
Gravitational theory without the cosmological constant problem,
symmetries of space-filling branes, and higher dimensions

E. I. Guendelman* and A. B. Kaganovich†

Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
~Received 26 February 1997!

We show that the principle of nongravitating vacuum energy, when formulated in the first order formalism,
solves the cosmological constant problem. The most appealing formulation of the theory displays a local
symmetry associated with the arbitrariness of the measure of integration. This can be motivated by thinking of
this theory as a direct coupling of physical degrees of freedom with a ‘‘space-filling brane’’ and in this case
such local symmetry is related to space-filling brane gauge invariance. The model is formulated in the first
order formalism using the metricGAB and the connectionGBC

A as independent dynamical variables. An addi-
tional symmetry~Einstein-Kaufman symmetry! allows one to eliminate the torsion which appears due to the
introduction of the new measure of integration. The most successful model that implements these ideas is
realized in a six- or higher-dimensional space-time. The compactification of extra dimensions into a sphere
gives the possibility of generating scalar masses and potentials, gauge fields, and fermionic masses. It turns out
that remaining four-dimensional space-time must have an effective zero cosmological constant.
@S0556-2821~97!04718-8#

PACS number~s!: 04.62.1v, 04.20.Cv, 04.50.1h, 11.10.Kk

I. INTRODUCTION

We have developed a theory@1,2# where the measure of
integration in the action principle is not necessarilyA2G
@G5Det(GAB)# but it is determined dynamically through ad-
ditional degrees of freedom. This theory is based on the de-
mand that such measure respects the principle of nongravi-
tating vacuum energy~NGVE principle! which states that the
Lagrangian densityL can be changed toL1const without
affecting the dynamics. This requirement is imposed in order
to offer a new approach for the solution of the cosmological
constant problem@3#.

Clearly the invarianceL→L1const for the action
is achieved if the measure of integration in the action is
a total derivative, so that to an infinitesimal hyper-
cube in D-dimensional space-timex0

A<xA<x0
A1dxA,

A50,1, . . . ,D21 we associate a volume elementdV which
is ~i! a total derivative,~ii ! proportional todDx, and ~iii ! a
general coordinate invariant. The usual choice,A2GdDx,
does not satisfy condition~i!.

All of the conditions~i!–~iii ! are satisfied@1,2# if the mea-
sure appropriate to the integration in the space ofD scalar
fields wa (a51,2, . . . ,D), that is,

dV5dw1`dw2`•••`dwD[
F

D!
dDx, ~1!

where

F[«a1a2•••aD
«A1A2 . . . AD~]A1

wa1
!~]A2

wa2
!•••~]AD

waD
!.
~2!

Notice that this is a particular realization of the coupling
of p-brane~with p115D) with the (p11)-form potential

AA1A2•••AD
5] [A1

AA2•••AD] ~3!

and a further coupling with the Lagrangian density
~usually not considered!. In fact, if AA2•••AD

equals

AA2•••AD

(w) [(1/D!)wa1
(]A2

wa2
)•••(]AD

waD
)«a1a2•••aD

, then

]@A1
AA2•••AD

dxA1`dxA2`•••`dxAD coincides with Eqs.
~1! and~2!. When this coupling to the Lagrangian density is
not considered, the resulting theory is a topological one@4#.

Following Ref.@5# we will call the brane a ‘‘space-filling
brane’’ if the rank of the formAA1A2•••AD

that couples to the

p-brane equals the space-time dimensionality~that is,
p115D). In the normal formulation ofp-branes one re-
quires invariance under gauge transformations of the form

AA1A2•••AD
→AA1A2•••AD

1] [A1
LA2•••AD] ~4!

and simply write the couplingg*AA1A2•••AD
dxA1`dxA2

`•••`dxAD, which is invariant under Eq.~4! provided
L [A2•••AD]→0 asxA→` and one does not allow coupling to

a third entity~such as the Lagrangian densityL).
The problem is@5# that in the case of a ‘‘space-filling

brane’’ the equation of motion obtained from varying
AA1A2•••AD

is simply g50, that is, there is no action prin-
ciple to talk about.

