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We derive aspacetimeformulation of quantum general relativity from~Hamiltonian! loop quantum gravity.
In particular, we study the quantum propagator that evolves the three-geometry in proper time. We show that
the perturbation expansion of this operator is finite and computable order by order. By giving a graphical
representation in the manner of Feynman of this expansion, we find that the theory can be expressed as a sum
over topologically inequivalent~branched, colored! two-dimensional~2D! surfaces in 4D. The contribution of
one surface to the sum is given by the product of one factor per branching point of the surface. Therefore
branching points play the role of elementary vertices of the theory. Their value is determined by the matrix
elements of the Hamiltonian constraint, which are known. The formulation we obtain can be viewed as a
continuum version of Reisenberger’s simplicial quantum gravity. Also, it has the same structure as the Ooguri-
Crane-Yetter 4D topological field theory, with a few key differences that illuminate the relation between
quantum gravity and topological quantum field theory. Finally, we suggest that certain new terms should be
added to the Hamiltonian constraint in order to implement a ‘‘crossing’’ symmetry related to 4D diffeomor-
phism invariance.@S0556-2821~97!01718-9#

PACS number~s!: 04.60.Ds, 04.60.Gw

I. INTRODUCTION

An old dream in quantum gravity@1# is to define a mani-
festly spacetime-covariant Feynman-style ‘‘sum over trajec-
tories’’ @2#, sufficiently well defined to yield finite results
order by order in some expansion. The Hamiltonian theory
has obtained encouraging successes in recent years, but it
suffers for the well-known lack of transparency of the frozen
time formalism, for the difficulty of writing physical observ-
ables, and for operator ordering ambiguities. These problems
are related to the lack of manifest four-dimensional~4D!
covariance. Here, we derive a covariant spacetime formalism
from the Hamiltonian theory. This is of course the path fol-
lowed by Feynman to introduce his sum over trajectories in
the first place@3#. What we obtain is surprising: we obtain a
formulation of quantum gravity as a sum over surfaces in
spacetime. The surfaces capture the gravitational degrees of
freedom. The formulation is ‘‘topological’’ in the sense that
one must sum over topologically inequivalent surfaces only,
and the contribution of each surface depends on its topology
only.1 This contribution is given by the product of elemen-
tary ‘‘vertices,’’ namely, points where the surface branches.
The sum turns out to be finite and explicitly computable
order by order. The main result of this paper is the construc-
tion of this finite ‘‘sum over surfaces’’ formulation of quan-
tum gravity.

Let us sketch here the lines of the construction. Given
gravitational data on a spacelike hypersurfaceS i , the three-
geometry on a surfaceS f at a proper timeT in the future of
S i ~as measured along geodesics initially at rest onS i) is
uniquely determined in the classical theory. It is then natural
to study the corresponding evolution operatorU(T), that
propagates states fromS i to S f in the quantum theory. This
operator, first considered by Teitelboim@4#, codes the dy-
namics of the quantum gravitational field, and is analogous
to the Feynman-Nambu proper time propagator@5# for a rela-
tivistic particle. Here, we construct the operatorU(T) in
quantum general relativity~GR!, and we expand it in powers
of T. We obtain a remarkable result: the expansion is finite
order by order. This is our first result.

Next, we construct a graphical representation of the ex-
pansion. This is obtained by observing that topologically in-
equivalent colored 2D surfacess in spacetime provide a
natural bookkeeping device for the terms of the expansion.
We obtain an expression forU(T) as a sum of terms labeled
by surfacess bounded by initial and final states. A surfaces
consists of simple components~two-manifolds!, or ‘‘faces,’’
that carry a positive integer or color. Faces meet on 1D
‘‘edges,’’ colored as well. Edges, in turn, meet at branching
points, denoted ‘‘vertices.’’ The weight of each surface in
the sum is a product of factors associated to its vertices. The
value of a vertex is determined by the Hamiltonian con-
straint, and is given by a simple function~involving Wigner
3n-j symbols! of the colors of the adjacent faces and edges.
This ‘‘sum over surfaces’’ version of the dynamics of quan-
tum general relativity is our second result.

The construction allows us to consider transformation
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properties of the Hamiltonian constraint under 4D diffeomor-
phisms ~diff ! in a manifestly covariant way. This analysis
suggests the addition of certain new terms to the constraint,
corresponding to an alternative operator ordering, which
implements a ‘‘crossing’’ symmetry at the vertices, with a
nice geometrical appeal. Thus, 4D diff invariance may be a
key for reducing the present ambiguity in the operator order-
ing. Furthermore, the new terms seem to prevent some po-
tential problems with locality pointed out by Smolin@6#. The
introduction of these new terms in the quantum Hamiltonian
is our third result.

The idea that one could express the dynamics of quantum
gravity in terms of a sum over surfaces has been advocated
in the past, particularly by Baez@7# and Reisenberger@8#. On
the lattice, a sum over surfaces was recently developed by
Reisenberger@9#, and the lattice construction has guided us
for the continuum case studied here. It is important to em-
phasize, however, that the present construction is entirely
derived from the canonical quantum theory in the continuum.

The sum over surfaces we obtain has striking similarities
with topological quantum field theory~TQFT!. More pre-
cisely, it has the same kinematic as the Ooguri-Crane-Yetter
model @10,11#, a four-dimensional~4D! TQFT which ex-
tends the Ponzano-Regge-Turaev-Viro 3D TQFT@12–14# to
four dimensions. Essentially, the difference is given just by
the weight of the vertices. In Appendix B we discuss simi-
larities and differences between the two theories. The discus-
sion, we believe, sheds much light over the tantalizing issue
@15# of the relation between finite-number-of-degrees-of-
freedom TQFT and quantum gravity. In particular, we argue
that a diff-invariant quantum field theory with aninfinite
number of local~but nonlocalized! degrees of freedom—
such as quantum general relativity—can be obtained by hav-
ing a sum over arbitrarily fine triangulations, instead of tri-
angulation independence, as in combinatorial TQFT’s.

On the other hand, the sum over surfaces we obtain can be
viewed as~a first step towards! a concrete implementation of
Hawking’s sum over four-geometries@2#. In fact, the sur-
faces over which we sum have an immediate interpretation
as ‘‘quantum’’ four-geometries, as we will illustrate. This
fact should make the the general techniques of covariant gen-
eralized quantum mechanics@16# available to quantum grav-
ity, potentially simplifying the difficulties with physical ob-
servables of the Hamiltonian formalism.

The basis of our construction is loop quantum gravity
@17#. The finiteness of the sum-over-surfaces and the picture
of a ‘‘discrete four-geometry’’ that emerges from this work
are related to the fact that geometrical operators have dis-
crete spectra. The discreteness of the spectra of area and
volume—and the ‘‘quantized’’ structure of space that these
spectra suggests—is a central result in loop quantum gravity,
first obtained by Rovelli and Smolin in@18#, and later con-
firmed and clarified by a number of authors@19–23#. The
main ingredient of our construction is the quantum Hamil-
tonian constraint@17,24#. In particular, Thiemann’s version
of the Hamiltonian constraint@25# and some variants of it
play an essential role here. Matrix elements of this operator
have been computed explicitly in@26#, using the methods
developed in@21#.

In Sec. II, we summarize the basics of nonperturbative
loop quantum gravity. In Sec. III we define the proper time

propagator and its expansion. In Sec. IV we show that the
proper time propagator can be expressed as a sum over sur-
faces. In Sec. V we discuss crossing symmetry and the new
terms of the Hamiltonian constraint. In Sec. VI we summa-
rize and comment our results. Appendix A is a brief glossary
of some geometrical terms employed. Appendix B contains
the comparison with TQFT. In Appendix C we give an ex-
ample of a 3D diff-invariant scalar product.

II. CANONICAL LOOP QUANTUM GRAVITY

A. Kinematic

We start with nonperturbative canonical quantum gravity
in the loop representation@17#. The Hilbert spaceH of the
theory is spanned by the basisuS&, whereS is a spin network
@27#. A spin network is a colored graphG embedded in a
~fixed! three-dimensional compact manifoldS.2 For a fixed
choice of a treelike expansion at the nodes, these states are
orthonormal@21,28,29# ~see@21# for details on their normal-
ization!:

^S8uS&5dSS8; ~1!

the matrix elements of the change of basis between different
nodes’ expansion can be derived from Eq.~C7!. An equiva-
lent construction of this Hilbert space can be obtained in
terms of functions over~generalized! connections@30#. For
details on the equivalence between the two formalisms, see
@31#.

The dynamics of quantum general relativity is governed
by two operators inH: the Diff constraint operatorC@NW # and
the Hamiltonian constraintCL@N#. Let us examine them.

B. The diff constraint and its solutions

For every diffeomorphismf :S→S ~in diff 0, the compo-
nent of the diffeomorphism group connected to the identity!,
let D@ f # be the operator inH giving the natural action
f :S° f •S of the diffeomorphism on the spin network states.
Namely,

D@ f #uS&5u f •S&. ~2!

For every vector fieldNW on S that generates a one parameter

2We recall the definition of coloring of a spin network@21#. Each
node of the graph with valence higher than 3~more than three
adjacent links! is arbitrarily expanded in a treelike trivalent sub-
graph. The internal links of the subgraph are denoted virtual links.
The coloring of the graph is an assignment of a positive integer to
each real or virtual link—in such a way that at every trivalent node
the sum of the three colors is even and none of the colors is larger
than the sum of the other two. The set of the colorings of the virtual
links of a node is also called coloring of the node. A coloring can be
thought as an assignment of an irreducible SU~2! representation to
each link and of an invariant coupling tensor to each node.
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family f t of diffeomorphisms~by d ft /dt5NW , f 05identity!3

the Diff constraint is defined by4

C@NW #52 i
d

dt
D@ f t#U

t50

~3!

and corresponds to the classical diffeomorphism constraint
smeared with Shift functionNW . The spaceHdiff of the solu-
tions of the diffeomorphism constraints is defined as
Hdiff5H/diff 0. It is spanned by a basisus&, wheres is ans
knot, namely an equivalence class of spin networks under
diffeomorphisms, which define the linear structure ofHdiff .
One can define the scalar product inHdiff by an integration
@32,33# over diff0. If SPs andS8Ps8,

^sus8&5NE
diff0

@d f#^ f •SuS8&. ~4!

