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We derive aspacetimdormulation of quantum general relativity frofRlamiltoniar loop quantum gravity.
In particular, we study the quantum propagator that evolves the three-geometry in proper time. We show that
the perturbation expansion of this operator is finite and computable order by order. By giving a graphical
representation in the manner of Feynman of this expansion, we find that the theory can be expressed as a sum
over topologically inequivalentbranched, coloredwo-dimensional2D) surfaces in 4D. The contribution of
one surface to the sum is given by the product of one factor per branching point of the surface. Therefore
branching points play the role of elementary vertices of the theory. Their value is determined by the matrix
elements of the Hamiltonian constraint, which are known. The formulation we obtain can be viewed as a
continuum version of Reisenberger’s simplicial quantum gravity. Also, it has the same structure as the Ooguri-
Crane-Yetter 4D topological field theory, with a few key differences that illuminate the relation between
guantum gravity and topological quantum field theory. Finally, we suggest that certain new terms should be
added to the Hamiltonian constraint in order to implement a “crossing” symmetry related to 4D diffeomor-
phism invariance[ S0556-282(97)01718-9

PACS numbd(s): 04.60.Ds, 04.60.Gw

[. INTRODUCTION Let us sketch here the lines of the construction. Given
gravitational data on a spacelike hypersurfage the three-

An old dream in quantum gravityl] is to define a mani- geometry on a surfacg; at a proper timel in the future of
festly spacetime-covariant Feynman-style “sum over trajec2; (as measured along geodesics initially at restgh is
tories” [2], sufficiently well defined to yield finite results uniquely determined in the classical theory. It is then natural
order by order in some expansion. The Hamiltonian theoryto study the corresponding evolution operatd(T), that
has obtained encouraging successes in recent years, butpiopagates states froly to 3¢ in the quantum theory. This
suffers for the well-known lack of transparency of the frozenoperator, first considered by Teitelboif¥], codes the dy-
time formalism, for the difficulty of writing physical observ- namics of the quantum gravitational field, and is analogous
ables, and for operator ordering ambiguities. These problemt® the Feynman-Nambu proper time propag&rfor a rela-
are related to the lack of manifest four-dimensiof&D)  tivistic particle. Here, we construct the operatd(T) in
covariance. Here, we derive a covariant spacetime formalisrguantum general relativityGR), and we expand it in powers
from the Hamiltonian theory. This is of course the path fol- of T. We obtain a remarkable result: the expansion is finite
lowed by Feynman to introduce his sum over trajectories irorder by order. This is our first result.
the first placd 3]. What we obtain is surprising: we obtain a  Next, we construct a graphical representation of the ex-
formulation of quantum gravity as a sum over surfaces inpansion. This is obtained by observing that topologically in-
spacetime. The surfaces capture the gravitational degrees efjuivalent colored 2D surfacas in spacetime provide a
freedom. The formulation is “topological” in the sense that natural bookkeeping device for the terms of the expansion.
one must sum over topologically inequivalent surfaces onlyWe obtain an expression faf(T) as a sum of terms labeled
and the contribution of each surface depends on its topologgy surfacesr bounded by initial and final states. A surface
only.! This contribution is given by the product of elemen- consists of simple componentsvo-manifolds, or “faces,”
tary “vertices,” namely, points where the surface branchesthat carry a positive integer or color. Faces meet on 1D
The sum turns out to be finite and explicity computable“edges,” colored as well. Edges, in turn, meet at branching
order by order. The main result of this paper is the construcpoints, denoted “vertices.” The weight of each surface in
tion of this finite “sum over surfaces” formulation of quan- the sum is a product of factors associated to its vertices. The
tum gravity. value of a vertex is determined by the Hamiltonian con-

straint, and is given by a simple functigmvolving Wigner
3n-j symbolg of the colors of the adjacent faces and edges.

*Electronic address: rovelli@pitt.edu This “sum over surfaces” version of the dynamics of quan-
More precisely: on the diffeomorphism-invariant properties of tum general relativity is our second result.
the surface. The construction allows us to consider transformation
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properties of the Hamiltonian constraint under 4D diffeomor-propagator and its expansion. In Sec. IV we show that the
phisms (diff) in a manifestly covariant way. This analysis proper time propagator can be expressed as a sum over sur-
suggests the addition of certain new terms to the constrainfaces. In Sec. V we discuss crossing symmetry and the new
corresponding to an alternative operator ordering, whiclterms of the Hamiltonian constraint. In Sec. VI we summa-
implements a “crossing” symmetry at the vertices, with arize and comment our results. Appendix A is a brief glossary
nice geometrical appeal. Thus, 4D diff invariance may be af some geometrical terms employed. Appendix B contains
key for reducing the present ambiguity in the operator orderthe comparison with TQFT. In Appendix C we give an ex-
ing. Furthermore, the new terms seem to prevent some p@mple of a 3D diff-invariant scalar product.
tential problems with locality pointed out by Smolié]. The
introduction of these new terms in the quantum Hamiltonian
is our third result. IIl. CANONICAL LOOP QUANTUM GRAVITY

The idea that one could express the dynamics of quantum
gravity in terms of a sum over surfaces has been advocated
in the past, particularly by Bad7] and Reisenberg¢s]. On We start with nonperturbative canonical quantum gravity
the lattice, a sum over surfaces was recently developed by the loop representatiofi7]. The Hilbert spacé of the
ReisenbergeEQ], and the lattice construction has gwded UStheory is Spanned by the ba@y whereSis a Spin network
for the continuum case studied here. It is important to em{27]. A spin network is a colored graph embedded in a
phgsize, however, thap the present construction is gntirelmxed) three-dimensional compact manifali? For a fixed
derived from the canonical quantum theory in the continuuMcpsice of a treelike expansion at the nodes, these states are

The sum over surfaces we obtain has striking similaritie ; : _
with topological quantum field theor¢TQFT). More pre- %i;r;?igrr:)c?rmal[21,28,29 (see[21] for details on their normal

cisely, it has the same kinematic as the Ooguri-Crane-Yetter
model [10,11], a four-dimensional4D) TQFT which ex- (S'|S)= 8sg; (1
tends the Ponzano-Regge-Turaev-Viro 3D TQEZ-14 to

four dimensions. Essentially, the difference is given just by

the weight of the vertices. In Appendix B we discuss simi-the matrix elements of the change of basis between different
larities and differences between the two theories. The discusgigges’ expansion can be derived from EG7). An equiva-

sion, we believe, sheds much light over the tantalizing iSSUgnt construction of this Hilbert space can be obtained in

[15] of the relation between finite-number-of-degrees-of-terms of functions ovefgeneralizeli connectiond30]. For

freedom TQFT and quantum gravity. In particular, we arguegetajls on the equivalence between the two formalisms, see
that a diff-invariant quantum field theory with anfinite  31]

number of local(but nonlocalizedl degrees of freedom—  The dynamics of quantum general relativity is governed

