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An action for a string and a particle with two timelike dimensions is proposed and analyzed. Because of the
new gauge symmetries and associated constraints, the motion of each system in the background of the other is
equivalent to the effective motion with a single timelike dimension. The quantum constraints are consistent
only in critical dimensions. For the bosonic system in a flat spacetime the critical dimension is 27 or 28, with
signature~25,2! or ~26,2!, depending on whether the particle is massive or massless, respectively. For the
supersymmetric case the critical dimensions are 11 or 12, with signature~9,2! or ~10,2!, under the same
circumstances. Generalizations to multiparticles, strings, andp-branes are outlined.@S0556-2821~97!01318-0#
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I. CLASSICAL PARTICLES AND STRINGS

The idea that the fundamental theory may be formulated
in 12 or more dimensions has been receiving increased at-
tention@1–19#. It has become apparent that some of the extra
dimensions are timelike, and thus the issues associated with
more than one timelike dimensions must be addressed seri-
ously. As a first step toward theories with two or more time-
like dimensions, in which the traditional problems are over-
come, we have proposed a set of gauge symmetries and the
associated constraints, as well as a cosmological scenario
@13#. As an example, we formulated an action principle for
two particles which move freely except for a global con-
straint on each other’s momenta. In this paper we generalize
this type of action principle by discussing the example of a
string and a particle in detail, and then showing how to apply
the same methods to more particles, strings, andp-branes.
We discuss the quantum constraints, the emergence of criti-
cal dimensions, and the quantum consistent sectors. The su-
persymmetric generalization is outlined.

A. Reformulation of the two particles

Consider two particles described by their world lines
x1

m(t),x2
m(t). In our previous work@13#, we presented an

action with appropriate gauge invariances that produced the
following constraints for the momenta of the two particles:

p1
21m1

250, p2
21m2

250, p1•p250. ~1!

The two particles move freely, except for the mutual con-
straint p1•p250. Two orthogonal timelike momenta cannot
exist in a space with a single timelike dimension. The extra
constraint was the key for the two timelike dimensions and
their interpretation given in Ref.@13#. In this section we
would like to give another formulation of the action that

leads to the same results. The new formulation is better
adapted to generalizations to strings andp-branes.

We consider the following action for the two particles:

S5S1~x1 ,A1 ,e1 ,l2!1S2~x2 ,A2 ,e2 ,l1!1l1
ml2

nhmn ,
~2!

S15
1

2E0

T

dt@e1
21~]tx1

m2l2
mA1!22e1m1

2#,

and similarly forS2, wherexi
m(t),Ai(t),ei(t) are functions

of t while l i
m are independent oft. Note thatl2

m appears in
S1 andl1

m appears inS2. As we will see,l2
m is determined in

terms of canonical variables that belong to particle No. 2, so
that the presence of particle No. 2 influences particle No. 1,
and vice versa. In the path integral we integrate over thel i

m

as well as the other fields. Therefore, in the classical theory
we minimize the action with respect to thel i

m as well as the
other fields.

Thet reparametrization invariance ofSi(xi ,Ai ,ei ,l i 8) is
independent for eachi ~we denote 1852 and 2851), hence
there are two reparametrizations that eventually allow the
two gauge choicesei(t)51. The equations of motion for the
ei lead to two constraints

pi
21mi

250, ~3!

where

pi
m5ei

21~]txi
m2l i 8

m Ai !, ]tpi
m50 ~4!

are the canonical momenta, which are conserved according
to the equations of motion forxi

m .
The action is gauge invariant under the following two

gauge transformations with parametersL i(t):

dxi
m~t!5l i 8

m L i~t!, dAi~t!5]tL i~t!. ~5!

The covariant derivatives]txi
m2l i 8

m Ai may be seen as aris-
ing from the gauging of an Abelian subgroup in the spirit of
gauged Wess-Zumino-Witten~WZW! models. Because of
these gauge invariances, the equations of motion forAi lead
to two other constraints that help remove degrees of freedom
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l i 8•pi50. ~6!

Finally, we come to the role of the coupling terml1•l2
in the action. If it were not for this coupling term there would
be two independent Lorentz symmetries, one for each par-
ticle. However, because of this coupling there is a single
Lorentz symmetry, in ad-dimensional space with a metric
hmn whose signature will be determined by the solution of
all the constraints. The equations of motion for thel i give

l1
m5E

0

T

dtA1p1
m , l2

m5E
0

T

dtA2p2
m . ~7!

Since the momenta are independent oft, one finds

l1
m;p1

m , l2
m;p2

m . ~8!

Therefore, the two constraints in Eq.~6! reduce to the single
constraint

p1•p250. ~9!

