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The recently proposed ‘‘correspondence principle’’ of Horowitz and Polchinski provides a concrete means
to relate~among others! black holes with electric Neveu-Schwarz–Neveu-Schwarz charges to fundamental
strings and correctly match their entropies. We further test this correspondence by examining the greybody
factors in the absorption rates of neutral, minimally coupled scalars by a near extremal black hole. Perhaps
surprisingly, the results disagree in general with the absorption by weakly coupled strings. Though this does
not disprove the correspondence, it indicates that it might not be simple in this region of the black hole
parameter space.@S0556-2821~97!00618-8#

PACS number~s!: 04.70.Dy

I. INTRODUCTION

During the past year there has been impressive progress in
our understanding of the microscopic description of black
holes@1# ~see@2,3# for reviews and further references!. For
the case that is best understood, a description has emerged
for the weak coupling dynamics of a five-dimensional black
hole near extremality in terms of an ‘‘effective string.’’ The
latter is in fact a bound state ofD-strings restricted to move
inside a D-fivebrane, and which is excited above the
Bogomol’nyi-Prasad-Sommerfield~BPS! state by having
both left- and right-moving momenta running along the
string ~in a dilute gas regime! @4,5#. This model precisely
reproduces the Bekenstein-Hawking entropy of the black
hole in terms of the degeneracy of states of the effective
string, and Hawking radiation comes about as the emission
of closed string states resulting from annihilation of pairs of
left and right moving quanta. This effective description has
turned out to be surprisingly successful. Not only the entropy
can be correctly reproduced, but also details of the scalar
emission rates computed from the effective string show pre-
cise agreement with the spectrum of Hawking radiation. This
agreement is correct including normalization factors@6# and
extends to the level of black hole greybody profiles@7#.1 A
possible explanation for this success has been proposed in
@12#.

Still within the near-extremal realm, it has been shown in
@13# that when one addsD-string-antistring pairs to the
bound state described above, the black hole entropy can be
correctly accounted for by the states of a noncritical Polya-
kov string with its effective tension and central charge con-
strained by theD-fivebrane background. In this regime, how-
ever, it is unclear how strong coupling effects can be
avoided. Moreover, the details of spectroscopy show only
partial agreement, and deviations occur at the level of lead-
ing order corrections to the absorption cross section at low
energies@14#.

Pushing the picture further along these lines, one could
expect to find a description of the~five-dimensional! neutral
Schwarzschild black hole as a bound state of a number of
D-fivebranes,D-strings, and momenta together with an
equal number of their antiexcitations@15#. However, it is not
clear at all how to compute reliably the degeneracy of states
for such a system, or even to justify or understand, in gen-
eral, why the brane-antibrane pairs should not annihilate.

A rather different approach for understanding the entropy
of the Schwarzschild black hole was initiated by Susskind a
few years back@16#. Here, the working hypothesis is that the
only objects needed to account for the degrees of freedom of
a neutral black hole are fundamental strings—and not, in
particular,D-branes. In this picture, if we start at strong cou-
pling with a state that looks like a black hole, then as we
decrease the coupling the horizon shrinks. Eventually, the
state is better described as a long, highly excited string. This
conjecture has been carried further in@17–19#.2 The obvious
difficulty with this approach, namely, the different growth of
the number of states with a given energy for black holes and
strings, has been recently solved in a convincing manner by
Horowitz and Polchinski in@19#. The key observation is that
we should not expect the mass of a certain black hole state—
which is fixed in Planck units—to be equal to that of the
corresponding string state—constant in string units—for ar-
bitrary values of the string coupling constantg. Rather, the
correspondence between black hole and string parameters
should be naturally made at the value ofg for which the
transition between both descriptions takes place. There is a
shortcoming here in that we do not know how to determine
precisely at which value of the coupling this transition hap-
pens. Hence this principle only allows one to relate quanti-
ties up to factors of order 1. Nevertheless, its range of appli-
cability is wider than for other approaches—most of which it
subsumes—and it has been shown in@19# to yield the correct
dependence of the entropy on black hole parameters for a
large number of nontrivial cases, such as, in particular, black
holes with charges corresponding to the winding and mo-
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1The agreement has been further reinforced in@8#. However, it

should be noted that disagreement has also been found in certain
specific regimes@9–11#.