N is a normalization factor. Equation~4! is meaningful be-
cause the integrand vanishes over most of the integration
space~because two spin network states are orthogonal unless
they have the same graph! and is constant on a discrete num-
ber of regions whose volume is normalized to one byN.
Thus we have

^sus8&5(
r

^rSi uS8&, ~5!

where the sum is over the~discrete! automorphismsr that
send the graph and the links’ coloring into themselves. See
Appendix C for an example, and Refs.@32,30# for a rigorous
construction. It is useful to view ans-knot state as a group
integral of a spin network state:

^su5NE
diff0

@d f#^ f •Su, ~6!

whereSPs.

C. The Hamiltonian constraint

The Hamiltonian constraint that we consider is the
density-weight 1 Hamiltonian density, smeared with a
densit-weight 0 Lapse functionN. The Lorentzian Hamil-
tonian constraintCL@N# can be written as the sum of two
terms:CL@N#5C@N#1V@N# @34#, whereCL@N# is the Eu-
clidean Hamiltonian constraint. For simplicity we deal here
only with the first term. Thus, we are dealing below with
Euclidean quantum gravity only. We expect the methods de-

veloped here to be extendible to theV@N# term as well, and
therefore to Lorentzian GR, using the techniques developed
by Thiemann@25#.

The definition ofC@N# is plagued by ordering ambigu-
ities @24,25,35#. Some of these are fixed by 3D diff invari-
ance @24#. In Sec. V we discuss how 4D diff invariance
might fix others. Here, we recall Thiemann’s version of the
Hamiltonian constraint, which is the starting point of our
construction. First, the nonsymmetric operatorCns@N# is de-
fined as

Cns@N#uS&52 (
i Pn~S!

N~xi !

3 (
~JK!Pe~ i !

(
e561,e8561

AiJKee8~S!DiJKee8uS&.

~7!

Herei labels the nodes ofS @which form the setn(S)#, xi are
the coordinates of the nodei , (JK) labels the couples of
distinct links adjacent to the nodei @these form the sete( i )#,
and the operatorDiJKee8

was introduced in@35#; it acts on
the spin network by creating two new trivalent nodesi 8 and
i 9 on the the two linksJ andK, respectively, connected by a
link with color 1, and addse ~respectivelye8) to the color of
the link connectingi and i 8 ~respectivelyi and i 9). This is
illustrated in Fig. 1.

The precise location of the nodes and the link added is an
arbitrary regularization choice. The coefficientsAiIJ ee8(S) of
Thiemann’s operator are well defined and can be computed
explicitly @26#. They are functions of the colors of the links
adjacent Tothe nodei ; they are finite and can be expressed as
products of linear combinations ofn-j symbols of SU~2!.

It is important to notice that Thiemann’s operator was
derived using the infinite-dimensional differential-geometry
techniques introduced in@30#. These differential techniques
were introduced as a mathematical systematization of the
ideas on loop quantization introduced in@17#. They have
shed much light on loop quantum gravity, have provided a
rigorous mathematical foundation of the theory, and have
led, among other results, to Thiemann’s operator. However,
the operator itself is a well-definedalgebraicoperator on the
spin network basis, and the computation of its matrix ele-
ments is easier using algebra than using infinite-dimensional
differential geometry@21#. The equivalence between the
purely algebraic formalism~‘‘loop representation’’ or ‘‘spin
network representation’’! and the differential formalism
~‘‘connection representation’’! is shown in detail in@31# ~see
also @29,23#!. The situation is analogous to the two well-
known ways of computing the spectrum of the harmonic
oscillator: one can use Dirac’salgebraic technique, in the

3We put an arrow over vectors (NW ), but not over spatial coordi-
nates (x) or diffeomorphisms (f ).

4Rigorously speaking,C@NW # is not well defined onH. This is due
to funny ~kinematical! inner product~1!, in terms of which the
action of the diffeomorphism group is not strongly continuous. This
fact does not disturb the construction of the theory, because the only

role played byC@NW # is to implement invariance under the finite
transformations it generates. These are well defined@30#. Here, it is

useful to considerC@NW # as well, because it plays a role in the
formal manipulations below.

FIG. 1. Action ofDiJKee8. r , q, andp are the colors of the links
I , J, andK.
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un& basis or, alternatively, one can solve thedifferential
Schrödinger equation, in the coordinate basis. Each basis has
its own advantages, but the two formalisms are equivalent,
and there is no sense in which one representation is more
‘‘rigorous’’ than the other. In particular, spectra of area and
volume in quantum gravity can be computed either using
algebraic techniques~this is the way they werefirst com-
puted and their discreteness was discovered in@18#! or using
differential techniques~see@23#, and references therein!. The
resulting spectra are, of course, equal@22#.

The full Euclidean Hamiltonian constraintC@N# is then
defined by symmetrizingCns@N#:5

^S8uC@N#uS&5
1

2
~^S8uCns@N#uS&1^SuCnsuS8&!. ~8!

Explicitly, we have

^S8uC@N#uS&5 (
i Pn~S!

N~xi ! (
~JK!ee8

AiJKee8
~S!

3^S8uDiJKee8
uS&

1 (
i 8Pn~S8!

N~xi 8! (
~JK!ee8

Ai8JKe,e8~S!

3^S8uDi8JKee8
† uS&, ~9!

where

^S8uDiJKee8
† uS&5^SuDiJKee8uS8&. ~10!

Notice that the Hamiltonian constraint is ‘‘local,’’ in the fol-
lowing sense. Given a spin networkS, we may cut it in two
parts, by cuttingn links, obtaining two spin networks with
open endsS̃ and Ŝ. Imagine we have two spin networksSi

andSf that can be cut asS̃i andŜi , and, respectively,S̃f and
Ŝf . Imagine that Ŝi5Ŝf . Then the matrix elements

^Sf uC@N#uSi& do not depend on the ‘‘hat’’ componentsŜi

and Ŝf , so we can write

^Sf uC@N#uSi&5^ S̃f uC@N#u S̃i&. ~11!

This decomposition will play a role below.
We simplify notation by introducing a single discrete in-

dex a,b . . . , to replace the discrete set of indices
( i ,JK,e,e8). For every spin networkS, a ranges over a fi-
nite set@S# of values, with

4 )
i Pn~S!

v i~v i21!

2
~12!

values, wherev i is the valence of the nodei . We also indi-
cate byxa the coordinates of the node with indexa. Using
this, we have

^S8uC@N#uS&5 (
aP[S]

N~xa!Aa~S!^S8uDauS&

1 (
bP[S8]

N~xb!Ab~S!^S8uDb
† uS&. ~13!

The Hamiltonian constraint transforms covariantly under
the diffeomorphisms generated by the diff constraint

$C@NW #,C@N#%5C@LNW N#, ~14!

whereLNW is the Lie derivative alongNW . Under a finite dif-
feomorphismf , we have

D@ f #C@N#D21@ f #5C@Nf #, ~15!

whereNf is the transformed Lapse:

Nf~x![N@ f ~x!#. ~16!

The transformation properties ofC@N# under 4D diffeomor-
phisms are less clear. In the canonical formalism these are
controlled by the commutator ofC@N# with itself, which,
however, is not fully under control, due to the interplay be-
tween regularization and 3D diff invariance@36#. ~Notice
that in @25# it is shown that the commutator
$Cns@N#,Cns@M #% vanishes on diff-invariant states; the com-
mutator$C@N#,C@M #% is more tricky.! In Sec. IV we sug-
gest a way for addressing these difficulties.

III. PROPER TIME EVOLUTION OPERATOR U„T…

Consider, as an illustrative example, the Schro¨dinger
equation for a single particle in a potential. IfH is the Hamil-
tonian operator, the equation is formally solved by the evo-
lution operator

U~ t !5U~ t,0!5e2 i *0
t dt8H~ t8!, ~17!

where exponentiation, here and below, is time ordered. The
matrix elements of this operator between position eigenstates
define the propagator

P~xW ,t;xW8,t8!5^xW uU~ t,t8!uxW &, ~18!

from which the solution of the Schro¨dinger equation with
initial datac(xW8,t8) at t8 can be obtained by simple integra-
tion:

c~xW ,t !5E dx8P~xW ,t;xW8t8!c~xW8,t8!. ~19!

Under suitable conditions, the propagator can be computed
by means of a perturbation expansion in the potential, and
the expansion has a nice graphical representation.

For a ~free! relativistic particle, we have the option be-
tween using the above formalism with the relativistic Hamil-

tonian (H5ApW 21m2), or using a manifestly covariant for-
malism. This was originally done by Feynman by changing
the description of the dynamics: instead of representing mo-
tion by means of the evolution of thethreevariablesxW in t,
we consider a~‘‘fictitious’’ ! evolution of thefour variables5Here we focus on Thiemann’ssymmetricoperator.
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x5(xW ,t) in the proper timeT. This evolution is generated by
the operatorH5p22m25(p0)22pW 22m2. The correspond-
ing proper time evolution operator and proper time propaga-
tor are

U~T!5e2 i *0
Tdt8H~ t8! ~20!

and

P~xW ,t;xW8,t8;T!5^xW ,tuU~T!uxW8,t8&. ~21!

The relation between this proper time propagator and the
physical propagator~which is the quantity we compare ex-
periments with! is given by

P~xW ,t;xW8,t8!5E
0

`

dT P~xW ,t;xW8,t8;T! ~22!

or

P~xW ,t;xW8,t8!5^xW ,tuUuxW8,t8&, ~23!

where

U5E
0

`

dT U~T!. ~24!

This can be verified by means of a simple calculation.U is
the projector on the physical state space, which codes the
theory’s dynamics.

Alternatively, one can consider evolution in a fully arbi-
trary parameter t. Such evolution is generated by
H(t)5N(t)H, where N(t) is an arbitrary Lapse function.
The corresponding evolution operator is

UN5expS 2 i E
0

1

dt N~ t !H D , ~25!

which is related to the physicalU by the functional integral

U5E @dN#UN . ~26!

