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In this paper we consider type | string theory compactified &y, arbifold. The model hadl=1 super-
symmetry, a W) e U(4)® U(4)® SO(8) gauge group, and chiral matter. There are &8lybranegfor which
we discuss tadpole cancellation conditipimsthis model corresponding to a perturbative heterotic description
in a certain region of the moduli space. We construct the heterotic dual, match the perturbative type | and
heterotic tree-level massless spectra via giving certain scalars appropriate vacuum expectation values, VEVs,
and point out the crucial role of the perturbative superpotefwialthe heterotic sigefor this matching. The
relevant couplings in this superpotential turn out to be nonrenormalizablié&e theZ-orbifold case discussed
by Kakushadze, where Yukawa couplings sufficed for duality mat¢hiMée also discuss the role of the
anomalous (1) gauge symmetry present in both type | and heterotic models. In the perturbative regime we
match the(tree-level moduli spaces of these models. We point out possible generalizations 5§ tned Z ;
cases to includ®5-branes which would help in understanding nonperturbative five-brane dynamics on the
heterotic side[S0556-282(197)03618-7

PACS numbegp): 11.25.Mj

[. INTRODUCTION moduli space where both type | and heterotic string theories
are weekly coupled, and there we can rely on perturbation
In recent years nonperturbative string dynamics has beetheory. If we understand the map between perturbative ef-
coming under greater control. String dualities have beerfects in the two descriptions, we may be able to learn about
playing an important role in this process, as they allow us tohonperturbative effects in, say, heterotic string via casting
address nonperturbative issues in a given string theory bghem into perturbative effects in type | theais.g., nonper-
studying them perturbatively in a dual theory. Supersymmeturbative dynamics of heterotic five-branes can presumably
try has been a key ingredient of string duality, as the largebe understood by studying perturbative dynamics of type |
the number of unbroken space-time supersymmetries, thB5-branes
better handle we have over nonperturbative string dynamics. Recently one of us studied an example of a four-
Thus, much progress has been made in understalfing  dimensionalN=1 type I-heterotic dual pairl]. The type |
andN=2 string dualities, and now the attention is shifting model, as well as the candidate heterotic dual, considered in
toward graspind=1 cases. Ref.[1] were first constructed in Reff2]. The type | model
N=1 type I-heterotic duality in four dimensions is a is a compactification on th& orbifold (and hasD9-branes
promising arena for testing the validity of the idealf 1 only), whereas the candidate heterotic dual iZ-arbifold
string dualities, as well as for developing tools that mightcompactification with a nonstandard embedding of the gauge
help understand nonperturbative effects in, say, heteroticonnection. At the orbifold points the tree-level massless
string theory(e.g., dynamics of five-branes responsible forspectra of the two models differ as there are extra twisted
enhanced gauge symmetjieEhe tree-level relation between matter fields in the heterotic model that do not hgvertur-
type | and heterotic dilatons iD space-time dimensiori2]  bative type | counterparts. As discussed in REJ, there is a
(which follows from the conjectured type I-heterotic duality tree-level superpotential in the heterotic model precisely
in ten dimension$3]) reads such that the extra states become heavy after appropriate use
6-D - of the Higgs mechanism. The role of the anomaloug)U
o~ - (present in both type | and heterotic modelgs also dis-
I R T Infdetg,)]- @ c%ssed in Ref[1]. g
The case studied in Rdfl] is remarkable in the sense that
Hereg, is the internal metric of the type | compactification the type | model has onl{p9-branes and the dynamics is
space, whereag, and ¢, are the type | and heterotic dila- completely perturbative from the heterotic point of view,
tons, respectively. One implication of the above equation isience there is not much difficulty in establishificee-leve)
that in four dimensions there always exists a region in theduality. In the context of our previous discussion, it would be
important to see if there is any pattern in such perturbative
N=1 type I-heterotic duality in four dimensions. If so, this
*Electronic address: zurab@string.harvard.edu would help separate perturbative effects from nonperturba-
TElectronic address: shiu@mail.Ins.cornell.edu tive ones in the cases with5-branes(which are more in-
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volved from the heterotic point of view, and these are thethe next section where we go through the construction of the
cases we would ultimately like to understan@here turns (candidat¢ heterotic dual of the model considered in this
out to be one other case of type&|, orbifold compactifica- section] This model hadN=8 supersymmetry. Let us now
tion with N=1 supersymmetry and nD5-branes. This is consider the symmetriZ, orbifold model generated by the
the compactification on th&, orbifold that we study in this  twist
paper. — 2 3 2 3

Before discussing th&, case, we list some orbifolds of T;=(0,6%,6%6,0%6°). @
type | strings withN=1 supersymmetry in four dimensions
(4D) (there are two inequivalenZg orbifolds in 4D:
D9-branes only{i) Z, (i) Z;; D9-branes and5-branes:

Here 0 is a 27/7 rotation of a complex bosotwe have
complexified the six real bosons into three complex bosons

) , ! The double vertical line separates the right and left movers
(iii) Ze, (\v) Zg, (v) Z,®Z5, (Vi) Z4. So far, only theZ [2] of the string. The resultingpmodel has= 2g space-time su-
andZ,®Z, [4] cases have been constructed, and onlyZthe oo mmetry. This model has the following moduli. There
case has been studied from the type I-heterotic duality poi re 8 Neveu-Schwarz—Neveu-SchwatNS-NS fields

of view. In this paper we discuss tiZe case. The model has #,B,,,Big7, and 8 Ramond-RamondR-R) fields
N=1 supersymmetry, 4)®U(4)2U(4)®S0O(8) gauge d)’, é‘,”' EISI’; NI

group, and chiral matter. There is anomalou&)Un this YA T i o L )
model. We also construct the heterotic dual that has the same L€t US now consider the orientifold projection of this

gauge symmetry and matter content as the type | model eXndel. The closed string sectéwhich is simply the sub-

cept for extra twisted matter fields. This is just as in e space of the Hilbert space of the original type IIB spectrum
invariant under the orientifold projectiof) contains the

model, albeit there are some subtle differences in the way ™ , X ;
these extra matter fields are charged under the gauge grodp—1 Supergravity multiplet, and 3 untwistethe NS-NS
lelds that survive thé€) projection argy;;, whereas the R-R

