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Motivated by the recentD-brane constructions of world-volume monopoles and instantons, we study the
supersymmetric SU(N) Yang-Mills theory onS13R311, spontaneously broken by a Wilson loop. In addition
to the usualN21 fundamental monopoles, theNth Bogomol’nyi-Prasad-Sommerfield monopole appears from
the Kaluza-Klein sector. When allN monopoles are present, net magnetic charge vanishes and the solution can
be reinterpreted as a Wilson-loop instanton of unit Pontryagin number. The instanton-multimonopole moduli
space is explicitly constructed, and seen to be identical to a Coulomb phase moduli space of a U(1)N gauge
theory in 211 dimensions related to Kronheimer’s gauge theory of SU(N)-type. This extends the results by
Intriligator and Seiberg to the finite couplings that, in the infrared limit of Kronheimer’s theory, the Coulomb
phase parametrizes a centered SU(N) instanton. We also elaborate on the case of restored SU(N) symmetry.
@S0556-2821~97!02516-2#

PACS number~s!: 11.27.1d, 11.25.Mj

I. SOLITONS ON D-BRANES

Recently there has been a considerable interest in low
energyD-brane dynamics@1# and its relation to the super-
symmetric Yang-Mills systems. When there areN parallel
Dp-branes, their low energy dynamics is described by a re-
duction of theN51 supersymmetric 10-dimensional Yang-
Mills system of the gauge group U(N) to the
(p11)-dimensional supersymmetric Yang-Mills-Higgs sys-
tem @2#. The physics of the supersymmetric Yang-Mills sys-
tems can be understood by that of theD-brane dynamics, and
vice versa, enriching our understanding of both subjects.

Bogomol’nyi-Prasad-Sommerfield~BPS! magnetic mono-
poles and instantonlike solitons in supersymmetric Yang-
Mills systems have been understood in theD-brane language
recently. The key point is that the Ramond-Ramond~RR!
charge carried by theD-brane @3# can be also carried by
world-volume instantons and monopoles. The coupling~be-
tween the RR gauge fieldCp11 and the world-volume gauge
field! that is responsible for this is succinctly written as

E
Bp

(
d>0

Cp22d11`tr eF/2p i , ~1!

where the integral is over the world volume ofDp-branes for
eachp @1#. F is the world-volume Yang-Mills field strength.

For instance, when an openD(p22)-brane ends on a
Dp brane, the RR charge carried by the former must be
somehow cancelled by a Yang-Mills soliton on the
Dp-brane, of codimension three@4#. From the above cou-
pling, it is clear a soliton of charge

R
S2
F ~2!

is a source forCp21 RR gauge field, so a RR charge conser-
vation requires that the boundaries of theD(p22)-brane
carry the magnetic charge with respect toDp-brane world-
volume gauge field@5#.

On the other hand, Yang-Mills instantons appear, say,
when there areN parallelD4-branes overlapping each other
so that U(N) symmetry is restored. If aD0-brane approaches
the D4-branes from infinity and touches theD4-branes, it
could melt away, leaving an SU(N) instanton~in real time!
on theD4-brane@6#. This process conserves the RR charge
as bothD0-branes and instantons carry the same charge. The
instanton energy is identical to theD0-brane mass and one
can interpret the instanton as the threshold bound state be-
tween aD0-brane andN overlappedD4-branes. This picture
has been studied in many variations connected under theT
duality. In particular, theD-brane configuration has been
shown to be connected to the Atiyah-Drinfeld-Hitchin-
Manin ~ADHM ! construction of the instanton configurations.

In this paper we consider cases where at least one direc-
tion of the space-time is compactified on a circle. AT-dual
transformation along the circle maps aD4-brane to a
D3-brane and aD0-brane to aD1-brane loop. In turn, a
D1-brane loop that passes throughN D3-branes along the
circle can break up intoN D1-brane segments ending on
D3-branes, each of which must behave as a fundamental
monopole in theD3-brane world-volume theory. The world-
volume dynamics of the system we just described is gov-
erned by a compactified five-dimensional SU(N) Yang-Mills
system, whose gauge symmetry is broken by a nontrivial
Wilson loop. Thus, our investigation will lead to a new un-
derstanding of magnetic monopoles and solitonic instantons
in a compactified Yang-Mills theory with an arbitrary Wil-
son loop. In the latter half of the paper, we will concentrate
on the moduli space of such solitons.