2See @20# for another, black-hole-guided, approach to a string
model for black holes arbitrarily far from extremality.
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mentum numbers of a fundamental string.
A key premise of the Horowitz-Polchinski correspon-

dence principle is that, when the strongly coupled black hole
and the weakly coupled string are taken to the transition
point, the mass of neither of them changes by a large factor.
In practice, this means that, at the matching point, the clas-
sical black hole mass can be taken to be approximately equal
to the energy of a string whose levels are determined accord-
ing to the spectrum of afree ~or very weakly coupled! string.
Neither the finite coupling corrections to the string mass
spectrum, nor the string-size modifications to the black hole
geometry introduce large factors that could alter the match-
ing of masses and entropies at the transition point. Our aim
in this paper is to test if this simplest classical-black-hole–
free-string correspondence is enough to account for details of
the radiation such as greybody filtering. This is particularly
interesting because, as was revealed in@7#, greybody factors
encode information on the excitation spectrum of the string.
For technical reasons, the computations in the black hole
side will have to be restricted to near extremal configurations
in five and four dimensions. The results we find indicate that,
at least in the region of the black hole parameter space that
we are able to probe, the simplest model for the correspon-
dence does not seem to account correctly for the details of
the spectrum. There is some evidence that the discrepancy
could be traced to the fact that, for the class of black holes
under consideration, the near extremal state at the matching
point actually isnot infinitesimally close to the BPS limit.

The paper is organized as follows. In Sec. II we review
the calculation of scalar absorption by five-dimensional~5D!
and 4D near extremal black holes which will be of use later
on. Then, in Sec. III we make use of the correspondence
principle to compare these results with the absorption rates
of neutral scalars by fundamental strings previously com-
puted in@18#. We give a simple argument which shows that,
quite generally, disagreement is found. We conclude in Sec.
IV with a discussion of the results and their implications.

II. ABSORPTION RATES FOR NEAR EXTREMAL FIVE-
AND FOUR-DIMENSIONAL BLACK HOLES

The absorption cross sections, including greybody factors,
of minimally coupled scalars by a near extremal black hole
in five and four dimensions have been computed in great
generality in@14#. These results will be needed later, so we
find it useful to describe how they are obtained.

We start with the nonrotating nonextremal five-
dimensional black hole solution of string theory@21,15#
which takes the form, in the Einstein conformal gauge,

ds252
h

f 2/3
dt21 f 1/3S dr2

h
1r 2dV3

2D , ~2.1!

with

h512
r 0

2

r 2 , f 5 f 1f 2f 3 ,

f i511
r i

2

r 2 , r i
25r 0

2 sinh2 s i , i 51,2,3. ~2.2!

This solution admits a variety of embeddings in several dif-
ferent compactifications of any of the superstring~and M !
theories. The characteristic radiir i are associated with three
different types of charges, and their interpretation@as, e.g.,
Kaluza-Klein ~KK ! momentum, winding, Ramond-Ramond
~RR! electric or magnetic charge, etc.#, depends on the em-
bedding. In particular, for the main purposes of this paper
~Sec. III! we shall only need to consider two nonzero
charges. Nonetheless, for the moment we leave the number
of charges and their interpretation otherwise unspecified, but
take the radii to be ordered as

r 1>r 2>r 3 . ~2.3!

Besides the ‘‘nonextremality parameter’’r 0 , one works with
the three radii,r i , or alternatively, the associated hyperbolic
angles,s i , depending on convenience.

The mass, entropy, and Hawking temperature of the black
hole are

M5
pr 0

2

8G5
~cosh 2s11cosh 2s21cosh 2s3!,

S5
p2r 0

3

2G5
coshs1 coshs2 coshs3 ,

TH
2152pr 0 coshs1 coshs2 coshs3 . ~2.4!

The black hole is taken to near extremality by havingat least
one large charge, say r 0!r 1 , so that
r 15r 0 sinhs1'r0 coshs1. The other two radii~charges!
can be as well large or small. The scattering will be restricted
to s waves, higher partial waves being suppressed by cen-
trifugal potential barriers at frequencies such thatvr 0!1
and vr 1,2 @14#. Although it would not be difficult to in-
clude higher angular momenta, our primary interest will be
on a range of low enough frequencies specified byvr 1!1.

The wave equation for a minimally coupled, spherically
symmetric scalar fieldF(r ,t)5e2 ivtR(r ) in this black hole
background takes the form

S h

r 3

d

dr
hr3

d

dr
1v2f DR50. ~2.5!

An alternative set of four parameters characterizing the
black hole is useful when dealing with the wave equation.
These are

D5
v2

4r 0
4 r 1

2r 2
2r 3

2 ,

C5
v2

4r 0
2 ~r 1

2r 2
21r 1

2r 3
21r 2

2r 3
2!,

E5
v2

4
~r 1

21r 2
21r 3

2!,

E25
v2

4
r 0

2 . ~2.6!
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It is also convenient to define the variablez5h(r ) in terms
of which the wave equation takes the form

S z
d

dzD
2

R1S D1
C

~12z!
1

E

~12z!2 1
E2

~12z!3DR50.

~2.7!

