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Baby universes and energy(non)conservation in (1+1)-dimensional dilaton gravity
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We consider branching of baby universes off a parent on@inl)-dimensional dilaton gravity with 24
types of conformal matter fields. This theory is equivalent to string theory in a certain background in
(D =26)-dimensional target space, so this process may be also viewed as the emission of a light string state by
a heavy string. We find that bare energy is not conservedtih dlimensions due to the emission of baby
universes, and that the probability of this process is finite even for local distribution of matter in the parent
universe. We present a scenario suggesting that the nonconservation of bare energy may be consistent with the
locality of the baby universe emission process #lldimension@ndthe existence of the long-ranged dilaton
field whose source is bare energy. This scenario involves the generation of longitudinal gravitational waves in
the parent univers¢ S0556-282(97)01218-4

PACS numbd(s): 04.60.Kz, 04.20.Gz, 11.25.Pm

I. INTRODUCTION model than that of closed strings in critical dimensions, is
needed.

Generally covarian{1+1)-dimensional theories provide A particularly simple(1+1)-dimensional model where the
convenient framework for considering various suspectednass(energy of matter fielggproduces long range effects, is
properties of quantum gravity in43L dimensions(for re-  the dilaton gravity with matter that has been widely dis-
views see, e.g., Ref§l,2]). In particular, the long-standing cussed from the point of view of black hole physjd3] [for
issue of the possible role of topology changing transitionsa careful analysis of the notion of Arnowitt-Deser-Misner
and baby universg$8—8] may be naturally discussed in this (ADM) mass in that model see Ref48,19]]. Here we take
framework. A special feature of11 dimensions which is a different attitude and consider the emission of baby uni-
useful for the study of baby universes or wormholes is thaverses, so we simplify the model as much as possible. In
some models admit their interpretation as string theories iparticular, we set the number of matter fields equal to 24 and
higher-dimensional target space. the (1+1)-dimensional cosmological constant to zero. As

The simplest model of this sort is literally the theory of stressed in Ref$20,21], this model is equivalent to bosonic
closed strings in the Minkowski target space of critical di- string theory(in critical dimensionD =26 of target spagen
mensions[9-12. Indeed, macroscopic and microscopic the linear Dilaton backgrour{do distinguish between dilaton
string states may be interpreted(as-1)-dimensional parent fields in(1+1)-dimensional world and i -dimensional tar-
and baby universes, respectively. One feature inherent in thgfet space, we call the former “dilaton” and the latter “Di-
model is that the emission of a baby universe always requirelston,” respectively. Hence, the emission of &1+1)-
nonconservation of bare energy in the parent universedimensional baby universe by a parent universe has an
[11,16. This nonconservation does not lead to any drastidnterpretation from theD-dimensional point of view as the
consequences in the simplest stringy model; in particular, themission of a light string state by a highly excited string
rate of emission of baby strings is finite in the limit of infi- state, in complete analogy to R¢L1]. This process, in the
nite size of the parent strind.2]. leading order of string perturbation theory, is tractable both

However, one important feature present {8+1)-  qualitatively and gquantitatively; in particular, one is able to
dimensional gravity is missing in the simplest stringy model.analyze whether it is accompanied by nonconservation of
Namely, in 3+1 dimensions there exists a long-ranged gravi-(bare energy in B 1 dimensions and whether its rate is large
tational field whose source is ener@yewton’s gravity law,  (unsuppressedwhen baby universes are emitted locally in
while there is no such field in that stringy model. Intuitively, the (1+1)-dimensional parent universe. The discussion of
one may suspect that the existence of the long-ranged fielthese points is the main purpose of this paper.
associated with energy and momentum may be an obstacle to The outline of the paper is as follows. In Sec. Il we de-
energy nonconservation in local processes such as the emiseribe the model and some of its classical solutions-i 1
sion of baby universes. To address this issue, more refinedimensions. For technical reasons, the quantum version is

conventiently constructed for the case of closdd-1)-

dimensional universe, so we present in Sec. Il some classical

1t has been arguefdL1] that the emission of baby strings should solutions in the closed universe. This discussion will be use-

lead to the loss of quantum coherence for one-dimensional observéul to understand that théare energy of localized distribu-
at the parent string. Independently, it has been argued on genertibns of matter fields still produces long-ranged effects, at
grounds[13] that the energy nonconservation is inevitable in modi-least in some gauges, even though the total energy of the
fications of quantum mechanics allowing for the loss of quantumclosed universe is always zero. In Sec. lll we outline the
coherencesee, however, Ref$14,15). So, energy nonconserva- quantum version of this model, which is known for some
tion in the stringy model of Ref11] may not be too surprising.  time (see, e.g., Ref$22-285), construct the states of parent

0556-2821/97/5@)/352314)/$10.00 56 3523 © 1997 The American Physical Society



3524 V. A. RUBAKOV 56

universes[Di Vecchia—Del Giudice-FubiniDDF) state, ey
and vertex operators corresponding to the emission of bak

universes. Section IV contains the main results of this pape! /\

We consider the simplest DDF state of the parent universe [ f
which can be interpreted as containing just two dressed ma J o /
ter “particles,” and analyze the emission of baby universes .
by this state in the lowest order of string perturbation theory é
We find that this emission always occurs with the noncon-
servation of energy of matter ifL+1)-dimensional parent
universe. We then proceed to the explicit calculation of the 7
emission rate. Surprisingly, we find that the rate is unsup o =

pressed even for localized distribution of matter in the paren
universe, in spite of the long range field this matter produces
In Sec. V we conclude by presenting a scenario showing the
the nonconservation of bare energy of matter may be consit
tent both with locality of the emission process and with the
presence of long-ranged field; in this scenario, the ADM
mass is conserved at the expense of the generation of “lon-
gitudinal” gravitational waves due to the emission of a babyS
universe. P

FIG. 1. Dilaton field produced by two lumps of matter in infinite
ace.