II. THE LOW ENERGY EFFECTIVE FIELD THEORY

We take the spacetime to beS̃13R3113T5. Let N par-
allel Dp-branes (p>3) overlap with the noncompact part
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R311. Up to variousT-dual transformations, we may as well
take p53 so that theseD-branes lie entirely alongR311.
When N D-branes are all separated from each other, the
theory is in the Coulomb phase where it admits magnetic
monopole solutions. Furthermore, we will assume that all
D3-brane positions are aligned alongS̃1, so we are effec-
tively working in S̃13R311. Finally, upon aT-dual transfor-
mation, we mapS̃1 of circumferenceL̃ to its dual S1 of
circumferenceL54p2a8/ L̃ , which is now wrapped around
by N D4-branes.

The world-volume theory in question is then five-
dimensionalN54 U(N)5U(1)3SU(N) Yang-Mills com-
pactified onS1 @2#. The Abelian part U(1) of the gauge
group will be ignored in our discussion here. The bosonic
part of the effective Lagrangian onS13R311 is

L5mE
S13R311

trH 2
1

2
FMNFMN1(

P
DMFPDMFP

1
1

2(P,Q
@FP ,FQ#2J . ~3!

The dimensionful couplingm is proportional to the
D4-brane tensiont4, and, for later use, we express it in
terms of theD-string tensiont̃ 1:

m52p2a82 t45
t̃ 1L̃

8p2
. ~4!

The circumferenceL̃ of S̃1 enters because theT-duality
transformation rescales the string couplingef}1/t̃ p . The
relevant symmetry breaking is via a Wilson loop alongS1, so
we shall subsequently ignore the five scalar fieldsFP .

The theory admits the BPS bound, as usual, and in the
absence of electric excitation, the energy functional is

E5
m

2ES13R3
trFmnFmn ~5!

with the Greek indices ranging from 1 to 4. This is bounded
by

E>
m

2ES13R3
tr

1

2
emnabFmnFab58p2m p1~F!, ~6!

where p1(F) is the Pontryagin number of the Yang-Mills
field,

p1~F![
1

8p2ES13R3
trF`F, ~7!

and the bound is saturated when the Yang-Mills field solves
the BPS equation

Fmn5
1

2
emnrsFrs ~8!

on S13R3.

III. FUNDAMENTAL MONOPOLES
AND WILSON-LOOP INSTANTONS

Splitting the gauge fieldAm into the noncompact part
Ai ,i 51,2,3 and the compact partA4, the BPS equation is

Bi5DiA42]4Ai . ~9!

With this notation the BPS bound can be written as

E>8p2m p1~F!52mE
S1
E

R3
trFBiDiA42

1

2
e i jkAj]4AkG .

~10!

We first observe that all three-dimensional BPS monopole
solutions@7# are also solutions of this equation just by setting
Ai independent of the periodic coordinatesx4 and regarding
A4 as an adjoint scalar field. Thus, this theory admits the
N21 spherically symmetric, fundamental monopole solu-
tions @8#, each carrying a distinct topological winding num-
ber in p2„SU(N)/U(1)N21

…5ZN21. Each of these funda-
mental solutions is characterized for having only four zero
modes.

However, there are other solitonic solutions of the same
monopole charges, an infinite number of them as a matter of
fact. To see this, it suffices to recall that the BPS solution
exists for generic asymptotic valueA4(`). BecauseA4 is in
fact a component of the gauge connection along the compact
direction, it can be shifted under a large gauge transforma-
tion as

A4→A41D ~11!

for some constant Hermitian matrixD. Monopole solutions
of larger masses are obtained by first solving the three-
dimensional BPS equation with the boundary condition
A4(`)5^A4&1nD and then performing a large gauge trans-
formation back toA4(`)5^A4&. This works forn>0 when-
ever tr (̂ A4& D).0 and eiLD belongs to the center of the
gauge.

