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We examine counterparts of the Reissner-Nordstro¨m–anti–de Sitter black hole spacetimes in which the
two-sphere has been replaced by a surfaceS of constant negative or zero curvature. When horizons exist, the
spacetimes are black holes with an asymptotically locally anti–de Sitter infinity, but the infinity topology
differs from that in the asymptotically Minkowski case, and the horizon topology is notS2. Maximal analytic
extensions of the solutions are given. The local Hawking temperature is found. WhenS is closed, we derive the
first law of thermodynamics using a Brown-York-type quasilocal energy at a finite boundary, and we identify
the entropy as one-quarter of the horizon area, independent of the horizon topology. The heat capacities with
constant charge and constant electrostatic potential are shown to be positive definite. With the boundary pushed
to infinity, we consider thermodynamical ensembles that fix the renormalized temperature and either the charge
or the electrostatic potential at infinity. Both ensembles turn out to be thermodynamically stable, and domi-
nated by a unique classical solution.@S0556-2821~97!00818-7#
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I. INTRODUCTION

Isolated black holes created in astrophysical processes are
expected to be well described by Einstein spacetimes that are
asymptotic to Minkowski space near a spacelike or null in-
finity. A familiar example is the Kerr-Newman family of
Einstein-Maxwell black holes@1#. However, there is math-
ematical interest in black holes with other kinds of
asymptotic infinities. One alternative is to consider black
holes that are asymptotically anti–de Sitter in the sense of
Refs. @2–4#, so that the topology at infinity is the same as
that in asymptotically flat spacetimes. An example of this in
four spacetime dimensions is the Kerr-Newman–anti–de Sit-
ter black hole family@5–7#, which generalizes the Kerr-
Newman family to accommodate a negative cosmological
constant. Examples in other dimensions include the
Bañados-Teitelboim-Zanelli~BTZ! black hole@8,9# and its
dimensionally continued relatives@10#.

In this paper we examine a class of four-dimensional
black holes that are asymptotically anti–de Sitter, but whose
topology near infinity differs from that in the asymptotically
Minkowski case. These spacetimes solve the Einstein-
Maxwell equations with a negative cosmological constant:
they generalize the Reissner-Nordstro¨m–anti–de Sitter solu-
tions, replacing the round two-sphere by a two-dimensional
spaceS of constant negative or vanishing curvature. These
spacetimes emerge as the generic solution family from a suf-
ficiently general form of Birkhoff’s theorem, and their local

geometry is well understood@11,12#. The purpose of the
present paper is to examine the global structure of these
spacetimes appropriate for a black hole interpretation, and
the thermodynamics of the black hole spacetimes. In particu-
lar, we shall address the thermodynamical stability of these
black holes under suitable boundary conditions, both with a
finite boundary and with an asymptotic infinity. Our results
generalize those obtained previously in Refs.@13–22#. Pre-
liminary results were briefly mentioned in Refs.@18,23,24#.

We begin, in Sec. II, by describing the local and global
structure of the spacetimes. All the spacetimes have one or
more asymptotically anti–de Sitter infinities, and we can use
Killing time translations at infinity to define Arnowitt-Deser-
Misner ~ADM ! mass and charge. These quantities turn out to
be finite if S is closed. The number and character of the
Killing horizons depends on the parameters in the metric.
Whenever a nondegenerate Killing horizon exists, the space-
time has an interpretation as a black hole, and the~outer!
Killing horizon has an interpretation as a black hole horizon.
The ~outer! Killing horizon bifurcation two-space has the
topology ofS. If the additive constant in the ADM mass is
chosen so that this mass vanishes for the solutions that are
locally anti–de Sitter, we find that black holes with flatS
necessarily have positive ADM mass, but whenS has nega-
tive curvature, there are black hole solutions with either sign
of the ADM mass. The spacetimes with a degenerate Killing
horizon are not black holes, in contrast to~say! the extreme
Reissner-Nordstro¨m black hole@25#; the reason for this dif-
ference is that the negative cosmological constant makes the
future null infinity in our spacetimes connected.

Section III addresses the thermodynamics of the black
hole spacetimes. The local Hawking temperature is found
from the Unruh effect, or from the periodicity of Euclidean
time, in terms of the surface gravity at the horizon. TakingS
closed, we introduce a boundary with the topology ofS and
fixed size, and we find the Brown-York-type quasilocal en-
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ergy at this boundary. Interpreting this quasilocal energy as
the internal thermodynamical energy, and using the local
Hawking temperature, we write the first law of black hole
thermodynamics. We find that for all the horizon topologies,
the entropy is one-quarter of the horizon area. This result
extends the Bekenstein-Hawking area law to toroidal and
higher genus horizons. In the limit of a large box, we show
that the heat capacities with fixed ADM charge and fixed
electrostatic potential are always positive.

In Sec. IV we consider the thermodynamics in the limit
where the boundary is pushed strictly to infinity. As the local
Hawking temperature vanishes at infinity, we focus on the
renormalized temperature that is obtained by multiplying the
local temperature by the redshift factor. As with the conven-
tional Reissner-Nordstro¨m–anti–de Sitter black holes@26–
30#, this turns out to yield a first law from which the entropy
emerges as one-quarter of the horizon area. We consider the
canonical ensemble, in which one fixes the ADM charge, and
the grand canonical ensemble, in which one fixes the elec-
trostatic potential difference between the horizon and the in-
finity with respect to the Killing time. The~path! integral
expression for the~grand! partition function is obtained by
adapting to our symmetries the Hamiltonian reduction tech-
niques of Refs.@30–36#. Both ensembles turn out to be ther-
modynamically stable, and always dominated by a unique
classical black hole solution.

Section V contains a brief summary and discussion. Some
of the technical detail on the heat capacities is collected in
the Appendix.

We work throughout in Planck units,\5c5G51.

II. BLACK HOLE SPACETIMES

A. Local curvature properties

We consider spacetimes whose metric can be written lo-
cally in the form

ds252FdT21F21dR21R2dVk
2, ~2.1a!

where

F:5k2
2M

R
1

Q2

R2 2
LR2

3
. ~2.1b!

