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Monopoles and instantons on partially compactifiedD-branes
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Motivated by the recenD-brane constructions of world-volume monopoles and instantons, we study the
supersymmetric SU{) Yang-Mills theory onS*x R®*?, spontaneously broken by a Wilson loop. In addition
to the usuaN— 1 fundamental monopoles, tiNth Bogomol’'nyi-Prasad-Sommerfield monopole appears from
the Kaluza-Klein sector. When @l monopoles are present, net magnetic charge vanishes and the solution can
be reinterpreted as a Wilson-loop instanton of unit Pontryagin number. The instanton-multimonopole moduli
space is explicitly constructed, and seen to be identical to a Coulomb phase moduli space of @ai(de
theory in 2+ 1 dimensions related to Kronheimer’'s gauge theory of I$lJfype. This extends the results by
Intriligator and Seiberg to the finite couplings that, in the infrared limit of Kronheimer’s theory, the Coulomb
phase parametrizes a centered BY(nstanton. We also elaborate on the case of restoredNpisymmetry.
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I. SOLITONS ON D-BRANES

is a source foC;,_; RR gauge field, so a RR charge conser-
vation requires that the boundaries of tBép—2)-brane

Recently there has been a considerable interest in lowarry the magnetic charge with respectQ@-brane world-
energyD-brane dynamic$1] and its relation to the super- volume gauge field5].

symmetric Yang-Mills systems. When there adeparallel

On the other hand, Yang-Mills instantons appear, say,

Dp-branes, their low energy dynamics is described by a rewhen there aré parallelD4-branes overlapping each other
duction of theN=1 supersymmetric 10-dimensional Yang- so that UN) symmetry is restored. If BO-brane approaches

Mills system of the gauge group W to

the

the D4-branes from infinity and touches tti@4-branes, it

(p+1)-dimensional supersymmetric Yang-Mills-Higgs sys- could melt away, leaving an SM) instanton(in real time
tem[2]. The physics of the supersymmetric Yang-Mills sys-on theD4-brane[6]. This process conserves the RR charge
tems can be understood by that of idébrane dynamics, and as bothD0-branes and instantons carry the same charge. The

vice versa, enriching our understanding of both subjects.
Bogomol'nyi-Prasad-Sommerfie[PS magnetic mono-

instanton energy is identical to tH20-brane mass and one
can interpret the instanton as the threshold bound state be-

poles and instantonlike solitons in supersymmetric Yangiween aD0-brane and\ overlapped4-branes. This picture

Mills systems have been understood in Bubrane language

recently. The key point is that the Ramond-RamdRiR)

charge carried by th®-brane[3] can be also carried by
world-volume instantons and monopoles. The coupling-
tween the RR gauge field,, ; and the world-volume gauge

field) that is responsible for this is succinctly written as

JB 2 Cpozsia/Nr &7,

p(s;o

where the integral is over the world volume®p-branes for
eachp [1]. F is the world-volume Yang-Mills field strength.

D

has been studied in many variations connected undeT the
duality. In particular, theD-brane configuration has been
shown to be connected to the Atiyah-Drinfeld-Hitchin-
Manin (ADHM) construction of the instanton configurations.
In this paper we consider cases where at least one direc-
tion of the space-time is compactified on a circleTAlual
transformation along the circle maps [@4-brane to a
D3-brane and @0-brane to aD1-brane loop. In turn, a
D1-brane loop that passes throujhD3-branes along the
circle can break up intoN D1-brane segments ending on
D3-branes, each of which must behave as a fundamental
monopole in theéd 3-brane world-volume theory. The world-
volume dynamics of the system we just described is gov-

For instance, when an opdd(p—2)-brane ends on a erned by a compactified five-dimensional $U)(Yang-Mills
Dp brane, the RR charge carried by the former must besystem, whose gauge symmetry is broken by a nontrivial
somehow cancelled by a Yang-Mills soliton on the Wilson loop. Thus, our investigation will lead to a new un-

Dp-brane, of codimension thrg@]. From the above cou-

pling, it is clear a soliton of charge
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derstanding of magnetic monopoles and solitonic instantons
in a compactified Yang-Mills theory with an arbitrary Wil-
son loop. In the latter half of the paper, we will concentrate
on the moduli space of such solitons.