Consider the simplest case of SU~2! for N52. We write
the generic Wilson loop as

^A4&5
2ph

L
Q̂ ~12!

for 0<h,1 and whereQ̂ is the unbroken U~1! charge op-
erator normalized to be unit for the massive vector meson. In
the unitary gauge,Q̂ would be a diagonal matrix diag
(1/2,21/2). The usual BPS monopole is then a solitonic so-
lution where A4 interpolates between 0 at origin and
2ph Q̂/L at asymptotic infinity. The relevantD can be cho-
sen as

D5
2p

L
Q̂, ~13!

so the infinite tower of monopole solutions simply corre-
spond to rescaled spherically symmetric BPS solutions that
allow A4 to interpolate between 0 and 2p(h1k) Q̂/L for
any non-negative integerk>0. After a large gauge transfor-
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mation, we may keepA4(`) at 2ph Q̂/L but let
A4(0)522pk Q̂/L. ~As long as the Wilson loop at the ori-
gin is invariant under the global gauge rotations, such a so-
lution is perfectly regular and acceptable.!

The masses of these monopoles are easy to evaluate. The
monopole solution is independent ofx4 when we choose
A4(0)50, and then its BPS mass formula is similar to that
of three-dimensional Yang-Mills theory@7#:

E>8p2m p1~F!52mE
S1
E

R3
tr@BiDiA4#58p2m ~k1h!.

~14!

Note that the monopoles also carry a Pontryagin number
k1h.

This is a perfectly sensible result from theD-brane per-
spective. There, a fundamental monopole is simply a
D-string segment that stretches between an adjacent pair of
D3-branes alongS̃1 @5#. The D3-brane position onS̃1 is
dictated by the Wilson loop. For SU~2!, their coordinate
x̃4 (P@2 L̃ /2,L̃ /2#) is given by6h L̃ /2, as can be deduced
from the fact that bothh50 andh51 correspond to a sym-
metric phase where the twoD3-branes must coincide. A
D-string of length h L̃ stretching between the two
D3-branes carries a fundamental magnetic charge, and is
naturally identified with the fundamental monopole above
(k50). Note that the mass formula obtained from the field
theory does agree with theD-brane picture. The mass is

E>8p2mh58p2
t̃ 1L̃

8p2
h5 t̃ 1 ~h L̃ !, ~15!

which is simply the D-string tension multiplied by the
length.

In addition, we may have a closedD-string wrapping
aroundS̃1. Such a loop carries no magnetic charge and is of
masst̃ 1L̃58p2m. The configurations of a single segment of
lengthh L̃ combined withk loops of such closedD-strings
has exactly the right mass and charge to form the infinite
tower of monopoles obtained above. What is the field theory
soliton that corresponds to the closedD-string loop? The
answer is obvious once we made the above identification.
Removing the fundamental monopole to asymptotic infinity,
one obtainsk closed loops ofD-strings of zero magnetic
charge. Its Pontryagin numberp1(F) is k, so each loop of
D-string must be realized as an SU~2! instanton onS13R3.

The same reasoning goes through for SU(N). Writing the
expectation valuêA4& in a unitary gauge,

^A4&5diag~h1 ,h2 ,h3 , . . . ,hN!
2p

L
,

1

2
>h1.h2.•••.hN>2

1

2
~16!

the N21 fundamental monopoles are of masses
8p2m (ha2ha11), as can be seen from a SU~2! embedding.

The infinite tower of monopoles for each fundamental charge
can be treated by a simple SU~2! embedding, and this again
results in the mass formula

E>8p2mp1~F!58p2m ~k1ha2ha11!. ~17!