Another difference between th#®; andZ, cases is that the )
orbifold blow-up modes in the former case are charged undéi€elds that are kept arB;;—; note that the NS-NS fieleh and
the anomalous (1) and contribute to cancelling tHe-term,  the R-R fieIdBl’w also survive and enter in the dilaton super-
whereas in the latter case the orbifold blow-up modes arenultiplet) and 21 twisted chiral supermultipleta/hich are
neutral under the anomaloug1). This results in different neutral under the gauge group of the mgdEbr consistency
pictures for embedding of the type | moduli space into that of(tadpole cancellation; see Appendix A for detaige must
heterotic string in th&; andZ; cases. Just as in tifg case, include the open string sector. Note that in this model we
in the Z,; case there is a tree-level superpotential that afteonly haveD9-branes but nd5-branes since the orbifold
appropriate use of the Higgs mechanism gives masses to atoup does not contain an order two elemélithe orbifold
the extra twisted matter in the heterotic model, and the masgroup contains an order two elemeRt then the sector
less spectra of the type | and heterotic strings are matche&®() would contain D5-branes Thus, we only have 99
There is also a difference, however: in thg case renormal- open strings. The gauge group consistent with tadpole
izable (Yukawg couplings are sufficient for duality match- cancellation then is @WeU(4)®U(4)®S0O(8). The
ing, whereas in th& case the corresponding couplings are99 open strings also give rise to the chiral matter
nonrenormalizable(In deducing the heterotic superpotential fields 4,1,1,8,)(+1,0,0) , (Z,Z, 1,)(—-1,—-1,0),
the tools developed in Ref5] prove to be very useful; see (2,4,1,1)(—1,+1,0)., and 6,1,1,1)(+2,0,0).. In addi-
Appendix B and Appendix C for detai)swith these subtle  tijon, there are fields that can be obtained by permuting
differences, the type I-heterotic duality in the two cas@s ( the three W4)'s [this permutation must be accompanied
andZ;) works much in the same way, and there is, hencepy changing the irreducible representatiéirep) of the
forth, a clear pattern we see from studying these exampleshird U(4) to its complex conjugale Here the first four en-
(Note that perturbative superpotentials also seem to be negies in bold font indicate the irreps of the
essary_for matching the massless spectrd aheory and  Sy(4)®SU(4)®@ SU(4) @ SO(8) subgroup, whereas the
heterotic dual pair§6].) . U(1)2 charges are given in the parenthesis. The subskript

The paper is organized as follows. In Sec. Il we discussndicates the space-time helicity of the corresponding fermi-
the Z; orbifold type | model. In Sec. Il we construct the onjc fields. The massless spectrum of this model is summa-
heterotic dual. In Sec. IV we give perturbative superpotentized in Table I.
tials for these models. In Sec. V we discuss the moduli Note that the (1)® gauge symmetry is anomalous. We
space, and explain the matching between the type | and hegan form a linear combination of theséys such that only
erotic moduli spaces, as well as their tree-level spectra. Igne of them is anomalouithis combination is given by
Sec. VI we give conclusions and remarks. Some of the deg, + Q,— Q,, whereQ, , 5 are the first, second, and third
tails regarding the tadpole cancellation in type I theory, andj(1) charges, respectivelyThe total U1) anomaly is+ 36.
also the heterotic superpotential are relegated to the Appeisy the generalized Green-Schwarz mechar{ig/@] some of
dixes. the fields charged under(l) will acquire vacuum expecta-

tion values(VEV's) to cancel the Fayet-llliopouloB-term.
Il. TYPE | MODEL

. . . . 1. HETEROTIC STRING MODEL
In this section we discuss the construction of the type |

model. Let us start from the type 1IB string model compac- In this section we give the construction of the heterotic
tified on the six-torus which has &; rotational symmetry. string model that is(candidat¢ dual to the type | model
[A more detailed discussion of this six-torus will be given in considered in the previous section. Let us start from the
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TABLE I. The massless spectrum of the type | model with of the three right-moving complex bosofmoming from the
N=1 space-ime supersymmetry and gauge groupsix-torus. The double vertical line separates the right and
SU(4)2 SU(4)® SU(4)2 SO(8)2 U(1)° discussed in Sec. II. The |eft movers. The first three left-moving entries correspond to

gravity, dilaton and gauge supermultiplets are not shown. the Z, twists of the three left-moving complex bosoftem-
ing from the six-torus The single vertical line separates the

Sector Field ®SU?%§%%?§)§L)J(1)3 Comments Iattgr from the sixteen rgal bqsons corresponding toltHe
lattice. The latter are written in the $82) basis. Thus, for

Closed example, ¢1,—1,0 is a root of S@32) with length
Untwisted ba 3(14,1,1,1)(0,0,0)} a=123 squared 2. There are 480 roots similar to this in H&
Closed S 21(1,1,1,1)(0,0,0). a=1t03 lattice, and they are descendents of the identity irrep of
Twisted a=1to7 SO(32). The latticel'* also contains one of the spinor irreps

Py (4,1,1,8,)(+1,0,0} as well. Thus, we will choose this spinor irrep to contain the

P2 (1,4,1,8,)(0,+ 1,0 momentum states of the form=(,...,+3) with even

Ps (1,1,4.8,)(0.0-1) number of plus signs.

Q (1,441)(0,-1,+1), Note that for the above twist to be a symmetry of the

Q2 (41,41 (-1,0;+1), model it is necessargand sufficienk that the twist acting on
Open Qs (44,1,1)(-1,-1,0) the I'%® |attice is a rotation in this lattice. This requirement

Ry (44,11 (-1+1,0)} constrains the possible values of the metric tergpr

R, (1,4,4,1)(0,—1,—1), Now we are ready to discuss the orbifold model generated

R, (4,1,4,)(+1,0+1), by the above twis®T;. This model had\=1 space-time su-

D, (1,1,6,1)(0,0-2), persymmetry, and gauge grougdi U(4)® U(4)® SO(8),

®, (6,1,1,1)(+2,0,0)} the same as the type | model discussed in the previous sec-

Dy (1,6,1,1)(0,+2,0), tion. The untwisted sector gives rise to tNe=1 supergrav-

ity multiplet coupled to theN=1 Yang-Mills gauge multip-
let in the adjoint of U4)@ U(4)®U(4)® SO(8). Thematter
fields in the untwisted sector are the same as those
in the open string sector of the type | model. There are also
chiral multiplets neutral under the gauge group:
3(1,1,1,2)(0,0,0) . Note that these contain six scalar fields
that are the leftover geometric moduli whose VEV's param-
o etrize the moduli spaceSU(1,1Z)\SU(1,1)/U(1)f. [This
PLrR=7mie'En'e;. (3) is the subspace of the original Narain moduli space
S0O(6,62)\S0O(6,6)/SO(6p SO(6) that is invariant under
Herem, andn' are integerse; - e;=g;; is the constant back- the twist] Actually, the (perturbativé moduli space of this
ground metric of the compactification manifoldix-torug, ~ model is larger, and we will return to this point later on.
ande;-ei= 1. Note that we could have included the con- ~ Néxt, c0n§ider the twistgd sector. In the twisted sector we
stant antisymmetric background tensor fiid, but for now  have the chiral supermultiplets 7,4,1,1)(4/7,8/7:- 12/7),
we will set it equal to zero for the reasons that will becomeand 7(,1,6,1)(4/7,8/7,2/7) together with fields obtained
clear in the following(see Appendix A for details by permuting the three (4)’s [this permutation must be ac-
This Narain model has the gauge group($®) ® U(1)®.  companied by changing the irrep of the third4V to its
The first factor S@82) comes from thd*® lattice (the 480  complex conjugate Here we note that the factor 7 comes
roots of length squared2and 16 oscillator excitations of the from the number of fixed points of th&; orbifold we are
corresponding world-sheet bosofthe latter being in the considering.
Cartan subalgebra of $82)]. The factor W1)® comes from We summarize the massless spectrum of this heterotic
the oscillator excitations of the six left-moving world-sheet string model in Table 1I. Note that the(l) ® gauge symme-
bosons corresponding t5%°. Note that there are also six try is anomalous. Again, only one linear combination of the
additional vector bosons coming from the oscillator excita-three U1)'s is anomalous. Thus, the contributions of the
tions of the right-moving world-sheet bosons correspondingntwisted and twisted sectors into the trace anomaly+e86
to I'®%. These vector bosons are part of tde=4 supergrav-  and 7x (+36), respectively, so that the total trace anomaly
ity multiplet. is +288. By the generalized Green-Schwarz mecharigm

