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In this paper we consider type I string theory compactified on aZ7 orbifold. The model hasN51 super-
symmetry, a U~4!^ U(4)^ U(4)^ SO(8) gauge group, and chiral matter. There are onlyD9-branes~for which
we discuss tadpole cancellation conditions! in this model corresponding to a perturbative heterotic description
in a certain region of the moduli space. We construct the heterotic dual, match the perturbative type I and
heterotic tree-level massless spectra via giving certain scalars appropriate vacuum expectation values, VEVs,
and point out the crucial role of the perturbative superpotential~on the heterotic side! for this matching. The
relevant couplings in this superpotential turn out to be nonrenormalizable~unlike theZ-orbifold case discussed
by Kakushadze, where Yukawa couplings sufficed for duality matching!. We also discuss the role of the
anomalous U~1! gauge symmetry present in both type I and heterotic models. In the perturbative regime we
match the~tree-level! moduli spaces of these models. We point out possible generalizations of theZ3 andZ7

cases to includeD5-branes which would help in understanding nonperturbative five-brane dynamics on the
heterotic side.@S0556-2821~97!03618-7#

PACS number~s!: 11.25.Mj

I. INTRODUCTION

In recent years nonperturbative string dynamics has been
coming under greater control. String dualities have been
playing an important role in this process, as they allow us to
address nonperturbative issues in a given string theory by
studying them perturbatively in a dual theory. Supersymme-
try has been a key ingredient of string duality, as the larger
the number of unbroken space-time supersymmetries, the
better handle we have over nonperturbative string dynamics.
Thus, much progress has been made in understandingN54
and N52 string dualities, and now the attention is shifting
toward graspingN51 cases.

N51 type I-heterotic duality in four dimensions is a
promising arena for testing the validity of the idea ofN51
string dualities, as well as for developing tools that might
help understand nonperturbative effects in, say, heterotic
string theory~e.g., dynamics of five-branes responsible for
enhanced gauge symmetries!. The tree-level relation between
type I and heterotic dilatons inD space-time dimensions@2#
~which follows from the conjectured type I-heterotic duality
in ten dimensions@3#! reads

fH5
62D

4
f I2

D22

16
ln@det~gI !#. ~1!

HeregI is the internal metric of the type I compactification
space, whereasf I andfH are the type I and heterotic dila-
tons, respectively. One implication of the above equation is
that in four dimensions there always exists a region in the

moduli space where both type I and heterotic string theories
are weekly coupled, and there we can rely on perturbation
theory. If we understand the map between perturbative ef-
fects in the two descriptions, we may be able to learn about
nonperturbative effects in, say, heterotic string via casting
them into perturbative effects in type I theory~e.g., nonper-
turbative dynamics of heterotic five-branes can presumably
be understood by studying perturbative dynamics of type I
D5-branes!.

Recently one of us studied an example of a four-
dimensionalN51 type I-heterotic dual pair@1#. The type I
model, as well as the candidate heterotic dual, considered in
Ref. @1# were first constructed in Ref.@2#. The type I model
is a compactification on theZ orbifold ~and hasD9-branes
only!, whereas the candidate heterotic dual is aZ-orbifold
compactification with a nonstandard embedding of the gauge
connection. At the orbifold points the tree-level massless
spectra of the two models differ as there are extra twisted
matter fields in the heterotic model that do not have~pertur-
bative! type I counterparts. As discussed in Ref@1#, there is a
tree-level superpotential in the heterotic model precisely
such that the extra states become heavy after appropriate use
of the Higgs mechanism. The role of the anomalous U~1!
~present in both type I and heterotic models! was also dis-
cussed in Ref.@1#.

The case studied in Ref.@1# is remarkable in the sense that
the type I model has onlyD9-branes and the dynamics is
completely perturbative from the heterotic point of view,
hence there is not much difficulty in establishing~tree-level!
duality. In the context of our previous discussion, it would be
important to see if there is any pattern in such perturbative
N51 type I-heterotic duality in four dimensions. If so, this
would help separate perturbative effects from nonperturba-
tive ones in the cases withD5-branes~which are more in-
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volved from the heterotic point of view, and these are the
cases we would ultimately like to understand!. There turns
out to be one other case of type IZN orbifold compactifica-
tion with N51 supersymmetry and noD5-branes. This is
the compactification on theZ7 orbifold that we study in this
paper.

Before discussing theZ7 case, we list some orbifolds of
type I strings withN51 supersymmetry in four dimensions
~4D! ~there are two inequivalentZ6 orbifolds in 4D!:
D9-branes only:~i! Z3, ~ii ! Z7; D9-branes andD5-branes:
~iii ! Z6, ~iv! Z68 , ~v! Z2^ Z2, ~vi! Z4. So far, only theZ3 @2#
andZ2^ Z2 @4# cases have been constructed, and only theZ3
case has been studied from the type I-heterotic duality point
of view. In this paper we discuss theZ7 case. The model has
N51 supersymmetry, U~4!^ U(4)^ U(4)^ SO(8) gauge
group, and chiral matter. There is anomalous U~1! in this
model. We also construct the heterotic dual that has the same
gauge symmetry and matter content as the type I model ex-
cept for extra twisted matter fields. This is just as in theZ3
model, albeit there are some subtle differences in the way
these extra matter fields are charged under the gauge group.
Another difference between theZ3 andZ7 cases is that the
orbifold blow-up modes in the former case are charged under
the anomalous U~1! and contribute to cancelling theD-term,
whereas in the latter case the orbifold blow-up modes are
neutral under the anomalous U~1!. This results in different
pictures for embedding of the type I moduli space into that of
heterotic string in theZ3 andZ7 cases. Just as in theZ3 case,
in the Z7 case there is a tree-level superpotential that after
appropriate use of the Higgs mechanism gives masses to all
the extra twisted matter in the heterotic model, and the mass-
less spectra of the type I and heterotic strings are matched.
There is also a difference, however: in theZ3 case renormal-
izable ~Yukawa! couplings are sufficient for duality match-
ing, whereas in theZ7 case the corresponding couplings are
nonrenormalizable. ~In deducing the heterotic superpotential
the tools developed in Ref.@5# prove to be very useful; see
Appendix B and Appendix C for details.! With these subtle
differences, the type I-heterotic duality in the two cases (Z3
and Z7) works much in the same way, and there is, hence-
forth, a clear pattern we see from studying these examples.
~Note that perturbative superpotentials also seem to be nec-
essary for matching the massless spectra ofF theory and
heterotic dual pairs@6#.!

The paper is organized as follows. In Sec. II we discuss
the Z7 orbifold type I model. In Sec. III we construct the
heterotic dual. In Sec. IV we give perturbative superpoten-
tials for these models. In Sec. V we discuss the moduli
space, and explain the matching between the type I and het-
erotic moduli spaces, as well as their tree-level spectra. In
Sec. VI we give conclusions and remarks. Some of the de-
tails regarding the tadpole cancellation in type I theory, and
also the heterotic superpotential are relegated to the Appen-
dixes.

II. TYPE I MODEL

In this section we discuss the construction of the type I
model. Let us start from the type IIB string model compac-
tified on the six-torus which has aZ7 rotational symmetry.
@A more detailed discussion of this six-torus will be given in

the next section where we go through the construction of the
~candidate! heterotic dual of the model considered in this
section.# This model hasN58 supersymmetry. Let us now
consider the symmetricZ7 orbifold model generated by the
twist

T75~u,u2,u3uuu,u2,u3!. ~2!