A. Kinematic

angulation independence, as in combinatorial TQFT’s.
On the other hand, the sum over surfaces we obtain can be
viewed ada first step towardsa concrete implementation of
Hawking’s sum over four-geometrid®]. In fact, the sur-
faces over which we sum have an immediate interpretation For every diffeomorphisni:3 —3 (in diff,, the compo-
as “quantum” four-geometries, as we will illustrate. This nent of the diffeomorphism group connected to the ideptity
fact should make the the general techniques of covariant gefet D[f] be the operator i giving the natural action
eralized quantum mechanifs6] available to quantum grav- f:S—f-S of the diffeomorphism on the spin network states.
ity, potentially simplifying the difficulties with physical ob- Namely,
servables of the Hamiltonian formalism.
The basis of our construction is loop quantum gravity
[17]. The finiteness of the sum-over-surfaces and the picture
of a “discrete four-geometry” that emerges from this work .
are related to the fact that geometrical operators have dig=or every vector field\ on> that generates a one parameter
crete spectra. The discreteness of the spectra of area and
volume—and the “quantized” structure of space that these
spectra suggests—is a central result in loop quantum gravity,?We recall the definition of coloring of a spin netwdk1]. Each
first obtained by Rovelli and Smolin i8], and later con- node of the graph with valence higher than(rfBore than three
firmed and clarified by a number of authdrE9—23. The adjacent link} is arbitrarily expanded in a treelike trivalent sub-
main ingredient of our construction is the quantum Hamil-graph. The internal links of the subgraph are denoted virtual links.
tonian constrainf17,24. In particular, Thiemann’s version The coloring of the graph is an assignment of a positive integer to
of the Hamiltonian constraint25] and some variants of it each real or virtual link—in such a way that at every trivalent node
play an essential role here. Matrix elements of this operatothe sum of the three colors is even and none of the colors is larger
have been computed explicitly if26], using the methods than the sum of the other two. The set of the colorings of the virtual
developed i 21]. links of a node is also called coloring of the node. A coloring can be
In Sec. Il, we summarize the basics of nonperturbativeahought as an assignment of an irreducible(®Uepresentation to
loop quantum gravity. In Sec. lll we define the proper timeeach link and of an invariant coupling tensor to each node.

B. The diff constraint and its solutions

D[f]|S)=|f-S). @
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family f, of diffeomorphismsby df,/dt= N, f,=identity)®
the Diff constraint is defined By

- d
CIN]=—i4DIlfi )
t=0

and corresponds to the classical diffeomorphism constraint g5 1. action ofDjjkee- T+ O, @andp are the colors of the links

smeared with Shift functiolN. The spacég of the solu- 1, J, andK.
tions of the diffeomorphism constraints is defined as

Hair=H/diffo. It is spanned by a basjs), wheres is ans  veloped here to be extendible to thgN] term as well, and

knot, namely an equivalence class of spin networks undegherefore to Lorentzian GR, using the techniques developed
diffeomorphisms, which define the linear structuref; . by Thiemann[25].

One can define the scalar product/ify;; by an integration  The definition of C[N] is plagued by ordering ambigu-
[32,33 over diffy. If SesandS'es’, ities [24,25,39. Some of these are fixed by 3D diff invari-
ance[24]. In Sec. V we discuss how 4D diff invariance
(sls’)=/\/f [df](f-S|S'). (4 migh't fix _others. Her_e, we r.eca!l Thiemann’s vers_;ion of the
diffg Hamiltonian constraint, which is the starting point of our

] o ) ) ) construction. First, the nonsymmetric operaihyg N] is de-
N is a normalization factor. Equatio@) is meaningful be-  fined as

cause the integrand vanishes over most of the integration

spacebecause two spin network states are orthogonal unless

they have the same grapéind is constant on a discrete num- CndN][S)= 2i ;(S) N(x;)
ber of regions whose volume is normalized to one Ay -

Thus we have E 2

X . AiJKee’(S)DiJKEE’|S>'
(IK)ee(i) e=+1¢'=+1

<s|s’>=§ (pSilS), (5) @

where the sum is over th@liscret¢ automorphismsp that  Herei labels the nodes & [which form the seh(S)], x; are
send the graph and the links’ coloring into themselves. Sethe coordinates of the node (JK) labels the couples of
Appendix C for an example, and Ref82,3( for a rigorous  distinct links adjacent to the noddthese form the se(i)],
construction. It is useful to view as-knot state as a group and the operatoD;;x.., was introduced if35]; it acts on
integral of a spin network state: the spin network by creating two new trivalent nodésnd
i” on the the two links] andK, respectively, connected by a
_ _ link with color 1, and adde (respectivelye’) to the color of
<S|_Nfdiffo[df]<f Sl © the link connecting andi’ (respectivelyi andi”). This is
illustrated in Fig. 1.
whereSe s. The precise location of the nodes and the link added is an
arbitrary regularization choice. The coefficiets; .. (S) of
C. The Hamiltonian constraint Thiemann’s operator are well defined and can be computed
explicitly [26]. They are functions of the colors of the links
adjacent Tothe node they are finite and can be expressed as
products of linear combinations ofj symbols of SU_2).
It is important to notice that Thiemann’s operator was
derived using the infinite-dimensional differential-geometry
techniques introduced if80]. These differential techniques

glé?ee\t\?it:a':rr:]e”tﬁg??e(r:r%nsghagt. vsgr;'énglég% W%jg\?\) Cvirhewere introduced as a mathematical systematization of the
y : ’ 9 ideas on loop quantization introduced [ib7]. They have

Euclidean quantum gravity only. We expect the methods deéhed much light on loop quantum gravity, have provided a

rigorous mathematical foundation of the theory, and have
3 . . _led, among other results, to Thiemann’s operator. However,
We put an arrow over vectors\{, but not over spatial coordi-  the gperator itself is a well-definedgebraicoperator on the
nates &) or diffeomorphisms ). spin network basis, and the computation of its matrix ele-
*Rigorously speakingz[N] is not well defined orH. This is due  ments is easier using algebra than using infinite-dimensional
to funny (kinematical inner product(1), in terms of which the differential geometry[21]. The equivalence between the
action of the diffeomorphism group is not strongly continuous. Thispyrely algebraic formalisni‘loop representation” or “spin
fact does not disturb the construction of the theory, because the onlyetwork representation” and the differential formalism
role played byC[N] is to implement invariance under the finite (“connection representation’is shown in detail if31] (see
transformations it generates. These are well defiBéll Here, itis  also [29,23). The situation is analogous to the two well-
useful to considelC[N] as well, because it plays a role in the known ways of computing the spectrum of the harmonic
formal manipulations below. oscillator: one can use Dirac'algebraic technique, in the

The Hamiltonian constraint that we consider is the
density-weight 1 Hamiltonian density, smeared with a
densit-weight 0 Lapse functioN. The Lorentzian Hamil-
tonian constraintC [N] can be written as the sum of two
terms:C [N]=C[N]+V[N] [34], whereC,[N] is the Eu-
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[n) basis or, alternatively, one can solve th#ferential
Schralinger equation, in the coordinate basis. Each basis has
its own advantages, but the two formalisms are equivalent,
and there is no sense in which one representation is more
“rigorous” than the other. In particular, spectra of area and
volume in quantum gravity can be computed either using

(SICINIIS)= 2 N(Xo)AL(SK(S'ID.IS)

+ 2 N(x)Ag(S)(S'|DLIS). (13)
BelS']

algebraic techniqueghis is the way they werdirst com-
puted and their discreteness was discoverdd &) or using
differential technique$se€| 23], and references thereginrhe
resulting spectra are, of course, eqiL2].