Thus the higher mass monopole is again interpretable as a
combination of a fundamental monopole andk SU(N) in-
stantons. On theD-brane side, theN D3-branes are at
x̃45h i L̃ , so the string segments between adjacent pairs are
of massest̃ 1 (ha2ha11) L̃58p2m (ha2ha11) with the
fundamental charge, while the chargeless, closed loop of the
D-brane has the masst̃ 1L̃58p2m. Comparing this to Eq.
~17!, it is pretty clear that the closed loop of theD-string
corresponds to an instanton ofp1(F)51.

This is in accordance with the fact that, upon the
T-duality transformation fromS̃1 to S1, a singleD-string
loop crossingN D3-branes turn into aD0-brane onN
D4-branes, a natural candidate for an SU(N) instanton. Be-
cause the instantons exist even when the gauge symmetry is
broken by a Wilson loop, we shall call them the Wilson-loop
instantons.

IV. THE WILSON-LOOP INSTANTON
AS N FUNDAMENTAL MONOPOLES

Such a closed loop of aD-string can break up into seg-
ments between adjacent pairs ofD3-branes. With
D3-branes separated alongS̃1, there are exactlyN such
monopolelike segments. However, so far we have isolated
only N21 species of fundamental monopoles, each repre-
sented by a three-dimensional spherically symmetric solu-
tion. We need one more monopole solution in order to match
theD-brane picture. In theD-brane picture, this corresponds
to a segment stretching between the first and theNth
D3-branes directly, and this is clearly possible thanks to the
compact nature ofS̃1. On the other hand, since a closed loop
of D-string carries no magnetic charge with respect to the
unbroken U(1)N21, the Nth monopole must have a charge
opposite to the sum of the otherN21 fundamental mono-
poles.

To see how a BPS solution of a ‘‘wrong’’ magnetic
charge arises in the Yang-Mills theory, let us again consider
the simplest case of SU~2!. Here, it is also useful to recall
why a pair of BPS monopoles has no static force between
them: it is because the vector force is canceled by that of the
scalar. In order to flip the magnetic charge and still solve the
BPS equation, we need to make the absolute value ofA4 to
increase ~rather than decrease! toward origin. With
A4(`)52phQ̂/L as above, possible choices forA4(0) are
(k11)2pQ̂/L for any non-negative integerk.

How do we know a BPS solution with such boundary
conditions exists? Because such a configuration can be gauge
transformed to the usual BPS solution through a large gauge
transformation that shiftsA4→A42(k11)2pQ̂/L every-
where, followed by a global gauge rotationQ̂→2Q̂. The
resulting configuration is that of the ordinary BPS solution
whose A4 interpolate between 0 at origin to
(k112h)2pQ̂/L at asymptotic infinity. The mass is again
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easily estimated in the latter gauge, and

E>8p2m2 ~k112h!. ~18!

The infinite tower of monopoles given by this is a precise
analog of the infinite towers we encountered above. The
minimal case ofk50 is again a fundamental monopole in
that it carries precisely four zero modes. Generalization to
SU(N) proceeds similarly.

This second~or the Nth! fundamental monopole is pos-
sible because thex4 direction is compact@9#. In the gauge
where the ordinary fundamental monopoles arex4 invariant,
this solution must have a Kaluza-Klein momentum along
x4. In reality, however, both@or all N for SU(N)# monopoles
are on equal footing, since one can always perform a large
gauge transformation to get rid of thex4 dependence of the
second ~or the Nth! fundamental monopole, as we saw
above.

We need one more field theory computation to complete
the picture. If the higher mass monopole is indeed a mere
sum of a fundamental monopole andk instantons, and if the
instanton itself is a sum ofN monopoles, the zero-mode
counting must reflect this. In particular, the higher mass
monopoles of fundamental charge must carry a large number
of zero modes which should be also consistent with that of
an instanton.

Following Brown et al. @10#, we write the zero mode
equation as

smDmC50, ~19!

where Dm is the background covariant derivative and
C[s̄mdAm satisfies a reality constraint coming from the
fact that the zero modesdAm are Hermitian matrices. The
232 matrices sm are given by (s j ,i ) while
s̄m5(s j ,2 i ).