In the alternative we propose, we do not have to neces-
sarily insist on the particular realization~1!, ~2!, although it
has the most attractive geometrical interpretation@2#.

We will choose to writeAA1A2•••AD
as a total derivative

AA1A2•••AD
5] [A1

AA2•••AD] ~5!
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and then we useAA2•••AD
as the independent dynamical vari-

ables in our action principle. Furthermore we can implement
the NGVE principle if we write the action

S5E L] [A1
AA2•••AD]dxA1`dxA2`•••`dxAD, ~6!

which describes the coupling of the brane to gravity and
matter, which appear through the Lagrangian density
L5Lg1Lm . The Lagrangian structure has to be defined by
the demand that the action~6! be invariant under the gauge
transformation

AA2•••AD
→AA2•••AD

1LA2•••AD
~7!

for any LA2•••AD
~without a condition for LA2•••AD

as

xA→`), which will be referred to afterwards as a ‘‘space-
filling brane gauge transformation.’’ In this caseL has to
transform correspondingly in order to compensate the trans-
formation of the measure. How this is realized will be ex-
plained after we understand the basic structure of the theory
in the first order formalism~see also Ref.@2#!. In the case
where we use the representation~1!, ~2!, an arbitrary change
of the measure corresponds to an arbitrary diffeomorphism
in the internal space of the scalar fieldswa .

There are two well known variational principles: the first-
and the second-order formalisms, which are equivalent in the
case of the general theory of relativity. There, in the first-
order formalism, in the actionGAB andGBC

A appear, while no
explicit derivatives ofGAB are introduced in the Lagrangian
density. The action principle allows one to solveGBC

A as a
function of GAB and its first derivatives. The resulting equa-
tions are the usual Einstein equations, which are also ob-
tained from the second-order formalism, which does not in-
volve GBC

A as a dynamical variable but rather involves only
GAB and their first and second derivatives.

In the case at hand, that is, in the context of the NGVE
theories, the first- and second-order formalisms are not
equivalent. The model that results from studying the theory
in the second-order formalism@1# gives rise to empty space
solutions with arbitrary constant curvature. In this case the
cosmological constant problem is not solved~although argu-
ments based on maximal symmetry can be made in favor of
the zero curvature choice for vacuum!. In contrast, the first-
order formalism leads to the solution of the cosmological
constant problem in a straightforward way.

In the first-order formalism, the theory has been studied
@2# using the vielbeinei

A and the spin connectionv ik
A ( i ,k

denote Lorentz indexes inD dimensions!, instead of utilizing
GBC

A , which will be the case here. Furthermore, the use of
GBC

A as dynamical variables instead ofv ik
A makes manifest a

new symmetry of the theory, which was discovered as a
symmetry of the curvature tensor in the affine connection
space by Einstein and Kaufman a long time ago@6# and
given by them the name of ‘‘l transformation.’’ Although
thel symmetry was discussed in Ref.@6# in the context of a
very specific unified model, it turns out that the range of
applicability of this symmetry is much wider. This question
will be discussed in Sec. II.

The importance of Einstein-Kaufmanl symmetry in our
model is that it allows for the elimination of the torsion in
the absence of fermions, as opposed to the first-order formal-
ism employingv ik

A , where it is hard to avoid explicitly the
appearance of the torsion even in the absence of fermions
@2#.

In our previous paper@2# it was shown that in the first-
order formalism, the theory based on the NGVE principle
possesses an additional local symmetry for the vacuum and
for some special models. When realizing the NGVE prin-
ciple with the measure of the form of Eqs.~1! and ~2!, we
have seen@2# that this local symmetry incorporates the group
of diffeomorphism transformations of the internal space of
scalar fieldswa . Here we will see that this local symmetry
can be formulated in a way where it incorporates space-
filling brane gauge invariance~7! ~see Secs. III–V of this
paper!. The importance of this symmetry, apart from its ob-
vious geometrical meaning, consists of the fact that for mod-
els where it holds it is possible to choose the gauge where
the measureF coincides with the measure of general rela-
tivity A2G. This is why we call this symmetry ‘‘local Ein-
stein symmetry.’’ In Sec. VI we construct realistic models
~without losing the solution of the cosmological constant
problem in four dimensions! where the local Einstein sym-
metry holds as an exact symmetry.