The parametersM , Q, andL are real and continuous. The
discrete parameterk takes the values 1, 0, and21, anddVk

2

is the metric on a two-dimensional surfaceSk of constant
Gaussian curvaturek. In local coordinates~u,w! on Sk , we
can write

dVk
25H du21sin2~u!dw2, k51,

du21u2dw2, k50,

du21sinh2~u!dw2, k521.

~2.2!

Sk is locally homogeneous@37,38#, with the local isometry
group SO~3! for k51, E2 for k50, and SOc(2,1) @the con-
nected component of SO~2,1!# for k521. The local isome-
tries ofSk are clearly inherited by the four-dimensional met-
ric ~2.1!. The vector]/]T is a Killing vector, timelike for
F.0 and spacelike forF,0. We refer toT as the Killing

time, and to the coordinates (T,R) as the curvature coordi-
nates. Without loss of generality, we can assumeR.0.

The metric ~2.1! solves the Einstein-Maxwell equations
with the cosmological constantL and the electromagnetic
potential one-form

A5
Q

R
dT. ~2.3!

Indeed, the metric~2.1! with the electromagnetic potential
~2.3! emerges from a sufficiently general form of Birkhoff’s
theorem as the generic family of Einstein-Maxwell space-
times admitting the local isometry group SO~3!, E2, or
SOc(2,1) with two-dimensional spacelike orbits@11#. Our
electromagnetic potential~2.3! yields a vanishing magnetic
field, but the spacetimes with a nonvanishing magnetic field
can be obtained from Eq.~2.3! by the electromagnetic dual-
ity rotation.

B. Global properties

We now examine the global properties of the spacetimes
~2.1! with L,0. We writeL523l 22 with l .0.

The first issue is in the global geometry ofSk . To ex-
clude spacetime singularities that would result solely from
singularities in the two-dimensional geometry ofSk , we
takeSk to be complete. We can then writeSk5S̃k /G, where
S̃k is the universal covering space ofSk , andG is a freely
and properly discontinuously acting subgroup of the full
isometry group ofS̃k . If the action ofG on S̃k is nontrivial,
Sk is multiply connected.

For k51, S̃1 is S2 with the round metric. The isometry
group is O~3!. The only multiply connected choice forS1 is
RP25S2/Z2 , where the nontrivial element ofZ2 is the an-
tipodal map@37#.

For k50, S̃0 is R2 with the flat metric. The isometry
group isE23sZ2 , where the nontrivial element ofZ2 is the
reflection about a prescribed geodesic, and3s stands for the
semidirect product. The multiply connected choices forS0
are the cylinder, the Mo¨bius band, the torus, and the Klein
bottle @37#.

For k521, S̃21 is R2 with the hyperbolic metric. The
isometry group is SOc(2,1)3sZ2 , where the nontrivial ele-
ment ofZ2 is the reflection about a prescribed geodesic. The
closed and orientable choices forS21 are the closed Rie-
mann surfaces of genusg.1 ~see, for example, Ref.@39#!.
The multiply connected but not closed choices forS21 in-
clude the cylinder@18,21# and the Mo¨bius band, as well as
surfaces with an arbitrary finite number of infinities
@23,24,40#.

When Sk is closed, we denote its area byV. For k51,
both S2 and RP2 are closed, and we have, respectively,
V54p and V52p. For k50, the closed choices are the
torus and the Klein bottle, andV can in either case take
arbitrary positive values. Fork521, with S21 closed, the
Gauss-Bonnet theorem~see, for example, Refs.@41, 42#! im-
plies V522px, wherex is the Euler number ofS21 , and
V is therefore completely determined by the topology. In the
orientable case, we havex52(12g) andV54p(g21).
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We next turn to the infinity structure of the metric~2.1!.
At R→`, the dominant behavior of the metric is determined
by the cosmological constant for any values ofM andQ. In
the special caseM505Q, the spacetime is locally isometric
to anti–de Sitter space@10,18,21#. We can therefore regard
the infinity at R→` as an asymptotically locally anti–de
Sitter infinity for any values ofM andQ. The precise sense
of this asymptotic structure has been examined in Refs.
@3,4,10,30# for k51, and the Hamiltonian falloff analyses of
Refs.@10,30# can be readily adapted to cover also the cases
k50 andk521. The infinity is both a spacelike and a null
infinity. In a Penrose diagram that suppressesSk , the infinity
can be represented by a vertical line.

For k51 andS15S2, the asymptotic anti–de Sitter sym-
metry atR→` allows one to introduce a Hamiltonian for-
mulation with a well-defined Arnowitt-Deser-Misner~ADM !
Hamiltonian@3,4,10,30#. This Hamiltonian generates transla-
tions of the spacelike hypersurfaces at infinity with respect to
the asymptotic Killing time, normalized as the coordinateT
in Eq. ~2.1!. It is straightforward to adapt the techniques of
Refs.@10,30# to show that the same conclusion holds for all
of our metrics for whichSk is closed. If one normalizes the
additive constant in the Hamiltonian so that the Hamiltonian
vanishes forM505Q, one finds that the contribution of an
infinity to the ADM Hamiltonian is (V/4p)M , and the con-
tribution to the analogously defined ADM electric charge is
(V/4p)Q. WhenSk is not closed, however, the infinite area
of Sk implies infinite values for both the Hamiltonian and
the charge.

Consider next the singularity structure of the metric~2.1!.
The metric has a curvature singularity atR→0 except when
M505Q. When M505Q, the spacetime is locally
anti–de Sitter, and the behavior atR→0 depends on the
topology of Sk . If Sk is simply connected, the spacetime
~2.1! with R.0 is isometric to a certain region of anti–de
Sitter space@10,18,21#: R→0 is then a mere coordinate sin-
gularity, and the spacetime can be continued pastR50 to all
of anti–de Sitter space. IfSk is not simply connected, the
spacetime~2.1! with R.0 is isometric to a quotient space of
a certain region of anti–de Sitter space with respect to a
discrete subgroup of the isometry group, and the possibilities
of continuing the spacetime pastR50 depend on how these
discrete isometries extend to the rest of anti–de Sitter space.