Next consider theZ; orbifold model (with nonstandard some of the fields charged undetWwill acquire VEV's to
embedding of the gauge connectioobtained via twisting cancel the Fayet-llliopouloB-term.

the above Narain model by the followiry, twist:

Narain model withN=4 space-time supersymmetry in four
dimensions. Let the momenta of the interf@kight-moving
and 22 left-moving world-sheet bosons span tfeven self-
dua) Narain lattice '®?>=T56xT16 Here I''® is the
spin(32)/Z, lattice, whereas the lattide®® is spanned by the
momenta pg||p.) with

Here 0 is a 2x/7 rotation of a complex bosofwe have In this section we discuss the perturbative superpotentials
complexified the original six real bosons into three complexfor the type | and heterotic string models discussed in the
ones. Thus, the first three entries correspond toZhdwists  previous sections. Studying the couplings and flat directions
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TABLE Il. The massless spectrum of the heterotic model with 1 space-time supersymmetry and
gauge group SU(4) SU(4)® SU(4)® SO(8)® U(1)? discussed in Sec. Ill. Thel charges in both the- 1
picture and the-1/2 picture are also given. The gravity, dilaton, and gauge supermultiplets are not shown.*

Sector Field SU(P®S0(8)2U(1)? (Hqy Hy Hg) g (Hy,Hy Hg) _ 1
¢ (1,1,1,1)(0,0,0) (—1,0,0) (-1+1 -1
b2 (1,1,1,1)(0,0,0). (0,—1,0) (+1-1-19
b3 (1,1,1,1)(0,0,0) (0,0+1) (+1+1+9
P, (4,1,1,8,)(+1,0,0} (—1,0,0) (-3,+31-4
P, (1,4,1,8,)(0,+1,0). (0,—1,0) (+1-1 -9
Ps (1,1,4,8,)(0,0~1), (0,0;+1) (+14+1+1
Q1 (1,4,4,1)(0,—1,+1), (—1,0,0) (- +%-1

Untwisted Q. (4,1,4,1)(—1,04+1), (0,-1,0) (+1-1-9
Qs (4,4,1,1)(-1,-1,0), (0,0,+1) (+1+1,+9
R, (4,4,1,1)(—1,+1,0), (—1,0,0) S
R, (1,4,4,1)(0,—1,— 1), (0,-1,0) (+1-1 -4
Rs (4,1,4,1)(+1,04+1), (0,04+1) (+3 4341
®, (1,1,6,1)(0,0-2), (—1,0,0) (-1+1 -9
D, (6,1,1,1)(+2,0,0) (0,—1,0) (+3,-1-14
P, (1,6,1,1)(0,+2,0), (0,0+1) (+3,+1+4

Twisted st 7(1,1,1,1)(4/7,8/7,12/7) (-3-2+% (+5.+3.+4

0, 6° T 7(1,1,6,1)(4/7,8/7~2/7), (-3-2+%  (+&5+3+4

Twisted s? 7(1,1,1,1)(8/7,— 1217~ 4I7), (-2, -4+ (+2,- & 2)

02, 6° T 7(1,6,1,1)(8/7,2/7~4I7), (-2, -4+ (+2.-& -3

Twisted s 7(1,1,1,1)(— 12/7,4/7+ 8I7), (-4, -1 42 (-&.+3,-2)

63, 6* T 7(6,1,1,1)(2/7,4/7-8/7), (—4,-1 42 (- &+ 2.2

in these superpotentials will enable us to make the type IAppendix B and Appendix C for the details of calculating

heterotic duality map more precise. these couplings. The superpotential for the heterotic string
Let us start from the type | model of Sec. Il. We refer the model thus readéhere we are only interested in the general

reader to Table | for the massless spectum as well as owtructure of thenonvanishingerms:

notation. Note that perturbatively the 24 chiral singlets com-

ing from the closed string sector are flat. This can be explic- Wy =\]e,pc Tr(PaPpQc) + A5 Tr(QiRy®P 3+ QoR3P,

ity seen by computing the scattering amplitudes for these

modes within the framework of the conformal field theory of +Q3R1®2) + N3 Tr(R1R;R3)

orbifolds [9]. On the other hand, the matter fields coming o 2312 2ela2-3

from the 99 open string sector have thr@ad, of course, TATIQ) siTﬁTVHQ?’) SaTTy

some higherpoint couplings. The lowest order superpoten- +(Q)22T3TE+ - - - (6)

tial can be written agthe calculation of the type | superpo- « By

tential is completely analogous to that of the heterotic one ir(The notation for the fields are given in Table) The cou-

the untwisted sectpr plings A“#” are nonvanishing if the orbifolépace group
selection rules are satisifed. Here we note that the couplings
Wi =N 1€apc TH(PaPyQc) + A2 TH(Q:Rp P53+ QoR3®4 A®PY for a, B, y not all identical are exponentially sup-
+ Q3R P,) + A3 TH(RRyR) + - - - (5) pressed in the limit of large volume compactification,
whereas the couplings “** are not suppressed. This is be-
Due to the presence of the anomaloué&l}l) some of the cause in the former case, the corresponding fields are coming
fields that are charged under thigll) (namely, Q,) must from.di_fferent fixed points so that upon taki_ng them apfiort
acquire VEV's to cancel the Fayet-llliopoul@-term. This  the limit of large volume of the orbifoldtheir coupling be-

results in breakdown of gauge symmetry, yet the space-timgomes weaker and weaker. _
supersymmetry is preserved. Following the discussion in Appendix C we observe that

Now let us turn to the heterotic string model. The super-upon the fieldQ, [that are responsible for breaking of the
potential of this model is more involved than that of the typeanomalous ()] andS;, (that are the 21 blow-up modes of
| model as there are nontrivial couplings between the unthe Z; orbifold) acquiring VEV, the state3?% generically
twisted and the twisted sector fields. We refer the reader tbecome heavy and decouple from the massless spectrum.
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Thus, after blowing up the orbifold singularities on the het-

erotic side combined with some of the untwisted charged M
matter fields acquiring VEV's to cancel th2-term, we can
match the massless spectrum to that of the type | model
[where the charged matter must acquire VEV's to cancel the
effect of the anomalous (@)]. Note the crucial role of the
perturbative superpotential in this matching. It is precisely
such that all the extra fields on the heterotic side can be made
massive. Here we note that the blow-up moS8gsre neutral
under the anomalous(ll), and thus do not play an important
role in cancelling theD-term. (This is to be contrasted with
the Z-orbifold model discussed in Refll], where the

blow-up modes of thez-orbifold carried anomalous () o ) .
charge) FIG. 1. A schematic picture of th@erturbativé moduli space

M (of the heterotic modgl Region A is the subspace correspond-
ing to the type | model. Region Bhat complements A io\1) is the
subspace where some or all of t88 VEV's are zero and some or
all of the T? fields are massless.

