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Multiple order-to-chaos transition in an Abelian-Higgs vortex solution
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The chaotic property in the Abelian-Higgs theory is numerically studied for the Nielsen-Olesen vortex
solution at a critical coupling constant. Based on the analyses on the induction period necessary to the onset of
chaos and the maximal Lyapunov exponents of fields, it is shown that the vortex solution exhibits a multiple
order-to-chaos transition. This phenomenon is a very interesting one that can shed new light on the structure of
chaos in the Abelian-Higgs theory, compared with the property of chaos in the Yang-Mills-Higgs theory.
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From the viewpoint of chaos, recently, the Nielsen-Olesen The Lagrangian density of the Abelian-Higgs model is
vortex solution with cylindrical symmetry has been studiedgiven by[7]
first in the case of space-time dependence of fields to inves-
tigate whether there exists a significant difference between 1 , .
the Abelian fields and the non-Abelian orég. Especially, L=- 4 FuF*"+(D,¢)* (D*¢)—V(g), @
attention was focused on a phenomenon called the order-to-
chaos transition and its universality because it has been conypere F = d,A,—3d,A, and D,p=d,p+iA,¢b. The

monly observed for such topological solutions as the monojiggs potential isV(¢)=(«/4)(|$|>—1)%. The coupling

pole solution, the sphaleron solution, and the chiral soliton OEonstantK comes from resca”ng both the electric Cha@e

the Yang-Mills-Higgs(YMH) theories[2-5]. and the symmetry-breaking scale to unity. The Euler-
The order-to-chaos transition is a phenomenon in which agrange equations are

the system suddenly changes from order to chaos in the

course of its evolution under perturbations with strenfyth [

[3]. Chaos is determined by the maximal Lyapunov expo- 9,F"=5[¢"D*¢—(D*$)* 4], )

nentso of the fields. This exponent approaches a positive

definite value for the chaotic system. Singg is a measure

of how chaotic the system is, its value is expected to depend

on f. For several topological solutions in the YMH systems

it has been found that stays zero for smalf and then

rapidly starts to increase dt=1 after the elapse of the in-

D,D¥¢=x(1-|4|*) . ()

'Assuming the time-dependent vortex solution with cylindri-
cal symmetry as

duction period 6]. This stepwise behavior @f, suggests the na(&, )
order-to-chaos transition to be the inherent phenomenon for A &, 7)= Ay (4
these systems. £
For the Nielsen-Olesen vortex solution in the Abelian-
Higgs theory, on the other hand, it has been repdrtéthat $(&,7)=Db(§ m)exping), %)

the onset of chaos not only needs much stronger perturba-

tion, f>2, but also a much longer induction period than inwe get from Eqgs(2) and(3) the equations of motion as
the YMH case. Furthermore, there is an irregular distribution

of the Lyapunov exponents that some of them fall down to

2 2vo_ 2

zero even in the fully chaotic state and they are very sensi- (07— dp)a=— z deat(1-a)b?, (6)
tive to f, which prevents them from forming the smooth

curve expected for the order-to-chaos transition. These re- 2

sults strongly suggest the existence of a characteristic differ- (2 0§)b= 1 db— 22 (1-a)2b+k(1—bdb. (7)

ence on chaos between the Abelian-Higgs system and the € &

YMH one. In order to investigate this issue, in this paper we

try a much more extensive study of the Nielsen-Olesen vor- Heren is the winding number of the vortex, agdand =

tex solution. denote the rescaled variables of space and time, respectively.
The boundary conditions for fields are as folloveg¢, 7)
=0, b(&7)=0 as £é&—0 and a(¢,n)=1, b(¢(7)=1 as

*Electronic address: kawabe@kyushu-id.ac.jp £—. The energy per unit length of the vortex is given by
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In the present analyses we have to carry out a numerical N @ 3
simulation of the system with keeping the energy conserva- 0.00 3’°° o l ° | .
tion. For this purpose, instead of directly using E(®.and 0 200 100 600 Bd&) 1000 1200

(7) but by replacinga— +/éa and b—b/ /¢, we transform
them into more desirable form without the first derivative

FIG. 1. Maximal Lyapunov exponents, vs energy of the sys-

terms as temE of then=1 Nielsen-Olesen vortex solution & . The circle
2 marks stand for data obtained by meth®and the diamond marks
((92_(92)a:_3_a+(1_\/§a) b by methodB.
T g EVE

2

After the long-term evolution longer than we can deter-

mine o vs f or E, the total energy of the system.

For methodB, in contrast toA, we start with a fully
(10 chaotic state. Such an initial state can be prepared as follows:
we first excite the modg, for largef and then carry out the
evolution long enough until all modes are excited. Once we
Bbtain the initial state, we lower the energy of the system by
a little amount by adding a dumping term to E@8) and
(10). After we reach the energy, we delete the dumping term
(11) and then proceed with the evolution for a given period to

determineo .