Il. MODEL AND CLASSICAL SOLUTIONS p(o)=¢ (o)t ¢-(0-),
A. The model with
The action for the simplest version ¢f+1)-dimensional

dilaton gravity with conformal matter can be written in a 1 , , o
form similar to Ref.[26]: ¢::—?f dol|o.—alf(d.f)(al). (4)
11 2 e Y ,
S=——| doV=g| — 7 ¢R+ 9*%9,f'95f'|, (1) Hence, the energy momentum of matter fields produces long-

ranged dilaton field which has a linear behavior at lgrg8.

where¢ is the dilaton fieldf' are matter fields,=1, . ..,24,  In particular, the ADM mass can be defined as

andv is a positive coupling constant analogous to the Planck

mass of(3+1)-dimensional gravity. The coupling constant Y2 ¢ 1 1

may be absorbed into the dilaton field, but we will not do this Haom= " 5~ Q(o —+x)— —1(0' ——x)|. (5)

for bookkeeping purposes. Both in infinite space and in the
closed (1+1)-dimensional universe the field equations are

simplified in the conformal gauge: In virtue of Eq.(4) it is equal to

= e2P , +
Gasp ap Habm= | dO'lsm(U),
where 7 is the Minkowskian metrics in-£1 dimensions. In

this gauge, the fieldp, ¢, andf' obey massless free field

) : where
equations. There are also constraints

1
—%yz(&iqﬁ&ip—%&i(ﬁ)-l-%(ﬂtf)2=0, ) on=5—[(901)*+(910)%]

ensuring that the total energy-momentum tensor vanishes. is the energy density of matter which we will often call bare
energy density.
B. Solutions in infinite space The dilaton field produced by two lumps of matter of

. . . . . equal energy and opposite momenta, moving towards each
Let us outline some classical solutions in this model. We 4 9y PP 9

A P ; . other (or from each othgrwith the speed of light, is shown
begin with the case of infinite one-dimensional spacé, in Fig. 1. Needless to say, the linear dependence of o
e (—o0,+), and consider localized distributions of matter. g~ Y, P 7

. ) at large|o!| is nothing but the Coulomb behavior of long-
In this case one can further specify the gauge and choose X . . : X
ranged field in one-dimensional space. In this respect the

p=0 (3y  dilaton field in 1+1 dimensions is analogous to gravitational
field of Newton’s law in 3+1 dimensions.
so that the space-time is flat. Equatit®#) then determines
the dilaton fieldg for a given matter distribution. Indeed, the
solution to Eq.(2) is, up to an arbitrary linear function of  2Note somewhat unconventional factorrlih the matter action in
coordinates, Eq. (D).
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C. Solutions in closed space 3%

is conveniently formulated in a closed one-dimensional
space. So, it is instructive to consider classical solutions it [ |
the closed universe. Let us study the classical thébrpn a /2 J A AN {2

circle o

For technical reasons, the quantum version of this mode /\ A

/2 m/2

The absolute length of the circle is irrelevant as we are deal
ing with scale-invariant action; what will matter is the rela- /
tive size of matter distribution to the length of the universe.

The gaugeg(3) is no longer possible in the closed universe; /'/

the closest analogue is the gauge in which the universe col - ~
tracts(or expands homogeneously,

1
p=——-P g (6)
Y FIG. 2. Behavior of the dilaton field generated in closed space

where P(-) is some constant; our choice of normalization PY NaTOW pulses of matter in close proximity.

and notation will become clear later. In this gauge, the con-
straints(2) may again be used to determine the dilaton field
for a given distribution of matter, provided the total spatial

momentum of matter vanishes:

(0:H2=Fudla.), 12

where the normalization is such that the constantvould

f+W/2dUl(§ 2 J+7T/2d0'1(07 )2 R coincide with the ADM mass had the universe infinite size,
—al2 N —al2 o .
— 1= 2 2
The constraint$2) in the gauge6) read :“_f do”5—[(9of) "+ (910)]. (13
— 1P o.p— 17702 p=3(0.9)" ®  In this case Eq(10) has particularly simple fornfagain at
|o.|<ml2),

Equation (7) is an immediate consequence of these con-
straints and the periodicity of the dilaton field ért.

(+)
For a given matter distribution, the solution to E@), b= L T ploa|+ 02 v 0(yY,
which is periodic ing! with period 7, is - 2y T 2920 T 2927
(14
P(0°, 0 )=¢. (o) +d (o), C)
where
where
2u
' (="
¢:<oi>=f do.G(o.,0)3(a:H? (10 P== (15
and the Green function of E¢8) obeys the periodicity con- When the pulses are close to each other, one has for the total
dition dilaton field atjo..|<1,
3,G(u+a,u")=9,G(u,u’). p(+) -
- =— 0 — +lo D+
At ue (—m/2,m12), u' e (— w/2,m12), we have explicitly ¢ y 7 2y2“(|"+| lo-1) (16
Guu) = 2 7P o The first term in Eq(16) describes spatially homogeneous
(uu’)= (gj (-) R e(u—u’) component of the dilaton field, while the second term shows
yP 7 sinn wP' ) /2y) Y ) g X e
precisely the same Coulomb behavior as in the case of infi-
p) , nite space. In fact, the latter term coincides with the expres-
x| exp ——- (u—u’)|—=1J, (1D sjon (4) [for narrow matter pulses as defined in Ea2)].