Now consider the infinite tower of monopoles of the fun-
damental charge in the SU~2! theory. Performing a Fourier
expansion ofC with respect to the internal periodic coordi-
natex4,

C5 (
mPZ

ei2pmx4/LC~m! , ~20!

the zero-mode equation reduces to a three-dimensional one
due to Weinberg@8#, now with a bare mass:

smDmC~m!5
2pm

L
C~m! , ~21!

whereD j[Dj andD4[D42]4. From Ref.@8#, one can eas-
ily see that this admits four normalizable solutions whenever
the bare mass term is smaller than the scale set by the mono-
pole mass, i.e.,umu,h1k. Sinceh.0 in the broken phase,
2k11 Fourier modes contribute four each, and

8k14 ~22!

is the total number of zero modes. When we consider the
SU(N) monopoles, the same reasoning goes through since
we may obtain the necessary BPS solutions by embedding
the SU~2! solutions. One difference is that there are also

some@SU(N)# zero modes that transform as doublets with
respect to this embedded SU~2!. After this is properly taken
into account, we find

4Nk14 ~23!

as the total number of zero modes.
This zero-mode counting is clearly consistent with the

interpretation that the higher mass monopole is a fundamen-
tal monopole of the same charge combined with a chargeless
collection ofNk fundamental monopoles of four zero modes
each. In turn, the index theorem applied to the Wilson-loop
instantons ofp1(F)5k gives the bulk contribution

23
1

8p2ES13R3
TrF`F54N3

1

8p2ES13R3
trF`F54Nk

~24!

while the boundary contribution is expected to be null for
integralp1(F) as in theR4 case. The first trace Tr is over the
SU(N) adjoint representation, and we used the identity
Tr(•••)52N3tr(•••) for SU(N). Again the zero-mode
counting is consistent with the above picture that theNk
monopoles are in factk SU(N) instantons. The interpretation
of a Wilson-loop instanton asN fundamental monopoles is
thus complete in the purely Yang-Mills theory context.

V. THE EXACT MODULI SPACE
AND A 3D GAUGE THEORY

A simple consequence is that the one-instanton moduli
space is identical to that ofN fundamental monopoles. When
the N monopoles are well separated, we can infer the ap-
proximate form of the metric from their long-range interac-
tion. Following Gibbons and Manton@11#, Lee, Weinberg,
and Yi constructed the general form of such an approximate
metric @12#. Applied to the present case, it gives

G5Mabdxa•dxb1~M 21!ab~dja1Wac•dxc!

3~djb1Wbd•dxd!, ~25!

where the diagonal components of theN3N matrix M are

Maa5m11
1

ux12xNu
1

1

ux12x2u
, a51,

Maa5ma1
1

uxa2xa21u
1

1

uxa2xa11u
, a52, . . . ,N21,

Maa5mN1
1

uxN2xN21u
1

1

uxN2x1u
, a5N, ~26!

with ma being the ~rescaled! mass of theath monopole,
which is located atxa in R3, and the only nonvanishing off-
diagonal components are

M1N5MN152
1

ux12xNu
,

Mab52
1

uxa2xbu ~ ua2bu51!. ~27!
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The vector potentialW is related to the the scalar potential
M by

¹cMab5¹c3Wab , ~28!

which ensures that the metric is hyper-Ka¨hler. The U~1! co-
ordinateja/2 for eacha is periodic in 2p and gives rise to
integer-quantized dyonic excitation of thei th monopole.

If the Nth monopole is absent~or infinitely far away from
the otherN21 monopoles!, such an approximate metric is
known to be exact@12,13#. One compelling physical reason
behind this is the fact that theN21 unbroken U~1! gauge
symmetry prohibits certain short-distance corrections that al-
low an electric charge transfer among theN21 fundamental
monopoles. With the addition of theNth monopole, there are
still only N21 U~1! symmetries from the original gauge
group, so it may appear that a short-distance correction is
inevitable.