II. ACTION AND EINSTEIN-KAUFMAN l SYMMETRY

According to the NGVE principle, the total action in the
D-dimensional space-time should be written in the form

S5E FLdDx, ~8!

whereFdDx may be given either by

FdDx5] [A1
AA2•••AD]dxA1`dxA2`•••`dxAD ~9!

@as in Eq.~6!#, or by usingF as in Eqs.~1! and ~2!.
We assume thatL does not contain the measure fields,

that is, the fields by means of whichF is defined. If this
condition is satisfied then the theory has an additional sym-
metry. In fact, for example, for the case of the action withF
given by Eq.~2!, the action~8! is invariant under the infini-
tesimal shift of the fieldswa by an arbitrary infinitesimal
function of the total Lagrangian densityL, that is@1,2#,

wa85wa1ega~L !, e!1. ~10!

Our choice for the total Lagrangian density is

L52
1

k
R~G,G!1Lm , ~11!

whereLm is the matter Lagrangian density andR(G,G) is
the scalar curvature

R~G,G!5GABRAB~G!, ~12!

RAB~G!5RABC
C ~G!, ~13!

RBCD
A ~G![GBC,D

A 2GBD,C
A 1GED

A GBC
E 2GEC

A GBD
E . ~14!
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The curvature tensor is invariant under thel transforma-
tion

GBC8A 5GBC
A 1dB

Al,C , ~15!

which was discovered by Einstein and Kaufman@6#. Al-
though this symmetry was discussed in Ref.@6# in the very
specific unified theory, it turns out thatl symmetry has a
wider range of validity and in particular it is useful in our
case.

In fact, for a wide class of matter models, the matter La-
grangian densityLm is invariant under thel transformation
too. This is obvious ifLm does not include the connection
GBC

A at all ~such as, for example, for scalar fields, for a point
particle, and other cases that we will discuss in this paper!.
As an example of particular importance we consider here the
case of Dirac fermions in four-dimensional space-time with
the Hermitian Lagrangian density

L f52
i

2
@~¹mc̄ !gmc2 c̄gm¹mc12iV~ c̄c!#, ~16!

which is also invariant underl transformation. Here matri-
ces gm (m50,1,2,3) are defined according togm5en

mgn,
where gn are the Dirac matrices anden

m are vielbeins:
Gmn5en

menn. The covariant derivatives in Eq.~16! are given

by ¹mc5]mc2 1
4 Gmnlgnglc, ¹mc̄5]mc̄2 1

4 Gmnlc̄gngl

andGmnl5GlsGmn
s .

In regard to vector bosons, we note that the demand of
gauge invariance leads to a generally coordinate-invariant
gauge boson Lagrangian that does not include the connection
@8#.

III. CONNECTION AND LOCAL SYMMETRIES

First consider here the case whereLm does not depend on
GBC

A , that is, fermions and curvature are not present inLm .
Varying the action~8!, ~11! with respect toGBC

A , we get

2GBC
A 2GEB

D GEAGDC1dC
AGBD

D 1dB
AGDEGDE

F GFC

2GDC]BGDA1dB
AGDC]EGDE2dC

A F,B

F
1dB

A F,C

F
50.

~17!

We will look for the solution~up to al-symmetry trans-
formation! of the form

GBC
A 5$BC

A %1SBC
A , ~18!

where $BC
A % are the Christoffel’s connection coefficients.

ThenSBC
A satisfies the equation

2s,CGAB1s,AGBC2GBDSCA
D 2GADSBC

D 1GABSCD
D

1GBCGDAGEFSEF
D 50, ~19!

where

s[ lnx, x[
F

A2g
. ~20!