Il. THE LOW ENERGY EFFECTIVE FIELD THEORY

We take the spacetime to & x R®*1x T®. Let N par-
allel Dp-branes p=3) overlap with the noncompact part

3711 © 1997 The American Physical Society
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R3*1. Up to variousT-dual transformations, we may as well lIl. FUNDAMENTAL MONOPOLES
take p=3 so that thesé®-branes lie entirely alongR®*?:. AND WILSON-LOOP INSTANTONS
When N D-branes are all separated from each other, the " , .
o . . .~ Splitting the gauge field4, into the noncompact part
theory is in the Coulomb phase where it admits magnetic, = © o F
. . i,i=1,2,3 and the compact pat,, the BPS equation is
monopole solutions. Furthermore, we will assume that alfo‘

D3-brane positions are aligned aloi}, so we are effec- B;=D;A;— /A . 9
tively working in S*x R3* 2. Finally, upon aT-dual transfor-
mation, we mapS! of circumferencel to its dual S of

circumferencel = 4%’ /L, which is now wrapped around
by N D4-branes. £=8mp Pl(f)zz,uf 1f S

The world-volume theory in question is then five- SR
dimensionalNV=4 U(N)=U(1)XSU(N) Yang-Mills com- (10)
pactified onS' [2]. The Abelian part U(1) of the gauge
group will be ignored in our discussion here. The bosonicWe first observe that all three-dimensional BPS monopole
part of the effective Lagrangian @ x R3*! is solutiong[ 7] are also solutions of this equation just by setting

A; independent of the periodic coordinatésand regarding
1 N " A, as an adjoint scalar field. Thus, this theory admits the
£=MfslxR3+1 tr _EfMNfM +Z Dy®pD" ®p N—1 spherically symmetric, fundamental monopole solu-
tions [8], each carrying a distinct topological winding num-
1 , ber in m,(SUN)/U(1)N"H=2zN"1 Each of these funda-
+ EPEQ [Pp,Pq] ] (3 mental solutions is characterized for having only four zero
’ modes.

However, there are other solitonic solutions of the same
monopole charges, an infinite number of them as a matter of
fact. To see this, it suffices to recall that the BPS solution
exists for generic asymptotic valué, (). Because4, is in
-~ fact a component of the gauge connection along the compact
l‘- 4) direction, it can be shifted under a large gauge transforma-
872’ tion as

With this notation the BPS bound can be written as

1
BiDiA4_ EeijkAj&4Ak .

The dimensionful couplingu is proportional to the
D4-brane tensionr,, and, for later use, we express it in

terms of theD-string tensionr,:

w=2ma'? 7,=
The circumferencel of S' enters because th&-duality Ay At A (1)

transformation rescales the string couplieg: 1/7,. The  for some constant Hermitian matrix. Monopole solutions
relevant symmetry breaking is via a Wilson loop al@lgso  of larger masses are obtained by first solving the three-

we shall subsequently ignore the five scalar fields. ~ dimensional BPS equation with the boundary condition
The theory admits the BPS bound, as usual, and in theq,(«)=(.4,)+nA and then performing a large gauge trans-
absence of electric excitation, the energy functional is formation back ta4,(«)=(A,). This works forn=0 when-
ever tr (A,) A)>0 ande'** belongs to the center of the
2 gauge.
= wv
£ 2 f51XR3trfﬂVf ® Consider the simplest case of &Yfor N=2. We write

the generic Wilson loop as
with the Greek indices ranging from 1 to 4. This is bounded

