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String and particle with two times
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An action for a string and a particle with two timelike dimensions is proposed and analyzed. Because of the
new gauge symmetries and associated constraints, the motion of each system in the background of the other is
equivalent to the effective motion with a single timelike dimension. The quantum constraints are consistent
only in critical dimensions. For the bosonic system in a flat spacetime the critical dimension is 27 or 28, with
signature(25,2 or (26,2, depending on whether the particle is massive or massless, respectively. For the
supersymmetric case the critical dimensions are 11 or 12, with signéReor (10,2, under the same
circumstances. Generalizations to multiparticles, strings,pahchnes are outlinedS0556-282(97)01318-Q

PACS numbgs): 11.25.Hf, 04.20.Cv, 04.20.Jb

I. CLASSICAL PARTICLES AND STRINGS leads to the same results. The new formulation is better
adapted to generalizations to strings gntiranes.
The idea that the fundamental theory may be formulated We consider the following action for the two particles:
in 12 or more dimensions has been receiving increased at-
tention[1-19). It has become apparent that some of the extra S=S1(X1,A1,€1,15) +Sy(X2,A2,€82, 1) + N N37,,,
dimensions are timelike, and thus the issues associated with
more than one timelike dimensions must be addressed seri- 1(7 1 TR 5
ously. As a first step toward theories with two or more time- Sl=§f0 drie; “(dxf —A;A) —emi],
like dimensions, in which the traditional problems are over-
come, we have proposed a set of gauge symmetries and t%ﬂd similarly forS,, wherex/“(r),A;(7),e() are functions

associated constraints, as well as a cosmological scenarja .\ hile N~ are independent of. Note that\% appears in
. . . i . 2
[13]. As an example, we formulated an action principle forSl and\ % appears irS,. As we will see ) is determined in

two particles which move freely except for a global con- : . .
straint on each other’'s momenta. In this paper we generaliztlﬁrmS of canonical vanab_les that be_Iong to partlcle_ No. 2, so
that the presence of particle No. 2 influences particle No. 1,

this type of action principle by discussing the example of a d vi in th hi | :

string and a particle in detail, and then showing how to apply"ln vice versa. In t € path Integra we.mtegrate oyer)\lghe
the same methods to more particles, strings, prtanes. as well as the other fields. Therefore, in the classical theory
We discuss the quantum constraints, the emergence of critf/® Minimize the action with respect to th¢ as well as the

cal dimensions, and the quantum consistent sectors. The sgther fields. o _
persymmetric generalization is outlined. ~ The 7 reparametrization invariance 8f(x;,A; & ,Ai’) is
independent for each(we denote 1=2 and 2=1), hence

. ] there are two reparametrizations that eventually allow the
A. Reformulation of the two particles two gauge choices;(7) = 1. The equations of motion for the

Consider two particles described by their world lines€; lead to two constraints
X§(7),x5(7). In our previous work{13], we presented an

ion Wi i invari Z+m?=0 )
action with appropriate gauge invariances that produced the pi i =Y
following constraints for the momenta of the two particles: h

where

@)

pi+mi{=0, p;+m;=0, py-p,=0. (1) ) )
pr=e "(9X"—NiA), d.pf'=0 4
The two particles move freely, except for the mutual con- . . .
straintp, - p,=0. Two orthogonal timelike momenta cannot are the canonical momenta, which are conserved according
exist in a space with a single timelike dimension. The extrd® the equations of motion for”. _
constraint was the key for the two timelike dimensions and TN€ action is gauge invariant under the following two
their interpretation given in Refi13]. In this section we 9auge transformations with parameteérg ):

would like to give another formulation of the action that u
X T) =N A(T), SA(T)=3,A(7). <)

*On sabbatical leave from the Department of Physics and AsThe covariant derivatives x{*—\/;A; may be seen as aris-
tronomy, University of Southern California, Los Angeles, CA ing from the gauging of an Abelian subgroup in the spirit of

90089-0484. gauged Wess-Zumino-WittetWZW) models. Because of
'On leave from Ecole Normale Sipeure, 24 rue Lhomond, these gauge invariances, the equations of motior\fdead
F-75231, Paris, Cedex 05, France. to two other constraints that help remove degrees of freedom
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56 STRING AND PARTICLE WITH TWO TIMES 3665

\i - p;=0. (6) 9.(D_x*)+d_(D,xt)=0, 9,p&=0. (13)

