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We consider branching of baby universes off a parent one in~111!-dimensional dilaton gravity with 24
types of conformal matter fields. This theory is equivalent to string theory in a certain background in
(D526)-dimensional target space, so this process may be also viewed as the emission of a light string state by
a heavy string. We find that bare energy is not conserved in 111 dimensions due to the emission of baby
universes, and that the probability of this process is finite even for local distribution of matter in the parent
universe. We present a scenario suggesting that the nonconservation of bare energy may be consistent with the
locality of the baby universe emission process in 111 dimensionsand the existence of the long-ranged dilaton
field whose source is bare energy. This scenario involves the generation of longitudinal gravitational waves in
the parent universe.@S0556-2821~97!01218-6#

PACS number~s!: 04.60.Kz, 04.20.Gz, 11.25.Pm

I. INTRODUCTION

Generally covariant~111!-dimensional theories provide
convenient framework for considering various suspected
properties of quantum gravity in 311 dimensions~for re-
views see, e.g., Refs.@1,2#!. In particular, the long-standing
issue of the possible role of topology changing transitions
and baby universes@3–8# may be naturally discussed in this
framework. A special feature of 111 dimensions which is
useful for the study of baby universes or wormholes is that
some models admit their interpretation as string theories in
higher-dimensional target space.

The simplest model of this sort is literally the theory of
closed strings in the Minkowski target space of critical di-
mensions @9–12#. Indeed, macroscopic and microscopic
string states may be interpreted as~111!-dimensional parent
and baby universes, respectively. One feature inherent in that
model is that the emission of a baby universe always requires
nonconservation of bare energy in the parent universe1

@11,16#. This nonconservation does not lead to any drastic
consequences in the simplest stringy model; in particular, the
rate of emission of baby strings is finite in the limit of infi-
nite size of the parent string@12#.

However, one important feature present in~311!-
dimensional gravity is missing in the simplest stringy model.
Namely, in 311 dimensions there exists a long-ranged gravi-
tational field whose source is energy~Newton’s gravity law!,
while there is no such field in that stringy model. Intuitively,
one may suspect that the existence of the long-ranged field
associated with energy and momentum may be an obstacle to
energy nonconservation in local processes such as the emis-
sion of baby universes. To address this issue, more refined

model than that of closed strings in critical dimensions, is
needed.

A particularly simple~111!-dimensional model where the
mass~energy of matter fields! produces long range effects, is
the dilaton gravity with matter that has been widely dis-
cussed from the point of view of black hole physics@17# @for
a careful analysis of the notion of Arnowitt-Deser-Misner
~ADM ! mass in that model see Refs.@18,19##. Here we take
a different attitude and consider the emission of baby uni-
verses, so we simplify the model as much as possible. In
particular, we set the number of matter fields equal to 24 and
the ~111!-dimensional cosmological constant to zero. As
stressed in Refs.@20,21#, this model is equivalent to bosonic
string theory~in critical dimensionD526 of target space! in
the linear Dilaton background@to distinguish between dilaton
fields in ~111!-dimensional world and inD-dimensional tar-
get space, we call the former ‘‘dilaton’’ and the latter ‘‘Di-
laton,’’ respectively#. Hence, the emission of a~111!-
dimensional baby universe by a parent universe has an
interpretation from theD-dimensional point of view as the
emission of a light string state by a highly excited string
state, in complete analogy to Ref.@11#. This process, in the
leading order of string perturbation theory, is tractable both
qualitatively and quantitatively; in particular, one is able to
analyze whether it is accompanied by nonconservation of
~bare! energy in 111 dimensions and whether its rate is large
~unsuppressed! when baby universes are emitted locally in
the ~111!-dimensional parent universe. The discussion of
these points is the main purpose of this paper.

The outline of the paper is as follows. In Sec. II we de-
scribe the model and some of its classical solutions in 111
dimensions. For technical reasons, the quantum version is
conventiently constructed for the case of closed~111!-
dimensional universe, so we present in Sec. II some classical
solutions in the closed universe. This discussion will be use-
ful to understand that the~bare! energy of localized distribu-
tions of matter fields still produces long-ranged effects, at
least in some gauges, even though the total energy of the
closed universe is always zero. In Sec. III we outline the
quantum version of this model, which is known for some
time ~see, e.g., Refs.@22–25#!, construct the states of parent

1It has been argued@11# that the emission of baby strings should
lead to the loss of quantum coherence for one-dimensional observer
at the parent string. Independently, it has been argued on general
grounds@13# that the energy nonconservation is inevitable in modi-
fications of quantum mechanics allowing for the loss of quantum
coherence~see, however, Refs.@14,15#!. So, energy nonconserva-
tion in the stringy model of Ref.@11# may not be too surprising.
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universes@Di Vecchia–Del Giudice-Fubini~DDF! states#,
and vertex operators corresponding to the emission of baby
universes. Section IV contains the main results of this paper.
We consider the simplest DDF state of the parent universe,
which can be interpreted as containing just two dressed mat-
ter ‘‘particles,’’ and analyze the emission of baby universes
by this state in the lowest order of string perturbation theory.
We find that this emission always occurs with the noncon-
servation of energy of matter in~111!-dimensional parent
universe. We then proceed to the explicit calculation of the
emission rate. Surprisingly, we find that the rate is unsup-
pressed even for localized distribution of matter in the parent
universe, in spite of the long range field this matter produces.
In Sec. V we conclude by presenting a scenario showing that
the nonconservation of bare energy of matter may be consis-
tent both with locality of the emission process and with the
presence of long-ranged field; in this scenario, the ADM
mass is conserved at the expense of the generation of ‘‘lon-
gitudinal’’ gravitational waves due to the emission of a baby
universe.

II. MODEL AND CLASSICAL SOLUTIONS

A. The model

The action for the simplest version of~111!-dimensional
dilaton gravity with conformal matter can be written in a
form similar to Ref.@26#:

S52
1

pE d2sA2gS 2
g2

4
fR1gab]a f i]b f i D , ~1!

wheref is the dilaton field,f i are matter fields,i 51, . . .,24,
andg is a positive coupling constant analogous to the Planck
mass of~311!-dimensional gravity. The coupling constantg
may be absorbed into the dilaton field, but we will not do this
for bookkeeping purposes. Both in infinite space and in the
closed ~111!-dimensional universe the field equations are
simplified in the conformal gauge:

gab5 e2rhab ,

whereh is the Minkowskian metrics in 111 dimensions. In
this gauge, the fieldsr, f, and f i obey massless free field
equations. There are also constraints

2
1

2
g2~]6f]6r2 1

2 ]6
2 f!1 1

2 ~]6f!250, ~2!

ensuring that the total energy-momentum tensor vanishes.

