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Thermodynamics of (3+1)-dimensional black holes with toroidal or higher genus horizons

Dieter R. Bril* and Jorma Loukb
Department of Physics, University of Maryland, College Park, Maryland 264421

Peter Pelda’
Fysikum, Stockholm University, Box 6730, S-113 85 Stockholm, Sweden

(Received 8 May 1997

We examine counterparts of the Reissner-Norastranti—de Sitter black hole spacetimes in which the
two-sphere has been replaced by a surfacg# constant negative or zero curvature. When horizons exist, the
spacetimes are black holes with an asymptotically locally anti—de Sitter infinity, but the infinity topology
differs from that in the asymptotically Minkowski case, and the horizon topology iShoMaximal analytic
extensions of the solutions are given. The local Hawking temperature is found. ¥Metosed, we derive the
first law of thermodynamics using a Brown-York-type quasilocal energy at a finite boundary, and we identify
the entropy as one-quarter of the horizon area, independent of the horizon topology. The heat capacities with
constant charge and constant electrostatic potential are shown to be positive definite. With the boundary pushed
to infinity, we consider thermodynamical ensembles that fix the renormalized temperature and either the charge
or the electrostatic potential at infinity. Both ensembles turn out to be thermodynamically stable, and domi-
nated by a unique classical solutid®0556-282(197)00818-1

PACS numbg(s): 04.70.Dy, 04.20.Ha, 04.20.Jb, 04.70.Bw

I. INTRODUCTION geometry is well understoofil1,12. The purpose of the
present paper is to examine the global structure of these
Isolated black holes created in astrophysical processes aspacetimes appropriate for a black hole interpretation, and
expected to be well described by Einstein spacetimes that athe thermodynamics of the black hole spacetimes. In particu-
asymptotic to Minkowski space near a spacelike or null in-lar, we shall address the thermodynamical stability of these
finity. A familiar example is the Kerr-Newman family of black holes under suitable boundary conditions, both with a
Einstein-Maxwell black hole§l]. However, there is math- finite boundary and with an asymptotic infinity. Our results
ematical interest in black holes with other kinds of generalize those obtained previously in R¢f3—23. Pre-
asymptotic infinities. One alternative is to consider blackliminary results were briefly mentioned in Refd8,23,24.
holes that are asymptotically anti—de Sitter in the sense of We begin, in Sec. Il, by describing the local and global
Refs.[2—4], so that the topology at infinity is the same asstructure of the spacetimes. All the spacetimes have one or
that in asymptotically flat spacetimes. An example of this inmore asymptotically anti—de Sitter infinities, and we can use
four spacetime dimensions is the Kerr-Newman—anti—de SitKilling time translations at infinity to define Arnowitt-Deser-
ter black hole family[5—7], which generalizes the Kerr- Misner(ADM) mass and charge. These guantities turn out to
Newman family to accommodate a negative cosmologicabe finite if 3 is closed. The number and character of the
constant. Examples in other dimensions include theKilling horizons depends on the parameters in the metric.
Banados-Teitelboim-ZanelliBTZ) black hole[8,9] and its ~ Whenever a nondegenerate Killing horizon exists, the space-
dimensionally continued relativg40]. time has an interpretation as a black hole, and (th&ep
In this paper we examine a class of four-dimensionalilling horizon has an interpretation as a black hole horizon.
black holes that are asymptotically anti—de Sitter, but whos&he (outep Killing horizon bifurcation two-space has the
topology near infinity differs from that in the asymptotically topology ofX. If the additive constant in the ADM mass is
Minkowski case. These spacetimes solve the Einsteinehosen so that this mass vanishes for the solutions that are
Maxwell equations with a negative cosmological constantiocally anti—de Sitter, we find that black holes with ffat
they generalize the Reissner-Nordstreanti—de Sitter solu- necessarily have positive ADM mass, but whighas nega-
tions, replacing the round two-sphere by a two-dimensionative curvature, there are black hole solutions with either sign
space, of constant negative or vanishing curvature. Theseof the ADM mass. The spacetimes with a degenerate Killing
spacetimes emerge as the generic solution family from a suforizon are not black holes, in contrast(&ay) the extreme
ficiently general form of Birkhoff's theorem, and their local Reissner-Nordstrm black hole[25]; the reason for this dif-
ference is that the negative cosmological constant makes the
future null infinity in our spacetimes connected.
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Helsinki. Electronic address: louko@wam.umd.edu. Present adrom the Unruh effect, or from the periodicity of Euclidean
dress: Max-Planck-Institut” fuGravitationsphysik, Schlaatzweg 1, time, in terms of the surface gravity at the horizon. Tak¥hg
D-14473 Potsdam, Germany. closed, we introduce a boundary with the topology>odnd
*Electronic address: peldan@vanosf.physto.se fixed size, and we find the Brown-York-type quasilocal en-

0556-2821/97/5@)/3600(11)/$10.00 56 3600 © 1997 The American Physical Society



56 THERMODYNAMICS OF (3+1)-DIMENSIONAL BLACK . .. 3601

ergy at this boundary. Interpreting this quasilocal energy asime, and to the coordinate§ (R) as the curvature coordi-
the internal thermodynamical energy, and using the locahates. Without loss of generality, we can assuR»e0.
Hawking temperature, we write the first law of black hole  The metric(2.1) solves the Einstein-Maxwell equations
thermodynamics. We find that for all the horizon topologies,with the cosmological constant and the electromagnetic
the entropy is one-quarter of the horizon area. This resulpotential one-form
extends the Bekenstein-Hawking area law to toroidal and
higher genus horizons. In the limit of a large box, we show Q
that the heat capacities with fixed ADM charge and fixed A=—=dT. (2.3
electrostatic potential are always positive. R