Finally, we come to the role of the coupling tefm-X,  As in the two particle case, there are additional gauge invari-
in the action. If it were not for this coupling term there would ances, which may be understood in the spirit of gauged
be two independent Lorentz symmetries, one for each pamwZw models
ticle. However, because of this coupling there is a single

Lorentz symmetry, in a-dimensional space with a metric SX{=NsA(7,0), 61A1m=ImA1(T,0), 14
7., Whose signature will be determined by the solution of (14
all the constraints. The equations of motion for Megive OX5=NIAL(T), 8,A,=3.Ax(7),
T T and these explain the structure of the covariant derivatives
J - m J - 19
N fo drApT, A% fo d7Azps - @) (9gmn.€2,\{; are invariant undes; ;). The equations of mo-
tion for A, ,A, give the constraints associated with these
Since the momenta are independent-obne finds gauge invariances
N~pf, A~ph. (8 N2-D.x;=0, Ny-p2=0. (15

Therefore, the two constraints in E@) reduce to the single Finally, the equations of motion fory , give
constraint

T
pl.pzzo‘ (9) )\f: fo de dO‘(D+XfA1_+D_XfA1+),
16
We have demonstrated that the new action in @.re- 18
produces the same system of constraints in(Eggiven by A= deTA p
our old action. Hence, we need to introduce two timelike 2 Jo 22
dimensions and interpret them as in our previous work. This
reformulation is more elegant and permits generalizations t&Jsing the constraintél5), we deduce
strings andp-branes, as discussed below.
Ai-Np=0. 17

B. A string and a particle : : .
g P Sincep¥ is conserved, one finds; ~p% .

Consider a string and a particle described by a world sheet From the first equation in Eqg.(15) we deduce

x{(7,0) and a world linex5(7), respectively, and introduce A, . = (1/)\3) \,- 3. X; which allows us to write
the action - -

1
S=S1(X1,A1m Imn A 2) +S(X2,Az2,€2, M 1) T N1+ 3, Dixfl‘zatx‘f—gplz’“pz.atxly (18
2
1(T
Slzzfo de do—=gg"(Imx) =N ALm) which solves the constraint,- D . x;=p,-D.x;=0 explic-
itly, provided p5# 0. From this form one sees that the com-
X (InX] = N3A10) 1,40 (10)  ponent ofx{ that is parallel top5 drops out of the string

system Wherpgvﬁo. Using theA(7,0) gauge invariance
1(7 1 ) ) one may choose the gauge
5225 dre, "(9, X5 —N{Az) —e,m3].
0 _
P2-X4(7,0) =2 p57=C1p3(c " +07), (19
The two actionsS, , are invariant under independent re-
parametrizations, hence one can choose the usual conform¥
gauge for the string/—gg™"= ™", ande,=1 for the par- P B >
ticle, and obtain the following constraints from the equations D.ox{=d.x{—c1p5, Aj+(7,0)=C1Vp3/N3, (20
of motion ofg™",e,, respectively:

herec, is a constant. In this gauge one has

which leads to the simplification

(D.x%)2=0, pa+m3=0, (11) .
)\’fzcl\/pil)\gf dff do(a.xt—2c,p4). (21
where 0
D.xf=(d+X{—N5A 1), The canonical momentum density for the string is
- - - 12) B g b B g ol w ; .
( D x{=dx{—AN5=0d.X{—2c.p5. Inserting this in the
py=e, (I X5 —\IA,), equation above, one finds thef is proportional to theotal

conservedmomentum of the string No. 1,
and theg. derivatives are with respect to the light cone
variables o*=r1+0. The equations of motion for i u "
X4(7,0),x5(7), in the gauges we have chosen, are pl_f do(dxy'=2C1p3), (22
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and that it is orthogonal to the momentum of particle No. 2.wherec, is a constant. In this gauge the conserved momen-
Since both\{ andp/" are gauge-independent quantities, theirtum of particle No. 2 and\, become

relation, which was derived in a specific gauge, is also gauge

invariant. Hence we have deduced that PS=0.x5—CopY, Ap=CoVpi/Ai. (28)
Né~ph, Ns~p4, p;-p,=0, (23)  This form is valid for the massive as well as massless string

states(i.e., p2/A? finite asp?—0, as above The solution of
just as in the case of two particles of the previous section. the particle equation is
In the lightlike case\5=0=p3 (which is consistent only
if m,=0), the actionS,; has noA, . A,_ term, and acquires X5(7)=(p5+cpy)T+as, (29

an additional gauge symmetry beyond Etr): showing that it moves as a free patrticle, except for the or-