B. Solutions in infinite space

Let us outline some classical solutions in this model. We
begin with the case of infinite one-dimensional space,s1

P(2`,1`), and consider localized distributions of matter.
In this case one can further specify the gauge and choose

r50 ~3!

so that the space-time is flat. Equation~2! then determines
the dilaton fieldf for a given matter distribution. Indeed, the
solution to Eq.~2! is, up to an arbitrary linear function of
coordinates,

f~s!5f1~s1!1f2~s2!,

with

f652
1

g2E ds68 us62s68 u~]6f!2~s68 !. ~4!

Hence, the energy momentum of matter fields produces long-
ranged dilaton field which has a linear behavior at largeus1u.
In particular, the ADM mass can be defined as

mADM52
g2

2pF ]f

]s1
~s1→1`!2

]f

]s1
~s1→2`!G . ~5!

In virtue of Eq.~4! it is equal to

mADM5E
2`

1`

ds1«M~s!,

where

«M5
1

2p
@~]0f!21~]1f!2#

is the energy density of matter which we will often call bare
energy density.2

The dilaton field produced by two lumps of matter of
equal energy and opposite momenta, moving towards each
other ~or from each other! with the speed of light, is shown
in Fig. 1. Needless to say, the linear dependence off on s1

at largeus1u is nothing but the Coulomb behavior of long-
ranged field in one-dimensional space. In this respect the
dilaton field in 111 dimensions is analogous to gravitational
field of Newton’s law in 311 dimensions.

2Note somewhat unconventional factor 1/p in the matter action in
Eq. ~1!.

FIG. 1. Dilaton field produced by two lumps of matter in infinite
space.
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C. Solutions in closed space

For technical reasons, the quantum version of this model
is conveniently formulated in a closed one-dimensional
space. So, it is instructive to consider classical solutions in
the closed universe. Let us study the classical theory~1! on a
circle

s1PS 2
p

2
,1

p

2 D .

The absolute length of the circle is irrelevant as we are deal-
ing with scale-invariant action; what will matter is the rela-
tive size of matter distribution to the length of the universe.
The gauge~3! is no longer possible in the closed universe;
the closest analogue is the gauge in which the universe con-
tracts~or expands! homogeneously,

r52
1

g
P~2 !s0, ~6!

where P(2) is some constant; our choice of normalization
and notation will become clear later. In this gauge, the con-
straints~2! may again be used to determine the dilaton field
for a given distribution of matter, provided the total spatial
momentum of matter vanishes:

E
2p/2

1p/2

ds1~]1f!25E
2p/2

1p/2

ds1~]2f!2. ~7!

The constraints~2! in the gauge~6! read

2 1
4 gP~2 !]6f2 1

4 g2]6
2 f5 1

2 ~]6f!2. ~8!

Equation ~7! is an immediate consequence of these con-
straints and the periodicity of the dilaton field ins1.

For a given matter distribution, the solution to Eq.~8!,
which is periodic ins1 with periodp, is

f~s0,s1!5f1~s1!1f2~s2!, ~9!

where

f6~s6!5E ds6G~s6 ,s68 ! 1
2 ~]6f!2 ~10!

and the Green function of Eq.~8! obeys the periodicity con-
dition

]uG~u1p,u8!5]uG~u,u8!.

At uP(2p/2,p/2), u8P(2p/2,p/2), we have explicitly

G~u,u8!5
2

gP~2 !sinh~pP~2 !/2g!
expFpP~2 !

2g
e~u2u8!G

3S expF2
P~2 !

g
~u2u8!G21D , ~11!

wheree(u2u8) is the usual step function.
It is instructive to consider the caseg@1 ~large ‘‘Planck

mass’’! and study two narrow pulses of matter moving left
and right and colliding ats150. These pulses may be ap-
proximated by thed-function distribution

~]6f!25
p

2
md~s6!, ~12!

where the normalization is such that the constantm would
coincide with the ADM mass had the universe infinite size,

m5E ds1
1

2p
@~]0f!21~]1f!2#. ~13!

In this case Eq.~10! has particularly simple form~again at
us6u,p/2),

f652
P~1 !

2g
s62

p

2g2
mus6u1

m

2g2
s6

2 1O~g23!,

~14!

where

P~1 !5
2m

P~2 !
. ~15!

When the pulses are close to each other, one has for the total
dilaton field atus6u!1,

f52
P~1 !

g
s02

p

2g2
m~ us1u1us2u!1••• . ~16!

The first term in Eq.~16! describes spatially homogeneous
component of the dilaton field, while the second term shows
precisely the same Coulomb behavior as in the case of infi-
nite space. In fact, the latter term coincides with the expres-
sion ~4! @for narrow matter pulses as defined in Eq.~12!#.
The terms omitted in Eq.~16! are of order ofg22 and they
become important atus6u;1; in particular, they ensure that
f(s0,s1) flattens out and has vanishing spatial derivatives
at s156p/2. The behavior of the dilaton field generated by
narrow pulses of matter, which are close to each other, is
schematically shown in Fig. 2.

FIG. 2. Behavior of the dilaton field generated in closed space
by narrow pulses of matter in close proximity.
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Even though the ADM mass is, strictly speaking, zero in
the closed universe, narrow pulses of matter produce the di-
laton field that shows the Coulomb behavior not far away
from the pulses. In this sense one can still use the notion of
bare energy in the gauge~6!. This bare energy~the energy of
matter! can be observed by a one-dimensional observer by
measuring the dilaton field outside the pulses but at distances
small compared to the size of the universe. With these res-
ervations, the formula for the ADM mass, Eq.~5!, still
makes sense~when all events occur and fields are studied in
a small part of the universe!. Clearly, all these observations
apply only to those matter distributions whose conformal
size,s1;r pulse, is small compared top, the conformal size
of the universe. In other words, we will be interested in con-
sidering large wave numbers:

n;
1

r pulse
@1. ~17!