Here u is a 2p/7 rotation of a complex boson~we have
complexified the six real bosons into three complex bosons!.
The double vertical line separates the right and left movers
of the string. The resulting model hasN52 space-time su-
persymmetry. This model has the following moduli. There
are 8 Neveu-Schwarz–Neveu-Schwarz~NS-NS! fields
f,Bmn ,Bi ī ,gi ī , and 8 Ramond-Ramond~R-R! fields
f8,Bmn8 ,Bi ī

8 ,Cmn i ī
8 .

Let us now consider the orientifold projection of this
model. The closed string sector~which is simply the sub-
space of the Hilbert space of the original type IIB spectrum
invariant under the orientifold projectionV) contains the
N51 supergravity multiplet, and 3 untwisted~the NS-NS
fields that survive theV projection aregi ī , whereas the R-R
fields that are kept areBi ī

8 ; note that the NS-NS fieldf and
the R-R fieldBmn8 also survive and enter in the dilaton super-
multiplet! and 21 twisted chiral supermultiplets~which are
neutral under the gauge group of the model!. For consistency
~tadpole cancellation; see Appendix A for details! we must
include the open string sector. Note that in this model we
only haveD9-branes but noD5-branes since the orbifold
group does not contain an order two element.~If the orbifold
group contains an order two elementR, then the sector
RV would contain D5-branes!. Thus, we only have 99
open strings. The gauge group consistent with tadpole
cancellation then is U~4!^ U(4)^ U(4)^ SO(8). The
99 open strings also give rise to the chiral matter
fields (4,1,1,8v)(11,0,0)L , (4,4,1,1)(21,21,0)L ,
(4,4,1,1)(21,11,0)L , and (6,1,1,1)(12,0,0)L . In addi-
tion, there are fields that can be obtained by permuting
the three U~4!’s @this permutation must be accompanied
by changing the irreducible representation~irrep! of the
third U~4! to its complex conjugate#. Here the first four en-
tries in bold font indicate the irreps of the
SU~4!^SU~4!^SU~4!^SO~8! subgroup, whereas the
U~1! 3 charges are given in the parenthesis. The subscriptL
indicates the space-time helicity of the corresponding fermi-
onic fields. The massless spectrum of this model is summa-
rized in Table I.

Note that the U~1! 3 gauge symmetry is anomalous. We
can form a linear combination of these U~1!’s such that only
one of them is anomalous@this combination is given by
Q11Q22Q3, where Q1,2,3 are the first, second, and third
U~1! charges, respectively#. The total U~1! anomaly is136.
By the generalized Green-Schwarz mechanism@7,8# some of
the fields charged under U~1! will acquire vacuum expecta-
tion values~VEV’s! to cancel the Fayet-IlliopoulosD-term.

III. HETEROTIC STRING MODEL

In this section we give the construction of the heterotic
string model that is~candidate! dual to the type I model
considered in the previous section. Let us start from the
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Narain model withN54 space-time supersymmetry in four
dimensions. Let the momenta of the internal~6 right-moving
and 22 left-moving! world-sheet bosons span the~even self-
dual! Narain lattice G6,225G6,6

^ G16. Here G16 is the
spin~32!/Z2 lattice, whereas the latticeG6,6 is spanned by the
momenta (pRuupL) with

pL,R5
1

2
mi ẽ

i6niei . ~3!

Heremi andni are integers,ei•ej5gi j is the constant back-
ground metric of the compactification manifold~six-torus!,
and ei• ẽ j5d i

j . Note that we could have included the con-
stant antisymmetric background tensor fieldBi j , but for now
we will set it equal to zero for the reasons that will become
clear in the following~see Appendix A for details!.

This Narain model has the gauge group SO~32! ^ U~1! 6.
The first factor SO~32! comes from theG16 lattice ~the 480
roots of length squared 2!, and 16 oscillator excitations of the
corresponding world-sheet bosons@the latter being in the
Cartan subalgebra of SO~32!#. The factor U~1! 6 comes from
the oscillator excitations of the six left-moving world-sheet
bosons corresponding toG6,6. Note that there are also six
additional vector bosons coming from the oscillator excita-
tions of the right-moving world-sheet bosons corresponding
to G6,6. These vector bosons are part of theN54 supergrav-
ity multiplet.

Next consider theZ7 orbifold model ~with nonstandard
embedding of the gauge connection! obtained via twisting
the above Narain model by the followingZ7 twist:

T75@u,u2,u3uuu,u2,u3u~ 1
7 !4~ 2

7 !4~ 3
7 !404#. ~4!

Here u is a 2p/7 rotation of a complex boson~we have
complexified the original six real bosons into three complex
ones!. Thus, the first three entries correspond to theZ7 twists

of the three right-moving complex bosons~coming from the
six-torus!. The double vertical line separates the right and
left movers. The first three left-moving entries correspond to
theZ7 twists of the three left-moving complex bosons~com-
ing from the six-torus!. The single vertical line separates the
latter from the sixteen real bosons corresponding to theG16

lattice. The latter are written in the SO~32! basis. Thus, for
example, (11,21,014) is a root of SO~32! with length
squared 2. There are 480 roots similar to this in theG16

lattice, and they are descendents of the identity irrep of
SO~32!. The latticeG16 also contains one of the spinor irreps
as well. Thus, we will choose this spinor irrep to contain the

momentum states of the form (6 1
2 , . . . ,6 1

2 ) with even
number of plus signs.

Note that for the above twist to be a symmetry of the
model it is necessary~and sufficient! that the twist acting on
the G6,6 lattice is a rotation in this lattice. This requirement
constrains the possible values of the metric tensorgi j .

Now we are ready to discuss the orbifold model generated
by the above twistT7. This model hasN51 space-time su-
persymmetry, and gauge group U~4!^ U(4)^ U(4)^ SO(8),
the same as the type I model discussed in the previous sec-
tion. The untwisted sector gives rise to theN51 supergrav-
ity multiplet coupled to theN51 Yang-Mills gauge multip-
let in the adjoint of U~4!^ U(4)^ U(4)^ SO(8). Thematter
fields in the untwisted sector are the same as those
in the open string sector of the type I model. There are also
chiral multiplets neutral under the gauge group:
3(1,1,1,1)(0,0,0)L . Note that these contain six scalar fields
that are the leftover geometric moduli whose VEV’s param-
etrize the moduli space@SU(1,1,Z)\SU(1,1)/U(1)]3. @This
is the subspace of the original Narain moduli space
SO(6,6,Z)\SO(6,6)/SO(6)̂ SO(6) that is invariant under
the twist.# Actually, the ~perturbative! moduli space of this
model is larger, and we will return to this point later on.

Next, consider the twisted sector. In the twisted sector we
have the chiral supermultiplets 7(1,1,1,1)(4/7,8/7,212/7)L
and 7(1,1,6,1)(4/7,8/7,2/7)L together with fields obtained
by permuting the three U~4!’s @this permutation must be ac-
companied by changing the irrep of the third U~4! to its
complex conjugate#. Here we note that the factor 7 comes
from the number of fixed points of theZ7 orbifold we are
considering.

We summarize the massless spectrum of this heterotic
string model in Table II. Note that the U~1! 3 gauge symme-
try is anomalous. Again, only one linear combination of the
three U~1!’s is anomalous. Thus, the contributions of the
untwisted and twisted sectors into the trace anomaly are136
and 73(136), respectively, so that the total trace anomaly
is 1288. By the generalized Green-Schwarz mechanism@7#
some of the fields charged under U~1! will acquire VEV’s to
cancel the Fayet-IlliopoulosD-term.