We have demonstrated that the new action in Eq.~2! re-
produces the same system of constraints in Eq.~1! given by
our old action. Hence, we need to introduce two timelike
dimensions and interpret them as in our previous work. This
reformulation is more elegant and permits generalizations to
strings andp-branes, as discussed below.

B. A string and a particle

Consider a string and a particle described by a world sheet
x1

m(t,s) and a world linex2
m(t), respectively, and introduce

the action

S5S1~x1 ,A1m ,gmn ,l2!1S2~x2 ,A2 ,e2 ,l1!1l1•l2 ,

S15
1

2E0

T

dtE dsA2ggmn~]mx1
m2l2

mA1m!

3~]nx1
n2l2

nA1n!hmn , ~10!

S25
1

2E0

T

dt@e2
21~]tx2

m2l1
mA2!22e2m2

2#.

The two actionsS1,2 are invariant under independent re-
parametrizations, hence one can choose the usual conformal
gauge for the stringA2ggmn5hmn, ande251 for the par-
ticle, and obtain the following constraints from the equations
of motion ofgmn,e2 , respectively:

~D6x1
m!250, p2

21m2
250, ~11!

where

D6x1
m5~]6x1

m2l2
mA16!,

~12!

p2
m5e2

21~]tx2
m2l1

mA2!,

and the]6 derivatives are with respect to the light cone
variables s6[t6s. The equations of motion for
x1

m(t,s),x2
m(t), in the gauges we have chosen, are

]1~D2x1
m!1]2~D1x1

m!50, ]tp2
m50. ~13!

As in the two particle case, there are additional gauge invari-
ances, which may be understood in the spirit of gauged
WZW models

d1x1
m5l2

mL1~t,s!, d1A1m5]mL1~t,s!,
~14!

d2x2
m5l1

mL2~t!, d2A25]tL2~t!,

and these explain the structure of the covariant derivatives
(gmn ,e2 ,l1,2

m are invariant underd1,2). The equations of mo-
tion for A16 ,A2 give the constraints associated with these
gauge invariances

l2•D6x150, l1•p250. ~15!

Finally, the equations of motion forl1,2
m give

l1
m5E

0

T

dtE ds~D1x1
mA121D2x1

mA11!,

~16!

l2
m5E

0

T

dtA2p2
m .

Using the constraints~15!, we deduce

l1•l250. ~17!

Sincep2
m is conserved, one findsl2

m;p2
m .

From the first equation in Eq.~15! we deduce
A165 (1/l2

2) l2•]6x1 which allows us to write

D6x1
m5]6x1

m2
1

p2
2

p2
mp2•]6x1 , ~18!

which solves the constraintl2•D6x15p2•D6x150 explic-
itly, provided p2

2Þ0. From this form one sees that the com-
ponent ofx1

m that is parallel top2
m drops out of the string

system whenp2
2Þ0. Using theL1(t,s) gauge invariance

one may choose the gauge

p2•x1~t,s!52c1p2
2t5c1p2

2~s11s2!, ~19!

wherec1 is a constant. In this gauge one has

D6x1
m5]6x1

m2c1p2
m , A16~t,s!5c1Ap2

2/l2
2, ~20!

which leads to the simplification

l1
m5c1Ap2

2/l2
2E

0

T

dtE ds~]tx1
m22c1p2

m!. ~21!

The canonical momentum density for the string is
Dtx1

m5]tx1
m2A1tl2

m5]tx1
m22c1p2

m . Inserting this in the
equation above, one finds thatl1

m is proportional to thetotal
conservedmomentum of the string No. 1,

p1
m5E ds~]tx1

m22c1p2
m!, ~22!
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and that it is orthogonal to the momentum of particle No. 2.
Since bothl1

m andp1
m are gauge-independent quantities, their

relation, which was derived in a specific gauge, is also gauge
invariant. Hence we have deduced that

l1
m;p1

m , l2
m;p2

m , p1•p250, ~23!

just as in the case of two particles of the previous section.
In the lightlike casel2

2505p2
2 ~which is consistent only

if m250), the actionS1 has noA11A12 term, and acquires
an additional gauge symmetry beyond Eq.~14!:

d3x1
m~t,s!50, d3A1656]6L3~t,s!. ~24!