The general solution of Eq.~19! is

SBC
A 5dB

Al,C1
1

D22
~s,BdC

A2s,DGBCGAD!, ~21!

wherel is an arbitrary function, which appears due to the
existence of the Einstein-Kaufmanl symmetry. If we choose
the gaugel5s/(D22), then the antisymmetric part ofSBC

A

disappears and we get finally

SBC
A ~s!5

1

D22
~dB

As,C1dC
As,B2s,DGBCGAD!. ~22!

In the presence of fermions, for the caseD54, in addition
to thes-dependent contribution to the connection~18!, there
is the usual fermionic contributionSBC

( f )A , which does not
depend ons ~see, for example, Ref.@7#!. However, even in
the presence of fermions we can use thel transformation
sinceL f @see Eq.~16!# is invariant under thel transforma-
tion. Due to this, thes-dependent contribution to the anti-
symmetric part ofSBC

A can be set to zero also here. Therefore
we can write

SBC
A 5SBC

A ~s!1SBC
~ f !A , ~23!

whereSBC
A (s) is again defined by Eq.~22!.

In the vacuum, thes contribution~22! to the connection
can be eliminated by a conformal transformation of the met-
ric @9# accompanied by a corresponding transformation of
the fields defining the measureF. Indeed, in the vacuum the
action ~8!, ~11! is invariant under local transformations

GAB~x!5J21~x!GAB8 ~x!, ~24!

F~x!5J21~x!F8~x!. ~25!

For J5x2/(D22) we get x8[1, SBC8A (s)[0, and
GBC8A 5$BC

A %8, where $BC
A %8 are the Christoffel’s coefficients

corresponding to the new metricGAB8 . The appropriate gen-
eralization of the local symmetry~24!, ~25! in the presence
of fermions will be discussed in Sec. V. The extension of
applicability of this local symmetry for realistic matter mod-
els will be discussed in Sec. VI.

For the case where the measureF is given by Eq.~2!, the
transformation~25! can be the result of a diffeomorphism
wa→wa85wa8(wb) in the space of the scalar fieldswa ~see
Ref. @2#!. ThenJ5Det(]wa8/]wb).

If we take the choice~9!, then Eq.~25! for a givenJ may
be interpreted as the result of the gauge transformation~7!.

IV. EQUATIONS OF MOTION

First we study equations that originate from the variation
with respect to the measure fields. If the measure is defined
using the antisymmetric tensor fieldAA2•••AD

as the dynami-
cal variable, we obtain

eA1•••AD]ADF2
1

k
R~G,G!1LmG50, ~26!

which means that
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2
1

k
R~G,G!1Lm5M5const. ~27!

If we consider the case where the measure is defined as in
Eq. ~2!, we obtain instead of Eq.~26!, the equation

Ab
B]BF2

1

k
R~G,G!1LmG50, ~28!

where

Ab
B5«a1•••aD21b«A1•••AD21B~]A1

wa1
!•••~]AD21

waD21
! .

Since Ab
A]Awb85D21dbb8F it follows that Det(Ab

A)
5(D2D/D!)FD21, so that if FÞ0, Eq. ~27! is again ob-
tained.

Therefore the two approaches for defining the measure
that implements the NGVE principle, give, under regular
conditions, the same equation@that is, Eq.~27!#. The case
where the measure is defined as in Eq.~2! provides us with
an extra possibility, which is that Eq.~27! may not be satis-
fied if F50. That is, one can envision a scenario where the
integration constantM in Eq. ~27! could change while going
through a singular surface withF50. This possibility and
its cosmological consequences will be studied in a separate
work.

Let us now study equations that originate from variation
with respect toGAB. For simplicity we present here the cal-
culations for the case where there are no fermions. Perform-
ing the variation with respect toGAB we get

2
1

k
RAB~G!1

]Lm

]GAB
50. ~29!

Contracting Eq.~29! with GAB and making use Eq.~27!
we get the constraint

GAB
]~Lm2M !

]GAB
2~Lm2M !50. ~30!

