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A general discussion of the renormalization of the quantum theory of a scalar field as an effective field
theory is presented. The renormalization group equations in a mass-independent renormalization scheme allow
us to identify the possibility to go beyond the renormalizablef4 theory without losing its predictive power. It
is shown that there is a minimal extension with just one additional free parameter~the mass scale of the
effective theory expansion! and some of its properties are discussed.@S0556-2821~97!04118-0#
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I. INTRODUCTION

Our present understanding of quantum field theory as the
low-energy limit of any relativistic quantum-mechanical sys-
tem @1# has changed our point of view on general problems
in quantum field theory such as renormalization@2#. An ef-
fective field theory Lagrangian contains an infinite number
of terms including the usual ones in a renormalizable La-
grangian~in the power-counting sense@3#! corresponding to
the terms with dimension less than or equal to 4.

A natural way to parametrize the Lagrangian is based on
the introduction of a fixed mass scaleM , which is a charac-
teristic scale of the physical system described by the effec-
tive theory, and a dimensionless parameter for each term in
the Lagrangian giving the corresponding coefficient in units
of M raised to the appropriate power. Ultraviolet divergences
can be cancelled by a renormalization of the infinite number
of parameters. If one uses an appropriate renormalization
scheme~a mass-independent renormalization scheme@4–6#!
then, when one computes a process at some energyE, the
parameter associated to a term in the Lagrangian of dimen-
sion n14 gives a contribution proportional1 to (E/M )n. If
terms suppressed by powers of (E/M ) are neglected, the
usual renormalizable theory result is recovered, and when
one computes to a given order in (E/M ) only a finite number
of parameters appear. In this sense, although the effective
theory has an infinite number of parameters, the theory has
predictive power@8#. When the energy becomes comparable
to the mass scaleM of the effective theory one goes beyond
the domain of validity of the effective field theory expansion
and one has to consider a new theory, either a new field
theory incorporating the appropriate fields to describe the
degrees of freedom at these energies, or a theory going be-
yond the general principles of quantum mechanics and spe-
cial relativity.

In order to be able to cancel all ultraviolet divergences
one usually considers all the terms compatible with some
symmetry principles. But this is not necessarily the case. The
possibility to have a renormalizable theory with a reduced
number of parameters~method of reduction of couplings!

has been studied in recent years for different purposes.2 The
program of reduction of couplings was initiated in@10# by
looking for massless renormalizable theories in the power-
counting sense with a single dimensionless coupling param-
eter. The same idea can be applied in the case of effective
field theories3 looking for relations between the renormalized
couplings compatible with the renormalization group equa-
tions.

In previous works@12,13# the authors considered the pos-
sibility to apply the method of reduction of couplings to the
effective field theoretic formulation of quantum gravity. The
nonrenormalizability of the theory is not an obstacle to iden-
tifying a theory with a finite number of independent param-
eters. In order to get this result one has to assume that the
mass scale associated to the Newtonian limit~Planck mass!
is much larger than the mass scale of the effective theory and
one has to neglect all the contributions suppressed by powers
of the ratio of these two mass scales.

The aim of this paper is to apply the same idea to the case
of an interaction which does not require us to consider a
nonrenormalizable Lagrangian as a starting point. In this
case, in contrast to the gravitational interaction, it is not nec-
essary to neglect any contribution in order to identify an
effective field theory with a finite number of independent
parameters. One can interpret the present work as a step
beyond the paradigm of quantum field theory as a low-
energy effective theory. Going beyond the renormalizable
theory~dominant term in the low-energy limit! does not nec-
essarily imply that we must consider an effective field theory
with an infinite number of free parameters. It is possible to
consider intermediate steps. The reduction of couplings,
which could be a consequence of a symmetry of the under-
lying fundamental theory which is hidden in the field theo-
retical limit, corresponds to a situation where the field theo-
retical approach goes as far as possible in the sense that the
low-energy limit of the theory is only sensitive to the details
of the underlying theory through the value of a finite number
of parameters. Instead of making reference to a symmetry of
a more fundamental theory, a reduction of couplings in an
effective theory could be a consequence of the renormaliza-
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2For a recent review with a list of references see@9#.
3The idea of considering a reduction of couplings in a nonrenor-

malizable theory appears for the first time in@11#.
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tion group flow in the infrared limit with a finite-dimensional
infrared fixed manifold. An interpretation along these lines
of the reduction of parameters in a renormalizable theory has
been considered previously@14# in attempts to determine the
values of the Yukawa couplings in the standard model and in
the minimal supersymmetric standard model.

All the ingredients in the discussion of the application of
the method of reduction of couplings in an effective field
theory are present in the simplest case, the theory of a real
scalar field, which is the subject of this paper. The main
result of this work is the identification of a minimal exten-
sion of the renormalizable theory of a scalar field. This result
is based on a perturbative expansion of the renormalization
group equations for the renormalized parameters of the ef-
fective theory and therefore one can assume that it is a
weakly interacting theory over all the range of validity of the
energy expansion.

The triviality of the renormalizable scalar field theory,
i.e., the impossibility to describe the interaction of scalar
particles over an unlimited range of energies with af4

theory, is automatically incorporated when one considers the
theory as an effective field theory. As a consequence of the
reduction of couplings it is possible to express all the correc-
tions, which are proportional to inverse powers of the mass
scale of the effective theory, in terms of a single additional
parameter~together with the mass parameter and the quartic
self-coupling of the renormalizablef4 theory!. The exten-
sion of this result to the standard model of elementary par-
ticle physics considered as an effective theory can have in-
teresting physical applications if the characteristic mass scale
of the theory is not much larger than the presently available
energies.

In Sec. II we consider the renormalization of the massless
scalar field theory considered as an effective field theory. A
simple structure for the renormalization group equations is
obtained in a mass-independent renormalization scheme due
to the absence of a dimensionfull ultraviolet cutoff. The
renormalization group equation for the parameter corre-
sponding to a term in the effective Lagrangian of a given
dimension does not depend on the parameters corresponding
to terms of higher dimension. It is this simple triangular
structure which allows us to find a solution to the renormal-
ization group equations, where all the parameters corre-
sponding to terms of dimension greater than 4 in the La-
grangian can be expressed in terms of a single independent
parameterl2, independently of the value of the renormaliza-
tion scale. These relations between couplings can be
uniquely determined order by order as an expansion in pow-
ers of the parameterl0 corresponding to thef4 interaction.

In Sec. III the extension of the reduction of couplings to
the massive case is considered. Together with the expansion
in powers of the quartic scalar couplingl0 one has now an
expansion in powers of the mass parameterl22 in the renor-
malization group equations which gives corrections to the
triangular structure of the massless case. The reduction of
couplings identified in Sec. II can be extended to this case if
one includes an expansion in powers of the productl22 l2
in the relations between couplings and one considers the
mass parameterl22 as an additional independent parameter.