The terms omitted in E¢(16) are of order ofy” 2 and they
wheree(u—u') is the usual step function. become important dr..|~1; in particular, they ensure that
It is instructive to consider the cage>1 (large “Planck  ¢(¢°, o) flattens out and has vanishing spatial derivatives
mass’) and study two narrow pulses of matter moving left at o= *+ /2. The behavior of the dilaton field generated by
and right and colliding ao*=0. These pulses may be ap- narrow pulses of matter, which are close to each other, is
proximated by thes-function distribution schematically shown in Fig. 2.
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Even though the ADM mass is, strictly speaking, zero in eM
the closed universe, narrow pulses of matter produce the d
laton field that shows the Coulomb behavior not far away /\ /\
from the pulses. In this sense one can still use the notion ¢ [ | \
bare energy in the gaudé). This bare energythe energy of /2 P /
matte) can be observed by a one-dimensional observer b
measuring the dilaton field outside the pulses but at distance »
small compared to the size of the universe. With these res /2 /2
ervations, the formula for the ADM mass, Ep), still ———— P —
makes sensevhen all events occur and fields are studied in N a a
a small part of the universeClearly, all these observations \ V4
apply only to those matter distributions whose conformal SR
size, o1~rPUse is small compared ter, the conformal size
of the universe. In other words, we will be interested in con- FIG. 3. Form of the scale factgr (¢").
sidering large wave numbers:

the total energy of mater. We will have to say more about
this gauge in Sec. V.

>1. (17)

r pulse

Ill. QUANTUM STATES AND VERTEX OPERATORS
The gauge(6) is not the only useful one in the closed

universe. At largey, one can choose the gauge The model is quantized exactly in the same way as
bosonic string theory in Minkowskian target spacebof 26
p(+) dimensions. One introduces the notation
P'=— " a'®, (18)

1
o e ¢=——(X°+X1),
where prime is used to denote the quantities in this gauge. In Y
general, the coordinates in the two gauges are not too differ-
ent: 1 0_y1

p=—S(X7=x,

ol=0.+0(y1). (19
_ _ _ _ fl .. %=X X (23
The coordinate transformation has a particularly simple form

in the case of two narrow pulseS; it follows from E(Q$4) Then,Xl‘(o-), M:O’ ...,25 arecanonica”y normalized free

and(15) that in that case two-dimensional fields and the classical constrai@isbe-

come
r_ ™ K 2 -2
ox=ot—olosl- oo +0(yT). (20 19X, 0. X#— X7 =0, (24)
yP yP

Furthermore, for two narrow pulses one obtairat whgre thg summation is performed with Minkowskian
D-dimensional metricsy,,=(—1,+1,...,+1) and

|o:_,|<7r/2), “

X =x0% X1,

L= 2 (o). (21)

pe=" 2yP(+) € Upon quantization, the left- and right-moving components of
these fields are decomposed in the usual way,
This expression, of course, solves the constrépfor mat-

ter distribution X’L‘(a+)=%x“+%P“a++|§ D %a{je*”k”ﬂ
- k£0
(0LH(ol) =5 n(ol). (22 -
X’g(O'_)Z%X'U"F%PMO'_‘FE z E'&{je‘”k”*,
The fact that the matter distributio($2) and(22) are essen- k£o
tially the same in the two gauges, is an immediate cons
guence of Eq(19).

If the pulses of matter are not infinitely narrow, the above
features remain valid qualitatively. The matter distributions
in the two gauge$6) and(18) are the same up to corrections 1
of order y~1; in particular, the spatial sizes of the lumps LO=§P2+2 ataf,
differ only by a factor[1+O(y 1)]. The scale factor k=0
p'(a') changes rapidly in the regions of nonvanishing
energy-momentum density of matter, and has the form L =—P al+= 2 -
shown in Fig. 3, the depth of the well being proportional to m2 T 2

e\ivherea’k‘ andaf* are the standard oscillator operators with
string normalization. According to E§R4), the Virasoro op-
erators are

ak i+ I—yma(+) (25
m-k-* 2 m
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and similarly forL, andL,,, wherea)=al+al . Equa- i & physical state provided thi®) is the physical tachyon
tion (25) shows that the model is equivalent to the string withState and

background chargg§22-25 or, in other words, to the _ ~

bosonic string in linear Dilaton backgroufi#i0,21], Nit---+Nng=ng+---+ng. (30

@(X)zy(eﬂxu)zyx(ﬂ, (26) The DDF operatorg28) are similar to those introduced in
Ref. [25]. Another choice of DDF operators in this model
with e“#=(—1,1,...,0) being a lightlike vector in has been considered in Ref23,25.
D-dimensional target space. To make contact with the classical analysis of Sec. II,
It is clear from Eq.(25) that the spectrum of states in the consider suitably modified coherent states
target space is the same as the spectrum of the bosonic string
in trivial background, 1. 1.~
g |\pr):PLO_[Oexp( > ﬁf'nALn+~E = TLA -] |P).
M2=8(n—1), n=0.1,... . n=0 n>0 M
(31)

The vertex operators are, however, slightly different. For ex- i - . )
ample, the tachyon vertex operator of conformal dimensioriiere. f, and f . are c-number amplitudes ang,_ -7 is a
1,Dis projector onto the subspace of vectors obeying

V(Q)=:eluX X, 27 (Lo—Lo)|w)=0.

with Q?=8. This modification can be understood as beingThis projector is needed to ensure the validity of E0)
due to the Dilaton backgroun(?6). Indeed, the effective term by term in the expangipn oW p).
action of tachyon fieldT in flat target space-time and in  Let us impose the condition that
linear Dilaton background(x) is
2 hfh =2 Tif: (32)

f dPx e 2[— 3(,T)?+4T?+cT3+0O(TH)]. ) "
_ and take the amplitudds and T to be large. Consider now
By introducing the fieldT= e~ ®T, one rewrites this action matrix elements of the form

in the form
(o |Ou({o ifo hI¥e) (39
1 M
f dPx —E(&MT)Z— TTT2+Ceq’T3+ O(T%]|, and also
(*) ’ .
whereM2=—8+(4,®)2, i.e., M= —8 for lightlike e, in (¥prld X (0 )Ou({o 1o DIWe), (34
Eq. (26). In this notation the kinetic and mass terms are (£, 1 _
conventional, while the trilinear vertex is proportionalef8, (Ver|a: X7 (0 )On{o 1o DI We), (35

precisely as required by E7). This argument can be gen- ) .

eralized to interactions of the fields other than the tachyor’("here the qperator@M are produpts Of. matter f'eldS’ n

