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Effective scalar field theory and reduction of couplings
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A general discussion of the renormalization of the quantum theory of a scalar field as an effective field
theory is presented. The renormalization group equations in a mass-independent renormalization scheme allow
us to identify the possibility to go beyond the renormalizapfetheory without losing its predictive power. It
is shown that there is a minimal extension with just one additional free paraitieéemass scale of the
effective theory expansigrand some of its properties are discus§&0556-282(197)04118-0

PACS numbeps): 11.10.Hi

I. INTRODUCTION has been studied in recent years for different purpb3éee
program of reduction of couplings was initiated [ib0] by

Our present understanding of quantum field theory as théboking for massless renormalizable theories in the power-
low-energy limit of any relativistic quantum-mechanical sys-counting sense with a single dimensionless coupling param-
tem[1] has changed our point of view on general problemseter. The same idea can be applied in the case of effective
in quantum field theory such as renormalizatj@h An ef-  field theories looking for relations between the renormalized
fective field theory Lagrangian contains an infinite numbercouplings compatible with the renormalization group equa-
of terms including the usual ones in a renormalizable Lations.
grangian(in the power-counting sen$8]) corresponding to In previous workg 12,13 the authors considered the pos-
the terms with dimension less than or equal to 4. sibility to apply the method of reduction of couplings to the

A natural way to parametrize the Lagrangian is based orffective field theoretic formulation of quantum gravity. The
the introduction of a fixed mass scdle, which is a charac- nonrenormalizability of the theory is not an obstacle to iden-
teristic scale of the physical system described by the effectifying a theory with a finite number of independent param-
tive theory, and a dimensionless parameter for each term isters. In order to get this result one has to assume that the
the Lagrangian giving the corresponding coefficient in unitsmass scale associated to the Newtonian liflanck mass
of M raised to the appropriate power. Ultraviolet divergencess much larger than the mass scale of the effective theory and
can be cancelled by a renormalization of the infinite numbebne has to neglect all the contributions suppressed by powers
of parameters. If one uses an appropriate renormalizatioof the ratio of these two mass scales.
scheme(a mass-independent renormalization schéfred)) The aim of this paper is to apply the same idea to the case
then, when one computes a process at some ererdge  of an interaction which does not require us to consider a
parameter associated to a term in the Lagrangian of dimemonrenormalizable Lagrangian as a starting point. In this
sionn+4 gives a contribution proportiorfato (E/M)". If case, in contrast to the gravitational interaction, it is not nec-
terms suppressed by powers di/M) are neglected, the essary to neglect any contribution in order to identify an
usual renormalizable theory result is recovered, and wheeffective field theory with a finite number of independent
one computes to a given order iB/(M) only a finite number parameters. One can interpret the present work as a step
of parameters appear. In this sense, although the effectideeyond the paradigm of quantum field theory as a low-
theory has an infinite number of parameters, the theory hasnergy effective theory. Going beyond the renormalizable
predictive poweif8]. When the energy becomes comparabletheory(dominant term in the low-energy limitdoes not nec-
to the mass scall®! of the effective theory one goes beyond essarily imply that we must consider an effective field theory
the domain of validity of the effective field theory expansion with an infinite number of free parameters. It is possible to
and one has to consider a new theory, either a new fieldonsider intermediate steps. The reduction of couplings,
theory incorporating the appropriate fields to describe thevhich could be a consequence of a symmetry of the under-
degrees of freedom at these energies, or a theory going bedng fundamental theory which is hidden in the field theo-
yond the general principles of quantum mechanics and speetical limit, corresponds to a situation where the field theo-
cial relativity. retical approach goes as far as possible in the sense that the

In order to be able to cancel all ultraviolet divergenceslow-energy limit of the theory is only sensitive to the details
one usually considers all the terms compatible with somef the underlying theory through the value of a finite number
symmetry principles. But this is not necessarily the case. Thef parameters. Instead of making reference to a symmetry of
possibility to have a renormalizable theory with a reduceda more fundamental theory, a reduction of couplings in an
number of parameter@method of reduction of couplings effective theory could be a consequence of the renormaliza-

*Electronic address: atance@posta.unizar.es 2For a recent review with a list of references §6k
"Electronic address: cortes@posta.unizar.es 3The idea of considering a reduction of couplings in a nonrenor-
A very clear discussion on this point can be found 7h malizable theory appears for the first time[i].
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tion group flow in the infrared limit with a finite-dimensional couplings are discussed in detail. The physical content of the
infrared fixed manifold. An interpretation along these linesreduction of couplings is disentangled from the presence of
of the reduction of parameters in a renormalizable theory hagedundant terms in the effective Lagrangian. A one-to-one
been considered previoudl§4] in attempts to determine the correspondence between the three independent parameters of
values of the Yukawa couplings in the standard model and ithe minimal extension of the renormalized scalar field theory
the minima' Supersymmetric Standard mode'_ and three mass scales is established. A hierarchy of mass
All the ingredients in the discussion of the application of SCales in connection with the consistency of the perturbative
the method of reduction of couplings in an effective field Féduction of couplings and also with the possible ambiguities
theory are present in the simplest case, the theory of a refiduced by the high-order behavior of the perturbative ex-
scalar field, which is the subject of this paper. The mainpansmn(renormalon}s|s discussed at the level o_f the effec_-
result of this work is the identification of a minimal exten- tivé theory. The standard study of the effective potential
sion of the renormalizable theory of a scalar field. This resul@sed on the renormalization group is generalized to the case
is based on a perturbative expansion of the renormalizatioff @n effective scalar field theory. The possibility of sponta-
group equations for the renormalized parameters of the efl€0US Symmetry breaking and the modifications required in
fective theory and therefore one can assume that it is the discussion of the renormalization and reduction of cou-
weakly interacting theory over all the range of validity of the Plings in the effective field theory are also considered. We

energy expansion. end in Sec. V with a summary and prospects.