The gauge~6! is not the only useful one in the closed
universe. At largeg, one can choose the gauge

f852
P~1 !

g
s80, ~18!

where prime is used to denote the quantities in this gauge. In
general, the coordinates in the two gauges are not too differ-
ent:

s68 5s61O~g21!. ~19!

The coordinate transformation has a particularly simple form
in the case of two narrow pulses; it follows from Eqs.~14!
and ~15! that in that case

s68 5s61
pm

gP~1 !
us6u2

m

gP~1 !
s6

2 1O~g22!. ~20!

Furthermore, for two narrow pulses one obtains~at
us6u,p/2),

r68 52
pm

2gP~1 !
e~s68 !. ~21!

This expression, of course, solves the constraint~2! for mat-
ter distribution

~]68 f!2~s68 !5
p

2
md~s68 !. ~22!

The fact that the matter distributions~12! and~22! are essen-
tially the same in the two gauges, is an immediate conse-
quence of Eq.~19!.

If the pulses of matter are not infinitely narrow, the above
features remain valid qualitatively. The matter distributions
in the two gauges~6! and~18! are the same up to corrections
of order g21; in particular, the spatial sizes of the lumps
differ only by a factor @11O(g21)#. The scale factor
r8(s8) changes rapidly in the regions of nonvanishing
energy-momentum density of matter, and has the form
shown in Fig. 3, the depth of the well being proportional to

the total energy of mater. We will have to say more about
this gauge in Sec. V.

III. QUANTUM STATES AND VERTEX OPERATORS

The model is quantized exactly in the same way as
bosonic string theory in Minkowskian target space ofD526
dimensions. One introduces the notation

f52
1

g
~X01X1!,

r52
1

g
~X02X1!,

f 1, . . . ,f 245X2, . . . ,X25. ~23!

Then, Xm(s), m50, . . . ,25 arecanonically normalized free
two-dimensional fields and the classical constraints~2! be-
come

1
2 ]6Xm]6Xm2 1

4 g]6
2 X~1 !50, ~24!

where the summation is performed with Minkowskian
D-dimensional metrics,hmn5(21,11, . . . ,11) and

X~6 !5X06X1.

Upon quantization, the left- and right-moving components of
these fields are decomposed in the usual way,

XL
m~s1!5 1

2 xm1 1
2 Pms11

i

2 (
k5” 0

1

k
ak

me22iks1,

XR
m~s2!5 1

2 xm1 1
2 Pms21

i

2 (
k5” 0

1

k
ãk

me22iks2,

whereak
m and ãk

m are the standard oscillator operators with
string normalization. According to Eq.~24!, the Virasoro op-
erators are

L05
1

8
P21 (

k.0
a2k

m ak
m ,

Lm5
1

2
Pmam

m1
1

2 (
kÞ0,m

:ak
mam2k

m :1
i

2
gmam

~1 ! , ~25!

FIG. 3. Form of the scale factorr8~s8!.
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and similarly for L̃0 and L̃m , wheream
(6)5am

0 6am
1 . Equa-

tion ~25! shows that the model is equivalent to the string with
background charge@22–25# or, in other words, to the
bosonic string in linear Dilaton background@20,21#,

F~x!5g~emxm!5gx~1 !, ~26!

with em5(21,1,0, . . . ,0) being a lightlike vector in
D-dimensional target space.

It is clear from Eq.~25! that the spectrum of states in the
target space is the same as the spectrum of the bosonic string
in trivial background,

M258~n21!, n50,1, . . . .

The vertex operators are, however, slightly different. For ex-
ample, the tachyon vertex operator of conformal dimension
~1,1! is

V~Q!5:eiQmXm1gX~1 !
: ~27!

with Q258. This modification can be understood as being
due to the Dilaton background~26!. Indeed, the effective
action of tachyon fieldT̃ in flat target space-time and in
linear Dilaton backgroundF(x) is

E dDx e22F@2 1
2 ~]mT̃!214T̃21cT̃31O~ T̃4!#.

By introducing the fieldT5 e2FT̃, one rewrites this action
in the form

E dDxF2
1

2
~]mT!22

MT

2
T21ceFT31O~T4!G ,

whereMT
25281(]mF)2, i.e., MT

2528 for lightlike em in
Eq. ~26!. In this notation the kinetic and mass terms are
conventional, while the trilinear vertex is proportional toeF,
precisely as required by Eq.~27!. This argument can be gen-
eralized to interactions of the fields other than the tachyon
@20,21,27#.

Let us now consider highly excited string states~parent
universes!. They are conveniently constructed by making use
of the DDF operators@28#. In the lightlike Dilaton back-
ground, the simplest choice of the DDF operators is

An
i 5E

2p/2

1p/2 ds1

p
expF4in

emXL
m~s1!

emPm G]1XL
i ~s1!,

Ãñ
i
5E

2p/2

1p/2 ds2

p
expF4i ñ

emXR
m~s2!

emPm G]2XR
i ~s2!,

~28!

with the same lightlike vectorem . Here i 52, . . .,25. These
operators obey the usual oscillator commutational relations,
and their commutational relations with the Virasoro opera-
tors @11# ensure that the state of the form

A
2n1

i 1 •••A
2ns

i s
•••Ã

2 ñ1

j 1 ••• Ã
2 ñ t

j t uP& ~29!

is a physical state provided thatuP& is the physical tachyon
state and

n11•••1ns5 ñ11•••1 ñ t . ~30!

The DDF operators~28! are similar to those introduced in
Ref. @25#. Another choice of DDF operators in this model
has been considered in Refs.@23,25#.

To make contact with the classical analysis of Sec. II,
consider suitably modified coherent states

uCP&5PL05 L̃0
expS (

n.0

1

n
f n

i A2n
i 1 (

ñ.0

1

ñ
f̃ ñ

j
Ã

2 ñ
j D uP&.

~31!

Here, f n
i and f̃ ñ

j are c-number amplitudes andPL05 L̃0
is a

projector onto the subspace of vectors obeying

~L02 L̃0!uC&50.

This projector is needed to ensure the validity of Eq.~30!
term by term in the expansion ofuCP&.

