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The chaotic property in the Abelian-Higgs theory is numerically studied for the Nielsen-Olesen vortex
solution at a critical coupling constant. Based on the analyses on the induction period necessary to the onset of
chaos and the maximal Lyapunov exponents of fields, it is shown that the vortex solution exhibits a multiple
order-to-chaos transition. This phenomenon is a very interesting one that can shed new light on the structure of
chaos in the Abelian-Higgs theory, compared with the property of chaos in the Yang-Mills-Higgs theory.
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From the viewpoint of chaos, recently, the Nielsen-Olesen
vortex solution with cylindrical symmetry has been studied
first in the case of space-time dependence of fields to inves-
tigate whether there exists a significant difference between
the Abelian fields and the non-Abelian ones@1#. Especially,
attention was focused on a phenomenon called the order-to-
chaos transition and its universality because it has been com-
monly observed for such topological solutions as the mono-
pole solution, the sphaleron solution, and the chiral soliton of
the Yang-Mills-Higgs~YMH ! theories@2–5#.

The order-to-chaos transition is a phenomenon in which
the system suddenly changes from order to chaos in the
course of its evolution under perturbations with strengthf
@3#. Chaos is determined by the maximal Lyapunov expo-
nentssL of the fields. This exponent approaches a positive
definite value for the chaotic system. SincesL is a measure
of how chaotic the system is, its value is expected to depend
on f . For several topological solutions in the YMH systems,
it has been found thatsL stays zero for smallf and then
rapidly starts to increase atf '1 after the elapse of the in-
duction period@6#. This stepwise behavior ofsL suggests the
order-to-chaos transition to be the inherent phenomenon for
these systems.

For the Nielsen-Olesen vortex solution in the Abelian-
Higgs theory, on the other hand, it has been reported@1# that
the onset of chaos not only needs much stronger perturba-
tion, f .2, but also a much longer induction period than in
the YMH case. Furthermore, there is an irregular distribution
of the Lyapunov exponents that some of them fall down to
zero even in the fully chaotic state and they are very sensi-
tive to f , which prevents them from forming the smooth
curve expected for the order-to-chaos transition. These re-
sults strongly suggest the existence of a characteristic differ-
ence on chaos between the Abelian-Higgs system and the
YMH one. In order to investigate this issue, in this paper we
try a much more extensive study of the Nielsen-Olesen vor-
tex solution.

The Lagrangian density of the Abelian-Higgs model is
given by @7#

L52
1

4
FmnFmn1~Dmf!* ~Dmf!2V~f!, ~1!

where Fmn5]mAn2]nAm and Dmf5]mf1 iAmf. The
Higgs potential isV(f)5(k/4)(ufu221)2. The coupling
constantk comes from rescaling both the electric chargee
and the symmetry-breaking scalev to unity. The Euler-
Lagrange equations are

]nFnm5
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@f* Dmf2~Dmf!* f#, ~2!

DmDmf5k~12ufu2!f. ~3!

Assuming the time-dependent vortex solution with cylindri-
cal symmetry as

Au~j,t!5
na~j,t!

j
, ~4!

f~j,t!5b~j,t!exp~ inu!, ~5!

we get from Eqs.~2! and ~3! the equations of motion as
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j2 ~12a!2b1k~12b2!b. ~7!

Heren is the winding number of the vortex, andj andt
denote the rescaled variables of space and time, respectively.
The boundary conditions for fields are as follows:a(j,t)
50, b(j,t)50 as j→0 and a(j,t)51, b(j,t)51 as
j→`. The energy per unit length of the vortex is given by*Electronic address: kawabe@kyushu-id.ac.jp

PHYSICAL REVIEW D 15 SEPTEMBER 1997VOLUME 56, NUMBER 6

560556-2821/97/56~6!/3660~4!/$10.00 3660 © 1997 The American Physical Society



E~n,k!52pE
0

`

djjS n2

2j2 ~]ta!21
n2

2j2 ~]ja!2

1
n2

2j2 ~12a!2b21
1

2
~]tb!21

1

2
~]jb!2

1
k

4
~12b2!2D . ~8!

In the present analyses we have to carry out a numerical
simulation of the system with keeping the energy conserva-
tion. For this purpose, instead of directly using Eqs.~6! and
~7! but by replacinga→Aja and b→b/Aj, we transform
them into more desirable form without the first derivative
terms as
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The maximal Lyapunov exponentsL is a reliable indica-
tor of chaos in the system. This quantity gives the average
rate of the exponential divergence of two nearby fields as@8#

sL5 lim
t→`

1

t
ln

d~t!

d~0!
, ~11!

whered(t) is a distance between the two neighboring fields
at timet in the phase space. Therefore a constant positivesL
means that the system is chaotic, while the ordered system is
characterized bysL50.

