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We show that the principle of nongravitating vacuum energy, when formulated in the first order formalism,
solves the cosmological constant problem. The most appealing formulation of the theory displays a local
symmetry associated with the arbitrariness of the measure of integration. This can be motivated by thinking of
this theory as a direct coupling of physical degrees of freedom with a “space-filling brane” and in this case
such local symmetry is related to space-filling brane gauge invariance. The model is formulated in the first
order formalism using the metriG,g and the connectioﬁ’gc as independent dynamical variables. An addi-
tional symmetry(Einstein-Kaufman symmetjyallows one to eliminate the torsion which appears due to the
introduction of the new measure of integration. The most successful model that implements these ideas is

realized in a six- or higher-dimensional space-time.

The compactification of extra dimensions into a sphere

gives the possibility of generating scalar masses and potentials, gauge fields, and fermionic masses. It turns out

that remaining four-dimensional
[S0556-282(197)04718-9

space-time must have an effective zero cosmological

constant.

PACS numbes): 04.62+v, 04.20.Cv, 04.50-h, 11.10.Kk

I. INTRODUCTION

We have developed a theof¥,2] where the measure of
integration in the action principle is not necessarly G
[G=Det(Gpp)] but it is determined dynamically through ad-

ditional degrees of freedom. This theory is based on the de-

mand that such measure respects the principle of nongra
tating vacuum energ§NGVE principle which states that the
Lagrangian density. can be changed tb+ const without

A(<P) _
affecting the dynamics. This requirement is imposed in ordery AA

Notice that this is a particular realization of the coupling
of p-brane(with p+1=D) with the (p+1)-form potential
AA1A2 &[AlAAzA . 'AD] (3)

nd a further coupling with the Lagrangian density
usually not considered In fact, if A, equals

_(1/D|)<Pal(aA2‘Pa2) (aAD‘PaD)‘9{:11&12 -ap then
A XX/ AdxPo coincides with Egs.

.AD

to offer a new approach for the solution of the cosmologlcal(l) and(2) When this coupling to the Lagrangian density is

constant problen3].
Clearly the invarianceL—L+const for the action

is achieved if the measure of integration in the action isyane” if the rank of the formA, a,

a total derivative, so that to an |nf|n|te5|mal hyper-
cube in D-dimensional space-timexs<x"<xgy+dx*,
A=0,1,... D—1 we associate a volume elemeh\ which
is (i) a total derivative ii) proportional tod®x, and (iii) a
general coordinate invariant. The usual choige; GdPx,
does not satisfy conditiofi).

All of the conditions(i)—(iii ) are satisfiedl1,2] if the mea-
sure appropriate to the integration in the spac®ao$calar
fields ¢, (a=1,2,...D), that s,

<I)

where

o= ghthe - 'AD(‘?Al(Pal)(aAZQDaZ) T (aAD@aD)-

2

&
a;a,---ap
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not considered, the resulting theory is a topolog|cal phe
Following Ref.[5] we will call the brane a “space-filling
~Ap that couples to the

p-brane equals the space-time dimensionalithat is,
p+1=D). In the normal formulation ofp-branes one re-
quires invariance under gauge transformations of the form

4

AA1A2‘ : 'AD_>AA1A2' AT (?[AlAAz‘ -Apl

and simply write the couplinggfAs a,...a,dX"1/\dx"2
/\---/Adx?, which is invariant under Eq(4) provided
A[AZ.,_AD]—)O asx*— and one does not allow coupling to

a third entity(such as the Lagrangian density.

The problem is[5] that in the case of a “space-filling
brane” the equation of motion obtained from varying
Ana,. A, is simply g=0, that is, there is no action prin-
ciple to talk about.

In the alternative we propose, we do not have to neces-
sarily insist on the particular realizatiqd), (2), although it
has the most attractive geometrical interpretafi®h

We will choose to WriteAAlAz. Ay @S a total derivative

©)

AAlAz‘ ~ApT &[AlAAz' —Apl
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and then we usp,...a, as the independent dynamical vari-  The importance of Einstein-Kaufman symmetry in our

ables in our action principle. Furthermore we can implementnodel is that it allows for the elimination of the torsion in

the NGVE principle if we write the action the absence of fermions, as opposed to the first-order formal-
ism employingwﬁ(, where it is hard to avoid explicitly the
appearance of the torsion even in the absence of fermions

s=f Lata,Aa,.. o dXAAdXR2A - AdxPe,  (6)  [2].