The latter is still the exact wave equation for the s-wave
scalar. Since, in general, it is not possible to solve it analyti-
cally for arbitrary values ofr , one needs to resort to approxi-
mate methods.3 The traditional way to deal with the problem
@22–25,27,6,7# has been to, first, solve the equations in two
different regions:~I! near the horizon;~II ! far from the black
hole, and then match the solutions at some point in between,
or by means of an intermediate region. For near-extremal
black holes of the sort under consideration, Rajaraman has
studied in detail the definition of regions~I! and~II !, and has
settled the question of the existence of an overlap region and
the matching of solutions@26#.

Boundary conditions are imposed at the black hole hori-
zon, by requiring the wave to be purely ingoing into the
black hole. The matching of solutions in~I! and ~II ! then
allows one to determine the ratio at asymptotic infinity of the
amplitudes of radially ingoing waves to those outcoming,
and hence the luminosity of the black hole.

Very close to the horizon (z→0) an approximate solution
can be found if we neglect thez dependence in the non-
derivative term in Eq.~2.7!. In this way one finds

RI.e6 iAD1C1E1E2 ln z5expS 6
ivAbh

4p2r 0
2

ln zD , ~2.8!

where the1 ~2! solution is outcoming~ingoing! at the ho-
rizon. This is essentially the form of the solution used in
@25,24#, and can be seen to yield correctly the leading term,
at low frequencies, of the absorption cross section as equal to
the horizon area of the black hole. However, in order to keep
further dependence onz and be able to enlarge the distance
within which the solution is valid, it is found adequate@7,14#
to try the ansatzRI5za(12z)bF(z). In the region whereE2
can be dropped a solution can be found withF a hypergeo-
metric function. Explicitly,

RI5za~12z!bF~a1b1 iAD,a1b2 iAD;112a;z!
~2.9!

with

a52 iAD1C1E, b5
1

2
~12A124E!. ~2.10!

Neglection of theE2 term is certainly justified provided
r !r 1 .

The solution has been completely fixed, up to arbitrary
global wave function normalization, by demanding that, very
close to the horizon, the solution behaves as the ingoing
wave~2.8!. We also need the limiting form ofRI for larger ,
i.e., z→1. This is

RI;~12z!b
G~112a!G~122b!

G~11a2 iAD2b!G~11a1 iAD2b!
.

~2.11!

To analyze the equation far from the horizon it is conve-
nient to definer5vr andR5c(r)/r. If r @r 0 we can ap-
proximateh.1. The wave equation becomes

r2c91rc82~12r2f !c50. ~2.12!

Approximate now 12r2f '124E2r2, which requires
1@v4r 1

2r 2
2/r2, i.e., r @vr 1r 2 . Upon doing so we find a

Bessel equation forc, and the general solution can be ex-
pressed in terms of Bessel functionsJn(vr ) as

RII5
A

vr
J122b~vr !1

B

vr
J2b21~vr !. ~2.13!

For smallr the behavior ofRII is found from

1

r
J122b~r!;

1

2 S 2

r D 2b 1

G~222b!
, ~2.14!

1

r
J2b21~r!;

2

r2 S r

2D 2b 1

G~2b!
. ~2.15!

From here we see that the waveJ122b(vr )/(vr ) behaves in
this region in exactly the same way as the waveRI for r @r 0 ,
Eq. ~2.11!. Moreover,RI is definitely valid up tor !r 1 ~in
fact, up tor !1/v @26#!, andRII down tor @vr 1r 2 . Hence,
there exists an overlap region where the matching can be
done. The coefficients in Eq.~2.13! are determined asB504

and

A52S vr 0

2 D 2b G~112a!G~122b!G~222b!

G~11a2 iAD2b!G~11a1 iAD2b!
.

~2.16!

This fixes, up to global wave function normalization, the
solution to the wave equation with the required boundary
conditions at the horizon.

Having constructed this solution fors-wave scattering,
and in the approximation where we neglect higher partial
waves, the plane wave absorption cross section can be finally
found to be

sabs5
16p2iar 0

2

vuAu2
. ~2.17!

3However, it must be noted that for the extremal black hole with
only one single type of charge it is indeed possible to solve analyti-
cally the wave equation exactly, everywhere and for arbitrary fre-
quencies~and also include higher partial waves!, in terms of Bessel
functions. For this black hole, though, the horizon is a singularity of
zero area. In a similar way, for the extreme four-dimensional black
hole with two charges the exact solution can be found in terms of
Coulomb wave functions.

4More precisely,B/A is small whenb is small. We thank J. Tra-
schen for discussions on this point.
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This form of the solution was first found in@14#.
The expression forsabs is much more amenable to physi-

cal interpretation ifuAu2 is expanded for smallb. Still, since

ia;maxH vr 1 ,
vr 1r 2

r 0
,
vr 1r 2r 3

r 0
2 J , ~2.18!

it is possible to keepuau of order one as long as there are, at
least, two large charges.5 In this regime~which is the one
analyzed in@7#! straightforward algebra yields

sabs5
4p3r 0

2ua21Du
v

e 4p ia21

~e2p i ~a1 iAD !21!~e2p i ~a2 iAD !21!