IV. SUPERPOTENTIAL

In this section we discuss the perturbative superpotentials
for the type I and heterotic string models discussed in the
previous sections. Studying the couplings and flat directions

TABLE I. The massless spectrum of the type I model with
N51 space-time supersymmetry and gauge group
SU(4)^ SU(4)^ SU(4)^ SO(8)̂ U(1)3 discussed in Sec. II. The
gravity, dilaton and gauge supermultiplets are not shown.

Sector Field
SU(4)^ SU(4)

^ SU(4)^ SO(8)̂ U(1)3 Comments

Closed
Untwisted fa 3(1,1,1,1)(0,0,0)L a51,2,3
Closed Sa

a 21(1,1,1,1)(0,0,0)L a51 to 3
Twisted a51 to 7

P1 (4,1,1,8v)(11,0,0)L
P2 (1,4,1,8v)(0,11,0)L
P3 (1,1,4,8v)(0,0,21)L

Q1 (1,4,4,1)(0,21,11)L

Q2 (4,1,4,1)(21,0,11)L

Open Q3 (4,4,1,1)(21,21,0)L
R1 (4,4,1,1)(21,11,0)L
R2 (1,4,4,1)(0,21,21)L

R3 (4,1,4,1)(11,0,11)L

F1 (1,1,6,1)(0,0,22)L

F2 (6,1,1,1)(12,0,0)L
F3 (1,6,1,1)(0,12,0)L
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in these superpotentials will enable us to make the type I-
heterotic duality map more precise.

Let us start from the type I model of Sec. II. We refer the
reader to Table I for the massless spectum as well as our
notation. Note that perturbatively the 24 chiral singlets com-
ing from the closed string sector are flat. This can be explic-
itly seen by computing the scattering amplitudes for these
modes within the framework of the conformal field theory of
orbifolds @9#. On the other hand, the matter fields coming
from the 99 open string sector have three~and, of course,
some higher! point couplings. The lowest order superpoten-
tial can be written as~the calculation of the type I superpo-
tential is completely analogous to that of the heterotic one in
the untwisted sector!

WI5l1eabc Tr~PaPbQc!1l2 Tr~Q1R2F31Q2R3F1

1Q3R1F2!1l3 Tr~R1R2R3!1•••. ~5!

Due to the presence of the anomalous U~1!, some of the
fields that are charged under this U~1! ~namely,Qa) must
acquire VEV’s to cancel the Fayet-IlliopoulosD-term. This
results in breakdown of gauge symmetry, yet the space-time
supersymmetry is preserved.

Now let us turn to the heterotic string model. The super-
potential of this model is more involved than that of the type
I model as there are nontrivial couplings between the un-
twisted and the twisted sector fields. We refer the reader to

Appendix B and Appendix C for the details of calculating
these couplings. The superpotential for the heterotic string
model thus reads~here we are only interested in the general
structure of thenonvanishingterms!:

WH5l18eabc Tr~PaPbQc!1l28 Tr~Q1R2F31Q2R3F1

1Q3R1F2!1l38 Tr~R1R2R3!

1LabgTr@~Q1!2Sa
3Tb

1Tg
21~Q3!2Sa

1Tb
2Tg

3

1~Q2!2Sa
2Tb

3Tg
1#1•••. ~6!

~The notation for the fields are given in Table II.! The cou-
plings Labg are nonvanishing if the orbifoldspace group
selection rules are satisifed. Here we note that the couplings
Labg for a, b, g not all identical are exponentially sup-
pressed in the limit of large volume compactification,
whereas the couplingsLaaa are not suppressed. This is be-
cause in the former case, the corresponding fields are coming
from different fixed points so that upon taking them apart~in
the limit of large volume of the orbifold! their coupling be-
comes weaker and weaker.

Following the discussion in Appendix C we observe that
upon the fieldsQa @that are responsible for breaking of the
anomalous U~1!# andSa

a ~that are the 21 blow-up modes of
the Z7 orbifold! acquiring VEV, the statesTa

a generically
become heavy and decouple from the massless spectrum.

TABLE II. The massless spectrum of the heterotic model withN51 space-time supersymmetry and
gauge group SU(4)̂ SU(4)^ SU(4)^ SO(8)̂ U(1)3 discussed in Sec. III. TheH charges in both the21
picture and the21/2 picture are also given. The gravity, dilaton, and gauge supermultiplets are not shown.‘

Sector Field SU(4)3^ SO(8)̂ U(1)3 (H1 ,H2 ,H3)21 (H1 ,H2 ,H3)21/2

f1 (1,1,1,1)(0,0,0)L (21,0,0) (2
1
2 ,1 1

2 ,2 1
2 )

f2 (1,1,1,1)(0,0,0)L (0,21,0) (1
1
2 ,2 1

2 ,2 1
2 )

f3 (1,1,1,1)(0,0,0)L (0,0,11) (1
1
2 ,1 1

2 ,1 1
2 )

P1 (4,1,1,8v)(11,0,0)L (21,0,0) (2
1
2 ,1 1

2 ,2 1
2 )

P2 (1,4,1,8v)(0,11,0)L (0,21,0) (1
1
2 ,2 1

2 ,2 1
2 )

P3 (1,1,4,8v)(0,0,21)L (0,0,11) (1
1
2 ,1 1

2 ,1 1
2 )

Q1 (1,4,4,1)(0,21,11)L (21,0,0) (2 ,1 1
2 ,2 1

2 )

Untwisted Q2 (4,1,4,1)(21,0,11)L (0,21,0) (1
1
2 ,2 1

2 ,2 1
2 )

Q3 (4,4,1,1)(21,21,0)L (0,0,11) (1
1
2 ,1 1

2 ,1 1
2 )

R1 (4,4,1,1)(21,11,0)L (21,0,0) (2
1
2 ,1 1

2 ,2 1
2 )

R2 (1,4,4,1)(0,21,21)L (0,21,0) (1
1
2 ,2 1

2 ,2 1
2 )

R3 (4,1,4,1)(11,0,11)L (0,0,11) (1
1
2 ,1 1

2 ,1 1
2 )

F1 (1,1,6,1)(0,0,22)L (21,0,0) (2
1
2 ,1 1

2 ,2 1
2 )

F2 (6,1,1,1)(12,0,0)L (0,21,0) (1
1
2 ,2 1

2 ,2 1
2 )

F3 (1,6,1,1)(0,12,0)L (0,0,11) (1
1
2 ,1 1

2 ,1 1
2 )

Twisted Sa
1 7(1,1,1,1)(4/7,8/7,12/7)L (2

1
7 ,2 2

7 ,1 4
7 ) (1

5
14 ,1 3

14 ,1 1
14)

u, u6 Ta
1 7(1,1,6,1)(4/7,8/7,22/7)L (2

1
7 ,2 2

7 ,1 4
7 ) (1

5
14 ,1 3

14 ,1 1
14)

Twisted Sa
2 7(1,1,1,1)(8/7,212/7,24/7)L (2

2
7 ,2 4

7 ,1 1
7 ) (1

3
14 ,2 1

142
5

14)

u2, u5 Ta
2 7(1,6,1,1)(8/7,2/7,24/7)L (2

2
7 ,2 4

7 ,1 1
7 ) (1

3
14 ,2 1

14 ,2 5
14)

