyakov has used the compact U~1! theory as a
model to construct the new type of strings, the so-called
confining strings@6#. It is of natural interest to ask the ques-
tion of how theu term will reveal itself in this new string
theory. In @6#, Polyakov proposed the hypothesis that all
gauge theories are equivalent to a certain nonstandard string
theory, where different gauge groups are accounted for by
the weights ascribed to the world sheets of different topolo-
gies. The string ansatz was established in the case of the
Abelian gauge groups and conjectures were made concerning
the non-Abelian generalization. The theories were consid-
ered in the absence of anyu terms, however, and we find that
our proposed low-energy Lagrangian for QED3 with a u
term reproduces the results of@6# with a u-dependent, but
subleading in momentum cutoff, modification to the photon
mass and au-dependent shift of the minimal surface. This
modification of the photon mass is in exact agreement with
the results of our variational calculation.

We follow the gauge-invariant functional variational
method of@7# to approach the problem of QED3 with a u
term. Initially, the aim was to repeat the calculations of@7#
with nonzerou. Through the Hamiltonian formalism, how-
ever, it became obvious that, to introduce theu term in
QED3 and to be able to solve the theory at the space-time
boundary, one has to introduce an extra degree of freedom. A
scalar field must be added whose mass is a free parameter of
the theory. There are two very natural ways to see the form
that the Lagrangian including au term should take.

The first way is to see that U~1! singular monopole solu-
tions can be obtained from the original Georgi-Glashow
model by breaking the internal symmetry down from SU~2!
to U~1! with a triplet of scalar fields@2#. The new U~1!
theory is compact because U~1! is a subgroup of a compact
SU~2! internal symmetry group. The masses of the charged
vector bosons are a UV cutoff for this new theory but the
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mass of the third scalar field is independent of this cutoff and
may even be made zero in the Bogomol’nyi-Prasad-
Sommerfield~BPS! limit. Thus, the low-energy U~1! theory
has two degrees of freedom; the photon and the scalar fields.
Without theu term there is no interaction between the scalar
and the vector field. In the original SU~2! theory it is natural
to have the scalar and vector fields coupled within theu term
and this form is preserved when the internal symmetry is
broken to yield the desired (211)-dimensional U~1! theory.
The term we find is the same as that proposed by Affleck,
Harvey, and Witten for the SU~2! Georgi-Glashow model
with fermions@8#. In the limit of a very massive scalar field,
our model reduces to the purely gauge field model studied by
Polyakov and Vergeles, but it is in the BPS limit~zero po-
tential but nonzero vacuum expectation value for the scalar
field! that the scalar sector of our model becomes most in-
teresting.

The second way to obtain the same Lagrangian is to con-
sider the compactification of a U~1! theory from 311 to
211 dimensions. The component of the vector field in the
direction of the compactified spatial dimension becomes the
scalar field and, although the coupling constants in the
(311)-dimensional U~1! theory are dimensionless, the
source of the mass dimensions of the coupling constants in
the (211)-dimensional theory becomes apparent.

Naively, one may assume that the addition of such au
term would make the dynamics of the fields dependent upon
u. We have found that the dynamically generated mass of the
photon is independent ofu in the limit of large UV cutoff
momentum in QED3 with a scalar field and, in agreement
with @3#, that the vacuum energy of the photon is indepen-
dent of u in this limit. We have also found that the scalar
field has a dynamically generated mass, the square of which
has two terms; one is proportional tou2 and the other is a
bare mass term involving the coefficient of the scalar poten-
tial. In the BPS limit the coefficient of the scalar potential is
set to zero and the scalar mass becomes proportional tou.
The prediction of a dynamically generated scalar mass pro-
portional tou is a new result and one that could be verified
through a lattice simulation. Theu dependence of the scalar
vacuum energy is also greatly suppressed. In the BPS limit it
is suppressed in terms ofO(z3/2) wherez;exp@2L# andL
is the UV cutoff of our theory. In the limit of a very massive
scalar field the scalar, and hence the total, vacuum energy is
independent ofu with all u dependence suppressed in sub-
leading terms of the scalar mass. This is in agreement with
@3#. We have also calculated the string tension and show that,
independently ofu, this obeys the area law and so leads to
confinement as in the simple case of purely gauge field
QED3 @7#.

In the next section we shall describe a simple, one-
dimensional model which has many of the same characteris-
tics as more complex theories, such as QED3. This section is
intended to have a pedagogical role as the study of this
simple model gives some intuition as to the correct formal-
ism required to write down theu dependence of the varia-
tional ansatz. We are unaware of any other instances in the
literature of a term similar to theu term we use and so we
shall give some motivation for it in Sec. III, where we shall
also explain the form of our Hamiltonian. In Sec. IV we give
our ansatz for the wave functional. In Sec. V we shall per-

form the variational calculation; examining theu dependence
of the vacuum energies, the masses of the theory, and the
string tension. In Sec. VI, the modification of the Polyakov
model of the confining string, which we shall call the axionic
string, will be considered and comparisons made to other
recent papers on this specific topic.

II. A SIMPLE ONE-DIMENSIONAL MODEL

To develop some intuition for the formalism required in
order to write down theu dependence in the variational an-
satz for the vacuum wave functional of more complex mod-
els, such as QED3 and QCD, we shall first observe some
results from a well-known and much simpler one-
dimensional model. The formalism of this section will be
modified slightly for the more sophisticated case of QED3
but it is hoped that the reader will gain some insight from
this simple example. This model has many of the same char-
acteristics as more complex theories, such as au term, and is
defined by

Su5E dtF1

2
~ḟ !21uḟ2lcosf G . ~2.1!

A few results are immediately apparent from the path-
integral approach. The first is that the minima of the theory
occur atf5(2n11)p,n50,61,62, . . . . In analogy with
the Georgi-Glashow model with zero scalar potential~but
with a nonzero vacuum expectation of the scalar field which
is necessary to define the nontrivial topology of the theory!,
we shall continue to study the model in the limit of zerol.
Second, the second term is a total derivative which, after
explicit evaluation of the integral, counts the solitons of the
system and gives 2pn wheren is the winding number of the
field configuration. Hence, thisu term is completely analo-
gous to those of more complex theories and affords the sym-
metry u→u11. Third, we note that Eq.~2.1! is invariant
underf→f12p, which is analogous to the gauge invari-
ance of more complex theories.

We shall proceed with the Hamiltonian formalism, having
established the similarity between this simple theory, with its
analogues of gauge invariance and au term with periodicity
in u, and more complex theories. In particular, we shall see
how the periodicity ofu, which is explicit in the path-
integral approach, is displayed within the Hamiltonian for-
malism.