3@11O~v2r 1
2!#. ~2.19!

If there is just one large charge, then not onlyb but alsouau
andAD have to be regarded as very small. The absorption
cross section should be written now as

sabs5
4p2r 0

2ia

v H 11
p2

3
ua21Du24bF lnS vr 0

2 D211gG
1O~v4r 1

4!J , ~2.20!

whereg is the Euler-Mascheroni constant. The logarithmic
term comes from expanding the term (vr 0/2)4b in uAu2.

Let us rewrite these expressions forsabsin terms of physi-
cal quantities. Given that we always assume that there is at
least one large charge, one has

ia5
vABH

4p2r 0
2 @11O~r 0

2/r 1
2!#

5
v

4pTH
@11O~r 0

2/r 1
2!#. ~2.21!

From here and Eq.~2.20! one finds that, forv→0, the ab-
sorption cross section is strictly equal to the black hole area,
sabs5ABH1O(v) @25,28#.

Consider now small but nonvanishing frequencies. From
the second expression foria in Eq. ~2.21! we see that the
factor (e4p ia21) in Eq. ~2.19! is precisely the Planckian
factor for the Hawking radiation. This suggests to define, in
a similar way, two other ‘‘left’’ and ‘‘right’’ temperatures as

TR,L
21 5

4p

v
~ ia6AD !

.2pr 1cosh~s26s3!. ~2.22!

The last expression is found bearing in mind thatr 1 is a large
radius. The absorption cross section~2.19! presents now the
suggestive form

sabs5ABH

v

2~TR1TL!

ev/TH21

~ev/2TR21!~ev/2TL21!

3@11O~v2r 1
2!#. ~2.23!

On the other hand, if there is only one large charge,
(v/TL,R,H)2;E!1, the result is

sabs5ABHH 11
v2

48

1

TRTL
2v2r 1

2F lnS vr 0

2 D211gG
1O~v4r 1

4!J . ~2.24!

Notice that the most relevant correction term is logarithmic,
;b ln(vr0). Sincevr 0!1, this can be quite significant and
is larger than the terms coming from the exponential grey-
body factors.

The greybody factors of thermal form in Eq.~2.23! were
found by Maldacena and Strominger@7#, who also showed
thatTR,L correspond exactly to effective temperatures for the
left- and right-moving vibrations of the ‘‘effective string’’
model for the five-dimensional black hole with two large
D-brane charges. The case when just one of the charges is
large has been solved more recently in@14#, and the logarith-
mic correction noted. Its absence from the simplest string
calculation has been interpreted as suggesting that the effec-
tive string model should be modified in the corresponding
region of parameter space.

In four dimensions we consider the nonrotating nonextre-
mal black hole with four charges,

ds252
h

f 1/2
dt21 f 1/2S dr2

h
1r 2dV2

2D , ~2.25!

with

h512
r 0

r
, f 5 f 1f 2f 3f 4 ,

f i511
r i

r
, r i5r 0 sinh2 s i , i 51,2,3,4, ~2.26!

and mass, entropy and temperature,

M5
r 0

8G4
(
i 51

4

cosh 2s i ,

S5
pr 0

2

G4
)
i 51

4

coshs i ,

TH
2154pr 0)

i 51

4

coshs i . ~2.27!

As before, we order the radial parameters as

r 1>r 2>r 3>r 4 . ~2.28!

The analysis of absorption rates, carried out in@14#, is
quite similar to that for the 5D black hole. However, the 4D

5But keep in mind that they need not be of the same order; i.e., we
can haver 1@r 2@r 0 .
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case differs from the 5D case in two crucial respects: first, in
order to be able to solve the equations one needs to restrict to
the case withat least twolarge charges:

r 1 ,r 2@r 0 . ~2.29!

Thus, we are not able to deal with the most general near
extremal black holes in four dimensions.

Second, the leading correction at low frequencies is found
to be linear inv, in contrast to the 5D result where correc-
tions start to appear at orderv2. As a consequence, at low
enough frequencies the linear term completely masks the
~quadratic! terms coming from expanding the exponential
thermal factors, as well as the logarithmic correction terms
found in the previous section. More importantly, such a cor-
rection ~also found, in a slightly different context, in@29#!
does not seem to appear in the results obtained using the
effective string model for the 4D black hole@14#.

Near the horizon the analysis is very closely similar to
that in five dimensions. On the other hand, far from the ho-
rizon the wave equation can be solved in terms of Coulomb
wave functions,FL(h,vr ), ~with nonintegerL! as

RII5
A

vr
F2b~h,vr !1

B

vr
Fb21~h,vr !, ~2.30!

where

h[2
v

2
~r 11r 21r 31r 4!, ~2.31!

andb'v2r 1r 2 are small quantities.
For smallvr the functionsFL(h,vr ) have again a pow-

erlike dependence that enablesRII in Eq. ~2.30! to be easily
matched to the near region solution~2.11!. Define now

TR,L
21 54pAr 1r 2 cosh~s36s4!. ~2.32!