27m .
> (Ay=""0 12

M 1
= £ - =g )
&= 2fsl><R3tr 2 €pvapF P =8mp pi(F), - (6) for 0= 7<1 and whereQ is the unbroken (1) charge op-

erator normalized to be unit for the massive vector meson. In
where p,(7) is the Pontryagin number of the Yang-Mills the ynitary gauge® would be a diagonal matrix diag

field, (1/2,—1/2). The usual BPS monopole is then a solitonic so-
lution where A, interpolates between 0 at origin and
Pi(F)=—— trFAF, ) 275 Q/L at asymptotic infinity. The relevamt can be cho-
8w Jsixr® sen as
and the bound is saturated when the Yang-Mills field solves A 2_7TA (19
the BPS equation =T

” so the infinite tower of monopole solutions simply corre-
f#vzifuvpop ®) spond to rescaled spherically symmetric BPS solutions that

allow A, to interpolate between 0 andn27+k) Q/L for
on S'xXR3. any non-negative integér=0. After a large gauge transfor-
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mation, we may keepA,(«) at 2mn Q/L but let Theinfinite tower of monopoles for each fundamental charge

A4(0)=—27k QIL. (As long as the Wilson loop at the ori- can be treated by a simple 8) embedding, and this again

gin is invariant under the global gauge rotations, such a Sor_esults in the mass formula
lution is perfectly regular and acceptable. 2 0.2 B

The masses of these monopoles are easy to evaluate. The E28mup1(F)=8mp (K+ 72~ Nar1). (17)
monopole solution is independent &f when we choose
A4(0)=0, and then its BPS mass formula is similar to that
of three-dimensional Yang-Mills theoffy]:

Thus the higher mass monopole is again interpretable as a
combination of a fundamental monopole akdSU(N) in-
stantons. On theD-brane side, theN D3-branes are at

x*= 7L, so the string segments between adjacent pairs are
£=8mu pl(ﬂ:ZMJ'SJRstr[BiDiAﬂ:SWZM (k+7). of massest; (7.~ 7a+1)L =872 (74— 7as1) With the
(14) fundamental charge, while the chargeless, closed loop of the
D-brane has the mass,L =8w?x. Comparing this to Eq.

Note that the monopoles also carry a Pontryagin numbetl?), it is pretty clear that the closed loop of ti-string
k+ 7. corresponds to an instanton pf(F)=1.

This is a perfectly sensible result from tBebrane per- This is in accordance with the fact that, upon the
spective. There, a fundamental monopole is simply aT-duality transformation fromS® to S, a single D-string
D-string segment that stretches between an adjacent pair tdop crossingN D3-branes turn into aD0-brane onN

D3-branes alongS* [5]. The D3-brane position or6* is ~ D4-branes, a natural candidate for an 8l (instanton. Be-
dictated by the Wilson loop. For SP), their coordinate Ccause the instantons exist even when the gauge symmetry is
X4 (e[-T/2L/2]) is given by = 5L /2, as can be deduced broken by a Wilson loop, we shall call them the Wilson-loop

from the fact that bothpy=0 and»=1 correspond to a sym- Instantons.
metric phase where the twb3-branes must coincide. A

D-string of length »L stretching between the two IV. THE WILSON-LOOP INSTANTON

D3-branes carries a fundamental magnetic charge, and is AS N FUNDAMENTAL MONOPOLES

naturally identified with the fundamental monopole above g ch a closed loop of B-string can break up into seg-
(k=0). Note that the mass formula obtained from the fieldyents  between adjacent pairs ob3-branes. With

theory does agree with tHe-brane picture. The mass is D3-branes separated alor@, there are exacthN such

monopolelike segments. However, so far we have isolated
only N—1 species of fundamental monopoles, each repre-
sented by a three-dimensional spherically symmetric solu-
tion. We need one more monopole solution in order to match
the D-brane picture. In th®-brane picture, this corresponds
to a segment stretching between the first and kb
D3-branes directly, and this is clearly possible thanks to the