Typically, the extended spacetime is singular in its topologi-
cal structure@18,21#, in analogy with Misner space@25# or
the BTZ black hole@8,9#. We shall not attempt to classify
these singularities here.

We can now turn to the horizon structure. As usual@43#,
the positive values ofR at which the functionF(R) @Eq.
~2.1b!# vanishes are coordinate singularities on null hyper-
surfaces. The vector]/]T is a globally defined Killing vec-
tor, timelike in the regions withF.0, spacelike in the re-
gions with F,0, and null on the hypersurfaces withF50.
The regions withF.0 are therefore static, and the hypersur-
faces withF50 are Killing horizons.

For examining the~positive! zeroes ofF(R), it is useful
to define the quantity

M crit~Q!:5
l

3A6
~Ak2112~Q/l !212k!

3~Ak2112~Q/l !22k!1/2. ~2.4!

For k51, a complete analysis can be found in Refs.
@7,10,30#. We shall therefore from now on only consider the
casesk50 andk521.

Suppose first thatQÞ0. For M,M crit , F has no zeros.
For M5M crit , F has a degenerate zero, and forM.M crit , F
has two distinct nondegenerate zeros. The Penrose diagrams
of the analytic extensions are shown in Figs. 1–3.1

Suppose next thatQ50 and k521. We now have
M crit52l /(3)). For M,M crit , F has no zeros. For
M5M crit , F has a degenerate zero, and forM crit,M,0, F
has two distinct nondegenerate zeros. The Penrose diagrams
of the analytic extensions are again as in Figs. 1–3. For
M>0, F has just one nondegenerate zero. WhenM.0,

1These statements hold without change also fork51, in which
case we obtain the well-known Reissner-Nordstro¨m–anti–de Sitter
spacetimes@7,10,30#.

FIG. 1. The Penrose diagram forM,M crit . The straight line
indicates an infinity and the wavy line a singularity.

FIG. 2. The Penrose diagram forM5M crit , if QÞ0 or k521
or both. The pointp is an internal spacelike infinity, and the singu-
larity consists of countably many connected components. The infin-
ity, which is both spacelike and~future! null, consists of a single
connected component. As the past of the infinity consists of all of
the spacetime, the spacetime does not have an interpretation as a
black hole.
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R50 is a curvature singularity, and the Penrose diagram is
shown in Fig. 4. WhenM50, R50 is not a curvature sin-
gularity, as discussed above; however, providedS21 is not
simply connected, we regardR50 as a topological singular-
ity, and the Penrose diagram is again as in Fig. 4. When
M50 andS21 is simply connected, the Penrose diagram in
our coordinates is as in Fig. 4, but the singularity atR50 is
only a coordinate one.

Suppose finally thatQ50 and k50. We now have
M crit50. For M,0, F has no zeros, and forM.0, F has a
single nondegenerate zero. The Penrose diagrams of the ana-
lytic extensions are respectively as in Figs. 1 and 4. In the
special caseM50, F has no zeros, and the space is locally
anti–de Sitter. The Penrose diagram is shown in Fig. 5. The
status ofR50 is then as above: ifS0 is multiply connected,
we regardR50 as a topological singularity, whereas ifS0 is
simply connected,R50 is just a coordinate singularity.

We have therefore obtained Penrose diagrams that faith-
fully depict the causal structure of the spacetimes, with the
sole exception ofM505Q andSk simply connected. With
this exception, we see that all the spacetimes in whichF has
a nondegenerate zero can be interpreted as black holes. The
connected components of the infinities displayed in the Pen-
rose diagrams are genuine future null infinities, and the

boundaries of their causal pasts are black hole horizons.
When a second zero ofF exists, it can be interpreted as an
inner horizon, as in the Reissner-Nordstro¨m–anti–de Sitter
spacetime@7,10#. The topology of the horizon bifurcation
two-manifold is that ofSk , and thus different fromS2. The
theorems about spherical horizon topology@44–47# do not
apply because the negative cosmological constant can be in-
terpreted as a negative vacuum energy density.2

In the spacetimes in whichF has a degenerate zero, it is
seen from Fig. 2 that the future null infinity consists of a
single connected component, and the past of this infinity is
all of the spacetime. The Killing horizons in these space-
times therefore do not have an interpretation as black hole
horizons. Note that this differs from the extreme Reissner-
Nordström solutions@25#, in which the future null infinity is
not connected, and the past of each connected component
has a boundary along a Killing horizon.

The existence criterion for a nondegenerate horizon is
M.M crit . For k50, we haveM crit>0, and black holes
therefore only occur with positive values ofM . For k521,
however,M crit is negative foruQu,l /2, so that black holes
occur even with negative values ofM . Note also that when
k521 and Q50, the internal structure of the black hole
changes qualitatively atM50: for 2l /(3)),M,0, we
have two horizons and the singularities are timelike~Fig. 3!,
whereas forM.0, we only have one horizon and the singu-
larities are spacelike~Fig. 4!. ProvidedS21 is not simply
connected, we regard the limiting caseM50 as belonging to
the latter category.

Instead of the pair (M ,Q), it is more convenient to pa-
rametrize the black hole spacetimes in terms of the pair
(Rh ,Q), whereRh is the value ofR at the~outer! horizon.
For givenQ, Rh can take the valuesRh.Rcrit(Q), where

Rcrit~Q!:5
l

A6
@Ak2112~Q/l !22k#1/2. ~2.5!

The mass is then given in terms ofQ andRh as

M5
Rh

2 S Rh
2

l 2 1k1
Q2

Rh
2 D . ~2.6!

2For discussions ofk51 with theRP2 horizon topology but with-
out a cosmological constant, see Refs.@44, 48#.

FIG. 3. The Penrose diagram forM.M crit if QÞ0, and for
M crit,M,0 if Q50 andk521. There is both an outer horizon
and an inner horizon.

FIG. 4. The Penrose diagram forM.0 if Q50, and forM50
if Q50 andk521. If S21 is simply connected, the singularity in
the latter case is a coordinate one.