The Hamiltonian of the system is

Hu5
1

2
~pf̃2u!2, ~2.2!

where

f52pn1f̃. ~2.3!

First, we see that theu term has been absorbed into a modi-
fication of the canonical momentum of the free fieldf̃ which
is connected to the fieldf in momentum space by
f(k)52pnd(k)1f̃(k). Second, the Hamiltonian is inde-
pendent ofn and so is explicitly invariant under the transfor-
mation n→n11. The invariance of the Hamiltonian under
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u→u11, however, is unclear. We note here that the free
field f̃ fluctuates about its vacuum expectation value of zero
which is centered at one of the minima off.

We require the solution of the Hamiltonian equation of
the field f. This will be obtained as a modification of the
solution of the Hamilton equation for the fieldf̃,

Huc5Euc, ~2.4!

where we initially postulate the formc5cuc0, with c0 sat-
isfying H0c05E0c0. For this simple modelc0 is known,
but for more complex theories~e.g., QCD! it is not. We

therefore have c05exp@imf̃#, E05 1
2 m2. When u50,

m50,61,62, . . . but fornonzerou this is no longer cor-
rect. We will see that it is the coefficient of the fieldf in the
exponential ofc that must be an integer for nonzerou. We
make the further requirement that

Hucu5cuH0. ~2.5!

In this case the solution of Eq.~2.5! is cu5exp@iuf̃#. After
relabelingp5u1m where p50,61,62, . . . we have the
solution for the fieldf̃:

c5exp@ ipf̃#, Eu5
1

2
~p2u!2. ~2.6!

We note that in the caseu50 the wave functional immedi-
ately reduces to the correct form and thatm becomes an
integer.

Rewriting in terms off, the form of the Hamiltonian
equation and, due to its periodicity, the wave functional are
unchanged. We obtain the solutionc5exp@ipf# with energy

Eu5 1
2 (p2u)2.

We note thatc is invariant underf→f12p. It is clear
from theu dependence of the energy that although each en-
ergy level is shifted, the entire energy spectrum of the theory
is invariant underu→u11. We note also that the ground
state is not simply the minimum of one quadratic but a con-
tinuous function linking the minima of the quadratics cen-
tered at f5(2n11)p,n50,61,62, . . . . Although the
separate consideration here of the field at zero momentum
resulted in no modification of the form of the vacuum wave
functional, the extra detail is included because the analogous
procedure in Sec. IV does result in a modified form of the
wave functional initially deduced for the scalar field of zero
vacuum expectation value.

We propose the same formalism for more complex theo-
ries; an explicitly gauge-invariant butu-dependent Hamil-
tonian with the solutionc5cuc0, wherecu contains all the
u dependence of the wave functional,Hucu5cuH0, andc is
gauge invariant.cu and c0 cannot be individually gauge
invariant without making the theory trivially independent of
u, which is well known not to be the general case~e.g.,
QCD!.

III. THE LAGRANGIAN AND HAMILTONIAN OF QED 3

WITH A u TERM

In the next two subsections we shall show how the La-
grangian with au term for a (211)-dimensional U~1! theory

can be obtained from breaking the internal symmetry of the
SU~2! ’t Hooft–Polyakov monopole and from the compacti-
fication of a (311)-dimensional U~1! theory. In the third
subsection we shall discuss the Hamiltonian of the system.
But we shall first give our motivation for extending the
model to include a scalar field. We follow the motivation for
the topological charge in@3# to write a u term in the La-
grangian for purely gauge field QED3:

L52
1

4
Fmn

2 1ugemnl]mFnl . ~3.1!

In the absence of any monopoles, theu term in this Lagrang-
ian is identically zero. The gauge group of the theory is
compact, however, and theu term is nonzero due to the
noncommutability of derivatives acting upon the singular
component of the vector field. In other words, if we define
Fmn5]mAn2]nAm , it is clear that in the continuum limit
emnl]mFnl50 and that monopoles are singular configura-
tions for which it is hard to write down any continuum dy-
namics in the Hamiltonian formalism.

As usual, theu term may be treated as a total derivative
and written as

ugemnlE dSmFnl . ~3.2!

Through the Hamiltonian formalism we, therefore, obtain

H5
1

2E d2x$@~Ei1uge i j d~Sj2x!#21B2%, ~3.3!

where

Ei52 i
d

dAi
,

~3.4!

B5e i j ] iAj .

Hence the Hamiltonian is unchanged and the theory can be
solved except at the limit of spatial infinity. We shall say no
more than the difficulties of treating theu term other than as
a total derivative with the immediate limitations suggest that
there is an absence of a physical field upon which the deriva-
tive can act. This merely hints that the theory is incomplete
as it is.

We shall quickly show that this theory is independent ofu
except at spatial infinity. Given this limitation we, therefore,
ignore thed function and write Eq.~3.3! as

H5
1

2E d2x@Ei
21b2#. ~3.5!

This is identical to the Hamiltonian of@7#. B is replaced byb
to ensure invariance of the Hamiltonian under large gauge
transformations as explained in Sec. III C.

We require the action of a vortex creation operator upon
the trial wave functional to be

VC5exp@ iu#C. ~3.6!

From @7# we know
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V~x!B~y!5B~y!V~x!12pd2~x2y!V~x!,

C05E DxexpS 2
1

2g2
Ai

xG21Ai
xD , ~3.7!

VC05C0,

whereB5e i j ] iAj . Equation~3.6! is, therefore, satisfied by

C5expS iu

2p R
C
dl ie i j Aj D E DxexpS 2

1

2g2
Ai

xG21Ai
xD .

~3.8!

The contour of the integral in theu-dependent phase is taken
about the spatial plane and so allu dependence is seen to
reside only at spatial infinity.

A. Breaking the internal symmetry
of the ’t Hooft –Polyakov monopole

It may seem a step in the wrong direction but increasing
the complexity of the theory by including a scalar field re-
solves this problem. The SU~2! ’t Hooft–Polyakov mono-
pole has been extensively studied~for a comprehensive treat-
ment see@9#! and so we shall only discuss the salient points.
The Lagrangian for the SU~2! non-Abelian vector and scalar
fields is

L52
1

4g2
Fmn

a Fmn
a 2

1

2
DmfaDmfa2V~fafa!,

Fmn
a []mAn

a2]nAm
a 1eabcAm

b An
c ,

~3.9!

Dmfa[]mfa1eabcAm
b fc,

V~fafa![
l

2
~fafa2h2!2.

The symmetry of the theory can be broken from SU~2! to
U~1! by choosingfa to point in a specific direction in isos-
pace~e.g.,fa5f3). After breaking the symmetry, there is
one neutral vector field parallel to the direction offa ~the
photon! and two charged vector fields orthogonal tofa in
isospace~theW6 bosons!. We shall consider the low-energy
spectrum only and hence the Lagrangian of the photon and
the component of the scalar triplet in the chosen direction of
isospace. This scalar field has a mass proportional tol1/2 and
a nonzero vacuum expectation value.