This functional integration can be split into two parts by
defining the proper timeT in terms of the Lapse as

T5E
0

1

N~ t !dt. ~27!

Using this, we can first integrateUN over all LapsesN hav-
ing the sameT:

Ũ~T!5E
T
dN UN , ~28!

where the subscriptT indicates that the functional integral
must be performed over allN’s satisfying Eq.~27!. Then we
integrate overT to get the physical quantityU. Thus we have

UN°Ũ~T!°U. ~29!

An important observation is that in order to compute the
functional integral~28! we can simplygauge fix N, requiring,
for instancedN(t)/dt50. In this gauge, the integral be-
comes trivial, and we haveŨ(T)5U(T), which is given in
Eq. ~20!. In fact, the functional integration~26! over N is
largely trivial, sinceUN depends onN only via T.

We are now going to follow the same path in general
relativity. In particular, we will concentrate here on the defi-
nition and the computation of the proper time evolution op-
eratorU(T) and the corresponding proper time propagator
~its matrix elements! for quantum general relativity.

A. Definition and meaning of the proper time propagator
in general relativity

In the canonical theory, the~‘‘unphysical’’ or coordinate!
evolution of the gravitational field is generated by the Hamil-
tonian

HN,NW ~ t !5E
S
d3x@N~ t,x!C~x!1Na~ t,x!Ca~x!#

[C@N~ t !#1C@NW ~ t !# ~30!

~units are fixed here by\5c516pGNewton51, and we take
S compact!. The quantum evolution operator that evolves
from an initial hypersurfaceS i at t50 to a final hypersur-
faceS f at t51 is

UN,NW 5exp2 i E
0

1

dt HNNW ~ t !. ~31!

We define the proper time evolution operator for quantum
gravity as

U~T!5E
T,*

@dN,dNW #UN,NW , ~32!

where the subscript$T,* % means that the integral is over all
shifts and lapses that satisfy

N~x,t !5N~ t !, ~33!

E
0

1

dt N~x,t !5T. ~34!

Notice thatT is the proper time separation betweenS i and
S f , defined as the reading onS f of the free falling test clock
that started off at rest onS i . This is because if the lapse is
constant the geodesics that define the proper time foliation
remains normal to the ADM hypersurfaces. We denote the
matrix elements of the operator~32!,

P~sf ,si ;T!5^sf uU~T!usi&, ~35!
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as the proper time propagator@4#. In this paper, we focus on
this quantity. We compute it as a power expansion inT in the
next subsection, and show that it admits a sum over surfaces
representation in Sec. IV.6

The construction generalizes to a multifingered proper
time. In this case, letS f be given byt5t(x). The coordinate
time evolution operator fromS i to S f at fixed lapse and shift
is

UN,NW 5expS 2 i E
S
d3xE

0

t~x!

dt@N~ t,x!C~x!

1Na~ t,x!Ca~x!# D . ~36!

The multifingered proper time evolution operator is

U@T#5E
[T]

@dN,dNW #UN,NW , ~37!

where the subscript@T# means that the integral is over all
shifts and lapses that satisfy Eq.~33! and

E
0

t[gt
21

~x!]
dt N@gt

21~x!,t#5T~x!, ~38!

wheregt is the finite, time-dependent transformation of spa-
cial coordinates generated by integrating the shift:

g0~x!5x,
dgt~x!

dt
5NW ~x,t !, g[g1 . ~39!

gt andg are functionals of the shift. As before,T(x) gives
the proper time separation between the two hypersurfaces,
defined as the proper distance ofS f from S i along a geode-
sic starting at rest onS i on x Indeed, if the lapse is spacially
constant, the geodesic will begt

21(x) „because in the coor-

dinates (yW ,t)5@gt(x),t# the Shift vanishes, the Lapse is still
constant and thereforeyW5 const is a geodesic normal to all
ADM slices…. And therefore the geodesic that starts off inx
reachesS f at the timet determined byt5t@gt

21(x)#. Notice
that the two notationsU@T# andU(T) indicate different ob-
jects. U@T# is the multifingeredproper time propagator, a

functional of the functionT(x), while U(T) is the proper
time evolution operator, which is the value ofU@T# for
T(x)5const5T.

In the rest of this subsection, we discuss the physical
meaning of the quantity we have defined and its role in the
theory. First of all, the proper time propagator is the first step
toward the computation of the physical evolution operatorU,
in the same sense as the Feynamn-Nambu proper time propa-
gator. The operatorU is given by functionally integrating
UN,NW over all lapses and shifts:

U5E @dN#E @dNW #UN,NW . ~40!

This functional integrations corresponds to the implementa-
tion of the canonical constraints. As for the relativistic par-
ticle considered in the previous section, we can split the
computation ofU from UN,NW into two steps,

UN,NW °Ũ@T#°U, ~41!

by first computing the propagatorŨ@T# at fixed T(x) and
then integrating overT(x). As for the particle, we can par-
tially fix the gauge in which we computeU@T#. In particular,
we can choose to integrate over spacially constant lapses
only. Therefore we haveŨ@T#5U@T#, which is given in Eq.
~37!. And, as for the particle, we can write

U5E @dT#U@T#. ~42!

Thus,U is just the integral over proper time of the multifin-
gered proper time evolution operator~37!.

We add a general argument that better illustrates why we
can fix a gauge for computingŨ@T#. This argument is for-
mal, but it is interesting because it illuminates the relation
between what we are doing and the sum over geometries
considered by Hawking@2#. In the metric formulation of ca-
nonical GR,U can be written as a sum over four-metrics
bounded by given initial and final three-geometries. Each
such four-metric determines a proper time separationT(x)
between the initial and final hypersurfaces. Therefore, the
integral can be split in two parts, first the integralŨ(T),
restricted to four-metrics with total multifingered elapsed
time T(x), then the integration overT(x). In computing
U(T), we can change integration variables from the four-
metric to the ADM variables, namely, three-metric, lapse and
shift. The integral contains a high redundancy, corresponding
to diffeomorphism gauge-invariance~as the corresponding
integral for the particle in the previous section did!. We can
fix part of this redundancy with a condition on the lapse. If
we pick an arbitrary lapse, the condition that the proper time
separation of the initial and final slices isT(x) becomes a
condition on the three-metrics over which we are integrating.
However, we can choose a spacially constant lapse, satisfy-
ing Eqs.~33! and ~38!. We can always do that, because we
may always slice a four-geometry with equal proper time
hypersurfaces, with the result that the corresponding lapse
and shift satisfy Eqs.~33! and ~38!. Conversely, any history
of three-metrics, together with a lapse and shift satisfying
Eqs. ~33! and ~38! defines a four-geometry with elapsed

6Generally, slicing by equal proper time hypersurfaces develops
singularities, because the geodesics that define the proper time in-
tersect. This causes the canonical evolution to break down: a coor-
dinate system based on the slicing develops coordinate singularities
where the Arnowitt-Deser-Misner~ADM ! momentum density di-
verges. We ignore these difficulties here, but two comments are in
order. First, the explicit expression forU(T) that we obtain is
simple and well defined order by order for anyT. We think that
potential singularities inU(T) should be looked for directly in the
quantumformalism. Second, Lewandowski@37# has pointed out that
the classical evolution of the Ashtekar’s variables is better behaved
than the ADM variables, because Ashtekar’s variables can be rep-
resented as differential forms, whose components are well behaved
at coordinate sigularities of the type being considered.
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proper timeT(x). In this way, we implement theT(x) con-
dition, without interfering with the integration over three-
metrics. Thus,Ũ@T# can be computed by fixing a laspe sat-
isfying Eqs.~33! and ~38!.

The operatorU is a key quantity for the theory. Comput-
ing it virtually amounts to solving the quantum constraints,
including the Hamiltonian constraint, which codes all the
dynamics of the theory. There are various of ways of looking
at U. First of all, it is the projector on the the physical state
space of the theory. Second, the scalar product^suUus8& de-
fines thephysicalscalar product of the theory. Therefore,

^s,s8&physical5E @dT#^suU@T#us8&. ~43!

Finally, we can view matrix elements ofU as observable
transition amplitudes between quantum states. The details of
the interpretaton ofU will be discussed elsewhere, but in all
these instances, the role ofU is just analogous to its coun-
terpart for the single particle.~In this paper we do not at-
tempt to computeU.!

Does the proper time propagatorP(sf ,si ;T), have a di-
rect physical interpretation? A simple answer is that
P(sf ,si ;T) codes the dynamics of the theory, but it has no
direct physical meaning: only after integration over proper
time we obtain a quantity that we can, in principle, compare
with experiments.

This said, wecannevertheless assign a plausible physical
interpretation to the proper time propagatorP(sf ,si ;T), with
caution. This would be particularly useful for helping intu-
ition. Let us return to the relativistic particle. In that case,
Feynman considered the ‘‘fictitious’’ evolution ofx and t in
the proper timeT. Classically, this is not incorrect@because
the equations of motion of the~411!-dimensional theory
give the correct physical 311 motion# provided that one re-
members that the degrees of freedom are 3 and not 4. Quan-
tum mechanically, in the fictitious theory we are quantizing
one variable too much. Taken literarly, the particle proper
time propagator describes the three degrees of freedom of the

particle position, plus the degree of freedom of an extra
quantum variable sitting on the particle, growing with proper
time, and not affecting the particle’s motion.7 With such a
little clock on the particle~say the particle is an oscillating
molecule!, we could make experiments we could compare
the proper time propagator with.