The triviality of the renormalizable scalar field theory,
i.e., the impossibility to describe the interaction of scalar Il. RENORMALIZATION GROUP EQUATIONS
particles over an unlimited range of energies with¢a AND REDUCTION OF COUPLINGS: MASSLESS CASE

theory, is automatically incorporated when one considers the

T The starting point of our discussion is the more general
theory as an effective field theory. As a consequence of the . . ;
expression for the effective Lagrangian of the theory of a real

reduction of couplings it is possible to express all the correc- o ; : .
tions, which are proportional to inverse powers of the massScalar field invariant under the discrete transformatian

scale of the effective theory, in terms of a single additional__ ¢. It is convenient o introduce a fixed mass sddes a

parameteftogether with the mass parameter and the quarti eference _unit for all t_he couplings .Of the effective the.OW:
self-coupling of the renormalizablés® theory). The exten- he effective Lagrangian can be written as an expansion in

sion of this result to the standard model of elementary parl_nverse powers oM:

ticle physics considered as an effective theory can have in- - -
teresting physical applications if the characteristic mass scale :E “op ﬁ 4 B A(2) M A(4)
> : L 3, PP ¢+ —L9+ —LW 4

of the theory is not much larger than the presently available 2w 4! M?2 M4
energies. (2.1

In Sec. Il we consider the renormalization of the massless
scalar field theory considered as an effective field theory. AA mass @ term) has not been includeh the next section
simple structure for the renormalization group equations igve will see how the structure of the renormalization group
obtained in a mass-independent renormalization scheme d@gluations is effected in the presence of such a)tefihe
to the absence of a dimensionfull ultraviolet cutoff. The coefficients )\O,XZ,X4, ..., are dimensionless parameters
renormalization group equation for the parameter correand the power dependence on the mass ddale fixed by
sponding to a term in the effective Lagrangian of a givendimensional arguments. The effective field theory expansion
dimension does not depend on the parameters correspondifgs peen written in a compact notation whéf@" is a vec-
to terms of higher dimension. It is this simple triangular {or \whose components are the different terms of dimension
structure which allows us to find a solution to the renormal-4 | 5, puilt out of the scalar field and its derivatives.
ization group equations, where all the parameters corre- o the first terms in the effective field theory expansion
sponding to terms of dimension greater than 4 in the Layne has
grangian can be expressed in terms of a single independent
parameten ,, independently of the value of the renormaliza- 1 1 1
tion scale. These relations between couplings can be £(2)=(§¢6,Z ¢29#¢3"¢,§(D¢)2), 2.2
uniquely determined order by order as an expansion in pow- '
ers of the parametex, corresponding to the* interaction. 1 1 1

In Sec. lll the extension of the reduction of couplings to 5<4>:(_¢8,_¢45 Db, =(9,pI*P)2,
the massive case is considered. Together with the expansion 8! 2(41) . g
in powers of the quartic scalar coupling one has now an
expansion in powers of the mass paramatey in the renor-

1 1 1
— M 42 2 2
malization group equations which gives corrections to the Z(M"(M ¢D¢,4¢ (0é) ’ZD¢D ¢>'

triangular structure of the massless case. The reduction of (2.3
couplings identified in Sec. Il can be extended to this case if o _ o
one includes an expansion in powers of the produ_ci )\2 The general parametrlzatlon of the effective Lagranglan IS

in the relations between couplings and one considers theedundant for two different reasons. First, a change in the

mass parametev_, as an additional independent parameter.ScaleM is equivalent to an appropriate rescaling of every
In Sec. IV the interpretation, limitations, and some impli- dimensionless parameter. A choice of the s¢dleuch that

cations of the effective scalar field theory after reduction ofall the dimensionless parameter%';) are simultaneously of
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order 1 allows us to identiffl with the scale characteristic dvo

of the energy expansion of the effective theory. Second, by ,U«m=>\oBo- 2.7
using a nonlinear redefinition of fields it is possible to elimi-

nate some of the terms in the effective Lagrandi&b,1q.

Nevertheless it is simpler to use this redundant parametriza-

tion in order to identify the general structure of the renormal-

ization group equations.

The standard derivation, in perturbatively renormalizable a2
theories, of the renormalization group equations in a mass- m 4
independent renormalization schéhsan be translated to an dp
effective field theory. An infinite number of counterterms
must be admitted in order to absorb the infinities from loo
graphs[18]. One can prove that limitations on the terms in
the bare action arising from symmetries are compatible wit ) . ) o TeEss X
renormalizability[19]. The effective theory has an infinite -@drangian of dimension 6 ani,j, distinguish the six-
number of bare parameters in one-to-one correspondendimensionless coefficients of terms of dimensio(2&). A
with the dimensionless parameters of the effective actionSU™M Over repeated indicgg,jz .k, is understoood in Egs.
Using dimensional regularization one has expressions for thg>-8 and(2.9). R
bare parameters in terms of the renormalized parameters, The u dependence ok ,, is fixed by a finite number of
with poles whene—0 (dimensionD =4—¢). From the in-  parameters\,, with k<n. This triangular structure of the
dependence of the bare parameters on the renormalizatieenormalization group equations allows a systematic search,
scaleu, one concludes that any changewfust be equiva-  order by order in the effective theory expansion, of relations
lent to a change in the renormalized parameters. The renobetween the renormalized parameters independent of the

dn v o
2
i =NoBYTINYY, 2.9

_ (ig.i2)y (i2) (ig.01.k1)y (J1)y (Kg)
—7\054 )\4 +B4 )\2 )\2 , (2.9

where the coefficientB,, B,, andB, are power expansions
in the self-coupling\q. Indicesi,,jq,k; take three different
fyalues corresponding to the three terf22) in the effective

malization group equations renormalization scale. and compatible with the renormal-
. ization group equations, i.e., a reduction of couplings. In this
d)\(zlr?) . way one can consider the possibility to have a finite number
7 A =,8)\<2ir?>()\) (2.9 of independent renormalized parameters despite the appear-

ance of an infinite number of interaction terms in the effec-

. . L tive Lagrangian.
express this fact. A straightforward generalization of the  pq ¥irst step in the reduction of couplings is to introduce

standard discussion of renormalizable theofieg leads to a a dimensionless parametgs with a renormalization scale
perturbative determination of the renormalization grg8ip dependence given by

functions from the residues of the simple poleg&t0 in the

relations between bare and renormalized dimensionless pa- 5

rameters. Py NoBoAs, (2.10
Dimensional arguments together with the presence of a K

single mass sc_aIM .(the dependenpe on .the_renormalyzatlonwhere the coefficienB, is an expansion in powers af, to

scaleu is logarithmig leads to the identification of a simple . . . 1) i

structure for the renormalization group equations. The be fixed in order to be able to write all the parameke((r In

functions satisfy the homogeneity conditions terms of\, in a way compatible with the renormalization
group equationg2.8). The reduction of couplings at this