We now turn to the discussion of the moduli spaces
for the type | and heterotic models considered in the prevHiggs mechanism. The gauge group is further broken to
ious sections. Let us start with the heterotic model. TheSU(4 )jiagona® SO(8)®U(1) once Q, acquires a nonzero
(perturbativé moduli space of the corresponding Narain VEV. To break the anomalous (W), generically, the field
model before orbifolding is S@®,22Z2)\S06,22/ Q3=(6,1)(—2)®(10,1)(—2) [in the representations of
SAB)®SO22). After orbifolding we have two types of SU(4)gagona® SO(8)2U(1)] acquires a VEV. The final
moduli: those coming from the untwisted sector, and thosgyauge group is Sg) or SQ4) depending on whether
coming from the twisted sector. The untwisted sector moduli,1)(—2) or (10,1)(—2) acquires a VEV.
parametrize the cosg8U(1,3Z)\SU(1,3)/SU(3RU(1)]3. Thus, the moduli spacdat generic pointsof both type |
The subspacéSU(1,1Z)\SU(1,1)/U(1)} of this moduli  and heterotic models are the safaethe least at tree level
space is parametrized by six neutral singl¢tsthat corre-  They are described by the untwisted moduli of the heter-
spond to the leftover geometric moduttoming from the  otic string, or equivalently, the moduli coming from the
constant metrig;; and antisymmetric tensd@;; fields). The  untwisted closed string sector and the open string sector
other 12 moduli correspond to the flat directions in the suof the type | model (these parametrize the coset
perpotential for the field®,, Q,, R,, and®,. (These are [SU(1,32)\SU(1,3/SU[R)®U(1)]3), plus the 2<21 twisted
the leftover moduli coming from the>616 Wilson linesA!,  moduli in the heterotic string model, or equivalently, the
I=1,...,16, in the original Narain model. moduli coming from the twisted closed string sector of the

Next, we turn to the twisted moduli of the heterotic string type | model. The(perturbativeé moduli space(of the het-
model. In the twisted sectors, we have the chiral superfieldsrotic model is schematically depicted in Fig. 1.
St and T%. There is no superpotential for the singl<% It is worth noting the role of anomalous(l) in N=1
which are the 21 blow-up modes of t&g orbifold. Unlike  type I-heterotic duality. To cancel the Fayet-llliopoulDs
theZ5 casg 1], the blow-up modes are not charged under theerm, fields that are charged under the anomalo(s Will
anomalous 1) and so all of them survive the Higgs pro- generically acquire VEV's. As a result, the extra twisted
cess. Notice that both the heterotic and the type | model havenatter fields in the heterotic model are eliminated via the
anomalous L) with positive trace anomaly. To cancel the Higgs mechanism and the matching of the massless spectra
D-term, one needs to give VEV'’s to the corresponding negaof the type | and heterotic models is precise. The appearance
tively charged fields, namely, . At a generic point on the of massless twisted matter fiel@§ on the heterotic side is a
heterotic side(i.e., upon giving appropriate VEV’s to the perturbative effect. On the type | side this effect is nonper-
untwisted matter field€, and the twisted modul8’), the turbative, and reflects the fact that from the type I point of
fields T2 become massivéaccording to the couplings in the View there is a(nonperturbative singularity in the moduli
superpotential Thus, the matching is complete after giving Space(or, more precisely, a singular subspace of the full
appropriate VEV's to both untwisted and twisted fields onmoduli spacg Notice that the fieldsT?, in the heterotic
the heterotic side, as well as giving appropriate VEV’s tomodel get heavy vimonrenormalizableerms in thepertur-
open string sector matter fields, and 21 twisted closed strinfative superpotential. This indicates the importance of per-
moduli. Upon breaking the anomalougi) the dilaton may turbative superpotential iN=1 type I-heterotic duality.
mix with other gauge singlet#\ priori, the mixing is differ-

V. MODULI SPACE

gnt on the type | and th(_a heterotic side. To m_ake the match- VI. CONCLUSIONS
ing precise, one generically has to appropriately tune the
dilaton plus¢, geometric moduli on both sides. In this paper we discussed a chifdE=1 type | model in

Let us analyze more carefully how this matching canfour dimensions obtained as a compactification on Zhe
be achieved. Upon giving VEV tQ,, the second and the orbifold. We studied the type I-heterotic duality in this ex-
third U(4) are broken to the diagonal (4. Some of ample, and have concluded tHap to model-dependent dif-
the fields become heavy, where@s is eaten by the super- ferencegthe duality in the presence 8f9-branes only has a
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clear pattern to it. Note that (studied in Ref[1]) andZ, The double vertical line separates the right and left movers

(studied in this papercases exhaust 4B, orbifolds of type ~ Of the string. Because we are considering symmetric orbi-

| strings withN=1 supersymmetry and nb5-branes. The fold, the right- and left-moving twists are the same. Also

cases withD5-branes(constructed via orbifolds of even or- note that the consistency of the orbifold requires that the

den are of great interest as they may shed lightramper- ~ €Xpression

turbative dynamics of heterotic five-branes in 48=1 d

vacua. Having learned the perturbative part of type ]-_[1 Asir?(t,),
=

I-heterotic duality, now we can march into the more intricate (A2)

maze ofD9- andD5-branes and theinonperturbative het-

erotic duals. where the factors with,=0 are not included in the product,
be an integer. In fact the latter is nothing but the number of
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APPENDIX A: TADPOLES FOR ORBIFOLD
SINGULARITIES Herew=exp(2#i/N) andl m, is them, X my unit matrix. Note

In this appendix we discuss the tadpole cancellation cont—hatEEQolmk: 16.
straints for orbifold compactifications of type | strings. We  The twisted tadpole cancellation condition in our notation
confine our attention t&Zy orbifolds without D5-branes. reads
This means thal is odd, and without loss of generality we
can takeN to be a prime numbegas all theZ, orbifold cases d
with N=1 supersymmetry and rid5-branes in six and four Tr(y)=16p, PEiHl (—DNicogmt)). (A4
dimensions are restricted to prind). The constraints that -

we present herg can be easily g_energlized to other ¢aBeS \gte that for this equation to have a solution, we must put
cluding those wittD5-braneg which will be discussed else- My=m,=---=my_;=m. [Also note that my=16

where. — _
There are two kinds of constraints we need to consider m(ll\(lvkzl)_lr;'] Then  Try)=16-Nm (note that
The first one comes from the cancellation of the untwisted =} ’
tadpoles for théd9-branes. This constraint is the same in all
dimensions and leads to the statement that there are
D9-branesnot counting the orientifold imagedqThis last
statement is only correct if the NS-NS antisymmetric back- _ _ _ _

groundB;; is set equal to zero; see belowlhe other con- M=1&1=p)/N,  n=1§1+(N-1)p}/N. (AS)
straint comes from the cancellation of the twisted tadpole§\gte that if none of the; are zero, thefip|=2"¢.