FIG. 5. The Penrose diagram forM50, if Q50 andk50. If S0

is simply connected, the singularity is a coordinate one.
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III. THERMODYNAMICS WITH FINITE BOUNDARY

In this section we consider the thermodynamics of a black
hole in a finite size box. First we calculate the local Hawking
temperature for the black hole both by using the surface
gravity formula, and by identifying the periodicity in the
time coordinate in the Euclideanized metric. Then, we put
the black hole in a box and use the Brown-York quasilocal
energy formalism to calculate what we call the thermody-
namical internal energy for the system. Upon varying this
energy with respect to the extensive variablesM and Q,
using the expression for the local Hawking temperature, and
assuming that the first law of black hole thermodynamics
holds, we identify the entropy and the electrostatic potential
for the system. Finally, we calculate the signs of the heat
capacitiesCQ , CFB

, and Cfh
. We include the three cases

k51, k50, andk521 throughout the section.

A. Local Hawking temperature

The local Hawking temperature for a static eternal black
hole can be calculated using the Unruh effect in curved
spacetime or finding the periodicity in the time coordinate in
the Euclidean version of the black hole metric covering the
outer region.~See, for example, Ref.@49#.!

In the Unruh effect one considers how an observer outside
the black hole,3 following the timelike Killing flow, would
experience a quantum field that is in the Hartle-Hawking
vacuum state. The Hartle-Hawking vacuum is a globally
nonsingular vacuum invariant under the Killing flow. The
result is that the observer will experience a thermal state with
local temperature

TH~R!5
kh

2pA2xaxa
, ~3.1a!

wherekh is the surface gravity evaluated at the horizon,

kh :5A2 1
2 ¹axb¹axbuR5Rh

, ~3.1b!

andxa is the Killing vector field generating the event hori-
zon. The interpretation of this physical process is that we
have a black hole in thermal equilibrium with its surround-
ings.

For the black holes~2.1! considered here, the Killing field
is

xa
]

]xa 5
]

]T
. ~3.2!

We therefore have

k5 1
2 F8~R!, ~3.3a!

where the prime indicates derivative with respect toR, and

TH~R!5
F8~Rh!

4pAF~R!
5

~k2Q2/Rh
213Rh

2/l 2!

4pRhAk22M /R1Q2/R21R2/l 2
.

~3.3b!

Note thatTH(R) does not depend on the normalization of the
Killing vector field xa. In the limits R→Rh andR→`, we
have, respectively,TH(R)→` andTH(R)→0. Unlike in the
asymptotically flat case, the black hole therefore does not
have a finite, nonvanishing physical temperature at infinity.

It is of interest to define the renormalized temperature,
denoted byT` , as the product ofTH(R) and the redshift
factor A2xaxa @26–28#. The result is

T`5
F8~Rh!

4p
5

~k2Q2/Rh
213Rh

2/l 2!

4pRh
. ~3.4!

Although T` does not appear to have a physical interpreta-
tion as the temperature experienced by a family of
observers,4 we shall see below that it emerges as the coun-
terpart of temperature in the infinite space limit of the first
law of thermodynamics@26–29#.

For givenk, both TH(R) and T` are independent of the
topology of the two-spaceSk . Also, both TH(R) and T`

vanish for the extremal solutions,M5M crit , as F(R) then
has a double root atR5Rh .

These results for the Hawking temperature can also be
derived by Euclidean methods@26#. When a nondegenerate
horizon exists, regularity of the Euclidean version of the
metric ~2.1! at the horizon requires the Euclidean time,
t:5 iT, to be periodic with periodP54p/F8(Rh). When a
Green’s function that is regular on the Euclidean section is
analytically continued to the Lorentzian section, it retains
periodicity in imaginary time. The local temperature can then
be identified as the inverse Euclidean period divided
by the redshift factor, with the resultTH(R)5(Pg00)

21

5F8(Rh)@4pAF(R)#21.

B. First law and entropy

We wish to verify that the black holes satisfy the first law
of black hole thermodynamics~BHTD! and to identify the
black hole entropy. AsTH(R)→0 in the limit R→`, we
first formulate the first law with a boundary at a finite value
of R. To have a black hole spacetime, we assume throughout
M.M crit . To make the thermodynamical quantities finite,
we takeSk closed. As in Sec. II,V denotes the~dimension-
less! area ofSk .

We introduce a boundary atR5RB , and we regard the
boundary scale factorRB as a prescribed, finite parameter. A
spacelike snapshot of the boundary history then has the to-
pology ofSk . The Brown-York quasilocal energy formalism
@50# can be readily used to define the thermodynamical in-
ternal energy of this system on a constantT hypersurface.
Denoting the internal energy byU(RB), we find

3The Unruh effect gives rise to a Hawking temperature even with-
out a black hole, as long as the spacetime contains a bifurcate
Killing horizon, there exists a Killing field timelike in the outer
region, and the Hartle-Hawking vacuum exists@49#.

4T` coincides withTH(R) at the locations where the redshift fac-
tor equals unity. However, these locations depend on the normal-
ization of the Killing vectorxa.
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U~RB!52RB
2VSAF~RB!

4pRB
1e0~RB! D , ~3.5!

where e0(R) is an arbitrary function that arises from the
freedom of adding surface terms to the gravitational action.
A specific choice fore0(R) will not be needed for what
follows.

We note in passing that one natural criterion for choosing
e0(R) would be to require thatU(RB) vanishes for the lo-
cally anti–de Sitter solutions, for whichM505Q. This
leads to

e0~R!52
Ak1R2/l 2

4pR
. ~3.6!

For k51 andk50, we then haveU(RB)>0, but fork521,
U(RB) does not have a definite sign. In particular, for
k521, U(RB),0 whenQ50 andM,0.

Variation ofU(RB) with respect toM andQ ~or, equiva-
lently, Rh andQ! gives

dU~RB!5
V

8pAF~RB!
S k2

Q2

Rh
2 1

3Rh
2

l 2 D dRh

1
QV

4pAF~RB!
S 1

Rh
2

1

RB
DdQ

5TH~RB!d~ 1
4 VRh

2!1F̃~RB!de, ~3.7!

where we have used the Hawking temperature~3.3b! and
defined

e:5~V/4p!Q, ~3.8a!