In Sec. IV we consider the thermodynamics in the limit

where the boundary is pushed strictly to infinity. As the localindeed, the metri¢2.1) with the electromagnetic potential
Hawking temperature vanishes at infinity, we focus on thg2 3) emerges from a sufficiently general form of Birkhoff's
renormalized temperature that is obtained by multiplying theheorem as the generic family of Einstein-Maxwell space-
local temperature by the redshift factor. As with the conven{jmes admitting the local isometry group 8D E2, or
tional Reissner-Nordstm—anti—de Sitter black hold®26— S0.(2,1) with two-dimensional spacelike orbifd1]. Our
30], this turns out to yield a first law from which the entropy electromagnetic potentidR.3) yields a vanishing magnetic
emerges as one-quarter of the horizon area. We consider t|q, but the spacetimes with a nonvanishing magnetic field

canonical ensemble, in which one fixes the ADM charge, ang¢an pe obtained from Eq2.3) by the electromagnetic dual-
the grand canonical ensemble, in which one fixes the eleqty rotation.

trostatic potential difference between the horizon and the in-
finity with respect to the Killing time. Thepath integral
expression for thégrand partition function is obtained by B. Global properties

adapting to our symmetries the Hamiltonian reduction tech- \y/e now examine the global properties of the spacetimes
nigues of Refs[30—36. Both ensembles turn out to be ther- (2.1) with A<0. We write A= —3/-2 with />0.

mody_namically stable, and always dominated by a unique Tpe first issue is in the global geometry Bf.. To ex-
classical black hole solution. _ _ clude spacetime singularities that would result solely from

Section V contains a brief summary and discussion. Somgingularities in the two-dimensional geometry Bf, we
of the technical detail on the heat capacities is collected irfakezk to be complete. We can then wrig=3, /T, where
theV\'/Aepsveonrﬁli[(r'lroughout in Planck unité=c=G=1. 3 is the univer_sal co_vering space Bf, andT is a freely

' and properly discontinuously acting subgroup of the full

isometry group o, . If the action ofl" on X, is nontrivial,
3 is multiply connected.
A. Local curvature properties Fork=1, 3, is S? with the round metric. The isometry
group is @3). The only multiply connected choice fay; is
RP2=5%7,, where the nontrivial element &f, is the an-
tipodal map[37].

II. BLACK HOLE SPACETIMES

We consider spacetimes whose metric can be written lo
cally in the form

ds’=—FdT?+F 1dR?+ R2dQ2, (2.1a For k=0, 3, is R? with the flat metric. The isometry
group isE?X (Z,, where the nontrivial element &, is the
where reflection about a prescribed geodesic, andstands for the
semidirect product. The multiply connected choices Xgr
2M Q% AR? are the cylinder, the Muus band, the torus, and the Klein
Fi=k-&+tr~ 3 (2.1 pottle[37].

For k=—1, 3_; is R? with the hyperbolic metric. The
The parameters!, Q, and A are real and continuous. The isometry group is S@2,1)Xs7,, where the nontrivial ele-
discrete parametds takes the values 1, 0, and1, anddQE ment of Z, is the reflection about a prescribed geodesic. The
is the metric on a two-dimensional surfaBg of constant closed and orientable choices far_; are the closed Rie-
Gaussian curvaturk. In local coordinateg6,¢) onS,, we ~ mann surfaces of gengs>1 (see, for example, Ref39]).

can write The multiply connected but not closed choices or, in-
clude the cylindef18,21] and the Mbius band, as well as
de?+sir?(0)de?, k=1, surfaces with an arbitrary finite number of infinities
23,24,44Q.
2_ 2 2 2 _ [ 1 &5
dQ =4 do°+67de”, k=0, (2.2 When X, is closed, we denote its area My For k=1,
dé?+sintP(9)de?, k=-—1. both S?> and RP? are closed, and we have, respectively,

V=47 andV=27x. For k=0, the closed choices are the
3, is locally homogeneouf37,38,, with the local isometry torus and the Klein bottle, an¥ can in either case take
group S@3) for k=1, E2 for k=0, and SQ(2,1) [the con-  arbitrary positive values. Fdt=—1, with 3 _; closed, the
nected component of 32,1)] for k= —1. The local isome- Gauss-Bonnet theorefsee, for example, Reff41, 47)) im-
tries of 2, are clearly inherited by the four-dimensional met- pliesV=—2y, wherey is the Euler number ot _,, and
ric (2.1). The vectord/dT is a Killing vector, timelike for  V is therefore completely determined by the topology. In the
F>0 and spacelike foF<0. We refer toT as the Killing orientable case, we haye=2(1-g) andV=4=(g—1).
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R=0
R=0 R=o00 P R=0o0
R=0
FIG. 1. The Penrose diagram f <M. The straight line FIG. 2. The Penrose diagram ft=M g, if Q#0 ork=—-1
indicates an infinity and the wavy line a singularity. or both. The poinp is an internal spacelike infinity, and the singu-

larity consists of countably many connected components. The infin-

s ity, which is both spacelike anffuture) null, consists of a single
We next turn to the infinity structure of the met(2.1). connected component. As the past of the infinity consists of all of

At R—co, the dor_nmant behavior of the metric is determlnedthe spacetime, the spacetime does not have an interpretation as a
by the cosmological constant for any valueswfandQ. In black hole.
the special caskl =0=Q, the spacetime is locally isometric

to anti—de Sitter spacel0,18,21. We can therefore regard Typically, the extended spacetime is singular in its topologi-

the infinity at R—o as an asymptotically locally anti—de cal structure[18,21], in analogy with Misner spack5] or

Sitter infinity for any values oM andQ. The precise sense . BT7 black hole[8,9]. We shall not attempt to classify
of this asymptotic structure has been examined in Refschese singularities here

[3,4,10,3Q for k=1, and the Hamiltonian falloff analyses of We can now turn to the horizon structure. As U]
Refs.[10,30] can be readily adapted to cover also the caseg,q positive values oR at which the functionF(R) [Eq.
k=0 andk=—1. The infinity is both a spacelike and a null (5 111 yanishes are coordinate singularities on null hyper-
infinity. In a Penrose diagram that suppresSgsthe infinity g, taces. The vecto/dT is a globally defined Killing vec-
can be r_epresenteg b%/ a vertical Ilne: . . tor, timelike in the regions withF>0, spacelike in the re-
Fork=1 andX,=S", the asymptotic anti—de Sitter sym- i, \yith F <0, and null on the hypersurfaces wih=0.