In general relativity, such a ‘‘fictitious’’ evolution with
extra degrees of freedom is provided by the so-called ‘‘local
interpretation’’ of the theory~see@38# for a detailed discus-
sion!. In this interpretation, the coordinates are interpreted as
labels of reference-system~RS! physical objects. It follows
that local quantities are physical observables, and that the
lack of determinism of the Einstein equations can be inter-
preted as a consequence of the fact that the dynamical equa-
tions of the RS objects are neglected. Under this interpreta-
tion, GR is approximate~because we disregard the RS
objects energy momentum! and incomplete~because we dis-
regard the RS objects dynamical equations!. The incomplete-
ness leads to the apparent physical indeterminism. If we
adopt this view, then we can say thats, s8, and T are ob-
servable, becauseS i can be physically specified by the RS
objects, and we can use RS clocks to find out whereS f is. In
doing so, we take approximations that might be ungranted
~on the quantum behavior of the RS objects!. Concretely, one
may consider a definite model, for instance, the ‘‘dust’’
model introduced in@38# and studied in@39#. In such a
model, aS i to S f propagator~whereS i is defined as dust
variables! is an observable quantity. In a suitable limit in
which the dust physical effects are diregarded, such a propa-
gator might be approximated by the pure gravity proper time
propagatorP(sf ,si ;T). With all these caveats, one can intu-
itively think of P(sf ,si ;T) as the quantum amplitude that
the quantum gravitational field be in the statesf , T seconds
after being in the statesi .

B. Expansion of the proper time propagator

We begin with an observation. Let us writeUN,NW as a
limit of products of small time propagators. Writinge51/K
and tk5ke, for integersK andk51, . . . ,K, we have

UN,NW 5 lim
K→`

e2 i eHN,NW ~ tK!
•••e2 i eHN,NW ~ t2!e2 i eHN,NW ~ t1!

5 lim
K→`

e2 i eC[N~ tK!]e2 i eC[NW ~ tK!]
•••e2 i eC[N~ t2!]e2 i eC[NW ~ t2!]e2 i eC[N~ t1!]e2 i eC[NW ~ t1!]

5 lim
K→`

e2 i eC[N~ tK!]D@ f K#•••e2 i eC[Nt2
]D@ f 2#e2 i eC[Nt1

]D@ f 1#

5 lim
K→`

e2 i eC[N~ tK!]D@ f K#•••$~D@ f 2#D@ f 1# !21e2 i eC[N~ t2!]D@ f 2#D@ f 1#%~D21@ f 1#e2 i eC[N~ t1!]D@ f 1# !

5 lim
K→`

D@g#~D21@gK#e2 i eC[N~ tK!]D@gK# !•••~D21@g2#e2 i eC[N~ t1!]D@g2# !~D21@g1#e2 i eC[N~ t1!]D@g1# !

5 lim
K→`

D@g#e2 i eC[NNW ~ tK!]
•••e2 i eC[NNW ~ t2!]e2 i eC[NNW ~ t1!]5D@g#UNNW ,0 . ~44!

7More precisely, the extra variable is not the evolution of this proper-time clock-variableT in a Lorentz timex0, but rather the evolution
of x0 in T.
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HereNNW is defined byN(x,t)5N@gt(x),t#; namely, it is the
lapse in the coordinates obtained by integrating the shift.f t is
the ‘‘small’’ diffeomorphism generated by the shift between
the slicest21 and t, while gt is the finite diffeomorphism
generated by the shift between the slicest50 andt. The first
equality in Eq.~44! is just one of the definitions of the time
ordered exponential. The second is based on the fact that for
sufficiently small time interval 1/K ~sufficiently highK) one
can disregard the commutator term in disentangling the ex-
ponent~this term is quadratic in 1/K). The third equality is
simply a rewriting of the exponent of an infinitesimal diffeo-
morphism as a finite~but ‘‘small’’ ! diffeomorphism. The
fourth equality is simply the insertion of terms such as
(D@ f 1#D21@ f 1#) in suitable places. The fifth equality is the
replacement of sequences of spatial diffeomorphisms
(D@ f n#•••D@ f 2#D@ f 1#) by their product, which is (D@gn#).
The penultimate equality is the key one; it follows directly
from Eq.~15!; namely, from the transformation properties of
the Hamiltonian constraint under spatial diffeomorphisms.
The last equality follows again from the definition of ordered
exponential. In other words, we have shown that the tempo-
ral evolution generated by the lapse and the evolution gen-
erated by the shift can be disentangled.

While the manipulations above are formal~they are made
inside a limit!, the result itself is geometrically obvious: we
can always rearrange the coordinates so that the shift is zero,
and compensate with a finite change of space coordinates at
the end. If we do so, the lapseN must be replaced by the
lapse in the new coordinates, which isNNW .

If the lapse is constant in space,NNW 5N. ThenUN,0 can be
expanded as

UN0511~2 i !E
0

t

dt C@N~ t !#

1~2 i !2E
0

t

dtE
t

t

dt8C@N~ t8!#C@N~ t !#1•••.

~45!

Its matrix elements between two spin network states can be
expanded as

^Sf uUN,0~T!uSi&5^Sf uSi&1~2 i !E
0

t

dt^Sf uC@N~ t !#uSi&

1~2 i !2E
0

t

dtE
t

t

dt8^Sf uC@N~ t8!#uS1&

3^S1uC@N~ t !#uSi&1••• ~46!

where we have inserted a complete set of intermediate states
uS1&^S1u ~over which summation is understood!. Using the
explicit form ~13! of the Hamiltonian constraint operator, we
have

^Sf uUN,0uSi&

5^Sf uSi&1~2 i !E
0

t

dtS (
aP[Si ]

N~ t,xa!Aa~Si !^Sf uDauSi&

1 (
bP[Sf ]

N~ t,xb!Ab~Sf !^Sf uDb
† uSi& D

1~2 i !2E
0

t

dtE
t

t

dt8 (
aP[Si ]

(
a8P[S1]

3N~ t,xa!N~ t8,xa8!Aa~Si !Aa8~S1!^Sf uDauS1&

3^S1uDa8uSi&1••• ~47!

~the second order term has three more summands, corre-
sponding to theDD†,D†D,D†D† terms!. The first point to
be noticed in this expression is that the sum over the inter-
mediate stateS1 is finite. This is because bothD and D†

yield a finite number of terms only, when acting on a spin
network state.8 Thus, the above expression is finite order by
order. Next, the integrations can be performed explicitly, us-
ing Eq. ~34!. We obtain

^Sf uUuSi&5^Sf uSi&1~2 iT !S (
aP[Si ]

Aa~Si !^Sf uDauSi&

1 (
aP[Sf ]

Aa~Sf !^Sf uDa
† uSi& D

1
~2 iT !2

2! (
aP[Si ]

(
a8P[S1]

Aa~Si !Aa8
~S1!

3^Sf uD̂a8
uS1&^S1uD̂auSi&1•••. ~48!

The structure of the expansion is now rather clear. At each
ordern, we have theD operator actingn times,n factorsA,
and afinite number of terms, coming from summing over
nodes, links ande561.

Our next step is to integrate over shift and lapse@satisfy-
ing Eq. ~38!#. The integration over lapse is trivial, as its
dependence has dropped out the integral. This confirms the
independence from the laspe that was mentioned in the pre-
vious section. The integration over the shift amounts to im-
posing the diff constraint. Indeed, it turns out to be equiva-
lent to an integration over the diffeomorphism group, as in
the group integration technique for solving the diff con-
straint. Using Eq.~44!, we have

U~T!5N8E @dN#E @dNW #D†g@NW #‡UNNW ,0~T!, ~49!

where we have explicitly indicated the dependence ofg on NW
for clarity. We change integration variableN→NNW ~the Jaco-
bian must be 1, since this amounts to a change of coordi-
nates!, and obtain

8Lewandowski@40# noticed that this finiteness might fail because
of the moduli parameters of high valent intersections which were
studied in@41#. The role of these parameters in the theory, however,
is unclear. Finiteness of the proper time expansion may indicate that
the correct version of the theory is the one in which the moduli
parameters are removed, as suggested by many, and recently de-
tailed in @42#.
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U~T!5N8S E @dN#UN,0~T! D S E @dNW #D†g@NW #‡D .

~50!

TheNW integration can be traded for an integration over diff0

changing variables fromNW to g@NW #, so we obtain

U~T!5NE
diff0

@dg#D@g#UN,0~T! ~51!

for an arbitrary~irrelevant! choice ofN satisfying Eq.~34!,
sayN5T. The matrix elements of this operator are given by

^Sf uU~T!uSi&5NE
diff0

@dg#^g•Sf uUN,0~T!uSi&. ~52!

The operatorU(T) is now well defined inHdiff . Indeed, it
is immediate to see that it is diff invariant. For every two
s-knotssi andsf in Hdiff , we can arbitrarily pickSi andSf
such thatSiPsi andSfPsf , and we have the key result that

^sf uU~T!usi&[^Sf uU~T!uSi& ~53!

is well defined~independent from theSi andSf chosen!.
Furthermore, the operatorD, depends on an arbitrary

regularization—the location of the added link—but a mo-
ment of reflection shows that the dependence on the regular-
ization drops out in the step fromUN,NW (T) to U(T), by
integrating the shift. The reason is that different regulariza-
tions are related to each other by a finite diffeomorphism: the
statesDauS& andDa8 uS&, whereD andD8 indicate two dif-
ferent regularizations ofD are in the sames knot: their dif-
ference becomes irrelevant in the scalar product~53!. This
result is due to the fact that all the factors in the expansion
are individually well defined at the diffeomorphism invariant
level. More precisely we have that

^sf u (
aP[si ]

Aa~si !Dausi& ~54!

is not only well defined, but also independent from the regu-
larization of D. This fact allows us to write our expansion
directly in diff-invariant form as

^sf uU~T!usi&5^sf usi&1~2 iT !S (
aP[si ]

Aa~si !^sf uDausi&

1 (
aP[sf ]

Aa~sf !^sf uDa
† usi& D

1
~2 iT !2

2! (
aP[si ]

(
a8P[s1]

Aa~si !Aa8
~s1!

3^sf uDa8
us1&^s1uD̂ausi&1•••. ~55!

This expression gives the three-geometry to three-
geometry propagator of quantum general relativity as a series
finite at every order. Notice that the expansion is in power of
T or, equivalently, in inverse powers of the Planck length,
because this must divideT in order to recover physical di-
mensions. The utility of a perturbation expansion in inverse

powers of G has been advocated in quantum gravity by
Isham, Teitelboim, and others@43#. Intuitively, we can think
that this quantity represents the probability amplitude that if
we have a quantum state of the gravitational field~a quantum
three-geometry! usi& over a surfaceS i , we will find the
quantum three-geometryusf& on the surfaceS f in a proper
time T.