1 2 D . . . .

In our previous papef2] it was shown that in the first-

) ) ) ) order formalism, the theory based on the NGVE principle
which describes the coupling of the brane to gravity angypssesses an additional local symmetry for the vacuum and
matter, which appear through the Lagrangian densitfor some special models. When realizing the NGVE prin-
L=Lg+Lm. The Lagrangian structure has to be defined bycjple with the measure of the form of Eg4) and (2), we
the demand that the actid6) be invariant under the gauge have seefi2] that this local symmetry incorporates the group

transformation of diffeomorphism transformations of the internal space of
scalar fieldsp,. Here we will see that this local symmetry
AAz-“AD_’AAz'--AD+AA2--~AD (7) can be formulated in a way where it incorporates space-

filing brane gauge invariancé€’) (see Secs. llI-V of this
for any A ...a_ (without a condition forA, ..o as pgpe}. The |mportance pf this symmetry, apart from its ob-
A h? h D,” b ferred to aft q 277D vious geometrlcal meaning, consists of the fact that for mod-
x"—c), which will be referred to arterwards as a "Space- | where it holds it is possible to choose the gauge where
filling brane gauge transformation.” In this cagehas 10 he measurab coincides with the measure of general rela-

transform correspondingly in order to compensate the tra”sﬁvity J=G. This is why we call this symmetryltcal Ein-

fc:rr_nat:jonf of the mzasure.dH%w E)hls. is realized v¥|llhbehex- stein symmetry In Sec. VI we construct realistic models
plained after we understand the basic structure of the t €O0without losing the solution of the cosmological constant
in the first order formalisn{see also Ref[2]). In the case

; . problem in four dimensionswhere the local Einstein sym-
where we use the representatidn, (2), an arbltrgry change_ metry holds as an exact symmetry.
of the measure corresponds to an arbitrary diffeomorphism
in the internal space of the scalar fields.

There are two well known variational principles: the first-
and the second-order formalisms, which are equivalent in the According to the NGVE principle, the total action in the
case of the general theory of relativity. There, in the first-D-dimensional space-time should be written in the form
order formalism, in the actioB 55 andI'5 appear, while no
explicit derivatives ofG,g are introduced in the Lagrangian
density. The action principle allows one to sol]?éC as a
function of G55 and its first derivatives. The resulting equa- b . .
tions are the usual Einstein equations, which are also op¥here®d”x may be given either by
tained f;om the secont_:i—order_formallsm, Whlch does not in- fI)de=&[A A n ]dxAl/\dxAZ/\- S Adx* (9)
volve I'g - as a dynamical variable but rather involves only 1 F27 %

Gag and their first and second derivatives. ; ; ;
In the case at hand, that is, in the context of the NGVE[aSV\'/r;E igéﬁ)% eorthba)(L uj(l)f;gfngts égrﬁgﬁi(?h:nrﬁéi)éure fields

theories, the first- and second-order formalisms are no . . N ) -
equivalent. The model that results from studying the theorytthat s, the fields by means of which is defined. If this

in the second-order formalisfd] gives rise to empty space condition is satisfied then the theory has an additional sym-

solutions with arbitrary constant curvature. In this case themetry. In fact, for example, for the case of the action vith

cosmological constant problem is not solv@dthough argu- given by Eq.(2), the action(8) is invariant under the infini-
ments based on maximal symmetry can be made in favor
the zero curvature choice for vacuunmn contrast, the first-
order formalism Ieads to _the solution of the cosmological OL=@at €a(l), e<l. (10)
constant problem in a straightforward way.

In the first-order formalism, the theory has been studied Qur choice for the total Lagrangian density is
[2] using the vielbeire* and the spin connection (i,k
denote Lorentz indexes D dimensiong instead of utilizing
', which will be the case here. Furthermore, the use of
I'gc as dynamical variables instead @f, makes manifest a
new symmetry of the theory, which was discovered as avhereL is the matter Lagrangian density aR{I’,G) is
symmetry of the curvature tensor in the affine connectiorihe scalar curvature
space by Einstein and Kaufman a long time 466 and
given by them the name ofX' transformation” Although
the N symmetry was discussed in Rg6] in the context of a e
very specific unified model, it turns out that the range of Rag(I') =Rapc(l), (13
applicability of this symmetry is much wider. This question
WFi)I?be disgussed in éec. II.ry | Reco(l)=Tgco~Tap,ct el sc—TeclBp- (19