metry_ atR_—>oo allows one to mtroo_luce a Harr_ultonlan for- The regions with->0 are therefore static, and the hypersur-
mulation with a well-defined Arnowitt-Deser-MisnéhDM ) faces withF =0 are Killing horizons

Hamiltonian[3,4,10,3Q. This Hamiltonian generates transla- For examining thepositive zeroes ofF(R), it is useful
tions of the spacelike hypersurfaces at infinity with respect 95 define the quantity '
the asymptotic Killing time, normalized as the coordin&te

in Eq. (2.1). It is straightforward to adapt the techniques of /

Refs.[10,3( to show that the same conclusion holds for all Mgit(Q): = —=(VKk?+12(Q//)?+ 2k)

of our metrics for which is closed. If one normalizes the 36

additive constant in the Hamiltonian so that the Hamiltonian X (JKZF 12001/ )2~ k)2 2.4

vanishes foM =0=Q, one finds that the contribution of an

infinity to the ADM Hamiltonian is ¥/47)M, and the con- ) ]

tribution to the analogously defined ADM electric charge isFor k=1, a complete analysis can be found in Refs.

(V/4m)Q. When3, is not closed, however, the infinite area [7,10,30. We shall therefore from now on only consider the

of 3, implies infinite values for both the Hamiltonian and casek=0 andk=—1.

the charge. Suppose first thaQ#0. For M<My,;;, F has no zeros.
Consider next the singularity structure of the met@ict). ~ ForM=Mc;, F has a degenerate zero, and KbF> M., F

The metric has a curvature singularityRt-0 except when has two distinct nondegenerate zeros. The Penrose diagrams

M=0=Q. When M=0=Q, the spacetime is locally of the analytic extensions are shown in Figs. 3.

anti—de Sitter, and the behavior Rt~0 depends on the ~ Suppose next thaQ=0 and k=—1. We now have

topology of 3. If 3 is simply connected, the spacetime Meit=—77/(3v3). For M<M¢y, F has no zeros. For

(2.1) with R>0 is isometric to a certain region of anti-de M=Mzcit, F has a degenerate zero, and kg <M <0, F

Sitter spacd10,18,2]: R—0 is then a mere coordinate sin- has two dlstmct nondegenerate zeros. The_- Penrose diagrams

gularity, and the spacetime can be continued Ras0 to all of the analytlc_ extensions are again as in Figs. 1-3. For

of anti—de Sitter space. [, is not simply connected, the M=0, F has just one nondegenerate zero. Whép-0,

spacetimé?2.1) with R>0 is isometric to a quotient space of

a certain region of anti—de Sitter space with respect to a

discrete subgroup of the isometry group, and the possibilities 'These statements hold without change alsokferl, in which

of continuing the spacetime paRt=0 depend on how these case we obtain the well-known Reissner-Nordstr@nti—de Sitter

discrete isometries extend to the rest of anti—de Sitter spacepacetime$7,10,30.
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R0 Roo FIG. 5. The Penrose diagram fit=0, if Q=0 andk=0. If X,
is simply connected, the singularity is a coordinate one.

boundaries of their causal pasts are black hole horizons.

When a second zero & exists, it can be interpreted as an
R=oo R=co inner horizon, as in the Reissner-Nordstreanti—de Sitter
spacetime[7,10]. The topology of the horizon bifurcation
two-manifold is that o2, and thus different frons?. The
theorems about spherical horizon topoldgi—47 do not
apply because the negative cosmological constant can be in-
terpreted as a negative vacuum energy defsity.

In the spacetimes in which has a degenerate zero, it is
seen from Fig. 2 that the future null infinity consists of a
single connected component, and the past of this infinity is

Il of the spacetime. The Killing horizons in these space-
Imes therefore do not have an interpretation as black hole
horizons. Note that this differs from the extreme Reissner-

FIG. 3. The Penrose diagram fod>M,; if Q#0, and for
M ii<M <0 if Q=0 andk=—1. There is both an outer horizon
and an inner horizon.

R=0 is a curvature singularity, and the Penrose diagram i
shown in Fig. 4. WherM =0, R=0 is not a curvature sin-

gularity, as discussed above; however, provided is not Nordstran solutions[25], in which the future null infinity is

;lmply connected, we “?gaR’: O. as at.opologlcal.smgular- not connected, and the past of each connected component
ity, and the Penrose diagram is again as in Fig. 4. When

M =0 andX _; is simply connected, the Penrose diagram inhas a boundary along a Killing horizon.

. : nt . : ; The existence criterion for a nondegenerate horizon is
gﬁlrycg(i:rgcl)?gitr?;t:esgsem Fig. 4, but the singularitRat 0 is M>M;;. For k=0, we haveM_;=0, and black holes

i _ _ therefore only occur with positive values bf. Fork=—1,
Mcrsnlip(?.oligr &ngl(l)y Ft hﬁ;g ;g z:pods ka_n% f(‘,’nf’i g O;V hggvae however,M;; is negative folQ|<//2, so that black holes

single nondegenerate zero. The Penrose diagrams of the a occur even with negative values . Note also that when

da- _ .
lytic extensions are respectively as in Figs. 1 and 4. In thgé rTan 1e:n%§itact)i'vgl1e ;&t(irggl fgﬁrlic%r(%g)tgiﬂg%ckwgole
special casé =0, F has no zeros, and the space is locally ges y e . '

anti—de Sitter. The Penrose diagram is shown in Fig. 5. Thclgave two horizons and the singularities are timelky. 3.)’
status ofR=0 is then as above: ¥ is multiply connected whereas fotM >0, we only have one horizon and the singu-

we regardR=0 as a topological singularity, whereasif is larities are spacelikéFig. 4.)' _P_rovidedz,l is not S“.mp'y

simply connectedR=0 is just a coordinate singularity. chonTected, we regard the limiting cade=0 as belonging to
We have therefore obtained Penrose diagrams that faitfi'® 'atter category. o .