F̃~RB!:5
Q

AF~RB!
S 1

Rh
2

1

RB
D . ~3.8b!

As mentioned in Sec. II,e is the ADM charge. Comparing
Eq. ~3.8b! to Eq. ~2.3! shows thatF̃(RB) is equal to the
electrostatic potential difference between the horizon and the
boundary, with the electromagnetic gauge chosen as in Eq.
~2.3!, and with respect to a time coordinate that agrees with
the proper time of a static observer at the boundary. We can
think of F̃(RB) as the electrostatic potential difference be-
tween the horizon and the boundary, appropriately redshifted
to the boundary.

Comparing Eq.~3.7! with the desired form of the first law
of BHTD,

dU5TdS1F̃de, ~3.9!

we identify the entropy of the black hole as

S5 1
4 VRh

25 1
4 Ah , ~3.10!

where Ah is the area of the event horizon. This area law
holds for all the closed horizon topologies that occur with
our black hole spacetimes. In the special casek51 and
S15S2, we recover the Bekenstein-Hawking area law.

It would be possible to varyU(RB) also with respect to
RB . The first law ~3.7! would then contain the additional

term 2pBdRB , wherepB is the surface pressure, thermody-
namically conjugate toRB @51,52#. The expression forpB
would, however, depend on the choice of the terme0(R) in
Eq. ~3.5!.

In the limit RB→`, both sides of Eq.~3.7! vanish. Nev-
ertheless, multiplying first both sides byAF(RB) and then
taking the limitRB→`, we recover the finite equation

dS VM

4p D5T`d~ 1
4 VRh

2!1fde, ~3.11!

where

f:5
Q

Rh
. ~3.12!

From Sec. II we recall that (V/4p)M is the ADM energy at
infinity and f is the electrostatic potential difference be-
tween the horizon and infinity, both with respect to the Kill-
ing time coordinate of the metric~2.1!. We can therefore
identify Eq.~3.11! as the first law of BHTD in the absence of
a boundary. IfT` is postulated to have an interpretation as a
temperature, we obtain for the entropy the area law~3.10!
@26#. Conversely, if the area law~3.10! for the entropy is
postulated to hold,T` emerges as a temperature@29#. We
reemphasize, however, thatT` is not the physical tempera-
ture measured by an observer at infinity.

Note that the first laws~3.7! and~3.11! only determine the
entropy up to an additive constant. In the identification~3.10!
we have chosen this constant so that the entropy is equal to
one-quarter of the area. One could, however, add to Eq.
~3.10! an arbitrary function of any quantities that our varia-
tions treat as fixed. In particular, one could add an arbitrary
function of the cosmological constant and the topology of
Sk .

Finally, we note that the above thermodynamical discus-
sion has regardedV as fixed. It does not appear possible to
relax this assumption in a way that would promoteV into an
independent thermodynamical variable. Fork51 and
k521, V only takes discrete values, and continuous varia-
tions inV are not possible. Fork50, the possible values ofV
form a continuum; however, changes inV can then be ab-
sorbed into redefinitions ofR, M , andQ.

C. Thermodynamical stability

We now turn to the thermodynamical stability of the
black holes. In this section we consider a black hole in a box
with a prescribed, finite value ofRB . The limit RB→` will
be addressed in Sec. IV.

The response function whose sign determines the thermo-
dynamical stability is the heat capacity~see, for example,
Ref. @53#!

CX5TS ]S

]TD
X

, ~3.13!

whereS is the entropy,T is the temperature, andX indicates
the quantities that are held fixed. With a finite boundary, the
relevant temperature is the local Hawking temperature
~3.3b!, and the entropy is given by the area law~3.10!. For
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the fixed quantityX, we consider three choices: the ADM
chargee ~3.8a! ~or, equivalently, the parameterQ!, the red-
shifted electrostatic potential differenceF̃(RB) @Eq. ~3.8b!#
between the horizon and the boundary@33#, and the red-
shifted electrostatic potential difference between the bound-
ary and infinity, given by

FB :5
Q

RBAF~RB!
. ~3.14!

We write F̃(RB):5F̃B .
The technical details of analyzing the three heat capacities

CQ , CF̃B
, andCFB

are given in the Appendix. WhenRB is
so large that the box-dependent features of the heat capaci-
ties become negligible, we find that these heat capacities are
positive definite fork50 andk521, but indefinite fork51.
In this sense, the black holes withk50 andk521 have a
wider range of thermodynamical stability than the conven-
tional black holes withk51. However, as discussed in the
Appendix, there exist choices for the fixed quantityX that
would render also the black holes withk50 and k521
thermodynamically unstable.

For the conventional black holes withk51, the heat ca-
pacitiesCQ , CF̃B

, andCFB
diverge at the places where they

change sign in the (M ,Q) parameter space. In the asymptoti-
cally flat context, this phenomenon was discussed by Davies
@54,55#.

IV. INFINITE SPACE THERMODYNAMICAL ENSEMBLES

In this section we consider thermodynamics in the limit
where the boundary is pushed to infinity. Fork51 and
S15S2, this problem was analyzed in Refs.@29,30#. We take
here k50 or k521, and assume throughout thatSk is
closed.

As discussed in Sec. III, both the local Hawking tempera-
ture TH(RB) ~3.3b! and the redshifted electrostatic potential
differenceF̃(RB) ~3.8b! vanish in the limitRB→`. Relying
on the infinite space form~3.11! of the first law, we adopt the
viewpoint that the appropriate counterparts ofTH(RB) and
F̃(RB) are, respectively, the renormalized temperatureT`

~3.3b! and the~unredshifted! Killing time electrostatic poten-
tial differencef ~3.12!. We writeb`5T`

21 .
It would be straightforward to proceed as in Sec. III and

show that the heat capacities at fixede ~3.8a! and f ~3.12!
are both positive definite. However, we wish to go further
and construct full quantum thermodynamical equilibrium en-
sembles that fix, in addition tob` , eithere or f. Following
the terminology of Refs.@30–36#, we refer to the ensemble
that fixesb` and e as the canonical ensemble, and to the
ensemble that fixesb` and f as the grand canonical en-
semble.