The constraintp2•D6x15p2•]6x150 eliminates a compo-
nent of x1

m(t,s) not parallel top2
m @this is consistent with

gauge choice~19! although in this case it follows from the
constraint#. The extraL3(t,s) gauge symmetry can be used
to gauge fixA16 to A165]6g(t,s) and then use gauge
symmetry~14! to fix g(t,s) so thatD6x1 andA16 take the
form in Eq.~20!. In this way, all the results above, including
Eq. ~23!, apply in the massless particle case as well, and this
may be understood as the limit in whichp2

2/l2
2 remains fi-

nite. However, in the background of the massless particle,
two string components, rather than only one, are eliminated
by the gauge invariances:]6x1

m2c1p2
m has no components

along the lightlikep2
m , and p2•]6x150, whereas for the

massive particle these two conditions correspond to one and
the same component. This kind of phenomenon happened
also in the massless limit of the two particle case, as ex-
plained in Ref.@13#.

The equation of motion for the string is easily solved
since it has the free string form

]1]2x1
m50. ~25!

As usual, the general solution is given in terms of left and
right movers

x1m5x1m
~1 !~s1!1x1m

~2 !~s2!1c1p2mt

x1m
~6 !~s6!5

1

2 S q1m1
s6

2p
p1mD 2 i (

nÞ0

1

n
anm

~6 !eins6
.

The term proportional toc1p2
mt is added so as to be consis-

tent with the definition of the total string momentump1
m that

followed from the canonical formalism. The canonical pair is
(q1m ,p1m), while the anm

(6) have the usual string oscillator
commutation rules.

The equations of motion for particle No. 2 are also solved
easily sincep2

m is conserved. The constraint in Eq.~15!, to-
gether with the definition ofp2

m in terms of the velocity
]tx2

m , give A2(t)5 (1/l1
2)l1•]tx2 , so that

p2
m5]tx2

m2p1
m 1

p1
2

p1•]tx2 . ~26!

Using theL2(t) gauge invariance, one can choose the gauge

p1•]tx2~t!5c2p1
2, ~27!

wherec2 is a constant. In this gauge the conserved momen-
tum of particle No. 2 andA2 become

p2
m5]tx2

m2c2p1
m , A25c2Ap1

2/l1
2. ~28!

This form is valid for the massive as well as massless string
states~i.e., p1

2/l1
2 finite asp1

2→0, as above!. The solution of
the particle equation is

x2
m~t!5~p2

m1c2p1
m!t1q2

m , ~29!

showing that it moves as a free particle, except for the or-
thogonality constraintp1•p250. The canonical pair is
(q2

m ,p2
m).

By reexamining the equations forl1,2
m one finds that

l1
m5Ta1p1

m , l2
m5Ta2p2

m , ~30!

wherea1,2 are constant zero modes of the gauge fields that
have survived in the general solution

A16~t,s![a1 , A2~t!5a2 , ~31!

and that the two constantsc1,2 are equal and given by
c15c25Ta1a2 .

II. QUANTIZATION AND CRITICAL DIMENSIONS

In the previous section it was shown that the particle
and string systems move as free systems except for a set
of constraints. The canonical degrees of freedom
(q2

m ,p2
m),(q1

m ,p1
m),anm

6 satisfy the first class constraints that
follow from Eqs.~11!, ~15!, ~23!:

m2Þ0: F[p2
21m2

250, Ln
650, J0

6[p2•p150,
~32!

m250: F[p2
250, Ln

650, Jn
6[p2•an

650,

where the Virasoro operators are

m2Þ0: Ln
65

1

2 (
m52`

`

an2m
~6 !m

•am
~6 !nS hmn2

p2mp2n

p2
2 D ,

~33!

m250: Ln
65

1

2 (
m52`

`

an2m
~6 !m

•am
~6 !nhmn .

We have used a0m
6 5p1m , therefore, the constraint

J0
6[p1•p250 is included above form250 as well. The

second term inLn
6 for m2Þ0 could be dropped since

p2•an
650 was taken as a gauge choice, which may be added

as an additional constraintJn
6[p2•an

650 for the massive
case as well. This may be done classically as well as in a
light cone quantization, as we will see below. However, this
gauge choice becomes a second class constraint in the mas-
sive casem2Þ0, that is harder to deal with in a covariant
quantization~since it has an anomaly proportional tom2

2)

@Jn
6 ,Jm

6#5nFdn1m2nm2
2dn1m . ~34!

As we will see, this will play a role in the covariant quanti-
zation of the system and in the determination of the critical
dimension.

3666 56ITZHAK BARS AND COSTAS KOUNNAS



It is evident from the analogous two particle problem that
there is no solution~neither classical nor quantum! unless
there are two or more timelike dimensions. Assuming two
timelike dimensions the signature of the space is given by
hmn5diag(21,21,1,...,1). Hence, there is a SO(d22,2)
covariance ind dimensions.d will be determined in the
quantum theory. It will be fixed to a critical dimension
dcrit527 for m2Þ0, or dcrit528 for m250, to eliminate
quantum anomalies.