In Sec. IV the interpretation, limitations, and some impli-
cations of the effective scalar field theory after reduction of

couplings are discussed in detail. The physical content of the
reduction of couplings is disentangled from the presence of
redundant terms in the effective Lagrangian. A one-to-one
correspondence between the three independent parameters of
the minimal extension of the renormalized scalar field theory
and three mass scales is established. A hierarchy of mass
scales in connection with the consistency of the perturbative
reduction of couplings and also with the possible ambiguities
induced by the high-order behavior of the perturbative ex-
pansion~renormalons! is discussed at the level of the effec-
tive theory. The standard study of the effective potential
based on the renormalization group is generalized to the case
of an effective scalar field theory. The possibility of sponta-
neous symmetry breaking and the modifications required in
the discussion of the renormalization and reduction of cou-
plings in the effective field theory are also considered. We
end in Sec. V with a summary and prospects.

II. RENORMALIZATION GROUP EQUATIONS
AND REDUCTION OF COUPLINGS: MASSLESS CASE

The starting point of our discussion is the more general
expression for the effective Lagrangian of the theory of a real
scalar field invariant under the discrete transformationf→
2f. It is convenient to introduce a fixed mass scaleM as a
reference unit for all the couplings of the effective theory.
The effective Lagrangian can be written as an expansion in
inverse powers ofM :

Leff5
1

2
]mf]mf2

l0

4!
f41

lW 2

M2
LW ~2!1

lW 4

M4
LW ~4!1 . . . .

~2.1!

A mass (f2 term! has not been included~in the next section
we will see how the structure of the renormalization group
equations is effected in the presence of such a term!. The
coefficients l0,lW 2,lW 4 , . . . , are dimensionless parameters
and the power dependence on the mass scaleM is fixed by
dimensional arguments. The effective field theory expansion
has been written in a compact notation whereLW (2n) is a vec-
tor whose components are the different terms of dimension
412n built out of the scalar field and its derivatives.

For the first terms in the effective field theory expansion
one has

LW ~2!5S 1

6!
f6,

1

4
f2]mf]mf,

1

2
~hf!2D , ~2.2!

LW ~4!5S 1

8!
f8,

1

2~4! !
f4]mf]mf,

1

8
~]mf]mf!2,

1

2
f]mf]mfhf,

1

4
f2~hf!2,

1

2
hfh2f D .

~2.3!

The general parametrization of the effective Lagrangian is
redundant for two different reasons. First, a change in the
scaleM is equivalent to an appropriate rescaling of every
dimensionless parameter. A choice of the scaleM such that
all the dimensionless parametersl2n

( i n) are simultaneously of
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order 1 allows us to identifyM with the scale characteristic
of the energy expansion of the effective theory. Second, by
using a nonlinear redefinition of fields it is possible to elimi-
nate some of the terms in the effective Lagrangian@15,16#.
Nevertheless it is simpler to use this redundant parametriza-
tion in order to identify the general structure of the renormal-
ization group equations.

The standard derivation, in perturbatively renormalizable
theories, of the renormalization group equations in a mass-
independent renormalization scheme4 can be translated to an
effective field theory. An infinite number of counterterms
must be admitted in order to absorb the infinities from loop
graphs@18#. One can prove that limitations on the terms in
the bare action arising from symmetries are compatible with
renormalizability @19#. The effective theory has an infinite
number of bare parameters in one-to-one correspondence
with the dimensionless parameters of the effective action.
Using dimensional regularization one has expressions for the
bare parameters in terms of the renormalized parameters,
with poles whene→0 ~dimensionD542e). From the in-
dependence of the bare parameters on the renormalization
scalem, one concludes that any change ofm must be equiva-
lent to a change in the renormalized parameters. The renor-
malization group equations

m
dl2n

~ i n!

dm
5bl

2n

~ i n!~lW ! ~2.4!

express this fact. A straightforward generalization of the
standard discussion of renormalizable theories@17# leads to a
perturbative determination of the renormalization groupb
functions from the residues of the simple poles ate50 in the
relations between bare and renormalized dimensionless pa-
rameters.

Dimensional arguments together with the presence of a
single mass scaleM ~the dependence on the renormalization
scalem is logarithmic! leads to the identification of a simple
structure for the renormalization group equations. Theb
functions satisfy the homogeneity conditions

bl
2n

~ i n!~lW 8!5t2nbl
2n

~ i n!~lW !, ~2.5!

where

lW 2n8 5t2nlW 2n . ~2.6!

These conditions put strong restrictions on the depen-
dence of theb functions on all the dimensionless parameters
with one exception, the scalar self-couplingl0. Each renor-
malization groupb function will be a polynomial of a given
degree in the parameterslW 2n , nÞ0, with coefficients which
are a series expansion inl0 determined order by order in
perturbation theory.

The explicit form of the renormalization group equations
for the first terms in the expansion of the effective Lagrang-
ian is given by

m
dl0

dm
5l0

2B0 , ~2.7!

m
dl2

~ i 1!

dm
5l0B2

~ i 1 , j 1!
l2

~ j 1!, ~2.8!

m
dl4

~ i 2!

dm
5l0B4

~ i 2 , j 2!
l4

~ j 2!
1B4

~ i 2 , j 1 ,k1!
l2

~ j 1!
l2

~k1! , ~2.9!

where the coefficientsB0, B2, andB4 are power expansions
in the self-couplingl0. Indices i 1,j 1,k1 take three different
values corresponding to the three terms~2.2! in the effective
Lagrangian of dimension 6 andi 2,j 2 distinguish the six-
dimensionless coefficients of terms of dimension 8~2.3!. A
sum over repeated indicesj 1,j 2,k1 is understoood in Eqs.
~2.8! and ~2.9!.

The m dependence oflW 2n is fixed by a finite number of
parameterslW 2k with k<n. This triangular structure of the
renormalization group equations allows a systematic search,
order by order in the effective theory expansion, of relations
between the renormalized parameters independent of the
renormalization scalem and compatible with the renormal-
ization group equations, i.e., a reduction of couplings. In this
way one can consider the possibility to have a finite number
of independent renormalized parameters despite the appear-
ance of an infinite number of interaction terms in the effec-
tive Lagrangian.

The first step in the reduction of couplings is to introduce
a dimensionless parameterl2 with a renormalization scale
dependence given by

m
dl2

dm
5l0B2l2 , ~2.10!

where the coefficientB2 is an expansion in powers ofl0 to
be fixed in order to be able to write all the parametersl2

( i 1) in
terms of l2 in a way compatible with the renormalization
group equations~2.8!. The reduction of couplings at this
level corresponds to looking for a relation

l2
~ i 1!

5l 2
~ i 1!

l2 . ~2.11!