Figure 1 shows the result on the dependence,0bn the
whered(7) is a distance between the two neighboring fieldstotal energyE of Eq. (8). In the present analyses we focus on
attimerin the phase space. Therefore a constant positive the n=1 vortex solution at the critical coupling constaat
means that the system is chaotic, while the ordered system is , =0.5. The circle marks are the data obtained by method
characterized by =0. A after evolution up tor=3x10°. They show some com-

To determineo of the system, we need to calculate its plicated structure: at certain values®fsome behavior simi-
long-term evolution under perturbations. For this purpose Wear to the order-to-chaos transition is observed while in large
write the fields in the form of the sum of the static solution portion of E the data points scatter irregu]ar]y_ Meth&d
cs(§) and the fluctuationsc(é,7) wherec stands for the  marked with a diamond, on the other hand, shows that all
gauge fielda and the Higgs field. The space coordinate is points seem to converge on a monotonically increasing
discretized througlf =i < A ¢ with a lattice spacinddéand a  curve. Since method is based on the observation of how
number of lattice points=1,2,... N. For the fluctuation the system changes from order to chaos through a long-term
dc(¢,7) we consider two methods: Ond\) is based on the evolution after giving an initial perturbation, it is reasonable
Fermi-Pasta-Ulam approa¢B] and the otherB) is on the  to expect that the order-to-chaos transition will occur soon
energy dumping approach. after elapsing the induction periog] . Thus it also seems

For methodA, reasonable to suppose that meth&dshould produce the
same result as methd8l if the evolution is carried out for
sufficient time beyondr,. From the result that some points
at E~400 andE~1200 in methodA reach the curve of
methodB while the data aE<200, E~ 240, andE~800
where dc(i,7) is a combination of various harmonic modes stay almost zero so that the system still remains the order
given by N coupled nonlinear oscillators. In order to calcu- state before the induction period, we find that the induction
late o, we study the long-term evolution after exciting a period is very sensitive to the initial values®Bf Indeed, Fig.
single mode in Eq(12). We choosg,=N/2 as this initial 1 indicates the possibility that there exists anomalous depen-
mode and excite initially the gauge field alone. The strengttdence ofr; on E, which has not been observed in the case of
of the initial perturbation is therefore given by the amplitudethe YMH systems with spatial dependence of fields.
f=4¢,(N/2,0) in Eq.(12). In this method the chaotic state is  To search such a possibility we try to determineas
expected to appear via the induction phenomef@ni.e., follows: In methodA we empirically definer; as the time
the initial energy given to one mode, e.y/2th mode in our when o >10"2 because this condition seems to assure the
case, begins to be transferred among other normal modemset of chaos. Figure 2 shows the result on the plet o6
suddenly after a long time, called the induction period. E, where we have calculated, up to 7=1x10’ for the

2
(95— 3d2)b= b % (1-Véa)®o+«| 1- %) b.

4£2

The maximal Lyapunov exponent, is a reliable indica-
tor of chaos in the system. This quantity gives the averag
rate of the exponential divergence of two nearby fields8as

1 d(7)

o = lim ; In m,

T— 0

ij
N L

N—-1
sc(i,r)=2IN 21 ¥e(j,7)sin (12)
=
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FIG. 2. Induction periodr; vs energyE of then=1 Nielsen- 6
Olesen vortex solution at.. Three arrows stand for the place of
the energyE; of Eq. (13). The inner box shows the inverse of the e,
induction period vs the energy. 5 ©

logioTr

initial states withE=200. For these regions & we have
observed that almost all initial states give finiteand thus 4
become chaotic. However, the most interesting fact we foun:

here is that the induction period seems to diverge at sever:
values of E, which is observed as bumps in Fig. 2. Apart 3
from seemingly small bumps due to fluctuation in the data,

three bumps assigned Wy (i=1,2,3), lead us to a truly

interesting observation through the detailed analysis as fol 2 3 3 1
lows. Parametrizing the dependencerpbn E by () 10g10(F — Bs)
T|~|E_Ei|_n, (13) 5