We will first solve the constraints classically and hence
we will add Jn

650 as a gauge choice to the massive case as
well. This solution will be used in a light cone quantization.
Using the SO(d22,2) symmetry one can boostp2

m to a time-
like rest frame if the massm2Þ0, or to a lightlike frame if
the massm250,

p̂2
m5~m2,0;0W ,0! or p̂2

m5~ up2u,0;0W ,p2!, ~35!

where the first two entries are timelike and the rest are space-
like. This allows the solution of three constraints in the form

m2Þ0: p̂1m5~0, p̂1I !, âmn
6 5~0,â In

6 !,
~36!

m250: p̂1
m5~0,p̂1I ,0!, âmn

6 5~0,â In
6 ,0!,

leaving one constraint to be solved

Ln
65

1

2 (
m52`

`

ân2m
6

•âm
650, ~37!

whereâ In
6 are the string variables in the rest frame or light

cone frame of particle No. 2, and the indexI labels a sub-
space of signature (21,1, . . . ,1) whose dimension is
(d21) for m2Þ0 and (d22) for m250. Therefore, there
remains a Lorentz symmetry SO(d22,1) for m2Þ0 and SO
(d23,1) for m250. Note that for m250, the solutions
âmn

6 ,p̂1
m have no components along the lightlikep̂2

m . This is
due to the gauge symmetry~24! as explained above.

A. Covariant quantization

To quantize covariantly and implement the constraints
~32! on the states one may use the Becchi-Rouet-Stora-
Tyutin ~BRST! formalism. The BRST procedure is valid for
the first class constraints. We will pretend as if it applies to
both massless and massive cases with the constraintsF,
Ln

6 ,Jn
6 in order to illustrate the problem with the anomaly in

Eq. ~34!, and will find out that this set of constraints works
only for m250. Then we will discuss separately the massive
case by dealing directly only with the first class constraints
~without theJn

6).
Corresponding to the constraintsF,Ln

6 ,Jn
6 one intro-

duces the ghosts (B,C), (bn
6 ,cn

6), and (bn
6 ,gn

6). The alge-
bra of the constraints and their anomalies are

@Ln
6 ,Lm

6#5~n2m!Ln1m
6 1

d

12
~n32n!dn1m,0 ,

@Ln
6 ,Jm

6#52mJm
6 , ~38!

@Jn
6 ,Jm

6#5nFdn1m2nm2
2dn1m .

The BRST operator is

Q5CF1(
6

(
n

@c2n
6 Ln

61g2n
6 Jn

6#

2
1

2(6 (
n,m

~n2m!c2n
6 c2m

6 bn1m
6

2
1

2(6 (
m

mg2m
6 gm

6B

2(
6

(
n,m

~2m!c2n
6 g2m

6 bn1m
6 2(

6
c0

6a62CA,

~39!

wherea6,A are anomaly constants to be determined by re-
quiring Q250. By anticommutingQ with the antighosts
B,bn ,bn , one gets the total gauge generators of the BRST-
quantized theory

F tot5F2A,

Ln
~6 !tot5Ln

61(
m

~n2m!bn1m
6 c2m

6 1(
m

~2m!bn1m
6 g2m

6

2a6dn0 , ~40!

Jn
~6 !tot5Jn

61nS gn
6B1(

m
bn1m

6 c2m
6 D .

RequiringQ250 is equivalent to requiring the total genera-
tors to close without anomalies. For a ghost system of di-
mension h the Virasoro generator is Ln

(h)

5(m@n(h21)2m#bn1m
(h) c2m

(12h) and the anomaly in its alge-
bra is

anom~h!5dn1m
1

12 @n3ch12n#,
~41!

ch5212h2112h22.

Therefore, the total anomaly in the algebra ofLn
(6)tot is

n3

12
~d1ch521ch51!1

n

12
~2d124a61212!, ~42!

with the total central charge

ctot5d1ch521ch515d228. ~43!

The Jn
(6)tot algebra is

@Jn
~6 !tot ,Jm

~6 !tot#5nF totdn1m1n~A2m2
2!dn1m , ~44!

and

@Ln
~6 !tot,Jm

~6 !tot#52mJn1m
~6 !tot . ~45!

So, the total anomaly cancels if

d528, a651, A5m2
2 . ~46!
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Under these conditions one finds

F tot5p2
21m2

22A5p2
250. ~47!

So, the quantum particle must bemassless p2
250, and the

critical dimension for the total system is 28. The global Lor-
entz symmetry of this quantum system is SO(26,2). There-
fore, the analysis applies correctly only to them250 case, as
anticipated above.