~ i3 .
aroundS?. Such a loop carries no magnetic charge and is OFompac_t hature .OS - Onthe other hand, sihce a closed loop
of D-string carries no magnetic charge with respect to the

ma5371E:8w2M. The configurations of a single segment of unbroken U(1)~%, the Nth monopole must have a charge
length »L combined withk loops of such close®-strings  opposite to the sum of the othé&—1 fundamental mono-
has exactly the right mass and charge to form the infinitgyoles.

tower of mOﬂOpOleS obtained above. What is the field theory To see how a BPS solution of a “Wrong” magnetic
soliton that corresponds to the clos@dstring loop? The charge arises in the Yang-Mills theory, let us again consider
answer is obvious once we made the above identificationthe simplest case of SP). Here, it is also useful to recall
Removing the fundamental monopole to asymptotic infinity,why a pair of BPS monopoles has no static force between
one obtainsk closed loops ofD-strings of zero magnetic them: it is because the vector force is canceled by that of the
charge. Its Pontryagin number(F) is k, so each loop of scalar. In order to flip the magnetic charge and still solve the
D-string must be realized as an &Yinstanton onS'XR®.  BPS equation, we need to make the absolute valug,ofo

The same reasoning goes through for B)(Writing the increase (rather than decreasetoward origin. With
expectation valug.4,) in a unitary gauge, Ay()=275Q/L as above, possible choices fdy(0) are
(k+1)27Q/L for any non-negative integés.

How do we know a BPS solution with such boundary
conditions exists? Because such a configuration can be gauge
transformed to the usual BPS solution through a large gauge
transformation that shiftsd,—.4,— (k+1)27Q/L every-
where, followed by a global gauge rotatiép— — Q. The
resulting configuration is that of the ordinary BPS solution
the N—1 fundamental monopoles are of masseswhose A, interpolate between 0 at origin to
872w (ma— Mar1), @S can be seen from a &Y embedding. (k+1— 7)27Q/L at asymptotic infinity. The mass is again

71L ~ -
E=8mun=8m? # n=171 (nL), (15

which is simply the D-string tension multiplied by the
length.
In addition, we may have a closdd-string wrapping

. 2
(Ag=diad 71,72,73, ... ,7n) T

1
2771>772>"'>77N>_§ (16)

N| -
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easily estimated in the latter gauge, and some[SU(N)] zero modes that transform as doublets with
b respect to this embedded &) After this is properly taken
E=8mp” (k+1-17). (18 into account, we find
The infinite tower of monopoles given by this is a precise ANK+4 (23

analog of the infinite towers we encountered above. The

minimal case ofk=0 is again a fundamental monopole in as the total number of zero modes.

that it carries precisely four zero modes. Generalization to This zero-mode counting is clearly consistent with the

SU(N) proceeds similarly. interpretation that the higher mass monopole is a fundamen-
This secondor the Nth) fundamental monopole is pos- tal monopole of the same charge combined with a chargeless

sible because thg* direction is compacf9]. In the gauge collection ofNk fundamental monopoles of four zero modes

where the ordinary fundamental monopoles xfténvariant, ~ each. In turn, the index theorem applied to the Wilson-loop

this solution must have a Kaluza-Klein momentum alonginstantons ofp,(F)=k gives the bulk contribution

x*. In reality, however, botfor all N for SU(N)] monopoles

are on equal footing, since one can always perform a large i . i -
gauge transformation to get rid of txé dependence of the 2X87T2 51XRsTr]:/\]:_ 4NX87T2 51XRstrjE/\]:_4Nk
second (or the Nth) fundamental monopole, as we saw (24)
above.