[20,21,27. general at different points ifiL+1)-dimensional space-time,
Let us now consider highly excited string statgsrent Y W K i 1 i

universes They are conveniently constructed by making useOm =70+ X (0%)- - I XK (03)- - Xg(oZ)- - (LXF?(U(D

of the DDF operatorg28]. In the lightlike Dilaton back- (36)

ground, the simplest choice of the DDF operators is

Al = fﬂﬂz do, ex;{ 4in—e"xﬁ(0+)
n
"

—7l2 m™ e:U«P

and, as before, we takig, ...,jq=2,...,25, so that the
operatorsO,, indeed contain matter fields only. The matrix
9. XL(as), elementq33) are then the correlators of matter fields in the
coherent stat€31), while the matrix element&34) and (35)
are the correlators of dilaton and metric fields with matter.
_ These matrix elements are calculated in the Appendix
d_Xg(o_), with the following result. Up to small corrections and trivial

A= [T exp[ ai SR
i

—ml2 T e,P (29 normalization factor, they coincide with classical correlators
. o _ +ai2d L
with the same lightlike vectoe,. Herei=2,...,25. These f —0OY({os+ &% {o_— &Y
-2 T

operators obey the usual oscillator commutational relations,
and their commutational relations with the Virasoro opera-
tors[11] ensure that the state of the form Ef

y

+m/2d 1
Londotitat ey @

itoLLals LA LRI
A_nl A_nS A*”l Aint|77) (29 and
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f ”lzd—gla X (o +EHOF (o + i {o-—EY)
T thL + M + V-

(39)

— /2

[and similarly for Eq(34)], respectively, wher®S} is given
by Eq. (36) with classical matter fields

. 1 . . o
(9+XCI"(0+)=§P'+§0 (flne72|n0++f:|eZ|na+)_

The classical field® (") is defined by
9 XM =P,

while the field 9. X% (") is to be found from the classical

constraints(24). In short, the matrix elements such as Eq.D
(33) and Eq.(35 are equal to the corresponding classical
expressionsn the gauge(18), integrated over translations in

V. A. RUBAKOV

Pright= — Plef= 2N.
We are interested in the limjsee Eq(17)],

n—oo,

By making superpositions of the staté&9) with different
wave number®, one can construct states with localized dis-
tributions of matter in one-dimensional universe. This gener-
alization is straightforward, so we stick to the state with fixed
n. The necessity to consider wave packe9) in a target
space and not just plane wavet)) is due to the Dilaton
background that increases indefinitely xs)—oc: ampli-
tudes of processes involving plane waves would be divergent
in this background.

It is a matter of simple algebra to see that the total
-dimensional momentum of the stgi0) is

pPk=pk  k=2,...,25,

one-dimensional space. In this way the classical picture is

restored; the particular choice of the DDF operators, Eq.

(28), corresponds to the gauge choitE8). Note that Eq.

(32) is precisely the classical constraiby=1, written in
this gauge.

Hence, the DDF operatof&8) correspond to creation and

annihilation of dressed matter excitations il+1)-
dimensional space-timén the gauge ¢=constx ¢°. The

corresponding wave numbers ameand n, respectively. In
what follows we will call (somewhat loose)ythese excita-
tions as “dressed particles” in thél+1)-dimensional uni-
verse.

IV. NONCONSERVATION OF BARE ENERGY IN 1 +1
DIMENSIONS AND EMISSION PROBABILITY

A. State of the parent universe

In this section we consider the simplest DDF state
|\If,n,i,j):f d°~P¥(P)|P,n,i,j), (39
where

1 . .
|P,n,i,j)=ﬁA'_nAJ_n|P) (40

and¥ (P) is the wave function of the center-of-mass motion

P(H=p0t pl=p(t)

8n
P
Hence, fromD-dimensional point of view, the statd0) is

interpreted as an excited string state atrltelevel with the
mass

P()=po—pl=p-)—

(42

M2=8n—8 (43

(recall that|P) is the tachyon staje We consider for defi-
niteness this state in the center-of-mass frame,

Pk=0, k=2,...,25,
PH=pH=M,,

P)=M,, (44)
although our discussion can be straightforwardly generalized
to other frames. In terms of the wave packes), Eq. (44)
means that the wave function of the center-of-mass motion,
| (P)), is peaked near the values determined by @d).

B. Emission of baby universe: Energy nonconservation
in 1+1 dimensions

in target space, in momentum representation. The normaliza- The parent universe in the staf@89) can emit a baby
tion factor 1h in Eq. (40) is chosen in such a way that the universe, a universe with no or small energy of matter par-

state|P,n,i,j) has the usuaD-dimensional normalization

ticles. In D-dimensional language this process corresponds

(recall the string normalization of the oscillator operators,to the emission of a low-lying string statechyon, Dilaton,
[An.AL1=né8"). According to the discussion in Sec. Ill, we etc) into D-dimensional target space. _
interpret this state as the state of a parent universe with two Let us study whether this process always occurs with the

dressed matter particlésne left moving and one right mov-
ing) of equal wave numbem, in the gaugg18). The nor-
malization convention in Eq40) corresponds to “two par-
ticles in entire one-dimensional space” normalization(bf

nonconservation of bare energy (i+1) dimensions. Since
bare energy coincides with the level of the string, Etf),
we are interested in the change of halimensional mass of
the highly excited string due to the emission of the low-lying

+1)-dimensional quantum field theory. These particles havétring state. At first sight, the presence of the time-dependent

equal bare energies and opposite bare momentatih di-
mensions:

€left= Eright= 2N, (41

Dilaton background in target space might give rise to the
nonconservation db-dimensional energy and momentum in

the emission process. In that case the emission of a low-lying
state would not necessarily require the change of the level of
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the heavy string; in other words, the emission of a baby 2

[ o
universe would not necessarily require nonconservation of ‘1’i=eXF< _iMit_mPi2+iPiX_7(X_Vit)2 .
bare energy in £1 dimensions. Surprisingly, we will see in : (47)
a moment that this is not the cag®:dimensional energy and
momentum are in fact conserved in the presencénefar  where o, the width of the packet in momentum space, is
Dilaton background exactly as they do in flat target spacemall, andv,=P;/M; is the velocity of the particle, which is
with no background. Hence, the emission of a baby universelso assumed to be small for simplicity. Similarly, the wave
always occurs with the nonconservation dfl+1)-  packet¥; has the form(47) with M;, P;, v; substituted by
dimensional bare energy of matter in the parent universe. M;, P, v;.