fully depict the causal structure of the spacetimes, with the Inst._ead of the pairM,Q), it is more convenient to pa-

sole exception oM =0=Q and, simply connected. With rametrize the blaqk hole spacetimes in terms of.the pair
: : . ; : (Rp,Q), whereRy, is the value ofR at the (outep horizon.

this exception, we see that all the spacetimes in whidias <

a nondegenerate zero can be interpreted as black holes. Thar givenQ, Ry can take the valueR,>R¢;(Q), where

connected components of the infinities displayed in the Pen-

rose diagrams are genuine future null infinities, and the .
Rerit(Q):= —=[Vk*+12Q//)*~Kk]"2. (2.9
B=0 V6
The mass is then given in terms QfandR,, as
R=c R=0
Ry (Rh . Q°
M=— 7+k+—2 . (2.6
R=0 2 \/ Ri,

FIG. 4. The Penrose diagram fbt>0 if Q=0, and forM =0
if Q=0 andk=—1. If 3_, is simply connected, the singularity in  2For discussions df=1 with the RP? horizon topology but with-
the latter case is a coordinate one. out a cosmological constant, see Réfst, 48|.
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lll. THERMODYNAMICS WITH FINITE BOUNDARY F'(Ry) (k— QZ/Rﬁ+3Rﬁ//2)

In this section we consider the thermodynamics of a bIackTH(R): 4o /_F(R) - 4mR,\k—2M/R+ Q%R+ RZ /2
hole in a finite size box. First we calculate the local Hawking (3.3b
temperature for the black hole both by using the surface

gravity fo”.““'a* _and by ide_ntifying the pe_riodicity in the Note thatT(R) does not depend on the normalization of the
time coordinate in the Euclideanized metric. Then, we putKilling vector field y®. In the limits R—R,, andR— %, we

the black hole in a box and use the Brown-York quasnocalhave’ respectivelyT,(R)—o0 andT,(R)— 0. Unlike in the

energy formalism to calculate what we call the thermOdy'asymptotically flat case, the black hole therefore does not

namical |r_1tthernal en(ter?y tfr?r thet system. l._lpg'ré varﬁlng thIShave a finite, nonvanishing physical temperature at infinity.
energy with respect to the extensive variabMsand Q, It is of interest to define the renormalized temperature,

using the expression for the local Hawking temperature, angenoted byT.., as the product ofy(R) and the redshift

assuming that the first law of black hole thermodynamic e [on_ .
holds, we identify the entropy and the electrostatic potential actor = x“x. [26-28. The resuilt is

for the system. Finally, we calculate the signs of the heat

capacitiesCq, Co,, andC,, . We include the three cases - _F'(Ro) _ (k—Q%Ri+3Rp//?) 3.4
k=1, k=0, andk=—1 throughout the section. T 4w 4Ry, ' '
A. Local Hawking temperature Although T,, does not appear to have a physical interpreta-

ion as the temperature experienced by a family of
bserver$,we shall see below that it emerges as the coun-
erpart of temperature in the infinite space limit of the first
aw of thermodynamic$26—29.

The local Hawking temperature for a static eternal blackt
hole can be calculated using the Unruh effect in curve
spacetime or finding the periodicity in the time coordinate inI
the Euclidean version of the black hole metric covering the For givenk, both Ty(R) and T, are independent of the

outer region(See, for example, Ref49].) X
In the Unruh effect one considers how an observer outsid(EOpOIOgy of the two-spac&y. Also, both Tu(R) and T..

the black holé following the timelike Killing flow, would ‘r’lzrs“zh d‘:;’l:tflzerjc’)‘t”;“fgSO'”“O”M =Meri, asF(R) then
experience a qur;\]ntum fileld tha|: s in the Hartle-Hallwbkirl}g These results for theh Hawking temperature can also be
vacuum state. The Hartle-Hawking vacuum is a globally . . .

nonsingular vacuum invariant under the Killing flow. The derived by Euclidean method26]. When a nondegenerate

result is that the observer will experience a thermal state witltul%og;fign(ze)l()'sgst’ trr(]agurl]:zr:go(;f rtgeui'rE:;“t?leeanEl\J/;irS:ao;n Otfmt]ge
local temperature : q ,

7:=iT, to be periodic with perio®P=4=/F’'(R;). When a
Green'’s function that is regular on the Euclidean section is
_ (3.1a  analytically continued to the Lorentzian section, it retains
27N = XaX” periodicity in imaginary time. The local temperature can then
) _ _ be identified as the inverse Euclidean period divided
whereky, is the surface gravity evaluated at the horizon,  py the redshift factor, with the resulfy(R)=(Pdgg) *

=F'(R)[47JF(R)] ™.
Kp:= V_%VaXBVaXBlR:th (3.1b "

B. First law and entropy

Th(R)= —

and y© is the Killing vector field generating the event hori-
zon. The interpretation of this physical process is that we We wish to verify that the black holes satisfy the first law
have a black hole in thermal equilibrium with its surround- Of black hole thermodynamic8HTD) and to identify the
ings. black hole entropy. AsT(R)—0 in the limit R—o, we
For the black hole$2.1) considered here, the Killing field first formulate the first law with a boundary at a finite value
is of R. To have a black hole spacetime, we assume throughout
M>M_;. To make the thermodynamical quantities finite,
d we takeX, closed. As in Sec. Il denotes thédimension-
XQW: 9T (B2 lesy area of3,.
We introduce a boundary =Ry, and we regard the
We therefore have boundary scale factd®g as a prescribed, finite parameter. A
spacelike snapshot of the boundary history then has the to-
k=3F'(R), (3.33  pology of%, . The Brown-York quasilocal energy formalism
[50] can be readily used to define the thermodynamical in-
where the prime indicates derivative with respecRioand  ternal energy of this system on a constantypersurface.
Denoting the internal energy By (Rg), we find