To define theu term we shall consider the gauge-invariant
tensorFmn introduced by ’t Hooft,

Fmn[Fmn
a f̂a2

1

g
eabcf̂aDmf̂bDnf̂c. ~3.10!

Upon the breaking of SU(2)→U(1), by choosingfa5f3,
Fmn reduces to give the tensor of electromagnetism,
Fmn

3 5]mAn
32]nAm

3 . The interpretation ofFmn is of magnetic
flux density. Therefore, the magnetic charge of the unbroken
theory, which is topologically invariant and proportional to
the topological charge or winding number, is given by

q5
1

8pE d3xemnl]mFnl . ~3.11!

The essential part of theu term in this theory is, therefore,q.
All constants may be absorbed intou as it is a freely varying
parameter. Usingemnlf̂a]mFnl

a 50, we can therefore write
the u term of the U~1! theory as

u

h
emnl]mf3Fnl

3 , ~3.12!

where the derivative only acts upon the scalar field andh is
the value of the scalar field for which the potential is a mini-
mum. The scalar field must behave such that at spatial infin-
ity f35h but within that limit it can fluctuate. This is ex-
actly the topological term suggested by Affleck, Harvey, and
Witten @8#, with the internal symmetry broken from SU~2! to
U~1!.

We finally propose the low-energy U~1! Lagrangian with
a u term to be

Lu52
1

4g2
~Fmn

3 !22
1

2
~]mf3!22

l

2
@~f3!22h2#2

2
u

h
emnl]mf3Fnl

3 . ~3.13!

In principle, one can make the scalar field heavy so it will
not affect the low-energy dynamics and only appear in theu
term of the theory. Let us also note that in the BPS limit
(l50) of the original SU~2! theory the scalar field will be
massless.

B. Compactification of U„1… theory
from 3 11 to 211 dimensions

We shall show that in the BPS limit (l50) exactly the
same form ofLu as above is obtained by compactifying a
U(1) theory with au term from 311 to 211 dimensions. In
this case there is no explicit consideration of a scalar poten-
tial but the vacuum expectation value of the scalar field is
taken to behÞ0. The action in 311 dimensions is

S5E d4xF2
1

4e2
Fmn

2 2
1

4
uemnlrFmnFlrG , ~3.14!

where summation over repeated indices is over
m,n,l,r50,1,2,3.u ande are dimensionless parameters.

Compactification of the third spatial dimension yields

S5E d3xdRF2
1

4e2
Fmn

2 2
1

2e2
~]mA3!22uemnl]mA3FnlG ,

~3.15!

where now summation of repeated indices is over
m,n,l50,1,2. R is the radius of compactification and the
211 theory is obtained in the limit of smallR. The depen-
dence ofAm and A3 upon the compactified coordinatesx3
can be gauged away giving, after integration,
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S5E d3xF2
1

4g2
Fmn

2 2
h2

2
~]mf!22uelmn]lfFmnG ,

~3.16!

whereg25e2L, h25L/e2, Lf5A3, L51/R, andL is the
UV cutoff. The origin of the mass dimensions of the cou-
pling constants in the (211)-dimensional U~1! theory is
now clear. Given the transformationf35h(11f), the La-
grangian above is easily shown to be the same as Eq.~3.13!
in the BPS limit.

C. The Hamiltonian

The Hamiltonian is, therefore,

Hu5HA
u 1Hf3

u ,

HA
u 5

1

2E d2xFg2S EAi
1

2u

h
e j i ] jf

3D 2

1
1

g2
b2G ,

~3.17!

Hf35
1

2E d2xF S pf322
u

h
bD 2

1~] if
3!21h2l~f3!2G ,

where terms ofO(f3) and greater have been omitted be-
cause we are interested only in the limit of smalll. The
Hamiltonian for the scalar sector can be written in terms of
the fieldf,

Hf
u 5

1

2E d2xF 1

h2
~pf22ub!21h2~] if!214h4lf2G ,

~3.18!

but information about the physical fieldf3 at zero momen-
tum is lost.

As in the case of the simple one-dimensional model of
Sec. II, the periodicity ofu is not explicit through the Hamil-
tonian formalism. In both the one-dimensional case and in
QED3, u is easily seen to be periodic in the path-integral

formalism with the fundamental domains of2 1
2 ,u, 1

2 for
the one-dimensional model and21/2q,u,1/2q for QED3.
In the one-dimensional case it became apparent that, under
the transformationu→u11, it is only the entire spectrum of
solutions which is invariant and each separate energy level is
not. But in our model of QED3 we are considering only the
low-energy Hamiltonian with an ansatz only for the vacuum
or ground state of the system. Therefore, we do not expect
this solution, but rather the entire energy spectrum, to be
invariant under the transformationu→u11/q and we restrict
u to its fundamental domain throughout the rest of this cal-
culation.

In the compact theory pointlike vortices with quantized
magnetic flux 2pn cannot be detected by any measurement.
Within the Hamiltonian formalism, this means that the cre-
ation operator of a pointlike vortex must be indistinguishable
from the unit operator. The operatorV(x) creates such a
vortex; it generates a large transformation which belongs to
the compact gauge group and must, therefore, act trivially
upon all physical states:

V~x!5expH i E d2y
e i j ~x2y! j

~x2y!2
Ei~y!J . ~3.19!

We therefore writeb in the Hamiltonian to ensure its invari-
ance under the action ofV(x) whereb is the singlet part of
B and B5e i j ] iAj , as in @7#. So, if P is the projection op-
erator upon the whole compact gauge group, we can write
formally b25PB2P. B does not commute withV(x) but b
does.

Gauss’s law will also be satisfied by these operators. It is
given by

expH i E d2x] il~x!Ei~x!J uC&5uC&, ~3.20!

wherel here is a regular function.

IV. THE VARIATIONAL ANSATZ FOR THE VACUUM
WAVE FUNCTIONAL

In this paper we require the vacuum wave functional in
order to calculate the energy, or vacuum expectation value,
of the Hamiltonian. Through the functional variational tech-
nique, we calculate the expectation value of the energy with
our ansatz for the wave functional and minimize this with
respect to the propagators to find the forms of the masses,
propagators, and the vacuum energy of the theory. Hence,
the form of our initial ansatz is of vital importance.