Bxﬁn)(ﬁ’):tznﬁwn)():), 2.5 level corresponds to looking for a relation
2n 2n
NpU=/3N,. (2.11)
where
Consistency with the renormalization group equations leads
N =t2"N o . (2.6) to
These conditions put strong restrictions on the depen- d/(zll) (D olinid AiD
dence of the3 functions on all the dimensionless parameters BO)‘Od—)\0 B/ =B L, (212
with one exception, the scalar self-coupling. Each renor-
malization groups function will be a polynomial of a given  which is a system of equations for the coefficients of the
degree in the parametexs,,, n+0, with coefficients which  reduction of couplings’{*’ and the coefficiens, in the g
are a se(ies expansion ky determined order by order in f,nction of the independent parameter. A loop expansion
perturbation theory. o ~ corresponds to a determination in perturbation theory of the
The prhcn form of the renormallzatlon group equatlonslg functions in Eq.(2.4) and then to a determination &,
ifgrz tir;eglzl\:ztntz;ms in the expansion of the effective Lagrang-and B(Z'l’“) order by order as an expansion in powers\gf

Bo= >, B\, 2.1
4See, for instancd17]. 0 kgo 070 213



3614 MARIO ATANCE AND JOSELUIS CORTES 56

e /L0=0, (2.20)
i1, i1,01:K 2
B(zlll):kzo B(21J1 )}\IC()- (2.14 |
/Z0=1, (2.22
The perturbative expansion of the renormalization group
equations leads to a solution of the consistency equations /30 =p320/g(220 (2.23

(2.12 with /1 andB given as an expansion in powers of ,
2 2 andB,=B{%9).

No:
0 (3) The last solution has only the term with four deriva-
i i k0 tives to start with,
/W= /0N (2.15
2 2 [o}] . (- (3
k=0 /F0=,20=0g, F0=1, (2.24
- and theg function of the independent parameter is propor-
— (k)y k
Bz—go B2 Mo, (218 fional to \3 in this case:
i.e., a perturbative determination of the reduction of cou- . BE20p(23
i i B,=| BY¥Y————|\ (2.29
plings. In lowest order, the consistency equati@rl? re- 2 2 (22,0 0- .
duces to B

Once the reduction of couplings at the level of terms of
dimension 6 in the effective Lagrangian has been imple-

. . . . mented, the next step is to consider the renormalization
For each eigenvector with a real eigenvalue of the matrix

of lowest-order coefficients in the renormalization groupgroup equation for the coefficients of terms of dimension 8.

. (i) ) ) ) Using the reduction of coupling®.11) one has
equation ofA,* there is a consistent reduction of these pa-

rameters. To lowest order in an expansion in powers Hf d\li2)
the coefficients of the independent parametegrin the re- o d4
duction equatiori2.12 are the components of the eigenvec- M
tor, and the coefficient of th@ function of A, is the corre-
sponding eigenvalue. An extension of the reduction o
couplings order-by-order ing leads to an order-by-order
approximation of the consistency equati¢12 which re-
duces to a linear system of equations for the coefficient

/(Zil;k) of the reduction at each order.

B(ZO)/(zil;O):B(zil’jl;O)/(zjl;O)' (2.17

=\oB{2INJ2 4 L2, (2.2

fvvhere

L{? =gz Al ) (2.27)

2

?\Iow one has to look for the possibility to express the param-

A diagrammatic analysis allows us to identify easily the S1ETSA4 s a function oo and, in such a way that one
order in thex ; expansion of the first term for each renormal- reproduces their renormalization scale dependgncg, given in
o 0 o (1) ) o ) Eqg. (2.26, as a consequence of the renormalization group
ization group coefficienB, . Just with this information equations(2.7), (2.10 of A, and\,. A relation
it is possible to identify three different reductions of cou-
plings. - i)
(1) In the first solution the three terms of dimension 6 in NP =222, (2.28
the effective Lagrangian have coefficients which begin at the Mo
same order in tha, expansion. The coefficients in the re- i) . . .
ducti i i i here the coefficient’!'? is a function of\o, will be con-
uction of couplings are determined in lowest order, up to anfV 4 0
overall normalization factor which can be reabsorbed into istent with the renormalization group equations if

redefinition of the independent parameter They are given

b d//(iz)
y BO)\OL+(282_BO)/SZ):Bgzyiz)/iiz)_f_LE‘iz)
. d\g . ' '
/A9=1, (2.18 (2.29
/20 =gt (BGhE0 — g22:0) (219  This is a system of equations for the coefficients in the re-
50 420 (210 100 (110 520 duction/’SZ) and all other factors are expansions in powers
/20=BP*0BZ1O BT (BSHO ~BYHY) ] of Ao Which are determined order by order either directly

(220 from the perturbative approximation to the renormalization
. . . . group equations or from the perturbative determination of
The extension of the reduction of couplings to all orders i group €9 P

. . S . X e reduction of couplings at the previous level. A solution of
uniquely determined once the arbitrariness in the choice Ok o consistency e uatior2.29 with /2 given as an ex-
independent parameters is used to hBye-B{"%% for the Y €q ' 74" 9

renormalization group coefficient of the independent parampanSIon in powers oko,

eter\,. o
(2) A second solution has only terms with derivatives of A2 = 2 Aiziky k (2.30
the field in £, in lowest order: A= R 0
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is obtained by solving a linear system of equations at eacthe general structure of the renormalization group equations.
order in the expansion in powers &f, of the consistency The homogeneity conditions of the functions include the
equations. rescaling of the additional parametef ,=t~2\_, and the
The steps followed in the determination of the reductionsimple triangular structure is lost due to the contributions
of the parameters corresponding to terms of ordéd“.tan  proportional to positive powers af_, which will be accom-
be repeated order by order in the expansion i 16 getthe  panied by parameters corresponding to terms of higher di-
reduction of the effective scalar field theory. It is given by mensionality. If one wants the reduction of couplings to be
the relations applicable also in this case then one has to assume that the
dimensionless parametgr_, is sufficiently small to treat its
iy Zan o n effects as a small perturbation. The reduction of couplings
Nop :FAZ’ (2.3)  identified in the previous section for the massless case can be
0 taken as the zero-order term of an expansion of the reduction

in)

equations in powers of the parameler,.
The renormalization group equation for the dimensionless
parameter associated to the mass term is given by

where the coefficientg'(zig) are expansions in powers bf ,

/= Akl K 2.3
2n IZO 2n 0 ( 2 d7\_2
h

:B_2'0>\_2)\0+[B(_ll.2>'1)\(2|1)])\_22+[8(_|22)' 21'2)
determined by the renormalization group equations.