IV. SUM OVER SURFACES

Surfaces in spacetime provide a natural bookkeeping de-
vice for the terms of the expansion~55! in the same manner
in which Feynman graphs provide a bookkeeping device for
conventional QFT perturbation expansion. This fact leads us
to give a nice graphical interpretation to the expansion~55!.

Consider the 4D manifoldM5@0,1#3S. Denote the two
connected components of the boundary ofM asS i andS f .
We now associate a 2D colored surfaces inM—defined up
to 4D diffeomorphisms—to each nonvanishing term of the
sum in the right-hand side of Eq.~55!. We begin by drawing
si in S i andsf in S f . As si andsf have no information about
the actual location of the graph, location is chosen arbitrarily
~that is, up to a diffeomorphism in diff0). The first term in
Eq. ~55! ~zeroth order inT) is nonvanishing only ifsf5si .
In this case, let us slidesi acrossM from S i to S f , in such
a way that it ends up oversf . To the term of order zero we
associate the surfaces5si3@0,1# swept bysi , see Fig. 2.

Notice that this is possible because the two spin networks
are in the sames knot. The surface we obtain is formed by
2D faces—submanifolds ofM—joined along edges. The
faces are swept by the spin network links, and the edges are
swept by the spin network nodes. We color every face with
the color of the corresponding link ofsi , and every edge
with the color of the corresponding node ofsi .

The surface associated to one of the summands of the
second term~first order inT) in Eq. ~55! is then defined as
follows. In each summand, one of the nodes ofsi , say the
nodei , is altered by the operatorD. sf has two nodes more
thansi , sayi 8 and i 9. We begin by slidingsi into the mani-
fold by an arbitrary finite amount, until a position, says. Let
p be the point in which the nodei ends up. Then we slidesf
from S f through the manifold in such a way that it converges
to s. The three nodesi , i 8, andi 9 of sf converge all three to
p. We obtain a surfaces, bounded bysi andsf formed by
faces that meet along edges; four of these edges meet at the
point p. We callp a vertexof the surfaces. At the vertexp,

FIG. 2. Surface corresponding to a term of order zero.
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s branches. Notice that four edges and six faces meet inp,
see Fig. 3.

We can imagineM as a spacetime andsi as evolving
continuously in a coordinatet from Si to Sf . At the space-
time eventp, the spin network branches: the nodei generates
the two new nodesi 8 and i 9, which are born ati and then
move away. A new face, spanned by the new edge that joins
i 8 andi 9, is born inp. The branching represents the elemen-
tary vertex of the theory, and is represented in Fig. 4.

The generalization of this construction to higher terms is
immediate. A term of ordern in T corresponds to a surfaces
with n vertices. The~time! order in which then D operators
act determines an ordering for the vertices. An example of a
term of order two is given in Fig. 5. It represents the transi-
tion from thes knot with two trivalent nodes connected by
three links colored~3,5,7!, to thes knot with the same graph,
but colored~3,6,8!. The intermediate step is thes-knot s1,
with four nodes.

In the construction we have described, each vertex has
four adjacent edges. Some of these edges are generated by
the nodes of the incomings knot ~the one at the right of the
operatorD̂ corresponding to that vertex! and some by the

outgoings knot. At each node, we denote the first ones as
‘‘past’’ edges and the second ones as ‘‘future’’ edges. Thus,
each edge emerges as a future edge from one vertex, or from
the initial hypersurface, and ends as a past edge in another
vertex, or in the final hypersurface. This defines a partial
ordering of the vertices of each surface.

A short reflection will convince the reader that all the
surfaces that we obtain satisfy the following property. Each
face has the topology of a disk, and the ordered set vertices
around a single face has at most one local maximum and
most one local minimum. We say that a colored surfaces is
‘‘well ordered’’ if all its faces satisfy this property.

Now, observe the following.~i! The colored surfaces
~with the vertices ordered! contains all the information
needed to reconstruct the corresponding term in the expan-
sion ~55!. In fact, the factorsAa(s) depend only on the col-
oring of the surface.~ii ! Any well-ordered branched colored
surfaces, with colorings satisfying Clebsch-Gordan condi-
tions at the edges can be obtained from a term in Eq.~55!.

FIG. 3. Surface corresponding to a first order term.

FIG. 4. The elementary vertex.

FIG. 5. A term of second order.
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~iii ! Two surfaces correspond to the same term if and only if
there is a 4D diffeomorphism that sends one into the other.

These facts allow us to rewrite the expansion~55! as a
sum over diffeomorphic inequivalent well-ordered surfaces
s bounded bysi andsf . Therefore we can write the propa-
gator @see Eq.~35!# as a sum of terms labeled by topologi-
cally inequivalent branched well-ordered colored surfaces9 s
bounded by initial and final state:

P~sf ,si ;T!5 (
s

]s5siøsf

A@s#~T!. ~56!

The weightA@s#(T) of the surfaces is given by a product
over then(s) vertices ofs:

A@s#~T!5
~ 2 iT !n~s!

n~s!! )
vP[s]

Av~s!. ~57!

The contributionAv(s) of each vertex is given by the coef-
ficients of the Hamiltonian constraint defined in Eq.~13!:

Av~s!5Aa~s!. ~58!

~The nonvanishing matrix elements^s8uDaus& have value 1.!
Can we attribute a physical meaning to the surfaces that

enter the sum? The answer is yes. There is a natural way of
interpreting a branched colored surfaces as a discrete
~‘‘quantum’’! geometry. This geometrical interpretation was
proposed in@8# in a slighty different context; it holds in the
world sheet formulation of the simplicial model of GR@9#.
First of all, consider a triangulationT of the manifoldM,
and assume that the surfaces sits over the dual two-skeleton
of the triangulation. As we shall see in Appendix B, this is
the natural way of viewing the surfacess. Let a triangle~two
cell! S of the triangulationT be punctured by the facef ~say
with color p) of s in a point. Now, recall that according to
canonical loop quantum gravity the colors of the spin net-
works are quanta of area: the area of a surfaceS pierced by
a single link with colorp52 j is @18#

A~S!516p\GAj ~ j 11!. ~59!

In the spacetime picture, a link sweeps a 2D facef , which
intersectsS at a point. It is natural to suppose that the area of
any spacetime two-surfaceS is similarly determined by the
coloring of the world sheet. For instance, we may consider a
three-dimensional hypersurfaceS that containsS, view the
intersection betweenS and the colored surfaces as the ‘‘in-
stantaneous position of the spin-network state on the ADM
time S,’’ and assume that the results of the canonical theory
can be applied. If we make this assumption, then we can say
that the area ofS is A(S) given in Eq. ~59!. Therefore, a
surfaces assigns a~possibly vanishing! area to each triangle
of the triangulationT. But fixing the areas of the triangles of
a four-dimensional triangulation is equivalent to fixing a dis-
cretized four-geometry. Assigning areas is analogous to as-
signing the lengths of the links of the triangulation as in

Regge calculus.10 Thus, a surfaces defines a discretized
four-geometry. The idea that areas of triangles could be vari-
ables more suitable than lengths of links in four dimensions
was considered in@14,45#. Finally, more in general, we can
say that a natural geometrical interpretation of the colors
associated to the faces is the following: if a face has color 2j ,
it contributes a quantum of area 16p\GAj ( j 11) to the area
of each spacetime two-surfaceS at each point where it
piercesS.

This geometrical interpretation is ‘‘natural,’’ but not nec-
essarily correct. In particular, the relation between the proper
time T, and the spacetime geometry defined by the colors of
the world sheet is not clear. This relation should be investi-
gated before taking the geometrical interpretation too seri-
ously.

Reconstruction of the Aa(S) coefficient from surface data.
The coefficientsAa(s) can be reconstructed directly from the
colored surface as follows. Let a vertexv haveni past edges
and nf future edges.Av(s) is nonvanishing only ifni51
andnf53 or if ni53 andnf51. In this case,Aa(s) is de-
termined by the matrix elements of the Hamiltonian con-
straint.

It is very instructive to give an explicit construction of
Av(s). Consider a 4D neighborhoodB of the vertexv. Con-
sider the 3D boundary]B of B. Let Sv be the intersection
betweens and ]B. A short reflection will convince the
reader thatSv is a colored graph in the 3D space]B, having
45ni1nf nodes~that satisfy Clebsh-Gordan relations!, cor-
responding to the intersections between the four edges
emerging fromp and]B, see Fig. 6.

Now, cut all the links ofSv that go from a past node to a
future node. This procedure breaksSv into two spin networks
with ~equal! open ends, which we denote asS̃v,i and S̃v, f .
~More precisely, these ares knots, because they are deter-
mined only up to diffeomorphisms.! The value of the vertex
is given by the matrix elements of the Hamiltonian constraint
between these two spin networks; namely,

Av~s!5^ S̃v, f uC@1#u S̃v,i&, ~60!

9For a general description of such surfaces and their properties,
see, for instance,@44#, and references therein.

10There is a difference: in order to define a geometry, the lengths
of the links must satisfy certain inequalities. The areas of the tri-
angles must satisfy certain inequalities, as well as some equalities
among them; namely, they are not all independent.

FIG. 6. The construction of the spin networkSv from the inter-
section of the surface with the boundary of a four-sphere surround-
ing the vertex. The spin network is then cut into its past and future

componentsS̃v,i , S̃v, f .
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see Eq.~11!. This expression givesAv(s) as a function of
the colorings of the edges and faces adjacent to the vertexp.
This function is universal, and characterizes general relativ-
ity, in the same manner in which the Feynman vertex factor
characterizes a QFT. We compute the vertex functionAv(S)
explicitly for the simplest case in Appendix B. It turns out to
be expressed in terms of SU~2! n-j symbols of the colorings.

Notice that it is the locality of the Hamiltonian constraint
that allows the sum over surfaces construction. This is a
peculiar form of locality, quite different from conventional
QFT locality: The action is not local with respect to a back-
ground structure, but with respect to the spin networks them-
selves.