To determinesL of the system, we need to calculate its
long-term evolution under perturbations. For this purpose we
write the fields in the form of the sum of the static solution
cs(j) and the fluctuationdc(j,t) where c stands for the
gauge fielda and the Higgs fieldb. The space coordinate is
discretized throughj5 i 3Dj with a lattice spacingDj and a
number of lattice pointsi 51,2, . . . ,N. For the fluctuation
dc(j,t) we consider two methods: One (A) is based on the
Fermi-Pasta-Ulam approach@9# and the other (B) is on the
energy dumping approach.

For methodA,

dc~ i ,t!5A2/N (
j 51

N21

cc~ j ,t!sinS p i j

N D , ~12!

wheredc( i ,t) is a combination of various harmonic modes
given byN coupled nonlinear oscillators. In order to calcu-
late sL we study the long-term evolution after exciting a
single mode in Eq.~12!. We choosej 05N/2 as this initial
mode and excite initially the gauge field alone. The strength
of the initial perturbation is therefore given by the amplitude
f [ca(N/2,0) in Eq.~12!. In this method the chaotic state is
expected to appear via the induction phenomenon@6#, i.e.,
the initial energy given to one mode, e.g.,N/2th mode in our
case, begins to be transferred among other normal modes
suddenly after a long timet I called the induction period.

After the long-term evolution longer thant I we can deter-
mine sL vs f or E, the total energy of the system.

For methodB, in contrast toA, we start with a fully
chaotic state. Such an initial state can be prepared as follows:
we first excite the modej 0 for large f and then carry out the
evolution long enough until all modes are excited. Once we
obtain the initial state, we lower the energy of the system by
a little amount by adding a dumping term to Eqs.~9! and
~10!. After we reach the energy, we delete the dumping term
and then proceed with the evolution for a given period to
determinesL .

Figure 1 shows the result on the dependence ofsL on the
total energyE of Eq. ~8!. In the present analyses we focus on
the n51 vortex solution at the critical coupling constantk
5kc[0.5. The circle marks are the data obtained by method
A after evolution up tot533105. They show some com-
plicated structure: at certain values ofE some behavior simi-
lar to the order-to-chaos transition is observed while in large
portion of E the data points scatter irregularly. MethodB
marked with a diamond, on the other hand, shows that all
points seem to converge on a monotonically increasing
curve. Since methodA is based on the observation of how
the system changes from order to chaos through a long-term
evolution after giving an initial perturbation, it is reasonable
to expect that the order-to-chaos transition will occur soon
after elapsing the induction periodt I . Thus it also seems
reasonable to suppose that methodA should produce the
same result as methodB if the evolution is carried out for
sufficient time beyondt I . From the result that some points
at E'400 andE'1200 in methodA reach the curve of
methodB while the data atE,200, E'240, andE'800
stay almost zero so that the system still remains the order
state before the induction period, we find that the induction
period is very sensitive to the initial values ofE. Indeed, Fig.
1 indicates the possibility that there exists anomalous depen-
dence oft I on E, which has not been observed in the case of
the YMH systems with spatial dependence of fields.

To search such a possibility we try to determinet I as
follows: In methodA we empirically definet I as the time
when sL.1023 because this condition seems to assure the
onset of chaos. Figure 2 shows the result on the plot oft I vs
E, where we have calculatedsL up to t513107 for the

FIG. 1. Maximal Lyapunov exponentssL vs energy of the sys-
temE of then51 Nielsen-Olesen vortex solution atkc . The circle
marks stand for data obtained by methodA and the diamond marks
by methodB.
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initial states withE>200. For these regions ofE we have
observed that almost all initial states give finitet I and thus
become chaotic. However, the most interesting fact we found
here is that the induction period seems to diverge at several
values ofE, which is observed as bumps in Fig. 2. Apart
from seemingly small bumps due to fluctuation in the data,
three bumps assigned byEi ( i 51,2,3), lead us to a truly
interesting observation through the detailed analysis as fol-
lows. Parametrizing the dependence oft I on E by

t I'uE2Ei u2h, ~13!