We need one more field theory computation to completevhile the boundary contribution is expected to be null for
the picture. If the higher mass monopole is indeed a meréntegralp,;(F) as in theR* case. The first trace Tr is over the
sum of a fundamental monopole akdnstantons, and if the SU(N) adjoint representation, and we used the identity
instanton itself is a sum oN monopoles, the zero-mode Tr(---)=2NXtr(---) for SU(N). Again the zero-mode
counting must reflect this. In particular, the higher masscounting is consistent with the above picture that te
monopoles of fundamental charge must carry a large numbenonopoles are in fadt SU(N) instantons. The interpretation
of zero modes which should be also consistent with that obf a Wilson-loop instanton all fundamental monopoles is

an instanton. thus complete in the purely Yang-Mills theory context.
Following Brown et al. [10], we write the zero mode
equation as V. THE EXACT MODULI SPACE

AND A 3D GAUGE THEORY
0,D,¥=0, (19

A simple consequence is that the one-instanton moduli
where D, is the background covariant derivative and space is identical to that & fundamental monopoles. When
V=g ,5A, satisfies a reality constraint coming from the the N monopoles are well separated, we can infer the ap-
fact that the zero modesA, are Hermitian matrices. The Proximate form of the metric from their long-range interac-
2Xx2 matrices o, are given by ¢;,i) while tion. Following Gibbons and Mantofi1], Lee, Weinberg,
pu and Yi constructed the general form of such an approximate

o,=(oj,—1). . ) .

Now consider the infinite tower of monopoles of the fun- Metric [12]. Applied to the present case, it gives
damental charge in the $2) theory. Performing a Fourier = MoardXe - A%+ (M~ (dé-+ W dX
expansion of¥’ with respect to the internal periodic coordi- G=Mapdxa- dxy*( Ja(d€at Wae-dxc)
natex?, X (déy+Wpg- dXy), (25

v-3 i 2mmbiLyg 20 where the diagonal components of tN&X N matrix M are
- (m) »
" M + ! + ! 1
. . . :m L a: 1
the zero-mode equation reduces to a three-dimensional one 3 T x = x| X=X
due to Weinberd8], now with a bare mass:
1 1
27m M_,=m,+ + , a=2,...N—-1,
O'MDM\P(m)Z%\P(m), (22) 3R [ Xa—Xa1|  [Xa=Xas4l
1 1
whereD;=D; andD,=D,— d,. From Ref[8], one can eas- Maa=my+ a=N, (26

+ 1
ily see that this admits four normalizable solutions whenever v Xn-al - =l

the bare mass term is smaller than the scale set by the mon,
pole mass, i.e/m|<#+k. Sincen>0 in the broken phase,
2k+1 Fourier modes contribute four each, and

Qith m, being the (rescaled mass of theath monopole,
which is located ak, in R%, and the only nonvanishing off-
diagonal components are

8k+4 (22 1
. . Min=Myy=— v v |
is the total number of zero modes. When we consider the X1 — x|
SU(N) monopoles, the same reasoning goes through since
we may obtain the necessary BPS solutions by embedding
the SU2) solutions. One difference is that there are also

(Ja=b|=1). 27)
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The vector potentialV is related to the the scalar potential tended supersymmetry in+21-dimensiong. The theory has
M by N species of electrons of charge {11) with respect to each
adjacent pairs of U(1) gauge groups, and the two moduli
— space coincides if the bare masses of the electrons vanish.
VeMap=VexWap, 28) pThis identity can be understood by adapting the method of
Hanany and Witterf15]. We consideN parallel NS five-
prdinategaIZ fpr eacha -is per!od!c in 27 and gives rise to ?r::nsi)saiggﬁ;it?g Séozgnig:agiﬁws \Av;ggapkuet ?ﬁerfﬁrtegt
integer-quantized dyonic excitation of théh monopole. brane segment between each adjacent pairs of the five-
If the Nth monopole is absertor infinitely far away from  pranes. The corresponding solitons of codimension three in
the otherN—1 monopoles such an approximate metric is the five-brane world-volume theory are precisely the mono-
known to be exacf12,13. One compelling physical reason poles we discussed above, or collectively a BY{nstanton,
behind this is the fact that the—1 unbroken Wl) gauge  through a series d and T dualities as well as some decom-
symmetry prohibits certain short-distance corrections that alpactifications.
low an electric charge transfer among te-1 fundamental On the other hand, Hanany and Witten also identified the
monopoles. With the addition of téth monopole, there are effective (2+1)-dimensional theory on such three-brane
still only N—1 U(1) symmetries from the original gauge segments, and the rule is that each segment producés)a U
group, so it may appear that a short-distance correction igector multiplet and each adjacent pair of segments gives a
inevitable. hypermultiplet of charge (% 1) with respects to the two