Equations~56!–~60! provide a definition of the proper
time propagator of quantum general relativity as a topologi-
cal sum over branched colored surfaces. They represent our
main result.

V. CROSSING SYMMETRY

Above, we have considered areformulationof loop quan-
tum gravity as of a sum over surfaces. Here we propose a
modificationof the theory, suggested by the reformulation.

The value of the vertexAv(s) that we have computed in
the last section depends on two inputs. First, on the coloring
of the edges and faces adjacent to the vertexv. Second, on
the distinction between ‘‘past’’ and ‘‘future’’ edges, namely,
on the way the vertex is located and oriented within the
surfaces. We suspect that the appearence of this orientation
dependence is a sign that something has gone wrong in the
definition of the theory. The action of GR is local and 4D
diff invariant, and therefore the action of the four-geometry
of a small region~‘‘the vertex’’! is independent of how this
region is sliced by equal time slices.11

Thus, we propose a modification of the theory in which
the orientation dependence is removed. We say, in general,
that in a theory defined by a sum over branched colored
surfaces, with weights given by products of vertex factors,
the vertex is ‘‘crossing symmetry’’ if its value depends on
the adjacent colorings only, and not on the distinction be-
tween past and future edges. BF theory@11# and simplicial
GR @8,9# are theories of this kind, and have crossing sym-
metric vertices. In this section we study the modification of
the geometry of the vertex required to make it crossing sym-
metric.

We then say that a Hamiltonian constraint operatorH has
crossing symmetry if it defines a crossing-symmetric vertex
via Eq.~60!. The modification of the vertex that we consider
in this section might be obtained from a different factor or-
dering of the Hamiltonian constraint and, as we shall see
below, is strictly related 4D diff invariance. Thus, here we
are exploring the idea that 4D diff invariance might fix re-
sidual factor ordering ambiguities. Of course, it should not
be surprising that a spacetime formalism could simplify the
discussion of 4D diff invariance, a notoriously tricky issue in
the Hamiltonian framework.

Let us make clear that we present crossing symmetry only

as a proposal to be explored. We do not have a rigorous
derivation of crossing symmetry from first principles, but
only a heuristic plausibility argument, which we better detail
below.

Consider the path integral that formally definesU(T) in a
proper time gauge, namely in a gauge in which the lapse is
spacially constant. Consider a four-metricg, that contributes
to this path integral and a small spacetime regionR, and let
gR be the restriction ofg to R. The regionR is sliced by the
proper time slicing. LetAR(g) be the exponential of the ac-
tion of this region. If the region is small enough, we can
think of AR(g) as the matrix element of the evolution opera-
tor between ‘‘beforeR’’ and ‘‘after R,’’ where ‘‘before’’ and
‘‘after’’ are determined by the proper time slicing, and thus
identify AR(g) with the vertexAv(s). Now consider a dif-
ferent four-metricg8 in the integral, containing a regionR8,
such thatgR8

8 is isometric togR , but sliced in a different
manner by the proper time slicing~the reader will easily
convince himself that such a metric exists in general!. Since
the action is local and 4D diff invariant, the contribution of
gR to the sum must be equal to the contribution ofgR8

8 ,
namely,AR(g)5AR8(g8). This implies that the matrix ele-
ments of the proper time Hamiltonian between ‘‘before’’ and
‘‘after’’ according to one slicing ofR ought to be the same
as the matrix elements of between ‘‘before’’ and ‘‘after’’
according any other slicing. In other words, the matrix ele-
ments should be invariant under a 4D rotation ofR that
changes what is before and what is after. If we require the
same to hold in our sum over surfaces, we obtain the require-
ment that vertices be crossing symmetric.

This discussion shows that there is a relation between 4D
diff invariance and crossing symmetry, because a 4D diffeo-
morphism ‘‘rotates’’ the vertex in 4D. Recall that the 4D diff
invariance of the classical theory is expressed by the Poisson
brackets

$C@N#,C@M #%5C@N]WM2M]WN#. ~61!

One of the hard problems of the Hamiltonian quantization
program is to define a quantization of the Hamiltonian con-
straint yielding a 4D diff-invariant quantum theory. In par-
ticular, implementation of 4D diff invariance is presumably
the missing ingredient for fixing quantization ambiguities of
the Hamiltonian constraint. Recall that the ambiguity in the
definition of C@N# was fixed in @24# and @25# to a large
extent arbitrarily. Full implementation of the quantum ver-
sion of Eq. ~61! should ensure 4D diff invariance, but has
proven hard to realize. We are therefore lead to the sugges-
tion that we can cure the slicing dependence by taking ad-
vantage of the remaining operator ordering ambiguity, and at
the same time, cure the excessive ordering ambiguity by im-
posing slicing independence. In other words, we canimpose
some form of 4D diff-invariance requirement in order to re-
duce quantization ambiguity. Here we are suggesting that in
a covariant formalism crossing symmetry might be the key
for implementing 4D diff invariance.

Vertices with crossing symmetry.Let us investigate the
meaning and consequences of requiring crossing symmetry.
First, we should require that different ways of cuttingSv
with three nodes on one side and one node on the other yield
the sameAv(s). This leads to conditions on theAa(S) co-

11We are dealing with the Euclidean theory, so there is no light-
cone structure that defines local notions of past and future.
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efficients, that will be studied elsewhere. A more interesting
case is the following. First, let us help intuition by redrawing
the elementary vertex of the theory~Fig. 4! in a more sym-
metric way. This is done in Fig. 7.~For simplicity, we re-
strict the following analysis to trivalent nodes.!

There are five topologically inequivalent ways of cutting
Sv , giving, respectively, (ni ,nf) ~number of initial and final
nodes! equal to~0,4!, ~1,3!, ~2,2!, ~3,1!, and ~4,0!. The last
two are the time reversal of the first two, leaving three genu-
inely independent cases. In Fig. 8, we show the possible cuts,
and the corresponding spin networks transitions in the
Hamiltonian picture. Time reversed cuts give just the oppo-
site transitions.

Case~1,3! is the one described in the previous section
~Fig. 6!. Crossing symmetry requires that the Hamiltonian
constraint generate the transitions~0,4! and~2,2!—described
in the last column of Fig. 8—as well,with the same ampli-
tude.

Consider these two new transitions. We begin with~0,4!
~second line in Fig. 8!. This transition represents a matrix
element of a Hamiltonian that creates a ‘‘small’’ tetrahedron
from the state with no loops. The fact that 4D invariance
requires the presence of such ‘‘birth’’ terms has already been
argued, on general grounds, in@46#. In terms of surfaces, the
term looks as in Fig. 9.

This is the very same surface as in Fig. 4, and in Fig. 7,
but drawn with a different orientation in ‘‘spacetime.’’ With
this orientation, it describes a tetrahedral spin network
emerging from nothing.

Can such a term originate from an ordering of the Hamil-
tonian constraint? Surprisingly, the answer is positive. We
sketch here a hand waving argument. The regularized Hamil-

tonian constraint (FEE) is formed of two parts: a ‘‘small
loop’’ that corresponds to the classical curvature (F) term
and the term that ‘‘grasps,’’ the two hands of theT2 operator
in @17,24# ~or the volume operator in@25#!, corresponding to
the triadsEE ~or the triads multimplied by a suitable density
factor!. Traditionally, the order chosen isFEE: the ‘‘small
loops’’ are addedafter the grasping. Reverse this order,
choosingEEF, and have the small loop being inserted first.
Then the Hamiltonian constraint has nonvanishing action on
the vacuum as well, because the grasping term can grasp the
‘‘small loop.’’ In particular, this may create a ‘‘small’’ tet-
rahedron. For instance, in the construction in@17,24#, theT2

can grasp itself, producing, precisely, a tetrahedron, see Fig.
10.

The ~2,2! term ~third line of Fig. 8! gives a rearranging of
two nodes. The corresponding surface looks as in Fig. 11.
Again, this is just a different orientation of the same elemen-
tary vertex.

Now, we could search for an ordering ofC@N# yielding a
vertex having crossing symmetry. But this task is superfluous
since we already know what we should obtain. We can di-
rectly postulatethat the Hamiltonian constraint yield cross-
ing symmetry, and deduce the amplitudes of the~0,4! and
~2,2! matrix elements from the value of the~1,3! vertex.12

There is a physical motivation that supports the above
argument. It has been observed@47# that the orderings of the
Hamiltonian constraint studied so far generate a dynamical
evolution that appear to be excessively ‘‘local.’’ They pre-
serve the general structure of the network on which they act,
simply ‘‘dressing’’ nodes. These difficulties have been re-
cently detailed in Ref.@6#, where it is argued that no long
range interaction is likely to emerge from a Hamiltonian with
these features. As pointed out by Thiemann, the argument is
far from conclusive, because it contains a jump from the
nonphysical ~gauge! coordinate evolution to the physical
one, and this jump may be ungranted. In any case, adding the
new vertices~2,2! and~0,4! would cure these potential diffi-
culties. Also, we note that one of the consequences of adding
the new vertices is that the faces of the surfaces in the sum
do not need anymore to be~topologically! two disks, as fol-

12Notice that the symmetrization of the Hamiltonian constraint
given in Eq.~8! can be seen as a first step in this covariantization of
the operator: it is equivalent to the postulate that the~3,1! cut has
the same value as the~1,3! cut.

FIG. 7. The elementary vertex and its associated spin network
Sv .

FIG. 8. The~1,3!, ~0,4!, and~2,2! cuts of the elementary vertex,
and, in the last column, the corresponding spin network transitions
in the Hamiltonian picture.@For ~3,1! and ~4,0!, look at ~1,3! and
~0,4! upside down, and reverse the arrow of the transition.#

FIG. 9. The~0,4! transition: creation of a tetrahedron.
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lowed from the original Hamiltonian expansion, and there is
no sense in the requirement of the surfaces being well-
ordered.