Let us impose the condition that

(
n

fnfn* 5(
ñ

f̃ ñ f̃ ñ
* ~32!

and take the amplitudesfn and f̃ ñ to be large. Consider now
matrix elements of the form

^CP8uOM~$s1%;$s2%!uCP& ~33!

and also

^CP8u]2XR
~6 !~s28 !OM~$s1%;$s2%!uCP&, ~34!

^CP8u]1XL
~6 !~s18 !OM~$s1%;$s2%!uCP&, ~35!

where the operatorsOM are products of matter fields, in
general at different points in~111!-dimensional space-time,

OM5]1XL
i 1~s1

1 !•••]1XL
i k~s1

k !•]2XR
j 1~s2

1 !•••]2XR
j q~s2

q !
~36!

and, as before, we takei 1 , . . . ,j q52, . . .,25, so that the
operatorsOM indeed contain matter fields only. The matrix
elements~33! are then the correlators of matter fields in the
coherent state~31!, while the matrix elements~34! and ~35!
are the correlators of dilaton and metric fields with matter.

These matrix elements are calculated in the Appendix
with the following result. Up to small corrections and trivial
normalization factor, they coincide with classical correlators

E
2p/2

1p/2dj1

p
OM

cl ~$s11j1%;$s22j1%!

[E
2p/2

1p/2dj1

p
OM

cl ~$s0%;$s11j1%! ~37!

and
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E
2p/2

1p/2dj1

p
]1XL

cl,~6 !~s11j1!OM
cl ~$s11j1%;$s22j1%!

~38!

@and similarly for Eq.~34!#, respectively, whereOM
cl is given

by Eq. ~36! with classical matter fields

]1Xcl,i~s1!5
1

2
Pi1 (

n.0
~ f n

i e22ins11 f n*
ie2ins1!.

The classical fieldXcl,(1) is defined by

]6Xcl,~1 !5P~`!,

while the field ]6Xcl,(2) is to be found from the classical
constraints~24!. In short, the matrix elements such as Eq.
~33! and Eq.~35! are equal to the corresponding classical
expressionsin the gauge~18!, integrated over translations in
one-dimensional space. In this way the classical picture is
restored; the particular choice of the DDF operators, Eq.
~28!, corresponds to the gauge choice~18!. Note that Eq.
~32! is precisely the classical constraintL05 L̃0 written in
this gauge.

Hence, the DDF operators~28! correspond to creation and
annihilation of dressed matter excitations in~111!-
dimensional space-timein the gaugef5const3s0. The
corresponding wave numbers aren and ñ , respectively. In
what follows we will call ~somewhat loosely! these excita-
tions as ‘‘dressed particles’’ in the~111!-dimensional uni-
verse.

IV. NONCONSERVATION OF BARE ENERGY IN 1 11
DIMENSIONS AND EMISSION PROBABILITY

A. State of the parent universe

In this section we consider the simplest DDF state

uC,n,i , j &5E dD21PC~P!uP,n,i , j &, ~39!

where

uP,n,i , j &5
1

n
A2n

i Ã2n
j uP& ~40!

andC(P) is the wave function of the center-of-mass motion
in target space, in momentum representation. The normaliza-
tion factor 1/n in Eq. ~40! is chosen in such a way that the
state uP,n,i , j & has the usualD-dimensional normalization
~recall the string normalization of the oscillator operators,
@An

i ,An
j #5nd i j ). According to the discussion in Sec. III, we

interpret this state as the state of a parent universe with two
dressed matter particles~one left moving and one right mov-
ing! of equal wave numbersn, in the gauge~18!. The nor-
malization convention in Eq.~40! corresponds to ‘‘two par-
ticles in entire one-dimensional space’’ normalization of~1
11!-dimensional quantum field theory. These particles have
equal bare energies and opposite bare momenta in 111 di-
mensions:

e left5e right52n, ~41!

pright52pleft52n.

We are interested in the limit@see Eq.~17!#,

n→`.

By making superpositions of the states~39! with different
wave numbersn, one can construct states with localized dis-
tributions of matter in one-dimensional universe. This gener-
alization is straightforward, so we stick to the state with fixed
n. The necessity to consider wave packets~39! in a target
space and not just plane waves~40! is due to the Dilaton
background that increases indefinitely asx(1)→`: ampli-
tudes of processes involving plane waves would be divergent
in this background.

It is a matter of simple algebra to see that the total
D-dimensional momentum of the state~40! is

Pk5Pk, k52, . . .,25,

P~1 ![P01P15P~1 !,

P~2 ![P02P15P~2 !2
8n

P~1 !
. ~42!

Hence, fromD-dimensional point of view, the state~40! is
interpreted as an excited string state at thenth level with the
mass

Mn
258n28 ~43!

~recall thatuP& is the tachyon state!. We consider for defi-
niteness this state in the center-of-mass frame,

Pk50, k52, . . .,25,

P~1 !5P~1 !5Mn ,

P~2 !5Mn , ~44!

although our discussion can be straightforwardly generalized
to other frames. In terms of the wave packets~39!, Eq. ~44!
means that the wave function of the center-of-mass motion,
uC(P)&, is peaked near the values determined by Eq.~44!.

B. Emission of baby universe: Energy nonconservation
in 111 dimensions

The parent universe in the state~39! can emit a baby
universe, a universe with no or small energy of matter par-
ticles. In D-dimensional language this process corresponds
to the emission of a low-lying string state~tachyon, Dilaton,
etc.! into D-dimensional target space.

Let us study whether this process always occurs with the
nonconservation of bare energy in~111! dimensions. Since
bare energy coincides with the level of the string, Eq.~41!,
we are interested in the change of theD-dimensional mass of
the highly excited string due to the emission of the low-lying
string state. At first sight, the presence of the time-dependent
Dilaton background in target space might give rise to the
nonconservation ofD-dimensional energy and momentum in
the emission process. In that case the emission of a low-lying
state would not necessarily require the change of the level of
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the heavy string; in other words, the emission of a baby
universe would not necessarily require nonconservation of
bare energy in 111 dimensions. Surprisingly, we will see in
a moment that this is not the case:D-dimensional energy and
momentum are in fact conserved in the presence oflinear
Dilaton background exactly as they do in flat target space
with no background. Hence, the emission of a baby universe
always occurs with the nonconservation of~111!-
dimensional bare energy of matter in the parent universe.