The final result is an effective Lagrangian with an infinite +B(_ilz,j21>)\(2i1))\(2j1>])\_23+ e (3.1
number of terms of higher dimension added to the massless ’

renormalizable scalar field Lagrangian but with only one ad-Where the coeficientd are DOWer expansions . de-
ditional independent renormalized parametey, with a > 2K P P 0

N . termined from a perturbative calculation of counterterms. As
renormalization scale dependence determined by a one loa . " :
; . - consequence of the homogeneity conditighls,_ is pro-
calculation. In fact we have found three different minimal 22

extensions of the renormalizable theory of this kind. portional toA _, and then a vanishing mass parameter con-
The reduction of couplings should not be confused withsidered in Sec. Il is consistent Wlth the renormalization

the identification of redundant terms in the effective La-9roup equations. For the self-coupling one has

grangian. By using a nonlinear redefinition of fields it is

possible to eliminate all the terms of dimension greater than

4 involving O ¢ [15,16 . For example, by making the shift

of variables¢— ¢’ with

d\o o o

ﬂm=Bo,ox§+[Bg}f)\;‘ﬂ])\_ﬁ[Bg';))\g'z)
+By S NSNS (3.2

NP1 Y

YEEAE

¢13 1 )\(23)
ET) Wmd’" The first term is just the masslegsunction sinceB yis just
the coefficientB, of the massless renormalization group
(2.33 . - i "
equation. One has additional terms proportional to positive
one has a Lagrangian with only one term of dimension 6powers of\_, with coefficientsBy, determined perturba-

b=+

R,/M2(1/61)¢'®, where tively. The renormalization scale d_epend_ence of the param-
eters corresponding to terms of dimension 6, which in the

Ro= A= 200 A2+ 10020 (2.34) massless case was given by E8), will now take the form

Then at this level the simplification of the effective Lagrang- d)\(z'l) 1ine (1) i) (i)

ian due to the presence of redundant terms has a similar x— :Bz,%)']l))‘zjl )\0+[B(2‘11’ )2

effect as the reduction of couplings but this is not the case if K

one considers higher-dimensional terms. If one includes +B(ziirjlﬁkl))\(zjl))\(zkl)])\_z_'_[B(2i12~i3))\g3)

higher dimensional terms in the change of variables it is ' ’

possible to extend the simplification of the effective La- +B(2i12'ilai2>)\<211>)\22)

grangian to terms of dimension higher than 6. At thé/t/ o '

level it is possible to eliminate three out of the six terms in +5212"1"‘1"1>)\(211>)\(2k1))\<2'1>])\_22+ ..

Eq. (2.3 but one still has three new independent parameters ’

to be compared with the absence of any additional free pa- 3.3

rameters after reduction of couplings.
Equations(3.1)—(3.3), toghether with its obvious gener-

IIl. RENORMALIZATION GROUP EQUATIONS alizatipn for the remaiping parameters in thg effective La-
AND REDUCTION OF COUPLINGS: MASSIVE CASE grangian, are the starting point for an extension to the mas-
sive case of the reduction of couplings discussed in the
If one considers a massive spinless particle then one hgsevious section. The presence of a new independent param-
to include a term\ _,M2¢? in the Lagrangian density. The eter \_, and the general structure of the renormalization
dimensionless parametkr , has to be taken into account in group equations leads to the consideration in the massive
the discussion based on dimensional arguments leading tmse of a relation



3616 MARIO ATANCE AND JOSELUIS CORTES 56

i i qiphah—a [ Nah_p ? d\ AoN AN ?
T e T N
(3.9

XN\ _2, 3.7
fixing the effective Lagrangian at orderNI? in terms of the 2
parameters. _,, Ao, and\,. The coefficients”,, are deter- dho LotL AN NoN N
mined by the consistency of E(.4) with the renormaliza- K ~ | -00T ot A2 %4 \2 |t
tion group equations. At each order in the expansion in pow- (3.9

ers ofA _, one has a system of equations for the coefficients

of the reduction of couplings. In lowest order one has thewhere the coefficients _,, Lok are obtained by combining
massless consistency equati@12) for /,,. At order\_, the renormalization group equatiot&1), (3.2) with the re-
the consistency of the reduction Dﬂl) with the renormal-  duction relationg3.6). One has for the first coefficients

ization group equations leads to

L_20=B_2p,
Aip) PASY (iD) i)
20 (1) Aiv) Aiq) 21 I‘*2'1:)‘08712 1/20’
—d)\o BO,l /2’0 + (282,0+ B_2'0)/2’1 + d)\o BO,O ’ !

—y gl A y2plia) Aiz)  \3plisil) Ai) A
L_22=NoB % /51 NGBS /W5 +AoB LS 7557 50

_pli) A1) (i1,ip) Aip) (i1.d1.k) A1) AKq) © 20
- BZ,O /2,1 + BZ,l /4,0 + BZ,l /2,0 /2,0 ’
(3.9 Lo,0=Boos
. . . (i) . . L _B(il)//(il)
which determines the coefficients,}’ as an expansion in 01~ Po17 20"

powers ofA g once the coefficienfgg) in the reduction of the

parameter)\SZ) has been determined from the consistency

with the renormalization group equations in lowest orderand then one reproduces the renormalization group equations
[Eg. (2.29]. This argument can be repeated step by step the renormalizables? theory plus corrections due to the

obtaining an effective Lagrangian with three independent paaytension which are determined perturbatively.
rameters\ _,, Ao, and\,. The dimensionless coefficient of a

generic term will be given by IV. SOME ASPECTS OF THE EFFECTIVE SCALAR
FIELD THEORY AFTER REDUCTION OF COUPLINGS

—plin) A1) (i2) Ai) 4§ 2p(indd) AiD) Aiv)
Loo= Bo,ll /2,11 'H‘OBO,ZZ /4,% +)\OBO,; ' /2,%) /2,c1) '

2
. ; iy Ao iy [ Aok AS" . . .
)\(z'”)z ln) g i) 22772 4 Al (#) Foo |22 In order to discuss the properties of a scalar field theory
n 2n,0 2n,1 2 2n,2 2 n-1" . . .
Ao Ao 0 considered as a low-energy effective theory with three free