Finally, notice that one could also search for the form of
the vertices from generala priori requirements. An arbitrary
crossing symmetric vertex is obtained by replacing Eq.~60!
with a functionA(Sv) of the spin networkSv associated to
the vertex

Av~s![A~Sv!. ~62!

For instance, for trivalent nodes,Sv is a tetrahedron: the
functionA() must respect tetrahedral invariance. Notice that
there are not many functions with these features. A natural
choice is

A~Sv!5TetFa b c

d e fG ~63!

wherea2 f are the colors of the links ofSv andTet is the
totally symmetric form of the 6-j symbols~@48# and @21#!.
We think that a theory defined in this way is worth explor-
ing.

VI. CONCLUSION

Our main result is contained in the equation

P~sf ,si ;T!5 (
s

]s5siøsf

~ 2 iT !n~s!

n~s!! )
vP[s]

Av~s!. ~64!

@see Eqs.~56! and ~57!#, which expresses the dynamics of
quantum general relativity in terms of a sum over surfacess.

More precisely, the proper time propagator of quantum
GR can be expressed in terms of a sum over topologically
inequivalent branched colored surfaces, bounded by the ini-
tial and finals knots. The contribution of each surface to the
sum is the product of one factor per each vertex~branching
point! of the surface. The contribution at each vertex is a
simple SU~2!-invariant functionAv(s) of the colors of the
faces and edges adjacent to the vertex. This function charac-
terizes the quantum theory in the same manner in which the
Feynman graph vertices characterize a quantum field theory.
The vertexAv(s) of general relativity is given by a product
of Wigner 3n-j symbols@26#.

The essential property of the expansion~64! is that it is
finite order by order, and explicitly computable. This finite-
ness is intriguing. In order to calculate physical quantities,
we must have the proper time propagator for multifingered
proper times and we must integrate over the multifingered
proper time. We expect that the integration could yield finite
results if performed over expectation values of appropriate

physical quantities. Work is in progress in this direction, and
will be reported elsewhere. We close with the following
comments.

Our construction is strongly reminiscent of discretized
quantum gravity on a lattice@20,49–51#, particularly in its
simplicial formulations@9,45#. It is shown in@9# that one can
discretize general relativity over a simplicial lattice, and ex-
press the gravitational degrees of freedom as colored
branched surfaces over the~dual! two-skeleton.13 Even more
remarkably, the partition function is given in the discretized
case by a construction very similar to that given here: the
contribution of a vertex is determined by the intersection
between the boundary of a four-simplex around the branch-
ing point of the surfaces and the surface. This defines a spin
networkSv , which, in the discretized case, can be any sub-
graph of the one-skeleton of a four-simplex. Therefore ver-
tices have up to five edges and ten faces~see Appendix B! in
the discretized case. In this paper, nonvanishing vertices
have four edges and an arbitrary number of faces. Thus, the
simplicial construction corresponds to a cut of the sum~56!
in two respects: the maximum number of vertices is fixed by
the triangulation, and vertices have ten faces at most.

One can view the sum over surfaces defined here as a
version of Hawkings’ integral over four-geometries. Indeed,
a colored two surface defines a discrete four-geometry. The
integral is replaced here by a sum, and explicit computation
can be performed. Presumably, the construction can then be
used to define a number of related theoretical tools such as
partition functions, the Hartle-Hawking state, and others@2#.

Each individual term in the expansion~55! is finite. Di-
vergences can arise in summing the series, and in integrating
over proper time.

The similarity with the formulation of string theory as a
path integral over world sheets is tantalizing. On this, see the
discussion in@7#. Thedynamicsis different. In string theory,
the contribution of each surface to the sum is given by the
area of the surface, and therefore it depends on a fixed back-
ground metric on the manifold. Here, on the contrary, the
contribution of each surface depends only on the~coloring
and! topology of the surface. Thus, quantum GR resembles a
‘‘background-independent’’ version of string theory. The
techniques developed here could perhaps have relevance for
connecting loop quantum gravity with string theory@7,53#—

13Surfaces seem to be playing an increasing role as a way to
capture the gravitational field degrees of freedom. See for instance
@52#.

FIG. 10. Creation of a tetrahedron from the self-grasping ofT2.

FIG. 11. The~2,2! vertex.
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or for the construction of a nonperturbative background-
independent formulation of string theory.
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APPENDIX A: TERMINOLOGY

To help the reader, we collect here a list of terms em-
ployed.

Node: Point in 3D space where the links of a spin network
meet.

Link: Line in 3D space connecting two nodes of a spin
network.

Face: Surface in 4D spacetime~swept by a link!.
Edge: Line in 4D spacetime where several faces meet

~swept by a node!.
Vertex: Point in 4D spacetime where several edges meet.
A spin network is formed by nodes and links. A branched

surface is formed by faces, edges, and vertices. For the
branched surfaces that live on the two-skeleton of the dual
triangulation of the manifold in simplicial BF theory, faces,
edges, and vertices live on two-, one-, and zero-cells, respec-
tively, of the cellular decomposition dual to the simplicial
triangulation. They are therefore associated to four-, three-,
and two-simplices of the triangulation, respectively. There-
fore a vertex corresponds to a four-simplex, an edge to a
tetrahedron, and a face to~its dual! triangle.

APPENDIX B: COMPARISON WITH THE OOGURI-
CRANE-YETTER 4D TQFT

The structure of quantum general relativity in the form
presented in this paper is surprisingly similar to the Ooguri-
Crane-Yetter~OCY! four-dimensional topological quantum
field theory @10,11#, a rigorously defined simplicial lattice
version of four-dimensional SU~2! BF theory~see also@58#!.
More specifically, our expression for the proper time propa-
gatorU(T) of GR as a sum over world sheets resembles in

many ways the world sheet sum@8,48#14 for the projector on
physical statesUOCY of the OCY model.

The OCY model is a 4D generalization of the Ponzano-
Regge-Turaev-Viro~PRTV! model @12,13#, which, in turn,
can be seen as a quantization of 3D GR, or a quantization of
3D Chern-Simon theory. In@14# it was shown that the PRTV
model is a theory of the dynamics of spin networks~loops in
the terminology of@14#! having the same physical interpre-
tation as the spin network basis states in continuum 3D GR.
Thus one might expect a similarity between the kinematics
of the OCY model and loop quantized GR@14#. On the other
hand, the 4D OCY model as with the 3D PRTV model, but
unlike 4D GR has no local degrees of freedom, so one also
expects large differences between the theories.

In this section, we sketch the OCY theory, outline a con-
struction of the world sheet sum for the partition function
ZBF of the OCY model along the lines of@8#,15 and discuss
its similarities and differences with the formulation of quan-
tum GR presented here. We believe that this comparison
helps illuminate the much debated issue of the relation be-
tween quantum gravity and TQFT’s@15#.

We introduce here Ooguri’s original version@10# the
OCY model heuristically, as a discretization of BF theory
without cosmological constant. BF theory is given in terms
of two fields, an SU~2! connectionAi , with curvatureFi , and
an SU~2! algebra valued two-formBi , by the action@54#

SBF5E Bi`Fi . ~B1!

Before proceeding, it is interesting to note that conven-
tional general relativity can be obtained from BF theory by
simply adding a constraint term. Indeed one can show that
the theory

SGR5E Bi`Fi1f i j B
i`Bj , ~B2!

where the Lagrange multiplierf i j is traceless and symmet-
ric, is equivalent to general relativity@55#.

Consider the partition function of the BF theory

ZBF5E @dA#@dB#e2 i *Bi`Fi
. ~B3!

Integrating overB, we obtain

ZBF5E @dA#d@F#; ~B4!

namely, an integral over flat SU~2! connections. Let us de-
fine a lattice version of this theory by fixing a simplicial
decomposition of the 4D manifold.~See also@51#.!

Consider the dual of the simplicial decomposition. There
is one element of this dual cellular decomposition that plays
a central role in the construction: the ‘‘wedge.’’ Consider a
dual-two-facef . A dual-two-face is a 2D poligon. It inter-
sects a two-face of the simplicial decomposition in a ‘‘cen-14The world sheet sum of@48# is actually for the 3D Ponzano-

Regge-Turaev-Viro~PRTV! model, but is easily extended to the
OCY model. Iwasaki@50# has proposed an interesting alternative, a
closely related world sheet formulation of the PRTV model which
is also easily extended to the OCY model.

15The construction outlined here is a sort of baby version of that
for simplicial GR in @46#.
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tral’’ point o. Its vertices are centers of four-symplices and
its sides are lines connecting such centers. Each of these
sides, which connects the centers of two-simplices, crosses
the tetrahedron that forms the boundary between the two
simplices. Letp be the crossing point. Each pointp cuts one
of the sides of the polygonf . By drawing lines connecting
the pointsp to O, we divide the polygonf in quadrangles,
called ‘‘wedges.’’ A wedge is thus a 2D quadrangle that has
four sides: two of these are 1D lines that join centers of
four-simplices with~the centerp of! a bounding tetrahedron;
these are denoted 3-4 flags. The other two lines join the
center of a tetrahedron with the center of a two-face. These
are denoted 3-2 flags, see Fig. 12.

We choose to represent the connection by means of group
elements associated to 1D elements in the dual cellular de-
composition. More precisely, we associate a group element
U to each 2-3 flag~segment connecting the center of a two-
simplex with the center of one of the tetrahedra surrounding
it!, and one group elementW to each 3-4 flag~segment con-
necting the center of a tetrahedron with the center of an
adjacent four-simplex!. These group elements can be thought
of as the exponential of the connection along the segments.
Each wedgew is bounded by four such segments~two
of the 2-3 kind and two of the 3-4 kind!; let
U1(w),U2(w),W1(w),W2(w) be the group elements associ-
ated to the segments that bound the wedgew. We can ex-
press the requirement that the connection is flat by requiring
that the holonomy of the connection around each wedge is
trivial. Then a discretization of Eq.~B4! is given by

ZBF5E @dU#@dW#)
w

d@U1~w!U2~w!W1~w!W2~w!#

~B5!

where thed function is thed function of the unit on the
SU~2! group. We can expand thed function in characters.
For eachw, we have

d@U1~w!U2~w!W1~w!W2~w!#

5(
j

~2 j 11!Trj@U1~w!U2~w!W1~w!W2~w!#,

~B6!

where j labels the irreducible representations of SU~2!, and
Trj (U) is the trace of the group elementU in the represen-
tation j . Using this, we can rewrite Eq.~B5! as an integral

over group elementsU and W associated to segments and
half integersj associated to wedges:

ZBF5E @dU#@dW#(
[ j ]

)
w

@2 j ~w!11#

3Trj ~w!@U1~w!U2~w!W1~w!W2~w!#. ~B7!