The argument presented below is fairly general; the par- The integral(46) is then Gaussian, and is straightforward
ticular form of the initial state, E39), is unimportant. The  to evaluate. The result, up to a preexponential factor, is
nonconservation of energy {1+ 1)-dimensional parent uni-
verse due to the emission of baby universes is a generic 1
property of our model. A= exl{ﬁ[ —F1(AP,AE)+Fy(TI','g)

The argument for theonservationof D-dimensional en- 7
ergy momentum in the presence of the linear Dilaton back-
ground is conveniently presented by considering a theory of +iF (AP, T',AE, ') ]
three scalar fieldsb,, ®,, ®; with cubic interaction and
exponentially changing coupling. Let the cubic coupling be

: (48)

where
g(x)=expT",x*), (45) AP=P,—P;—Q,
p? P2
I
with real constant”,,. Let us taked; to be the heaviest AE= Mi+2_|\/|i) Mf+2_Mf) Qo

(massM;), and®, to have the mashl ; which for simplicity )
is close toM, (but smaller thanM,). Let the field®; be ~ &ré amounts of nonconservation of momentum and energy,

light. We are interested in the process when a partiele and
emits a particleb; and becomes a particte,.

2
. Because of the unbounde_dness of the couplifg), it Fl(AP,AE):(AP) n 1 [AE—L(v,—v/)AP]?,
oes not make sense to consider plane waves of partigles 4 (Vi—Vv)?
and®,. Instead, one has to use wave packets. Namely, con-
sider the amplitude of the decay of a wave packeg(x,t) ()2
describing the state of the particle, into a wave packe¥ Fl(F,F0)=T +W[FO— 3(vi—vp)I'%
i~ Vf

of the particle®, plus a particle®; which has a fixed en-

ergy momentunQ,, , The explicit form of F, is not important; it is sufficient to

note that both,; andF, are real. The only important prop-
erty of F, is that it is positive definite and vanishes iff
AP=AE=0.
A=f dxdtg(x,t) Wi (x,t) W (x,t)exp(—iQ ,x*). The imaginary part of the exponeif, in Eq. (48) is
(46) unimportant and cancels out in the probability. Then the
probability factorizes into a term depending A andAE
and a term containin§f, . The latter term is nothing but the
We will see in the next subsection that the amplitudes ofverlap of the initial and final wave packets with the weight
string decays have similar form. g(x). More importantly, sincd-,(AP,AE) is multiplied by
Let us specify the form of the wave packelts andV; . the large factor X in the exponent, and because
Let us consider for definiteness the nonrelativistic regime=,(AP,AE) is non-negative and vanishes only at
and take wave packets narrow in momentum representatiodP=AE=0, the exponential factor containirg; (AP,AE)
Let us furthermore neglect the dispersion of the wave packensures conservation of energy and momentum in the limit
ets with timé (this can be achieved by confining the particlesof small ¢ exactly in the same manner as it does in the case
in moving potential wells Thus, we take of space-time-independent coupling.
The restriction to the nonrelativistic case and Gaussian
wave packets is, in fact, not essential: the same argument
3The dispersion of wave packets with time would complicate thegoes through for relativistic and non-Gaussian wave packets
analysis considerably. The coupling changes so rapidly that in théprovided that they do not disperse with time
case of spreading wave packets the interaction often occurs in The result that energy and momentum are conserved in
space-time very far away from the centers of the wave packets. Ispite of space-time dependence of the coupling is peculiar to
that region there are mostly modes with momenta quite differenthe exponential coupling whose exponent linearly depends
from the central valueB; or P;. Hence it is difficult to separate the on x,,: only in this case the dependences ®R, andI’,
effects of finite widths of the wave packets in momentum spacedactorize. For instance, if the coupling switches off at infinity
from possible effects of momentum nonconservation. in space-timgsay, has finite supp9rtthen the same calcu-



3530 V. A. RUBAKOV 56

FIG. 4. F d litude; i .
orward amplitude; curved lines denote the tachyon FIG. 5. Amplitude with different momenta.

lation leads to the usual result that energy and momentum ,

are not conserved, and the amplitude is proportional to the m=n-—n-~n. (51)

Fourier component of the coupling(AP,AE). . . :
P pling ) We intend to sum up over all final states at given levél

Usually, this summation is conveniently performed by evalu-
ating the forward amplitude shown in Fig. 4 where curved
Let us now turn to the actual calculation of the rate of thelines denote the tachyofcf. Ref. [12]). Because of the
emission of a baby universgow-lying string stat¢ by a  space-time dependent coupling, the procedure is somewhat

parent universéexcited string in the state(39). We explic-  tricky in our case. It will be convenient to consider first the
itly consider the emission of a tachyon, although the analyamplitude with different momenta, as shown in Fig. 5, and
sis, and results, are the same for the emission of a Dilaton getP=P’ andK=Q in the end. The amplitude is given by
graviton as for the baby universe. Let tiedimensional
momentum of the outgoing tachyon Re, . We first have to AI(P,P";K,Q)=«?P’,n,i,j|V(K)AV(Q)|P,n,i,j),
specify the range o, which is of interest for our purposes. (52

The emission of a baby universe due to the collision of
(1+1)-dimensional particles with wave numbers equahto wherex is the string coupling constar¥, is the vertex op-
has a chance to be local if the characteristic conformal timerator (27) and A is the usual string propagatérecall that