(3.6 parameters it is convenient to introduce a mass scale associ-

. ated to each of the independent parameters. For the self-
where/(z'r']‘)k are power expansions i, determined by the couplingkq one can consider the approximation to the renor-
consistency with the renormalization group equations. Thénalization group equation where the corrections proportional
determination of the reduction coefficients goes from lowert0 A ;>\, are neglected, i.e., the renormalization group equa-
to higher values ok (i.e., order by order in the expansion in tion of the ¢* theory, and at this level one can identify the
powers of\ _, of the renormalization group equatiprior a ~ ScaleM; at which the perturbative approach breaks down
given value ofk it goes from lower to higher values of  (Landau polg
(i.e., order by order in the effective Lagrangian expangion  Associated to the parametes, which controls the depar-
and for a given value of andk it goes order by order in ture from the renormalizablé“ theory, one can consider a
perturbation theoryX, expansioin Once a solution for the new scaleM,. A comparison of the lowest-order contribu-
first coefficients =1, k=0) in lowest order has been ob- tion to the 2-4 scattering cross section in the renormaliz-
tained[Egs.(2.18—(2.25] the reduction of the effective La- able ¢* theory with the first contribution from the higher-

grangian is determined by solving linear systems of equadimensional terms in the effective Lagrangian can b'e u;ed to
tions for the remaining coefficients of the reduction. define the scalé, as the energy where both contributions

The effective theory is defined by the relations givingbecome comparable. That leads to the identificatioll glas
each coefficient in the effective Lagrangian in terms of thethe scaleM in the effective Lagrangia(2.1) such that
three independent parameters and by the renormalization .
group equations which give the renormalization scale depen- Na(m=Mp)=\j(n=M,).
dence of the independent parameters. The arbitrariness in the .
choice of the independent paramebey has been used in Note that the scal®l, is defined through the parametes
order to have a scale dependence given by(Eq.0, where  which is the coefficient of thes® term in the effective La-
B, is either a constant or a constant timesdepending on grangian after a shift of variables has been made to eliminate
the solution to the lowest-order consistency equations. Théhe remaining terms of dimension 6. Then all the arbitrari-
renormalization group equations fag andA _,, which are  ness in the parametrization of the effective Lagrangian can-
the parameters of the renormalizalgié theory, are given by cel in the determination of1,, as should be since it can be
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taken as a measure of the energy range where the effectivg(M,)=\3(M,). The consistency of the step-by-step re-
theory expansion is a good aproximation. duction leads to the conditionh_,(M,)<e,. A one loop
The third scaléM _, gives a first aproximation to the mass calculation determines the lowest-order approximation to the
of the spinless particle. It can be introduced by the conditiorrenormalization group equations for the independent param-
eters which, in the case of the reduction in E(&.18—

N_o(n=M_p)M5=M?, (2.20, reads
on the coefficienix _, of the ¢? term in the effective La- d/ \o Ao |2
grangian foriM =M. In the determination of the scalé _,, ,ud—( W) :3(W) , (4.1
as a function of the parameteks , and Ao at the scale -
u=M,, the terms proportional ta, in the renormalization ~ N
group equation ol _, are neglected. hy —2 :)\_2( 1602)’ 4.2
M T
A. Limitations of the minimal extension of the renormalizable ~ \
¢* theory e -0
7 du 15\, 16772)' 4.3

The renormalizability of the scalar field theory with three
independent parameters has been discussed order by orde
a perturbative expansion in the self-coupling Therefore,
unless a generalization of this result at the nonperturbativ
level is found, one has to assume thg{w) is smaller than
the value of the coupling at which perturbation theory be-
comes unreliable for any scale in the range of validity of the - Ao(M2)

. A S No(pm)= :
effective theory. There are ambiguities in the determination 14 3/2[\o(M5)/1672] In(M3/ ?)
of these values, which in the case of #é theory leads to
the identification ofAg=3—4 as the value at which the Then, in this approximation, one has a simple expression for
theory becomes strongly interactindhe conclusion is that the ratio of scales S/ M§ in terms of the parameteary(M>):
the scaleM, limiting the range of validity of the effective

rT'Qking as a reference the parameters at the $dajeone has
a renormalization scale dependence for the self-coupling
Siven by

(4.9

theory expansion can not exceed the sddlgassociated to M3 2 1

the parametek . More precisely one has the condition M—§=ex;{§ W . (4.5
)\0(,(1, = M 2) . . . .
stm The solution of the renormalization group equations for the

parametera., A _, IS

where ¢, fixes the domain of validity of the perturbative 13
expansion using several criteffia0] (suppression of higher- A_o(1) =M _o(M )[ No(u) } 4.6
order terms, decrease of renormalization scale dependence, e - ' '
absence of significant violations of unitarity, . ). A second

obvious limitation is that one can only consider low-energy No(m)
observables such that the ratit?/M3 is small enough to No(m)=No(My) No(My)
justify the use of the effective Lagrangian expansion.

The third limitation comes from the expansion in the re-and then one has, for the combination of parameters which
duction of couplings due to the introduction of a mass termappears in the expansion of the reduction of couplings of the
in the effective Lagrangian. The validity of the step by stepmassive case,
reduction of couplings requires that

5

: (4.7)

AN,

Aa(p)N—o(p) 2)\2(M2))\72(M2){ Ao(w) }10/3
\G

. (4.8
<e No(m) N2(My)  [Mo(Mp) “4-8

o ) Since the coupling\, decreases when one goes to lower
over all the energy range of validity of the effective theory. scales, the convergence of the expansion of the reduction of
In order to translate this condition into a limitation on the couplings over all the energy range of validity of the effec-
mass scales of the effective theory we have to use the rendjiye theory is automatic once the couplings at the staje
malization group equation for the independent parameterfizs peen chosen appropriately_ ,(M.,)<e].

and the explicit form of the reduction of couplings. One can also use the explicit form of the solution of the
For definiteness we consider the first reduction, Eqsrenormalization group equations to translate the restriction
(2.18—(2.20, identified in Sec. Il. In this case, neglecting A_»(M,)<e, into a restriction on the ratio of mass scales

higher-order terms in the, expansion, one has,=\, and, M2 ,/M2:
as a consequence of the definition of the scdle,