Twisted Sa
3 7(1,1,1,1)(212/7,4/7,28/7)L (2

4
7 ,2 1

7 ,1 2
7 ) (2

1
14 ,1 5

14 ,2 3
14)

u3, u4 Ta
3 7(6,1,1,1)(2/7,4/7,28/7)L (2

4
7 ,2 1

7 ,1 2
7 ) (2

1
14,1 5

14 ,2 3
14)
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Thus, after blowing up the orbifold singularities on the het-
erotic side combined with some of the untwisted charged
matter fields acquiring VEV’s to cancel theD-term, we can
match the massless spectrum to that of the type I model
@where the charged matter must acquire VEV’s to cancel the
effect of the anomalous U~1!#. Note the crucial role of the
perturbative superpotential in this matching. It is precisely
such that all the extra fields on the heterotic side can be made
massive. Here we note that the blow-up modesSa

a are neutral
under the anomalous U~1!, and thus do not play an important
role in cancelling theD-term. „This is to be contrasted with
the Z-orbifold model discussed in Ref.@1#, where the
blow-up modes of theZ-orbifold carried anomalous U~1!
charge.…

V. MODULI SPACE

We now turn to the discussion of the moduli spaces
for the type I and heterotic models considered in the prev-
ious sections. Let us start with the heterotic model. The
~perturbative! moduli space of the corresponding Narain
model before orbifolding is SO~6,22,Z!\SO~6,22!/
SO~6!^SO~22!. After orbifolding we have two types of
moduli: those coming from the untwisted sector, and those
coming from the twisted sector. The untwisted sector moduli
parametrize the coset@SU~1,3,Z)\SU(1,3)/SU(3)̂ U(1)]3.
The subspace@SU~1,1,Z)\SU(1,1)/U(1)]3 of this moduli
space is parametrized by six neutral singletsfa that corre-
spond to the leftover geometric moduli~coming from the
constant metricgi j and antisymmetric tensorBi j fields!. The
other 12 moduli correspond to the flat directions in the su-
perpotential for the fieldsPa , Qa , Ra , andFa . ~These are
the leftover moduli coming from the 6316 Wilson linesAi

I ,
I 51, . . .,16, in the original Narain model.!

Next, we turn to the twisted moduli of the heterotic string
model. In the twisted sectors, we have the chiral superfields
Sa

a and Ta
a . There is no superpotential for the singletsSa

a

which are the 21 blow-up modes of theZ7 orbifold. Unlike
theZ3 case@1#, the blow-up modes are not charged under the
anomalous U~1! and so all of them survive the Higgs pro-
cess. Notice that both the heterotic and the type I model have
anomalous U~1! with positive trace anomaly. To cancel the
D-term, one needs to give VEV’s to the corresponding nega-
tively charged fields, namely,Qa . At a generic point on the
heterotic side~i.e., upon giving appropriate VEV’s to the
untwisted matter fieldsQa and the twisted moduliSa

a), the
fields Ta

a become massive~according to the couplings in the
superpotential!. Thus, the matching is complete after giving
appropriate VEV’s to both untwisted and twisted fields on
the heterotic side, as well as giving appropriate VEV’s to
open string sector matter fields, and 21 twisted closed string
moduli. Upon breaking the anomalous U~1!, the dilaton may
mix with other gauge singlets.A priori, the mixing is differ-
ent on the type I and the heterotic side. To make the match-
ing precise, one generically has to appropriately tune the
dilaton plusfa geometric moduli on both sides.

Let us analyze more carefully how this matching can
be achieved. Upon giving VEV toQ1, the second and the
third U~4! are broken to the diagonal U~4!. Some of
the fields become heavy, whereasQ1 is eaten by the super-

Higgs mechanism. The gauge group is further broken to
SU(4)diagonal̂ SO(8)̂ U(1) once Q2 acquires a nonzero
VEV. To break the anomalous U~1!, generically, the field
Q35(6,1)(22)% (10,1)(22) @in the representations of
SU(4)diagonal̂ SO(8)̂ U(1)] acquires a VEV. The final
gauge group is Sp~4! or SO~4! depending on whether
(6,1)(22) or (10,1)(22) acquires a VEV.

Thus, the moduli spaces~at generic points! of both type I
and heterotic models are the same~at the least at tree level!.
They are described by the untwisted moduli of the heter-
otic string, or equivalently, the moduli coming from the
untwisted closed string sector and the open string sector
of the type I model „these parametrize the coset
@SU~1,3,Z!\SU~1,3!/SU~3!^U~1!] 3

…, plus the 2321 twisted
moduli in the heterotic string model, or equivalently, the
moduli coming from the twisted closed string sector of the
type I model. The~perturbative! moduli space~of the het-
erotic model! is schematically depicted in Fig. 1.

It is worth noting the role of anomalous U~1! in N51
type I-heterotic duality. To cancel the Fayet-IlliopoulosD-
term, fields that are charged under the anomalous U~1! will
generically acquire VEV’s. As a result, the extra twisted
matter fields in the heterotic model are eliminated via the
Higgs mechanism and the matching of the massless spectra
of the type I and heterotic models is precise. The appearance
of massless twisted matter fieldsTa

a on the heterotic side is a
perturbative effect. On the type I side this effect is nonper-
turbative, and reflects the fact that from the type I point of
view there is a~nonperturbative! singularity in the moduli
space~or, more precisely, a singular subspace of the full
moduli space!. Notice that the fieldsTa

a in the heterotic
model get heavy vianonrenormalizableterms in thepertur-
bative superpotential. This indicates the importance of per-
turbative superpotential inN51 type I-heterotic duality.

VI. CONCLUSIONS

In this paper we discussed a chiralN51 type I model in
four dimensions obtained as a compactification on theZ7
orbifold. We studied the type I-heterotic duality in this ex-
ample, and have concluded that~up to model-dependent dif-
ferences! the duality in the presence ofD9-branes only has a

FIG. 1. A schematic picture of the~perturbative! moduli space
M ~of the heterotic model!. Region A is the subspace correspond-
ing to the type I model. Region B~that complements A inM) is the
subspace where some or all of theSa

a VEV’s are zero and some or
all of the Ta

a fields are massless.
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clear pattern to it. Note thatZ3 ~studied in Ref.@1#! andZ7
~studied in this paper! cases exhaust 4DZN orbifolds of type
I strings withN51 supersymmetry and noD5-branes. The
cases withD5-branes~constructed via orbifolds of even or-
der! are of great interest as they may shed light onnonper-
turbative dynamics of heterotic five-branes in 4DN51
vacua. Having learned the perturbative part of type
I-heterotic duality, now we can march into the more intricate
maze ofD9- andD5-branes and their~non!perturbative het-
erotic duals.
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APPENDIX A: TADPOLES FOR ORBIFOLD
SINGULARITIES

In this appendix we discuss the tadpole cancellation con-
straints for orbifold compactifications of type I strings. We
confine our attention toZN orbifolds without D5-branes.
This means thatN is odd, and without loss of generality we
can takeN to be a prime number~as all theZN orbifold cases
with N51 supersymmetry and noD5-branes in six and four
dimensions are restricted to primeN). The constraints that
we present here can be easily generalized to other cases~in-
cluding those withD5-branes!, which will be discussed else-
where.