One way to approach this problem would be within the
Euclidean path-integral formalism, performing a Hamil-
tonian reduction of the action as in Refs.@31–33#. Another
way would be to perform a Hamiltonian reduction in the
Lorentzian theory, and then take the trace of an analytically
continued evolution operator under suitably chosen boundary
conditions as in Refs.@30,34–36#. The boundary conditions
in the two approaches are identical by construction, and one

may argue that the only difference between the two ap-
proaches is in the order of quantization and Euclideanization.
For our spacetimes, the appropriate boundary conditions and
boundary terms are easily found by adapting to our symme-
tries the Lorentzian Hamiltonian analysis of thek51 case in
Ref. @30#. Adapting to our symmetries the details of the
Lorentzian Hamiltonian reduction of Ref.@30# would require
more work, and we have not pursued this in detail; instead,
we appeal to the Euclidean reduction formalism@31–33# to
argue that only the boundary terms survive after the reduc-
tion. This yields the reduced actions through steps that fol-
low the cited references so closely that we shall not repeat
the details of the analysis here. Instead, we just state the
results for the reduced Euclidean actions, and proceed to the
thermodynamical analysis.

A. Grand canonical ensemble

The reduced Euclidean action with fixedb` and f is
given by

I gc* ~Rh ,q!:5
V

4p
@b`~m2qf!2pRh

2#, ~4.1!

where

m:5 1
2 Rh~Rh

2l 221k1q2Rh
22!. ~4.2!

The variables inI gc* areRh andq, and their domain is speci-
fied by the inequalities

Rh.A2k/3l , ~4.3a!

q2,Rh
2~k13Rh

2l 22!. ~4.3b!

The reduction has eliminated the constraints, but it has not
used the full Einstein equations. For generic values ofRh and
q, I gc* (Rh ,q) is therefore not equal to the Euclidean action of
any of the classical black holes of Sec. II. However,
I gc* (Rh ,q) is the Euclidean action of a spacetime with the
same topological and asymptotic properties. In particular,Rh
is the value of the ‘‘scale factor’’ associated withSk at the
horizon, and the ADM charge at infinity is (V/4p)q.

I gc* has precisely one stationary point, at

Rh5Rh
1 :5

2pl 2

3b`
F11A11

3b`
2 ~f22k!

4p2l 2 G , ~4.4a!

q5q1:5fRh
1 , ~4.4b!

and this stationary point is the global minimum. It is straight-
forward to verify that this stationary point is the black hole
spacetime of Sec. II with the specified values ofb` andf.
Rh

1 is equal to the value ofRh in this spacetime,q1 is equal
to the value ofQ, andm1:5m(Rh

1 ,q1) is equal the value
of M .

The grand partition function of the thermodynamical
grand canonical ensemble is obtained as the integral

Z~b` ,f!5E
A

m̃dRhdq exp~2I gc* !, ~4.5!
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where the integration domainA is given by Eq.~4.3!. The
weight factorm̃, which depends on the details of quantiza-
tion @30–34,56#, is assumed to be positive and slowly vary-
ing. The qualitative properties of the ensemble are then de-
termined by the exponential factor in Eq.~4.5!.

The integral in Eq.~4.5! is convergent, and when the sta-
tionary point approximation is good, the dominant contribu-
tion comes from the global minimum at the stationary point
~4.4!. Denoting by^E& and^e& the thermal expectation val-
ues of, respectively, the energy and the charge, we have

^E&5S 2
]

]b`
1b`

21f
]

]f D ~ ln Z!'~V/4p!m1,

~4.6a!

^e&5b`
21 ]~ ln Z!

]f
'~V/4p!q1. ~4.6b!

It follows from the construction of the grand canonical en-
semble that the constant f heat capacity,
Cf5b`

2 (]2(ln Z)/]b`
2 ), is positive, and also that

(]^e&/]f) is positive: when the stationary point approxima-
tion is good, these statements can be easily verified observ-
ing that]Rh

1/]b`,0 and]q1/]f.0. The system is there-
fore stable under thermal fluctuations in both the energy and
the charge.

When the stationary point dominates, we obtain for the
entropy

S5S 12b`

]

]b`
D ~ ln Z!' 1

4 V~Rh
1!25 1

4 Ah . ~4.7!

This agrees with the area law~3.10!.

B. Canonical ensemble

In the canonical ensemble, we wish to fixb` and the
ADM charge e. The reduced Euclidean action with these
fixed quantities is

I c* ~Rh!:5
V

4p
~b`m2pRh

2!, ~4.8!

wherem is given by Eq.~4.2! with q5(4p/V)e. The only
variable inI c* is Rh , and its domain isRh.Rcrit(q), where
the functionRcrit was defined in Eq.~2.5!. Again, the reduc-
tion has eliminated the constraints but not used the full Ein-
stein equations, and for generic values ofRh , I c* (Rh) is not
equal to the Euclidean action of any of the black holes of
Sec. II. Instead,I c* (Rh) is the Euclidean action of a space-
time with the same topological and asymptotic properties,
andRh is the value of the ‘‘scale factor’’ ofSk at the horizon
of this spacetime.

I c* has precisely one stationary point, at the unique root of
the equation

3Rh
4

l 2 2
4pRh

3

b`
1kRh

22q250 ~4.9!

in the domainRh.Rcrit(q). This stationary point is the glo-
bal minimum of I c* . It is straightforward to verify that this

stationary point is the black hole spacetime of Sec. II with
the specified values ofb` ande. Rh

1 is equal to the value of
Rh in this spacetime,Q5q5(4p/V)e, andm(Rh

1) is equal
the value ofM .

The partition function of the thermodynamical canonical
ensemble reads

Z~b` ,e!5E
Rcrit~q!