Whenv/TL,R,H;1 ~which now requires at least three large
charges!, the absorption cross section takes the form

sabs5ABH

v

2~TR1TL!

ev/TH21

~ev/2TR21!~ev/2TL21!

3@11O~vr 1!#. ~2.33!

When there are only two large chargesv/TR,L are small,
and the result would be

sabs5ABHS 12ph1
v2

48

1

TRTL
1 ••• D . ~2.34!

Sinceh is already linear invr 1 we have neglected the terms
proportional tob, similar to those found in five dimensions.
Indeed, given thatv2/TRTL;v2r 1r 2 , in this regime the
‘‘temperature dependent’’ corrections are negligible to the
order we are working. Thus, for two large charges the lead-
ing corrections in four and five dimensions are very differ-
ent.

III. FUNDAMENTAL STRINGS VS BLACK HOLES

Fundamental strings can carry two kinds of charges,
namely electric Neveu-Schwarz–Neveu-Schwarz~NS-NS!
charges, associated with the momentum and winding modes
of the string. Black holes with these same quantum numbers
can be readily constructed@30#. Since, in general, string
states with given winding and momentum are highly degen-
erate, one would expect a relation with the Bekenstein-
Hawking entropy of the black hole to be viable. This is not
straightforward. For one thing, a secure starting point for the
identification would be a supersymmetry-protected BPS
state, i.e., the extremal black hole. But for the NS-NS electric
black holes the horizon becomes a zero-area singularity in
the extremal limit, suggesting that stringy corrections to the
geometry should be relevant in its vicinity. Sen has invoked
these corrections to argue that astretched horizonof string
size should be present, whose area reproduces the degen-
eracy of string BPS states@31#.

The correspondence principle proposed in@19# provides a
concrete way to relate strings and black holes~in any dimen-
sion D>4! arbitrarily away from extremality, and correctly
obtain, up to factors of order 1, the Bekenstein-Hawking
entropy by counting string states. As explained in@19#, the
comparison between the black hole picture at strong cou-
pling, on the one hand, and the string to which it evolves at
weak coupling on the other hand, should be naturally made
at the value of the string coupling where the former descrip-
tion yields way to the latter. This should happen when the
curvature of the black hole geometry~in the string conformal
frame! reaches the string size. At this point, the mass and
degeneracy of states of the black hole can be matched, up to
factors of order 1, to those of the string.

The string to which the black hole evolves is a highly
excited one, in a thermal state. Its decay by annihilation of
left- and right-moving oscillations reproduces the thermal
character of Hawking radiation. However, the entropy, or
equivalently, the Hawking temperature, only conveys infor-
mation about the total excitation level of the string. In par-
ticular, it is not possible to tell from the entropy alone any
differences between the excitations of left- and right-moving
oscillators. Remarkably, as first discussed in@7#, it turns out
that the radiation emitted from the black hole actually en-
codes such information in the greybody filtering of the
Planckian spectrum. It is this sort of analysis what we want
to perform here.

Let us, first, briefly review how the correspondence be-
tween a fundamental string and the black hole goes in the
five-dimensional case. Consider a string moving on a circle
of radius R, carrying np and nw units of momentum and
winding, respectively. IfNR,L are the right and left oscilla-
tion level numbers, then the mass levels of the free string are
given by

M25S np

R
1

nwR

a8 D 2

1
4

a8
NR

5S np

R
2

nwR

a8 D 2

1
4

a8
NL . ~3.1!

A six-dimensional black string can be constructed with these
quantum numbers@32#. Its metric, in the string frame, is
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ds~6!
2 52

h

f wf p
dt21

f p

f w
S dz2

r 0
2 sinh 2sp

2r 2f p
dtD 2

1
dr2

h

1r 2dV3
2 , ~3.2!

where f p , f w ,h are functions like those in Eq.~2.2!. The
momentum and winding NS-NS charges are identified as

np5
pR

8G5
r 0

2 sinh 2sp , nw5
pa8

8G5R
r 0

2 sinh 2sw .

~3.3!

The momentum actually results from boosting along (t,z) a
string which initially hasnp50.

We have expressed these charges in terms of the five-
dimensional Newton constant, which can be obtained as
G55pg2(a8)4/(4RV), with g the 10-dimensional string
coupling, and (2p)4V a compactified four-volume. The rea-
son for this choice is that upon reduction along the wrapping
direction of the string one obtains the five-dimensional black
hole of Sec. II with two nonzero charges. In our identifica-
tion with black hole parameters, we taker w[r 1 to be the
radius associated with the winding charge,r p[r 2(<r 1) as-
sociated with the momentum charge~the caser p>r w is T
dual to this one!, andr 350.