Consistency with the renormalization group equations leads
to

B0l0

dl 2
~ i 1!

dl0
1B2l 2

~ i 1!
5B2

~ i 1 , j 1!
l 2

~ j 1! , ~2.12!

which is a system of equations for the coefficients of the
reduction of couplingsl 2

( i 1) and the coefficientB2 in the b
function of the independent parameterl2. A loop expansion
corresponds to a determination in perturbation theory of the
b functions in Eq.~2.4! and then to a determination ofB0

andB2
( i 1 , j 1) order by order as an expansion in powers ofl0:

B05 (
k50

`

B0
~k!l0

k, ~2.13!
4See, for instance,@17#.
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B2
~ i 1 , j 1!

5 (
k50

`

B2
~ i 1 , j 1 ;k!

l0
k. ~2.14!

The perturbative expansion of the renormalization group
equations leads to a solution of the consistency equations
~2.12! with l 2

( i 1) andB2 given as an expansion in powers of
l0:

l 2
~ i 1!

5 (
k50

`

l 2
~ i 1 ;k!

l0
k, ~2.15!

B25 (
k50

`

B2
~k!l0

k, ~2.16!

i.e., a perturbative determination of the reduction of cou-
plings. In lowest order, the consistency equation~2.12! re-
duces to

B2
~0!l 2

~ i 1 ;0!
5B2

~ i 1 , j 1 ;0!
l 2

~ j 1 ;0!. ~2.17!

For each eigenvector with a real eigenvalue of the matrix
of lowest-order coefficients in the renormalization group
equation ofl2

( i 1) there is a consistent reduction of these pa-
rameters. To lowest order in an expansion in powers ofl0,
the coefficients of the independent parameterl2 in the re-
duction equation~2.12! are the components of the eigenvec-
tor, and the coefficient of theb function of l2 is the corre-
sponding eigenvalue. An extension of the reduction of
couplings order-by-order inl0 leads to an order-by-order
approximation of the consistency equation~2.12! which re-
duces to a linear system of equations for the coefficients
l 2

( i 1 ;k) of the reduction at each order.
A diagrammatic analysis allows us to identify easily the

order in thel0 expansion of the first term for each renormal-
ization group coefficientB2

( i 1 , j 1) . Just with this information
it is possible to identify three different reductions of cou-
plings.

~1! In the first solution the three terms of dimension 6 in
the effective Lagrangian have coefficients which begin at the
same order in thel0 expansion. The coefficients in the re-
duction of couplings are determined in lowest order, up to an
overall normalization factor which can be reabsorbed into a
redefinition of the independent parameterl2. They are given
by

l 2
~1;0!51, ~2.18!

l 2
~2;0!5B2

~2,1;0!/~B2
~1,1;0!2B2

~2,2;0!!, ~2.19!

l 2
~3;0!5B2

~3,2;0!B2
~2,1;0!/@B2

~1,1;0!~B2
~1,1;0!2B2

~2,2;0!!#.
~2.20!

The extension of the reduction of couplings to all orders is
uniquely determined once the arbitrariness in the choice of
independent parameters is used to haveB25B2

(1,1;0) for the
renormalization group coefficient of the independent param-
eterl2.

~2! A second solution has only terms with derivatives of
the field inL2 in lowest order:

l 2
~1;0!50, ~2.21!

l 2
~2;0!51, ~2.22!

l 2
~3;0!5B2

~3,2;0!/B2
~2,2;0! , ~2.23!

andB25B2
(2,2;0).

~3! The last solution has only the term with four deriva-
tives to start with,

l 2
~1;0!5l 2

~2;0!50, l 2
~3;0!51, ~2.24!

and theb function of the independent parameter is propor-
tional to l0

2 in this case:

B25S B2
~3,3;1!2

B2
~3,2;0!B2

~2,3;1!

B2
~2,2;0! D l0 . ~2.25!

Once the reduction of couplings at the level of terms of
dimension 6 in the effective Lagrangian has been imple-
mented, the next step is to consider the renormalization
group equation for the coefficients of terms of dimension 8.
Using the reduction of couplings~2.11! one has

m
dl4

~ i 2!

dm
5l0B4

~ i 2 , j 2!
l4

~ j 2!
1L4

~ i 2!
l2

2, ~2.26!

where

L4
~ i 2!

5B4
~ i 2 , j 1 ,k1!

l 2
~ j 1!

l 2
~k1! . ~2.27!

Now one has to look for the possibility to express the param-
eterslW 4 as a function ofl0 andl2 in such a way that one
reproduces their renormalization scale dependence, given in
Eq. ~2.26!, as a consequence of the renormalization group
equations~2.7!, ~2.10! of l0 andl2. A relation

l4
~ i 2!

5
l 4

~ i 2!

l0
l2

2 , ~2.28!

where the coefficientl 4
( i 2) is a function ofl0, will be con-

sistent with the renormalization group equations if

B0l0

dl 4
~ i 2!

dl0
1~2B22B0!l 4

~ i 2!
5B4

~ i 2 , j 2!
l 4

~ j 2!
1L4

~ i 2!.

~2.29!

This is a system of equations for the coefficients in the re-
duction l 4

( i 2) and all other factors are expansions in powers
of l0 which are determined order by order either directly
from the perturbative approximation to the renormalization
group equations or from the perturbative determination of
the reduction of couplings at the previous level. A solution of
the consistency equations~2.29! with l 4

( i 2) given as an ex-
pansion in powers ofl0,

l 4
~ i 2!

5 (
k50

`

l 4
~ i 2 ;k!

l0
k, ~2.30!
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is obtained by solving a linear system of equations at each
order in the expansion in powers ofl0 of the consistency
equations.

The steps followed in the determination of the reduction
of the parameters corresponding to terms of order 1/M4 can
be repeated order by order in the expansion in 1/M to get the
reduction of the effective scalar field theory. It is given by
the relations

l2n
~ i n!

5
l 2n

~ i n!

l0
n21

l2
n , ~2.31!

where the coefficientsl 2n
( i n) are expansions in powers ofl0 ,

l 2n
~ i n!

5 (
k50

`

l 2n
~ i n ;k!

l0
k, ~2.32!

determined by the renormalization group equations.
The final result is an effective Lagrangian with an infinite

number of terms of higher dimension added to the massless
renormalizable scalar field Lagrangian but with only one ad-
ditional independent renormalized parameterl2, with a
renormalization scale dependence determined by a one loop
calculation. In fact we have found three different minimal
extensions of the renormalizable theory of this kind.

The reduction of couplings should not be confused with
the identification of redundant terms in the effective La-
grangian. By using a nonlinear redefinition of fields it is
possible to eliminate all the terms of dimension greater than
4 involving hf @15,16# . For example, by making the shift
of variablesf→f8 with

f5f81S l2
~2!

M2
2

1

2
l0

l2
~3!

M2 D f83

3!
2

1

2

l2
~3!