`

m5 dRh exp~2I c* !, ~4.10!

where we again assume the weight factorm5 to be positive
and slowly varying compared with the exponential. The in-
tegral is convergent, and the positivity of the constante heat
capacity,Ce5b`

2 (]2(ln Z)/]b`
2), is guaranteed by construc-

tion. When the stationary point approximation is good, the
dominant contribution comes from the unique stationary
point. For the thermal expectation values of the energy and
the electric potential, we find

^E&52
]~ ln Z!

]b`
'~V/4p!m, ~4.11a!

^f&52b`
21 ]~ ln Z!

]e
'

q

Rh
, ~4.11b!

which are related to the parameters of the dominating clas-
sical solution in the expected way. When the approximation
in Eq. ~4.11a! for ^E& holds, the positivity ofCe can be
verified observing that at the critical point]m/]b`,0. For
the entropy we again recover the area law~3.10!,

S5S 12b`

]

]b`
D ~ ln Z!' 1

4 Ah . ~4.12!

V. DISCUSSION

In this paper we have discussed the thermodynamics of
asymptotically anti–de Sitter black holes in which the round
two-sphere of the Reissner-Nordstro¨m–anti–de Sitter space-
times has been replaced by a two-dimensional spaceS of
constant negative or vanishing curvature. The local proper-
ties of these spacetimes are well known@11#. The main new
feature for black hole interpretation is that the topology of
the horizon is not spherical but that ofS. This allows a
toroidal horizon whenS is flat, and a horizon with the topol-
ogy of any closed higher genus Riemann surface whenS has
negative curvature. More possibilities arise ifS is not closed.

All the spacetimes have one or more asymptotically
anti–de Sitter infinities, and one can use the asymptotic Kill-
ing time translations to define ADM mass and charge. These
quantities are finite wheneverS is closed. If the additive
constant in the ADM mass is chosen so that the mass van-
ishes for the solutions that are locally anti–de Sitter, black
holes with flatS have positive ADM mass, but whenS has
negative curvature, there are black hole solutions with either
sign of the ADM mass.

The thermodynamical analysis was carried out via a
straightforward generalization of the techniques previously
applied to the Reissner-Nordstro¨m–anti–de Sitter space-
times. The local Hawking temperature was found from the
Unruh effect, or from the periodicity of Euclidean time. Tak-
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ing S closed, we introduced a boundary with the topology of
S, and we interpreted the Brown-York-type quasilocal en-
ergy at the boundary as the internal thermodynamical energy.
The first law of black hole thermodynamics then led to the
conclusion that the entropy is one-quarter of the horizon
area. This result extends the Bekenstein-Hawking area law to
our toroidal and higher genus horizons.

Examination of heat capacities with fixed ADM charge,
or with fixed appropriate electrostatic potentials, showed that
our black holes are thermodynamically more stable than the
Reissner-Nordstro¨m–anti–de Sitter black hole. In particular,
in the limit of a large box, our black holes are always ther-
modynamically stable under these boundary conditions. With
the boundary pushed fully to infinity, we constructed quan-
tum equilibrium ensembles that fixed a renormalized tem-
perature and either the ADM charge or the electrostatic po-
tential. We found that these ensembles are well defined, and
always dominated by a unique black hole solution. This pro-
vides another piece of evidence for thermodynamical stabil-
ity of our black holes.

All our black hole spacetimes belong to the family~2.1!.
This family arises as the generic solution family from a
Birkhoff’s theorem that assumes the spacetime to admit the
local isometry groupE2 ~leading to flatS!, SOc(2,1) ~lead-
ing to negatively curvedS!, or SO~3! ~leading to the
Reissner-Nordstro¨m–anti–de Sitter solutions!, with two-
dimensional spacelike orbits@11#. This suggests seeking a
black hole interpretation also for spacetimes that have the
same local isometries but do not fall within the family~2.1!.
The most promising candidate would seem to be the Nariai-
Bertotti-Robinson family@11#. In this family, the spacetime
has the product formML3ME , where ML ~ME , respec-
tively! is a two-dimensional Riemannian manifold of signa-
ture (21) @(11)# and constant Gaussian curvatureKL
(KE). The curvatures satisfy

KE1KL52L, ~5.1a!

KE2KL>0. ~5.1b!

The electromagnetic two-form with a vanishing magnetic
field is

F56A 1
2 ~KE2KL!vL , ~5.2!

wherevL is the volume two-form onML , and the case of a
nonvanishing magnetic field is obtained via the electromag-
netic duality rotation.5 The local symmetries of the spacetime
are clear from the construction. To create a black hole in
analogy with the BTZ construction@8,9,18,21#, one would
now like to take the quotient with respect to a suitable dis-
crete isometry group. The crucial question is whether satis-
factory discrete isometries exists.

Note added.After the present work was completed, Ref.
@61# was posted. The results therein overlap with ours for

Q50 and in the absence of a finite boundary. The main
difference is that the subtraction procedure of Ref.@61# to
make the Euclidean action finite generates fork521 a ho-
rizon contribution that is not present in our Hamiltonian sub-
traction procedure in Sec. IV. As a result, the entropy ob-
tained in Ref.@61# for k521 differs from Eq.~3.10! by an
additive constant, such that the values of the entropy span the
whole positive real axis. Also, the additive constant in the
ADM energy in Ref.@61# is chosen so that the ADM energy
takes all positive values both fork50 andk521.
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APPENDIX: HEAT CAPACITIES IN A BOX

In this appendix we calculate the heat capacitiesCQ ,
CF̃B

, andCFB
, defined in Sec. III. We consider bothk51,

k50, andk521.
As explained in Sec. III, we consider a black hole in a box

with a prescribed, finite boundary scale factorRB . The po-
tential F̃B :5F̃(RB) is defined by Eq.~3.8b!, and it equals
the electrostatic potential difference between the boundary
and the horizon, with respect to a time coordinate normalized
to a static observer’s proper time at the boundary. Similarly,
the potentialFB was defined by Eq.~3.14!, and it equals the
electrostatic potential difference between the boundary and
the infinity, with respect to a time coordinate normalized to a
static observer’s proper time at the boundary.

The heat capacityCX at constant value of the thermody-
namical variableX is defined by Eq.~3.13!, whereS is the
entropy andT the temperature. For us,S andT5TH(RB) are
given, respectively, by Eqs.~3.10! and ~3.3b!.