II. ACTION AND EINSTEIN-KAUFMAN N SYMMETRY

s=f ®LdPx, (8)

thimaI shift of the fieldsp, by an arbitrary infinitesimal
%Unction of the total Lagrangian density, that is[1,2],

L=—%R(F,G)+Lm, (11)

R(T',G)=G"BRg(I), (12
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The curvature tensor is invariant under theransforma- The general solution of Eq19) is
tion L
which was discovered by Einstein and Kaufmg8l. Al-  where is an arbitrary function, which appears due to the

though this symmetry was discussed in Héfl in the very  existence of the Einstein-Kaufmansymmetry. If we choose

specific unified theory, it turns out that symmetry has a the gauge\ = o/(D — 2), then the antisymmetric part B
wider range of validity and in particular it is useful in our gisappears and we get finally

case.

In fact, for a wide class of matter models, the matter La- A 1 AD
grangian density._, is invariant under thé. transformation 2pclo)= mw@aaﬁ 80,5~ 0,pGpcGP). (22
too. This is obvious ifL,, does not include the connection
I'fc at all (such as, for example, for scalar fields, for a point  |n the presence of fermions, for the cade 4, in addition
particle, and other cases that we will discuss in this paper to the o-dependent contribution to the connectid®), there
As an example of particular importance we consider here thgs the usual fermionic contributio (2* which does not

. . . . . . . BC
the Hermitian Lagrangian density the presence of fermions we can use théransformation

i sincel¢ [see Eq.(16)] is invariant under the. transforma-
Li=— E[(V“lp) YEg— gy g+ 2V (g)],  (16) tion. Dug to this, ti]ea-dependent contribution to the anti-
symmetric part oB g can be set to zero also here. Therefore

. . . . . we can write
which is also invariant undex transformation. Here matri-

ces y* (0=0,1,2,3) are defingd according tp“.zeﬁ;./”, EACZESC(U)_'_EE%A' 23

where y" are the Dirac matrices ane/ are vielbeins:

G*"=ehke"”. The covariant derivatives in_EqLG) are given where35.(o) is again defined by Eq22).

by V,¢=0,4- %FWWVYW, V=3~ %FWMMVV In the vacuum, ther contribution(22) to the connection

andl,,,,=G,,I',. can be eliminated by a conformal transformation of the met-
In regard to vector bosons, we note that the demand ofi¢ [9] accompanied by a corresponding transformation of

gauge invariance leads to a generally coordinate-invariarif’ fields defining the measude. Indeed, in the vacuum the

gauge boson Lagrangian that does not include the connectig¥tion(8), (11) is invariant under local transformations

[8]. - '
Gap(X) =371 (X)Gpg(X), (24
Ill. CONNECTION AND LOCAL SYMMETRIES () =3B’ (x). (25)
First consider here the case whérg does not depend on 2(0—2) , A
I'A., that is, fermions and curvature are not preserit n JFor 3=x we get x'=1, Zgc(0)=0, and
Varying the action(8), (11) with respect td g, we get I'gc={gc}’, where{gc}" are the Christoffel's coefficients
corresponding to the new meti@&,g . The appropriate gen-
—Thc—TEsGF G+ 8Tl pp+ 05GPS Grc eralization of the local symmetr{24), (25) in the presence
® ® of fermions will be discussed in Sec. V. The extension of
_ DA DE_ A ~'B ZC_p apphqablhty 'of this qual symmetry for realistic matter mod-
GocdsG™"+ 65GocdeG cp Ty 0 els will be discussed in Sec. VI.
17) For the case where the measdres given by Eq.(2), the
transformation(25) can be the result of a diffeomorphism
We will look for the solution(up to ak-symmetry trans- $a— ®a=®a(¢p) in the space of the scalar fields, (see
formation of the form Ref.[2]). ThenJ=Det(d¢,/depy).
If we take the choic€9), then Eq.(25) for a givend may
FQCZ{QC}+EQC, (19 be interpreted as the result of the gauge transformdfnn
where {5} are the Christoffel's connection coefficients. IV. EQUATIONS OF MOTION

Then3 5 satisfies the equation ) ) o o
First we study equations that originate from the variation

—0,cGpg+ 0,AGsc— Gpp22A— GapSact Gasdep Wit_h respect to the measure fieIds. If the measure is de_fined
using the antisymmetric tensor flekk. Ap @S the dynami-

EFD _
+GpcGpaG-"2ge=0, (19) cal variable, we obtain

where

1
~—RT'G)+Lpy

et 'ADaAD =0, (26)

e

o=Iny, x (20

which means that
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scalar curvature vanishes in the maximally symmetric
- ;R(F,GH‘ Lyn=M=const. (27)  vacuum. In the presence of fermions the constré86i has
to be generalized. For more details about fermionic models
If we consider the case where the measure is defined as ff€ the next section.