If we keep the charges fixed, then as we decrease the
couplingg the horizon radiusr 0 becomes smaller. Following
@19#, the string-frame curvature reaches the string scale when
r 0;Aa8. At this point the mass of the string in Eq.~3.1! can
be set equal to that of the black hole~2.4!. This allows one to
determine the oscillation levelsNR ,NL . These could be ei-
ther of similar magnitude, or one much larger than the other.
But remarkably, as noted in@19#, the sumANL1ANR, which
corresponds to the string degeneracy of states, is, up to a
factor of order 1, independent of the relative size of the sum-
mands,

Sst;ANL1ANR

;
~a8!3/2

G5
coshsw coshsp

;SBH , ~3.4!

and therefore the string entropy correctly reproduces, within
the accuracy of the correspondence principle and for arbi-
trary momentum and winding numbers, the Bekenstein-
Hawking entropy of the black hole~2.4! at the matching
point.

Our task now is to test the absorption rates of scalar par-
ticles. The comparison has to be confined to near extremal
situations, where we can use the results of the previous sec-
tions for the classical absorption by the black hole. For future
reference, the entropy and mass of such black holes at the
matching point is

SBH;
a8

G5
r w coshsp , M;

r w
2

G5
. ~3.5!

Before going into the details of the comparison, we must
note a number of peculiarities that arise in the correspon-
dence between near extremal black holes and fundamental

strings. The way the extremal limit is reached in the black
hole side requires sendingr 0

2/G5→0 and sw→` while
keeping r 0

2 sinh 2sw /G5 ~i.e., nw! fixed. Additionally, one
can also sendsp→`, keepingsw2sp fixed, thus obtaining
an extremal black hole with two charges~nw andnp!.6 This
means that if we want to keepr 0;Aa8, then the extremal
limit corresponds to taking the string couplingg→`. Nev-
ertheless, we can still consider near extremal regimes at
weak coupling. The reason is that the mass of the extremal
black hole isMext;r w

2 /G5 , whereas the energy above extre-
mality is DE;r 0

2/G5 .7 Then

DE

Mext
;

r 0
2

r w
2 !1 ~3.6!

is small independently of the coupling, and it is in this sense
that we talk about a near extremal black hole. Therefore,
there is no problem in a black hole close to extremality
evolving into a weakly coupled string. We should keep in
mind, though, that at weak couplingDE is not infinitesimally
small ~in string units! and thus the configuration is a finite
distance away from the extremal one.

Another important effect in near extremal configurations
is that the gravitational dressing can be rather large even
after the transition to the weakly coupled string@19#. This
comes about by the fact that near the horizon the factorsf w ,
f p in the metric are big (;cosh2 sw ,cosh2 sp), and thereby
induce redshifts in quantities like the compact radiusR or the
free energy above the rest mass with respect to their
asymptotic values. Nevertheless, Horowitz and Polchinski
have argued that the calculation of the string entropy~3.4! is
not affected by the use of the asymptotic values instead of
those read from the corrected local metric.

Such redshifts can be read from Eq.~3.2!. For example,
the local temperature at the string is related to the tempera-
ture measured at asymptotic infinity as

T~ loc!5coshsw coshspT~as!. ~3.7!

The frequency of quanta emitted by the string undergoes a
similar redshift when they reach the asymptotically flat re-
gion. Therefore, the quotient

S v

T D ~ loc!

5S v

T D ~as!

, ~3.8!

which appears in greybody factors, remains unchanged.8

6The extremal black hole with a single type of charge corresponds
to a nondegenerate string state,NR5NL50, with zero entropy. If
there are two charges, thenNR50, NLÞ0.

7Or, possibly,DE;r 0
2 cosh 2sp /G5 . This does not affect the ar-

gument.
8At this point we admit to have found some difficulty on how to

account unambiguously for the detailed effect of the redshift when
matching black hole and string parameters. For example, it is not
clear to us how the left- and right-moving momenta
pR,L5np /R6nwR/a8 should be redshifted. For the purposes of this
paper, we will find a simple way to formulate our arguments that
seems to be free of any such ambiguities.
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Turn now to analyze the absorption of a neutral scalar of
frequencyv by a fundamental string. The increment in os-
cillator level due to absorption of neutral quanta is the same
for right and left movers,dNR5dNL . Given that the energy
increase isv, the mass shell condition~3.1! yields

dNR,L;a8Mv. ~3.9!

The absorption rate is to be averaged over a statistical en-
semble of initial states peaked at a given mass. The emission
rate, from which the absorption rate can be obtained, has
been computed in@18# using string perturbation theory. The
result is

sabs;
G5~dNL!2

a8Mv

ebL* dNL1bR* dNR21

~ebL* dNL21!~ebR* dNR21!
, ~3.10!

with

bR,L* [
]Sst

]NR,L
. ~3.11!