The full Euclidean Hamiltonian constrai@[ N] is then
defined by symmetrizing€,J N]:®

1
(S'[CIN][S)=5((S'[CadN][S) +(SICrdS")). (&
Explicitly, we have

>

(JK)eer

(S'ICINJIS)= ;(S) N(x;) Aikee (S

X<S,|DiJKeel|S>

+ > NX) X Alskee(S)

i’ en(s’) (IK)eer

X<S,|DiTrJKee’|S>’ (9)

where

<S'|DiTJ|<esr|S>:<S|DiJKee'|S'>- (10
Notice that the Hamiltonian constraint is “local,” in the fol-
lowing sense. Given a spin netwof we may cut it in two
parts, by cuttingn links, obtaining two spin networks with
open endsS and S. Imagine we have two spin networl&
andS; that can be cut aS; andS;, and, respectivelyS; and
S;. Imagine that $=S;. Then the matrix elements
(S¢|C[N]|S;) do not depend on the “hat” componen&

andS;, so we can write

(S CIN]IS) = (SHCINIIS)). 11
This decomposition will play a role below.

We simplify notation by introducing a single discrete in-
dex «,B8..., to replace the discrete set of indices
(i,JK,e,€"). For every spin networlS, a ranges over a fi-
nite set[S] of values, with

vi(vi—1)

a 1] 5

ien(s)

12

values, where; is the valence of the node We also indi-
cate byx, the coordinates of the node with index Using
this, we have

Here we focus on Thiemanns/mmetricoperator.

The Hamiltonian constraint transforms covariantly under
the diffeomorphisms generated by the diff constraint
{CIN],CINT}=C[ L3N], (14)

where £y is the Lie derivative alondN. Under a finite dif-
feomorphismf, we have

D[f]CINID*[f]=C[N{], (15
whereN;s is the transformed Lapse:
N¢(x)=N[f(x)]. (16)

The transformation properties €[ N] under 4D diffeomor-
phisms are less clear. In the canonical formalism these are
controlled by the commutator dE[N] with itself, which,
however, is not fully under control, due to the interplay be-
tween regularization and 3D diff invarian¢86]. (Notice

that in [25] it is shown that the commutator
{C.d{N],C,{ M1} vanishes on diff-invariant states; the com-
mutator{C[N],C[M]} is more tricky) In Sec. IV we sug-
gest a way for addressing these difficulties.

Ill. PROPER TIME EVOLUTION OPERATOR U(T)

Consider, as an illustrative example, the Sclimger
equation for a single particle in a potentialHfis the Hamil-
tonian operator, the equation is formally solved by the evo-
lution operator

U(t)=U(t,0)=e R, (17)
where exponentiation, here and below, is time ordered. The
matrix elements of this operator between position eigenstates
define the propagator

P(x,t;x/,t) =(x|U(t,t")|x), (18

from which the solution of the Schdinger equation with
initial dataz//(i’,t’) att’ can be obtained by simple integra-
tion:

w(i,t)zf dx' P(X, X ) (X ,t'). (19)
Under suitable conditions, the propagator can be computed
by means of a perturbation expansion in the potential, and
the expansion has a nice graphical representation.

For a(free) relativistic particle, we have the option be-
tween using the above formalism with the relativistic Hamil-

tonian (H=+/p?+m?), or using a manifestly covariant for-
malism. This was originally done by Feynman by changing
the description of the dynamics: instead of representing mo-

tion by means of the evolution of thtareevariablesx in t,
we consider g“fictitious” ) evolution of thefour variables
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X= (>Z,t) in the proper timel. This evolution is generated by Un—U(T)—U. (29

the operatoH = p2— m?=(p°)2— p2—m?. The correspond-

ing proper time evolution operator and proper time propaga- an important observation is that in order to compute the

tor are functional integral28) we can simplygauge fix N requiring,
o for instancedN(t)/dt=0. In this gauge, the integral be-

U(T)=e~ ol (D) (200 comes trivial, and we havé(T)=U(T), which is given in

and Eqg. (20). In fact, the functional integratiof26) over N is

largely trivial, sinceU, depends oM only via T.
We are now going to follow the same path in general
relativity. In particular, we will concentrate here on the defi-

The relation between this proper time propagator and th&ition and the computation of thg proper time evolution op-
physical propagatofwhich is the quantity we compare ex- eratorU(T) and the corresponding proper time propagator
periments with is given by (its matrix elementsfor quantum general relativity.

P(X,tX " T)=(tU(T)|X',t'). (21)

. A. Definition and meaning of the proper time propagator
P()Z,t;)?’,t’)=f aT P()Z,t;)?’,t’;T) (22) in general relativity
0 In the canonical theory, thg¢'unphysical” or coordinatée

evolution of the gravitational field is generated by the Hamil-

or .
tonian

P(X,t;x t")=(xX,tjU|x’,t}, (23 HN,N*(t)=Ld3x[N(t,x)C(x)+Na(t,x)Ca(x)]

where =C[N(t)]+C[N(t)] (30

(units are fixed here b =c=167Geuwion=1, and we take
3 compacl. The quantum evolution operator that evolves
from an initial hypersurfac&,; att=0 to a final hypersur-
This can be verified by means of a simple calculatidnis ~ face>; att=1 is
the projector on the physical state space, which codes the
theory’s dynamics. 1

Alternatively, one can consider evolution in a fully arbi- UN,N*=exp—if dt Hyn(t). (31
trary parametert. Such evolution is generated by 0
H(t)=N(t)H, whereN(t) is an arbitrary Lapse function.
The corresponding evolution operator is We define the proper time evolution operator for quantum
gravity as

U=deT u(T). (24)
0

UN=exp<—if1dtN(t)H), (25
0

U<T>=j [dN,dNJUp g, (32
which is related to the physicél by the functional integral T*