55x(7,0)=0, 83A1.=*.As(1,0). (24) Ehc;go}rl?lity constraintp;-p,=0. The canonical pair is
dz.Pz)-
The constrainp,-D . X;=p,-d-X;=0 eliminates a compo- By reexamining the equations far’, one finds that

nent of x{(7,0) not parallel top4 [this is consistent with
gauge choicd€19) although in this case it follows from the
constraint. The extraA 3(7,0) gauge symmetry can be used
to gauge fixA;+ to A;-=d.y(7,0) and then use gauge
symmetry(14) to fix y(7,0) so thatD . x; andA .. take the
form in Eq.(20). In this way, all the results above, including AL (r0)=a;, A7) =a,, (3D
Eq. (23), apply in the massless particle case as well, and this
may be understood as the limit in whi@$/A3 remains fi- and that the two constants,, are equal and given by
nite. However, in the background of the massless particle$1=C>=Ta;a,.
two string components, rather than only one, are eliminated
by the gauge invariances..x; —c,p45 has no components [l. QUANTIZATION AND CRITICAL DIMENSIONS
along the lightlikep%, and p,-d.x;=0, whereas for the
massive particle these two conditions correspond to one a
the same component. This kind of phenomenon happenZﬂ.I
also in the massless limit of the two particle case, as ex;
plained in Ref[13].

The equation of motion for the string is easily solved

)\T:Talpiti )\lZL:TaZplZLI (30)

wherea, , are constant zero modes of the gauge fields that
have survived in the general solution

In the previous section it was shown that the particle
d string systems move as free systems except for a set
constraints. The canonical degrees of freedom
(a%,p%), (g%, pt), a— satisfy the first class constraints that

follow from Eqgs. (11) (15), (23):

since it has the free string form m,#0: d=p2+m2=0, L>=0, J;=p, p;=
(32)
M= + -+ +
9+9-x3=0. (25 m,=0: ®=p2=0, LX=0, J5=p, a>=0,
As usual, the general solution is given in terms of left andWhere the Virasoro operators are
right movers
X1, =X (o) +x{ (07 ) +e e P2.P2y
1u 1, (O 1, (O lpZ,uT m2¢0 L 2 an,r#'am Nuv— 2 ,
m=—o
. > @33
X2 (0%)= 5| Gt o paa| =i > L gl ein” 1 <
“lo2m M) dFonT m=0: Ly=5 X ol fal)"n,,.
m=—ow

The term proportional te,p5 7 is added so as to be consis- )

tent with the definition of the total string momentupti that ~ We have used ag,=py,, therefore, the constraint

followed from the canonlcal formalism. The canonical pair isJo =P1-P>=0 is included above fom,=0 as well. The

(U1, .P1,), while the al,) have the usual string oscillator SeCOQd term inL; for m,#0 could be dropped since

commutation rules. p,- a, =0 was taken as a gauge ch0|ce which may be added
The equations of motion for particle No. 2 are also solvedas an additional constraidf; =p,-a, =0 for the massive

easily sincep is conserved. The constraint in EQ5), to-  case as well. This may be done classically as well as in a

gether with the definition ofp:‘z" in terms of the Ve|0city ||ght cone quantization, as we will see below. prgver, this
9,xE, give Ay(1)= (DN, 3.X,, SO that gauge choice becomes a second class constraint in the mas-
T2 !

sive casem,#0, that is harder to deal with in a covariant
guantization(since it has an anomaly proportional mﬁ)

1
pg: &TXIZL_ pf_zpl aTXZ . (26) P 2
P1 [Jn Im]=n® S m=—NM64 4 - (34

Using theA ,(7) gauge invariance, one can choose the gaug@s we will see, this will play a role in the covariant quanti-
) zation of the system and in the determination of the critical
P1-d.Xa(7)=C2P1, (27)  dimension.
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It is evident from the analogous two particle problem that [Jr,3-1=nd 5, m— nm§5n+m_
there is no solution(neither classical nor quantynunless
there are two or more timelike dimensions. Assuming twoThe BRST operator is
timelike dimensions the signature of the space is given by
n,.,=diag(—1,—1,1...,1). Hence, there is a SO 2,2) _ £, F qx
covariance ind dimensions.d will be determined in the Q C(DJF; ; [C=nbn +¥=ndn ]
quantum theory. It will be fixed to a critical dimension

deit=27 for my#0, or d.;=28 for m,=0, to eliminate
. - = n—myc*,c
guantum anomalies. Z % )0=nC= i
We will first solve the constraints classically and hence
we will addJ; =0 as a gauge choice to the massive case as _ EE E my> y=
m/sm

well. This solution will be used in a light cone quantization.