Eq. (2), we obtain instead of Eq26), the equation
V. SOME MATTER MODELS THAT SATISFY

1 AUTOMATICALLY THE CONSTRAINT
B _—— —
Ap g K R(I,G)+Lm| =0, (28) AND LOCAL EINSTEIN SYMMETRY
where As we have seen, the consistency of the equations of mo-
tions demands the constraif®0) to be satisfied. Here we are
AE=eal. , -aD_leAl' ' 'ADle(ﬂAlqoaly < (day ,Pag ;) going to present theories where the constr&® is associ-

ated with the existence of a local symmetry, which we have
Since Abdapp =D 16, ® it follows that Det@}) already identified in the vacuum case, i.e., the symmetry
=(D P/D!)®P1, so that ifd+0, Eq.(27) is again ob- (24), (25), which is associated with space-filling brane gauge
tained. invariance or with diffeomorphism invariance of the internal
Therefore the two approaches for defining the measurgpace of the fieldsp,. The model in the absence of this
that implements the NGVE principle, give, under regularSymmetry can also make ser{g, but then the geometrical
conditions, the same equatigthat is, Eq.(27)]. The case interpretation of the theory is losin this case the constraint
where the measure is defined as in E2).provides us with  can still hold, but then the symmetry degrees of freedom
an extra possibility, which is that ER7) may not be satis- becomes physical Therefore, in what follows we will dis-
fied if ®=0. That is, one can envision a scenario where thecuss cases when the local symme(@y), (25) holds (possi-
integration constar¥ in Eq. (27) could change while going bly appropriately generaliz¢ceven when matter fields are
through a singular surface witlh=0. This possibility and introduced(we called this symmetry “local Einstein symme-
its cosmological consequences will be studied in a separaféy” ).
work. The following examples satisfy the local Einstein symme-
Let us now study equations that originate from variationtry and constrain(30) (the cases of gauge fields, massive
with respect taGAB. For simplicity we present here the cal- scalar fields, and massive fermions will be discussed in Sec.
culations for the case where there are no fermions. PerformV!).
ing the variation with respect 168 we get 1. Scalar fields without potentials, including fields sub-
jected to nonlinear constraints, like tkemodel[1,2]. The
L general coordinate invariant action for these cases has the
~ < Ras(D)+ JGPB =0. 29 form s,= L, ®d°x whereL = Lo, a0, 5g"E.
2. Matter consisting of fundamental bosonic strifig<].
Contracting Eq(29) with GAB and making use Eq27)  The constraint30) can be verified by representing the string

we get the constraint action in theD-dimensional form wher& 55 plays the role
of a background metric. For example, bosonic strings, ac-
A(Ly—M) cording to our formulation, where the measure of integration
AB I —— —(Lp—M)=0 30 imensi ime i Dy wi
JGAB (Lm—M)=0. in aD dimensional space-time is chosen todd"x, will be

governed by an action of the form

This constraint has to be satisfied for all componéirts
the functional spageof the functionL,,. In particular, for szf Lstrmg@de, (32
the constant part denotéd ,,), which is relevant to a maxi-
mally symmetric vacuum state, we get

°(x—X(a,7))
(Lmy—M=0. (31) L string= —Tf dod TT Det(GABXélX?b),
(33

Inserting Eq.(31) into Eq. (27) we see that in the maxi-
mally symmetric vacuum the scalar curvatuR¢l',G) is  where L gyingy/— Gd°x would be the action of a string em-
equal to zero. As we have seen in the previous sectionrthe bedded in aD-dimensional space-time in the standard
contribution to the connection can be eliminated in thetheory;a,b label coordinates in the string world sheet, ahd
vacuum by the transformatiori24), (25 (notice that due to s the string tension. Notice that under a transformati?),
the NGVE principle, the constant part of the matter Lagrangtstrmg_)J(D72)/2|_Smng, therefore concluding that ging is @
ian density(Lm) does not alter the result that the act(ﬁmin homogeneous function c@AB of degree one, that is con-
the vacuum is invariant under the transformatié®$, (25).  straint(30) is satisfied only ifD=4.