Howc_ever, there1|s aqother(ﬂ» symmetry, namely the_ U(1)'s. With theN three-brane segments paralleﬁb, then,
translation alongS", which acts to preserve an electric yo oa g6 theory is U()with N species of electrons link-
charge. Ope easy way O.f seeing _th|s IS again from th('f'ng pairs of U1)'s successively. The Coulomb phase of this
D-brane p|ctl_Jre. An electric charge_ is carried by open fun'theory is parametrized by the three-brane configurations,
damental string segments stretching betwd2B-branes. \nich gre nothing but the instanton-multimonopole configu-
When allN monopoles carry the saniabsolut¢ quantized  r4tions from the five-brane perspective. The two moduli
amount of electric charges, the situation is that of a Closegpaces are identical, and the three-dimensional ¥(ou-

string winding arounds*. Upon aT-dual toS', this winding  plings g, are determined by the monopole masses:
number is translated to the conserved momentum afing

From the low energy perspective, we can also compute the 1

momentumP,, e ~My. (32)
a

which ensures that the metric is hyperier. The U1) co-

Furthermore, our assertion that the metric written above is
P4°‘f tr FouFua (29 exact is reflected in the fact that the Coulomb phase moduli
stxR3 . ) .
space metric of the Abelian U(Y)theory receives no non-
perturbative correction.
One particular linear combination of thg1) gauge fields
is free, and if it is removed, we recover Kronheimer’s theory
P4y n+0o(1—7n)=0da+ 7(d1—d2), (300 of SU(N) type[14,16. On the other side of the correspon-
dence, this has the effect of factoring out the center-of-mass
when a; and g, are the electric Chargdﬂur convention is motion OnSlX RS, so the Coulomb phase of the Kronheimer

such that the total electric gauge charges are zero whefi€ory coincides with the relative part of the instanton-multi-

g,=0,) on the first and the second fundamental(®U Mmonopole moduli space.

monopoles, respectively. The translation invariance along A Special case of this result was anticipated by Intriligator

x* thus preserves a linear combination of the two electric@nd Seiberd14]. They noted that the infrared limit of the

charges. Kronheimer theory of type SUN) is “mirror” to a U(1)
The N independent conserved electric charges along witiheory with N electrons. The Higgs phase of the latter had

the hyper-Kaler property of the moduli space implies that been interpreted as the moduli space of an instanton located

the asymptotic form above must be in fact the exact expresat a fixed point inR*, and, under the proposed mirror sym-

sion. One should be able to set up an argument similar t&hetry, should be mapped to the Coulomb phase of the infi-

those in Ref[13] and show this explicitly. We have obtained hite coupling Kronheimer theory. Such a mirror mapping

the instanton moduli space of a 80 instanton onS!xR3 ~ was subsequently justified by various auth$i$,17. In

for an arbitrary Wilson loop from the equivalent multimono- View of the relationship between the monopole masags

pole configuration. and the U(1) couplingsg,, this can be seen to be a special
The same form of metric has recently appeared in a worlease of our result in the limit of decompactifi&d (dual to

by Intriligator and Seiberd14], as that of the Coulomb vanishingS?).

branch moduli space of a U(®)gauge theory with four ex-

which, forN=2 andk=1, evaluates to

2Intriligator and Seiberg actually considered a U¥AL)(1) gauge
p, is not properly quantized because it is not the Noether motheory due to Kronheimer. But the difference is simply that of
mentum. The latter is found by dropping apdependent surface whether or not one factors out a trivial p8tx R® of the moduli
term that is independently conserved. space.
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VI. SYMMETRIC PHASE AND THE CALABI METRIC with 't Hooft's SU(2) multi-instanton solution and line them