The argument presented below is fairly general; the par-
ticular form of the initial state, Eq.~39!, is unimportant. The
nonconservation of energy in~111!-dimensional parent uni-
verse due to the emission of baby universes is a generic
property of our model.

The argument for theconservationof D-dimensional en-
ergy momentum in the presence of the linear Dilaton back-
ground is conveniently presented by considering a theory of
three scalar fieldsF1, F2, F3 with cubic interaction and
exponentially changing coupling. Let the cubic coupling be

g~x!5exp~Gmxm!, ~45!

with real constantGm . Let us takeF1 to be the heaviest
~massMi), andF2 to have the massM f which for simplicity
is close toMi ~but smaller thanMi). Let the fieldF3 be
light. We are interested in the process when a particleF1
emits a particleF3 and becomes a particleF2.

Because of the unboundedness of the coupling~45!, it
does not make sense to consider plane waves of particlesF1
andF2. Instead, one has to use wave packets. Namely, con-
sider the amplitude of the decay of a wave packetC i(x,t)
describing the state of the particleF1 into a wave packetC f
of the particleF2 plus a particleF3 which has a fixed en-
ergy momentumQm ,

A5E dxdtg~x,t !C i~x,t !C f* ~x,t !exp~2 iQmxm!.

~46!

We will see in the next subsection that the amplitudes of
string decays have similar form.

Let us specify the form of the wave packetsC i andC f .
Let us consider for definiteness the nonrelativistic regime
and take wave packets narrow in momentum representation.
Let us furthermore neglect the dispersion of the wave pack-
ets with time3 ~this can be achieved by confining the particles
in moving potential wells!. Thus, we take

C i5expS 2 iM i t2
i

2Mi
Pi

21 iPix2
s2

2
~x2vi t !

2D ,

~47!

where s, the width of the packet in momentum space, is
small, andvi5Pi /Mi is the velocity of the particle, which is
also assumed to be small for simplicity. Similarly, the wave
packetC f has the form~47! with Mi , Pi , vi substituted by
M f , Pf , vf .

The integral~46! is then Gaussian, and is straightforward
to evaluate. The result, up to a preexponential factor, is

A5expF 1

2s2
@2F1~DP,DE!1F1~G,G0!

1 iF 2~DP,G,DE,G0!#G , ~48!

where

DP5Pi2Pf2Q,

DE5S Mi1
Pi

2

2Mi
D 2S M f1

Pf
2

2M f
D 2Q0

are amounts of nonconservation of momentum and energy,
and

F1~DP,DE!5
~DP!2

4
1

1

~vi2vf !
2

@DE2 1
2 ~vi2vf !DP#2,

F1~G,G0!5
~G!2

4
1

1

~vi2vf !
2

@G02 1
2 ~vi2vf !G#2.

The explicit form ofF2 is not important; it is sufficient to
note that bothF1 andF2 are real. The only important prop-
erty of F1 is that it is positive definite and vanishes iff
DP5DE50.

The imaginary part of the exponentiF 2 in Eq. ~48! is
unimportant and cancels out in the probability. Then the
probability factorizes into a term depending onDP andDE
and a term containingGm . The latter term is nothing but the
overlap of the initial and final wave packets with the weight
g(x). More importantly, sinceF1(DP,DE) is multiplied by
the large factor 1/s2 in the exponent, and because
F1(DP,DE) is non-negative and vanishes only at
DP5DE50, the exponential factor containingF1(DP,DE)
ensures conservation of energy and momentum in the limit
of small s exactly in the same manner as it does in the case
of space-time-independent coupling.

The restriction to the nonrelativistic case and Gaussian
wave packets is, in fact, not essential: the same argument
goes through for relativistic and non-Gaussian wave packets
~provided that they do not disperse with time!.

The result that energy and momentum are conserved in
spite of space-time dependence of the coupling is peculiar to
the exponential coupling whose exponent linearly depends
on xm : only in this case the dependences onDPm and Gm
factorize. For instance, if the coupling switches off at infinity
in space-time~say, has finite support!, then the same calcu-

3The dispersion of wave packets with time would complicate the
analysis considerably. The coupling changes so rapidly that in the
case of spreading wave packets the interaction often occurs in
space-time very far away from the centers of the wave packets. In
that region there are mostly modes with momenta quite different
from the central valuesPi or Pf . Hence it is difficult to separate the
effects of finite widths of the wave packets in momentum space
from possible effects of momentum nonconservation.
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lation leads to the usual result that energy and momentum
are not conserved, and the amplitude is proportional to the
Fourier component of the coupling,g̃(DP,DE).

C. Emission rate

Let us now turn to the actual calculation of the rate of the
emission of a baby universe~low-lying string state! by a
parent universe~excited string! in the state~39!. We explic-
itly consider the emission of a tachyon, although the analy-
sis, and results, are the same for the emission of a Dilaton or
graviton as for the baby universe. Let theD-dimensional
momentum of the outgoing tachyon beQm . We first have to
specify the range ofQm which is of interest for our purposes.

The emission of a baby universe due to the collision of
~111!-dimensional particles with wave numbers equal ton
has a chance to be local if the characteristic conformal time
of the process of emission,Ds0, is of order

Ds0;
1

n
.

This conformal time is related to theD-dimensional time via

Dx05P0Ds0. ~49!

The D-dimensional time characteristic to the tachyon emis-
sion can be estimated in the center-of-mass frame of the
decaying string as

Dx0;
1

Q0
.

This is the time after which the tachyon is formed and splits
off the initial string. Hence we are interested in the tachyon
energies of order

Q0;
n

P0
;An, ~50!

where we made use of Eqs.~43! and~44!. SinceQ0 is large,
we neglect the tachyon mass where appropriate in what fol-
lows.

We are interested in the process in which the initial string
at leveln decays, by emitting a tachyon, into leveln8. Ac-
cording to Eqs.~43! and~50!, and because of energy conser-
vation in D dimensions, we have

m[n2n8;n. ~51!