This is because the measubeis a total derivative and there- 3. Itis possiblg1,2] to formulate the point particle model
fore constant part of the Lagrangian density does not contribof matter in four dimensionsd{=4) in such a way that Eq.
ute into equations of motion Then in terms of the new (30) is satisfied. This is because for the free falling point
metric G g, the scalar curvaturB(I",G) becomes the usual particle a variety of actions are possilind are equivalent
scalar curvatur&®(G,g) of the Riemannian space-time with in the context of general relativityThe usual actions in the
the metricG . Therefore we conclude that the Riemannianfour-dimensional space-time with the metdg, are taken to
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be S=—m/[F(y)ds, wherey=g,,(dX*/ds)dX"/ds ands realistic models then those discussed before by working in
is determined to be an affine parameter excepf# .}y, the context of a higher-dimensional theory with two or more
which is the case of reparametrization invariance. In oucompactified dimensions with curvature. In this case we can

model we must tak&,,= [ Lpartq)dAX with introduce curvature dependence in prefactors of gauge field
kinetic energy, scalar field potentials or fermionic mass such

5 (x—X(s)) that the local Einstein symmetry be an exact symmetry.

Lpar=— mJ dSTF(y(X(S») In this case we consider an action of the fotime case of

fermions will be considered at the end of this section
wherepram/—gd“x would be the action of a point particle

in four dimensions in the usual theory. For the chdicey, S:j ddbx| — ER(F,GHLFABFAB
constraint(30) is satisfied. Unlike the case of general rela- K R(I',G)
tivity, different choices ofF lead to unequivalent theories. 1

In general, if the matter Lagrangian does not depend on +=G*Borpdge— R(I',G)V(o)|, (39

the curvature and satisfies automatically the constraint, that 2

is, if the local Einstein symmetry holds, then in the gauge _ _ .
x=1 the theory coincides with general relativity. whereF ag=0aAg — dgAa - The prefactorai/R(I',G) in the

4. In the presence of Dirac fermions with the Lagrangiangauge. field kinetic energy angl(T',G) in the scalar ﬁEId.
density (16) (in four dimensionsD =4) the local Einstein potential V() are required so as to preserve the local Ein-

. : ; stein symmetry(24), (25).
symmetry(24), (25) is appropriately generalized to The simplest realization of this idea is achieved in a six-

ei(x)zJ’l’z(x)eLa(x), eX(x)=JY4x)el*(x), (34) dimensional model where two dimensions are compactified

into a sphere. We will see that the models we discuss allow

D (x)=I"Hx)P’'(x), (35 and seem to prefer this type of compactification. Further-

more, for solutions that are maximally symmetric in the re-

W) =IYx) ' (%), WX):JMA(X)W(X), (36) maining four dime_nsion_s, the n_oncomp_actified four-

dimensional space-time is only Minkowski space. This

provided that\/(%/z)oc(?z//)z or (%i w)(%i ), which de- means that starting f_rom a hig_her-dimensional mpdel we

scribe a Nambu-Jona-Lasinio type interactidi®]. Notice achieve a four-dimensional solution of the cosmological con-

that in this case the condition for the invariance of the actiorstant problem. o

with the matter Lagrangiafil6) under the transformations  |Nne Simplest model thj‘t rezspects the local Einstein sym-
(34)—(36) is not just the simple homogeneity of degree 1 inMetry and gives rise t1"x S* compactified solution is a

g*” or degree 2 ire”, because of the presence of the fer-model where compactification is triggered by a nonlinear

mion transformation(36). However, the invariance under sigmahr_nodel.
(34)—(36) together with the fermionic equations of motion I this case
gives now the constraint in the form 1 1
] szf ddsx —;R(F,G)+§GAB&AJ>~BB$ . (39
Y m_ =
e pyry 2L,=0. (37

where the scalar fiel&z is an isovector constrained to satisfy

This constraint was discussed in REZ] without refer- $2=f2=const. This model is invariant under the local Ein-
ence to the generalized local Einstein symme8$)—(36).  Stein symmetry(24), (25).