This constraint has to be satisfied for all components~in
the functional space! of the functionLm . In particular, for
the constant part denoted^Lm&, which is relevant to a maxi-
mally symmetric vacuum state, we get

^Lm&2M50. ~31!

Inserting Eq.~31! into Eq. ~27! we see that in the maxi-
mally symmetric vacuum the scalar curvatureR(G,G) is
equal to zero. As we have seen in the previous section, thes
contribution to the connection can be eliminated in the
vacuum by the transformations~24!, ~25! ~notice that due to
the NGVE principle, the constant part of the matter Lagrang-
ian densitŷ Lm& does not alter the result that the action~8! in
the vacuum is invariant under the transformations~24!, ~25!.
This is because the measureF is a total derivative and there-
fore constant part of the Lagrangian density does not contrib-
ute into equations of motion!. Then in terms of the new
metricGAB8 , the scalar curvatureR(G,G) becomes the usual
scalar curvatureR(GAB8 ) of the Riemannian space-time with
the metricGAB8 . Therefore we conclude that the Riemannian

scalar curvature vanishes in the maximally symmetric
vacuum. In the presence of fermions the constraint~30! has
to be generalized. For more details about fermionic models
see the next section.

V. SOME MATTER MODELS THAT SATISFY
AUTOMATICALLY THE CONSTRAINT

AND LOCAL EINSTEIN SYMMETRY

As we have seen, the consistency of the equations of mo-
tions demands the constraint~30! to be satisfied. Here we are
going to present theories where the constraint~30! is associ-
ated with the existence of a local symmetry, which we have
already identified in the vacuum case, i.e., the symmetry
~24!, ~25!, which is associated with space-filling brane gauge
invariance or with diffeomorphism invariance of the internal
space of the fieldswa . The model in the absence of this
symmetry can also make sense@2#, but then the geometrical
interpretation of the theory is lost~in this case the constraint
can still hold, but then the symmetry degrees of freedom
becomes physical!. Therefore, in what follows we will dis-
cuss cases when the local symmetry~24!, ~25! holds ~possi-
bly appropriately generalized! even when matter fields are
introduced~we called this symmetry ‘‘local Einstein symme-
try’’ !.

The following examples satisfy the local Einstein symme-
try and constraint~30! ~the cases of gauge fields, massive
scalar fields, and massive fermions will be discussed in Sec.
VI !.

1. Scalar fields without potentials, including fields sub-
jected to nonlinear constraints, like thes model @1,2#. The
general coordinate invariant action for these cases has the

form Sm5*LmFdDx whereLm5 1
2 s,As,BgAB.

2. Matter consisting of fundamental bosonic strings@1,2#.
The constraint~30! can be verified by representing the string
action in theD-dimensional form whereGAB plays the role
of a background metric. For example, bosonic strings, ac-
cording to our formulation, where the measure of integration
in a D dimensional space-time is chosen to beFdDx, will be
governed by an action of the form

Sm5E LstringFdDx, ~32!

Lstring52TE dsdt
dD

„x2X~s,t!…

A2G
ADet~GABX,a

A X,b
B !,

~33!

where*LstringA2GdDx would be the action of a string em-
bedded in aD-dimensional space-time in the standard
theory;a,b label coordinates in the string world sheet, andT
is the string tension. Notice that under a transformation~24!,
Lstring→J(D22)/2Lstring, therefore concluding thatLstring is a
homogeneous function ofGAB of degree one, that is con-
straint ~30! is satisfied only ifD54.

3. It is possible@1,2# to formulate the point particle model
of matter in four dimensions (D54) in such a way that Eq.
~30! is satisfied. This is because for the free falling point
particle a variety of actions are possible~and are equivalent
in the context of general relativity!. The usual actions in the
four-dimensional space-time with the metricgmn are taken to
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be S52m*F(y)ds, wherey5gmn(dXm/ds)dXn/ds and s
is determined to be an affine parameter except ifF5Ay,
which is the case of reparametrization invariance. In our
model we must takeSm5*LpartFd4x with

Lpart52mE ds
d4

„x2X~s!…

A2g
F~y„X~s!…!

where*LpartA2gd4x would be the action of a point particle
in four dimensions in the usual theory. For the choiceF5y,
constraint~30! is satisfied. Unlike the case of general rela-
tivity, different choices ofF lead to unequivalent theories.