There are two kinds of constraints we need to consider.
The first one comes from the cancellation of the untwisted
tadpoles for theD9-branes. This constraint is the same in all
dimensions and leads to the statement that there are 16
D9-branesnot counting the orientifold images.~This last
statement is only correct if the NS-NS antisymmetric back-
groundBi j is set equal to zero; see below.! The other con-
straint comes from the cancellation of the twisted tadpoles
for theD9-branes. The twisted tadpoles have been computed
in six dimensions in Ref.@10# ~for the Z2 orbifold limit of
K3) and Ref.@11# ~for all the other orbifold limits ofK3),
and in four dimensions for theZ2^ Z2 orbifold @4# and the
Z3 orbifold @2#. For the case we are considering here~odd
prime N), there is a simple formula which expresses the
twisted tadpole cancellation condition that we are now going
to discuss.

Let us be general here and consider compactification on
T2d/ZN with the twist given by

TN5~ t1 ,t2 , . . . ,tduut1 ,t2 , . . . ,td!. ~A1!

Here t i are fractional numbers taking values in
$0,1/N,2/N, . . . ,(N21)/N%. A given t i corresponds to a
twist of the i th complex boson by a 2pt i rotation.~We have
complexified the 2d real bosons intod complex bosons!.

The double vertical line separates the right and left movers
of the string. Because we are considering symmetric orbi-
fold, the right- and left-moving twists are the same. Also
note that the consistency of the orbifold requires that the
expression

)
i 51

d

4sin2~pt i !, ~A2!

where the factors witht i50 are not included in the product,
be an integer. In fact the latter is nothing but the number of
fixed points~tori! in the TN twisted sector.

The orbifold action on Chan-Paton factors is described by
the unitary matricesg that act on the string end points. In our
case g ~we are suppressing all the indices as they are
straightforward to reconstruct! is a 16316 matrix ~note that
it is not a 32332 matrix because we have chosennot to
count the orientifold images of theD9-branes!. We can di-
agonalize this matrix. Then, the most general form of this
matrix is given by

g5 ^

k50

N21

vkImk
. ~A3!

Herev[exp(2pi/N) andImk
is themk3mk unit matrix. Note

that (k50
N21mk516.

The twisted tadpole cancellation condition in our notation
reads

Tr~g!516p, p[)
i 51

d

~21!Nticos~pt i !. ~A4!

Note that for this equation to have a solution, we must put
m15m25•••5mN21[m. @Also note that m0516
2m(N21)[n.# Then Tr(g)5162Nm ~note that
(k51

N21vk521).
The gauge group of the model can be easily seen from the

above tadpole equation. It is given by U(2m)(N21)/2

^SO(2n), where

m516~12p!/N, n516@11~N21!p#/N. ~A5!

Note that if none of thet i are zero, thenupu522d.
Let us illustrate these equations with a few examples.
6D Z3 orbifold ~i.e., Z3 orbifold limit of K3). The twist

reads

T35~1/3,1/3uu1/3,1/3!. ~A6!

Note thatp511/4 in this case,m54 andn58, so that the
gauge group is U(8)̂ SO(16). This is the model considered
in Ref. @11#.

4D Z3 orbifold ~i.e., Z-orbifold limit of a Calabi-Yau
threefold!. The twist read:

T35~1/3,1/3,1/3uu1/3,1/3,1/3!. ~A7!

Note thatp521/8 in this case,m56 andn54, so that the
gauge group is U(12)̂ SO(8).This is the model considered
in Ref. @2#.
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4D Z7 orbifold ~i.e., Z7 orbifold limit of a Calabi-Yau
threefold!. The twist reads

T75~1/7,2/7,3/7uu1/7,2/7,3/7!. ~A8!

Note thatp511/8 in this case,m52 andn54, so that the
gauge group is U(4)̂ U(4)^ U(4)^ SO(8). This is the
model considered in this paper.

Here we also give two nonsupersymmetric models~that
have never been discussed previously to the best of our
knowledge!.

6D Z5 orbifold ~i.e., compactification onT4/Z5). The
twist reads

T55~1/5,2/5uu1/5,2/5!. ~A9!

Note thatp521/4 in this case,m54 andn50, so that the
gauge group is U(8)̂ U(8).

8D Z3 orbifold ~i.e., compactification onT2/Z3). The
twist reads

T35~1/3uu1/3!. ~A10!

Note thatp521/2 in this case,m58 andn50, so that the
gauge group is U~16!.

Finally, we would like to consider the cases with nonzero
NS-NS antisymmetric backgroundBi j . Although there are
no massless scalars corresponding to these in type I theory
~recall that thereBi j fields are projected out of the spectrum
after orientifolding!, i.e., these moduli cannot be varied con-
tinuously, they can have certain quantized values~because of
this they are not moduli in the conventional sense of this
word!. The quantization is due to the fact that to have a
consistent orientifold the corresponding type IIB spectrum
must be left-right symmetric. At generic values ofBi j this
symmetry is destroyed. There are, however, certain discrete
Bi j backgrounds compatible with the orientifold projection
@12#. The effect of nonzeroBi j background is that the rank of
the gauge group coming from the SO~32! ~i.e., Chan-Paton!
factor is reduced, depending on the rankr ~which is always
even! of the matrix Bi j . That is, the number of the
D9-branes required by the tadpole cancellation condition is
no longer 16 but 16/2r /2. All of the above formulas then get
modified in the presence of rankr Bi j in an obvious way via
replacing the factor 16 everywhere by 16/2r /2.

As mentioned earlier, it is not difficult to generalize the
tadpole cancellation condition discussed in this appendix to
the cases withD5-branes. The work on these cases is in
progress and will be reported elsewhere.~It would also be
interesting to generalize the above conditions along the lines
of Ref. @13#.!

APPENDIX B: BOSONIC SUPERCURRENT
AND SCATTERING

In this appendix, we review the bosonic supercurrent ap-
proach in calculating scattering amplitudes of orbifold mod-
els @5#. The basic idea of this approach is that at the en-
hanced symmetry point, we can rewrite the twists as shifts in
the momentum lattice. The twist fields can be expressed in
terms of ordinary momentum states; their quantum numbers

are straightforward to identify and their correlation functions
are easy to calculate.

To be specific, let us focus on four-dimensional heterotic
string models within the framework of conformal field
theory and consider only Abelian orbifolds. Before orbifold-
ing, the corresponding Narain model hasN54 space-time
supersymmetry and the internal momenta span an even self-
dual Lorentzian latticeG6,225G6,6

% G16. Let X( z̄ ) be one of
the three right-moving complex bosons corresponding to the
six compactified dimensions inG6,22. In terms of two real
bosons,X5(X11 iX2)/A2. For aZN twist ~for simplicity, N
is taken to be prime!, in the neighborhood of a twist field
located at the origin,X( z̄ ) undergoes a phase rotation:

]X~ z̄e22p i !5exp~22p ik/N!]X~ z̄ !, ~B1!

which is called the monodromy ofX( z̄ ). ~Note thatk is an
integer.! The basic twist fields( z̄ ) has conformal weight
h5k(12k/N)/2N. It twists X( z̄ ) by exp(22pik/N) and its
complex conjugateX̄( z̄ ) by exp(2pik/N); i.e., their operator
product expansions~OPE’s! are @9#

i ]X~ z̄ !s~w̄!5~ z̄2w̄!2~12k/N!t~w̄!1•••,

i ] X̄~ z̄ !s~w̄!5~ z̄2w̄!2k/Nt8~w̄!1•••, ~B2!

wheret andt8 are excited twist fields.
In this paper, we consider compactification on aZ7 orbi-

fold. The latticeG6,6 must have aZ7 symmetry. At generic
points with this symmetry the gauge symmetry~of the
Narain model! coming fromG6,6 is U~1! 6. This symmetry is
enhanced to SU~7! at the special point. In terms of six real
bosonsf I , the Cartan generators arei ]f I , whereas the root
generators areJQ5exp(iQ•f) c(Q). Here, we have intro-
duced six-dimensional real vectorsQ5(Q1, . . . ,Q6) which
are root vectors of SU~7! with length squared 2. Thec(Q)
are cocycle operators necessary in the Kac-Moody algebra.
For convenience, we shall not always explicitly display
c(Q): their presence is understood.