M2
hf8,

~2.33!

one has a Lagrangian with only one term of dimension 6,
l̂2 /M2(1/6!)f86, where

l̂25l2
~1!220l0l2

~2!110l0
2l2

~3! . ~2.34!

Then at this level the simplification of the effective Lagrang-
ian due to the presence of redundant terms has a similar
effect as the reduction of couplings but this is not the case if
one considers higher-dimensional terms. If one includes
higher dimensional terms in the change of variables it is
possible to extend the simplification of the effective La-
grangian to terms of dimension higher than 6. At the 1/M4

level it is possible to eliminate three out of the six terms in
Eq. ~2.3! but one still has three new independent parameters
to be compared with the absence of any additional free pa-
rameters after reduction of couplings.

III. RENORMALIZATION GROUP EQUATIONS
AND REDUCTION OF COUPLINGS: MASSIVE CASE

If one considers a massive spinless particle then one has
to include a terml22M2f2 in the Lagrangian density. The
dimensionless parameterl22 has to be taken into account in
the discussion based on dimensional arguments leading to

the general structure of the renormalization group equations.
The homogeneity conditions of theb functions include the
rescaling of the additional parameterl228 5t22l22 and the
simple triangular structure is lost due to the contributions
proportional to positive powers ofl22 which will be accom-
panied by parameters corresponding to terms of higher di-
mensionality. If one wants the reduction of couplings to be
applicable also in this case then one has to assume that the
dimensionless parameterl22 is sufficiently small to treat its
effects as a small perturbation. The reduction of couplings
identified in the previous section for the massless case can be
taken as the zero-order term of an expansion of the reduction
equations in powers of the parameterl22.

The renormalization group equation for the dimensionless
parameter associated to the mass term is given by

m
dl22

dm
5B22,0l22l01@B

22,1
~ i 1!

l2
~ i 1!

#l22
21@B

22,2
~ i 2!

l4
~ i 2!

1B
22,2
~ i 1 , j 1!

l2
~ i 1!

l2
~ j 1!

#l22
31••• , ~3.1!

where the coeficientsB22,k are power expansions inl0 de-
termined from a perturbative calculation of counterterms. As
a consequence of the homogeneity conditions,bl22

is pro-

portional tol22 and then a vanishing mass parameter con-
sidered in Sec. II is consistent with the renormalization
group equations. For the self-couplingl0 one has

m
dl0

dm
5B0,0l0

21@B0,1
~ i 1!

l2
~ i 1!

#l221@B0,2
~ i 2!

l4
~ i 2!

1B0,2
~ i 1 , j 1!

l2
~ i 1!

l2
~ j 1!

#l22
21••• . ~3.2!

The first term is just the masslessb function sinceB0,0 is just
the coefficientB0 of the massless renormalization group
equation. One has additional terms proportional to positive
powers ofl22 with coefficientsB0,k determined perturba-
tively. The renormalization scale dependence of the param-
eters corresponding to terms of dimension 6, which in the
massless case was given by Eq.~2.8!, will now take the form

m
dl2

~ i 1!

dm
5B2,0

~ i 1 , j 1!
l2

~ j 1!
l01@B2,1

~ i 1 ,i 2!
l4

~ i 2!

1B2,1
~ i 1 , j 1 ,k1!

l2
~ j 1!

l2
~k1!

#l221@B2,2
~ i 1 ,i 3!

l6
~ i 3!

1B2,2
~ i 1 , j 1 ,i 2!

l2
~ j 1!

l4
~ i 2!

1B2,2
~ i 1 , j 1 ,k1 ,l 1!

l2
~ j 1!

l2
~k1!

l2
~ l 1!

#l22
21••• .

~3.3!

Equations~3.1!–~3.3!, toghether with its obvious gener-
alization for the remaining parameters in the effective La-
grangian, are the starting point for an extension to the mas-
sive case of the reduction of couplings discussed in the
previous section. The presence of a new independent param-
eter l22 and the general structure of the renormalization
group equations leads to the consideration in the massive
case of a relation
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l2
~ i 1!

5F l 2,0
~ i 1!

1l 2,1
~ i 1! l2l22

l0
2

1l 2,2
~ i 1!S l2l22

l0
2 D 2

1•••Gl2 ,

~3.4!

fixing the effective Lagrangian at order 1/M2 in terms of the
parametersl22, l0, andl2. The coefficientsl 2,k are deter-
mined by the consistency of Eq.~3.4! with the renormaliza-
tion group equations. At each order in the expansion in pow-
ers ofl22 one has a system of equations for the coefficients
of the reduction of couplings. In lowest order one has the
massless consistency equation~2.12! for l 2,0. At orderl22

the consistency of the reduction ofl2
( i 1) with the renormal-

ization group equations leads to

dl 2,0
~ i 1!

dl0
B0,1

~ j 1!
l 2,0

~ j 1!
1~2B2,01B22,0!l 2,1

~ i 1!
1

dl 2,1
~ i 1!

dl0
B0,0

5B2,0
~ i 1 , j 1!

l 2,1
~ j 1!

1B2,1
~ i 1 ,i 2!

l 4,0
~ i 2!

1B2,1
~ i 1 , j 1 ,k1!

l 2,0
~ j 1!

l 2,0
~k1!,

~3.5!

which determines the coefficientsl 2,1
( i 1) as an expansion in

powers ofl0 once the coefficientl 4,0
( i 2) in the reduction of the

parameterl4
( i 2) has been determined from the consistency

with the renormalization group equations in lowest order
@Eq. ~2.29!#. This argument can be repeated step by step
obtaining an effective Lagrangian with three independent pa-
rametersl22, l0, andl2. The dimensionless coefficient of a
generic term will be given by

l2n
~ i n!

5F l 2n,0
~ i n!

1l 2n,1
~ i n! l2l22

l0
2

1l 2n,2
~ i n! S l2l22

l0
2 D 2

1•••G l2
n

l0
n21

,

~3.6!

where l 2n,k
( i n) are power expansions inl0 determined by the

consistency with the renormalization group equations. The
determination of the reduction coefficients goes from lower
to higher values ofk ~i.e., order by order in the expansion in
powers ofl22 of the renormalization group equation!, for a
given value ofk it goes from lower to higher values ofn
~i.e., order by order in the effective Lagrangian expansion!,
and for a given value ofn and k it goes order by order in
perturbation theory (l0 expansion!. Once a solution for the
first coefficients (n51, k50) in lowest order has been ob-
tained@Eqs.~2.18!–~2.25!# the reduction of the effective La-
grangian is determined by solving linear systems of equa-
tions for the remaining coefficients of the reduction.