3The Unruh effect gives rise to a Hawking temperature even with-
out a black hole, as long as the spacetime contains a bifurcate*T,, coincides withT,,(R) at the locations where the redshift fac-
Killing horizon, there exists a Killing field timelike in the outer tor equals unity. However, these locations depend on the normal-
region, and the Hartle-Hawking vacuum exif$9]. ization of the Killing vectory“.
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VF(Re)

_ _p2
U(RB)_ RBV 4’7TRB

+ 60( RB) ’ (35)

3605

term — pgd Ry, wherepg is the surface pressure, thermody-
namically conjugate tdRg [51,52. The expression fopg
would, however, depend on the choice of the teftR) in

where €5(R) is an arbitrary function that arises from the Eg. (3.9.

freedom of adding surface terms to the gravitational action.

In the limit Rg—c°, both sides of Eq(3.7) vanish. Nev-

A specific choice foreo(R) will not be needed for what ertheless, multiplying first both sides byF(Rg) and then

follows.

taking the limitRg—o0, we recover the finite equation

We note in passing that one natural criterion for choosing

€o(R) would be to require that)(Rg) vanishes for the lo-

cally anti—de Sitter solutions, for whicM=0=Q. This
leads to

©oR=-—7Rr

(3.9

Fork=1 andk=0, we then havéJ(Rg)=0, but fork=—1,

(VM)_ A
d P =T,d(zVR,) + ¢de, (3.11)
where

¢:=Rgh. (3.12

U(Rg) does not have a definite sign. In particular, for From Sec. Il we recall thatM/47)M is the ADM energy at

k=-1, U(Rg)<0 whenQ=0 andM <0.
Variation of U(Rg) with respect tav andQ (or, equiva-
lently, R, andQ) gives

dU(R )=L(k— i 3Rﬁ)dRh
¥ 8nF(Ry | R: 7%

+L(i_i)d
4m\F(Rg) \Rn  Re ©

=Th(Re)d(:VR?) + ®(Rg)de, 3.7

where we have used the Hawking temperat(8e3b and
defined

e:=(V/4m)Q, (3.83
a)(RB)::L(i—i . (3.8b
JVF(Rg) \Rn Rs

As mentioned in Sec. lle is the ADM charge. Comparing

Eqg. (3.8b to Eg. (2.3) shows that®(Rg) is equal to the

electrostatic potential difference between the horizon and th
boundary, with the electromagnetic gauge chosen as in Eq.
(2.3), and with respect to a time coordinate that agrees wit
the proper time of a static observer at the boundary. We ca
think of ®(Rg) as the electrostatic potential difference be-
tween the horizon and the boundary, appropriately redshifted

to the boundary.

infinity and ¢ is the electrostatic potential difference be-
tween the horizon and infinity, both with respect to the Kill-
ing time coordinate of the metri¢2.1). We can therefore
identify Eq.(3.11) as the first law of BHTD in the absence of
a boundary. IfT, is postulated to have an interpretation as a
temperature, we obtain for the entropy the area (8vt0
[26]. Conversely, if the area lawB.10 for the entropy is
postulated to holdT.. emerges as a temperaty29]. We
reemphasize, however, that, is not the physical tempera-
ture measured by an observer at infinity.

Note that the first law$§3.7) and(3.11) only determine the
entropy up to an additive constant. In the identificatigriO
we have chosen this constant so that the entropy is equal to
one-quarter of the area. One could, however, add to Eg.
(3.10 an arbitrary function of any quantities that our varia-
tions treat as fixed. In particular, one could add an arbitrary
function of the cosmological constant and the topology of
pI

Finally, we note that the above thermodynamical discus-
sion has regarde¥ as fixed. It does not appear possible to
relax this assumption in a way that would promuténto an
independent thermodynamical variable. F&=1 and
k=—1, V only takes discrete values, and continuous varia-
fons inV are not possible. Fde= 0, the possible values &f
rm a continuum; however, changesVhcan then be ab-
ﬁorbed into redefinitions dk, M, andQ.

C. Thermodynamical stability

We now turn to the thermodynamical stability of the

Comparing Eq(3.7) with the desired form of the first law black holes. In this section we consider a black hole in a box

of BHTD,
dU=TdS+dde, (3.9
we identify the entropy of the black hole as
S=iVRZ=1A,, (3.10

where A, is the area of the event horizon. This area law
holds for all the closed horizon topologies that occur with

our black hole spacetimes. In the special casel and
3,=5?%, we recover the Bekenstein-Hawking area law.

It would be possible to varyJ(Rg) also with respect to

with a prescribed, finite value d®z. The limit Rg— o will
be addressed in Sec. IV.

The response function whose sign determines the thermo-
dynamical stability is the heat capacitgee, for example,
Ref. [53])

N

- (3.13

CX: T( y
X
whereS is the entropy] is the temperature, and indicates

the quantities that are held fixed. With a finite boundary, the
relevant temperature is the local Hawking temperature

Rg. The first law(3.7) would then contain the additional (3.3b), and the entropy is given by the area 188v10. For
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the fixed quantityX, we consider three choices: the ADM may argue that the only difference between the two ap-
chargee (3.89 (or, equivalently, the paramet@)), the red-  proaches is in the order of quantization and Euclideanization.
shifted electrostatic potential differendg(Rg) [Eq. (3.8D] For our spacetimes, the appropriate boundary conditions and
between the horizon and the bounddB8], and the red- boundary terms are easily found by adapting to our symme-
shifted electrostatic potential difference between the boundtries the Lorentzian Hamiltonian analysis of the 1 case in

ary and infinity, given by Ref. [30]. Adapting to our symmetries the details of the
Lorentzian Hamiltonian reduction of R¢B0] would require
Q (3.14 more work, and we have not pursued this in detail; instead,
Ppi= ——=. 3.1 we appeal to the Euclidean reduction formalisdi—33 to
Rg\VF(Rg) PP ei-33

argue that only the boundary terms survive after the reduc-
We write 5(RB):=<T>B. tion. This yields the reduced actions through steps that fol-