. where the subscridtT,*} means that the integral is over all
U= f [dN]Uy. (26 shifts and lapses that satisfy
This functional integration can be split into two parts by _
defining the proper tim& in terms of the Lapse as NOGH=N(), (33
1 1
T= JO N(t)dt. 27 f dtN(x,t)=T. (34)
0

Using this, we can first integratdy over all LapseN hav- i i ) .
ing the sameT: Notice thatT is the proper time separation betweEnand

2, defined as the reading @i of the free falling test clock
- that started off at rest oB;. This is because if the lapse is
U(T)= ] dNUy, (28)  constant the geodesics that define the proper time foliation
T
remains normal to the ADM hypersurfaces. We denote the

where the subscript indicates that the functional integral Matrix elements of the operat(32),
must be performed over all’s satisfying Eq.(27). Then we
integrate ovefl to get the physical quantity . Thus we have P(st,si;T)=(s;|U(T)|s;), (35
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as the proper time propagatet]. In this paper, we focus on functional of the functionT(x), while U(T) is the proper

this quantity. We compute it as a power expansiom in the  time evolution operator, which is the value &f T] for

next subsection, and show that it admits a sum over surfacéx) =const=T.

representation in Sec. I¥. In the rest of this subsection, we discuss the physical
The construction generalizes to a multifingered propemeaning of the quantity we have defined and its role in the

time. In this case, leX; be given byt=t(x). The coordinate theory. First of all, the proper time propagator is the first step

time evolution operator from; to X; at fixed lapse and shift toward the computation of the physical evolution operator

is in the same sense as the Feynamn-Nambu proper time propa-

gator. The operatol is given by functionally integrating

Uy, overall lapses and shifts:

UN,m=exp( —i J2d3XJt(X)dt[N(t,x)C(x)
0

u=f [dN]f [dNJUy - (40)
+Na(t,x)Ca(x)]>. (36

This functional integrations corresponds to the implementa-
tion of the canonical constraints. As for the relativistic par-
ticle considered in the previous section, we can split the
computation o from Uy y into two steps,

The multifingered proper time evolution operator is

U[T]:f[T][dN’dN]UNN' 37 Uni—U[T]—U, (41

where the subscrigtT] means that the integral is over all by first computing the propagatd#[T] at fixed T(x) and
shifts and lapses that satisfy E§3) and then integrating ovell(x). As for the particle, we can par-
tially fix the gauge in which we computé[ T]. In particular,

we can choose to integrate over spacially constant lapses
only. Therefore we havel[ T]=U[ T], which is given in Eq.
(37). And, as for the particle, we can write

whereg; is the finite, time-dependent transformation of spa-

f;[g;lm]dtN[gfl(x).t]=T(X), (39)

cial coordinates generated by integrating the shift: U:j [dT]U[T]. (42)
dg(x) - B . . : .
Jo(X)=X, m =N(x,t), g=0;. (399  Thus,U is just the integral over proper time of the multifin-

gered proper time evolution operat@®7).
We add a general argument that better illustrates why we

can fix a gauge for computing[T]. This argument is for-
Pnal, but it is interesting because it illuminates the relation
) : ; 4 . between what we are doing and the sum over geometries
sic starting at rest OE! onx Ind,eled‘ if the Iapsg Is spacially considered by Hawking2]. In the metric formulation of ca-
constant, the geodesic will g *(x) (because in the coor- \,nical GR,U can be written as a sum over four-metrics
dinates §,t) =[g(x),t] the Shift vanishes, the Lapse is still bounded by given initial and final three-geometries. Each
constant and therefor;é= const is a geodesic normal to all such four-metric determines a proper time separali(x)
ADM slices). And therefore the geodesic that starts offxin  between the initial and final hypersurfaces. Therefore, the
reaches ; at the timet determined by=t[g, (x)]. Notice integral can be split in two parts, first the integta{T),
that the two notation8)[ T] andU(T) indicate different ob- restricted to four-metrics with total multifingered elapsed
jects. U[T] is the multifingeredproper time propagator, a time T(x), then the integration ovef(x). In computing
U(T), we can change integration variables from the four-
metric to the ADM variables, namely, three-metric, lapse and
SGenerally, slicing by equal proper time hypersurfaces developshift. The integral contains a high redundancy, corresponding
singularities, because the geodesics that define the proper time ite diffeomorphism gauge-invariandas the corresponding
tersect. This causes the canonical evolution to break down: a coointegral for the particle in the previous section die can
dinate system based on the slicing develops coordinate singularitidix part of this redundancy with a condition on the lapse. If
where the Arnowitt-Deser-MisnefADM) momentum density di- we pick an arbitrary lapse, the condition that the proper time
verges. We ignore these difficulties here, but two comments are iseparation of the initial and final slices T{x) becomes a
order. First, the explicit expression fday(T) that we obtain is condition on the three-metrics over which we are integrating.
simple and well defined order by order for afiy We think that However, we can choose a spacially constant lapse, satisfy-
potential singularities itJ(T) should be looked for directly in the ing Egs.(33) and (38). We can always do that, because we
guantumformalism. Second, LewandowEE7] has pointed out that may always slice a four-geometry with equal proper time
the classical evolution of the Ashtekar’s variables is better behavellypersurfaces, with the result that the corresponding lapse
than the ADM variables, because Ashtekar's variables can be re@nd shift satisfy Eqs(33) and(38). Conversely, any history
resented as differential forms, whose components are well behaveaf three-metrics, together with a lapse and shift satisfying
at coordinate sigularities of the type being considered. Egs. (33) and (38) defines a four-geometry with elapsed

0; andg are functionals of the shift. As befor&(x) gives
the proper time separation between the two hypersurface
defined as the proper distanceXf from ; along a geode-
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proper timeT(x). In this way, we implement th&(x) con-  particle position, plus the degree of freedom of an extra
dition, without interfering with the integration over three- quantum variable sitting on the particle, growing with proper
metrics. ThusJ[T] can be computed by fixing a laspe sat- time, and not affecting the particle’s _motlérWlth such a
(i little clock on the particlg(say the particle is an oscillating
isfying Eqgs.(33) and (38). :