We work in analogy with Sec. II but adopt a slightly
modified condition forCu. We construct our wave func-
tional to be gauge invariant and have nontrivialu depen-
dence in the following way.Cu@Ai

n ,f3# contains all theu
dependence of C@Ai ,f3#5SnCu@Ai

n ,f3#C0@Ai
n ,f3#,

where the sum overn is the sum over large gauge transfor-
mations.C@Ai ,f3# is the solution of the equation

HuC@Ai ,f3#5EuC@Ai ,f3#, ~4.1!

such that

Eu5E DAiDf3 (
n8,n9

C0* @Ai
n8 ,f3#

3Cu* @Ai
n8 ,f3#HuCu@Ai

n9 ,f3#C0@Ai
n9 ,f3#

5E DAiDf3 (
n8,n9

Cu* @Ai
n8 ,f3#

3Cu@Ai
n9 ,f3#C0* @Ai

n8 ,f3#H0C0@Ai
n9 ,f3#,

~4.2!

whereH0 corresponds to the Hamiltonian of the system with
u50. Since the components ofC cannot be individually
gauge invariant without making the theory triviallyu inde-
pendent, we have written explicitly the summation over large
gauge transformations. We note here that each sector of the
u50 energy picks up au-dependent phase factor. From Sec.
III C we know the form ofHu andH0. We shall first of all
write the wave functional in terms off and then transform it
to depend uponf3, wheref35h(11f), which can be con-
sidered as just a modification of the field at zero momentum.
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From a previous calculation@7#, an ansatz is known for the
gauge sector of the theory withu50 and which, within the
variational framework, can be used to reproduce all the
known results of dynamical mass generation, Polyakov scal-
ing, and nonzero string tension.Hf

0 is just the Hamiltonian of
a free, massive scalar field which has the solution

expH 2
h2

2 E d2k

~2p!2
~k21m2!1/2f~k!f~2k!J .

The combination of these two Gaussian factors gives the
wave functional

C0@Ai ,f#5E DxexpF2
1

2g2
~Ai2] ix!G21~Ai2] ix!

2
h2

2
fK21fG , ~4.3!

whereG andK are, respectively, the propagators of the vec-
tor and scalar fields. They are parameters of the functional
variational technique and so have no explicit form at this
stage. Equation~4.3! is satisfied by

Cu@Ai
n ,f#5E D x̃exp@2iue j i f] j~Ai2] ix!#

5exp@2iue j i f] j~Ai2] ixn!#. ~4.4!

The phase functionx(x) is parametrized as

x~x!5 x̃ ~x!1xn~x!, ~4.5!

where x̃ is a smooth function andxn(x) contains all the
discontinuities and can be written as

xn5 (
a51

n1

u~x2xa!2 (
b51

n2

u~x2xb!, ~4.6!

whereu(x2xa) is a polar angle on a plane centered atxa .
The functional measure can be written as

E Dx5E D x̃ (
n150

`

(
n250

`
1

n1!n2!

3 )
a51

n1

)
b51

n2 E d2xad2xbL4, ~4.7!

with the explicit UV momentum cutoffL.
We adopt the following notation for convenience:

Ai
x5Ai~x!2] ix~x! ~4.8!

and, for a matrixM (x2y),

AiMAi5E d2xd2yAi~x!M ~x2y!Ai~y!. ~4.9!

Using this notation, we can write down a gauge-invariant
ansatz for the vacuum wave functional in terms of the field
f, with nontrivial u dependence, which satisfies the above
formalism:

C@Ai ,f#5E DxnD x̃exp@22iufe i j ] iAj
xn#

3expF2
1

2g2
Ai

xG21Ai
x2

h2

2
fK21fG .

~4.10!

We now need to modify this wave functional to write it in
terms of the fieldf3, to ensure that the extra information
about the field of zero momentum is not lost. We write

C@Ai ,f3#5E DxexpF2iu

h
~f32h!e j i ] jAi

xnG
3expF2

1

2g2
Ai

xG21Ai
x

2
1

2
~f32h!K21~f32h!G . ~4.11!

It can be seen clearly from consideration of the vacuum ex-
pectation of the Hamiltonian above that this ansatz reduces
to the desired form in the case ofu50 and will reproduce all
the results of@7#.

V. THE VARIATIONAL CALCULATION

The expectation value of any operatorO(Ai ,f) in the
wave functional~4.11! is

^O~Ai ,f!&5Z21E DAiDf3D x̃ 8Dxn8D x̃ 9Dxn9

3expF2
2iu

h
~f32h!e i j ] i~Aj2] jxn8!G

3expF2
1

2g2
Ai

x8G21Ai
x82

1

2
~f32h!

3K21~f32h!GO~Ai ,f!expF2iu

h
~f32h!

3e i j ] i~Aj2] jxn9!GexpF2
1

2g2
Ai

x9G21Ai
x9

2
1

2
~f32h!K21~f32h!G . ~5.1!

If O(Ai) is explicitly gauge invariant we may shift the inte-

gration variableAi
x9→Ai . With the redefinitionx5x82x9

andz5x81x9, and similarly forx̃ andxn , the expectation
value reduces to
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^O~Ai ,f!&5Z21E DAiDf3D z̃ D x̃DznDxn

3expF2
2iu

h
~f32h!e i j ] i~Aj2] jxn!G

3expF2
1

2g2
Ai

xG21Ai
x2

1

2
~f32h!K21

3~f32h!GO~Ai ,f!

3expF2iu

h
~f32h!e i j ] iAj G

3expF2
1

2g2
AiG

21Ai2
1

2
~f32h!K21

3~f32h!G . ~5.2!

The integration overDz5D z̃ Dzn just gives the volume of
the gauge group and so cancels with the denominator.

A. Calculation of the energy density

First we shall evaluateZ:

Z5E DAiDf3D x̃DxnexpF2iu

h
~f32h!e i j ] i] jxn

2
1

g2
AiG

21Ai2~f32h!K21~f32h!1
1

g2
] ixG21Ai

2
1

2g2
] ixG21] ixG . ~5.3!

By completing the squares with the two changes of variable,

f3→f835f32
iu

h
e i j ] i] jxnK5f32

2ipu

h
rK,

Ai→Ai85Ai2
1

2
] ix, ~5.4!

and omitting the dashes on the new variables, one obtains

Z5ZaZf3ZxZn ,

Za5E DAiexpF2
1

g2
AiG

21Ai G5det@g2pG#,

Zf35E Df3exp@2~f32h!K21~f32h!#5det@pK#1/2,

~5.5!

Zx5E D x̃expF2
1

4g2
] i x̃G21] i x̃ G5detF4g2p

1

]2
GG 1/2

,

Zn5E DxnexpF2
1

4g2
] ixnG21] ixn

2
u2

h2
e i j ] i] jxnKe i j ] i] jxnG .