we try to search the best values ofh andEi to fit the gross
structure of the data. For all cases we found that global trend
can be well described by straight lines with slope521 ~i.e.,
h51! as shown in Fig. 3, whereE1.212 (f 1.1.78), E2
.995 (f 2.3.88), andE3.1990 (f 3.5.49). The form of
Eq. ~13! is typical of the phase transition so that it seems
reasonable to regard three values ofEi as the transition
points. This strongly suggests the existence of a new phe-
nomena if the feature is compared with the case of the order-
to-chaos transition in the YMH theories. In the monopole
solution of the SU~2! YMH system, for example, the order-
to-chaos transition sharply occurs at a single transition point
Ec . This value can be determined by the extrapolation of
t I

21 for smallerE, at whicht I becomes infinity and then the
system becomes order forE,Ec . Thus the present result
clarifies that in the vortex solution of the Abelian-Higgs
theory there exist at least three transition points at which the
order-to-chaos transition occurs. We call this phenomenon
the multiple order-to-chaos transition. For the regionE
.2000, we also did the similar analyses to find the transition
points but we could not find such points there.

All calculations were done by the eighth-order Runge-
Kutta method with time-step sizeDt50.03 and lattice size
Dj50.1 to maintain the accuracy of the integration. We put
N564 for the lattice andd(0)51.031025 for the initial
separation of two fields~11!. We also have studied the sys-
tem for different values ofN, Dj, andDt, and checked that
the qualitative results remain almost the same.

To conclude, in the sense of that the multiple order-to-
chaos transition can be observed, the Abelian-Higgs system
is quite different from the YMH system. The basic mecha-
nism of the order-to-chaos transition connects with the Ar-
nold diffusion@8# for the system with higher degrees of free-
dom as pointed out in the case of the YMH system@3#. Thus
our result reveals that in the Abelian-Higgs system there ex-
ist several processes of mode diffusion depending on the
initial energyE or equivalently on the initial amplitudef .

FIG. 2. Induction periodt I vs energyE of the n51 Nielsen-
Olesen vortex solution atkc . Three arrows stand for the place of
the energyEi of Eq. ~13!. The inner box shows the inverse of the
induction period vs the energy.

FIG. 3. Doubly logarithmic plot of the induction periodt I vs
energyE of the n51 Nielsen-Olesen vortex solution atkc . ~a!
E15212, ~b! E25995, and~c! E351990. The critical exponenth
of Eq. ~13! is the slope of the fitted straight lines, whose values are
all close to one.
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Here we stress that this result comes from the property of
the system with many degrees of freedom and is hard to
obtain from the so-called homogeneous models with small
degrees of freedom of the gauge field theory. In the limit of
the spatially homogeneous fields, the gauge-field equations
reduce to a simple nonlinear mechanical system described by
the Hamiltonian for the motion of a particle in the potential
well whose form depends on the Abelian or non-Abelian
nature of the theory. If the homogeneous version of the
gauge-field theory has the property of a typical Hamiltonian,
its feature of chaos is expected to be almost the same one as
derived from the dynamical theory in the Hamiltonian sys-
tem on the KAM tori and its breaking pattern, i.e., the infi-
nite hierarchy between regular and irregular motion in the
phase space. Indeed, it has been shown that the uniform
Chern-Simon system exhibits such an interesting structure of
order-chaos hierarchy in the transition region@10#, which
will be related to the sensitivity of initial conditions in the
intermixing region of stochastic sea and tori. In order to get
deeper information on chaos inherent in the gauge-field sys-
tem, however, it seems essential to study the system with the
spatial dependence of fields.

It is open whether this system has other transition points
besidesEi ( i 51,2,3), for the regionE,200. It is especially
interesting to search the point corresponding tof '1 because
this point seems a characteristic common to the topological
solutions in the YMH systems, which could be clear through
substantially expanded computing time. However, it is likely
that the onset of chaos in the Nielsen-Olesen vortex solution
is harder than in the YMH case due to higher symmetry

imposed on the solution, which suppresses both the effect of
the nonlinearity and the mode diffusion. In other words, it
would be described that the vortex is a more tight object than
topological solutions of the YMH systems from the view-
point of chaos. Our finding on the induction period and the
multiple order-to-chaos transition is that it has quite interest-
ing features.

The present study is limited to the vortex at the critical
coupling constantkc which corresponds to the boundary be-
tween the type-I and the type-II superconductivity in
Ginzburg-Landau theory@11#. For the static solution, it is
well known that the vortices atkc do not interact irrespective
of the winding numbern @12#. However, it is reported that
the interaction between vortices withn>2 could appear
even at this Bogomol’nyi limit in the course of evolution@1#.
Since the chaos and the stability in the Nielsen-Olesen vor-
tices must be relevant to the applications in cosmology@13#,
in particle physics@14#, and in condensed matter@11#, it is a
very important issue to extend the present analyses to the
case ofn>2 andkÞkc .
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