. : . ... low the cited references so closely that we shall not repeat
The technical details of analyzing the three heat capacmeﬁ1e details of the analysis here. Instead, we just state the
Cq. Cg,, andCq_ are given in the Appendix. WheRg is '

results for the reduced Euclidean actions, and proceed to the
so large that the box-dependent features of the heat capaghermodynamical analysis.

ties become negligible, we find that these heat capacities are
positive definite fok=0 andk= —1, but indefinite folk=1.
In this sense, the black holes wik+0 andk=—1 have a
wider range of thermodynamical stability than the conven- The reduced Euclidean action with fixg@l. and ¢ is
tional black holes withk=1. However, as discussed in the given by
Appendix, there exist choices for the fixed quantiythat Vv
would render also the black holes with=0 andk=—1 1% (Ry,Q): = —[Bo(m—qe) — wRZ], (4.2)
thermodynamically unstable. 4

For the conventional black holes with=1, the heat ca-

A. Grand canonical ensemble

pacitiesCq, C§_, andC,_ diverge at the places where they where

change sign in thel\(! ,Q) parameter space. In the asymptoti_— m: = 1Rn(R% 2+ k+ 2R} 2). 4.2

cally flat context, this phenomenon was discussed by Davies

[54,55. The variables irl}, areRy, andg, and their domain is speci-
fied by the inequalities

IV. INFINITE SPACE THERMODYNAMICAL ENSEMBLES

Ry>+—k/3/, 4.3
In this section we consider thermodynamics in the limit h (4.33
where the boundary is pushed to infinity. Fee=1 and 2 R2(k+3R2/ 2 4
3.,=5?, this problem was analyzed in Ref89,30. We take A" <Ri(k+3Rp/ %) (4.39

here k=0 or k=—1, and assume throughout tha% iS  The reduction has eliminated the constraints, but it has not

closed. used the full Einstein equations. For generic valueRpand

As discussed in Sec. ll, both the local Hawking tempera-, 13(Ry,0) is therefore not equal to the Euclidean action of
ture T(Rg) (3.3b and the redshifted electrostatic potential any of the classical black holes of Sec. Il. However,

differenced(Rg) (3.8 vanish in the limitRg—. Relying — * (R, q) is the Euclidean action of a spacetime with the
on the |_nf|n|te space forrfB.l_]) of the first law, we adopt the ;110 topological and asymptotic properties. In particiar,
viewpoint that the appropriate counterpartsTqf(Rg) and g the value of the “scale factor” associated with at the

®(Rg) are, respectively, the renormalized temperatlite  horizon, and the ADM charge at infinity i8/(4=)q.

(_3.3@ and the(unredshiftegl Kil!ing time gllectrostatic poten- |;c has precisely one stationary point, at
tial difference¢ (3.12. We write 8,,=T_ ~.

It would be straightforward to proceed as in Sec. lll and . 2m/? 382(4%—K)
show that the heat capacities at fixed3.89 and ¢ (3.12 R,=R; := 3 1+ 4277 | (4.439
are both positive definite. However, we wish to go further B e
and construct full guantum thermodynamical equilibrium en- i o b
sembles that fix, in addition t8.,, eithere or ¢. Following 9=0":=¢Ry , (4.4D

the terminology of Refs[30-3§, we refer to the ensemble
that fixes 8., and e as the canonical ensemble, and to the
zg;ebrrek.)le that fixe.. and ¢ as the grand canonical en- sp+apetime of Sec. Il with the_ spgcified va_Iues,8+gj_ and ¢.
One way to approach this problem would be within theRh is equal to the value+d3Rh in th+|s sga(_:etlmeq is equal
Euclidean path-integral formalism, performing a Hamil- {© the value ofQ, andm™:=m(Ry ,q") is equal the value
tonian reduction of the action as in Ref81-33. Another of M » ) )
way would be to perform a Hamiltonian reduction in the ~The grand partition function of the thermodynamical
Lorentzian theory, and then take the trace of an analyticallgrand canonical ensemble is obtained as the integral
continued evolution operator under suitably chosen boundary
conditions as in Refd.30,34-36. The boundary conditions 2(B.. ,¢):f ndRudq exp(—1%), (4.5
in the two approaches are identical by construction, and one A 9

and this stationary point is the global minimum. It is straight-
forward to verify that this stationary point is the black hole
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where the integration domaid is given by Eq.(4.3). The stationary point is the black hole spacetime of Sec. Il with
weight factoru, which depends on the details of quantiza- the specified values g8.. ande. R, is equal to the value of
tion [30—-34,56, is assumed to be positive and slowly vary- R,, in this spacetimeQ=q=(4m/V)e, andm(R;)) is equal
ing. The qualitative properties of the ensemble are then dehe value ofM.
termined by the exponential factor in E@..5). The partition function of the thermodynamical canonical
The integral in Eq(4.5) is convergent, and when the sta- ensemble reads
tionary point approximation is good, the dominant contribu-
tion comes from the global minimum at the stationary point - N
(4.4). Denoting by(E) and(e) the thermal expectation val- Z(B- ,e)=f ” ndRp exp(—1¢), (4.10
ues of, respectively, the energy and the charge, we have o
where we again assume the weight fagioto be positive
and slowly varying compared with the exponential. The in-
tegral is convergent, and the positivity of the conseheat
(4.6a  capacity,C.= B2(4?(In 2)/9B2), is guaranteed by construc-
tion. When the stationary point approximation is good, the
dominant contribution comes from the unique stationary
point. For the thermal expectation values of the energy and
the electric potential, we find
It follows from the construction of the grand canonical en-
semble that the constant ¢ heat capacity, d(In Z)