for theD9-branes. The twisted tadpoles have been computed | ot s illustrate these equations with a few examples.
in six dimensions in Ref[10] (for the Z, orbifold limit of 6D Z, orbifold (i.e., Z5 orbifold limit of K3). The twist
K3) and Ref[11] (for all the other orbifold limits 0fK3), | e54s

and in four dimensions for th&,®Z, orbifold [4] and the

Z3 orbifold [2]. For the case we are considering héoed T,=(1/3,1/3]1/3,1/3. (AB)
prime N), there is a simple formula which expresses the

twisted tadpole cancellation condition that we are now goingNote thatp= + 1/4 in this casem=4 andn=8, so that the

The gauge group of the model can be easily seen from the
ove tadpole equation. It is given by UapN-"2
SO(2n), where

to discuss. gauge group is U(8) SO(16). This is the model considered
Let us be general here and consider compactification ofy Ref. [11].
T24/Z,, with the twist given by 4D Z4 orbifold (i.e., Z-orbifold limit of a Calabi-Yau

threefold. The twist read:
Ta=(t1,ts, .. otgllt ts, .0 tg)- (A1)
T,=(1/3,1/3,1/3/1/3,1/3,1/3. (A7)
Here t; are fractional numbers taking values in
{0,AIN,2NN, ..., (N—1)/N}. A given t; corresponds to a Note thatp=—1/8 in this casepn=6 andn=4, so that the
twist of theith complex boson by a2t; rotation.(We have  gauge group is U(12) SO(8).This is the model considered
complexified the @ real bosons intad complex bosons in Ref.[2].



3692 ZURAB KAKUSHADZE AND GARY SHIU 56

4D Z, orbifold (i.e., Z; orbifold limit of a Calabi-Yau are straightforward to identify and their correlation functions

threefold. The twist reads are easy to calculate.
To be specific, let us focus on four-dimensional heterotic
T,=(1/7,2/7,3/1|1/7,2/7,3/7. (A8)  string models within the framework of conformal field

theory and consider only Abelian orbifolds. Before orbifold-

Note thatp=+ 1/8 in this casem=2 andn=4, so that the ing, the corresponding Narain model hils=4 space-time
gauge group is U(4U(4)®U(4)®SO(8). This is the supersymmetry and the internal momenta span an even self-
model considered in this paper. dual Lorentzian latticd'®2>=T"®8g 16, | et X(z) be one of

Here we also give two nonsupersymmetric mod#igt  the three right-moving complex bosons corresponding to the
have never been discussed previously to the best of owix compactified dimensions %22 In terms of two real
knowledge. bosonsX= (X;+iX,)/\/2. For aZy twist (for simplicity, N

6D Zs orbifold (i.e., compactification oriT*/Zs). The s taken to be primke in the neighborhood of a twist field
twist reads located at the originX(z) undergoes a phase rotation:

Ts=(1/5,2/4|1/5.2/5. (A9) oX(ze 2™ =exp( — 2mikIN)IX(Z),  (BL)

Note thatp= —1/4 in this casem=4 andn=0, so that the S - .
gauge group is U(8) U(8). which is called the monodromyg(( z). (Note thatk is an

8D Z, orbifold (i.e., compactification orT%Zs). The integer) The basic twist fieldo(z) has conformal weight

twist reads h=Kk(1—k/N)/2N. It twists X(z) by exp(2mik/N) and its
complex conjugat&X(z) by exp(27ik/N); i.e., their operator
T3=(1/3|1/3). (A10)  product expansion€OPE’S are[9]
Note thatp=—1/2 in this casem=8 andn=0, so that the ioX(z)o(w)=(z—w) T KN rw)+ ...,
gauge group is (16).
Finally, we would like to consider the cases with nonzero i&X_(z_)a(w_)= (Z__W)—k/NT/(W_)_l_ . (B2)

NS-NS antisymmetric backgrouri;; . Although there are

no massless scalars corresponding to these in type | theolyherer and +' are excited twist fields.

(recall that thereB;; fields are projected out of the spectrum |, this paper, we consider compactification o aorbi-
after orientifolding, i.e., these moduli cannot be varied con- 5|4 The latticel’®® must have &, symmetry. At generic
tinuously, they can have certain quantized val{eecause of points with this symmetry the gauge symmetfyf the
this they are not moduli in the conventional sense of thisyarain model coming fromI"®®is U(1)®. This symmetry is
word). The quantization is due to the fact that to have agnhanced to S(J) at the special point. In terms of six real
consistent orientifold the corresponding type 1B SpeCtrumbosons¢' the Cartan generators aré¢', whereas the root
must be left-right symmetric. At generic values Bf; this enerators ardo=exp(Q-¢) ¢(Q). Here, we have intro-
symmetry is destroyed. There are, however, certain discret%uced six-dimensional real vecto@s=(Q%, . . . Q%) which
Bj; backgrounds compatible with the orientifold projection ;.o oot vectors of S(7) with length squared 2. The(Q)

[12]. The effect of nonzer@;; background is that the rank of 5.6 cocycle operators necessary in the Kac-Moody algebra.
the gauge group coming from the &) (i.e., Chan-Paton g4 convenience, we shall not always explicitly display
factor is reduced, depending on the rankwhich is always c(Q): their presence is understood.

even of the matrix Bj;. That is, the number of the g, 5h05e we can rewrite eaiohX® (whereX® are the three
D9-branes required by the tadpole cancellation condition I$ight-moving complex bosons corresponding [t89) as a
no longer 16 but 16/2. All of the above formulas then get sum of the root generators:

modified in the presence of ramkB;; in an obvious way via
replacing the factor 16 everywhere by 1672