We can view the group elementsU and W as the discrete
version of the connectionA, the j ’s as a discrete version
of the two form B, and the expression
Trj (w)@U1(w)U2(w)W1(w)W2(w)# as the discrete version
of the expression exp(2iBi`Fi).

Next, let us perform the group integration in Eq.~B7!
explicitly. By integrating over the group elementsU we
force the colors of the wedges belonging to the same dual
two-cell to be equal. By integrating over the group elements
W we force thej ’s of the ~four! dual two-cells that join on a
one-cell to satisfy the Clebsch-Gordan relation where they
meet, leaving an extra degree of freedomJ associated to
each such dual one-cell;J runs over the independent cou-
plings of four SU~2! representations. Finally, we end up with
numerical factors associated to the zero-cells of the dual tri-
angulation~plus other factors associated to faces and edges,
which we disregard here in order not to make the exposition
too heavy!. Such numerical factors turn out to be 15-j sym-
bols associated to the fiveJ’s of the five one-cells and the ten
j ’s of the ten two-cells adjacent to each vertex.16 Performing
these integrations explicitly is a simple and interesting exer-
cise. After these integrations over the group elements, the
theory is therefore reduced to a sum over colorings on the
two-cells and one-cells, satisfying Clebsch-Gordan relations.
We can interpret a zero color as no surface at all, and iden-
tify the two-cells with faces and the one-cells with edges of
branched colored surfaces. Thus, we can write the partition
function as a sum over branched colored surfaces living on
the dual two skeleton of the simplicial triangulation. We ob-
tain

ZBF5(
s

ABF@s# ~B8!

where the contribution of each surface is~up to the face and
edge factors we have disregarded for simplicity! a product of
vertices’s factors

ABF@s#5)
v

ABF,v~s!; ~B9!

the vertex factor is the 15-j symbol of the colorings adjacent
to the vertex.

The similarity of this result with the construction in this
paper, Eqs.~56!, ~57!, ~58!, is striking. In both cases, we
have a sum over the same kind of branched colored surfaces,
and the weight for each surface is the product of vertex fac-

16A dual zero-cell is always adjacent to five one-cells and ten
two-cells, because it corresponds to a four-simplex of the original
simplicial decomposition, which is bounded by five tetrahedra and
ten faces.

FIG. 12. A dual-two face and its decomposition in wedges.
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tors, where vertex factors are simple SU~2!-invariant func-
tions of the adjacent colorings. Thus, the structure of quan-
tum general relativity turns out to be extremely similar to the
structure of a topological quantum field theory. Of course
there are differences, and these differences are crucial. Let us
examine them in detail.

First of all, the world sheet amplitudes in the BF theory
that we are considering are the amplitudes in the projector on
physical states, while the GR world sheet amplitudes of the
present paper are from the sum for the proper time propaga-
tor U(T), so we might be comparing apples and oranges.
However, if we accept the not unreasonable hypothesis that
U(T) is a partial sum of terms in a sum over surfaces forU
in GR, we can compare the theories in a direct way.

The vertex factor is different in the two theories: in BF
theory it is a 15-j symbol, while in GR it is a combination of
9-j and 6-j symbols. This difference depends on the different
dynamics of the two theories, and should be at the root of the
other differences.

In the case of BF theory there is a crucial theorem hold-
ing: triangulation independence. Refining the triangulation
does not change the overall sum. This is the reason for which
the theory is topological, and is a consequence of the fact
that the classical theory has no local degrees of freedom. In
GR, nothing similar holds, because GR has genuine local
~although nonlocalized! degrees of freedom. Therefore there
is no reason to expect anything similar to triangulation inde-
pendence for GR.

The ensemble of surfaces over which the sum is defined is
different in the two cases. In the BF case, we sum over
surfaces over a fixed triangulation. In the case of GR, we
sum over all topologically inequivalent surfaces, with an ar-
bitrary number of vertices. Therefore, in the case of BF
theory the surfaces to be considered are finite in number. In
the case of GR we have to sum over arbitrarily complicated
surfaces or, equivalently, sum over arbitrarily fine triangula-
tions of the manifold as well. Notice that this difference is a
consequence of the previous point, namely, triangulation in-
dependence of BF. We could average over arbitrarily fine
triangulations in BF as well, but this would not affect the
result, because each triangulation yields the same contribu-
tion as the coarsest one. Therefore,diff invariance of the sum
is implemented in two different ways in BF and in GR, cor-
responding to the fact that BF is topological, while GR is
not: in BF, invariance is obtained thanks to triangulation
independence; in GR invariance is obtained by summing
over arbitrarily fine triangulations.

The rigorous version of BF theory requires SU~2! to be
replaced by quantum SU~2!. This can be seen simply as a
smart stratagem for regularizing the sum in an invariant man-
ner, yielding a finite result. Notice that in GR regularizing
SU~2! to quantum SU~2! would not guarantee an overall fi-
nite sum, because the surfaces themselves are infinite in
number. Thus, quantum GR does not admit a rigorous finite
version as quantum BF, at least as far as we can presently
see, even if one attempts to replace SU~2! with quantum
SU~2! in GR @56#.

The vertices of BF have always five edges and ten faces,
while vertices of GR have~at least with the ordering consid-
ered so far! four edges and an arbitrary number of faces.

These points illuminate the difference between quantum
GR and topological field theories. Let us discuss this point in
more detail.

Both theories are invariant under diffeomorphism. How-
ever, diffeomorphism invariance does not imply that a quan-
tum theory is topological in the sense of having a finite num-
ber of degrees of freedom. We expect GR to have an infinite
number of degrees of freedom. Thus Atiyah’s axioms for
topological quantum field theory are likely to be suitable for
quantum general relativity as well, if we drop the request that
the Hilbert spaces attached to boundaries of the four-
manifold be finite dimensional.

Finally, we may turn the comparison the other way
around, and describe quantum BF theory in the language so
far used for quantum GR. We can capture quantum BF
theory in terms of its vertex. A BF vertex has five edges and
ten faces. Assume that one of these edges comes from the
past, and four go to the future~the other cases are given by
crossing symmetry, that clearly holds in BF theory!. A mo-
ment of reflection shows that the elementary vertex of BF
theory ‘‘opens up’’ a four-valent intersection of a spin-
network into a ‘‘small’’ tetrahedron, see Fig. 13.

The matrix element of the Hamiltonian between these two
~partial! spin networks is the 15-j symbol of the 15 colors
associated to the four links and the one node of the incoming
spin network, and the six other links and four other nodes of
the newly created tetrahedron. It would be interesting to de-
rive this Hamiltonian from a Hamiltonian loop quantization
of BF theory.

APPENDIX C: DIFF INVARIANT SCALAR PRODUCT

We work out here an example of diff-invariant scalar
product betweens-knot states@32#. ~On the inner product
between spin networks see@29,57#, and @21# which we fol-
low here.! Let s be thes knot defined as follows.s has three
four-valent nodes,i , j , andk, and the six links

~ki,2!,~k j ,2!,~ki,4!,~k j ,4!,~ i j ,3!,~ i j ,5!, ~C1!

where each link is indicated by the two nodes it connects and
its color. Explicitly,

~C2!

To specify the state, we have to give also the coloring of the
nodes. We choose an expansion of the nodes in a trivalent

FIG. 13. The elementary vertex of BF theory. Notice that there
are 5 nodes and 10 links, yielding 15 colors. The value of this
vertex is the 15-j symbol of their 15 colors.
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graph~in each node! by pairing the two links colored 2 and
4. We have one virtual link for every node~we denote them
ei , ej andek), which we assume to be colored asei :c,ej :6
and ek :2, wherec ~which can take the values 6, 4, and 2!
will be specified later on:

~C3!

Next, let us define thes knot s8. Let it be the same as above,
but with a different coloring of the nodej . We expandj by
pairing (k j ,2) with (i j ,5) and (k j ,4) with (i j ,3). Let the
internal link have color 3:

~C4!

Let us compute the scalar product^sus8&. First, we have to
list the automorphisms of the spin network~taking link col-
ors, but not node colors into account!. There is only one
nontrivial automorphisma: it exchangesi and j . Thus, Eq.
~5! gives

^sus8&5^SuS8&1^aSuS8&, ~C5!

whereSPs andS8Ps8 have been selected to have the same
graph, with the same colored links. The only contribution to
Eq. ~C5! comes from the nodes. The nodek is the same in
the two states and therefore gives no contribution~recall we
have chosen normalized states!. Thus, we have

^sus8&5^SuS8& i^SuS8& j1^aSuS8& i^aSuS8& j , ~C6!

where we have indicated witĥu& i the scalar product re-
stricted to the space of one node. Spin-network states with
the same trivalent expansion are orthonormal. The change of
basis is given@21# by the recoupling theorem

~C7!

where the quantities$cd j
abi% are su~2! six-j symbols~normal-

ized as in@48#!. This gives us immediately

^SuS8& i51, ~C8!

^SuS8& j5H 4 2 3

5 3 6J , ~C9!

^aSuS8& i5dc6 , ~C10!

^aSuS8& j5H 4 2 3

5 3 cJ . ~C11!

Therefore

^sus8&5H 4 2 3

5 3 6J 1dc6H 4 2 3

5 3 cJ . ~C12!

Thus, if c 5 6 there are two contributions to the scalar prod-
uct, one from each of the two elements of the automorphism
group of the spin network and we have

^sus8&52H 4 2 3

5 3 6J 5
112

75
. ~C13!

While if c52 or c54,

^sus8&5H 4 2 3

5 3 6J 5
56

75
. ~C14!
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