Details of the derivative transformation—used here and in
evaluation of the following Gaussian integrals over the sin-
gular functionxn—that establishes the connection between
derivatives ofxn and the distribution function of its singu-
larities or vorticesr are given in Appendix A. Any singu-
larities in f(x) remaining after the change of variables are
taken to contribute an infinite action and so are ignored. The
singularities inxn , however, cannot be ignored.

To evaluateZn we shall write it as a partition function of
a gas of vortices and use the standard trick of@2,10#

Zv5 (
n1 ,n250

`

)
a51

n1

)
b51

n2 E d2xad2xbzn11n2

3expH 2
1

4g2F (
a,a8

D~xa2xa8!1 (
b,b8

D~xb2xb8!

2(
a,b

D~xa2xb!G J , ~5.6!

where the vortex-vortex interaction potentialD(x) and the
vortex fugacityz are given by

D~x!58p2E d2k

~2p!2Fk22G21~k!1
4u2g2

h2
K~k!Gcos~kx!,

z5L2expH 2
1

8g2
D~0!J . ~5.7!

We expect the UV behavior ofG(k) andK(k) at large mo-
mentum to be the same as in the free theory
@G(k)→k21,K(k)→k21#. The vortex fugacity is the small-
est variable in the theory,z!g2!L, where, in the limit of
weak coupling,

z5L2expH 2
p

2

L

g2S 11
4u2g2

h2 D J
5L2expH 2

p

2 S L

g2
1

4u2g2

L D J , ~5.8!

where we have identifiedL5gh from the compactification
of the U(1) theory from 311→211 dimensions or, alter-
natively, from the masses of the charged vector bosons of the
theory.

We will need to calculate correlation functions of the vor-
tex density and so, following@7#, we write the vortex density
as

r~x!5(
a,b

d~x2xa!2d~x2xb!. ~5.9!
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Introducing a source term the exponential factor including
the vortex fugacity in Eq.~5.7! can be written as

L2~n11n2!E Dxexp$22g2xD21x1 irx1 irJ%

~5.10!

and the sum over the number of vortices and antivortices
gives

Zv5E DxexpH 22g2~x2J!D21~x2J!

1E
x
2L2cosx~x!J U

J50

. ~5.11!

Calculating the functional derivatives with respect to the
source term yields

^r~x!r~y!&54g2D21~x2y!216g4^D21x~x!D21x~y!&.
~5.12!

The propagator ofx is easily calculated. First, the cosine
potential is rewritten in the normal-ordered form

cosx5
z

L2
:cosx:. ~5.13!

Therefore, to first order inz, the propagator ofx is

E d2xeikx^x~x!x~0!&5
1

4g2D21~k!12z
5

D~k!

4g2

2z
D2~k!

8g4
1o~z2!. ~5.14!

To first order, the correlator of the vortex densities is then

C~k!5E d2xeikx^r~x!r~0!&52z1o~z2! ~5.15!

as in @7# but with au-dependent modification toz.
Now, we can calculate the expectation value of the

Hamiltonian:

^Hu&5^HA
u &1^Hf3

u &5Z21E DAiDfD x̃Dxn

3expF2iu

h
~f32h!e i j ] i] jxnGexpF2

1

2g2
Ai

xG21Ai
x

2
1

2
~f32h!K21~f32h!G @HA

01Hf3
0

#

3expF2
1

2g2
AiG

21Ai2
1

2
~f32h!K21~f32h!G .

~5.16!

First, we shall consider the purely gauge field sector:

K g2

2 E d2x@EAi
12ue j i ] j~f32h!#2L

5
g2

2
Z21E DAiDf3D x̃DxnF 2

g2
TrG212

1

g2
AiG

22Ai G
3expF2iu

h
~f32h!e i j ] i] jxn2

1

g2
AiG

21Ai

2~f32h!K21~f32h!1
1

g2
] ixG21Ai

2
1

2g2
] ixG21] ixG . ~5.17!

Completing the squares and performing the functional inte-
grations gives

1

VK g2

2 E d2x@EAi
12ue j i ] j~f32h!#2L

5
1

2E d2k

~2p!2F1

2
G21~k!2

p2

g2
k22C~k!G22G

5
1

4E d2k

~2p!2FG21~k!2
4p2

g2
zk22G22~k!G . ~5.18!

The Gaussian integral overxn is transformed into a correla-
tion function ofr. This procedure is given in more detail in
Appendix A.

Now for the magnetic term. In every gauge-invariant state
^b2&5^B2& by definition. We will, therefore, calculatêB2&.
But since it is not itself gauge invariant some care is needed
with the integrals overx andz:

K 1

2g2
b2L 5Z21E DADf3D x̃ 8Dxn8D x̃ 9Dxn9

1

2g2

3@e i j ] iAj #
2expF2iu

h
~f32h!e i j ] i] j~xn82xn9!

2
1

2g2
Ai

x8G21Ai
x82

1

2g2
Ai

x9G21Ai
x9

2~f32h!K21~f32h!G
5Z21E DAiDf3DxDz

1

2g2Fe i j ] i H Aj1
1

2
] j

3~z2x!J G2

expF2iu

h
~f32h!e i j ] i] jxn

2
1

2g2
Ai

xG21Ai
x2

1

2g2
AiG

21Ai

2~f32h!K21~f32h!G . ~5.19!
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We have again usedx5x82x9 andz5x81x9. The linear
term inz disappears due to the symmetry of its measure. The
term quadratic inz is independent ofG, K, and u and so
contributes nothing of interest to either the energy or the
minimization equations. After completing the squares we ob-
tain

1

VK 1

2g2
b2L 5Za

21E DAiDf3Dx
1

2g2
@e i j ] iAj #

2

3expF2
1

g2
AiG

21Ai G5
1

4E d2k

~2p!2
k2G~k!.

~5.20!

So, for the purely gauge field sector, we obtain

1

V
^HA

u &5
1

4E d2k

~2p!2FG21~k!1k2G~k!

2
4p2

g2
zk22G22~k!G . ~5.21!

This is of the same form as@7# but with the modified expres-
sion for z.

Following the procedure above we calculate the vacuum
expectation value of the Hamiltonian of the scalar field:

1

VK 1

2E d2xS pf32
2u

h
bD 2L

5
1

2
Z21E DAiDf3D x̃Dxn@K212~f32h!K22

3~f32h!#expF2iu

h
~f32h!e i j ] i] jxn2

1

g2
AiG

21Ai

2~f32h!K21~f32h!1
1

g2
] ixG21Ai2

1

2g2

3] ixG21] ixG
5E d2k

~2p!2F1

4
K21~k!1

2p2u2

h2
C~k!G

5E d2k

~2p!2F1

4
K21~k!1

4p2u2

h2
zG . ~5.22!