Using the SOd — 2,2) symmetry one can boog} to a time-

like rest frame if the mase,#0, or to a lightlike frame if — > > (—m)cE Y B 2 Coat—CA,

the masan,=0, = nm =

- - - - (39

p5=(my,0;0,0) or p5=(|py.0;:0,p2), (35

wherea™,A are anomaly constants to be determined by re-

where the first two entries are timelike and the rest are spaceiring Q?=0. By anticommutingQ with the antighosts

like. This allows the solution of three constraints in the formB,b,,3,,, one gets the total gauge generators of the BRST-
guantized theory

m2¢0 pl/L (0 pll) (0 aln) (36) (I)tot:q)_p\7
m2=0: p (0p1|,0) (Oalnao)v . + + . + .
Le =Ly + 2 (n=mby, o€t 2 (—M)Brymyom
leaving one constraint to be solved m m
—a* 80, (40

l - ~ 4+ ~ 4+
Lo=5 2 aqm an=0, (37) VY I I
2m= JHO= g 4 y,;B+% BrsmCim

where o}, are the string variables in the rest frame or light
cone frame of particle No. 2, and the indexabels a sub-
space of signature {1,1,...,1) whose dimension is
(d—1) for m,#0 and @—2) for m,=0. Therefore, there
remains a Lorentz symmetry S@ 2,1) form,#0 and SO
(d 3,1) for my=0. Note that form,=0, the solutions bra is

- ..P4 have no components along the lightlikg. This is anomih = 8. A ndce 4 2n
dtﬁe to the gauge symmet(®4) as explained above. M) = Gnsmz [N7Ch I’ (41)

ch=—12h2+12h—2.

RequiringQ?=0 is equivalent to requiring the total genera-
tors to close without anomalies. For a ghost system of di-
mension h the Virasoro generator is L{"

=3, [n(h—1)—m]b ¢ " and the anomaly in its alge-

A. Covariant quantization

)tot
To quantize covariantly and implement the constraints Therefore, the total anomaly in the aIgebraL(qu

(32) on the states one may use the Becchi-Rouet-Stora- 3 n
Tyutin (BRST) formalism. The BRST procedure is valid for —(d+CheptChoy)+=(—d+24a"+2+2), (42
the first class constraints. We will pretend as if it applies to 12 12

both massless and massive cases with the constrdints
L, ,J, in order to illustrate the problem with the anomaly in
Eq (34) and will find out that this set of constraints works
only for m,=0. Then we will discuss separately the massive
case by deallng directly only with the first class constraintsthe J( Yot algebra is
(without theJ;).

Correspondlng to the constraintg,L, ,J, one intro- [357°0 30 =S,y +N(A—M3) Sy, (49)
duces the ghosts$(C), (b, ,c,), and (3, ,v;). The alge-
bra of the constraints and their anomalies are

with the total central charge

CtOt:d+Ch:2+Ch:l:d_28' (43)

and

[L|(qi )tOty‘Jfrni )tOt] mJE]+)r’$]0t- (45)

d
[Ln 'Lm] (n—m)L n+m 1_2(n3_n)5n+m,0! .
So, the total anomaly cancels if

(L, ,dn]=—mJ,, (39 d=28, a*=1, A=m3. (46)
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Under these conditions one finds 1
Q:Z > CInL;—EZ (n—m)cZ,c- byt CO
d'=p3+ms—A=p3=0. (47 =" = nm

So, the quantum particle must leassless =0, and the +7030—Z coa’, (54)
critical dimension for the total system is 28. The global Lor- -

entz symmetry of this quantum system is SO(26,2). Thereang the standard procedure gives the critical dimension
fore, the analysis applies correctly only to thg=0 case, as g—1=26.
anticipated above.