o

o L0 .
<E>= _(”Tw+ﬁm ¢% (In 2)=~(V/A7)m™,

(&)=pt ﬂ(?(f) ~(ViAmGt. (46

Cy=pB2(5%(In 2)/9p%), is positive, and also that (E)=- 9B.. ~(ViAm)m, (4.113

(0(e)l ) is positive: when the stationary point approxima-

tion is good, these statements can be easily verified observ- ,9d(nZ) ¢

ing thatdR; /dB..<0 anddq™/a$>0. The system is there- (¢)=—B"—g ~ R’ (4.11b

fore stable under thermal fluctuations in both the energy and

the charge. which are related to the parameters of the dominating clas-
When the stationary point dominates, we obtain for thesical solution in the expected way. When the approximation

entropy in Eq. (4.113 for (E) holds, the positivity ofC, can be

verified observing that at the critical poiam/dB..<0. For

0’) .
S= ( 1_300_&,8 )(In Z)%%V(Rh*)zz A @47 the entropy we again recover the area I&al0),
) 1%
— _ . ~1
This agrees with the area la(8.10. S={1-5- (9,800) (InZ)~zAn. (4.12
B. Canonical ensemble V. DISCUSSION

In the canonical ensemble, we wish to fi&. and the
ADM charge e. The reduced Euclidean action with these
fixed quantities is

In this paper we have discussed the thermodynamics of
asymptotically anti—de Sitter black holes in which the round
two-sphere of the Reissner-Nordstreanti—de Sitter space-

vV times has been replaced by a two-dimensional space
1% (Rp):= E(,Bmm—wRﬁ), (4.8 constant negative or vanishing curvature. The local proper-
ties of these spacetimes are well knojtri]. The main new
feature for black hole interpretation is that the topology of
the horizon is not spherical but that &. This allows a
toroidal horizon wher is flat, and a horizon with the topol-
ogy of any closed higher genus Riemann surface vihéas
negative curvature. More possibilities aris&ifs not closed.

wherem is given by Eq.(4.2) with g=(4#/V)e. The only
variable inl¥ is R,,, and its domain iR,>R.(q), where
the functionR,,;; was defined in Eq(2.5). Again, the reduc-
tion has eliminated the constraints but not used the full Ein

stein equations, and for generic valuesRyf, 1¢(Ry) is not All the spacetimes have one or more asymptotically
equal to the Euilldean_ action of any of the black holes ofyii_de Sitter infinities, and one can use the asymptotic Kill-
Sec. II. Instead| ¢ (Ry) is the Euclidean action of a space- jng time translations to define ADM mass and charge. These
time with the same topological and asymptotic propertiesgyantities are finite wheneveX is closed. If the additive
andRy, is the value of the “scale factor” ok at the horizon  constant in the ADM mass is chosen so that the mass van-

of tqis spacetime. _ _ _ ishes for the solutions that are locally anti—de Sitter, black
I has _premsely one stationary point, at the unique root ofgles with flats, have positive ADM mass, but wheh has
the equation negative curvature, there are black hole solutions with either

sign of the ADM mass.

The thermodynamical analysis was carried out via a
straightforward generalization of the techniques previously
applied to the Reissner-Nordstne-anti—de Sitter space-
in the domainR,,>R;(q). This stationary point is the glo- times. The local Hawking temperature was found from the
bal minimum of1? . It is straightforward to verify that this Unruh effect, or from the periodicity of Euclidean time. Tak-

3R} 4#R3
72“——ﬁ "+ KR2—2=0 (4.9
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ing 2 closed, we introduced a boundary with the topology ofQ=0 and in the absence of a finite boundary. The main

3, and we interpreted the Brown-York-type quasilocal en-difference is that the subtraction procedure of Réf] to

ergy at the boundary as the internal thermodynamical energynake the Euclidean action finite generateser—1 a ho-

The first law of black hole thermodynamics then led to therizon contribution that is not present in our Hamiltonian sub-

conclusion that the entropy is one-quarter of the horizoriraction procedure in Sec. IV. As a result, the entropy ob-

area. This result extends the Bekenstein-Hawking area law t&ined in Ref[61] for k= —1 differs from Eq.(3.10 by an

our toroidal and higher genus horizons. additive constant, such that the values of the entropy span the
Examination of heat capacities with fixed ADM charge,Wh0|e posmv_e real axis. Also, the additive constant in the

or with fixed appropriate electrostatic potentials, showed thaftDM energy in Ref[61] is chosen so that the ADM energy

our black holes are thermodynamically more stable than th&?kes all positive values both fér=0 andk=—1.

Reissn_er-_Nords't'm—anti—de Sitter black hole. In particular, ACKNOWLEDGMENTS
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tential. We found that these ensembles are well defined, and

always dominated by a unique black hole solution. This pro- APPENDIX: HEAT CAPACITIES IN A BOX

vides another piece of evidence for thermodynamical stabil- | this appendix we calculate the heat capacit@s,

ity of our black holes. . Cj., andCg_, defined in Sec. Ill. We consider bokh=1,
All our black hole spacetimes belong to the fam(1). k=% andk=B— 1

This family arises as the generic solution family from a
Birkhoff's theorem that assumes the spacetime to admit th
local isometry groufE? (leading to flat®), SQ.(2,1) (lead-
ing to negatively curveds), or SQ3) (leading to the
Reissner-Nordstrm—anti—de Sitter solutions with two-
dimensional spacelike orbifsl1]. This suggests seeking a
black hole interpretation also for spacetimes that have th
same local isometries but do not fall within the fam(i.1).
The most promising candidate would seem to be the Nariai
Bertotti-Robinson family{11]. In this family, the spacetime
has the product fornrM XMg, whereM, (Mg, respec-
tively) is a two-dimensional Riemannian manifold of signa-
ture (—+) [(++)] and constant Gaussian curvatufg
(Kg). The curvatures satisfy

As explained in Sec. Ill, we consider a black hole in a box
fith a prescribed, finite boundary scale facRy. The po-
tential 5 : = P(Rg) is defined by Eq(3.8h), and it equals
the electrostatic potential difference between the boundary
and the horizon, with respect to a time coordinate normalized
0 a static observer’s proper time at the boundary. Similarly,
the potentialb g was defined by Eq:3.14), and it equals the
electrostatic potential difference between the boundary and
the infinity, with respect to a time coordinate normalized to a
static observer’s proper time at the boundary.