The effective theory is defined by the relations giving
each coefficient in the effective Lagrangian in terms of the
three independent parameters and by the renormalization
group equations which give the renormalization scale depen-
dence of the independent parameters. The arbitrariness in the
choice of the independent parameterl2 has been used in
order to have a scale dependence given by Eq.~2.10!, where
B2 is either a constant or a constant timesl0 depending on
the solution to the lowest-order consistency equations. The
renormalization group equations forl0 andl22, which are
the parameters of the renormalizablef4 theory, are given by

m
dl22

dm
5FL22,01L22,1

l2l22

l0
2

1L22,2S l2l22

l0
2 D 2

1•••G
3l0l22 , ~3.7!

m
dl0

dm
5FL0,01L0,1

l2l22

l0
2

1L0,2S l2l22

l0
2 D 2

1•••Gl0
2 ,

~3.8!

where the coefficientsL22,k , L0,k are obtained by combining
the renormalization group equations~3.1!, ~3.2! with the re-
duction relations~3.6!. One has for the first coefficients

L22,05B22,0,

L22,15l0B
22,1
~ i 1!

l 2,0
~ i 1!,

L22,25l0B
22,1
~ i 1!

l 2,1
~ i 1!

1l0
2B

22,2
~ i 2!

l 4,0
~ i 2!

1l0
3B

22,2
~ i 1 , j 1!

l 2,0
~ i 1!

l 2,0
~ j 1! ,

L0,05B0,0,

L0,15B0,1
~ i 1!

l 2,0
~ i 1! ,

L0,25B0,1
~ i 1!

l 2,1
~ i 1!

1l0B0,2
~ i 2!

l 4,0
~ i 2!

1l0
2B0,2

~ i 1 , j 1!
l 2,0

~ i 1!
l 2,0

~ j 1! ,

and then one reproduces the renormalization group equations
of the renormalizablef4 theory plus corrections due to the
extension which are determined perturbatively.

IV. SOME ASPECTS OF THE EFFECTIVE SCALAR
FIELD THEORY AFTER REDUCTION OF COUPLINGS

In order to discuss the properties of a scalar field theory
considered as a low-energy effective theory with three free
parameters it is convenient to introduce a mass scale associ-
ated to each of the independent parameters. For the self-
couplingl0 one can consider the approximation to the renor-
malization group equation where the corrections proportional
to l22l2 are neglected, i.e., the renormalization group equa-
tion of thef4 theory, and at this level one can identify the
scaleM0 at which the perturbative approach breaks down
~Landau pole!.

Associated to the parameterl2, which controls the depar-
ture from the renormalizablef4 theory, one can consider a
new scaleM2. A comparison of the lowest-order contribu-
tion to the 2→4 scattering cross section in the renormaliz-
able f4 theory with the first contribution from the higher-
dimensional terms in the effective Lagrangian can be used to
define the scaleM2 as the energy where both contributions
become comparable. That leads to the identification ofM2 as
the scaleM in the effective Lagrangian~2.1! such that

l̂2~m5M2!5l0
2~m5M2!.

Note that the scaleM2 is defined through the parameterl̂2
which is the coefficient of thef6 term in the effective La-
grangian after a shift of variables has been made to eliminate
the remaining terms of dimension 6. Then all the arbitrari-
ness in the parametrization of the effective Lagrangian can-
cel in the determination ofM2, as should be since it can be
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taken as a measure of the energy range where the effective
theory expansion is a good aproximation.

The third scaleM 22 gives a first aproximation to the mass
of the spinless particle. It can be introduced by the condition

l22~m5M 22!M2
25M 22

2

on the coefficientl22 of the f2 term in the effective La-
grangian forM5M2. In the determination of the scaleM 22,
as a function of the parametersl22 and l0 at the scale
m5M2, the terms proportional tol2 in the renormalization
group equation ofl22 are neglected.

A. Limitations of the minimal extension of the renormalizable
f4 theory

The renormalizability of the scalar field theory with three
independent parameters has been discussed order by order in
a perturbative expansion in the self-couplingl0. Therefore,
unless a generalization of this result at the nonperturbative
level is found, one has to assume thatl0(m) is smaller than
the value of the coupling at which perturbation theory be-
comes unreliable for any scale in the range of validity of the
effective theory. There are ambiguities in the determination
of these values, which in the case of thef4 theory leads to
the identification ofl0'324 as the value at which the
theory becomes strongly interacting.5 The conclusion is that
the scaleM2 limiting the range of validity of the effective
theory expansion can not exceed the scaleM0 associated to
the parameterl0. More precisely one has the condition

l0~m5M2!

16p2 <e0 ,

where e0 fixes the domain of validity of the perturbative
expansion using several criteria@20# ~suppression of higher-
order terms, decrease of renormalization scale dependence,
absence of significant violations of unitarity,. . . ). A second
obvious limitation is that one can only consider low-energy
observables such that the ratioE2/M2

2 is small enough to
justify the use of the effective Lagrangian expansion.

The third limitation comes from the expansion in the re-
duction of couplings due to the introduction of a mass term
in the effective Lagrangian. The validity of the step by step
reduction of couplings requires that

l2l22

l0
2

<e2

over all the energy range of validity of the effective theory.
In order to translate this condition into a limitation on the
mass scales of the effective theory we have to use the renor-
malization group equation for the independent parameters
and the explicit form of the reduction of couplings.

For definiteness we consider the first reduction, Eqs.
~2.18!–~2.20!, identified in Sec. II. In this case, neglecting
higher-order terms in thel0 expansion, one hasl̂25l2 and,
as a consequence of the definition of the scaleM2,

l2(M2)5l0
2(M2). The consistency of the step-by-step re-

duction leads to the conditionl22(M2)<e2. A one loop
calculation determines the lowest-order approximation to the
renormalization group equations for the independent param-
eters which, in the case of the reduction in Eqs.~2.18!–
~2.20!, reads

m
d

dmS l0

16p2D53S l0

16p2D 2

, ~4.1!

m
dl22

dm
5l22S l0

16p2D , ~4.2!

m
dl2

dm
515l2S l0

16p2D . ~4.3!

Taking as a reference the parameters at the scaleM2, one has
a renormalization scale dependence for the self-coupling
given by

l0~m!5
l0~M2!

113/2@l0~M2!/16p2# ln~M2
2/m2!

. ~4.4!

Then, in this approximation, one has a simple expression for
the ratio of scalesM0

2/M2
2 in terms of the parameterl0(M2):

M0
2

M2
2

5expF2

3

1

l0~M2!/16p2G . ~4.5!

The solution of the renormalization group equations for the
parametersl2,l22 is

l22~m!5l22~M2!F l0~m!

l0~M2!G
1/3

, ~4.6!

l2~m!5l2~M2!F l0~m!

l0~M2!G
5

, ~4.7!

and then one has, for the combination of parameters which
appears in the expansion of the reduction of couplings of the
massive case,

l2~m!l22~m!

l0
2~m!

5
l2~M2!l22~M2!

l0
2~M2!

F l0~m!

l0~M2!G
10/3

. ~4.8!