For m,+ 0, the correct treatment of the second class con-
straintJ{*)=0 needs more care. Since the present model is o o _
in the class of gauged WZW models, one may imitate the The remaining constraints in the rest frame or light cone
BRST procedure advocated in RE0] to show that the final frame of particle No. 2 area(ti'lt)zzo orL,=0 of Eg.
result is equivalent to the standard coset construction. In thé87). These are the familiar Virasoro constraints of string
coset language our case correspondsfd with G=R%and  theory, which can be solved explicitly by taking advantage
H=R, and our Virasoro generator in E(B3) is indeed the of the conformal invariance of the string system and choos-

B. Light cone quantization

coset construction for the conformal field theory RY/R. ing the light cone gaugfqu)f T,

The central charge of this Virasoro generatad +s1, and for

the quantum consistency of the conformal field theory it . 1 & iAo A

must be set equal to 26. Hence, apy) T == > alhat) - = %n0
2pym=- | P1

(55)
m,#0: dgiw=27, (48 NP
ay ' =Pq Sho-
and the global symmetry of the system with a massive par- )
ticle No. 2 is SO(25,2). The unconstra|n§d 'degrees of freedom are the transverse
This result may be obtained more directly without appeal-string oscillatorsa(*)" that describe the left or right moving
ing to the formalism of Ref,.20]. Namely, one can avoid the string excitations and the center-of-mass canonical degrees
J(*)=0 gauge fixing and work directly with the oscillators of freedom for the stringd,p;) and particle §,,p.), all of
which are expressed in the rest frame or light cone frame of
~xy_ (xy_ 1 (+) particle No. 2.
an,=an, — 5 P2uP2 ay (49 The Lorentz symmetry S@(-2,1) [or SOd—3,1)],
P2 which was manifest in the special frarfiegs.(35)—(37)], is
_ hidden in the light cone gaug&5) for the string. As is well
since theseaﬁ,p) solve epr|C|t|y the Original constraints known, the quantum a|gebra for tlmerma|-0rdere®enera-
p2-D.x;=0. The Virasoro constraints in E33) are writ- .« K1Y= (N1, K1, K= K,
ten directly in terms of these oscillators

. M~ *=q;p;, M*=qp;,
m,=0: Lﬁ:im:_w al ol "y, (50) S T
| | MT=aipy —arpi-i2 2 ralar T (56)
and their commutation rules are
i i 1 onm
(35 3 —ns ( } p‘z‘pz) - MY =auph—alp—iX > Sralap,
ay o 1=N6hm| - > |- -
Pz

of this symmetry closes correctly only if the number of trans-

The only constraints that need to be considered are the firsierse dimensions labeled bys 24 anda=1 (see, e.g., Ref.
class constraints,, =0, &= p§+ m§=0, Jo=p1-P2=0.In  [21]). The number of transverse dimensions @s-3)=24
the algebra of these constraints all commutators are zerdor m,#0, and @d—4)=24 for m,=0. Therefore, the par-
except for ticle and string system has a critical dimension

d—1 m,#0: d¢;=27,
(L7 Lal=(n=m)Li, ot 5 (%=1 8y im0, (52) ®7
m,=0: dgi=28,
where thed —1 anomaly comes from so the generator" represent correctly SO(25,1) at the
P quantum level.
- P2P2 S P2.P2y —d-1. (53) The original action was invariant under the full classical
2 K ps rotation invariance S@(—2,2). For the critical dimension
this classical symmetry is S0O(25,2) im,#0 and
The BRST operator is then S0(26,2) ifm,=0. We now need to show that the quantum

2
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theory has the higher symmetry by verifying that the Lorentz
algebra closes. To construct the remaining generators of

SO(25,2)[or SO(26,2)], we need to boost back to the gen-,here K1, which satisfy the SO(25,1) Lie algebra, are

eral frame of particle No. 2 and include the canonical dejyen in terms of the 24 transverse string oscillators in Eq.
grees of freedom of particle No. 2. (56). It can be checked that thed&*” satisfy the SO(25,2)

For the massive particln,#0 in the general frame, the | jo aigebra without any anomalies, and furthermore, that
mass shell constraint is solved by the $6(2,2) covariant they rotate thmgz)ﬂ of Eq. (60) as vectors

vector

MV =3Py~ azpy+ M"Y,

, N e [M& ai M =i =i e (63)
P5=(E5.p%), Ej=pa-patmy, (58
This last property is trivial for thé1"™, ("X since it is the

where p, is a SO(25,1) vector. The boost of any vectorsame as the usual 26-dimensional string in the light cone

v#=(0v%,0') defined in the particle rest franfdenoted with  gauge. The new feature is the structureMd?’'. It can be
the hat$ to the vectorv”=(v° ,v') defined in the particle checked that this structure automatically closes into the
general framéno haj is given by higher algebra SO(25,2) provided th®' form the
SO(25,1) Lie algebra.