We intend to sum up over all final states at given leveln8.
Usually, this summation is conveniently performed by evalu-
ating the forward amplitude shown in Fig. 4 where curved
lines denote the tachyon~cf. Ref. @12#!. Because of the
space-time dependent coupling, the procedure is somewhat
tricky in our case. It will be convenient to consider first the
amplitude with different momenta, as shown in Fig. 5, and
setP5P8 andK5Q in the end. The amplitude is given by

Ai j ~P,P8;K,Q!5k2^P8,n,i , j uV~K !DV~Q!uP,n,i , j &,
~52!

wherek is the string coupling constant,V is the vertex op-
erator~27! and D is the usual string propagator~recall that
the Virasoro operatorsL0 and L̃0 coincide with conventional
ones!. Here we consider the plane wave~40! as the initial
state; the fact that we actually have to deal with wave pack-
ets such as Eq.~39! has been already discussed in the previ-
ous subsection.4

The evaluation of the amplitude~52! is straightforward
and parallels that of Ref.@12#. One finds

Ai j ~P,P8;K,Q!

5k2E dDxei ~P2Q!xe2 i ~P82K !)xe2gx~1 !

3E dzd z̄~z z̄!1/4~Pm2 igem!~2Qm2 igem!
1

n2
Fi j ~z, z̄ !,

~53!

where we have kept the integration over the center-of-mass
coordinatex and denoted

Fi j ~z, z̄ !5u12zu
1
2 ~Km2 igem!~2Qm2 igem!Bi j ~z!Bi j ~ z̄ !,

~54!

with

4The procedure below involves manipulations with formally di-
vergent integrals, etc. This procedure can be checked by explicit
analysis of amplitudes involving low-lying string states only.

FIG. 4. Forward amplitude; curved lines denote the tachyon.
FIG. 5. Amplitude with different momenta.
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Bi j ~z!5E du

2p

du8

2p

1

un11

1

~u8!n11
~12u!2nK~1 !/P~1 !S 12

u

zD nQ~1 !/P~1 !

~12u8!nK~1 !/P8~1 !
~12zu8!2nQ~1 !/P8~1 !

3F1

4S Pi1Qi
u

z2u
2Ki

u

12uD S P8 j1K j
u8

12u8
2Qj

zu8

12zu8
D 1d i j

uu8

~12uu8!2G . ~55!

The integrations here run around small circles in complexu
andu8 planes surrounding the origin. In Eqs.~53! and ~54!
we used the lightlike vectorem5(21,1,0, . . . ,0) defined in
Sec. III.

To extract the decay rate into final states at given leveln8,
we expandF(z, z̄ ) in a formal series inz, z̄ ~we omit su-
perscriptsi , j temporarily!:

F~z, z̄ !5 (
m,m852`

1`

Fmm8z
2mz̄2m8. ~56!

At m5m8 the corresponding integrals in Eq.~54! have
poles:

FmmE dzd z̄~z z̄!1/4~Pm igem!~2Qm2 igem!2m

;
pFmm

2
1

4
~Pm2 igem!~2Qm2 igem!2m21

;
8pFmm

~Pm2Qm2 igem!21~Mn
228m!

. ~57!

These pole terms lead to contributions to the amplitude~53!
which can be written in the form

Ai j ~P,P8;K,Q!

5(
m

8pk2
1

n2
FmmE dDxdDydDPfe

i ~P2Q!x1gx~1 !

3
e2 iP f ~x2y!

~2p!D~2Pf
22Mn2m

2 !
e2 i ~P82K !y1gy~1 !

. ~58!

This expression is recognized as the sum of the amplitudes
of processes going through states with massesMn2m in a
theory with trilinear coupling which exponentially depends
on x(1). Hence, the probability of the decay into level
n85n2m is determined byFmm. The total probability in-
volves also the overlap between the initial and final wave
functions of the center-of-mass motion. This overlap has
been considered in the previous subsection; it leads to the
conservation of energy and momentum inD dimensions.
Therefore, we can setP85P andK5Q and obtain

(
f

uAf
i j ~n→n2m;Q!u258pk2

1

n2
Fmm

i j ~P85P;K5Q!,

~59!

where Af
i j denotes the amplitude of the decay into a final

statef at level (n2m) and a tachyon with momentumQ; the
sum in the left-hand side runs over all final states at the level
(n2m). This expression should be integrated over the phase
space of the two final string states.

To estimate the integral over the phase space, let us study
first the behavior ofFmm at largen andm. We recall that we
are interested in tachyons with energiesQ0;An. Let us first
consider the generic case,

Q~1 !;Q~2 !;Qk;An. ~60!

At K5Q andP85P, we have

Fmm8
i j

5Rm
i j Rm8

i j , ~61!

where the form ofRm
i j ‘ follows from Eqs.~54!–~56!,

Rm
i j 5E du

2p

du8

2p

dz

2p

1

un11~u8!n11z2m11

3 ~12z!22F S 12
u

zD ~12u8!

~12u!~12zu8!
G nQ~1 !/P~1 !

3F1

4S Pi1Qi
u~12z!

~z2u!~12u! D
3S Pj1Qj

u8~12z!

~12u8!~12zu8!
D 1d i j

uu8

~12uu8!2G . ~62!

In the regime~60!, Rm can be written as

Rm
i j 5E dudu8dzPi j ~u,u8,z!e2nS~u,u8,z!, ~63!

where

S5 lnu1 lnu82
m

n
lnz2

Q~1 !

Mn
F2 ln~12u!1 lnS 12

u

zD
1 ln~12u8!2 ln~12zu8!G

and Pi j is a preexponential factor that depends onn only
weakly. Here we made use of the fact thatP(1)5Mn in the
center-of-mass frame we consider.

In the regime~60! all terms inS are of order 1, so the
integral in Eq.~63! can be calculated by saddle point tech-
nique. At the saddle point one finds
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S5xS m

n D2xS m

n
2

2Q~1 !

Mn
D , ~64!

where

x~n!5~12n!ln~12n!1~11n!ln~11n!.

Making use of energy-momentum conservation, one obtains
~again in the center-of-mass frame of the decaying string!

2
m

n
,S m

n
2

2Q~1 !

Mn
D ,

m

n
,

so S is always positive. Therefore, we conclude that the de-
cay probability is exponentiallysuppressedin the kinemati-
cal region~60!,

P~n→n2m;Q!}e22nS.

Equation~64! implies that the decay probability may be
unsuppressedin the kinematical region different from Eq.
~60!, namely, at

Q~1 !;
1

An
, ~65!

i.e., at

nQ~1 !

Mn
;1. ~66!

In this region,

nS5x8S m

n D32
nQ~1 !

Mn
;1.