In general, if the matter Lagrangian does not depend on
the curvature and satisfies automatically the constraint, that
is, if the local Einstein symmetry holds, then in the gauge
x51 the theory coincides with general relativity.

4. In the presence of Dirac fermions with the Lagrangian
density ~16! ~in four dimensions,D54) the local Einstein
symmetry~24!, ~25! is appropriately generalized to

em
a ~x!5J21/2~x!em8

a~x!, ea
m~x!5J1/2~x!ea8

m~x!, ~34!

F~x!5J21~x!F8~x!, ~35!

c~x!5J1/4~x!c8~x!, c̄ ~x!5J1/4~x!c̄8~x!, ~36!

provided thatV( c̄c)}( c̄c)2 or (c̄g ic)( c̄g ic), which de-
scribe a Nambu-Jona-Lasinio type interaction@10#. Notice
that in this case the condition for the invariance of the action
with the matter Lagrangian~16! under the transformations
~34!–~36! is not just the simple homogeneity of degree 1 in
gmn or degree 2 inea

m , because of the presence of the fer-
mion transformation~36!. However, the invariance under
~34!–~36! together with the fermionic equations of motion
gives now the constraint in the form

eam
]Lm

]eam
22Lm50. ~37!

This constraint was discussed in Ref.@2# without refer-
ence to the generalized local Einstein symmetry~34!–~36!.
From the results of Sec. III concerning thel symmetry of
the fermionic term of the action@see Eq.~23!# and making
use the local Einstein symmetry~34!–~36! we can reduce the
connection to the usual one in the presence of fermions@7#.

VI. GAUGE FIELDS, SCALAR FIELDS WITH
NONTRIVIAL POTENTIALS AND MASSIVE FERMIONS

FROM A SIX-DIMENSIONAL THEORY

We have seen in a previous paper@2# that when trying to
introduce gauge fields into the theory in a way that is con-
sistent with the local Einstein symmetry~24!, ~25!, this runs
against the problem that the gauge field kinetic energy
GABGCDFACFBD has homogeneity of degree 2 inGAB in-
stead of degree 1, which is needed in order to satisfy the
constraint~30!. We have shown also in Ref.@2# how this
problem can be avoided in the framework of the Kaluza-
Klein approach. However, the solution of this problem sug-
gested in Ref.@2# seems to be not realistic enough.

We now will show how it is possible to construct more

realistic models then those discussed before by working in
the context of a higher-dimensional theory with two or more
compactified dimensions with curvature. In this case we can
introduce curvature dependence in prefactors of gauge field
kinetic energy, scalar field potentials or fermionic mass such
that the local Einstein symmetry be an exact symmetry.

In this case we consider an action of the form~the case of
fermions will be considered at the end of this section!

S5E Fd6xF2
1

k
R~G,G!1

l

R~G,G!
FABFAB

1
1

2
GAB]Aw]Bw2R~G,G!V~w!G , ~38!

whereFAB[]AAB2]BAA . The prefactorsl/R(G,G) in the
gauge field kinetic energy andR(G,G) in the scalar field
potentialV(w) are required so as to preserve the local Ein-
stein symmetry~24!, ~25!.

The simplest realization of this idea is achieved in a six-
dimensional model where two dimensions are compactified
into a sphere. We will see that the models we discuss allow
and seem to prefer this type of compactification. Further-
more, for solutions that are maximally symmetric in the re-
maining four dimensions, the noncompactified four-
dimensional space-time is only Minkowski space. This
means that starting from a higher-dimensional model we
achieve a four-dimensional solution of the cosmological con-
stant problem.

The simplest model that respects the local Einstein sym-
metry and gives rise toM43S2 compactified solution is a
model where compactification is triggered by a nonlinear
sigma model.