The form of M°"! follows from rather general properties

+)K

1 aor -
09 =—(E® +p,-v),

m, of cosets. Thex")* are given by boosting the!*)* with a
(59) p%-dependent boost
| .
~ p 4 ~0' + ~(+
v'=0' 2 ?2—'1'00 , ag‘)’L:T‘,f(pz)aE]—)”, (64)
m, \ E5+m;,

where T%(p,) is in the coset SO(25,2)/SO(25,1). When a

where the sum ovelr in the dot products is SO(25,1) cova- general SO(25,2) transformation is applied, it can be rewrit-
riant in 26 dimensions. Of course, the transformation is suchen as

that dot products are SO(25,2) invariant in the full 27 dimen-
sionsv?=v2. The string and particle can now be described a!™*—A*a""=[AT(p,)]“a’""=[T(p,)H]*a",
in the general frame by boosting the rest frame solution in (65

. . . '\(t)()’: .
Egs.(35—(37). Taking into accounty,, 0, one obtains wherepy#=A%pY, andH(p,,A) is an element in the sub-

~y | - group SO(25,1) but its parameters depend on a function of
aﬁf)O': w a;i)lz&gﬂq P2 M (60) both p5 and A%. When A is an element of SO(25,1), one
m, m, E;+m, hasH= A, therefore, the subgroup is implemented on the 26
a{™" andp), by thetotal particle and string generatoks".

()] , - Of course, thex{™)°" is invariant under this combined trans-
sy ), as will be verified below. Further- formation since it is a dot product. The remaining
more, because of the SO(25,2) invariance of dot productss0(25,2)/SO(25,1) coset transformations have generators
the fully SO(25,2) covariant Vlrasor? ccl)nstramts iNE8B)  ihat are precisely th&1°'! given above, and they automati-
are equal to Eq(37) for any p5=(E;,p;). Therefore, the .4y take into account the complicated natureHfp,,A).
explicit solution of these constraints is given in terms of only  The outcome of the light cone quantization fos+0 is a

the 24 transverse oscillators in E&S). Thus, the 27 com-  itical dimensiond =27 with signature (25,2), in agreement
ponentsa~)* given in Eq.(60) are also expressed in terms with the covariant quantization.

of the 24 oscillators in EC(55) which are the ones that solve The ||ght cone quantization for thmzzo case can be
all the constraints in the general frame of the massive Parldone in a similar way. One needs to boost back from the

These are expected to form covariant SO(25,2) vector
alHh= (o
n n

ticle. So, for example, the’Ocomponent is light cone frame of particle No. 2 to the general frame. It is
a straightforward exercise and there are no oscillator order-
()0’ 1 bore)— - P (i ing problems, just as in the massive case. Therefore, the
ay " = —(=Ppyray —PaP1 SnotPran ), itical di ion isd=28 with si 26.2). i -
n m, n , n critical dimension i with signature (26,2), in agree

(61) ment with the BRST quantization.

wherea!™)~ is quadratic in the 24 transverse oscillators as ll. MULTIPARTICLES, STRINGS, p-BRANES

given in Eq.(55). The type of action discussed in this paper can be gener-
We are now ready to construct the generatorsylized to other systems. For example, for three particles

M#*=(M%"' M") of SO(25,2) in the general frame of the

massive particle No. 2. They are given by S=S51+S,+ S+ A NaFNp- A3t A3 Ny, (66)

AR YEL where S;(x',A12,A13,81,A5,N\5) is the action for particle
2) No. 1 in the background of particles Nos. 2,3, constructed in
terms of gauge-covariant derivatives

MO'1= 2 (GbEL+ E)a)+
2(Q2 2t Eatp) + = )