Since the couplingl0 decreases when one goes to lower
scales, the convergence of the expansion of the reduction of
couplings over all the energy range of validity of the effec-
tive theory is automatic once the couplings at the scaleM2
has been chosen appropriately@l22(M2)<e2#.

One can also use the explicit form of the solution of the
renormalization group equations to translate the restriction
l22(M2)<e2 into a restriction on the ratio of mass scales
M 22

2 /M2
2:

F11
3

2

l0~M2!

16p2 lnS M2
2

M 22
2 D G 1/3

M 22
2

M2
2

<e2 . ~4.9!
5For a recent discussion, see@20#.
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There is a clear correspondence between the limitations on
the scales of the effective theory and the different bounds
obtained in thef4 theory. The limitations of perturbation
theory in thef4 theory, including the perturbative unitarity
bound, are automatically incorporated in the perturbative ap-
proach to the effective Lagrangian and the treatment of the
higher-dimensional terms as a small perturbation implies that
the perturbative bounds in the effective theory will be very
close to the bounds of thef4 theory.

With respect to the triviality bounds, these are usually
formulated as a restriction on the renormalized parameters
due to the neccessity of a finite cutoffL in order to have a
nontrivial interacting system. A lattice formulation of thef4

theory leads@21# to the identification of an upper bound on
the scalar mass in units of the cutoff and an upper bound on
the renormalized coupling if one limits the size of the devia-
tions from continuum theory. As long as the higher-
dimensional terms in the effective Lagrangian are a small
perturbation, the result that the bound on the coupling is
smaller than the perturbative bound and the conclusion that
there is no strongly interacting theory, can be translated to
the effective theory justifying its perturbative treatment. It is
not clear whether the modification on the perturbative bound
for the coupling due to the higher-dimensional terms could
be big enough within the domain of validity of the effective
theory expansion to make possible a strongly interacting
theory.

There is a relation between scaling violations in latticef4

theory and deviations of the effective theory from thef4

theory which can be obtained if one uses the local effective
Lagrangian description of scaling violations@22#. An Euclid-
ean latticef4 theory with a given lattice action has the same
perturbative expansion as an effective scalar theory with a
Lagrangian given by the local effective Lagrangian which
describes the scaling violations of the lattice theory. The up-
per bound on the mass in units of the cutoff obtained in the
lattice field theory analysis can be translated to the effective
scalar theory if one identifies the scaleM2, which is a mea-
sure of the domain of validity of the effective theory expan-
sion, with the cutoff of the latticef4 theory. The bounds in
the lattice theory on the deviations from the continuum~scal-
ing violations! are associated with the bounds in the effective
theory on the deviations from thef4 theory.

Another possible source of limitations of the perturbative
treatment of the effective theory is the divergence of the
perturbation series. A comparison of thenth order term in
the l0 expansion with the first correction due to higher-
dimensional terms leads to the ratio

~l0 /16p2!n

l2l22 /l0
2 ~m!5

~l0 /16p2!n

l2l22 /l0
2 ~M2!Fl0~m!

16p2 G n210/3

~4.10!

which, for any given scalem, becomes smaller than 1 forn
sufficiently large. Larger values of the scale require us to go
to higher orders in order to have a perturbative correction
smaller than the contribution due to higher-dimensional
terms. This means that it makes no sense to worry about the
large-order behavior of the perturbation series while neglect-
ing the higher-dimensional terms in the effective Lagrangian.

Assuming that the large-order behavior of perturbation
theory is dominated by the renormalon singularity@23# leads
to an ambiguity in the sum of the perturbation series which is
of orderE2/M0

2. Although there is no physical significance to
these ambiguities when treated consistently@24# still one can
describe the effect of a truncation in the perturbative expan-
sion by these ambiguities@25# . If one has an effective theory
with M2

2/M0
2!1, i.e., if the self-coupling at the scaleM2 is

such thatl0(M2)/16p2!1, then the corrections of order
E2/M2

2 due to higher-dimensional terms are much bigger
than the ambiguities due to the divergences of the perturba-
tion series. On the contrary if one considers an effective
theory whereM0 and M2 are of the same order then the
ambiguities due to the divergence in the perturbation series
are of the same order as the corrections to thef4 theory.6

Once more there is a correspondence between the previous
discussion of renormalons in the effective scalar field theory
and the connection between scaling violations in latticef4

theory and the divergence of the perturbation series@21#. To
end this section, let us remark that, although the first of the
three possible reductions of couplings of the scalar theory
was used in the discussion of the limitations in the effective
theory, similar arguments can be used for the other cases of
reduction of couplings.

B. Physical content of the reduction of couplings

The cross section for any process in the scalar theory can
be written using simple dimensional analysis in the form

s5
1

E2ŝS x,l0~m!,
l22~m!M2

2

E2
,
l2~m!E2

M2
2

,
m2

E2D ,

~4.11!

whereE is an overall energy scale of the process,x denotes
angles and energy ratios andm is the renormalization scale.
The independence of the cross sections on the renormaliza-
tion scale can be used to choosem5E.

In order to apply the effective Lagrangian expansion one
has to consider the scattering of jets instead of particles in
order to have cross sections which remain finite when the
mass vanishes. Using the renormalized parameters corre-
sponding to a mass-independent renormalization scheme, as
has been done in the discussion of the renormalization group
equations of the effective theory leading to the reduction of
couplings, it is possible to expand any cross section in pow-
ers of the independent dimensionless parameters. One has

ŝ5 (
i , j 50

`

ŝ~ i , j !~l0~E!,x!S l22~E!M2
2

E2 D iS l2~E!E2

M2
2 D j

,

~4.12!

where the coefficientsŝ ( i , j ) can be determined order by or-
der as an expansion in powers ofl0 from the perturbative
calculation of the cross section and the reduction of cou-
plings. Using the renormalization group equations for the

6Similar conclusions are obtained from a different point of view in
@26#.
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independent parameters and the definition of the mass scales
of the effective theory one can rewrite the cross section in
the form

s5
1

E2 (
i , j 50

`

ŝ~ i , j !@l0~E!,x#F l22~E!

l22~M 22!G
i

@l2~E!# j

3S M 22
2

E2 D iS E2

M2
2D j

, ~4.13!

i.e., as a double expansion in the ratio of the mass of the
particle over the energy of the processM 22

2 /E2 and the ratio
of the energy of the process over the scaleM2.

As a consequence of the reduction of couplings in the
effective theory it is possible to get a systematic approxima-
tion to any cross section in terms of a mass scaleM2, a
self-couplingl0(M2), andl22(M2) ~which fixes the mass
of the particle!. This is a generalization of the result in the
f4 theory which is obtained by takingl250 in Eq. ~4.13!.
The standard derivation in thef4 theory of the range of
values of the couplingl0 for which perturbation theory is
reliable @20# can be improved by including the terms withj
Þ0 in Eq. ~4.13!. A measurement of several cross sections,
at high enough energy and with a sufficient precision to be
sensitive to the corrections due to the higher-dimensional
terms, can be used to distinguish the expansion in Eq.~4.13!
from the expansion of the most general effective Lagrangian
and then to test the validity of the reduction of couplings.