In this case

S5E Fd6xF2
1

k
R~G,G!1

1

2
GAB]AfW •]BfW G , ~39!

where the scalar fieldfW is an isovector constrained to satisfy
fW 25 f 25const. This model is invariant under the local Ein-
stein symmetry~24!, ~25!.

For the hedgehog configuration

fW 5 f ~cosu,sinusinw,sinucosw! ~40!

the M43S2 metric

ds25dt22dxW22b2~du21sin2udw2!, ~41!

whereb is an arbitrary constant, is a solution in the gauge
x51 ~that is in the gauge where the gravitational equations
coincide with the six-dimensional Einstein’s equations! pro-
vided f 254/k ~see Ref.@11#!. If one wants to avoid the
fine-tuning of this parameter of the Lagrangian one can use
instead a no scale nonlinear sigma model where the size of
the surface in isospin space is determined dynamically@12#!.
In this caseb is not determined by the equations of motion.
The M43S2 form of compactification can be seen quite di-
rectly from the form of the equationsRAB5k]L/]GAB, since
for the case~40!, ~41! we immediately obtain the condition
Rmn50 (m,n50,1,2,3) andRw

w1Ru
u5R522/b2Þ0. Fi-
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nally, we should point out that the possible Kaluza-Klein
gauge fields acquire a big mass in this case@13#, so they do
not appear in the low-energy physics.

It is interesting to see that it is possible to induceM43S2

compactification from a gauge-field monopole configuration
in the extra dimensionsS2. Let us consider the first two
terms of the action~38!, i.e., the action describing gravity1
gauge fields in a locally Einstein symmetric way. For the
magnetic monopole AB50 if B50,1,2,3; Au50,
Aw5m(cosu71) and if

ds25gmndxmdxn2b2~x!dV2,

dV25du21sin2udw2 ,

m,n50,1,2,3. ~42!

we find the equations

1

k
Rmn~G!52l

Rmn~G!

R2~G,G!
F2, ~43!

1

k
Rab~G!52l

Rab~G!

R2~G,G!
F21

2l

R~G,G!
FacFb

c ,

~a,b5u,w!, ~44!

whereF25FABFAB.
If Rmn(G)Þ0, then Eqs.~43! and ~44! imply F250,

which is not consistent with the monopole ansatz. Using that

Rmn~G!50, ~45!

we see thatR(G,G)5Ru
u1Rw

w and from Eq.~44! we get

R2~G,G!5klF2. ~46!

Notice that the action~38! respects thel symmetry. Be-
cause of the local Einstein symmetry of the action, we can
again fix the gauge wherex[1 ~that is,F[A2g). Then the
s contribution~22! to the connection is equal to zero.

When working with the action of Sec. III, we were able to
find the connectionGBC

A as a solution of Eq.~17! without
using the equations of motion that follow from the variation
with respect toGAB. Now, however, the scalar curvature
enters in the equation obtained from the variation with re-
spect toGBC

A . Therefore we have to solve these equations
together.

We are interested now in solutions that are maximally
symmetric with respect to the remaining four dimensions.
Therefore in Eq.~42! we choosegmn(x) as a metric of a
maximally symmetric four-dimensional space-time with 10
Killing vectors andb(x)5const. ThenF2 is a constant. In
this case, the variation with respect toGBC

A leads again to an
equation such as ~17! with a common factor
2(1/k1@l/R2(G,G)#F2). It follows from Eq.~46!, that this
factor is not equal to zero. Therefore, in the case under con-
sideration, the magnetic monopole configuration does not
contribute to the connection and hence the solution of Eq.
~17! is now just the Christoffel’s connection coefficients:
GBC

A 5$BC
A %. This means thatRAB(G) is just the usual Ricci

tensor RAB(GCD) . Therefore Eq. ~45! takes the form
Rmn(gls)50, whereRmn(gls) is the usual Ricci tensor of
the four-dimensional space-time with a maximally symmet-
ric metric gls . We conclude thatthe very curved extra di-
mensions are necessarily accompanied only with the flat
maximally symmetric four-dimensional space-time, that is
with Minkowski space.