Suppose we can rewrite eachi ]Xa ~whereXa are the three
right-moving complex bosons corresponding toG6,6) as a
sum of the root generators:

i ]Xa5 (
Q252

ja~Q!JQ , a51,2,3. ~B3!

Then a twist on]Xa in Eq. ~B1! becomes a shift inf I :

f I~ z̄e22p i !5f I~ z̄ !22pUI , ~B4!

whereQ•U5k/N. The coefficientsja(Q) must be chosen
such that the following OPE’s are satisfied:

]Xa~ z̄ !]Xb~0!;regular,

]Xa~ z̄ !]Xb†~0!;2 z̄22dab1regular. ~B5!

For a lattice with SU~N! enhanced symmetry (N57 in our
case!, the choice is unique~up to equivalent representations!:
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i ]X5
1

AN
(
a51

N

e2 iea•f, i ] X̄5
1

AN
(
a51

N

eiea•f. ~B6!

whereea for a51, . . . ,N21 are simple roots of SU(N) and
eN52(a51

N21ea . We have suppressed the indexa. The set of
roots chosen depends on the monodromy ofi ]Xa and can be
different for a51,2,3.

To see explicitly how this conversion of twists to shifts
can be realized, let us consider the decomposition ofN of SU
(N) into representations of U~1! N21:

N5~1, . . . ,1! % ~21,1, . . . ,1! % ~0,22,1, . . . ,1!

% ~0,0,23,1, . . . ,1! % ...% ~0,0, . . . ,2N11!. ~B7!

The normalization radii of U~1! N21 are given by
„1/A(1)2,1/A(2)3, . . . ,1/A(N21)N…. They are chosen
such that all the states on the right-handed side of the equa-
tion have the same conformal dimension asN of SU(N), i.e.,
h5(N21)/2N. The conjugate representationN has opposite
U~1! N21 charges. The adjoint~and hence the rootsQ) of
SU(N) can be obtained from the tensor productN^ N.

To construct the shift representationU of the twisted
fields in the singly twisted sector, we demand that theN
states in Eq.~B7! pick up different phases under the shift
~i.e., Q•U5k/N for k50,1, . . . ,N21). The shift representa-
tion is uniquely determined once we fix the assignment of
the phases. The roots of SU(N) can be divided into sets with
different phases under the shiftU. Terms that appear in Eq.
~B6! are determined by the monodromy ofi ]X. @Thus, for
N57 we have 42 roots. 215337 enter in the expressions
~B6! for the three bosonsi ]Xa, and the other 215337 roots
enter in the expressions~B6! for the three bosons~conjugate!
i ] X̄a.#

For prime N, there areN twisted sectors, each withN
fixed points. To obtain the singly twisted fields correspond-
ing to the other fixed points, we simply add weights of
SU(N) to U such that the conformal dimension is preserved,
i.e., 1/2(U1W)251/2U2. There is precisely one weight vec-
tor in each unitary representation of SU(N) that satisfies the
above requirement, and there areN unitary representations of
SU(N): the identity 1 and the antisymmetric tensors
e i j •••kNi ^ Nj ^ ••• ^ Nk . @In the case of SU~7!, they are the
identity 1, the weights7, 21, 35, and their conjugate weight
representations.# The twisted fields in higher twisted sectors
are represented by the shiftskU1Q wherek52, . . . ,N21
andQ is a root vector added so as to preserve the conformal
dimension of the twisted states. Again, the higher twisted
fields at other fixed points are obtained by adding appropriate
weights.

In the standard orbifold formalism, the internal part of the
supercurrent for the right movers can be written as

TF5
i

2(
a51

3

ca]Xa1H.c., ~B8!

whereca are complex world-sheet fermions. The twists on
ca can be written as shifts if we bosonize the complex fer-
mions:

ca5exp~ ira!5exp~ iH •r!,

ca†5exp~2 ira!5exp~2 iH •r!. ~B9!

whereH ~known as theH charge! equals (1,0,0), (0,1,0), or
(0,0,1) fora51,2,3.

The bosonic supercurrent is then given by~the cocycle
operators are not displayed!

TF5
1

2AN
(
a51

3

eira

(
a51

N

eiQa
a

•f1H.c. . ~B10!

The supercurrent is therefore a linear combination of terms
with well definedH andQ-charges.

In the covariant gauge, we have the reparametrization
ghostsb andc, and superconformal ghostsb andg @14#. It is
most convenient to bosonize theb,g ghosts:

b5]je2f, g5hef, ~B11!

where j and h are auxiliary fermions andf is a bosonic
ghost field obeying the OPEf( z̄ )f(w̄); ln( z̄2w̄). The
conformal dimension ofeqf is 21/2q(q12). In covariant
gauge, vertex operators are of the formV(z, z̄ )5V(z) V̄( z̄ ),
whereV(z) andV( z̄ ) are both dimension 1 operators con-
structed from the conformal fields. These include the longi-
tudinal components as well as the ghosts. The vertex opera-
tors for space-time bosons carry integral ghost charges (q
PZ) whereas for space-time fermions the ghost charges are
half-integral (qPZ11/2). Here,q specifies the picture. The
canonical choice isq521 for space-time bosons and
q521/2 for space-time fermions. We will denote the corre-
sponding vertex operators byV21(z, z̄ ) andV21/2(z, z̄ ), re-
spectively. Vertex operators in theq50 picture ~with zero
ghost charge! is given bypicture changing:

V0~z, z̄ !5 lim
w̄→ z̄

efTF~ z̄ !V21~z,w̄!. ~B12!

Having constructed the vertex operators for the massless
states, one can in principle compute the scattering ampli-
tudes, or the corresponding couplings in the superpotential.
The coupling ofM chiral superfields in the superpotential is
given by the scattering amplitude of the component fields in
the limit when all the external momenta are zero. Due to
holomorphicity, one needs to consider only the scatterings of
left-handed space-time fermions, with verticesV21/2(z, z̄ ),
and their space-time superpartners. Since the totalf ghost
charge in any tree-level correlation function is22, it is con-
venient to choose two of the vertex operators in the
21/2-picture, one in the21 picture, and the rest in the 0
picture. Using the SL(2,C) invariance, the scattering ampli-
tude is therefore

AM5gst
M22E dz4d z̄4•••dzMd z̄M

3^V21/2~0,0!V21/2~1,1!V21~`,`!

3V0~z4 , z̄4!•••V0~zM , z̄M !&, ~B13!
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where we have normalized thec ghost part of the correlation
function ^c(0,0)c(1,1)c(`,`)& to 1. For a nonzero cou-
pling, the sum of theH charges as well as the sum of theQ
charges must be zero in the corresponding scattering ampli-
tude. Note that the supercurrent carries terms with different
H and Q charges. Because of picture changing,H and Q
charges are not global charges even though they must be
conserved exactly. Point group and space group selection
rules follow from these conservation laws.