For m2Þ0, the correct treatment of the second class con-
straintJn

(6)50 needs more care. Since the present model is
in the class of gauged WZW models, one may imitate the
BRST procedure advocated in Ref.@20# to show that the final
result is equivalent to the standard coset construction. In the
coset language our case corresponds toG/H with G5Rd and
H5R, and our Virasoro generator in Eq.~33! is indeed the
coset construction for the conformal field theory forRd/R.
The central charge of this Virasoro generator isd21, and for
the quantum consistency of the conformal field theory it
must be set equal to 26. Hence,

m2Þ0: dcrit527, ~48!

and the global symmetry of the system with a massive par-
ticle No. 2 is SO(25,2).

This result may be obtained more directly without appeal-
ing to the formalism of Ref.@20#. Namely, one can avoid the
Jn

(6)50 gauge fixing and work directly with the oscillators

ãnm
~6 !5anm

~6 !2
1

p2
2

p2mp2•an
~6 ! , ~49!

since theseãnm
(6) solve explicitly the original constraints

p2•D6x150. The Virasoro constraints in Eq.~33! are writ-
ten directly in terms of these oscillators

m250: Ln
65

1

2 (
m52`

`

ãn2m
~6 !m

•ãm
~6 !nhmn , ~50!

and their commutation rules are

@ ãn
~6 !n ,ãm

~6 !n#5ndn1mS hmn2
p2

mp2
n

p2
2 D . ~51!

The only constraints that need to be considered are the first
class constraintsLn

650, F5p2
21m2

250, J05p1•p250. In
the algebra of these constraints all commutators are zero,
except for

@Ln
6 ,Lm

6#5~n2m!Ln1m
6 1

d21

12
~n32n!dn1m,0 , ~52!

where thed21 anomaly comes from

S hmn2
p2

mp2
n

p2
2 D S hmn2

p2mp2n

p2
2 D 5d21. ~53!

The BRST operator is then

Q5(
6

(
n

c2n
6 Ln

62
1

2(6 (
n,m

~n2m!c2n
6 c2m

6 bn1m
6 1CF

1g0J02(
6

c0
6a6, ~54!

and the standard procedure gives the critical dimension
d21526.

B. Light cone quantization

The remaining constraints in the rest frame or light cone
frame of particle No. 2 are (]6x̂16

I )250 or Ln
650 of Eq.

~37!. These are the familiar Virasoro constraints of string
theory, which can be solved explicitly by taking advantage
of the conformal invariance of the string system and choos-
ing the light cone gaugex̂1

15 p̂1
1t,

ân
~6 !25

1

2p̂1
1 (

m52`

`

(
I

ân2m
~6 !i âm

~6 !i2
ã

p̂1
1

dn,0 ,

~55!

ân
~6 !15 p̂1

1dn,0 .

The unconstrained degrees of freedom are the transverse
string oscillatorsaW n

(6) i that describe the left or right moving
string excitations and the center-of-mass canonical degrees
of freedom for the string (q̂1 ,p̂1) and particle (q̂2 ,p̂2), all of
which are expressed in the rest frame or light cone frame of
particle No. 2.

The Lorentz symmetry SO(d22,1) @or SO(d23,1)],
which was manifest in the special frame@Eqs.~35!–~37!#, is
hidden in the light cone gauge~55! for the string. As is well
known, the quantum algebra for thenormal-orderedgenera-
tors M̂ IJ5(M̂ 21,M̂ i 1,M̂ i 2,M̂ i j ),

M̂ 215q̂1
2p̂1

1 , M̂ i 15q̂1
i p̂1

1 ,

M̂ i 25q̂1
i p̂1

22q̂1
2p̂1

i 2 i(
6

(
nÞ0

1

n
:â2n

~6 !i ân
~6 !2 :, ~56!

M̂ i j 5q̂1
i p̂1

j 2q̂1
j p̂1

i 2 i(
6

(
nÞ0

1

n
:â2n

~6 !i ân
~6 ! j :,

of this symmetry closes correctly only if the number of trans-
verse dimensions labeled byi is 24 andã51 ~see, e.g., Ref.
@21#!. The number of transverse dimensions is (d23)524
for m2Þ0, and (d24)524 for m250. Therefore, the par-
ticle and string system has a critical dimension

m2Þ0: dcrit527,
~57!

m250: dcrit528,

so the generatorsM̂ IJ represent correctly SO(25,1) at the
quantum level.

The original action was invariant under the full classical
rotation invariance SO(d22,2). For the critical dimension
this classical symmetry is SO(25,2) ifm2Þ0 and
SO(26,2) ifm250. We now need to show that the quantum
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theory has the higher symmetry by verifying that the Lorentz
algebra closes. To construct the remaining generators of
SO(25,2)@or SO(26,2)], we need to boost back to the gen-
eral frame of particle No. 2 and include the canonical de-
grees of freedom of particle No. 2.