As mentioned earlier, it is not difficult to generalize the ioX2= X £(Q)Jg, a=12;3. (B3
tadpole cancellation condition discussed in this appendix to Q=2
the cases wittD5-branes. The work on these cases is in . a: )
progress and will be reported elsewhefi¢.would also be Then a twist on9X* in Eq. (B1) becomes a shift ip':
interesting to generalize the above conditions along the lines

of Ref.[13]) ¢'(ze2™)=¢'(z)-27U', (B4)
where Q-U=k/N. The coefficientst?(Q) must be chosen
APPENDIX B: BOSONIC SUPERCURRENT such that the following OPE’s are satisfied:
AND SCATTERING
In this appendix, we review the bosonic supercurrent ap- 9X?(2)aX"(0)~regular,
proach in calculating scattering amplitudes of orbifold mod- L L
els [5]. The basic idea of this approach is that at the en- 9X3(2)aXPT(0)~ — z ~25%P+regular. (B5)

hanced symmetry point, we can rewrite the twists as shifts in
the momentum lattice. The twist fields can be expressed ifror a lattice with SUN) enhanced symmetryN(=7 in our
terms of ordinary momentum states; their quantum numbersase, the choice is uniquéup to equivalent representations
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1N . L yP=explip®)=exp(iH - p),
ioX=—=2, e ®?  jgX=—=>, e€? (B6) g g
NG YN YA =exp(—ip?)=exp(—iH p). (B9)

wheree, f0f a=1,...N—1 are simple roots of SW) and  \hereH (known as thed charge equals (1,0,0), (0,1,0), or
en= —EN 1€, We have suppressed the indexThe setof  (0,0,1) fora=1,2,3.

roots chosen depends on the monodromysf and can be The bosonic supercurrent is then given (ilye cocycle
different fora=1,2,3. operators are not displayed
To see explicitly how this conversion of twists to shifts
can be realized, let us consider the decompositidd of SU 13, .
(N) into representations of @)N~1: N e’ 21 e ?+Hc. .  (B10

N=(L,...D@(-11,....09(0,~21....D The supercurrent is therefore a linear combination of terms
®(0,0-3,1,...,99...9(0,0,...~-N+1). (B?) with well definedH and Q-charges.
In the covariant gauge, we have the reparametrization

The normalization radii of @)N"! are given by ghostsb andc, and superconformal ghosgsandy [14]. Itis
AN(MD)2,1N(2)3, ... ,1N(N=1)N). They are chosen Most convenient to bosonize titey ghosts:
such that all the states on the right-handed side of the equa- ¢ R
tion have the same conformal dimensiorfasf SU(N), i.e., B=oée 7, Y=ner, (B1D
B(lgld* 1lg£]il\rlég2 eﬁ?; Jggﬁgiem:}npéeﬁgséi“?ﬁg iig%%oi?e where ¢ and » are auxiliary fermions andb is a bosonic

SU(N) can be obtained from the tensor prodidd N. ghost field obeying the OPE(z)h(w)~In(z—w). The

To construct the shift representatidsh of the twisted conformal dimension 08 is —1/2q(q+2) In covariant
fields in the singly twisted sector, we demand that Me gauge, vertex operators are of the fovi(e, 2)=V(2)V(2),
states in Eq(B7) pick up different phases under the shift whereV(z) andV(z) are both dimension 1 operators con-
(i.e.,Q-U=k/N for k=0,1,...N—1). The shift representa- structed from the conformal fields. These include the longi-
tion is uniquely determined once we fix the assignment ofudinal components as well as the ghosts. The vertex opera-
the phases. The roots of SN can be divided into sets with tors for space-time bosons carry integral ghost charges (
different phases under the shift Terms that appear in Eq. € Z) whereas for space-time fermions the ghost charges are
(B6) are determined by the monodromy igfX. [Thus, for  half-integral e Z+1/2). Here,q specifies the picture. The
N=7 we have 42 roots. 213X 7 enter in the expressions canonical choice isq=—1 for space-time bosons and
(B6) for the three bosonis’X?, and the other 223X 7 roots = —1/2 for space-time fermions. We will denote the corre-
enter in the expressioriB6) for the three boson&onjugat¢  sponding vertex operators by ;(z, z) andV_(z, z), re-
igx2.] spectively. Vertex operators in tlgg=0 picture (with zero

For prime N, there areN twisted sectors, each witN ghost charggis given bypicture changing
fixed points. To obtain the singly twisted fields correspond-

ing to the other fixed points, we simply add weights of Vo(z,2)= lim e?Te(z)V_y(z,w). (B12)
SU(N) to U such that the conformal dimension is preserved, woz

i.e., 1/2U +W)?=1/2U2. There is precisely one weight vec-

tor in each unitary representation of SU)(that satisfies the Having constructed the vertex operators for the massless

above requirement, and there &fainitary representations of states, one can in principle compute the scattering ampli-
SU(N) the |dentity 1 and the antisymmetric tensors tudes, or the corresponding couplings in the superpotential.
KN ®N;®--- ®Ny. [In the case of SU), they are the The coupling ofM chiral superfields in the superpotential is
|dent|ty 1, the welghts7 21, 35, and their conjugate weight given by the scattering amplitude of the component fields in
representationsThe twisted fields in higher twisted sectors the limit when all the external momenta are zero. Due to
are represented by the shitdJ+Q wherek=2,...N—1 holomorphicity, one needs to consider only the scatteLings of
andQ is a root vector added so as to preserve the conformdeft-handed space-time fermions, with verticés 1,5z, z),
dimension of the twisted states. Again, the higher twistedand their space-time superpartners. Since the iptghost
fields at other fixed points are obtained by adding appropriateharge in any tree-level correlation function4<, it is con-

weights. venient to choose two of the vertex operators in the
In the standard orbifold formalism, the internal part of the — 1/2-picture, one in the-1 picture, and the rest in the 0
supercurrent for the right movers can be written as picture. Using the SL(Z) invariance, the scattering ampli-

tude is therefore
. 3

I
Te=5 29X*+H.c., (B8) — —
F 2a§=:1 l,b AM:gls\Qizf dZ4dZ4"'dZMdZM

where /* are complex world-sheet fermions. The twists on X(V_1/(0,00V_1/5(1,1)V_1(o0,%)
2 can be written as shifts if we bosonize the complex fer- o e
mions: XVo(Z4,24) - -Vo(Zm, Zm)), (B13)
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TABLE IIl. The Qg andQ, charges for the untwisted sector field . The U1)g and U1) ¢ normalization radii are given at the bottom

of the table.

Field Qr Q.

ot (0,0,0,0,0,0) ¢1,+1,+1,+1,+1+7)
(0,0,0,0,0,0) ¢2,0,0,0,0,0)
(0,0,0,0,0,0) ¢-1,-3,0,0,0,0)
(0,0,0,0,0,0) (0+2,—4,0,0,0)
(0,0,0,0,0,0) (0,05 3,—5,0,0)
(0,0,0,0,0,0) (0,0,8;4,— 6,0)
(0,0,0,0,0,0) (0,0,0,8,5,~7)

2 (0,0,0,0,0,0) ¢1,+1,+1,+1,+6,0)
(0,0,0,0,0,0) €1+1,+1,+1,+1,4+7)
(0,0,0,0,0,0) ¢1,-3,0,0,0,0)
(0,0,0,0,0,0) ¢1,-1,—4,0,0,0)
(0,0,0,0,0,0) (0+2,—1,-5,0,0)
(0,0,0,0,0,0) (0,053—1,-6,0)
(0,0,0,0,0,0) (0,0,6;4,—1,-7)