Similarly, the terms quadratic inf give

1

VK 1

2E d2x~] if
3!2L

5
1

4E d2k

~2p!2Fk2K~k!2
16p2u2

h2
zk2K2~k!G ,

1

VK 1

2E d2lh2~f32h!2L
5

1

4E d2k

~2p!2
@lh2K~k!216lp2u2zK2~k!#. ~5.23!

Therefore, for the scalar field we obtain

1

V
^Hf3

u &5
1

4E d2k

~2p!2H K21~k!1
16p2u2

h2
z

1FK~k!2
16p2u2

h2
zK2~k!G ~k21lh2!J .

~5.24!

B. Minimization of the vacuum energy density

Details of the functional minimization of the energy den-
sity with respect to the vector field propagatorG(k) and the
scalar field propagatorK(k) are given in Appendix B.

We obtain the simple minimization equations

05
1

4
@k22G22~k!#

2
p4

g4
k22G22~k!zE d2p

~2p!2
p22G22~p!

1
4u2p4

h2g2
k22G22~k!zE d2p

~2p!2
@12K2~p!~p21lh2!#,

~5.25!

with the solution

G22~k!5
k4

k21m2
,

m25
4p4

g4
zF E d2p

~2p!2
p22G22~p!

2
4u2g2

h2 E d2p

~2p!2
@12K2~p!~p218lh2!#G

~5.26!

and

05
1

4H 16p4u2

g2h2
zE d2p

~2p!2F p22G22~p!2
4u2g2

h2
@12K2~p!

3~p21lh2!#G1~k21lh2!2K22~k!J , ~5.27!

with the solution

K22~k!5k21mf
2 1mu

2 ,

mf
2 5lh2, ~5.28!
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mu
25

16p4u2

g2h2
zE d2p

~2p!2F p22G22~p!2
4u2g2

h2
@12K2~p!

3~p21lh2!#G
5

4u2g2

h2
m2.

Explicit evaluation of the photon mass gives

m25
p3

g4
zFL22m2lnS L21m2

m2 D
2

4u2g2

h2
~mf

2 1mu
2!lnS L21mf

2 1mu
2

mf
2 1mu

2 D G . ~5.29!

The u dependence ofz has been shown to be subleading in
terms of L, Eq. ~5.8!. In the limit of a large UV cutoff
momentumL, all the u dependence ofz is, therefore, sup-
pressed in subleading terms ofL. In the BPS limit (l50),
the u dependence in Eq.~5.29! only occurs atO(z2) and so
is suppressed further.

In the BPS limit we can write, to first order inz,

m25
p3

g4
L2z,

mf
2 50, ~5.30!

mu
254

u2g2

h2
m2.

We should note here thatm2 is in agreement with@7# to first
order inz.

C. Evaluation of the vacuum energy density

Now, as we have the forms of the propagators and the
masses for the fields we can consider theu dependence of
the vacuum expectation value of the Hamiltonian. The
vacuum energy densities of the gauge and scalar sectors
evaluated in the limit of a large UV cutoffL are

1

V
^HA

u &5
1

8pF2

3
L31

1

3
m3G2E d2k

~2p!2

p2

g2
zk22G22~k!,

1

V
^Hf3

u &5
1

8pH 2

3
L31

1

3S lh21
4u2g2

h2
m2D 3/2

1lh2FL2S lh21
4u2g2

h2
m2D 1/2G J

1E d2k

~2p!2

4p2u2

h2
z@12K2~k!~k21lh2!#.

~5.31!

The last term in each expression combines to give the exact
form of m2. It has been shown that theu dependence ofz is
a subleading term inL, Eq. ~5.8!. Therefore, the gauge sec-
tor of the theory is manifestly independent ofu. The scalar
sector does have an explicit dependence uponu but it is
always suppressed by an order ofz. It is interesting to note,
however, that it is in the BPS limit (l50) and in the limit of
a very massive scalar field that theu dependence of the total
vacuum energy density is most greatly suppressed. In the
BPS limit the total vacuum energy density is

1

V
^Hu&5

1

8pF4

3
L31

1

3S 11
8u3g3

h3 D m3G2
1

4

g2

p2
m2,

~5.32!

where theu dependence of the scalar sector is suppressed in
terms ofO(z3/2). In the limit of a very massive scalar field
(l becomes large! the vacuum energy density is

1

V
^Hu&5

1

8pF4

3
L31

1

3
m32

2

3
~lh2!3/21lh2LG2

1

4

g2

p2
m2.

~5.33!

In the limit of a very massive scalar field, the onlyu depen-
dence of the scalar sector is in the modified form ofz, which
we have already shown to be subleading in terms ofL. So in
this limit we recover the exact result of Vergeles.

D. Expectation value of the Wilson loop

Finally, we can calculate the expectation value of the Wil-
son loop, as in@7#, to see how theu dependence affects
confinement:

WC5K expS i l R
C
Aidxi D L 5K expS i l E

S
BdSD L ,

~5.34!

where l is an arbitrary integer and the integral is over the
areaS bounded by the loopC. We have writtenB rather than
b, since this exponential operator is invariant under transfor-
mationsB(x)→B(x)12p, generated by the vortex operator:

WC5Z21E DAiDfD x̃DxnexpF2iu

h
~f32h!e i j ] i] jxn

2
1

g2
AiG

21Ai1
1

g2
] ixG21Ai2

1

2g2
] ixG21] ix

2~f32h!K21~f32h!1 i l E
S
BdSG . ~5.35!

After completing the squares,

WC5W0Wn , ~5.36!

where
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W05Za
21E DAiexpF2

1

g2
AiG

21Ai1 i l E
S
BdSG ,

Wn5Zn
21E DxnexpF2

1

4g2
] ixnS G211

4u2g2

h2
]2K D ] ixn

2
i l

2ES
dSe i j ] i] jxndxi G . ~5.37!

In a weak couplingW0 becomes

W05expH 2
l 2

2Ex,y
^B~x!B~y!&d2xd2yJ 5expF2

l 2g2

4
mSG
~5.38!

in the limit k→0. This term is independent ofu and gives
the string tensions5( l 2g2/4)m.

Wn differs from unity only for oddl , for which it can be
calculated,

Wv5K expS ipE
S
r~x!d2xD L 5E DxexpS 22g2xD21x

1E
x
2L2cos@x~x!2a~x!# D , ~5.39!

wherea(x) is zero outside andp inside the loop. Following
the normal ordering prescription for a scalar field given in
Sec. V A, and noting that the solution to the classical equa-
tions which contributes to the leading order result is
x(x)50, we obtain the solutionWn5exp@22zS#. As in @7#
this is a subleading correction to the string tension (2z!s)
where theu dependence inz ~and hence also in the factor
z1/2 in m) is greatly suppressed as a subleading term inL.