+m
2Ty 62)
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D Xt=g,xt— ANy — A\ 4 (67)  (26,2), as we have shown in Sec. Il. On the other hand, if the
second string is in a massive state, its effect on the first string
in the spirit of gauged WZW models. So, the coseR1$R?. is the same as a massive particle, and the number of dimen-

Similarly for the actionsS, ; which are obtained by a cyclic sions must be 27, with signature (25,2). There is also a third

permutation of the indices 1,2,3. Because of the gauge incase when the mass of the second string is tachyonic. Then

variances one finds constraints, and going through a similahe number of dimensions is also 27, but with signature

analysis as the two particle case, one determifesp” and  (26,1). The roles of the two strings may be reversed and

the constraints similar statements would be made for the critical dimension
of string No. 2. These statements cannot be all simulta-

pi-pj+ mi25”. =0. (68) neously right in the same theory, since the classical theory is

defined with a fixed number of dimensions for both strings.

The solution of this system of constraints requires three timekHence, as the consistent quantum sectors, we must select

like coordinates. In the bosonic case there seems to be rly the mass sectors that are simultaneously consistent for

limit on the number of partides and Corresponding new timeboth strings for a fixed number of dimensions. The sectors

like dimensions, but with supersymmetry there are hints forre defined by whether the massesp¢, — p3) are simulta-

both sufficient and necessary reasons to have a minimum aeously zero, positive, or negative, and evidently the only

well as a maximum of three timelike dimensions in a settingconsistent sectors are

that is SO(11,3) covariarffl4]. The structures of Refl4]

were found to be necessary and .suffic.ignt to unify typg—A (26,2: (—pi,—p§)=(0,0),

and type-B supersymmetries. This unification is possible

with a minimum of three timelike dimensions and extending

. 2 _ 2y
the general structure beyond 14 dimensions is not required (25,2 (=p1,—p2)=(+,7+), (69
by any known phenomena. Furthermore, there seems to be

an obstruction to Yang-Mills supersymmetric systems be- (26,1): (—p2,—p3)=(—,—).

yond 14 dimension§l16], thus providing a hint for a maxi-

mu_lr_‘rr\] of three tlmellkehdlmert1)5|ons.l_ dt tri dthet The (0,0) sector which is possible in 28 dimensions has only
€ same approach can be applied to a string and the twg, state, similarly the-{,—) sector in 27 dimensions has

partlcle:_;, with resuls that can _be guessed f“’”? the prev'(')nly one state, while the, +) sector in 27 dimensions has
ously discussed cases, of a string and one particle, and tkée

. . fh infinite number of massive states from each string. Here
threg pqrucles. The general result is tha.t whep a MassVige have assumed that the conformal field theory for each
E;rgﬁll(ee 'Z’i%iii?oﬁnsuﬁ%d:ptgciﬁge(3’"1726?]?5:33'323’ \'I;/i'ér?%?ring has no spectator sectors, that is that all degrees of
massless particle is added one must add (1,1), i.e., one ti [eedom of both strings are coupled via the couphng\.