For the massive particlem2Þ0 in the general frame, the
mass shell constraint is solved by the SO(d22,2) covariant
vector

p2
m5~E28 ,p2

I !, E285Ap2•p21m2
2, ~58!

where p2
I is a SO(25,1) vector. The boost of any vector

v̂m5( v̂08,v̂ I) defined in the particle rest frame~denoted with
the hats! to the vectorvm5(v08,v I) defined in the particle
general frame~no hat! is given by

v085
1

m2

~E28v̂081p2• v̂ !,

~59!

v I5 v̂ I1
p2

I

m2
S p2• v̂

E281m2

1 v̂08D ,

where the sum overI in the dot products is SO(25,1) cova-
riant in 26 dimensions. Of course, the transformation is such
that dot products are SO(25,2) invariant in the full 27 dimen-
sionsv̂25v2. The string and particle can now be described
in the general frame by boosting the rest frame solution in

Eqs.~35!–~37!. Taking into accountân
(6)0850, one obtains

an
~6 !085

p2•ân
6

m2

, an
~6 !I5ân

~6 !I1
p2

I

m2

p2•ân
6

E281m2

. ~60!

These are expected to form covariant SO(25,2) vectors

an
(6)m5(an

(6)08 ,an
(6)I), as will be verified below. Further-

more, because of the SO(25,2) invariance of dot products,
the fully SO(25,2) covariant Virasoro constraints in Eq.~33!
are equal to Eq.~37! for any p2

m5(E28 ,p2
I ). Therefore, the

explicit solution of these constraints is given in terms of only
the 24 transverse oscillators in Eq.~55!. Thus, the 27 com-
ponentsan

(6)m given in Eq.~60! are also expressed in terms
of the 24 oscillators in Eq.~55! which are the ones that solve
all the constraints in the general frame of the massive par-
ticle. So, for example, the 08 component is

an
~6 !085

1

m2

~2p2
1

•ân
~6 !22p2

2p1
1dn,01p2

i an
~6 !i !,

~61!

whereân
(6)2 is quadratic in the 24 transverse oscillators as

given in Eq.~55!.
We are now ready to construct the generators

Mmn5(M08I ,MIJ) of SO(25,2) in the general frame of the
massive particle No. 2. They are given by

M08I5
1

2
~q2

I E281E28q2
I !1

p2JM̂
JI

E281m2

,

~62!

MIJ5q2
I p2

J2q2
Jp2

I 1M̂ IJ,

where M̂ IJ, which satisfy the SO(25,1) Lie algebra, are
given in terms of the 24 transverse string oscillators in Eq.
~56!. It can be checked that theseMmn satisfy the SO(25,2)
Lie algebra without any anomalies, and furthermore, that
they rotate thean

(6)m of Eq. ~60! as vectors

@Mmn,an
~6 !l#5 ihmlan

~6 !n2 ihnlan
~6 !m . ~63!

This last property is trivial for theMIJ,an
(6)K since it is the

same as the usual 26-dimensional string in the light cone
gauge. The new feature is the structure ofM08I . It can be
checked that this structure automatically closes into the
higher algebra SO(25,2) provided theM̂ IJ form the
SO(25,1) Lie algebra.

The form of M08I follows from rather general properties
of cosets. Thean

(6)m are given by boosting theân
(6)m with a

p2
m-dependent boost

an
~6 !m5Tn

m~p2!ân
~6 !n , ~64!

whereTn
m(p2) is in the coset SO(25,2)/SO(25,1). When a

general SO(25,2) transformation is applied, it can be rewrit-
ten as

an
~6 !m→Ln

man
~6 !n5@LT~p2!#n

mân
~6 !n5@T~p28!H#n

mân
~6 !n ,

~65!

wherep28
m5Ln

mp2
n , andH(p2 ,L) is an element in the sub-

group SO(25,1) but its parameters depend on a function of
both p2

m and Ln
m . WhenL is an element of SO(25,1), one

hasH5L, therefore, the subgroup is implemented on the 26
ân

(6)I andp2
I by thetotal particle and string generatorsMIJ.

Of course, theân
(6)08 is invariant under this combined trans-

formation since it is a dot product. The remaining
SO(25,2)/SO(25,1) coset transformations have generators
that are precisely theM08I given above, and they automati-
cally take into account the complicated nature ofH(p2 ,L).

The outcome of the light cone quantization form2Þ0 is a
critical dimensiond527 with signature (25,2), in agreement
with the covariant quantization.