Clearly, the saddle point calculation is not valid in this re-
gion, so we proceed in a different way. To estimate the in-
tegral in Eq.~62! in the regime~66!, we make use of the
following asymptotic formula@12#:

E dz1•••dzkz1
2la1

•••zk
2lak) ~12zp!ap

3) ~12zpzq!bpq) ~12zp /zq!gpq

}S 1

l D (ap1( bpq1( gpq1k

,

which is valid asl→` with ap ,ap ,bpq ,gpq fixed. We ob-
tain

Rm
i j }n

at largen. We then recall Eqs.~59! and~61! and find that at
largen,

(
f

uAf
i j ~n→n2m;Q!u25 independent ofn

in the kinematical region~65!.

To estimate the total emission probability, we note that in
the region~65! one has

QT
2;1,

whereQT5(0,0,Q2, . . . ,Q25). Hence, the probability to de-
cay into the level (n2m) is of order

P~n→n2m!5E dD22QT

~2p!D22

1

Q0MnEn2m

3(
f

uAf
i j ~n→n2m;Q!u2;

1

n3/2
,

where En2m;Mn;An is the energy of the final excited
string, andQ0;An according to Eq.~50!. The number of
final states contributing to the decayDm is of ordern, so we
have finally

(
m

P~n→n2m!;
1

An
.

This is the decay probability per unitD-dimensionaltime x0.
To obtain its interpretation in~111!-dimensional terms, we
recall Eq.~49! and find that the emission rate per unit con-
formal time s0 of ~111!-dimensional universe isindepen-
dentof n at largen.

This is our principal result: the rate of the emission of
baby universes is unsuppressed at largen, when the emission
process should occur locally. This emission rate is propor-
tional to the collision rate of two narrow wave packets in
one-dimensional universe of conformal sizep, the propor-
tionality constant being independent of the one-dimensional
momenta of the ‘‘particles’’ or width of their wave packets
and being determined by the string coupling constant only.

V. DISCUSSION AND CONCLUSION

Let us summarize our results for the simplest version of
the dilaton gravity with conformal matter in 111 dimen-
sions. We considered mostly the case of compact one-
dimensional universe and studied pulses of matter whose
size is small compared to the size of the universe~i.e., whose
wave numbersn are large!. At least at the classical level
these pulses, in the gauge

r5const3s0 ~67!

produce long-ranged dilaton field which is approximately
Coulomb at scales small compared to the size of the uni-
verse. The magnitude of this long-ranged field is propor-
tional to the energy of matter, which we called bare energy.
The notion of ADM mass makes sense at these scales and
coincides with the ADM mass defined for infinite space.

To construct quantum states, it was convenient to work in
a different gauge,

f5const3s0. ~68!

It is important that at largeg, the sizes of matter pulses in the
two gauges are similar, again at the classical level. In other
words, the pulses that are narrow in the gauge~67! are also
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narrow in the gauge~68!, so the processes we were interested
in are local in both gauges. Making use of the gauge~68!, we
considered, at the quantum level, the simplest state of the
parent universe that contains one left-moving and one right-
moving dressed matter ‘‘particles’’ with large wave number
n. The collisions of these particles may eventually induce the
emission of baby universes. If the relevant quantum numbers
of the baby universe (D-dimensional momentaQm of the
microscopic string! are large enough, the emission process is
local in the parent universe. We have found that the emission
always occurs with the nonconservation of energy of matter,
and that the probability of this process is finite at largen.

At first sight, there appears to be a conflict between the
locality of the emission of a baby universe, and hence the
locality of the nonconservation of matter energy, and the
existence, in the gauge~67!, of the long-ranged dilaton field
whose strength is determined by the matter energy. To see
that this conflict is only apparent, let us present a scenario
consistent with both of the above properties. We stress that
the following consideration is only a scenario, as its confir-
mation or rejection would require the analysis of the final
state of the parent universe, which goes well beyond the
scope of this paper. Also, the discussion below is essentially
classical, while the actual analysis should necessarily be at
the quantum level.

Let us again consider the collision of two narrow pulses
of matter, and choose the gauge~68!. In this gauge the field
r and the matter energy density are those shown in Figs. 3
and 6~a!. If the matter energy was conserved, the final state
would be characterized by the configuration shown in Fig.
6~b! by dashed lines: the fieldr between the pulses would
change from2r0 to 1r0 where r0 is determined by the
total matter energy in the pulses@see Eqs.~21! and ~12!,
~13!#. If the energy is not conserved at the moment of the
collision ~i.e., if the collision of the pulses induces splitting
off of the baby universe!, the height of the matter pulses and,

correspondingly, the height of the plateau ofr are smaller in
the final state; this configuration is shown in Fig. 6~b! by
solid lines.

Clearly, the process shown in Fig. 6 may be perfectly
local in ~111!-dimensional space-time. It shows that the
nonconservation of matter energy does not require nonlocal-
ity. However, this processcannot be transformed into the
gauge~67!, as the fieldr does not obey the field equation
]a]ar50 everywhere in space-time. To see what happens if
the gauge~67! is chosen for theinitial state, let us perform
the gauge transformation that would transform the ‘‘conven-
tional’’ configuraion ~i.e., the configuration of the conven-
tional process with energy conservation! into the gauge~67!.
In the case of infinitely narrow pulses this gauge transforma-
tion is the inverse of Eq.~20!. Then the initial state is one
shown in Fig. 2~with r5const•s0 everywhere!, while the
final state is that shown in Fig. 7 by solid lines~only a small
region of the universe is presented in Fig. 7; the final con-
figuration of the conventional process with energy conserva-
tion is again shown by dashed lines for comparison!. The
final dilaton fieldf in this gauge is the same as that of the
conventional process; in particular, its long range behavior is
not affected by the energy nonconservation. On the other
hand, the fieldr in the final state is nontrivial and corre-
sponds to longitudinal gravitational waves. It is the presence
of these longitudinal waves that ensures the validity of the
constraints after the collision, even though the energy of
matter is not conserved and the dilaton field does not change
asymptotically. Of course, the longitudinalr wave may be
gauged away, but the corresponding gauge transformation
would be nontrivial far away from the collision region, and
would also induce longitudinal gravitational wave in the ini-
tial state.