1/3
M2,

M3

M3
M2,

3 Mo(M)

+2 1672 In

SFor a recent discussion, sE20].
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There is a clear correspondence between the limitations on Assuming that the large-order behavior of perturbation
the scales of the effective theory and the different boundsheory is dominated by the renormalon singulaf2g] leads
obtained in the¢* theory. The limitations of perturbation to an ambiguity in the sum of the perturbation series which is
theory in theg* theory, including the perturbative unitarity of orderEle(Z). Although there is no physical significance to
bound, are automatically incorporated in the perturbative apthese ambiguities when treated consiste[2Kj still one can
proach to the effective Lagrangian and the treatment of thelescribe the effect of a truncation in the perturbative expan-
higher-dimensional terms as a small perturbation implies thagion by these ambiguitig®5] . If one has an effective theory
the perturbative bounds in the effective theory will be verywith M%/M§<l, i.e., if the self-coupling at the scaM, is
close to the bounds of thg¢* theory. such thatho(M,)/16m2<1, then the corrections of order
With respect to the triviality bounds, these are usuallye?/M2 due to higher-dimensional terms are much bigger
formulated as a restriction on the renormalized parameterghan the ambiguities due to the divergences of the perturba-
due to the neccessity of a finite cutoff in order to have a  tjon series. On the contrary if one considers an effective
nontrivial interacting system. A lattice formulation of tité theory whereM, and M, are of the same order then the
theory leadg?21] to the identification of an upper bound on ampiguities due to the divergence in the perturbation series
the scalar mass in units of the cutoff and an upper bound ogre of the same order as the corrections to dfetheory®
the renormalized COUpling if one limits the size of the deVia'Once more there is a Correspondence between the previous
tions from continuum theory. As long as the higher- giscussion of renormalons in the effective scalar field theory
dimensional terms in the effective Lagrangian are a smalhng the connection between scaling violations in lattide
perturbation, the result that the bound on the coupling igheory and the divergence of the perturbation sdi2d$ To
smaller than the perturbative bound and the conclusion thaing this section, let us remark that, although the first of the
there is no strongly interacting theory, can be translated tgnhree possible reductions of couplings of the scalar theory
the effective theory justifying its perturbative treatment. It iS\yas used in the discussion of the limitations in the effective

not clear whether the modification on the perturbative bounqheory' similar arguments can be used for the other cases of
for the coupling due to the higher-dimensional terms couldeqyction of couplings.

be big enough within the domain of validity of the effective
theory expansion to make possible a strongly interacting
theory.

There is a relation between scaling violations in latijce The cross section for any process in the scalar theory can
theory and deviations of the effective theory from t#é  be written using simple dimensional analysis in the form
theory which can be obtained if one uses the local effective
Lagrangian description of scaling violatiof22]. An Euclid- ~ ?\fz(M)Mg No(p)E? p?
ean lattice¢* theory with a given lattice action has the same o= g20| XNo(p), 2 m2 EZ)
perturbative expansion as an effective scalar theory with a 2 (4.19)
Lagrangian given by the local effective Lagrangian which

describes the scaling violations of the lattice theory. The UpyhereE is an overall energy scale of the processienotes

per bound on the mass in units of the cutoff obtained in the,ngles and energy ratios apdis the renormalization scale.

lattice field theory analysis can be translated to the effectivepq independence of the cross sectionn the renormaliza-

scalar theory if one identifies the scal,, which is a mea-  ion scale can be used to chogse: E.

sure of_the domain of validity pf trle effective theory expan- | order to apply the effective Lagrangian expansion one

sion, with the cutoff of the lattice”™ theory. The bounds in  hag 1o consider the scattering of jets instead of particles in

the lattice theory on the deviations from the continustal-  orger to have cross sections which remain finite when the

ing violationg are associated with the bounds in the effective,555 vanishes Using the renormalized parameters corre-

> h .

theory on the deviations from thé" theory. _sponding to a mass-independent renormalization scheme, as
Another possible source of limitations of the perturbativepag peen done in the discussion of the renormalization group

treatment of the effective theory is the divergence of thexgyations of the effective theory leading to the reduction of

perturbation series. A comparison of théh order term in couplings, it is possible to expand any cross section in pow-

the o expansion with the first correction due to higher- grs of the independent dimensionless parameters. One has
dimensional terms leads to the ratio

B. Physical content of the reduction of couplings

LS A_o(E)M2\ ' \,(E)EZ)
—-10/3 = (i.j)
()] o= 2,7 ()\O(E).X)( = v

1672 (4.12
(4.10

(No/167%)" (No/1677)"
Mok /N2 T TONGN G INE

where the coefficients"1) can be determined order by or-
which, for any given scalg, becomes smaller than 1 far  der as an expansion in powers Xf from the perturbative
sufficiently large. Larger values of the scale require us to gealculation of the cross section and the reduction of cou-
to higher orders in order to have a perturbative correctiorplings. Using the renormalization group equations for the
smaller than the contribution due to higher-dimensional
terms. This means that it makes no sense to worry about the
large-order behavior of the perturbation series while neglect- ®Similar conclusions are obtained from a different point of view in
ing the higher-dimensional terms in the effective Lagrangian[26].
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independent parameters and the definition of the mass scales an L
of the effective theory one can rewrite the cross section in —=B(\) (4.15
the form dt '
1 - i A_o(E) T _ with the initial conditionsi_(O)z):(M) and the rescaled
= — 1] s 7 J ; .
o Ezi,;z‘o oD No(E),X] A_z(M_J [Ao(E)] field:
. . - t -
M2\ 2\’ i1 ¢(t)=exp[—f dt’ y[ A (t')]] ¢ (4.1
£2 M_g ) (4.13 0

Then the renormalization group equation for the effective
i.e., as a double expansion in the ratio of the mass of th@otential takes the simple form
particle over the energy of the proceMéZ/E2 and the ratio

of the energy of the process over the sdsllg. d — - .
As a consequence of the reduction of couplings in the &V[‘ﬁ(t)’)\(t)’e'“]_o’ (4.17
effective theory it is possible to get a systematic approxima-
tion to any cross section in terms of a mass sddlg a  which can be trivially solved leading to
self-coupling\o(M>,), and\ _,(M5) (which fixes the mass
of the particle. This is a generalization of the result in the VI N ), u]l=V [at),ﬁt),et,u]. (4.18
¢* theory which is obtained by taking,=0 in Eq. (4.13.
The standard derivation in theé* theory of the range of Using simple dimensional analysis and obtaining the de-

values of the coupling\, for which perturbation theory is pendence of the effective potential on the mass scale of the
reliable[20] can be improved by including the terms with  effective theoryM,, one can use the renormalization group
#0 in Eqg.(4.13. A measurement of several cross sectionsgequation to determine the behavior of the effective potential
at high enough energy and with a sufficient precision to bé’ as one scales the field:
sensitive to the corrections due to the higher-dimensional
terms, can be used to distinguish the expansion in&E43 . VIdN(p),My,u]=e*y [e—tat),ﬁt),e—th'ﬂ]_
from the expansion of the most general effective Lagrangian (4.19
and then to test the validity of the reduction of couplings.
The large logarithms which appear in a direct perturbative