C. Effective potential of the effective scalar theory

Another example of a systematic improvement of thef4

theory analysis at the level of the effective theory is the
application of the renormalization group to the effective po-
tential @27#. The effective potential is the generating func-
tional of one-particle irreducible Green functions evaluated
at constant values of the field and its absolute minimum de-
termines the ground state of the theory. It is an effective
action ~for constant fields! in the sense that it incorporates
the effects of loop diagrams but it should not be confused
with the action of the effective theory which incorporates the
effects of the finite-energy range of validity of the theory.
The effective potential of the effective theory incorporates
both effects.

The renormalization group equations for the one particle
irreducible Green functions of the effective theory yield a
renormalization group equation for the effective potential
V(f):

m
dV
dm

1bW
]V
]lW

5gf
]V
]f

, ~4.14!

which is the generalization of the renormalization group
equation for the effective potential of thef4 theory @27#

including all the parameterslW of the effective theory and
their correspondingb functions already introduced in the
discussion of the renormalization of the effective theory in
Sec. II. Following the standard discussion@27,17# of the
renormalization group applied to the effective potential one
introduces effective couplings through the equations

dl̄W

dt
5bW ~ l̄W !, ~4.15!

with the initial conditions l̄W (0)5lW (m) and the rescaled
field:

f̄~ t !5expF2E
0

t

dt8g@ l̄W ~ t8!#Gf. ~4.16!

Then the renormalization group equation for the effective
potential takes the simple form

d

dt
V @f̄~ t !, l̄W ~ t !,etm#50, ~4.17!

which can be trivially solved leading to

V @f,lW ~m!,m#5V @f̄~ t !, l̄W ~ t !,etm#. ~4.18!

Using simple dimensional analysis and obtaining the de-
pendence of the effective potential on the mass scale of the
effective theoryM2, one can use the renormalization group
equation to determine the behavior of the effective potential
V as one scales the fieldf:

V @f,lW ~m!,M2 ,m#5e4tV @e2tf̄~ t !, l̄W ~ t !,e2tM2 ,m#.
~4.19!

The large logarithms which appear in a direct perturbative
calculation of the potential on the left-hand side dissappear
on the right-hand side if one makes the choice

t5 1
2 ln (f2/m2). This assumes that the exponential factor de-

pending on the anomalous dimension in Eq.~4.16! is of or-
der 1. For this choice oft one has

l̄W ~ t !5lW ~etm!5lW ~f!. ~4.20!

The validity of the perturbative approach to the effective
Lagrangian form<M2 then justifies a perturbative calcula-
tion of the effective potential forf<M2. In lowest order
~tree level! one has

V @f,lW ~m!,M2 ,m#5
l22~f!M2

2

2
f̄2~ t !1

l0~f!

4!
f̄4~ t !

1
l2

~1!~f!

6!M2
2

f̄6~ t !1••• , ~4.21!

i.e., the nonderivative terms in the effective Lagrangian with
the dimensionless parameters renormalized at a scalem5f

and the field variable replaced byf̄(t).
The loop expansion for the effective potential in thef4

theory can be directly translated to the effective theory and
then one has a systematic approximation to the effective po-
tential of the effective theory including radiative corrections.
The consistency of the approach in Eq.~4.21!, where correc-
tions in inverse powers of the mass scale of the effective
theory are incorporated before considering loop effects, re-
quires
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l0~f!

16p2
!

f̄2

M2
2
'

f2

M2
2

!1. ~4.22!

This is only possible ifl0(M2)/16p2!1, i.e., if M2
2!M0

2 ,
and the approach will apply to the large field behavior of the
effective potential.

We end this discussion by pointing out that the conse-
quences in the effective potential of the reduction of cou-
plings at the level of the renormalization of the effective
Lagrangian can be trivially identified since the effective po-
tential is determined in terms of the renormalized parameters
lW (m) of the effective Lagrangian. This discussion also mani-
fests the difference between the effective Lagrangian~an ex-
pansion in powers of the scalar field and derivatives of the
scalar field! and the nonanalytic effective potential.

D. Spontaneous symmetry breaking and reduction of couplings

In order to discuss a renormalized effective scalar field
theory with spontaneous symmetry breaking it is convenient
to start by rephrasing the mechanism of spontaneous symme-
try breaking in thef4 theory at the level of the renormaliza-
tion group equations. One considers a fieldh which de-
scribes the fluctuations around the vacuum of the theory and
a Lagrangian

L8~h!5
1

2
]mh]mh2l238 M3h2

l228 M2

2
h22

l218 M

3!
h3

2
l08

4!
h41Lct8 ~h!, ~4.23!

which contains all the terms of dimension less or equal than
four without any additional restriction andLct8 denotes the
counterterms required to renormalize the theory. The coeffi-
cient of the linear terml238 is fixed by the condition that the
vacuum expectation value ofh is zero~in lowest order this
leads tol238 50 but this is not so in higher orders!.

A one loop calculation leads to the renormalization group
equations

m
dl238

dm
52l218 l228 , ~4.24!

m
dl228

dm
5l218 22l08l228 , ~4.25!

m
dl218

dm
53l08l218 , ~4.26!

m
dl08

dm
53l08

2, ~4.27!

where an overall coefficient 1/16p2 has been reabsorbed
into a rescaling of all the dimensionless parameters.

The case of spontaneous symmetry breaking corresponds
to the possibility to find a translation of the variable
h→f5h1v such that when the Lagrangian is written in
terms of the variablef only terms invariant under the trans-
formationf→2f appear,

L~f!5L8~f2v !5
1

2
]mf]mf2

l22M2

2
f22

l0

4!
f4

1Lct~f!. ~4.28!

The effect of a general translation of the field variable
f→f1Mv is equivalent to a change of dimensionless pa-
rameters:

l238 5l231vl221
1

2
v2l211

1

3!
v3l0 , ~4.29!

l228 5l221vl211
1

2
v2l0 , ~4.30!

l218 5l211vl0 , ~4.31!

l085l0 . ~4.32!

If one combines these relations, valid for an arbitrary
translation of the field variables, with the equation determin-
ing l238 in terms of the remaining parameters inL8 (l238 50
in lowest order! and uses the symmetry ofL in the case of
spontaneous symmetry breaking (l235l2150) then one
can determine the vacuum expectation valuev of the fieldf
in terms of the parametersl22 andl0. When the renormal-
ization group equations~4.24!–~4.27! are rewritten in terms
of the parameterslk corresponding to this value ofv then
one finds

m
dl23

dm
5m

dl21

dm
50, ~4.33!

which is the manifestation at this level of the renormalizabil-
ity of the f4 theory with spontaneous symmetry breaking,
and the renormalization group equations for the two param-
eters of the theory become

m
dl22

dm
55l0l22 , ~4.34!

m
dl0

dm
53l0

2. ~4.35!