) o up along a fixed axis, say’, at equal distances. The result-
When the Wilson loop becomes trivial, the SU(gauge ing configuration is periodic along®, and effectively a

symmetry is restored and the moduli space must reduce to . . 3
that of a symmetric-phase instanton 8hx R?, also known Single symmetric-phase instanton 8hx R3. As usual, there

L N e ~is a single moduli that paramterizes the instanton size, say
azlér;e :reerlomd;:sérrig?]tﬁog Inihrlj I|m|=t,0t)h e;geﬁlnmont%e p, in addition to the moduli that arise from broken global
Sosition coordinates by x=x )N(‘l for A1 Ng 1 Symmetries. Then, it was observed thatpds sent tox, the

AT AAT AA+L E<EEEEL N

iodic instanton solution of ever-i ing size ap-
and R=xy, and the W1) phases by«//A=EQ:1§a and periodic Instanton solution of ever-increasing size ap

<N . . , proached the usual BPS monopole solutionRh up to a
X=2,-1&a, the moduli space metric can be rewritten as large gauge transformation.

1 In our picture, the periodic S@@) instanton is composed
G=my dR2+ — dX2+ Grels of a pair of distinct fundamental monopoles. In the limit of
My restored S(2) gauge symmetry, the Wilson loop is trivial
(n=0) so that the first fundamental monopole is massless.

Grei=Cagdra-drg+(C™ ) ag(dypatWac-dre) But the second is still massive. The situation is reminiscent
X (dipg+Wgp-drp), (32) of those in Ref[21]; as the non-Abelian gauge symmetry is
restored, some monopoles become massless and dissolve
where the N—1)X(N—1) scalar potential€,g are into a charge cloud that shields tligon-Abeliann magnetic
charge of the remaining massive monopole. At such a mass-
1 1 1 less limit, some of the collective coordinates acquire new

physical significance, and in particular, what used to be the
intermonopole distance translates into the size of the cloud.
The vector potentials satisfy cXwag=VCag, and the More generally, when we have the SU( gauge group
U(1) coordinatesy, are all of period 4r. Note that the met- restoredN—1 of the monopoles are now massless, and only
ric G, is devoid of any mass scale. The relative modulione, say theNth, remains massive. There is again a single
space described by is thus valid for any size 08!, and  collective coordinate that parametrizes the cloud size or
can be considered the moduli space of a symmetric-phassjuivalently the instanton size. In terms of the three-
SU(N) instanton located at a point in eith8x R® or R*. It dimensional coordinates aboyecan be redefined to satisfy
is precisely the Coulomb phase moduli space of the infinitea simple relation

coupling Kronheimer theory of SW) type?

The metricg ¢ itself is a degenerate limit of the so-called
Calabi metric [18] which is an SUN)-invariant hyper-
Kahler metric. ForG,,, the SUN) isometry is clearly re-
lated to the restored SM) gauge symmetry. The relative (34)
moduli space in the symmetric phase parametrizes the gauge
orientation of the instanton beside its size: the principalwhich can be deduced from the study of the moduli space of
SU(N) orbit of the Calabi manifold is SU{)/U(N—2), and  two distinct massive monopoles in R¢21] that arise upon
the remaining single coordinate must correspond to the inSU(N+ 2)— SU(N) X U(1)?. The present moduli space re-
stanton size. sults from the latter by putting the two massive monopoles at

The metricG,. possesses an isolated singularity at origin.the same point and identifying their electric charges.