: ; L . f course, this assumption can be modified by changing the
plus one space dimensions. Similarly, one may substitute Rodel
membr?ntla for. a stl;lng, andO?o on for otheb&anes, In tl?e Consider a model that has one dimension for string No. 1
ﬁase 0 c|a53|hcap— ranes. h cour:se,_ olne oes not NOW\which remains uncoupled, while all othed,(—1) dimen-
ow o solve the quantum t eoryt at inc udes membranes %Yions of string No. 1 are coupled to tl dimensions of
p-branes and, therefore, there is no reliable statement on the . N N —(d
number of dimensions for which the quantum theory is con=, "9 NO. 2 viak-Ap~pi-Pa, SO thatd,=(d;~1). So,
. . string No. 1 has one extra dimension. We need to consider
sistent. However, there are partial hints thagt,=11 for su- : 2 2 i
2 again the values of p7,—p53). The mass shell conditions
permembranef22], therefore, for the combined supermem- ) 1 2 2 =
brane and superparticle system, one may extrapolate thede consistent sectors are now pi+p “=N;—1 and
hints to d=12 with signature (10,2) if the superparticle is —p3=N,—1, wherep 2 is the zero mode of the extra di-
massive od =13 with signature (11,2) if the superparticle is mension of string No. 1. If this dimension is compact there
massless. The supersymmetry of such a system is not stawould be contributions from the winding sectors as well. In
dard, as discussed in R¢R3] and the next section. this model the sectorp?,—p3)=(+,0) is consistent for
Next, we consider two strings, with an action d,=28 with signature (26,2) and,=27 with signature
S=S5;+S,+\;- Ay, where bothS, , are string actions of the (25,2). There are an infinite number states from string No. 1
form (10). The equations of motion and constraints for eachand only one state from string No. 2. Evidently, one can
string can be solved, both classically and quantum mechangonstruct various consistent models provided the sectors are
cally, following the same steps as Sec. | B and Sec. Il. Bukelected as above.
now we find new features in the quantum consistency of the However, it is not clear that such sectors are self-
combined system. Recall that in consistent sectors theonsistent by themselves under interactions. It is not yet
masses of each string are given byp?=N;—1, whereN; clear what interactions should be considered. If all interac-
are the oscillator excitation levels. Perhaps the simplest wations defined through vertex operator products of both strings
to arrive at the critical dimension is to note that a quantumare included, then the sectors identified above do not seem to
consistent string must have 26 dimensions after putting theemain isolated from others. Perhaps one can make sense of
other string in one of its massive or massless states. If thmteractions that mix sectors of different dimensions and sig-
second string is in a massless state, its effect on the firstatures. More study is required to understand such issues.
string is the same as a massless particle. Then the total nurithese questions did not arise for the string and particle or
ber of dimensions for string No. 1 has to be 28 with signaturestring and the two particle systems.
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IV. SUPERSYMMETRY ®(xq,X,) (that is particle No. 2 has been frozen to be at a

. ; ; ixed momentunp%). Similar considerations for the two par-
In a separate publication the supersymmetric version of ¢ 27" = ) .
b P persy M{fles (rather than string and partiglaunderlie the Yang-

the superstring and a massive or massless superparticle s theories in 12 di : hich h so b |
be discussed in detdi23]. This involves a construction of an IS theories in 12 dimensions, which nave also been only
l[i)_artlally realized in a similar Kaluza-Klein mod@].

action for the massive superparticle and a more general s

perstring action that is invariant under a generalized super- g‘st hasé)een argued mt RéM],_trl[etumﬂcapo_n of type-A
symmetry. Here we wish to mention some generalities angnd ype-B supersymmetries point 1o a unifying supersym-

ideas for future applications and improvements. By extrapo—metr'c structure in 14 dimensions with signature (11,3).

lating from the results of the present paper to the supersyrr1§orm.e sectors of such a structure can be gonst(ucted by con-
metric case, one expects critical dimensiogs 12 for sidering three superparticles, or a superstring with two super-

m,=0 and d=11 for m,#0 with a Lorentz symmetry particles, etc. It is expected from R¢iL4], and it has been

SO(10,2) and SO(9,2), respectively. Furthermore, as eXc_:onfirmed in Ref.[16], that the three superparticle system

pected, quite generally from ReB], and from discussions underlies a super Yang-Mills theory in 14 dimensions. This

: ; theory has been partially constructeid] in a Kaluza-Klein
in Refs.[12,13,16, the generalized superalgebra has to be sector in the same sense as the wo particle ¢ase the

{Qu.Qpt=¥24P1,P2, . (700  sector in which the momenta of the two particles out of three
are frozen. A superstring and two superparticles probably
where Q, is the Majorana-Weyl spinor of SO(10,2) or underlie a supergravity in 14 dimensions that would gener-
S0(9,2) with 32 real components. In the light cone frame ofalize [17] to 14 dimensions. A more general approach that
the massless particle No.(@s well as in the rest frame of the includes all Kaluza-Klein modes has been illustrated in Ref.
massive particle No.)2the remaining Lorentz symmetry is [12] for free fields. This approach needs to be further devel-
S0O(9,1) and the supersymmetry reduces to the standard foraped to include interactions by figuring out the calculus of
of the ten-dimensional type IIA. Furthermore, the superstringepresentations of the new supersymméfig). It could then
reduces to the usual ten-dimensional type IIA string. By conbe applied to the construction of the full 12- or 14-
trast, in the general frame, or in the action, there is full co-dimensional supergravity and super Yang-Mills theories in

variance under SO(10,2) or SO(9,2). all Kaluza-Klein sectors.
We believe that the massless systa=0, underlies a
supergravity theory in 12 dimensions, with bilocal fields ACKNOWLEDGMENTS
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