Equation~46! with R5R(GAB) gives us the value of the
strength of the magnetic monopole:m254/kl. Notice that
the constant sizeb of the extra dimensions is not determined.
The existence of this flat direction is associated~from the
four-dimensional point of view! with a massless scalar field.
Whether this is a phenomenological problem depends on the
coupling and possible cosmological evolution of such scalar
field. This will be studied in the future.

In this model there is no mass generation for the Kaluza-
Klein gauge fields, which can therefore play a role in the low
energy physics. It is also interesting to notice that what mat-
ter does in the extra dimensions produce directly curvature
only in the extra dimensional space, at least in the ground
state. That is, there is no mixing between Planck scale phys-
ics and low-energy physics.

This can be compared with the well-known Freund-Rubin
compactification, for example, when applied to 11-
dimensional supergravity@14#, where an expectation value of
a four index field strengthFABCD in four dimensions is re-
sponsible for curving four dimensions into an anti-de Sitter
space and also for the compactification of seven dimensions
into a sphere, i.e., a complete mixup of the physics of com-
pactification and the physics that dominates the large scale
structure of the observed four dimensions.

With the addition of a potential of the formR(G,G)V(w)
~consistent with the local Einstein symmetry! to Eq.~38!, the
possibility of a scalar field with nontrivial dynamics and in
particular the possibility of mass for the scalar field and of
spontaneous symmetry breaking appears in four-dimensional
effective picture in a straightforward fashion. Notice that
phase transitions associated with a change of^V(f)& corre-
spond to a change in the effective Newton constant and not
related to a change of vacuum energies, which cannot enter
into the theory anyway.

Let us consider now the possibility of fermionic mass
generation in four-dimensional space-time in a way consis-
tent with the local Einstein symmetry. If we look for a term
that generates a fermionic mass term as a result of compac-
tification in the form f Rnc̄c with dimensionless coupling
constantf , then n has to be equal to 1/2. In this case the
only space-time dimensionD that allows the local Einstein
symmetry ~34!–~36! is D56. Therefore for the fermionic
mass generation in four-dimensional space-time~without in-
troducting a new dimensionful coupling constant! we have to
start from the six-dimensional model with the action

Sf52
i

2E Fd6x@~¹Ac̄ !gAc2 c̄gA¹Ac

12i f AR~G,G!c̄c#. ~47!

For g matrices and other quantities in six dimensions see
Ref. @15#. After the compactification of two extra dimensions
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into a sphere, the curvature of the sphere induces a mass for
fermions in four-dimensional space-time.

VII. DISCUSSION

We have shown that the NGVE principle in the context of
the first-order formalism solves the cosmological constant
problem. In this paper we have formulated several models
~in the above framework! that respect the local Einstein sym-
metry, which has nice geometrical interpretations. Further-
more, in models where the local Einstein symmetry is the
exact symmetry, we always have both constraint~30! and
possibility to obtain the measureA2G by setting the gauge
F5A2G.

Using higher-dimensional (D>6) models it is possible to
maintain this local Einstein symmetry while constructing re-
alistic models that allow for gauge fields, mass generation,
spontaneous symmetry breaking, etc. This is possible to re-
alize in the presence of compactification of extra dimensions
into a sphere and simultaneously achieving zero four-
dimensional cosmological constant. This result is related to
the fact that in such a model the physics that is responsible

for compactification does not affect the geometry of the large
scale structure of the uncompactified four dimensional space-
time.

Furthermore, in the case where we use the gauge model
~38!, compactification appears not only as a choice, since the
alternative six-dimensional maximally symmetric vacuum
with R50 would be a sick vacuum. This is not only because
1/R is undefined but also because the small perturbations
bring us to the region where the gauge field kinetic term has
a wrong sign, which is of course an unstable regime.

Finally, if it is the case that the local Einstein symmetry
can be maintained even after quantum corrections are con-
sidered, we get an interesting constraint on the form of the
possible quantum corrections that can be only terms homo-
geneous of degree 1 inGAB, such as for example,
RABRAB/R.
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