The light cone quantization for them250 case can be
done in a similar way. One needs to boost back from the
light cone frame of particle No. 2 to the general frame. It is
a straightforward exercise and there are no oscillator order-
ing problems, just as in the massive case. Therefore, the
critical dimension isd528 with signature (26,2), in agree-
ment with the BRST quantization.

III. MULTIPARTICLES, STRINGS, p-BRANES

The type of action discussed in this paper can be gener-
alized to other systems. For example, for three particles

S5S11S21S31l1•l21l2•l31l3•l1 , ~66!

where S1(x1
m ,A12,A13,e1 ,l2

m ,l3
m) is the action for particle

No. 1 in the background of particles Nos. 2,3, constructed in
terms of gauge-covariant derivatives
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Dtx1
m5]tx1

m2A12l2
m2A13l3

m ~67!

in the spirit of gauged WZW models. So, the coset isRd/R2.
Similarly for the actionsS2,3 which are obtained by a cyclic
permutation of the indices 1,2,3. Because of the gauge in-
variances one finds constraints, and going through a similar
analysis as the two particle case, one determinesl i

m;pi
m and

the constraints

pi•pj1mi
2d i j 50. ~68!

The solution of this system of constraints requires three time-
like coordinates. In the bosonic case there seems to be no
limit on the number of particles and corresponding new time-
like dimensions, but with supersymmetry there are hints for
both sufficient and necessary reasons to have a minimum as
well as a maximum of three timelike dimensions in a setting
that is SO(11,3) covariant@14#. The structures of Ref.@14#
were found to be necessary and sufficient to unify type-A
and type-B supersymmetries. This unification is possible
with a minimum of three timelike dimensions and extending
the general structure beyond 14 dimensions is not required
by any known phenomena. Furthermore, there seems to be
an obstruction to Yang-Mills supersymmetric systems be-
yond 14 dimensions@16#, thus providing a hint for a maxi-
mum of three timelike dimensions.

The same approach can be applied to a string and the two
particles, with results that can be guessed from the previ-
ously discussed cases, of a string and one particle, and the
three particles. The general result is that when a massive
particle is added one needs to add (0,1) dimensions, i.e., one
timelike dimension but no spacelike dimensions, and when a
massless particle is added one must add (1,1), i.e., one time
plus one space dimensions. Similarly, one may substitute a
membrane for a string, and so on for otherp-branes, in the
case of classicalp-branes. Of course, one does not know
how to solve the quantum theory that includes membranes or
p-branes and, therefore, there is no reliable statement on the
number of dimensions for which the quantum theory is con-
sistent. However, there are partial hints thatdcrit511 for su-
permembranes@22#, therefore, for the combined supermem-
brane and superparticle system, one may extrapolate these
hints to d512 with signature (10,2) if the superparticle is
massive ord513 with signature (11,2) if the superparticle is
massless. The supersymmetry of such a system is not stan-
dard, as discussed in Ref.@23# and the next section.

Next, we consider two strings, with an action
S5S11S21l1•l2, where bothS1,2 are string actions of the
form ~10!. The equations of motion and constraints for each
string can be solved, both classically and quantum mechani-
cally, following the same steps as Sec. I B and Sec. II. But
now we find new features in the quantum consistency of the
combined system. Recall that in consistent sectors the
masses of each string are given by2pi

25Ni21, whereNi

are the oscillator excitation levels. Perhaps the simplest way
to arrive at the critical dimension is to note that a quantum
consistent string must have 26 dimensions after putting the
other string in one of its massive or massless states. If the
second string is in a massless state, its effect on the first
string is the same as a massless particle. Then the total num-
ber of dimensions for string No. 1 has to be 28 with signature

(26,2), as we have shown in Sec. II. On the other hand, if the
second string is in a massive state, its effect on the first string
is the same as a massive particle, and the number of dimen-
sions must be 27, with signature (25,2). There is also a third
case when the mass of the second string is tachyonic. Then
the number of dimensions is also 27, but with signature
(26,1). The roles of the two strings may be reversed and
similar statements would be made for the critical dimension
of string No. 2. These statements cannot be all simulta-
neously right in the same theory, since the classical theory is
defined with a fixed number of dimensions for both strings.
Hence, as the consistent quantum sectors, we must select
only the mass sectors that are simultaneously consistent for
both strings for a fixed number of dimensions. The sectors
are defined by whether the masses (2p1

2 ,2p2
2) are simulta-

neously zero, positive, or negative, and evidently the only
consistent sectors are

~26,2!: ~2p1
2 ,2p2

2!5~0,0!,

~25,2!: ~2p1
2 ,2p2

2!5~1,1 !, ~69!

~26,1!: ~2p1
2 ,2p2

2!5~2,2 !.