The heat capacitfy at constant value of the thermody-
namical variableX is defined by Eq(3.13, whereS is the
entropy andr the temperature. For uS,andT=T,(Rg) are
given, respectively, by Eq$3.10 and (3.3b.

Ke+K_ =2A, (5.13 It is useful to regardS and Ty, as functions of the two
independent variableR, andQ?. M becomes then a depen-
Ke—K,_ =0. (5.1b dent_variable, determined by E.6). From Eq.(3.13), we
obtain
The electromagnetic two-form with a vanishing magnetic do?| 11
field is CX: %VRhTH TRh+ TQZ(E) Xj| , (Al)

2 2
wherew, is the volume two-form oM , and the case of a . ‘9T_H: 1 i k4t ﬁ+ 3Q
nonvanishing magnetic field is obtained via the electromag- R 9Ry 47 F(R)| RS /2 R
netic duality rotatior?. The local symmetries of the spacetime 5 2
are clear from the construction. To create a black hole in N 1 N ﬁ_ Q_ A2
analogy with the BTZ constructiof8,9,18,21, one would 2RgR,F(RR) /2 Rﬁ ' (A28)
now like to take the quotient with respect to a suitable dis-
crete isometry group. The crucial question is whether satis- . dTy
factory discrete isometries exists. Tq2i= Q%)

Note addedAfter the present work was completed, Ref.
[61] was posted. The results therein overlap with ours for 1 [ 1 1 ( 3R? QZ)
4m\JF(Rg). Rn 2RsRiF(Re) 2 R}
>The special casE=0 yields flat spacetime fok =0, the Nariai 1 1
solution[57] for A>0, and a negative curvature analogue of the X R_h_ R_B (AZb)

Nariai solution forA <0. The special casé =0 yields the Bertotti-
Robinson solutiori58—6Q for F+#0 and flat spacetime fdf=0. The range of the parameters is
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,( 3R;

Here, Eq.(A3b) and the leftmost inequality in EgA3a) are
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/
Rp<—,
V3

Ri

Q%< RZ( 1- 3—2> (A7)
h /2 .

the conditions for the existence of a nondegenerate horizon.

The rightmost inequality i(A3a) is the condition that the
black hole fit in the box.

Thus, in the limitRg— o0, Ca, is positive definite fokk=0

We shall mainly discuss the sign of the heat capacities ifindk= —1, but indefinite fork=1. For finiteRg, it can be
the limit whereRg is taken to infinity while the parameters Verified that the terms omitted from EGA6) are positive
R, and Q2 remain in some prescribed finite range. Thisdefinite: Cg_ is positive fork=0 andk=—1 also with a

means neglecting the second terms in &®). In this limit,
To2 is always negative, an‘ﬂRh is positive except when the

following set of conditions holds:

k=1,

Q3% /%< 1/36,

S[1- VT 3EQIA2< Ry /2= g [1+ VT 36QI/)P)

(A4)

Consider firstCq. With X=Q, we have Q%dR;)x=0,
and the sign o, agrees with the sign dfr . Hence, in the

limit Rg—<0, Cq is positive for all configurations except
those satisfying EqA4). As the second term in E¢A2a) is
positive definite, takindRg finite would increaseCq, pre-
serving the stability fok=0 andk=—1 and widening the
domain of stability fork=1.

Consider nexCg,. With X=dg, we now havé

2Q?

dQ? _
(d_m)E)B:R_h[l+O(RBl)]’ (A5)

and the denominator itA1) becomes

dQ2> B 1 [
dRy/5. 47JF(Re)

:

R? ( 3RZ
Ry

-

(AB)

TRh+ TQZ(

+0(RB‘1)].

In the limit Rg—o, the expression in EqA6) is positive
definite fork=0 andk=—1. Fork= 1, however, it becomes
negative when the following set of conditions holds:

k=1,

®Note that in the limit Rgz—® we have
(dQ¥dR,)§,=(dQdRy,) 4, Where ¢,:=QR; " is the quantity

held fixed in the grand canonical ensemble in Sec. IV. This pro-

vides a check on the positivity of the heat capa@ty discussed in
Sec. IV.

finite boundary, whereas fde= 1, taking the boundary finite
widens the domain of stability.
Consider finaIIyC¢,B. With X=®g, we have

dQ? o[ 3RE Q2
o=, v 2 (kWT‘R?,
B
R3 R2\] !
X| Rg k+ﬁ -Ry k+7 }
Q2/2< 3R, Q° ,1
=—3 | k+ —7 —5z|[1+O0(Rg )],
R3 /% Rf B
(A8)
and the denominator in E§A1) becomes
dQ? 1( 3R? 3Q2)
T +T 2(_ =—= | — +f+—
Rn ' Q7 dR, o R? /" R
X[1+0O(RgH1. (A9)

In the limit Rg—c, the expression in EqA9) is positive
definite fork=0 andk=—1. Fork=1, it is negative when
the conditiongA4) hold. Hence, in the limiRg— o, C‘DB is
positive definite fok=0 andk= —1 and indefinite fok= 1.

These results show that fdt=0 and k= —1, the heat
capacitiesCq, Cs, and Co, are positive definite in the
limit Rg—o. There exist, however, choices frsuch that
Cy can be negative fdt=0 andk= —1: from Eq.(A2), itis
seen that this happens whenever dQ¢/dR,)y
>R,(—k+3R%//?+3Q?%R?). Saturating this inequality
corresponds tX=F'(Ry), which is equivalent to holding
the renormalized temperatufie, constant.

The signs of our three heat capacities, in the limit of a
large box, may be summarized in the following table:

| Co Cs, Co,
k=-1 + + +
k=0 + + +
k=1 = + +

(A10)
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