From the results of Sec. Ill concerning thesymmetry of For the hedgehog configuration
the fermionic term of the actiofsee Eq.(23)] and making . o )
use the local Einstein symmet¢g4)—(36) we can reduce the ¢=f(cos,sindsing, sindcosp) (40)

connection to the usual one in the presence of fermi@hs 4o 2 .
the M*X S metric

VI. GAUGE FIELDS, SCALAR FIELDS WITH
NONTRIVIAL POTENTIALS AND MASSIVE FERMIONS
FROM A SIX-DIMENSIONAL THEORY

ds?=dt?— dx?—b?(d #2+ sirfod ¢?), (41)

whereb is an arbitrary constant, is a solution in the gauge
We have seen in a previous pap2t that when trying to  x=1 (that is in the gauge where the gravitational equations
introduce gauge fields into the theory in a way that is con<coincide with the six-dimensional Einstein’s equatippso-
sistent with the local Einstein symmet(@4), (25), this runs  vided f2=4/k (see Ref.[11]). If one wants to avoid the
against the problem that the gauge field kinetic energyine-tuning of this parameter of the Lagrangian one can use
G"BGCPF ,Fgp has homogeneity of degree 2 @B in-  instead a no scale nonlinear sigma model where the size of
stead of degree 1, which is needed in order to satisfy th#e surface in isospin space is determined dynami¢amy).
constraint(30). We have shown also in Ref2] how this  In this caseb is not determined by the equations of motion.
problem can be avoided in the framework of the Kaluza-The M*x S? form of compactification can be seen quite di-
Klein approach. However, the solution of this problem sug-rectly from the form of the equatior®,g= xJL/IG"B, since
gested in Ref[2] seems to be not realistic enough. for the casg40), (41) we immediately obtain the condition
We now will show how it is possible to construct more R,,=0 (u,»=0,1,2,3) andR?+ R§=R= —2b?+0. Fi-
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nally, we should point out that the possible Kaluza-Kleintensor Rag(Gcp) . Therefore Eq.(45 takes the form
gauge fields acquire a big mass in this cg#, so they do  R,,(g,,)=0, whereR,,,(g,,) is the usual Ricci tensor of
not appear in the low-energy physics. the four-dimensional space-time with a maximally symmet-
It is interesting to see that it is possible to indMéxS?>  ric metricg,,. We conclude thathe very curved extra di-
compactification from a gauge-field monopole configurationmensions are necessarily accompanied only with the flat
in the extra dimension§?. Let us consider the first two maximally symmetric four-dimensional space-time, that is
terms of the actiori38), i.e., the action describing gravity ~ with Minkowski space.
gauge fields in a locally Einstein symmetric way. For the Equation(46) with R=R(G,g) gives us the value of the
magnetic monopole Ag=0 if B=0,1,2,3; A,=0, strength of the magnetic monopole’=4/«k\. Notice that

A,=m(cosf+1) and if the constant sizb of the extra dimensions is not determined.
) ) The existence of this flat direction is associatédm the
ds?=g,,dx“dx"—b?(x)dQ?, four-dimensional point of vieywith a massless scalar field.
d02=d 62+ sir2ode?, Whether this is a phenomenological problem depends on the

coupling and possible cosmological evolution of such scalar
»=0,1,2,3. (42) field. This will be studied in the future.
B R In this model there is no mass generation for the Kaluza-
we find the equations Klein gauge fields, which can therefore play a role in the low
energy physics. It is also interesting to notice that what mat-
1 R, (T) ter dpes in the extra dim_ensions produce direptly curvature
-R, ()= —)\Z‘W—FZ, (43)  only in the extra dimensional space, at least in the ground
K RAI',G) state. That is, there is no mixing between Planck scale phys-
ics and low-energy physics.
Ran(I) _, 2\ c This can be compared with the well-known Freund-Rubin
~Rap(l')=— RT.c) RI.G) FacFy, compactification, for example, when applied to 11-
k dimensional supergravifyi 4], where an expectation value of
(ab=0,0), (44) a four index field strengtlr ogcp in four dimensions is re-
' e sponsible for curving four dimensions into an anti-de Sitter
whereF2=F ,FAB. space and alsq for the compactif.ication of seven.dimensions
If R,,(T)#0, then Egs.(43) and (44) imply F2=0, into a sphere, i.e., a complete mixup of the physics of com-

which is not consistent with the monopole ansatz. Using thaPactification and the physics that dominates the large scale
structure of the observed four dimensions.