The operatotJ is a key quantity for the theory. Comput- moleculg, we could make experiments we could compare

ing it virtually amounts to solving the quantum constraints,thelnprogﬁérgﬁnfe&?\ﬁggaéﬁmlgh'“fictitious,, evolution with
including the Hamiltonian constraint, which codes all the 9 Y,

d : fthe th Th ! f f looki extra degrees of freedom is provided by the so-called “local
ynamics of the theory. There are various ot ways ot loo Inginterpretation” of the theorysee[38] for a detailed discus-

atU. First of all, it is the projector on the the physllcal Statesion). In this interpretation, the coordinates are interpreted as
space of the Fheory. Second, the scalar prodsiti|s’) de- labels of reference-syste®RS) physical objects. It follows
fines thephysicalscalar product of the theory. Therefore, o4 |ocal quantities are physical observables, and that the
lack of determinism of the Einstein equations can be inter-
(S,S") physica j [dTI(s|U[T]|s). (43)  preted as a consequence of the fact that the dynamical equa-
tions of the RS objects are neglected. Under this interpreta-
Finally, we can view matrix elements & as observable tOn, GR is approximate(because we disregard the RS
transition amplitudes between quantum states. The details QPIECtS energy momentyrand incompletebecause we dis-
the interpretaton o) will be discussed elsewhere, but in all "€gard the RS objects dynamical equatjoiifie incomplete-
these instances, the role bf is just analogous to its coun- "€SS leads to the apparent physical indeterminism. If we
terpart for the single particlegln this paper we do not at- adopt this view, then we can say thgts’, and T are ob-
tempt to computeJ.) servable, becausE; can be physically ;peuﬂed by_the RS
Does the proper time propagat(s;,s; ;T), have a di- obj_ects, and we can use RS clc_)cks to find Qut whgrés. In
rect physical interpretation? A simple answer is thatd0ing so, we take approximations that might be ungranted
P(s;,s;T) codes the dynamics of the theory, but it has no(On the quantum behavior of the RS ob_Je)cGoncretely,‘f)ne )
direct physical meaning: only after integration over proper™@y consider a definite model, for instance, the “dust
time we obtain a quantity that we can, in principle, compargMode! introduced in38] and studied in[39]. In such a
with experiments. mo_del, aE_i to 3¢ propagator(wherezi is defnjed as_dl_Js'_t
This said, wecan nevertheless assign a plausible physica|var_|able$ is an obsgrvable quantlty._ In a suitable limit in
interpretation to the proper time propagaR{s ,s; ; T), with which the dust physmgl effects are dlregarded_, such a propa-
caution. This would be particularly useful for helping intu- 9ator might be approximated by the pure gravity proper time
ition. Let us return to the relativistic particle. In that case,PropagatoiP(s;,s;;T). With all these caveats, one can intu-
Feynman considered the “fictitious” evolution afandt in  itively think of P(s;,s;;T) as the quantum amplitude that
the proper timeT. Classically, this is not incorrebecause ~ the quantum gravitational field be in the state T seconds
the equations of motion of thé4+1)-dimensional theory after being in the stats; .
give the correct physical-81 motion| provided that one re-
members that the degrees of freedom are 3 and not 4. Quan-
tum mechanically, in the fictitious theory we are quantizing We begin with an observation. Let us writéy § as a
one variable too much. Taken literarly, the particle propedimit of products of small time propagators. Writing= 1/K
time propagator describes the three degrees of freedom of thendt,=ke, for integersK andk=1, ... K, we have

B. Expansion of the proper time propagator

UN,N: lim e_iEHN,I\](tK). . .e_ifHN,l\](tZ)e_ifHN,l\](tl)

K—oo

= lim e 1€CIN(t)] g—i€CIN(t0)] . . . o=1€CIN(tp)] g~ i€CIN(tp)] g ~i€CIN(ty)] g i €CIN(ty)]

K—oo

= lim e*ieC[N(tK)]D[fK]. . .e*ifC[NtZ]D[fz]e*ifC[NtllD[fﬂ

K—oo

= lim e~ «“INWID[f,]. - - {(D[f2]D[f,]) e~ <“INID[f,]D[f,]}(D~*[f,]e~ " «INWID[f,])

K—oo

= lim D[g)(D~*[ggle “NWID[gy])- - (D[ gple ' CINWID[ g,])(D g, Je ' INWIDg, )

K

= lim D[g]e—isC[N,\](tK)] . e—ieC[N,{,(tz)]e—ieC[N,\](tl)] — D[g]UN* o- (44)
Nl

K—o0

"More precisely, the extra variable is not the evolution of this proper-time clock-varTalsiea Lorentz timex®, but rather the evolution
of x%in T.
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HereNy is defined byN(x,t) =N[g{(x),t]; namely, it is the

lapse in the coordinates obtained by integrating the shifs. + > N(txp)A(S)(S|DEIS)
the “small” diffeomorphism generated by the shift between Aelsd

the slicest—1 andt, while g; is the finite diffeomorphism o (T (T
generated by the shift between the slice® andt. The first +(=1) f dtf dt’ > E
equality in Eq.(44) is just one of the definitions of the time 0t «cBBlaersy

ordered exponential. The second is based on the fact that for « N(t, X )N(t' X )AL(S)A L (S)(S|D | SL)

sufficiently small time interval K (sufficiently highK) one

can disregard the commutator term in disentangling the ex- X(S;|D/|S)+ - - (47)
ponent(this term is quadratic in K/). The third equality is

simply a rewriting of the exponent of an infinitesimal diffeo- (the second order term has three more summands, corre-
morphism as a finitgbut “small”) diffeomorphism. The sponding to thedD',D'D,D'D" term9. The first point to
fourth equality is simply the insertion of terms such asbe noticed in this expression is that the sum over the inter-
(D[f,]D~[f,]) in suitable places. The fifth equality is the mediate stateS, is finite. This is because both and D'
replacement of sequences of spatial diffeomorphismyield a finite number of terms only, when acting on a spin
(D[f,]---D[f,]D[f1]) by their product, which is®[g,]).  network staté. Thus, the above expression is finite order by
The penultimate equality is the key one; it follows directly order. Next, the integrations can be performed explicitly, us-
from Eq.(15); namely, from the transformation properties of ing Eqg. (34). We obtain

the Hamiltonian constraint under spatial diffeomorphisms.

The last equality follows again from the definition of ordered

exponential. In other words, we have shown that the tempo- (Sf|U|3>:<Sf|S>+(—iT)( 2 ALS)SID,IS)

ral evolution generated by the lapse and the evolution gen- welS]

erated by the shift can be disentangled.

While the manipulations above are fornftiley are made + > Aa(sf)<sf|DL|Si>>
inside a limib, the result itself is geometrically obvious: we e[S
can always rearrange the coordinates so that the shift is zero, (—iT)?

and compensate with a finite change of space coordinates at ALS)AL (Sy)

the end. If we do so, the laps¢ must be replaced by the
lapse in the new coordinates, whichNs; . X(S|D o, [S1(S1|DIS)+ - - - (48)

If the lapse is constant in spadéy=N. ThenUy o can be « “
expanded as

2! 4ETS] ar<lsy

The structure of the expansion is now rather clear. At each
ordern, we have théd operator actingn times,n factorsA,
UN0=1+(—i)detC[N(t)] and afiqite number of terms, coming from summing over
0 nodes, links and&=*1.
Our next step is to integrate over shift and lapsatisfy-
+(—i)ZJTdthdt’C[N(t’)]C[N(t)]+~-~. ing Eg. (38)]. The integration over lapse is t_rivial, as its
0 t dependence has dropped out the integral. This confirms the
independence from the laspe that was mentioned in the pre-
vious section. The integration over the shift amounts to im-
osing the diff constraint. Indeed, it turns out to be equiva-
nt to an integration over the diffeomorphism group, as in
the group integration technique for solving the diff con-
straint. Using Eq(44), we have