However, there is another U~1! symmetry, namely the
translation alongS1, which acts to preserve an electric
charge. One easy way of seeing this is again from the
D-brane picture. An electric charge is carried by open fun-
damental string segments stretching betweenD3-branes.
When allN monopoles carry the same~absolute! quantized
amount of electric charges, the situation is that of a closed
string winding aroundS̃1. Upon aT-dual toS1, this winding
number is translated to the conserved momentum alongS1.
From the low energy perspective, we can also compute the
momentumP4,

P4}E
S13R3

tr F0mFm4 , ~29!

which, for N52 andk51, evaluates to

P4}q1h1q2~12h!5q21h~q12q2!, ~30!

when q1 and q2 are the electric charges~our convention is
such that the total electric gauge charges are zero when
q15q2) on the first and the second fundamental SU~2!
monopoles, respectively. The translation invariance along
x4 thus preserves a linear combination of the two electric
charges.1

The N independent conserved electric charges along with
the hyper-Ka¨hler property of the moduli space implies that
the asymptotic form above must be in fact the exact expres-
sion. One should be able to set up an argument similar to
those in Ref.@13# and show this explicitly. We have obtained
the instanton moduli space of a SU~N! instanton onS13R3

for an arbitrary Wilson loop from the equivalent multimono-
pole configuration.

The same form of metric has recently appeared in a work
by Intriligator and Seiberg@14#, as that of the Coulomb
branch moduli space of a U(1)N gauge theory with four ex-

tended supersymmetry in 211-dimensions.2 The theory has
N species of electrons of charge (1,21) with respect to each
adjacent pairs of U(1) gauge groups, and the two moduli
space coincides if the bare masses of the electrons vanish.

This identity can be understood by adapting the method of
Hanany and Witten@15#. We considerN parallel NS five-
branes separated along a circleS̃1. We will take the rest of
the space-time to be noncompactR811. Also put one three-
brane segment between each adjacent pairs of the five-
branes. The corresponding solitons of codimension three in
the five-brane world-volume theory are precisely the mono-
poles we discussed above, or collectively a SU(N) instanton,
through a series ofS andT dualities as well as some decom-
pactifications.

On the other hand, Hanany and Witten also identified the
effective (211)-dimensional theory on such three-brane
segments, and the rule is that each segment produces a U~1!
vector multiplet and each adjacent pair of segments gives a
hypermultiplet of charge (1,21) with respects to the two
U~1!’s. With theN three-brane segments parallel toS̃1, then,
the gauge theory is U(1)N with N species of electrons link-
ing pairs of U~1!’s successively. The Coulomb phase of this
theory is parametrized by the three-brane configurations,
which are nothing but the instanton-multimonopole configu-
rations from the five-brane perspective. The two moduli
spaces are identical, and the three-dimensional U(1)N cou-
plings ga are determined by the monopole masses:

1

ga
2
;ma . ~31!

Furthermore, our assertion that the metric written above is
exact is reflected in the fact that the Coulomb phase moduli
space metric of the Abelian U(1)N theory receives no non-
perturbative correction.

One particular linear combination of the U~1! gauge fields
is free, and if it is removed, we recover Kronheimer’s theory
of SU(N) type @14,16#. On the other side of the correspon-
dence, this has the effect of factoring out the center-of-mass
motion onS13R3, so the Coulomb phase of the Kronheimer
theory coincides with the relative part of the instanton-multi-
monopole moduli space.

A special case of this result was anticipated by Intriligator
and Seiberg@14#. They noted that the infrared limit of the
Kronheimer theory of type SU(N) is ‘‘mirror’’ to a U ~1!
theory with N electrons. The Higgs phase of the latter had
been interpreted as the moduli space of an instanton located
at a fixed point inR4, and, under the proposed mirror sym-
metry, should be mapped to the Coulomb phase of the infi-
nite coupling Kronheimer theory. Such a mirror mapping
was subsequently justified by various authors@15,17#. In
view of the relationship between the monopole massesma
and the U(1)N couplingsga , this can be seen to be a special
case of our result in the limit of decompactifiedS1 ~dual to
vanishingS̃1).