VI. AXIONIC CONFINING STRINGS

Polyakov showed that purely gauge field compact QED3
is equivalent to a nonstandard string theory@6#. We shall
show in this section that our proposed Lagrangian for low-
energy compact QED3 with a scalar field and au term gives
rise to the same nonstandard string theory but with a
u-dependent modification of the mass of the photon. This
modification of the mass is a subleading term in the UV
momentum cutoff and is as predicted in Eq.~5.8!.

We shall first give a brief review of the relevant details
from @6#. The Wilson loop calculated in compact QED3 is

W~C!5E DAmexpF2S~A!1 i R dxmAmG ,
S~A!5

1

4g2E d3xFmn
2 . ~6.1!

Here Fmn5]mAn2]nAm . In the calculation ofW(C) one
must include the monopole configurations of the vector field.
As a result, Eq. ~6.2! has the representation
W(C)5W0(C)WM(C) where the first factor comes from the
Gaussian integration over the vector field and the second
factor is from the contribution of the pointlike monopoles.

As in the instanton gas calculations@2#, the contribution of
one monopole at pointx is considered first:

WM
1 ~x,C!}expS 2

a

g2
1 ih~x,C!D ,

h~x,C!5 R
C
dymAm

~mon!~x2y!5E
SC

d2sm~y!
~x2y!

ux2yu3
,

~6.2!

whereh(x,C) is the solid angle formed by the pointx and
the contourC. SC is an arbitrary surface bounded by the
contourC. a5MWe(l/g2) whereMW5gh5L as stated in
Sec. III. Forl50, e(l/g2)54p. Summation over all pos-
sible monopole configurations leads to the scalar field theory

WM~C!}E DfexpF2g2E d3xH 1

2
~]f!21m2

3@12cos~f1h!#J G , ~6.3!

with m2}exp@2a/g2#. Rewriting this theory in terms of an
effective action by introducing a rank 2 antisymmetric tensor
field B, Polyakov suggested a new type of strings, which he
called confining strings. Let us consider the axionic confin-
ing strings; the strings in our theory with an extra scalar
~axionic! field coupled to the photon field in au term.

We shall show that the proposed low-energy theory for
QED3 with a scalar field and au term is the equivalent of
Eq. ~6.3! with a modification of the photon massm. Working
in direct analogy with the above, we calculate the Wilson
loop:

W~C!5E DAmexpF2S~A,f3!1 i R dxmAmG ,
S~A,f3!5E d3xF 1

4g2
Fmn

2 1
1

2
~]mf3!21

2iu

h
]mf3F̃mG

5E d3xF 1

4g2
Fmn

2 2
1

2
f3hf32

2iu

h
f3]mF̃mG

12iuq, ~6.4!

where F̃m5 1
2 emnlFnl and q5*d2SmF̃m . The f3 field is

eliminated by Gaussian integration with the transformation
f3(x)→f83(x)5f3(x)1(2iu/h)h21(x)]mF̃m(x). Care is
needed with the definition of the inverse D’Alembertian, the
action of which upon an arbitrary functionf (x) is,

h21~x! f ~x!5E d3x8h21~x2x8! f ~x8!. ~6.5!

The action of the D’Alembertian gives the correct result al-
lowing the interpretation ofh21 as a Green’s function:

h~x!h21~x2x8!5d~x2x8!. ~6.6!

Therefore, integrating out thef3 field we obtain
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S~A,f3!5E d3xF 1

4g2
Fmn

2 2
2u2

h2 E d3x8h21

3~x2x8!]mF̃m~x8!]nF̃n~x!G12iuq.

~6.7!

We are working in the limit of zero scalar potential here. The
contribution of one monopole at pointx is, therefore,

WM
1 ~x,C!}expS 2

a

g2
1b1 i @h~x,C!12uq# D , ~6.8!

where b comes from the evaluation of theu2 term in Eq.
~6.7!, which can be written as

2u2g2

L2 E d3xd3x8h21~x2x8!]mF̃m~x8!]nF̃n~x!.

~6.9!

Immediately, we see that Eq.~6.9! has the mass dimension of

21 in agreement with theu2 modification ofz, Eq. ~5.8!.
From @2#, we know the configuration of theA field due to
monopoles gives rise to

F̃m5
1

2S xm

uxu3
24pdm3u~x3!d~x1!d~x2!D . ~6.10!

As in @2#, each monopole is surrounded with a sphere of
radiusR such thatMW

21!R!uxabu wherexab is the distance
between two monopoles, located atxa and xb . Inside the
sphere, Eq.~6.10! is not valid and the influence of other
monopoles may be neglected. This is the region that gives
rise to the so-called self-pseudoenergy of the monopoles,a.
Monopoles of charge.1 are neglected as they can be con-
sidered as the limit of two or more monopoles in close prox-
imity and these configurations have been shown to be ines-
sential@2#. Only far separated monoples are important in the
infrared region. For a large separation,

]mF̃m.22pd3~x!. ~6.11!

Writing Eq. ~6.9! in momentum space we obtain

2u2g2

L2
4p2E d3xd3x8E d3k

~2p!3E d3k8

~2p!3E d3k9

~2p!3
k22exp$ i @k~x2x8!1k8x81k9x#%}

u2g2

L
. ~6.12!

This is in direct agreement with Eq.~5.8!. Our proposed
Lagrangian for low-energy QED3 hence gives an equivalent
form of Eq. ~6.3! with the modifications ofm2 replaced
by m82 and h(x,C) replaced by h8(x,C) where m82

5m2exp@2const3u2g2/L# and h8(x,C)5h(x,C)12uq.
The modified form of the photon mass will not change the
rest of the formalism of@6#. The constant shift inh will have
an effect upon the monopole configuration, or shape of the
surfaceSC that minimizes the action. Because of the inte-
gration over allx, which is equivalent to a sum over all
angles, such a constant shift should have no effect within the
formalism of @6#.

It is interesting to contrast this result to that of Diaman-
tini, Quevedo, and Trugengerger@11#, who introduced au
term in a four-dimensional compact U(1) theory and pro-
ceeded to compute the low-energy effective action for the
confining string in a derivative expansion. In@11# theu term
is written in the Kalb-Ramond action,

S~Bmn!5E d4xF 1

12L2
HmnaHmna1

1

4e2
BmnBmn

1
iu

64p2
BmnemnabBabG , ~6.13!

which produces a shift in the mass of the field:

mu5
eL

4p
AS 4p

e2 D 2

1t2,

t[
u

2p
, ~6.14!