Using Eqs.~3.4!, ~3.9!, and ~3.11! the factors in the expo-
nentials are

bR,L* dNR,L;
a8Mv

ANR,L

;
v

TR,L
~st!

, ~3.12!

where the last relation can be taken as a definition of the left-
and right-moving oscillator effective temperatures.9 It is im-
portant to notice that the frequency here is measured at the
local position of the string. Similarly,TR,L

(st) are local quanti-
ties as well.

An assumption needed to derive the result~3.10! is that
the Compton wavelength of the scalar be much bigger than
the string scale:

vAa8!1. ~3.13!

At the matching point,r 0;Aa8, this condition is, in fact,
less restrictive than the one imposed on the semiclassical
calculation.

Consider first the leading term in the very low frequency
limit. By expanding Eq.~3.10!, and using the expressions for
dNR,L ~3.9!, ~3.12!, one finds

sabs;G5

bR* 1bL*

bR* bL*

;G5~ANR1ANL!

;ABH , ~3.14!

thus correctly reproducing the semiclassical leading order re-
sult. The proportionality, with a factor of order 1, between
sabsand the black hole area was found in@18#. The fact that
the agreement is not precise is something that the correspon-
dence principle allows for.

As mentioned above, in the quantities tested so far only
the particular combination of oscillator level numbers that
yields the entropy, or area, enters, so that we have not been
able to discern the individual values of the left- and right-
moving oscillator levels. The greybody factors, which de-
pend solely on the quantitiesv/TR,L , can convey such in-
formation. In this respect, the formal similarity between the
perturbative string and classical black hole results, Eqs.
~2.23! and~3.10!, is most remarkable. Unfortunately, we can
easily see that the left- and right-moving temperatures read
from the black hole absorption spectrum cannot agree with
those obtained from the string spectrum. To this effect, first
we must redshift the asymptotic temperatures~2.22! ~with
r 15r w , s25sp , and s350! to the location of the string
r;r 0;Aa8. This yields

TR,L
~ loc!;

1

Aa8
, ~3.15!

i.e., both temperatures are of the order of the Hagedorn tem-
perature. Suppose now that they were equal, up to factors of
order 1, to the local string temperatures obtained from Eq.
~3.12!. This would translate intoANR;ANL;Aa8M , for
any values of the charges~requiring only largesw!. But if
we take Eq.~3.5! into account, we find thatthis condition is
incompatible with the entropy being given by
S;ANR1ANL.

The conclusion follows that temperatures cannot match
and therefore string and black hole greybody factors disagree
in their functional dependence. The discrepancy is most
patent whenr w@r p@1, but is true throughout virtually all of
the parameter range we can probe.10 Additionally, when
there is essentially one large charge, andv/T becomes small,
the logarithmic corrections in Eq.~2.24! become another
source of trouble.

The same sort of discrepancy appears when comparing
the left- and right-moving temperatures for the four-
dimensional black hole, though in this case the parameter
range is more restricted. Finally, the wave equation for black
holes in dimensions higher than five cannot be solved, close
to the horizon, in terms of hypergeometric functions, and
therefore we do not know how to obtain greybody factors

9Since eventually we are only interested in comparing the func-
tional form of the greybody factors, we do not need to interpretTR,L

(st)

as actual temperatures. In fact, we could even do without them. But
recall that for a weakly coupled closed string the left- and right-
moving oscillations behave independently of each other, being only
related by the mass shell condition. The total degeneracy of the
string is the sum of the degeneraciesSR,L;ANR,L of each separate
ensemble, so we could define effective left and right temperatures
by 1/TR,L

(st);(]SR,L /]NR,L)(dNR,L /dM ). These coincide with Eq.
~3.12!.

10It is perhaps worthwhile noting that the disagreement would also
be present if we had not redshifted the asymptotic temperatures to
their local values.
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such as those in Eq.~2.23!. However, in light of the results
we have found it would not be surprising if the disagreement
persisted inD>6.

IV. DISCUSSION

Several comments are in order regarding the discordant
result found in the previous section. First of all, one should
note that it does not disprove the correspondence principle.
At the low frequencies we are working, the greybody correc-
tions to the absorption rates are either of order 1@when there
are two large charges and Eq.~2.23! is valid# or subleading
@with just one large charge, Eq.~2.24!#. The modulation in
frequency in the former case is not big. Therefore, as far as
the absorption rates are concerned, there is no large change
throughout the transition from the black hole to the weakly
coupled string.