1P4 is not properly quantized because it is not the Noether mo-
mentum. The latter is found by dropping anh-dependent surface
term that is independently conserved.

2Intriligator and Seiberg actually considered a U(1)N/U(1) gauge
theory due to Kronheimer. But the difference is simply that of
whether or not one factors out a trivial partS13R3 of the moduli
space.
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VI. SYMMETRIC PHASE AND THE CALABI METRIC

When the Wilson loop becomes trivial, the SU(N) gauge
symmetry is restored and the moduli space must reduce to
that of a symmetric-phase instanton onS13R3, also known
as the periodic instanton. In this limit, the firstN21 mono-
poles are massless (m15•••5mN2150). Redefining the
position coordinates byrA5xA2xA11 for A51, . . . ,N21
and R5xN , and the U~1! phases bycA5(a51

A ja and
x5(a51

N ja , the moduli space metric can be rewritten as

G5mN dR21
1

mN
dx21Grel ,

Grel5CABdrA•drB1~C21!AB~dcA1wAC•drC!

3~dcB1wBD•drD!, ~32!

where the (N21)3(N21) scalar potentialsCAB are

CAA5
1

urAu
1

1

u(ArAu
, CAB5

1

u(ArAu ~AÞB!. ~33!

The vector potentials satisfy¹C3wAB5¹CCAB , and the
U~1! coordinatescA are all of period 4p. Note that the met-
ric Grel is devoid of any mass scale. The relative moduli
space described byG rel is thus valid for any size ofS1, and
can be considered the moduli space of a symmetric-phase
SU(N) instanton located at a point in eitherS13R3 or R4. It
is precisely the Coulomb phase moduli space of the infinite
coupling Kronheimer theory of SU(N) type.3

The metricG rel itself is a degenerate limit of the so-called
Calabi metric @18# which is an SU(N)-invariant hyper-
Kähler metric. ForGrel , the SU(N) isometry is clearly re-
lated to the restored SU(N) gauge symmetry. The relative
moduli space in the symmetric phase parametrizes the gauge
orientation of the instanton beside its size: the principal
SU(N) orbit of the Calabi manifold is SU(N)/U(N22), and
the remaining single coordinate must correspond to the in-
stanton size.

The metricGrel possesses an isolated singularity at origin.
For N52, this is particularly easy to see because the Calabi
metric is simply that of the Eguchi-Hanson gravitational in-
stanton whose degenerate limit isR4/Z25R13SU(2)/Z2.
The isolated singularity at origin persists as we break the
SU(N) gauge symmetry by a Wilson loop, because the sin-
gularity occurs at vanishing instanton size where the scale of
the Wilson loop is negligible. Again, this can be seen explic-
itly for N52: the relative moduli space of a pair of distinct
monopoles is always given by Taub-Newman-Unti-
Tamborino~NUT! space locally@19#, and thus by continuity
it has to be aZ2 orbifold of the Taub-NUT space. The mass-
less limit of the Taub-NUT isR4.

This massless limit of the instanton-multimonopole
moduli space provides us with an interesting explanation of a
phenomenon found by Rossi in the late 1970s@20#. Start

with ’t Hooft’s SU~2! multi-instanton solution and line them
up along a fixed axis, sayx4, at equal distances. The result-
ing configuration is periodic alongx4, and effectively a
single symmetric-phase instanton onS13R3. As usual, there
is a single moduli that paramterizes the instanton size, say
r, in addition to the moduli that arise from broken global
symmetries. Then, it was observed that, asr is sent tò , the
periodic instanton solution of ever-increasing size ap-
proached the usual BPS monopole solution inR3 up to a
large gauge transformation.