In infinite space, the gauge~68! cannot be imposed, so we
cannot use the arguments based on Fig. 6. However, the final
states such as those shown in Fig. 7 are still possible in the

FIG. 6. ~a! The fieldr and the matter energy density in the gauge~68!. ~b! Final state where matter energy is conserved~dashed lines!
and where it is not conserved~solid lines!.
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gauge wherer50 initially. For these final states to appear,
the field equations should be violated only in a small region
of space-time~where the two pulses collide!, and the entire
process may occur locally. The ADM mass viewed from
infinite distance is conserved, but this conservation is due to
the appearance of the longitudinal gravitational waves that
compensate for the nonconservation of matter energy.

It remains to be understood what part, if any, of the dis-
cussion of this paper may be relevant to~311!-dimensional
theories. There exist semiclassical arguments, based on the
study of fluctuations@29# about and analytical continuation
@30# of the Euclidean wormhole solution of Ref.@5#, favoring
the interpretation of the wormhole as describing the process
in which a baby universe branches off and then ‘‘flies away’’
in ~mini!superspace. This process may be very similar to the
one discussed in this paper in~111!-dimensional context.
On the other hand, the possible nonconservation of bare en-
ergy was not explicit in the semiclassical treatment of~311!-
dimensional Euclidean wormholes. An independent problem
which can possibly be treated ‘‘phenomenologically,’’ as we
did in this section, is whether the nonconservation of bare
energy in 311 dimensions is consistent with locality, and, in
particular, whether locality requires the generation of longi-
tudinal gravitational waves. We hope our study of~111!-
dimensional toy model will be helpful to understand these
problems.
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APPENDIX

Let us outline the calculation of the matrix elements~33!

and ~35! in the leading order infn , f̃ ñ . First, we make the
projection onto the subspaceL05 L̃0 explicit by writing the
coherent state~31! in the form

uCP&5E
2p/2

p/2 dj

p
expS (

n

1

n
fn~j!A2n

1(
ñ

1

ñ
f̃ ñ~j!Ã2 ñD uP&, ~A1!

where

fn~j!5fne2inj,

f̃ ñ~j!5 f̃ ñe22i ñ j. ~A2!

The representation~A1! coincides with Eq.~31! up to nor-
malization. The fact that the state~A1! obeys the constraint
(L02 L̃0)uCP&50 follows from the commutational relations
of the DDF operators withL0 and L̃0,

@L0 ,An
i #52

n

2
An

i ,

@ L̃0 ,An
i #5

n

2
An

i ,

and similarly forÃñ
j .

Consider now the norm of these states. One has

^CP8uCP&5F E dj1dj2

p2
expS ( fnfn* e2in~j12j2!

1( f̃ ñ f̃ ñ
* e22i ñ ~j12j2!D G ^P8uP&.

At large fn and f̃ ñ this is a saddle point integral. Taking into
account Eq.~32! we find that the integrand does not depend
on (j11j2), while the saddle point in (j12j2) is at

FIG. 7. Final state in the gauge~67! ~solid lines!, and with
energy conservation~dashed lines!.
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j12j250. ~A3!

Hence we obtain the usual result

^CP8uCP&5^P8uP&expS ( fnfn* 1( f̃ ñ f̃ ñ
* D

up to a preexponential factor.
Let us turn to the matrix elements~33! involving matter

fields only and consider explicitly the left-moving sector.
The DDF operators can be written as

An
i 5E

2p/2

p/2 ds1

p
expS 2in

x~1 !

P~1 !
12ins1

2
2n

P~1 !(
1

k
ak

~1 !e22iks1D S 1

2
Pi1( aq

i e22iqs1D .

~A4!

SincePi andP(1) commute withAn
i , one can set

Pi5Pi ,P~1 !5P~1 !

in the operatorOM for calculating the matrix element~33!.
Furthermore,ak

(1) commute withOM and with all factors in
Eq. ~A4!, so one can set them equal to zero and write effec-
tively

An
i 5expS 2in

x~1 !

P~1 !D an
i .

We have to calculate the matrix element

^CP8ua2r 1

i 1
•••a

2r s

i s
•••ap1

j 1 . . . apt

j t uCP&, ~A5!

with r 1 , . . . ,r s ,p1 , . . . ,pt.0, which is a building block of
Eq. ~33!. Note that the operator ordering in Eq.~A5! is in
fact not essential at largefn , as is usual in the classical limit.
One finds for this matrix element

E dj1dj2

p2 K P8UexpF2i ~r 11•••1r s2p12•••2pt!
x~1 !

P~1 !G ~RM!UPL f r 1
* ~j2!••• f r s

* ~j2!• f p1
~j1!••• f pt

~j1!~RM!,

~A6!

where we omitted the superscriptsi 1 , . . . ,j t ; ~RM! denotes
the corresponding factors due to right-moving modes. All
dependence on (j11j2) in this integral comes from the ex-
ponents inf r* (j2) and f p(j1), see Eq.~A2!, and similar ex-
ponents for right-moving components. This makes the matrix
element in Eq.~A6! equal to ^P8uP&. The integral over
(j12j2) is still of saddle point structure with the saddle
point ~A3!. Hence the expression~A6! simplifies and be-
comes equal to

^CP8uCP&•••E dj

p
f r 1
* ~j!••• f r s

* ~j!• f p1
~j!••• f pt

~j!~RM!.

We conclude that in the leading order infn , f̃ ñ , the calcu-
lation of the matrix elements of the matter operators is re-
duced to the substitution

an→e22inj f n , n.0,

a2n→e2inj f n* , n.0,

with subsequent integration overj. This proves the relation
between the matrix elements~33! and their classical counter-
parts~37!.

Let us turn to the matrix elements~35!. SinceP(1) and
ak

(1) commute withOM and with the DDF operators, the
operator]1XL

(1) reduces to

]1XL
~1 !5 1

2P~1 !, ~A7!

when sandwiched as in Eq.~35!. To find the matrix elements
involving ]1XL

(2) one notices that in the leading order infn ,

f̃ ñ

^CP8uLmOMuCP&50, ~A8!

because the commutator ofLm andOM does not containfn ,
f̃ ñ ~recall thatuCP& anduCP8& are physical states!. Equation
~A7! and just established relation between the matrix ele-
ments~33! and classical correlators~37! immediately imply
the desired relation between the matrix elements~35! and
their classical versions~38!. This relation can of course be
obtained by an explicit calculation.
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