¢ (0,0,0,0,0,0) ¢1,+1,+4,0,0,0)
(0,0,0,0,0,0) ¢1,+1,+1,+5,0,0)
(0,0,0,0,0,0) (0;2,+1,+1,4+6,0)
(0,0,0,0,0,0) (0,0;3,41,+1,+7)
(0,0,0,0,0,0) ¢1,-1,-1,-5,0,0)
(0,0,0,0,0,0) 1,-1-1-1,-6,0)
(0,0,0,0,0,0) (0+2,-1,-1,-1,-7)

1 1 1 1 1 1 ) ( 1 1 1 1 1 1
V(12" V(2)3'\(3)4'V(4)5 " \(5)6 V(6)7 V(1)2'V(2)3 ' V(3)4 V(4)5 V(5)6 V(6)7

where we have normalized tieeghost part of the correlation are given by the conservation of gauge cha@gs and also
function (c(0,0)c(1,1)c(¢,)) to 1. For a nonzero cou- by the conservation of th@g andH charges(Both of these
pling, the sum of théd charges as well as the sum of te  gre affected by picture changing, and therefore are neither
charges must be zero in the correspc_)ndlng scattering ampligcal nor global charges in space-timeJltimately, we
tude. Note that the supercurrent carries terms with differenfyqy|g Jike to obtain the orbifold space group selection rules
H and Q charges. Because of picture changifbandQ  awayfrom the enhanced symmetry point. This can be done
charges are not global charges even though they must Jg, ,ngigering the corresponding couplings within effective
f&gzefxleoc\i,vi?g‘;t%ezg'ztor?SrOUp tandl space group SEIGCtIO1’i1eld theory, and subsequently breaking the enhanced gauge
ervation faws. symmetry by giving VEV’s to the corresponding scalars. The
latter procedure is an effective field theory manifestation of
tuning the stringy moduli away from the enhanced symmetry
point. Once the enhanced gauge symmetry is broken com-
In this appendix we derive the space group selection ruleBletely, we obtain the space group selection rules, the
for the symmetricZ, orbifold. A priori, one needs to under- knowledge of whether a given coupling vanishes or not ac-
stand the scattering of the primary twist fields and their decording to this discrete symmejripy simply examining the
scendents to solve this problem. The general framework fosuperpotential. Note that at the enhanced symmetry point
calculating scatterings of twisted fields in orbifolds havethere are a number of fields in the untwisted sector charged
been developed in Ref9] using technigues in conformal under the enhanced gauge symmetry but neutral under the
field theory. The actual calculations, however, can be quit@riginal one. Upon using the Higgs mechanism on the en-
nontrivial. Fortunately, there exists a simpler way of deduc-hanced gauge symmetry completely, some of them are eaten
ing the space group selection rules. This other way utilizesn the super-Higgs mechanism, and some of them acquire
the techniques recently developed in Ré&f] based on the masses via the tree-level superpotential. As a result, the num-
bosonic supercurrent framework discussed in Appendix Bber of neutral scalars is precisely equal to the dimension of
The idea is to compute the scattering at the enhanced gaugfge space parametrized by the geometric moduli of the orbi-
symmetry point where the vertex operators for all the twistfold. This is to be contrasted with the fact that in the twisted
fields (up to cocycles can be expressed as exponentials ofsectors the number of fields does not depend upon the values
the Qg andQ, chargegsee Appendix B hence the problem of the geometric moduli whether they are at a generic or
can be solved relatively easily. At the enhanced gauge synmenhanced symmetry point.
metry point in the moduli space the orbifold selection rules Thus, let us start from the Narain model with+=4 space-

APPENDIX C: Z; ORBIFOLD SPACE GROUP
SELECTION RULES
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TABLE IV. The Qg andQ, charges for the twisted sector fiel@§ . The U1)§ and U1)° normalization radii are given at the bottom
of the table.

Field Qr Q
T #(—1,-3,-6,—10,~15-21) 7(-1,-3,-6,-10,-15,-21)
7(+6,44,+1,—3,-8,—14) $(+6,44,+1,—3,-8,—14)
#(—-1,-3,-6,—10-15,+21) #(-1,-3,-6,—10-15,+21)
F(—1,4+11,+8,+4,-1,-7) F(-1,4+11,+8,+4,-1,-7)
#(—1,-3,-6,—10,+20,+ 14) #(—1,-3,-6,—10,+20,+ 14)
#(—-1,-3,4+15+11,+6,0) #(—1,-3,+15+11,+6,0)
3(-1,-3,-6,4+18+13,+7) $(-1,-3,-6,+18+13,+7)
T2 2(—2,+8+2,-6,+19,+7) $(—2,+8+2,-6,+19,+7)
2(-2,4+8,+2,—6,—16,+14) $(—2,+8,+2,—6,—16,+14)
7 (+5,+1,-5-13+12,0) 7 (+5,+1,-5-13+12,0)
$(—-2,-6,49,+1,-9,4+21) 7(—2,-6,49,+1,-9,4+21)
7 (+5+1,—5+15+5-7) 7 (+5+1,—5+15+5-7)
$(—-2,-6,49,+1,—9,—21) $(—2,-6,49,+1,—9,~21)
$(-2,-6,-12,+8,—2,—14) $(-2,-6,-12,+8,—2,—14)
T 3 (+3,~5+4,+16,—4,+14) $(+3,-5+4,+16,-4,+14)
7(+3,49,-3,+9,-11,+7) 7(+3,49,-3,+9,-11,+7)
7 (+3,-5+4,—12,+3,4+21) 7(+3,-5+4,—-12,+3,+21)
7 (—4,+2,-10+2,—18,0) 7 (—4,+2,-10+2,—18,0)
7 (+3,-5+4,—12,+3,-21) 7 (+3,-5+4,—-12,+3,-21)
$(—4,+2,-10+2,+17,-7) $(—4,+2,-10+2,+17,-7)
#(—4,+2,+11,-5+10,- 14) #(—4,+2,4+11,-5,+10,-14)
1 1 1 1 1 1 1 1 1 1 1 1
V12 V(23 V(3)4 V)5 J(S)G’J(ew) ( V12 V(23" V(3)4 V(4)5 \(5)6'(6)7

time supersymmetry in four dimensions. Let the momenta ofl/\/(6)7). Thus, in this basis the twidt, is replaced by the
the internal(6 right-moving and 22 left-movingworld-sheet  shift
bosons span the (even self-dual Narain lattice
I%22=1%6x116 Here I''® is the spin(32)Z, lattice,

6.6 T,=[—%,—2_§,_ 1 _2a|_1 _3_¢
whereas the latticE®° is spanned by the momentpg(|p,) 7 T T T T T T T T T T 7T 7T

. ~7 . . _ 7
with p_,prel’" [SU(7) weight latticd, and p_.—prel’ L1015 2y(1)42)4(3)4p4), 1)