For N=2, this is particularly easy to see because the Calabi Thus the large instanton limitp(—0o°) is realized if at
metric is simply that of the Eguchi-Hanson gravitational in- least one of the to-be-massless monopoles is removed to the
stanton whose degenerate limit R/Z,=R" X SU(2)/Z,. asymptotic infinity. In fact, by a SU{) gauge rotation, this
The isolated singularity at origin persists as we break thés equivalent to lettingx,=0o for a=1,... N—1 simulta-
SU(N) gauge symmetry by a Wilson loop, because the sinneously. Left behind is a single massive monopoleat
gularity occurs at vanishing instanton size where the scale ofhich certainly can be gauge transformed to a canonical BPS
the Wilson loop is negligible. Again, this can be seen explic-monopole solution.

itly for N=2: the relative moduli space of a pair of distinct The smooth interpolation between the monopole picture
monopoles is always given by Taub-Newman-Unti-and the instanton picture also tells us something about the
Tamborino(NUT) space locallyf19], and thus by continuity multimonopole configurations in the broken phase. Far away
it has to be &, orbifold of the Taub-NUT space. The mass- from each other, the individual monopole has a clear identity
less limit of the Taub-NUT isR*. as magnetic solitons oR3. As their separations grow

This massless limit of the instanton-multimonopole smaller, however, the size of the inter@t becomes appre-
moduli space provides us with an interesting explanation of @iable, and they cannot retain the character of solitons on
phenomenon found by Rossi in the late 197@6]. Start R®. Rather, as the length scale progressively decreases, the

compact nature o8' will no longer be important and they
must clump together at a point 8t X R3, and look a lot like
3The coordinates Intriligator and Seiberg used in Réf] are  a very smallR* instanton. This is a radical departure from
more like thex,'s and the&,’s above than the proper relative co- what one would expect from ordinary three-dimensional
ordinater,’'s and #,’s, SO one must be careful to express one of magnetic solitons, and must be responsible for the isolated
them, say fora=N, as functions of those fa=1,... N—1. singularity of the relative moduli space at origin.

_+—, C =
Iral  |ZarAl AB IS Al

PIL = [Xg = Xa| +[Xa=Xg| + - - - [ Xy 1= Xn| + [Xn— X,
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VIl. CONCLUSION monopoles and instantorj@4]. The basic aspect has been

We have studied field theory aspects of monopoles an xplored before and it should be interesting to understand it

instantons onD-branes in a compactified spacetime, and urEPr:ai:dm\fvheenic;gti)gnc;%-ebrr?r?s 52@'?&% theory on com-

foorlégga? SZ?:;,Setft?\fepI%g;etﬁ:(geggg fé?g;s l;;(e J\yeflz:gothe'pactD4—branes, such as on a four-torus. An instanton should
found the exact moduli space of a single Wilson-loop instan-perSISt but the concept of a magnetic monopole is no longer
ton by interpreting it as a collection of distinct fundamen- available. One outstanding question is how to construct the

. X . . moduli space in such cases. It would be most interesting to
tal monopoles. The relative part of this moduli space is sub- P 9

sequently identified with the Coulomb phase moduli space O§ee if a simple derivation such as ours is also possible.

) : ) Note addedAfter the appearance of this paper, M. Mur-
the three-dimensional Kronheimer theory of type SI(In . . ; )
the limit where SUN) is restored, or in the infrared limit of ray drew our attention to Ref25] which also discusses re

. : . lationships between monopoles and instantons.
the Kronheimer theory, the relative moduli space turns out to P P

be the degenerate limit of the Calabi manifold.

There are many directions to explore further. First of all,
one may consider th8 duality of the type-1IB theory, and P.Y. thanks J. Maldacena for a stimulating conversation
look for threshold bound states. Since our instanton moduland also for drawing his attention to compactified Yang-
space has the maximal triholomorphic Abelian symmetryMills systems. The authors are also grateful to A. Dancer and
we suspect that the generalization of Gibbons constructioA. Swann for making their manuscript available prior to its
[22] generates threshold bound states. publication. K.L. was supported by the Presidential Young

Second, there is a generalized Nahm formali28] in Investigator program. This work was supported in part by the
constructing self-dual solutions 08'xXR® such as our U.S. Department of Energy.
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