L}
L0

4
expF2

a8

g2G ,

whereL0 is the UV cutoff anda8 is a constant. To compare
this with our calculation above we shall write the results of
@11# in a more convenient form:

mu
25m0

2S 11
4e4u2

~4p!4D .m0
2expF 4e4u2

~4p!4G ,

m0
25

L2

e2
}

L0
2

16e2
expF2

2a8

g2 G . ~6.15!

We see that the results of the calculation above and those of
@11# are in qualitative agreement—the inclusion of au term
in a compact U~1! theory in 211 and 311 dimensions leads
to au2 shift in the mass of the corresponding confining string
theory. Here we should also note another recent paper about
the confining string corresponding to compact U(1) theory
in four Euclidean dimensions@12#.

VII. CONCLUSION

We have found that it is much more natural to include a
scalar Higgs field to consider au term in QED3. The theory
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without a scalar field gives the same result of being indepen-
dent of u but excludes the limit of spatial infinity. From
consideration of theu term in the non-Abelian Lagrangian of
the SU~2! ’t Hooft—Polyakov monopole we propose such a
term in QED3 in which the gauge and scalar fields are
coupled. The term we propose is exactly of the form of the
topological term proposed by Affleck, Harvey, and Witten
@8#. We find that this term is expected if the
(211)-dimensional theory is considered as a result of di-
mensional reduction of a purely gauge U~1! theory with au
term in 311 dimensions.

The gauge sector of QED3 is found to have a mass and a
vacuum energy that are independent ofu for weak coupling
in the limit of large UV cutoff. The independence fromu of
the vacuum energy of the gauge sector is in agreement with
@3#. The nonperturbative dynamical mass generation for the
photon, the vacuum energy density, and the expectation
value of the Wilson loop are all in agreement with@7#. In
both @3# and @7#, QED3 was considered without a scalar
field.

Further, we find that the vacuum energy of the scalar field
is dependent uponu, but that this dependence is suppressed.
It is in the BPS limit of zero scalar potential and in the limit
of a very massive scalar field~large scalar potential! that the
u dependence is most greatly suppressed. Theu dependence
is in terms ofO(z3/2) in the BPS limit but, in the limit of a
very massive scalar field the scalar sector, and hence the total
vacuum energy, becomes independent ofu in direct agree-
ment with @3#.

A nonperturbative dynamical mass proportional tou is
generated for the scalar field which does not disappear in the
limit of zero scalar potential.

It is clear from the calculation of the string tension that
the expectation value of the Wilson loop obeys the area law
and leads to confinement. Its dependence uponu is greatly
suppressed for weak coupling in the limit of a large UV
cutoff.

An extension of Polyakov’s work on confining strings@6#
has shown that our proposed Lagrangian for low-energy
QED3, with a scalar field and au term, is equivalent to a
nonstandard string theory. This string theory is of the same
form as that found by Polyakov to be equivalent to purely
gauge field compact QED3 with a u2, but subleading in UV
momentum cutoff, modification of the photon mass, and a
u-dependent shift of the shape of the minimal surface. The
modification of the photon mass is in direct agreement with
our variational calculation.
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APPENDIX A

In this appendix we shall give details of the evaluation of
integrals over the singular functionxn by considering the
example

Zn
21E Dxn] ixnG22] ixnexpF2

1

4g2
] ixnG21] ixn

2
4u2

h2
p2rKrG . ~A1!

We use the transformation

] ixn5e i j ] jc. ~A2!

The singularities inxn are angular functions in two dimen-
sions and so we can use the standard definition

xn52
i

2(a,b
F lnS z2za

z̄2za
D 2 lnS z2zb

z̄2zb
D G . ~A3!

The form ofc is, therefore,

c5(
a,b

F lnS 1

uz2zau D2 lnS 1

uz2zbu D G , ~A4!

so that] j
2c522pr or, in momentum space,c522prk22

wherer is the distribution function of the vortices or singu-
larities of xn and is defined as

r~x!5(
a,b

d~x2xa!2d~x2xb!. ~A5!

So Eq.~A1! is now transformed to

4p2k22G22^r~x!r~y!&58p2E d2k

~2p!2
k22G22z.

~A6!

^rr& is calculated toO(z) in Sec. V A.

APPENDIX B

We shall functionally minimize the vacuum energy den-
sity with respect to the scalar and vector propagators to ob-
tain the forms of the masses and propagators of the fields.
From Eq.~5.8! we note that

dz

dG~k!
5

1

4g2
k22G22~k!z,

dz

dK~k!
52

u2

h2
z. ~B1!

First, we consider the minimization of (1/V)^Hu& with re-
spect toG(k):

d^HA
u &

dG~k!
5

1

4H k22G22~k!1
4p2

g2 F2zk22G23~k!

2
dz

dG~k!
4p2E d2p

~2p!2
p22G22~p!G J . ~B2!
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Assuming that at large momentaG(k)→k21, the ratio of the
fourth term to the third term in Eq.~B2! is

dz

dG~k!

4p2E d2p

~2p!2
p22G22~p!

2zk22G23~k!
}

L2

g2k
. ~B3!

This is much greater than 1, at weak coupling, for any value
of k and so we omit the third term from Eq.~B2!. Also, using

d^Hf3
u &

dG~k!
5

16p4u2

h2

dz

dG~k!
E d2p

~2p!2
@12K2~p!~p21lh2!# ,

~B4!

we obtain the minimization equation

05
1

4
@k22G22~k!#2

p4

g4
k22G22~k!z

3E d2p

~2p!2
p22G22~p!1

4u2p4

h2g2
k22G22~k!z

3E d2p

~2p!2
@12K2~p!~p21lh2!#. ~B5!

Now, consider the minimization with respect toK(k):

d^HA
u &

dK~k!
52

4p4

g2

dz

dK~k!
E d2p

~2p!2
p22G22~p!, ~B6!

d^Hf3
u &

dK~k!
5

1

4F ~k21lh2!2K22~k!2
32p2u2

h2
zK~k!

3~k21lh2!1
64p4u2

h2

dz

dK~k!
E d2p

~2p!2

3@12K2~p!~p21lh2!#G . ~B7!

Assuming that at large momentaK2(k)→k221k24a2,
wherea is the constant coefficient of the second term in the
expansion, the ratio of the penultimate to the last term in
d^Hf

u &/dK(k) is

K~k!~k21lh2!

2
u2

h2E d2p

~2p!2
@12K2~p!~p21lh2!#

}
k~11lh2k22!

u2

h2
~a21lh2!lnL

.

~B8!

This is much less than 1 for nonzerou in the UV limit for
any value ofl and so the penultimate term is ignored. So,
we obtain another simple minimization equation

05
1

4F16p4u2

g2h2
zE d2p

~2p!2S p22G22~p!2
4u2g2

h2
@12K2~p!

3~p21lh2!# D 1~k21lh2!2K22~k!G . ~B9!
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