C. Emission rate

of the process of emission\,o®, is of order the Virasoro operators, andL o coincide with conventional
o 1 ones. Here we consider the plane waw0) as the initial
Ao~ n state; the fact that we actually have to deal with wave pack-

ets such as Eq39) has been already discussed in the previ-

This conformal time is related to tH2-dimensional time via OUS SUbSEC“Oﬁ_- _ _ _
The evaluation of the amplitudés?2) is straightforward

Ax%= POA o0, (49)  and parallels that of Ref12]. One finds

The D-dimensional time characteristic to the tachyon emis-A'/(P,P’;K,Q)
sion can be estimated in the center-of-mass frame of the

decaying string as _ Kzf dPxel (P~ Qxg=i(P —K))xg2yx' ™)
1
(S - _
Ax Qo X f dzd z(z z)l’“P”’iye")“Qriyeu)%F”(z,z),
n
This is the time after which the tachyon is formed and splits (53
off the initial string. Hence we are interested in the tachyon
energies of order where we have kept the integration over the center-of-mass
coordinatex and denoted
n
(S
Q po Vn, (50 FiJ(Z,Z_):|1_Z|%(K“*iye")(*QpiyeM)Bii(Z)Bij(z_),
(54)
where we made use of Eqg3) and(44). SinceQV is large,
we neglect the tachyon mass where appropriate in what folith
lows.
We are interested in the process in which the initial string
at leveln decays, by emitting a tachyon, into level. Ac- “The procedure below involves manipulations with formally di-

cording to Eqs(43) and(50), and because of energy conser- vergent integrals, etc. This procedure can be checked by explicit
vation inD dimensions, we have analysis of amplitudes involving low-lying string states only.
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(+)7p(+)
ij dudu’ 1 1 —nK(H)p(+H) u\ne P sanK(H)pr(+) —no(H)pr(+)
G e L R L (1= u)™ P 1y e e
« L P+ Q u__ Y ) Bl K ' o zu’ iy uu’ 55
4 Z—U 1—u 1—u’ 1—z7zu (1_uu/)2 '

The integrations here run around small circles in compiex
andu’ planes surrounding the origin. In Eq&3) and (54)
we used the lightlike vectog,=(—1,1,0 . ..,0) defined in
Sec. Ill.

To extract the decay rate into final states at given lavel
we expandF(z,z) in a formal series irg, z (we omit su-
perscriptsi, j temporarily:

+ o

>

m‘m’:—oc

’

F(z,z)= Fowz Mz ™. (56)

At m=m’ the corresponding integrals in E¢54) have
poles:

mef dzd z(z z) VAP*I7e)(-Q,~iye,)—m

TF mm

1
— 3 (Pr—iye)(~Q,~iye,)~m-1

87Fmm
~ : . )
(P,—Q,—iye,)*+(M;—8m)

(57)

These pole terms lead to contributions to the amplit(&8
which can be written in the form

AI(P,P";K,Q)
2 1 Dy 4Dy, 4D i(P—Q)x+yx(*)
=§ 87k FF”"" d®xdPyd°P;e

e*ipf(xf}’)

e (P =Ky+yy'™) (58)

X<27>D<—P?—Mﬁ7m>

This expression is recognized as the sum of the amplitudes

of processes going through states with madggs ,, in a

theory with trilinear coupling which exponentially depends
on x(*). Hence, the probability of the decay into level

n’=n—m is determined by . The total probability in-

volves also the overlap between the initial and final wave
functions of the center-of-mass motion. This overlap has
been considered in the previous subsection; it leads to the

conservation of energy and momentum Oh dimensions.
Therefore, we can sé&®’ =P andK=Q and obtain

. 1 .
Z |A'f‘(n—>n—m;Q)|2=877K2FF'nJ1m(P’= P:K=Q),
(59)

where A{ denotes the amplitude of the decay into a final
statef at level (h—m) and a tachyon with momentu®; the
sum in the left-hand side runs over all final states at the level
(n—m). This expression should be integrated over the phase
space of the two final string states.

To estimate the integral over the phase space, let us study
first the behavior of |, at largen andm. We recall that we
are interested in tachyons with energ®%~ \/n. Let us first
consider the generic case,

QM ~Q~Q~n. (60)
At K=Q andP’'=P, we have
F o = RinRo (61)

where the form ORH]' follows from Egs.(54)—(56),
R = J

X (1-2)

du du’ dz 1

217' 277 277un+1(u/)n+12*m+1

( U)( ) nQ“)/P(*)
1--)(1-u’

(1-u)(1—2zU")

u(l—2) )

% (z—u)(1—-u)

1( i i
Z P'+Q

u'(l-z

pirg Y17 g w6
+Q(l—u')(l—zu')) (1—uu'>2] (©2

X

In the regime(60), R, can be written as

Rinjq:f dudu'dzP!(u,u’,z)e "Suu".2), (63)

u
l__)
z

where
(+)
M

S=Inu+|nu’—ﬁlnz— —=In(1—u)+In

+In(1-u’)—In(1—-2zU")

and P is a preexponential factor that depends roronly
weakly. Here we made use of the fact tiRit) =M, in the
center-of-mass frame we consider.

In the regime(60) all terms inS are of order 1, so the
integral in Eq.(63) can be calculated by saddle point tech-
nigue. At the saddle point one finds
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(64)

where

x(v)=(1—-v)In(1—-v)+(1+v)In(1+ ).

V. A. RUBAKOV

To estimate the total emission probability, we note that in
the region(65) one has

Qi~1,

whereQ=(0,0Q7?, ...,Q%). Hence, the probability to de-
cay into the level (—m) is of order

Making use of energy-momentum conservation, one obtains

(again in the center-of-mass frame of the decaying sfring
(m 2Q(+>> m
< <F’

n M,

m

n

so S is always positive. Therefore, we conclude that the de-

cay probability is exponentiallguppressedh the kinemati-
cal region(60),

P(n—n-m;Q)xe "5,

Equation(64) implies that the decay probability may be
unsuppressedn the kinematical region different from Eq.
(60), namely, at

1
e —, 65
Q n (65)
i.e., at
nQ(+)
M, ~1. (66)
In this region,
, m nQ(+)
nS=y " X2 M. ~1.