In our picture, the periodic SU~2! instanton is composed
of a pair of distinct fundamental monopoles. In the limit of
restored SU~2! gauge symmetry, the Wilson loop is trivial
(h50) so that the first fundamental monopole is massless.
But the second is still massive. The situation is reminiscent
of those in Ref.@21#; as the non-Abelian gauge symmetry is
restored, some monopoles become massless and dissolve
into a charge cloud that shields the~non-Abelian! magnetic
charge of the remaining massive monopole. At such a mass-
less limit, some of the collective coordinates acquire new
physical significance, and in particular, what used to be the
intermonopole distance translates into the size of the cloud.

More generally, when we have the SU(N) gauge group
restored,N21 of the monopoles are now massless, and only
one, say theNth, remains massive. There is again a single
collective coordinater that parametrizes the cloud size or
equivalently the instanton size. In terms of the three-
dimensional coordinates above,r can be redefined to satisfy
a simple relation

r2/L5ux12x2u1ux22x3u1•••1uxN212xNu1uxN2x1u,

~34!

which can be deduced from the study of the moduli space of
two distinct massive monopoles in Ref.@21# that arise upon
SU(N12)→SU(N)3U(1)2. The present moduli space re-
sults from the latter by putting the two massive monopoles at
the same point and identifying their electric charges.

Thus the large instanton limit (r→`) is realized if at
least one of the to-be-massless monopoles is removed to the
asymptotic infinity. In fact, by a SU(N) gauge rotation, this
is equivalent to lettingxa5` for a51, . . . ,N21 simulta-
neously. Left behind is a single massive monopole atxN ,
which certainly can be gauge transformed to a canonical BPS
monopole solution.

The smooth interpolation between the monopole picture
and the instanton picture also tells us something about the
multimonopole configurations in the broken phase. Far away
from each other, the individual monopole has a clear identity
as magnetic solitons onR3. As their separations grow
smaller, however, the size of the internalS1 becomes appre-
ciable, and they cannot retain the character of solitons on
R3. Rather, as the length scale progressively decreases, the
compact nature ofS1 will no longer be important and they
must clump together at a point inS13R3, and look a lot like
a very smallR4 instanton. This is a radical departure from
what one would expect from ordinary three-dimensional
magnetic solitons, and must be responsible for the isolated
singularity of the relative moduli space at origin.

3The coordinates Intriligator and Seiberg used in Ref.@14# are
more like thexa’s and theja’s above than the proper relative co-
ordinaterA’s and cA’s, so one must be careful to express one of
them, say fora5N, as functions of those fora51, . . . ,N21.
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VII. CONCLUSION

We have studied field theory aspects of monopoles and
instantons onD-branes in a compactified spacetime, and
found a consistent picture emerging from a purely field the-
oretical perspective. For the gauge group SU(N), we also
found the exact moduli space of a single Wilson-loop instan-
ton by interpreting it as a collection ofN distinct fundamen-
tal monopoles. The relative part of this moduli space is sub-
sequently identified with the Coulomb phase moduli space of
the three-dimensional Kronheimer theory of type SU(N). In
the limit where SU(N) is restored, or in the infrared limit of
the Kronheimer theory, the relative moduli space turns out to
be the degenerate limit of the Calabi manifold.

There are many directions to explore further. First of all,
one may consider theS duality of the type-IIB theory, and
look for threshold bound states. Since our instanton moduli
space has the maximal triholomorphic Abelian symmetry,
we suspect that the generalization of Gibbons construction
@22# generates threshold bound states.

Second, there is a generalized Nahm formalism@23# in
constructing self-dual solutions onS13R3 such as our

monopoles and instantons@24#. The basic aspect has been
explored before and it should be interesting to understand it
further in the context ofD-brane physics.

Third, we may consider the Yang-Mills theory on com-
pactD4-branes, such as on a four-torus. An instanton should
persist but the concept of a magnetic monopole is no longer
available. One outstanding question is how to construct the
moduli space in such cases. It would be most interesting to
see if a simple derivation such as ours is also possible.

Note added. After the appearance of this paper, M. Mur-
ray drew our attention to Ref.@25# which also discusses re-
lationships between monopoles and instantons.
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