(49)

Its matrix elements between two spin network states can b
expanded as

(SIUnTIS)=(818)+(—) [ dsicinTls)
U= [ [dN] | [aNIDIGINTIU o(T), (49
#(=i72 ] Tat “dris e iy

where we have explicitly indicated the dependencg oh N
X(S1|C[N(t)]|S)+ - - - (46)  for clarity. We change integration variate— Ny (the Jaco-
bian must be 1, since this amounts to a change of coordi-
where we have inserted a complete set of intermediate statégtes, and obtain
|S1)(S;| (over which summation is understgodJsing the
explicit form (13) of the Hamiltonian constraint operator, we

have 8L ewandowski 40] noticed that this finiteness might fail because
of the moduli parameters of high valent intersections which were
<Sf| Uy 0|Si> studied in[41]. The role of these parameters in the theory, however,

is unclear. Finiteness of the proper time expansion may indicate that
the correct version of the theory is the one in which the moduli

=<Sf|Si>+(—i)det( E N(t,X,)A (S)(Sf|D |Si> parameters are removed, as suggested by many, and recently de-
0 \aecls] ¢ * tailed in[42].
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U(T>=M(f[dN]uN,o<T>)(J[dN]D[g[N]]). @sf

(50) f

TheN integration can be traded for an integration overdiff
changing variables fro\ to g[N], so we obtain

UM =N [dgIDIgIUN T (51
. 8§

for an arbitrary(irrelevan) choice ofN satisfying Eq.(34),
sayN=T. The matrix elements of this operator are given by

FIG. 2. Surface corresponding to a term of order zero.

(SU(MIs) Nfdiﬁo[dgkg SUndMIS). (52 powers of G has been advocated in quantum gravity by
Isham, Teitelboim, and othefd3]. Intuitively, we can think

The operatol) (T) is now well defined iy . Indeed, it that this quantity represents the probability amplitude that if
is immediate to see that it is diff invariant. For every two we have a quantum state of the gravitational figldjuantum
s-knotss; ands; in Hgir, we can arbitrarily pickS; andS;  three-geometiy |s;) over a surfaceS;, we will find the
such thatS e s; and Sy e sy, and we have the key result that quantum three-geometg;) on the surfac&; in a proper

i T.
(s{U(T)|s)=(SU(T)|S) 53 ¢

is well defined(independent from th& andS; chosen. IV. SUM OVER SURFACES

Furthermore, the operatdd, depends on an arbitrary _ ) _ _
regularization—the location of the added link—but a mo- Surfaces in spacetime provide a natural bookkeeping de-
ment of reflection shows that the dependence on the regulayice for the terms of the expansi@h5) in the same manner
ization drops out in the step frotdy 5(T) to U(T), by in WhICh. Feynman graphs prowde a bqokkeepmg device for
integrating the shift. The reason is that different regularizatonventional QFT perturbation expansion. This fact leads us
tions are related to each other by a finite diffeomorphism: thd© dive a nice graphical interpretation to the expansfaf).
statesD,|S) andD’,|S), whereD andD’ indicate two dif- Consider the 4D manifold=[0,1] X %,. Denote the two
ferent regularizations db are in the sams knot: their dif- ~ connected components of the boundary\dfas; andX.
ference becomes irrelevant in the scalar prod6@). This Ve now associate a 2D colored surfacen M—defined up

result is due to the fact that all the factors in the expansiof® 4D diffeomorphisms—to each nonvanishing term of the

are individually well defined at the diffeomorphism invariant SUm in the right-hand side of E(G5). We begin by drawing
level. More precisely we have that s; in 3; ands; in 3. Ass; ands; have no information about

the actual location of the graph, location is chosen arbitrarily
(that is, up to a diffeomorphism in diff. The first term in
(sil 2 Au(s)D,ls) (54 Eq. (55) (zeroth order inT) is nonvanishing only if;=s; .
a<lsi In this case, let us slidg acrossM from 3, to 3¢, in such

is not only well defined, but also independent from the regu® Way that it ends up oves;. To the term of order zero we
larization of D. This fact allows us to write our expansion &ssociate the surfage=s;X[0,1] swept bys;, see Fig. 2.
directly in diff-invariant form as Notice that this is possible because the two spin networks

are in the sams knot. The surface we obtain is formed by
2D faces—submanifolds ofM—joined along edges. The
<Sf|U(T)|Si>:<Sf|Si>+(_iT)( Y Aus)(sD,ls) faces are swept by the spin network links, and the edges are
asts] swept by the spin network nodes. We color every face with
‘ the color of the corresponding link &, and every edge
+ 2[:3] Aa(sf)<sf|Da|Si>) with the color of the corresponding node ®f
e The surface associated to one of the summands of the

(—iT)? second terntfirst order inT) in Eqg. (55) is then defined as
TR QZES] Aa(Si)Aq (S1) follows. In each summand, one of the nodessaf say the

' ' nodei, is altered by the operat®. s; has two nodes more
X(st|D,[81)(s1|D S+ - - (55) thans;, sayi’ andi”. We begin by slidings; into the mani-

fold by an arbitrary finite amount, until a position, sayl_et
This expression gives the three-geometry to threep be the point in which the nodeends up. Then we slidg
geometry propagator of quantum general relativity as a seriefsom 3,; through the manifold in such a way that it converges
finite at every order. Notice that the expansion is in power ofto s. The three nodes i’, andi” of s; converge all three to
T or, equivalently, in inverse powers of the Planck length,p. We obtain a surface, bounded bys; ands; formed by
because this must divid€ in order to recover physical di- faces that meet along edges; four of these edges meet at the
mensions. The utility of a perturbation expansion in inversepoint p. We callp a vertexof the surfacer. At the vertexp,
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8j

FIG. 3. Surface corresponding to a first order term.

o branches. Notice that four edges and six faces mept in
see Fig. 3.
We can imagineM as a spacetime ang] as evolving

c_ontinuously ina c_oordinatefrom S to 5. At_the SPace-  outgoings knot. At each node, we denote the first ones as
time even, the spin network branches: the nadgenerates  «past” edges and the second ones as “future” edges. Thus,
the two new nodes’ andi”, which are born at and then  g5ch edge emerges as a future edge from one vertex, or from
move away. A new face, spanned by the new edge that joinge initial hypersurface, and ends as a past edge in another
i” andi”, is born inp. The branching represents the elemen-yertex, or in the final hypersurface. This defines a partial
tary vertex of the theory, and is represented in Fig. 4. ordering of the vertices of each surface.