Nevertheless, our result places a limit on the applicability
of the simplest model for the correspondence, which thus
becomes comparatively less powerful than the ‘‘effective
string’’ model for D-brane black holes. It appears that the
low frequency corrections to the absorption rates undergo
seemingly significant changes in the transition from the
black hole to the string. One would expect a more detailed
examination of the correspondence to reveal the reason. Ap-
parently, the lowest order perturbative string result~ampli-
tudes on the sphere! cannot account for this. One-loop cor-
rections to the closed string vertex should add terms}g2.
On the other hand, in the regime where only one of the
charges is large, the correction term resulting from expand-
ing the greybody factors is

v2

TRTL
}g2v2, ~4.1!

but recall that this is shadowed by the logarithmic correction
in Eq. ~2.24! ~which is}g2, too!. Things are further compli-
cated by the fact that in four dimensions the leading term at
small frequencies goes likeg2v. It is very unclear whether
string vertex corrections can simultaneously account for all
these facts.

Apart from the perturbative corrections~higher powers of
g! to the emission spectrum of the string, another source for
possible corrections of the correspondence comes from
string-size (a8) effects on the black hole geometry. How-
ever, these do not seem to be important to account for the
area~entropy! of the black hole horizon~this is part of the
content of the correspondence principle!, so it is uncertain
whether they might significantly alter the role of the horizon
as a boundary for scattering wave functions. Also, such cor-
rections are presumably very hard to compute.

Actually, there are reasons to suspect that the NS black
hole-string correspondence might not be so simple for black
holes close to extremality. From what we have seen, if we
keep the horizon at a string scale size, the BPS limit is only
reached forg→`. Thus, a near-extremal black hole that
evolves into aweaklycoupled string mightnot be close to
the BPS stateNR50. This is in contrast with the situation for
the black hole with three nonvanishing charges@4,5,7#,
where a state can remain infinitesimally close to extremality

throughout the passage from strong to weak coupling. For
the case we study here, with only two charges, the weakly
coupled state is instead always a finite distance away from
the extremal state.

This is very presumably related to the lack of agreement
of radiation profiles. Consider a string that is close to the
BPS state; we would expect this condition to meanNL@NR .
In turn, this would meanTL

(st)@TR
(st) , which can hardly be

harmonized with the classical black hole result, which re-
quiresTL5TR for all values of the parameters~near extrem-
ality!. Indeed, it is not likely thatTL@TR can hold at the
transition point. The reason is that the Hawking temperature
is related to the left and right temperatures by

2

TH
5

1

TL
1

1

TR
. ~4.2!

A similar relation also holds for the temperatures defined
from the string spectrum. It implies that, if one of the tem-
peratures is much higher than the other, say,TL@TR , then
TR;TH!TL . But, as we have seen, the gravitational dress-
ing turns the asymptotic temperature of the radiationTH into
a local string temperature 1/Aa8 at the matching point, and
therefore we would haveTL

(loc) much larger than the string
scale, which does not seem reasonable. A more conceivable
scenario would be that, as the black hole shrinks to the string
scale, the number of left moving oscillatorsNL can never
reach a value much bigger thanNR , in the sense that we do
not get NL /NR@1, though the differenceNL2NR5npnw ,
which is kept fixed, can still be quite large. Such a string
would not be close to the BPS state. It would have
TR

(st);TL
(st);1/Aa8, and could possibly agree with the left

and right black hole temperatures.
There does not appear to be any simple enough way to

implement this picture. A complete analysis should involve a
proper treatment of the locally corrected quantities. How-
ever, this is unlikely to be enough for solving the puzzle, at
least within the simplest model for black hole-string corre-
spondence~i.e., that without higher order corrections to the
string vertex or the black hole geometry!. The reason is that
our result in the previous section seems to be largely inde-
pendent of how the gravitational dressing acts. The redshift
effect does not seem suffice to obtainTL

(st);TR
(st) , andsimul-

taneouslypreserve the agreement between string and black
hole entropies. The conclusion seems to be that, at least in
this region of black hole parameter space, the detailed corre-
spondence to fundamental strings is not simple.

As an aside, in view of the results above, we find it re-
markable, though somewhat puzzling, that if these same fun-
damental strings are placed in the background of a magnetic
NS fivebrane, thenpreciseagreement can be found both for
the entropies and the emission rates@33#. Apparently, the
only effect of the fivebrane on the string is to rescale the
oscillator number and string tension, and restrict the motion
of the string to the world volume of the fivebrane. Otherwise,
the dynamics of the string is unaltered. The resulting black
hole, on the other hand, possesses now a regular horizon in
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the extremal limit. The correspondence principle, however,
cannot be applied to these configurations, since their horizon
does not decrease below the string size at weak coupling.

It is perhaps disappointing to find that the simplest ap-
proximation to the black hole-string correspondence does not
seem to work as well as it does for other kinds of black
holes, namely, those with a regular extremal limit. There are
number of other sorts of scalars~charged, fixed, intermediate
@8#! that can be used to probe further the correspondence
between black holes and fundamental strings, and may shed

further light on the problem. This is currently under investi-
gation.
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