Clearly, the saddle point calculation is not valid in this re-

gion, so we proceed in a different way. To estimate the in-

tegral in Eq.(62) in the regime(66), we make use of the
following asymptotic formuld12]:

J dzy---dzz, "z "] (1-z,)%
X1 (1=zpzg)Pea] [ (1—2,12,) 7P
|

which is valid as\ — o with a,, @y, Bpq, ¥pq fixed. We ob-
tain

1
A

)Eap+2 qu*E Ypgtk

Riocn
at largen. We then recall Eq459) and(61) and find that at
largen,

> |Af(n—n—m;Q)|?= independent of
f

in the kinematical regiori65).

dD*ZQT 1
(27T)D72 QOMnEnfm

P(n—>n—m)=f

X2 A (n—n-mQ) P~ —,
where E,_,~M,~+/n is the energy of the final excited
string, andQ®~ \n according to Eq(50). The number of
final states contributing to the decayn is of ordern, so we

have finally

> P(n—n—-m)~

m

=

This is the decay probability per urit-dimensionatime x°.

To obtain its interpretation ifl+1)-dimensional terms, we
recall Eq.(49) and find that the emission rate per unit con-
formal time ¢° of (1+1)-dimensional universe i;depen-
dentof n at largen.

This is our principal result: the rate of the emission of
baby universes is unsuppressed at largehen the emission
process should occur locally. This emission rate is propor-
tional to the collision rate of two narrow wave packets in
one-dimensional universe of conformal size the propor-
tionality constant being independent of the one-dimensional
momenta of the “particles” or width of their wave packets
and being determined by the string coupling constant only.

V. DISCUSSION AND CONCLUSION

Let us summarize our results for the simplest version of
the dilaton gravity with conformal matter in+11 dimen-
sions. We considered mostly the case of compact one-
dimensional universe and studied pulses of matter whose
size is small compared to the size of the univdise, whose
wave numbers are large. At least at the classical level
these pulses, in the gauge

p=consi ¢°

(67)

produce long-ranged dilaton field which is approximately
Coulomb at scales small compared to the size of the uni-
verse. The magnitude of this long-ranged field is propor-
tional to the energy of matter, which we called bare energy.
The notion of ADM mass makes sense at these scales and
coincides with the ADM mass defined for infinite space.

To construct quantum states, it was convenient to work in
a different gauge,

¢=constx ¢°. (69)

It is important that at large, the sizes of matter pulses in the
two gauges are similar, again at the classical level. In other
words, the pulses that are narrow in the ga(j@ are also
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FIG. 6. (a) The fieldp and the matter energy density in the gaug®. (b) Final state where matter energy is conseridashed lines
and where it is not conservedolid lines.

narrow in the gaugé&s8), so the processes we were interestedcorrespondingly, the height of the plateaupo@re smaller in
in are local in both gauges. Making use of the ga(@f, we  the final state; this configuration is shown in Fighpby
considered, at the quantum level, the simplest state of theolid lines.
parent universe that contains one left-moving and one right- Clearly, the process shown in Fig. 6 may be perfectly
moving dressed matter “particles” with large wave numberlocal in (1+1)-dimensional space-time. It shows that the
n. The collisions of these particles may eventually induce thaonconservation of matter energy does not require nonlocal-
emission of baby universes. If the relevant quantum numberigy. However, this processannot be transformed into the
of the baby universe[¥-dimensional moment®, of the gauge(67), as the fieldp does not obey the field equation
microscopic stringare large enough, the emission process is7,d“p=0 everywhere in space-time. To see what happens if
local in the parent universe. We have found that the emissiothe gaugg67) is chosen for thenitial state, let us perform
always occurs with the nonconservation of energy of matterthe gauge transformation that would transform the “conven-
and that the probability of this process is finite at large tional” configuraion (i.e., the configuration of the conven-
At first sight, there appears to be a conflict between thdional process with energy conservationto the gauge67).
locality of the emission of a baby universe, and hence thén the case of infinitely narrow pulses this gauge transforma-
locality of the nonconservation of matter energy, and thdion is the inverse of Eq(20). Then the initial state is one
existence, in the gaugé7), of the long-ranged dilaton field shown in Fig. 2(with p=const ¢° everywherg while the
whose strength is determined by the matter energy. To sefnal state is that shown in Fig. 7 by solid linéanly a small
that this conflict is only apparent, let us present a scenarioegion of the universe is presented in Fig. 7; the final con-
consistent with both of the above properties. We stress thdiguration of the conventional process with energy conserva-
the following consideration is only a scenario, as its confir-tion is again shown by dashed lines for comparjsarhe
mation or rejection would require the analysis of the finalfinal dilaton field ¢ in this gauge is the same as that of the
state of the parent universe, which goes well beyond theonventional process; in particular, its long range behavior is
scope of this paper. Also, the discussion below is essentiallyiot affected by the energy nonconservation. On the other
classical, while the actual analysis should necessarily be #&and, the fieldp in the final state is nontrivial and corre-
the quantum level. sponds to longitudinal gravitational waves. It is the presence
Let us again consider the collision of two narrow pulsesof these longitudinal waves that ensures the validity of the
of matter, and choose the gau@). In this gauge the field constraints after the collision, even though the energy of
p and the matter energy density are those shown in Figs. Bhatter is not conserved and the dilaton field does not change
and &a). If the matter energy was conserved, the final stateasymptotically. Of course, the longitudinalwave may be
would be characterized by the configuration shown in Figgauged away, but the corresponding gauge transformation
6(b) by dashed lines: the field between the pulses would would be nontrivial far away from the collision region, and
change from—p, to +py where pg is determined by the would also induce longitudinal gravitational wave in the ini-
total matter energy in the puls¢see Eqgs.(21) and (12), tial state.
(13)]. If the energy is not conserved at the moment of the In infinite space, the gaugé8) cannot be imposed, so we
collision (i.e., if the collision of the pulses induces splitting cannot use the arguments based on Fig. 6. However, the final
off of the baby universg the height of the matter pulses and, states such as those shown in Fig. 7 are still possible in the
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" ) ] ol APPENDIX
O Let us outline the calculation of the matrix eleme(88)
and (35) in the leading order irf,,, T . First, we make the
projection onto the subspatg=L, explicit by writing the
5l coherent stat€31) in the form
w2 dg 1
/ |Wp)= J o exp( 2 L OA,
g 1. -
+2 =TROA 5 |[P), (A1)
n n
where
p
\ f > o fo(£)=f,e”"¢,
FIG. 7. Final state in the gaug@?7) (solid lines, and with ?;(g)z?;e‘Ziﬁg. (A2)