R,.(I')=0, (45) With the addition of a potential of the forlR(I",G)V(¢)
(consistent with the local Einstein symmettg Eq.(38), the
we see thaR(I',G)=Rj+ R? and from Eq.(44) we get possibility of a scalar field with nontrivial dynamics and in
particular the possibility of mass for the scalar field and of
R%(TI",G)=k\F?Z. (46) spontaneous symmetry breaking appears in four-dimensional

effective picture in a straightforward fashion. Notice that

Notice that the actiori38) respects the. symmetry. Be-  phase transitions associated with a changéMgip)) corre-
cause of the local Einstein symmetry of the action, we carspond to a change in the effective Newton constant and not
again fix the gauge whepe=1 (that is,®=\/—g). Thenthe related to a change of vacuum energies, which cannot enter
o contribution(22) to the connection is equal to zero. into the theory anyway.

When working with the action of Sec. lll, we were able to  Let us consider now the possibility of fermionic mass
find the connectiod'5 as a solution of Eq(17) without  generation in four-dimensional space-time in a way consis-
using the equations of motion that follow from the variation tent with the local Einstein symmetry. If we look for a term
with respect toG*B. Now, however, the scalar curvature that generates a fermionic mass term as a result of compac-

enters in the equation obtained from the variation with re+ification in the formfR ¢ with dimensionless coupling
spect toI'sc. Therefore we have to solve these equationsconstantf , thenn has to be equal to 1/2. In this case the
together. only space-time dimensioB that allows the local Einstein
We are interested now in solutions that are maximallysymmetry (34)—(36) is D=6. Therefore for the fermionic
symmetric with respect to the remaining four dimensions.mass generation in four-dimensional space-t{mihout in-
Therefore in Eq.(42) we chooseg,,(x) as a metric of a troducting a new dimensionful coupling constane have to
maximally symmetric four-dimensional space-time with 10start from the six-dimensional model with the action
Killing vectors andb(x)=const. ThenF? is a constant. In

this case, the variation with respectltg. leads again to an

equation such as (17 with a common factor Si=— I_f OAX[(Vath) Y — py~V atp
— (1 +[NR3(I",G)]F?). It follows from Eq.(46), that this 2
factor is not equal to zero. Therefore, in the case under con- 121 JR(T.G) ). @7

sideration, the magnetic monopole configuration does not
contribute to the connection and hence the solution of Eq.
(17 is now just the Christoffel’'s connection coefficients: For y matrices and other quantities in six dimensions see
I'gc=1{5c}. This means thaR,g(T') is just the usual Ricci Ref.[15]. After the compactification of two extra dimensions
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into a sphere, the curvature of the sphere induces a mass ffor compactification does not affect the geometry of the large

fermions in four-dimensional space-time. scale structure of the uncompactified four dimensional space-
time.
VIl. DISCUSSION Furthermore, in the case where we use the gauge model

o (38), compactification appears not only as a choice, since the
We have shown that the NGVE principle in the context of 5terpative  six-dimensional maximally symmetric vacuum
the first-order formalism solves the cosmological constan}ith R=0 would be a sick vacuum. This is not only because
problem. In this paper we have formulated several model§ g is undefined but also because the small perturbations
(in the above framewojkhat respect the local Einstein sym- ping 5 to the region where the gauge field kinetic term has
metry, .WhICh has nice geometrical _mterpretatlons. quthera wrong sign, which is of course an unstable regime.
more, in models where the local Einstein symmetry is the gingly if it is the case that the local Einstein symmetry
exact symmetry, we always have both constrdB) and 5 he maintained even after quantum corrections are con-
possibility to obtain the measuré—G by setting the gauge sidered, we get an interesting constraint on the form of the
d=\-G. possible quantum corrections that can be only terms homo-
USing higher'dimenSionaHBG) models it is pOSSibIe to geneous of degree 1 irGAB, such as for examp|e,
maintain this local Einstein symmetry while constructing re-R, .RAB/R.
alistic models that allow for gauge fields, mass generation,
spontaneous symmetry breaking, etc. This is possible to re-
alize in the presence of compactification of extra dimensions ACKNOWLEDGMENTS
into a sphere and simultaneously achieving zero four-
dimensional cosmological constant. This result is related to We would like to thank N. Kaloper for interesting conver-
the fact that in such a model the physics that is responsiblsations.
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