C. Effective potential of the effective scalar theory calculation of the potential on the left-hand side dissappear

on the right-hand side if one makes the choice

Another example of a systematic improvement of i#fe 1 2 2 . .
theory analysis at the level of the effective theory is thet_ 2In (¢/"). This assumes that the exponential factor de-

application of the renormalization group to the effective po_pendmg on t_he anpmalous dimension in E416 is of or-
tential [27]. The effective potential is the generating func- 9€r 1. For this choice of one has
tional of one-particle irreducible Green functions evaluated - . .
at constant values of the field and its absolute minimum de- A()=\(e'u)=N\(g). (4.20
termines the ground state of the theory. It is an effective o _ )
action (for constant fieldsin the sense that it incorporates  The validity of the perturbative approach to the effective
the effects of loop diagrams but it should not be confused-2grangian foru<M, then justifies a perturbative calcula-
with the action of the effective theory which incorporates thetion of the effective potential fosb<M,. In lowest order
effects of the finite-energy range of validity of the theory. (tree leve] one has
The effective potential of the effective theory incorporates
both effects.

The renormalization group equations for the one particle
irreducible Green functions of the effective theory yield a

renormalization group equation for the effective potential ?\(1)(¢)—
W(4): . " tz PO+ (@420
: 2

. Noa(HMS—  No(B)—y
VLA R () Mg = 2 Gty 0P g

Mg + *ﬂf: y ﬁ, (4.14  i.e. the nonderivative terms in the effective Lagrangian with
du 2N d¢ the dimensionless parameters renormalized at a gcale

and the field variable replaced f(t).
which is the generalization of the renormalization group The loop expansion for the effective potential in tihé
equation for the effective potential of the® theory [27]  theory can be directly translated to the effective theory and
including all the parameters of the effective theory and then one has a systematic approximation to the effective po-
their corresponding3 functions already introduced in the tential of the effective theory including radiative corrections.
discussion of the renormalization of the effective theory inThe consistency of the approach in E4.21), where correc-
Sec. Il. Following the standard discussip®7,17] of the tions in inverse powers of the mass scale of the effective
renormalization group applied to the effective potential onetheory are incorporated before considering loop effects, re-
introduces effective couplings through the equations quires
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A PP , 1 A_oMZ X\
oD PP a 422 LA=L($=0)=50,p0 ¢ —o— ¢ 2"
) (4.28

This is only possible if\o(M,)/167%<1, i.e., f M3<MZ ,
and the approach will apply to the large field behavior of the The effect of a general translation of the field variable

effective potential. ¢— ¢+ Mu is equivalent to a change of dimensionless pa-
We end this discussion by pointing out that the conseygmeters:
guences in the effective potential of the reduction of cou-

plings at the level of the renormalization of the effective 1,
=V )\,1‘*’

Lagrangian can be trivially identified since the effective po- Ag=N_ztovh o+ > 31 No, (429
tential is determined in terms of the renormalized parameters

)f(,u) of the effective Lagrangian. This discussion also mani- 1,

fests the difference between the effective Lagrangiamex- Np=N_oFtvN 1+ 2V Mo, (4.30
pansion in powers of the scalar field and derivatives of the

scalar field and the nonanalytic effective potential. N =A_gtuho, (4.3
D. Spontaneous symmetry breaking and reduction of couplings )\627\0- (4.32

In order to discuss a renormalized effective scalar field

theory with spontaneous symmetry breaking it is convenient If one combines these relations, valid for an arbitrary
to start by rephrasing the mechanism of spontaneous symmeanslation of the field variables, with the equation determin-
try breaking in thes* theory at the level of the renormaliza- ing N’ 5 in terms of the remaining parametersgh (A_ ;=0
tion group equations. One considers a figjJdwhich de- in lowest order and uses the symmetry df in the case of
scribes the fluctuations around the vacuum of the theory angpontaneous symmetry breaking (;=\_,=0) then one

a Lagrangian can determine the vacuum expectation valugf the field ¢

in terms of the parameteds_, and\,. When the renormal-

! 2 !
ﬁ'(ﬁ)=33 =N\ M3p— A M 72— A M 7 ization group equation&t.24—(4.27) are rewritten in terms
2°# -3 2 3! of the parametera, corresponding to this value af then
, one finds
_ 0 a4y e
4| n +‘C’Ct( 7])1 (423) d)\_3 d)\_l

P aw M ae 9 (4.33
which contains all the terms of dimension less or equal than B K

four without any additional restriction and, denotes the \yhich is the manifestation at this level of the renormalizabil-
counterterms required to renormalize the theory The coeffity of the ¢* theory with spontaneous symmetry breaking,

cient of the linear term” 3 is fixed by the condition that the and the renormalization group equauons for the two param-

vacuum expectation value of is zero(in lowest order this

eters of the theory become

leads toA” ;=0 but this is not so in higher orders
A one loop calculation leads to the renormalization group dN_,
equations K du =5Aoh-2, (4.34
d\’ g .,
Kogy — Ml (4.24 p,? =3)2, (4.39
dr’, N 23Tyt Once the spontaneous breaking of the symmetry has been
m N 2NN, (4.29 aed
du formulated at the level of the renormalization group equa-
tions for the¢* theory in a mass-independent renormaliza-
dr’ g , tion scheme the generalization to the case of the effective
L du _3)‘0)‘ 1 (4.26 scalar theory is trivial. Instead of the Lagrangiéh in Eq.
(4.23 one has to consider all possible terms with any dimen-
d\g s sion and instead of the renormalization group equations in
,U«m=37\o ) (4.27) Egs. (4.24—(4.27 one now has the renormalization group

where an overall coefficient 1/46 has been reabsorbed
into a rescaling of all the dimensionless parameters.