~ The generalization of this construction to higher terms is A short reflection will convince the reader that all the
immediate. A term of ordem in T corresponds to a surface  syrfaces that we obtain satisfy the following property. Each
with n vertices. Thetime) order in which then D operators  face has the topology of a disk, and the ordered set vertices
act determines an ordering for the vertices. An example of &rgund a single face has at most one local maximum and
term of order two is given in Fig. 5. It represents the ransi-most one local minimum. We say that a colored surfade

tion from thes knot with two trivalent nodes connected by «well ordered” if all its faces satisfy this property.

FIG. 4. The elementary vertex.

but colored(3,6,8. The intermediate step is theknots;,  (with the vertices ordergdcontains all the information
with four nodes. needed to reconstruct the corresponding term in the expan-

In the construction we have described, each vertex hasjon (55). In fact, the factorsA (s) depend only on the col-
four adjacent edges. Some of these edges are generated fjing of the surface(ii) Any well-ordered branched colored
the nodes of the incoming knot (the one at the right of the - gyrfacec, with colorings satisfying Clebsch-Gordan condi-
operatorD corresponding to that vertgxand some by the tions at the edges can be obtained from a term in(&§).

FIG. 5. A term of second order.
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(iii) Two surfaces correspond to the same term if and only if
there is a 4D diffeomorphism that sends one into the other.
These facts allow us to rewrite the expansi@3) as a
sum over diffeomorphic inequivalent well-ordered surfaces
o bounded bys; ands;. Therefore we can write the propa-
gator[see Eq.(35)] as a sum of terms labeled by topologi-
cally inequivalent branched well-ordered colored surfases

bounded by initial and final state:

P(s;,si:T)= > Alo](T). (56)

do=s;jUst FIG. 6. The construction of the spin netwdBk from the inter-
section of the surface with the boundary of a four-sphere surround-

The weightA[o](T) of the surfacer is given by a product ing the vertex. The spin network is then cut into its past and future
over then(o) vertices ofo: componentss, S, ;.

H n(o
(—im"” 1 A0 (57 Regge calculus’ Thus, a surfacer defines a discretized
n(ao)! et © 7 four-geometry. The idea that areas of triangles could be vari-

ables more suitable than lengths of links in four dimensions
The contributionA, (o) of each vertex is given by the coef- \yas considered ifi14,45. Finally, more in general, we can
ficients of the Hamiltonian constraint defined in Eg3): say that a natural geometrical interpretation of the colors
A (0)=A(s) (58) associated to the faces is the following: if a face has cojor 2
v s it contributes a quantum of area#6G+/j(j + 1) to the area
of each spacetime two-surface® at each point where it

Ala](T)=

(The nonvanishing matrix elements’|D ,|s) have value 1. \
Can we attribute a physical meaning to the surfaces tha?!€rcesS. o o )

enter the sum? The answer is yes. There is a natural way of 1 NiS geometrical interpretation is “natural,” but not nec-

interpreting a branched colored surface as a discrete essarily correct. In particular, the relation between the proper

(“quantum”) geometry. This geometrical interpretation was /M€ T, and the spacetime geometry defined by the colors of
proposed i8] in a slighty different context; it holds in the the world sheet is not clear. Thls_rela_tlon shoulc_i be investi-
world sheet formulation of the simplicial model of GR]. gated before taking the geometrical interpretation too seri-
First of all, consider a triangulatio of the manifold A, ~ OUSIY- _ o

and assume that the surfaessits over the dual two-skeleton _ Reconstruction of the £S) coefficient from surface data

of the triangulation. As we shall see in Appendix B, this is The coefficient®\ ,(s) can be reconstructed directly from the
the natural way of viewing the surfacesLet a triangle(two ~ c0lored surface as follows. Let a verteshaven; past edges
cell) S of the triangulatior? be punctured by the fade(say ~ and nr future edgesA, (o) is nonvanishing only ifn;=1

with color p) of & in a point. Now, recall that according to @ndni=3 orif nj=3 andn;=1. In this caseA,(s) is de-
canonical loop quantum gravity the colors of the spin nettermined by the matrix elements of the Hamiltonian con-

works are quanta of area: the area of a surgaerced by ~ Straint. _ _ _ . _
a single link with colorp=2j is [18] It is very instructive to give an explicit construction of

A, (o). Consider a 4D neighborhodgl of the vertexv. Con-
A(S)=167:G\j(j+1). (59)  sider the 3D boundaryB of B. Let S, be the intersection
betweeno and dB. A short reflection will convince the
In the spacetime picture, a link sweeps a 2D facevhich ~ reader thaB, is a colored graph in the 3D spagB, having
intersectsS at a point. It is natural to suppose that the area o4=n;+ n; nodes(that satisfy Clebsh-Gordan relationsor-
any spacetime two-surfacgis similarly determined by the responding to the intersections between the four edges
coloring of the world sheet. For instance, we may consider merging fromp andJB, see Fig. 6.
three-dimensional hypersurfade that containsS, view the Now, cut all the links ofS, that go from a past node to a
intersection betweeB and the colored surface as the “in-  future node. This procedure breagsinto two spin networks
stantaneous position of the spin-network state on the ADMwith (equa) open ends, which we denote 'ég,i and§vyf.
time X,” and assume that the results of the canonical theoryMore precisely, these are knots, because they are deter-
can be applied. If we make this assumption, then we can sayiined only up to diffeomorphismsThe value of the vertex
that the area of is A(S) given in Eq.(59). Therefore, a is given by the matrix elements of the Hamiltonian constraint
surfaceo assigns dpossibly vanishingarea to each triangle between these two spin networks; namely,
of the triangulatiorZ. But fixing the areas of the triangles of
a four-dimensional triangulation is equivalent to fixing a dis- A, (0)=(S,C[1]S, ), (60)
cretized four-geometry. Assigning areas is analogous to as-
signing the lengths of the links of the triangulation as in
0There is a difference: in order to define a geometry, the lengths
of the links must satisfy certain inequalities. The areas of the tri-
For a general description of such surfaces and their propertiesingles must satisfy certain inequalities, as well as some equalities
see, for instancdA44], and references therein. among them; namely, they are not all independent.
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see Eq.(11). This expression gives, (o) as a function of as a proposal to be explored. We do not have a rigorous
the colorings of the edges and faces adjacent to the vprtex derivation of crossing symmetry from first principles, but
This function is universal, and characterizes general relativenly a heuristic plausibility argument, which we better detail
ity, in the same manner in which the Feynman vertex factobelow.
characterizes a QFT. We compute the vertex functig(s) Consider the path integral that formally defing€T) in a
explicitly for the simplest case in Appendix B. It turns out to proper time gauge, namely in a gauge in which the lapse is
be expressed in terms of &) n-j symbols of the colorings. spacially constant. Consider a four-metgicthat contributes
Notice that it is the locality of the Hamiltonian constraint to this path integral and a small spacetime rediyrand let
that allows the sum over surfaces construction. This is @g be the restriction of to R. The regiornR is sliced by the
peculiar form of locality, quite different from conventional proper time slicing. LeAg(g) be the exponential of the ac-
QFT locality: The action is not local with respect to a back-tion of this region. If the region is small enough, we can
ground structure, but with respect to the spin networks themthink of Az(g) as the matrix element of the evolution opera-
selves. tor between “beforR” and “after R,” where “before” and
Equations(56)—(60) provide a definition of the proper “after” are determined by the proper time slicing, and thus
time propagator of quantum general relativity as a topologiidentify Ag(g) with the vertexA, (o). Now consider a dif-
cal sum over branched colored surfaces. They represent oférent four-metriag’ in the integral, containing a regidr’,
main result. such thatgy, is isometric togg, but sliced in a different
manner by the proper time slicinghe reader will easily
V. CROSSING SYMMETRY convinqe h.imself that such a metric. exists in gen)grair)ce
the action is local and 4D diff invariant, the contribution of
Above, we have consideredeformulationof loop quan- g to the sum must be equal to the contribution g;’;
tum gravity as of a sum over surfaces. Here we propose gamely, Ax(g)=Ar/(g'). This implies that the matrix ele-
modificationof the theory, suggested by the reformulation. ments of the proper time Hamiltonian between “before” and
The value of the verteR, (o) that we have computed in  «after” according to one slicing oR ought to be the same
the last section depends on two inputs. First, on the colorings the matrix elements of between “before” and “after”
of the edges and faces adjacent to the verteSecond, on  according any other slicing. In other words, the matrix ele-
the distinction between “past” and “future” edges, namely, ments should be invariant under a 4D rotation Rfthat
on the way the vertex is located and oriented within thechanges what is before and what is after. If we require the
surfaceo. We suspect that the appearence of this orientatiogame to hold in our sum over surfaces, we obtain the require-
dependence is a sign that something has gone wrong in thent that vertices be crossing symmetric.
definition of the theory. The action of GR is local and 4D Thjs discussion shows that there is a relation between 4D
diff invariant, and therefore the action of the four-geometryitf invariance and crossing symmetry, because a 4D diffeo-
of a small region(“the vertex”) is independent of how this  morphism “rotates” the vertex in 4D. Recall that the 4D diff