Once the spontaneous breaking of the symmetry has been
formulated at the level of the renormalization group equa-
tions for thef4 theory in a mass-independent renormaliza-
tion scheme the generalization to the case of the effective
scalar theory is trivial. Instead of the LagrangianL8 in Eq.
~4.23! one has to consider all possible terms with any dimen-
sion and instead of the renormalization group equations in
Eqs. ~4.24!–~4.27! one now has the renormalization group
equations for the parameters of the effective scalar theory,
including the parameterslW 2n118 associated to terms with an
odd number of fields. The structure of the renormalization
group equations, based on dimensional arguments and the
expansion in powers ofl0, is not modified by the addition of
odd terms. Once more a translationv of the field variable is
determined such that the effective Lagrangian in the trans-
lated field variable is invariant underf→2f . Its value is

3620 56MARIO ATANCE AND JOSÉLUIS CORTÉS



determined as a double expansion in powers ofl0 andl22
from the condition that the vacuum expectation value of the
field h vanishes.

When the renormalization group equations for the param-
eterslW 8 of the effective theory are written in terms of the
parameters of the Lagrangian which results from a transla-
tion of the field variable by the value ofv determined previ-
ously then one finds once more Eq.~4.33! and

m
dlW 2n11

dm
50, ~4.36!

which is the manifestation at this level of the renormalizabil-
ity of the effective theory with spontaneous symmetry break-
ing. One also has renormalization group equations for the
parametersl22, l0, l2n

i n which are the analogue for the ef-
fective scalar theory with spontaneous symmetry breaking of
the renormalization group equations of the effective theory
in the symmetric case discussed in Sec. III.

Since the structure of the renormalization group equation
for l2n

i n is fixed by dimensional arguments which are not
affected by the spontaneous breaking of the symmetry, the
step-by-step determination of a reduction couplings applies
also in this case. In fact the lowest-order term in the expan-
sion in powers ofl22 ~zero-order term!, which is the term
identifying the possible reductions of couplings, is the one
found in the symmetric case. Then one has a one-to-one
correspondence between the reduction of couplings in the
symmetric and spontaneously broken cases and the differ-
ences appear in the extension of the reduction to higher or-
ders in the expansion in powers ofl22.

The conclusion of this discussion is that there is no ob-
struction to translating all the analysis of the symmetric ef-
fective theory to the case of spontaneous symmetry breaking.
This means that all the bounds found in thef4 theory @28#
with spontaneous symmetry breaking can be discussed also
at the level of the effective theory as we argued before in the
symmetric case. In particular the stability bounds on the
theory derived from the large field behavior of the effective
potential for a scalar field coupled to fermionic fields@29#
can be an example where the higher-dimensional terms in the
effective theory can be important depending on the ratio of
scales of the effective theory.

V. SUMMARY AND OUTLOOK

It has been shown that the perturbative renormalization
of the theory of a scalar field with nonrenormalizable
couplings ~negative dimension! which requires an infinite
number of counterterms, is compatible with the presence of
only a finite number of independent parameters. The renor-
malization group equations of the effective theory allow
us to identify three possible extensions of thef4 theory with
an additional dimensionless parameterl2 which controls
the contribution of all the higher-dimensional terms. The
extension is determined order by order in a double expansion
in the quartic couplingl0 and the productl22l2, where
l22 is the dimensionless parameters associated to the mass
term.

Assuming the validity of perturbation theory and of the

effective theory energy expansion, it is possible to improve
systematically the bounds on thef4 theory due to triviality
both in the symmetric and the spontaneously broken cases. If
one assumes that the fundamental theory at higher energies is
such that its low-energy limit is described by one of the
minimal extensions of thef4 theory then the modifications
to the bounds due to the higher dimensional terms can be
calculated in terms of just one additional parameter with re-
spect to the renormalizablef4 theory. An analysis along
these lines of a minimal extension of the standard model
could have important physical implications if the character-
istic mass scale of this effective theory is not much higher
than the Fermi scale. The first step in this direction would be
to generalize the discussion of the effective scalar field
theory including a set of fermionic fields coupled to a set of
scalar fields corresponding to the standard model neglecting
the gauge interactions.

Another possible extension of the present discussion of
the method of reduction of couplings is to consider the pos-
sibility of a ressumation of terms in the double expansion
which goes beyond the step-by-step reduction of couplings
considered in this work. The possibility to have a fixed point
of the renormalization group equations of an effective theory
not corresponding to a free theory and having a finite-
dimensional domain of attraction~asymptotic safety@30#!
can be seen as an example of a reduction of couplings. The
restriction to the finite-dimensional surface, consisting of the
trajectories of the renormalization group which are attracted
into the fixed point, defines a set of infinite relations among
couplings compatible with renormalizability leading to a
theory with a finite number of free parameters.

The interpretation of a latticef4 theory as an effective
scalar field theory, based on the local effective Lagrangian
which reproduces the asymptotic small lattice spacing expan-
sion of Green functions, provides a new framework with
which to discuss the reduction of couplings. In fact the im-
provement program@22# can be interpreted as the identifica-
tion of suitable irrelevant terms to be added to the lattice
action leading to an effective scalar theory whose first cor-
rection to the renormalizablef4 theory has higher and
higher dimension as one goes to higher and higher orders in
the improvement. The final result of the improvement pro-
gram is a lattice field theory which is an effective field theory
with a trivial reduction of couplings~all the parameters cor-
responding to irrelevant terms in the effective Lagrangian
vanish!. Each step in the improvement can be seen as a re-
duction of couplings of a different type of the reduction of
couplings considered in this work. The improvement at order
k corresponds tol2n

i n 50, 0,n,k, which is another way to
fix arbitrary parameters in the effective Lagrangian in a way
compatible with the renormalization group equations. On the
other hand, the reduction of couplings we have studied cor-
responds to a different way to fix arbitrary parameters; one
first looks for renormalization group invariant relations
among the parametersl2

i 1, next one finds expressions forl4
i 2

in terms of the independent parameter of the previous step,
and one extends the procedure order by order in the energy
expansion of the effective Lagrangian.

The identification of a lattice action, with irrelevant terms
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fixed in such a way that its local effective Lagrangian coin-
cides with the effective Lagrangian of one of the minimal
extensions of the renormalizablef4 theory, suggests the
possibility of a reformulation of the reduction of couplings at
the level of lattice field theory. This could allow the discus-
sion of the method of reduction of couplings at the nonper-
turbative level. Finally, it would be interesting to find an
example of the realization of the idea of reduction of cou-
plings in a simple enough theory to be able to determine its

low-energy limit as a minimal extension of a renormalizable
theory.
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