equations for the parameters of the effective scalar theory,

including the parameters,,, , associated to terms with an
odd number of fields. The structure of the renormalization

The case of spontaneous symmetry breaking correspondgoup equations, based on dimensional arguments and the
to the possibility to find a translation of the variable expansion in powers of, is not modified by the addition of
n— ¢=n+v such that when the Lagrangian is written in odd terms. Once more a translatiorof the field variable is
terms of the variableb only terms invariant under the trans- determined such that the effective Lagrangian in the trans-
formation ¢p— — ¢ appear, lated field variable is invariant undef— — ¢ . Its value is
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determined as a double expansion in powera ofind\ _,  effective theory energy expansion, it is possible to improve
from the condition that the vacuum expectation value of thesystematically the bounds on th# theory due to triviality
field » vanishes. both in the symmetric and the spontaneously broken cases. If
When the renormalization group equations for the paramene assumes that the fundamental theory at higher energies is
eters\’ of the effective theory are written in terms of the such that its low-energy limit is described by one of the
parameters of the Lagrangian which results from a translaminimal extensions of the* theory then the modifications
tion of the field variable by the value of determined previ- to the bounds due to the higher dimensional terms can be

ously then one finds once more E¢.33 and calculated in terms of just one additional parameter with re-
spect to the renormalizable* theory. An analysis along
dNops1 these lines of a minimal extension of the standard model

' (4.36 could have important physical implications if the character-
istic mass scale of this effective theory is not much higher

which is the manifestation at this level of the renormalizabil-than the Fermi scale. The first step in this direction would be
ity of the effective theory with spontaneous symmetry breaki0 generalize the discussion of the effective scalar field

ing. One also has renormalization group equations for théheory including a set of fermionic fields coupled to a set of

parameters\ _, Ao, )\IZHH which are the analogue for the ef- Scalar field§ corregponding to the standard model neglecting
fective scalar theory with spontaneous symmetry breaking of'€ gauge interactions. _ _

the renormalization group equations of the effective theory Another possible extension of the present discussion of
in the symmetric case discussed in Sec. IIl. the method of reduction of couplings is to consider the pos-

Since the structure of the renormalization group equatior$ibility of a ressumation of terms in the double expansion
for A is fixed by dimensional arguments which are notWhich goes beyond the step-by-step reduction of couplings
affected by the spontaneous breaking of the symmetry, theonsidered in th|s v_vork. The p053|pll|ty to have a f|?<ed point
step-by-step determination of a reduction couplings applieSf the renormalization group equations of an effective theory
also in this case. In fact the lowest-order term in the expanDOt corresponding to a free theory and having a finite-
sion in powers o\ _, (zero-order ters) which is the term ~ dimensional domain of attractiofasymptotic safety 30])
identifying the possible reductions of couplings, is the onecan be seen as an example of a reduction of couplings. The
found in the symmetric case. Then one has a one-to-onkestriction to the finite-dimensional surface, consisting of the
correspondence between the reduction of couplings in thtajectories of the renormalization group which are attracted
symmetric and spontaneously broken cases and the diffeinto the fixed point, defines a set of infinite relations among
ences appear in the extension of the reduction to higher ocouplings compatible with renormalizability leading to a
ders in the expansion in powers »f . theory with a finite number of free parameters.

The conclusion of this discussion is that there is no ob- The interpretation of a latticep* theory as an effective
struction to translating all the analysis of the symmetric ef-scalar field theory, based on the local effective Lagrangian
fective theory to the case of spontaneous symmetry breakingvhich reproduces the asymptotic small lattice spacing expan-
This means that all the bounds found in i theory[28]  sjon of Green functions, provides a new framework with
with spontaneous symmetry breaking can be discussed algghich to discuss the reduction of couplings. In fact the im-
at the level of the effective theory as we argued before in th%rovement prograrfi22] can be interpreted as the identifica-

symmetric case. In particular the stability bounds on thejon of suitable irrelevant terms to be added to the lattice
theory derived from the large field behavior of the effective ;o leading to an effective scalar theory whose first cor-

potential for a scalar field coupled to fermionic fieldz9] rection to the renormalizables* theory has higher and
can be an example where the higher-dimensional terms in tl-lg?

du

effective theory can be important depending on the ratio o Igher dimension as one goes to higher and higher orders in
y carl P P 9 he improvement. The final result of the improvement pro-
scales of the effective theory.

gram is a lattice field theory which is an effective field theory
with a trivial reduction of couplingsall the parameters cor-

V. SUMMARY AND OUTLOOK responding to irrelevant terms in the effective Lagrangian
I)llanish. Each step in the improvement can be seen as a re-
of the theory of a scalar field with nonrenormalizable ductiqn of couplings (.)f a _different type of the reduction of
couplings (negative dimensionwhich requires an infinite couplings considered in this work. The improvement at order

number of counterterms, is compatible with the presence df corresponds taz,=0, 0<n<k, which is another way to
only a finite number of independent parameters. The renorfix arbitrary parameters in the effective Lagrangian in a way
malization group equations of the effective theory allowcompatible with the renormalization group equations. On the
us to identify three possible extensions of #étheory with ~ other hand, the reduction of couplings we have studied cor-
an additional dimensionless parametesy which controls ~esponds to a different way to fix arbitrary parameters; one
the contribution of all the higher-dimensional terms. Thefirst looks for renormalization group invariant relations
extension is determined order by order in a double expansiodmong the paramete)Lél, next one finds expressions fh)'g2
in the quartic coupling\y and the produch _,\,, where in terms of the independent parameter of the previous step,
N\ _, is the dimensionless parameters associated to the maaad one extends the procedure order by order in the energy
term. expansion of the effective Lagrangian.

Assuming the validity of perturbation theory and of the The identification of a lattice action, with irrelevant terms

It has been shown that the perturbative renormalizatio
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fixed in such a way that its local effective Lagrangian coin-low-energy limit as a minimal extension of a renormalizable
cides with the effective Lagrangian of one of the minimal theory.

extensions of the renormalizablé* theory, suggests the

possibility of a reformulation of the reduction of couplings at

the level of lattice field theory. This could allow the discus- ACKNOWLEDGMENTS

sion of the method of reduction of couplings at the nonper-

turbative level. Finally, it would be interesting to find an ~ This work was partially supported by CICYT Contract
example of the realization of the idea of reduction of cou-No. AEN 96-1670. The work of M.A. has been supported by
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