It is useful to regardS and TH as functions of the two
independent variablesRh andQ2. M becomes then a depen-
dent variable, determined by Eq.~2.6!. From Eq.~3.13!, we
obtain

CX5 1
2 VRhTHFTRh

1TQ2S dQ2

dRh
D

X
G21

, ~A1!

where

TRh
:5

]TH

]Rh
5

1

4pAF~R!
F 1

Rh
2 S 2k1

3Rh
2

l 2 1
3Q2

Rh
2 D

1
1

2RBRhF~RB! S k1
3Rh

2

l 2 2
Q2

Rh
2 D 2G , ~A2a!

TQ2 :5
]TH

]~Q2!

5
1

4pAF~RB!
F2

1

Rh
3 1

1

2RBRhF~RB! S k1
3Rh

2

l 2 2
Q2

Rh
2 D

3S 1

Rh
2

1

RB
D G . ~A2b!

The range of the parameters is

5The special caseF50 yields flat spacetime forL50, the Nariai
solution @57# for L.0, and a negative curvature analogue of the
Nariai solution forL,0. The special caseL50 yields the Bertotti-
Robinson solution@58–60# for FÞ0 and flat spacetime forF50.
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Amax~0,2 1
3 kl 2!,Rh,RB , ~A3a!

0<Q2,Rh
2S 3Rh

2

l 2 1kD . ~A3b!

Here, Eq.~A3b! and the leftmost inequality in Eq.~A3a! are
the conditions for the existence of a nondegenerate horizon.
The rightmost inequality in~A3a! is the condition that the
black hole fit in the box.

We shall mainly discuss the sign of the heat capacities in
the limit whereRB is taken to infinity while the parameters
Rh and Q2 remain in some prescribed finite range. This
means neglecting the second terms in Eq.~A2!. In this limit,
TQ2 is always negative, andTRh

is positive except when the
following set of conditions holds:

k51,

Q2/l 2,1/36,

1

6
@12A1236~Q/l !2#,Rh

2/l 2,
1

6
@11A1236~Q/l !2#.

~A4!

Consider firstCQ . With X5Q, we have (dQ2/dRh)X50,
and the sign ofCQ agrees with the sign ofTRh

. Hence, in the

limit RB→`, CQ is positive for all configurations except
those satisfying Eq.~A4!. As the second term in Eq.~A2a! is
positive definite, takingRB finite would increaseCQ , pre-
serving the stability fork50 andk521 and widening the
domain of stability fork51.

Consider nextCF̃B
. With X5F̃B , we now have6

S dQ2

dRh
D

F̃B

5
2Q2

Rh
@11O~RB

21!#, ~A5!

and the denominator in~A1! becomes

TRh
1TQ2S dQ2

dRh
D

F̃B

5
1

4pAF~RB!
H Q2

Rh
4 F11

Rh
2

Q2 S 3Rh
2

l 2 2kD G
1O~RB

21!J . ~A6!

In the limit RB→`, the expression in Eq.~A6! is positive
definite fork50 andk521. Fork51, however, it becomes
negative when the following set of conditions holds:

k51,

Rh,
l

)
,

Q2,Rh
2S 12

3Rh
2

l 2 D . ~A7!

Thus, in the limitRB→`, CF̃B
is positive definite fork50

andk521, but indefinite fork51. For finiteRB , it can be
verified that the terms omitted from Eq.~A6! are positive
definite: CF̃B

is positive for k50 and k521 also with a

finite boundary, whereas fork51, taking the boundary finite
widens the domain of stability.

Consider finallyCFB
. With X5FB , we have

S dQ2

dRh
D

FB

5Q2S k1
3Rh

2

l 2 2
Q2

Rh
2 D

3FRBS k1
RB

2

l 2D 2RhS k1
Rh

2

l 2D G21

5
Q2l 2

RB
3 S k1

3Rh
2

l 2 2
Q2

Rh
2 D @11O~RB

21!#,

~A8!

and the denominator in Eq.~A1! becomes

TRh
1TQ2S dQ2

dRh
D

FB

5
1

Rh
2 S 2k1

3Rh
2

l 2 1
3Q2

Rh
2 D

3@11O~RB
21!#. ~A9!

In the limit RB→`, the expression in Eq.~A9! is positive
definite fork50 andk521. For k51, it is negative when
the conditions~A4! hold. Hence, in the limitRB→`, CFB

is

positive definite fork50 andk521 and indefinite fork51.
These results show that fork50 and k521, the heat

capacitiesCQ , CF̃B
, and CFB

are positive definite in the

limit RB→`. There exist, however, choices forX such that
CX can be negative fork50 andk521: from Eq.~A2!, it is
seen that this happens whenever (dQ2/dRh)X

.Rh(2k13Rh
2/l 213Q2/Rh

2). Saturating this inequality
corresponds toX5F8(Rh), which is equivalent to holding
the renormalized temperatureT` constant.

The signs of our three heat capacities, in the limit of a
large box, may be summarized in the following table:

CQ CF̃B
CFB

k521 1 1 1

k50 1 1 1

k51 6 6 6

~A10!

6Note that in the limit RB→` we have
(dQ2/dRh)F̃B

5(dQ2/dRh)fh
, wherefh :5QRh

21 is the quantity
held fixed in the grand canonical ensemble in Sec. IV. This pro-
vides a check on the positivity of the heat capacityCf discussed in
Sec. IV.

56 3609THERMODYNAMICS OF (311)-DIMENSIONAL BLACK . . .



@1# C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation
~Freeman, San Francisco, 1973!.

@2# L. F. Abbott and S. Deser, Nucl. Phys.B195, 76 ~1982!.
@3# A. Ashtekar and A. Magnon, Class. Quantum Grav.1, L39

~1984!.
@4# M. Henneaux and C. Teitelboim, Commun. Math. Phys.98,

391 ~1985!.
@5# B. Carter, Commun. Math. Phys.10, 280 ~1968!.
@6# B. Carter, inBlack Holes, Proceedings of the 1972 Session of
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