APPENDIX C: Z 7 ORBIFOLD SPACE GROUP
SELECTION RULES

In this appendix we derive the space group selection rules
for the symmetricZ7 orbifold. A priori, one needs to under-
stand the scattering of the primary twist fields and their de-
scendents to solve this problem. The general framework for
calculating scatterings of twisted fields in orbifolds have
been developed in Ref.@9# using techniques in conformal
field theory. The actual calculations, however, can be quite
nontrivial. Fortunately, there exists a simpler way of deduc-
ing the space group selection rules. This other way utilizes
the techniques recently developed in Ref.@5# based on the
bosonic supercurrent framework discussed in Appendix B.
The idea is to compute the scattering at the enhanced gauge
symmetry point where the vertex operators for all the twist
fields ~up to cocycles! can be expressed as exponentials of
theQR andQL charges~see Appendix B!, hence the problem
can be solved relatively easily. At the enhanced gauge sym-
metry point in the moduli space the orbifold selection rules

are given by the conservation of gauge chargesQL , and also
by the conservation of theQR andH charges.~Both of these
are affected by picture changing, and therefore are neither
local nor global charges in space-time.! Ultimately, we
would like to obtain the orbifold space group selection rules
away from the enhanced symmetry point. This can be done
by considering the corresponding couplings within effective
field theory, and subsequently breaking the enhanced gauge
symmetry by giving VEV’s to the corresponding scalars. The
latter procedure is an effective field theory manifestation of
tuning the stringy moduli away from the enhanced symmetry
point. Once the enhanced gauge symmetry is broken com-
pletely, we obtain the space group selection rules~i.e., the
knowledge of whether a given coupling vanishes or not ac-
cording to this discrete symmetry! by simply examining the
superpotential. Note that at the enhanced symmetry point
there are a number of fields in the untwisted sector charged
under the enhanced gauge symmetry but neutral under the
original one. Upon using the Higgs mechanism on the en-
hanced gauge symmetry completely, some of them are eaten
in the super-Higgs mechanism, and some of them acquire
masses via the tree-level superpotential. As a result, the num-
ber of neutral scalars is precisely equal to the dimension of
the space parametrized by the geometric moduli of the orbi-
fold. This is to be contrasted with the fact that in the twisted
sectors the number of fields does not depend upon the values
of the geometric moduli whether they are at a generic or
enhanced symmetry point.

Thus, let us start from the Narain model withN54 space-

TABLE III. The QR andQL charges for the untwisted sector fieldsfa
a . The U~1!R

6 and U~1!L
6 normalization radii are given at the bottom

of the table.

Field QR QL

fa
1 (0,0,0,0,0,0) (11,11,11,11,11,17)

(0,0,0,0,0,0) (22,0,0,0,0,0)
(0,0,0,0,0,0) (11,23,0,0,0,0)
(0,0,0,0,0,0) (0,12,24,0,0,0)
(0,0,0,0,0,0) (0,0,13,25,0,0)
(0,0,0,0,0,0) (0,0,0,14,26,0)
(0,0,0,0,0,0) (0,0,0,0,15,27)

fa
2 (0,0,0,0,0,0) (11,11,11,11,16,0)

(0,0,0,0,0,0) (21,11,11,11,11,17)
(0,0,0,0,0,0) (21,23,0,0,0,0)
(0,0,0,0,0,0) (11,21,24,0,0,0)
(0,0,0,0,0,0) (0,12,21,25,0,0)
(0,0,0,0,0,0) (0,0,1321,26,0)
(0,0,0,0,0,0) (0,0,0,14,21,27)

fa
3 (0,0,0,0,0,0) (11,11,14,0,0,0)

(0,0,0,0,0,0) (21,11,11,15,0,0)
(0,0,0,0,0,0) (0,22,11,11,16,0)
(0,0,0,0,0,0) (0,0,23,11,11,17)
(0,0,0,0,0,0) (21,21,21,25,0,0)
(0,0,0,0,0,0) (11,21,2121,26,0)
(0,0,0,0,0,0) (0,12,21,21,21,27)

S 1

A~1!2
,

1

A~2!3
,

1

A~3!4
,

1

A~4!5
,

1

A~5!6
,

1

A~6!7
D S 1

A~1!2
,

1

A~2!3
,

1

A~3!4
,

1

A~4!5
,

1

A~5!6
,

1

A~6!7
D
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time supersymmetry in four dimensions. Let the momenta of
the internal~6 right-moving and 22 left-moving! world-sheet
bosons span the ~even self-dual! Narain lattice
G6,225G6,6

^ G16. Here G16 is the spin(32)/Z2 lattice,
whereas the latticeG6,6 is spanned by the momenta (pRuupL)
with pL ,pRPG̃7 @SU~7! weight lattice#, and pL2pRPG7

@SU~7! root lattice#. Note that this corresponds to a compac-
tification on a six-torus with spacial values of the constant
background metricgi j and ~nonzero! antisymmetric tensor
Bi j . This Narain model has gauge group SU~7!^ SO(32).
The first factor SU~7! comes from the oscillator excitations
and momentum states of the left-moving world-sheet bosons
corresponding toG6,6 ~i.e, the six-torus!. The second factor
SO~32! comes from the other 16 left-moving world-sheet
bosons.

Next consider theZ7 orbifold model ~with nonstandard
embedding of the gauge connection! obtained via twisting
the above Narain model by the twistT7 given in Sec. III.
This model hasN51 supersymmetry, and gauge group
U~1! 6

^ @U(4)3
^ SO(8)#. The factor U(4)3^ SO(8) comes

from the breaking of SO~32!. The factor U~1! 6 comes from
the breaking of SU~7!. Note that, as discussed in Appendix
B, we can represent theZ7 twist (u,u2,u3uuu,u2,u3) acting
in the six-torus in terms of aZ7 ~i.e., order 7! shift provided
that the right-moving supercurrent is written in the bosonized
form. Here we give this shift in terms of the SU~7!.U~1)6

basis, where the normalization radii of the six U~1!’s are
given by ~1/A(1)2,1/A(2)3,1/A(3)4,1/A(4)5,1/A(5)6,

1/A(6)7!. Thus, in this basis the twistT7 is replaced by the
shift

T785@ 2 1
7 ,2 3

7 2 6
7 ,2 10

7 ,2 15
7 ,2 21

7 uu2 1
7 ,2 3

7 2 6
7 ,

2 10
7 ,2 15

7 ,2 21
7 u~ 1

7 !4~ 2
7 !4~ 3

7 !404#. ~C1!

In this basis it is straightforward to work out theQR andQL
charges of the massless states of the model. The latter are the
same as in the model discussed in Sec. III, except for the
untwisted sector singlets. Thus, instead of three neutral sin-
glets fa ~see Table II! we have 21 fieldsfa

a , a51, . . . ,7,
that are singlets under U~4! 3

^ SO(8) gauge group, but are
charged under U~1! 6 Abelian subgroup. Their charges are
given in Table III. By giving VEV’s to these singlets we can
completely break U~1! 6 gauge symmetry. Due to the super-
Higgs mechanism and the corresponding superpotential after
using the Higgs mechanism, only three neutral fieldsfa sur-
vive in the massless spectrum. The rest are either eaten by
the gauge bosons or become heavy via the couplings in the
superpotential. This field theory breaking is in one-to-one
correspondence with the string theory picture of moving in
the moduli space@SU(1,1,Z)\SU(1,1)/U(1)]3 discussed
earlier. That is, we are moving the moduli away from the
special point of enhanced gauge symmetry into the bulk, i.e.,
to some generic point.

The bosonic supercurrent is given by

TABLE IV. The QR andQL charges for the twisted sector fieldsTa
a . The U~1!R

6 and U~1!L
6 normalization radii are given at the bottom

of the table.