[SU(7) root latticg. Note that this corresponds to a compac-
tification on a six-torus with spacial values of the constant
background metriqy;; and (nonzerg antisymmetric tensor In this basis it is straightforward to work out ti@@; andQ_
Bij;. This Narain model has gauge group B SO(32). charges of the massless states of the model. The latter are the
The first factor SW7) comes from the oscillator excitations same as in the model discussed in Sec. lll, except for the
and momentum states of the left-moving world-sheet bosonantwisted sector singlets. Thus, instead of three neutral sin-
corresponding td"®® (i.e, the six-torus The second factor glets ¢, (see Table )l we have 21 fieldsp?, a=1,...,7,
SQ(32) comes from the other 16 left-moving world-sheet that are singlets under (@) 3® SO(8) gauge group, but are
bosons. charged under (1)® Abelian subgroup. Their charges are
Next consider theZ; orbifold model (with nonstandard given in Table IlI. By giving VEV's to these singlets we can
embedding of the gauge connectiombtained via twisting  completely break (1)® gauge symmetry. Due to the super-
the above Narain model by the twigt given in Sec. Ill.  Higgs mechanism and the corresponding superpotential after
This model hasN=1 supersymmetry, and gauge group using the Higgs mechanism, only three neutral fighgssur-
U(1)®®[U(4)*® SO(8)]. The factor U(4§®SO(8) comes vive in the massless spectrum. The rest are either eaten by
from the breaking of S(32). The factor Y1)® comes from  the gauge bosons or become heavy via the couplings in the
the breaking of S(¥). Note that, as discussed in Appendix superpotential. This field theory breaking is in one-to-one
B, we can represent the, twist (6,62, 6°||6,6% 6°) acting  correspondence with the string theory picture of moving in
in the six-torus in terms of @ (i.e., order 7 shift provided the moduli space[SU(1,1Z)\SU(1,1)/U(1)} discussed
that the right-moving supercurrent is written in the bosonizecearlier. That is, we are moving the moduli away from the
form. Here we give this shift in terms of the $DU(1)®  special point of enhanced gauge symmetry into the bulk, i.e.,
basis, where the normalization radii of the siX1¥s are  to some generic point.
given by (1/y(1)2,14(2)3,1A(3)4,1A(4)5,1N(5)6, The bosonic supercurrent is given by
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TABLE V. The Qg andQ, charges for the twisted sector fields &8fd The U1)5 and U1)? normalization radii are given at the bottom

of the table.

Field Qr Q.

st 1(-1,-3-6,-10-15-21) 1(+6,+4,+1,—3,—8,+28)
$(+6,+4,+1,—3,-8,—14) 1 (—8,+4,+1,—3,-8,—14)
1(-1,-3,-6,-10,-15+21) 1(-1,-3,-6,-10,+20,-28)
1(-1,4+11+8+4,-1,-7) 1(+6,~10,+8,+4,~1,~7)
7(—1,-3,—6,—10,+20,+14) $(—-1,-3,-6,+18-22,+14)
2(-1,-3,+15+11,+6,0) 1(-1,+11-13+11,+6,0)
1(-1,-3,-6,+18+13,+7) 1(-1,-3,+15-17+13+7)

s 1(—2,4+8+2,-6+19+7) 7(+5+1,-5-13-23+7)
7(-2,+8,+2,—6,—16,+14) $(—2,-6,49,+1,+26,+14)
1(+5+1,-5-13+12,0) 1 (-2+8,+2,+22+12,0)
2(—2,-6,49,+1,-9,+21) $(—2,+8,+2,—6,—16,—28)

2 (+5+1,~5+15+5,~7) #(-2,-6,—12,-20,+5,~7)
7(-2-6,+9,+1,-9,-21) 7(—2,-6,-12,+8,-2,+28)
7(—2,-6,-12,+8,-2,—14) 7(+5+1,+16+8,—2,—14)

s 1 (+3,-5,+4,+16,—4,+14) 7(+3,49,—3,-19,—4,+14)
2(+3,+9,-3,+9,—11,+7) 2 (—4,-12-3,+9,-11,+7)
7(+3,-5+4,—12+3,+21) #(+3,-5+4,+16,—4,—28)

1 (-4,+2,-10,+2,—18,0) 2 (+3,+9,~3,+9,+24,0)
2 (+3,-5+4,—~12+3,-21) 2(—4,42,+11,-5+10,+28)
1(-442,-1042,+17-7) 7(=4+24+11,-5-25-7)
7(—4,+2,4+11,-5+10,-14) #(+3,-5-17,-5+10,—14)
1 1 1 1 1 1 1 1 1 1 1 1
(J(l)z' V(2)3'V(3)4 (4)5 J(5)6’¢<6>7) («1)2'«2)3’ V(3)4'V(4)5 (5)6 \(6)7
1 . AN a=1, B=y=4 is allowed byQg (here one needs to take
2\/—( "’12 ' d+ e'pzazl eQu'? into account the picture changingndQ, charge conserva-
tion. On the other hand, say, the coupling witk- 8= y=1
7 is not allowed. There is, however, a higher point coupling,
+ennS e Q| tHc, (C2  namely, Q;)°TiT2S}¢3¢3 that is allowed. Upon the fields
a=1 qS% and ¢§ acquiring VEV'’s, we, therefore, have an effective

where theQ?2 charges for the currentgX® are the same as
the Q,_ charges for the fieldg in Table Ill (and this is no

coincidence for the orbifold is symmetyic
Note that the untwisted sector fielés, Q,, Ry and®,

are not charged under the enhanced)®gauge symmetry,
so that the couplings, , 3 for the untwisted sector fields do
not vanish at any point in the moduli spa@aut smoothly

vary with the moduli. The twisted sector fieldg5, andS;, do
carry U1)® charges. The ()° charges along with th@g
charges for the field$?, andS;, are given in Tables IV and put can be constructed from the latter via a rotatidinen it

Table V. Becausd?, andSa carry U1)® charges, some of is clear that in the limit of large volume of the orbifold the
the couplings\ “#7 that are nonzero at generic points vanishcouplings A% for «,B,y are exponentially suppressed,
at the enhanced gauge symmetry point.

Since the model possesses expli¢i cyclic symmetry
(a=1)—(a=2)—(a=3)—(a=1), we can confine our at-
tention to couplings @,)?T.T5SS . For example, according

to Tables Ill, IV and V, the coupllng Q1)2TLT5S] for

coupling Q,)%TiT2S:. From examining theQg and Q_
charge conservation in the scattering of sta@g)(T-T5S’,

it becomes clear that near the enhanced symmetry point upon
the fieldsSZ and Q, acquiring VEV’s, all the fieldsTi and

Tzﬁ generically become massive. Similarly, if all the VEV's
Q. andS: are nonzero, all the fieldE: are generically mas-
sive. In fact, this conclusion does not depend on being close
to the enhanced symmetry point. Thus, consider the basis for
a, B,y indices such that they label the fixed points of the
orbifold [this basis isotthe same as that of SU(D)U(1)®,

whereas the couplings“** are not. The latter couplings are
nonzero at generic points in the moduli space. From this it
should become clear that generically all the fielfs are
heavy as long as we turn on vacuum expectation values
(VEV’s) for all of the fieldsQ,, and alscS;, .
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