energy conservatiofdashed lines

The representatiofAl) coincides with Eq(31) up to nor-
malization. The fact that the staA1) obeys the constraint

gauge where =0 initially. For these final states to appear, (Lo—to)|‘1’p>=0 follows from the commutational relations
the field equations should be violated only in a small region

of space-timgwhere the two pulses colligleand the entire of the DDF operators with o and L,
process may occur locally. The ADM mass viewed from
infinite distance is conserved, but this conservation is due to
the appearance of the longitudinal gravitational waves that [LO,A‘n]z
compensate for the nonconservation of matter energy.

It remains to be understood what part, if any, of the dis-
cussion of this paper may be relevant(8t1)-dimensional
theories. There exist semiclassical arguments, based on the
study of fluctuationg29] about and analytical continuation
[30] of the Euclidean wormhole solution of R¢E], favoring A
the interpretation of the wormhole as describing the procesand similarly for’,&lﬁ,
in which a baby universe branches off and then “flies away” Consider now the norm of these states. One has
in (mini)superspace. This process may be very similar to the
one discussed in this paper {@+1)-dimensional context.
On the other hand, the possible nonconservation of bare en- dé,dé, _ )
ergy was not explicit in the semiclassical treatment3of 1)- (Vo |Wp)y= 5 ex;{ > fofrediné-é)
dimensional Euclidean wormholes. An independent problem m
which can possibly be treated “phenomenologically,” as we ~
did in this section, is whether the nonconservation of bare +2 Tﬁ?’%eZin@l&z))
energy in 3+1 dimensions is consistent with locality, and, in
particular, whether locality requires the generation of longi- _
tudinal gravitational waves. We hope our study (@f-1)- At largef, andfy this is a saddle point integral. Taking into
dimensional toy model will be helpful to understand theseaccount Eq(32) we find that the integrand does not depend
problems. on (¢;+ &,), while the saddle point ing; — §,) is at

n

- . n .
[L07A|n]:§Aln!

(P'|P).
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£1—&=0. (A3)  SinceP' andP(") commute withA|,, one can set
Hence we obtain the usual result pi—pi p(+)—p(+)
-~ in the operatoiO,, for calculating the matrix elemeri83).
_ ’ * e . . .
(Ve[ Wp)=(P |73>exp< DIRREDY fafs Furthermorea{") commute withO,, and with all factors in
_ Eqg. (A4), so one can set them equal to zero and write effec-
up to a preexponential factor. tively
Let us turn to the matrix elemen{83) involving matter
fields only and consider explicitly the left-moving sector. ) x(+) i
The DDF operators can be written as Ap=ex 2'” 5
N We have to calculate the matrix element
i J7Tl2 d0'+ 2 X( )+2
A= exp 2in ino i i j j
N, ow +) + (\pr,|a_1rl- . -a_srs- . -apll. . .ap‘t|\lfp), (A5)

2n 1

3 L g2k with rq, ... fs,P1,-..,P:>0, which is a building block of
p(+) kK

1 -
(§P|+2 aqe z'q”*)- Eq. (33). Note that the operator ordering in EGA5) is in
fact not essential at largg, as is usual in the classical limit.
(A4) One finds for this matrix element

dé,d
J &1 252 < P RM)| P
ar

>f:;<§2>- R (8 Fp (£0) - T (E0)(RM),
(A6)

;{ x(+)
exg 2i(ry+---+rg—p;—---—p;
V5

where we omitted the superscripts . . . .,j;; (RM) denotes with subsequent integration ovér This proves the relation
the corresponding factors due to right-moving modes. Allbetween the matrix element33) and their classical counter-
dependence oné(+ &,) in this integral comes from the ex- parts(37).

ponents infy (&) andfp(fl) see Eq(A2), and similar ex- Let us turn to the matrix element85). SinceP(*) and
ponents for right-moving components. This makes the matnxz(” commute withOy, and with the DDF operators, the
element in Eq.(A6) equal to(P’|P). The integral over operatorz9+X(L+) reduces to

(&1,—¢&,) is still of saddle point structure with the saddle

point (A3). Hence the expressiofA6) simplifies and be-
comes equal to I X[ =5P), (AT)

when sandwiched as in E(5). To find the matrix elements
involving 9, X{ ™) one notices that in the leading orderfjn

(Ve [Wp)- - f—f*(ﬁ) A7) 15, (8- T (ORM). T

We conclude that in the leading orderfip, T4, the calcu- (Ve |LOm|¥p)=0, (A8)
lation of the matrix elements of the matter operators is re-
duced to the substitution because the commutator bf, andO,, does not contaiff,,

T (recall that| W) and| W5, ) are physical statésEquation
_2ing (A7) and just established relation between the matrix ele-
a,—e ANt n>0, ments(33) and classical correlatof87) immediately imply
the desired relation between the matrix elemeg3%s and
singen their_ classical versiqn_§38). This_ relation can of course be
a_p—e” " fy, n>0, obtained by an explicit calculation.
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