Field QR QL

Ta
1 1

7 (21,23,26,210,215,221) 1
7 (21,23,26,210,215,221)

1
7 (16,14,11,23,28,214) 1

7 (16,14,11,23,28,214)
1
7 (21,23,26,210,215,121) 1

7 (21,23,26,210,215,121)
1
7 (21,111,18,14,21,27) 1

7 (21,111,18,14,21,27)
1
7 (21,23,26,210,120,114) 1

7 (21,23,26,210,120,114)
1
7 (21,23,115,111,16,0) 1

7 (21,23,115,111,16,0)
1
7 (21,23,26,118,113,17) 1

7 (21,23,26,118,113,17)
Ta

2 1
7 (22,18,12,26,119,17) 1

7 (22,18,12,26,119,17)
1
7 (22,18,12,26,216,114) 1

7 (22,18,12,26,216,114)
1
7 (15,11,25,213,112,0) 1

7 (15,11,25,213,112,0)
1
7 (22,26,19,11,29,121) 1

7 (22,26,19,11,29,121)
1
7 (15,11,25,115,15,27) 1

7 (15,11,25,115,15,27)
1
7 (22,26,19,11,29,221) 1

7 (22,26,19,11,29,221)
1
7 (22,26,212,18,22,214) 1

7 (22,26,212,18,22,214)
Ta

3 1
7 (13,25,14,116,24,114) 1

7 (13,25,14,116,24,114)
1
7 (13,19,23,19,211,17) 1

7 (13,19,23,19,211,17)
1
7 (13,25,14,212,13,121) 1

7 (13,25,14,212,13,121)
1
7 (24,12,210,12,218,0) 1

7 (24,12,210,12,218,0)
1
7 (13,25,14,212,13,221) 1

7 (13,25,14,212,13,221)
1
7 (24,12,210,12,117,27) 1

7 (24,12,210,12,117,27)
1
7 (24,12,111,25,110,214) 1

7 (24,12,111,25,110,214)

S 1

A~1!2
,

1

A~2!3
,

1

A~3!4
,

1

A~4!5
,

1

A~5!6
,

1

A~6!7
D S 1

A~1!2
,

1

A~2!3
,

1

A~3!4
,

1

A~4!5
,

1

A~5!6
,

1

A~6!7
D
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TF5
1

2A7
S eir1 (

a51

7

eiQa
1

•f1eir2 (
a51

7

eiQa
2

•f

1eir3 (
a51

7

e2 iQa
3

•fD 1H.c., ~C2!

where theQa
a charges for the currentsi ]Xa are the same as

the QL charges for the fieldsfa
a in Table III ~and this is no

coincidence for the orbifold is symmetric!.
Note that the untwisted sector fieldsPa , Qa , Ra andFa

are not charged under the enhanced U~1!6 gauge symmetry,
so that the couplingsl1,2,3 for the untwisted sector fields do
not vanish at any point in the moduli space~but smoothly
vary with the moduli!. The twisted sector fieldsTa

a andSa
a do

carry U~1! 6 charges. The U~1!6 charges along with theQR

charges for the fieldsTa
a andSa

a are given in Tables IV and
Table V. BecauseTa

a and Sa
a carry U~1!6 charges, some of

the couplingsLabg that are nonzero at generic points vanish
at the enhanced gauge symmetry point.

Since the model possesses explicitZ3 cyclic symmetry
(a51)→(a52)→(a53)→(a51), we can confine our at-
tention to couplings (Q1)2Ta

1Tb
2Sg

3 . For example, according
to Tables III, IV and V, the coupling (Q1)2Ta

1Tb
2Sg

3 for

a51, b5g54 is allowed byQR ~here one needs to take
into account the picture changing! andQL charge conserva-
tion. On the other hand, say, the coupling witha5b5g51
is not allowed. There is, however, a higher point coupling,
namely, (Q1)2T1

1T1
2S1

3f3
1f2

3 that is allowed. Upon the fields
f3

1 andf2
3 acquiring VEV’s, we, therefore, have an effective

coupling (Q1)2T1
1T1

2S1
3. From examining theQR and QL

charge conservation in the scattering of states (Q1)2Ta
1Tb

2Sg
3 ,

it becomes clear that near the enhanced symmetry point upon
the fieldsSa

3 andQ1 acquiring VEV’s, all the fieldsTa
1 and

Tb
2 generically become massive. Similarly, if all the VEV’s

Qa andSa
a are nonzero, all the fieldsTa

a are generically mas-
sive. In fact, this conclusion does not depend on being close
to the enhanced symmetry point. Thus, consider the basis for
a,b,g indices such that they label the fixed points of the
orbifold @this basis isnot the same as that of SU(7).U(1)6,
but can be constructed from the latter via a rotation#. Then it
is clear that in the limit of large volume of the orbifold the
couplings Labg for a,b,g are exponentially suppressed,
whereas the couplingsLaaa are not. The latter couplings are
nonzero at generic points in the moduli space. From this it
should become clear that generically all the fieldsTa

a are
heavy as long as we turn on vacuum expectation values
~VEV’s! for all of the fieldsQa , and alsoSa

a .

TABLE V. The QR andQL charges for the twisted sector fields andSa
a . The U~1!R

6 and U~1!L
6 normalization radii are given at the bottom

of the table.

Field QR QL

Sa
1 1

7 (21,23,26,210,215,221) 1
7 (16,14,11,23,28,128)

1
7 (16,14,11,23,28,214) 1

7 (28,14,11,23,28,214)
1
7 (21,23,26,210,215,121) 1

7 (21,23,26,210,120,228)
1
7 (21,111,18,14,21,27) 1

7 (16,210,18,14,21,27)
1
7 (21,23,26,210,120,114) 1

7 (21,23,26,118,222,114)
1
7 (21,23,115,111,16,0) 1

7 (21,111,213,111,16,0)
1
7 (21,23,26,118,113,17) 1

7 (21,23,115,217,113,17)

Sa
2 1

7 (22,18,12,26,119,17) 1
7 (15,11,25,213,223,17)

1
7 (22,18,12,26,216,114) 1

7 (22,26,19,11,126,114)
1
7 (15,11,25,213,112,0) 1

7 (22,18,12,122,112,0)
1
7 (22,26,19,11,29,121) 1

7 (22,18,12,26,216,228)
1
7 (15,11,25,115,15,27) 1

7 (22,26,212,220,15,27)
1
7 (22,26,19,11,29,221) 1

7 (22,26,212,18,22,128)
1
7 (22,26,212,18,22,214) 1

7 (15,11,116,18,22,214)

Sa
3 1

7 (13,25,14,116,24,114) 1
7 (13,19,23,219,24,114)

1
7 (13,19,23,19,211,17) 1

7 (24,212,23,19,211,17)
1
7 (13,25,14,212,13,121) 1

7 (13,25,14,116,24,228)
1
7 (24,12,210,12,218,0) 1

7 (13,19,23,19,124,0)
1
7 (13,25,14,212,13,221) 1

7 (24,12,111,25,110,128)
1
7 (24,12,210,12,117,27) 1

7 (24,12,111,25,225,27)
1
7 (24,12,111,25,110,214) 1

7 (13,25,217,25,110,214)

S 1

A~1!2
,

1

A~2!3
,

1

A~3!4
,

1

A~4!5
,

1

A~5!6
,

1

A~6!7
D S 1

A~1!2
,

1

A~2!3
,

1

A~3!4
,

1

A~4!5
,

1

A~5!6
,

1

A~6!7
D
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