The (0,0) sector which is possible in 28 dimensions has only
one state, similarly the (2,2) sector in 27 dimensions has
only one state, while the (1,1) sector in 27 dimensions has
an infinite number of massive states from each string. Here
we have assumed that the conformal field theory for each
string has no spectator sectors, that is that all degrees of
freedom of both strings are coupled via the couplingl1•l2 .
Of course, this assumption can be modified by changing the
model.

Consider a model that has one dimension for string No. 1
which remains uncoupled, while all other (d121) dimen-
sions of string No. 1 are coupled to thed2 dimensions of
string No. 2 vial1•l2;p1•p2, so thatd25(d121). So,
string No. 1 has one extra dimension. We need to consider
again the values of (2p1

2 ,2p2
2). The mass shell conditions

in consistent sectors are now2p1
21 p̃ 25N121 and

2p2
25N221, where p̃ 2 is the zero mode of the extra di-

mension of string No. 1. If this dimension is compact there
would be contributions from the winding sectors as well. In
this model the sector (2p1

2 ,2p2
2)5(1,0) is consistent for

d1528 with signature (26,2) andd2527 with signature
(25,2). There are an infinite number states from string No. 1
and only one state from string No. 2. Evidently, one can
construct various consistent models provided the sectors are
selected as above.

However, it is not clear that such sectors are self-
consistent by themselves under interactions. It is not yet
clear what interactions should be considered. If all interac-
tions defined through vertex operator products of both strings
are included, then the sectors identified above do not seem to
remain isolated from others. Perhaps one can make sense of
interactions that mix sectors of different dimensions and sig-
natures. More study is required to understand such issues.
These questions did not arise for the string and particle or
string and the two particle systems.
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IV. SUPERSYMMETRY

In a separate publication the supersymmetric version of
the superstring and a massive or massless superparticle will
be discussed in detail@23#. This involves a construction of an
action for the massive superparticle and a more general su-
perstring action that is invariant under a generalized super-
symmetry. Here we wish to mention some generalities and
ideas for future applications and improvements. By extrapo-
lating from the results of the present paper to the supersym-
metric case, one expects critical dimensionsd512 for
m250 and d511 for m2Þ0 with a Lorentz symmetry
SO(10,2) and SO(9,2), respectively. Furthermore, as ex-
pected, quite generally from Ref.@5#, and from discussions
in Refs.@12,13,16#, the generalized superalgebra has to be

$Qa ,Qb%5gab
mnp1mp2n , ~70!

where Qa is the Majorana-Weyl spinor of SO(10,2) or
SO(9,2) with 32 real components. In the light cone frame of
the massless particle No. 2~as well as in the rest frame of the
massive particle No. 2!, the remaining Lorentz symmetry is
SO(9,1) and the supersymmetry reduces to the standard form
of the ten-dimensional type IIA. Furthermore, the superstring
reduces to the usual ten-dimensional type IIA string. By con-
trast, in the general frame, or in the action, there is full co-
variance under SO(10,2) or SO(9,2).

We believe that the massless systemm250, underlies a
supergravity theory in 12 dimensions, with bilocal fields
F(x1 ,x2) describing the string-particle system, along the
lines first suggested in Ref.@5#. This supergravity theory has
been partially realized in the special light cone frame in Ref.
@17#, but in a single Kaluza-Klein mode of the bilocal fields

F(x1 ,x2) ~that is particle No. 2 has been frozen to be at a
fixed momentump2

m). Similar considerations for the two par-
ticles ~rather than string and particle! underlie the Yang-
Mills theories in 12 dimensions, which have also been only
partially realized in a similar Kaluza-Klein mode@7#.

As has been argued in Ref.@14#, the unification of type-A
and type-B supersymmetries point to a unifying supersym-
metric structure in 14 dimensions with signature (11,3).
Some sectors of such a structure can be constructed by con-
sidering three superparticles, or a superstring with two super-
particles, etc. It is expected from Ref.@14#, and it has been
confirmed in Ref.@16#, that the three superparticle system
underlies a super Yang-Mills theory in 14 dimensions. This
theory has been partially constructed@15# in a Kaluza-Klein
sector in the same sense as the two particle case~i.e., the
sector in which the momenta of the two particles out of three
are frozen!. A superstring and two superparticles probably
underlie a supergravity in 14 dimensions that would gener-
alize @17# to 14 dimensions. A more general approach that
includes all Kaluza-Klein modes has been illustrated in Ref.
@12# for free fields. This approach needs to be further devel-
oped to include interactions by figuring out the calculus of
representations of the new supersymmetry~70!. It could then
be applied to the construction of the full 12- or 14-
dimensional supergravity and super Yang-Mills theories in
all Kaluza-Klein sectors.
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