we try to search the best values pfandE; to fit the gross
structure of the data. For all cases we found that global tren
can be well described by straight lines with slepe 1 (i.e., 4
n=1) as shown in Fig. 3, wher&;=212 (f;=1.78), E,
=995 (f,=~3.88), andE3;=1990 (f;=5.49). The form of
Eqg. (13 is typical of the phase transition so that it seems
reasonable to regard three values Ef as the transition
points. This strongly suggests the existence of a new phe
nomena if the feature is compared with the case of the ordel
to-chaos transition in the YMH theories. In the monopole
solution of the SW) YMH system, for example, the order-
to-chaos transition sharply occurs at a single transition poin (€) logio(E — Es)
E.. This value can be determined by the extrapolation of
T|_1 for smallerE, at whichr, becomes infinity and then the FIG. 3. Doubly logarithmic plot of the induction periog vs
system becomes order f@<E.. Thus the present result energyE of the n=1 Nielsen-Olesen vortex solution at.. (a)
clarifies that in the vortex solution of the Abelian-Higgs E1=212,(b) E;=995, and(c) E;=1990. The critical exponeny
theory there exist at least three transition points at which th&€f Eq. (13) is the slope of the fitted straight lines, whose values are
order-to-chaos transition occurs. We call this phenomeno#!! close to one.
the multiple order-to-chaos transition. For the regiBn
>2000, we also did the similar analyses to find the transition To conclude, in the sense of that the multiple order-to-
points but we could not find such points there. chaos transition can be observed, the Abelian-Higgs system
All calculations were done by the eighth-order Runge-is quite different from the YMH system. The basic mecha-
Kutta method with time-step siz&r=0.03 and lattice size nism of the order-to-chaos transition connects with the Ar-
A £=0.1 to maintain the accuracy of the integration. We putnold diffusion[8] for the system with higher degrees of free-
N=64 for the lattice andd(0)=1.0x10° for the initial dom as pointed out in the case of the YMH syst@h Thus
separation of two field¢l1). We also have studied the sys- our result reveals that in the Abelian-Higgs system there ex-
tem for different values oN, A¢ andA7, and checked that ist several processes of mode diffusion depending on the
the qualitative results remain almost the same. initial energyE or equivalently on the initial amplitudé

logioTr
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Here we stress that this result comes from the property cimposed on the solution, which suppresses both the effect of
the system with many degrees of freedom and is hard tthe nonlinearity and the mode diffusion. In other words, it
obtain from the so-called homogeneous models with smalvould be described that the vortex is a more tight object than
degrees of freedom of the gauge field theory. In the limit oftopological solutions of the YMH systems from the view-
the spatially homogeneous fields, the gauge-field equationsoint of chaos. Our finding on the induction period and the

reduce to a simple nonlinear mechanical system described yyitiple order-to-chaos transition is that it has quite interest-
the Hamiltonian for the motion of a particle in the potential jng features.

well whose form depends on the Abelian or non-Abelian “The present study is limited to the vortex at the critical
nature of the theory. If the homogeneous version of theoypling constank, which corresponds to the boundary be-
gauge-field theory has the property of a typical Hamiltonianyyeen the type-l and the type-ll superconductivity in
its feature of chaos is expected to be almost the same one &inzburg-Landau theory11]. For the static solution, it is
derived from the dynamical theory in the Hamiltonian sys-\ye|| known that the vortices at, do not interact irrespective
tem on the KAM tori and its breaking pattern, i.e., the infi- ¢ e winding numben [12]. However, it is reported that
nite hierarchy between_regular and irregular motion in _tthe interaction between vortices with=2 could appear
phase space. Indeed, it has been shown that the uniforgyen 4t this Bogomol'nyi limit in the course of evolutigt].
Chern-Simon system exhibits such an interesting structure ajyce the chaos and the stability in the Nielsen-Olesen vor-
order-chaos hierarchy in the transition regifd®], which  ices must be relevant to the applications in cosmoldg,
will be related to the sensitivity of initial conditions in the particle physicg14], and in condensed mattgt1], it is a

intermix_ing regiqn of stochastjc sea and tori. In orde_r to ge ery important issue to extend the present analyses to the
deeper information on chaos inherent in the gauge-field syssase ofn=2 andx+ Ke.

tem, however, it seems essential to study the system with the
spatial dependence of fields. One of the author$T.K.) would like to thank the Niels

It is open whether this system has other transition point8ohr Institute at Copenhagen University for their kind hos-
besides; (i=1,2,3), for the regiofe<200. It is especially pitality. The early stages of this work were performed during
interesting to search the point correspondindgal because his stay at the NBI. He is very grateful to J. Anihjo H. B.
this point seems a characteristic common to the topologicalielsen, P. Olesen, J. L. Petersen, P. CvitanoVicBohr,
solutions in the YMH systems, which could be clear throughand S. E. Rugh for informative discussions. The authors
substantially expanded computing time. However, it is likelywould also like to thank the INS Scientific Computational
that the onset of chaos in the Nielsen-Olesen vortex solutioRrograms of University of Tokyo for a very generous allow-
is harder than in the YMH case due to higher symmetryance of computer time.
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