region is sliced by equal time slicés. ~ invariance of the classical theory is expressed by the Poisson
Thus, we propose a modification of the theory in whichprackets

the orientation dependence is removed. We say, in general,
that in a theory defined by a sum over branched colored {C[N],C[M]}:C[Ném_mgml (61)
surfaces, with weights given by products of vertex factors,
the vertex is “crossing symmetry” if its value depends on One of the hard problems of the Hamiltonian quantization
the adjacent colorings only, and not on the distinction beprogram is to define a quantization of the Hamiltonian con-
tween past and future edges. BF thepht] and simplicial  straint yielding a 4D diff-invariant quantum theory. In par-
GR [8,9] are theories of this kind, and have crossing sym-ticular, implementation of 4D diff invariance is presumably
metric vertices. In this section we study the modification ofthe missing ingredient for fixing quantization ambiguities of
the geometry of the vertex required to make it crossing symthe Hamiltonian constraint. Recall that the ambiguity in the
metric. definition of C[N] was fixed in[24] and [25] to a large
We then say that a Hamiltonian constraint oper&tdnas  extent arbitrarily. Full implementation of the quantum ver-
crossing symmetry if it defines a crossing-symmetric vertexsion of Eq.(61) should ensure 4D diff invariance, but has
via Eq.(60). The modification of the vertex that we consider proven hard to realize. We are therefore lead to the sugges-
in this section might be obtained from a different factor or-tion that we can cure the slicing dependence by taking ad-
dering of the Hamiltonian constraint and, as we shall se&antage of the remaining operator ordering ambiguity, and at
below, is strictly related 4D diff invariance. Thus, here wethe same time, cure the excessive ordering ambiguity by im-
are exploring the idea that 4D diff invariance might fix re- posing slicing independence. In other words, we icapose
sidual factor ordering ambiguities. Of course, it should notsome form of 4D diff-invariance requirement in order to re-
be surprising that a spacetime formalism could simplify theduce quantization ambiguityHere we are suggesting that in
discussion of 4D diff invariance, a notoriously tricky issue in a covariant formalism crossing symmetry might be the key
the Hamiltonian framework. for implementing 4D diff invariance.
Let us make clear that we present crossing symmetry only Vertices with crossing symmetriet us investigate the
meaning and consequences of requiring crossing symmetry.
First, we should require that different ways of cuttiSg
e are dealing with the Euclidean theory, so there is no light-with three nodes on one side and one node on the other yield
cone structure that defines local notions of past and future. the sameA, (o). This leads to conditions on th&,(S) co-
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FIG. 7. The elementary vertex and its associated spin network
S, . FIG. 9. The(0,4) transition: creation of a tetrahedron.

efficients, that will be studied elsewhere. A more interestinggonian constraint KEE) is formed of two parts: a “small

case is the following. First, let us hel_p intu_ition by redrawing loop” that corresponds to the classical curvatuf® term
the elementary vertex of the theoffyig. 4) in a more sym- and the term that “grasps,” the two hands of fioperator

metric way. This is done in Fig. 1For simplicity, we re- in [17,24] (or the volume operator if25]), corresponding to

strict the following analysis to trivalent nodgs. _the triadsEE (or the triads multimplied by a suitable density
There are five topologically inequivalent ways of cuttlngf ton. Traditionally, th d h BEE: the * I

S, , giving, respectively, 1if; ,n;s) (number of initial and final Iac O,,‘ radl I(?(:Tadyft e;hor erc psenR ’ eth_smad

nodes$ equal to(0,4), (1,3), (2,2, (3,1), and(4,0). The last oops” aré addedafler the grasping. Reverse this order,

two are the time reversal of the first two, leaving three genuSN0SINGEEF, and have the small loop being inserted first.

inely independent cases. In Fig. 8, we show the possible cutd hen the Hamiltonian constraint has nonvanishing action on
and the corresponding spin networks transitions in thén€ vacuum as well, because the grasping term can grasp the

Hamiltonian picture. Time reversed cuts give just the oppo-'Small loop.” In particular, this may create a “small” tet-
site transitions. rahedron. For mstance,.m the cqnstruct|orﬁlﬁ,24], the T2 '
Case(1,3 is the one described in the previous sectioncan grasp itself, producing, precisely, a tetrahedron, see Fig.
(Fig. 6). Crossing symmetry requires that the Hamiltonian10.
constraint generate the transitioils4) and(2,2—described The (2,2) term (third line of Fig. 8 gives a rearranging of
in the last column of Fig. 8—as weMlyith the same ampli- two nodes. The corresponding surface looks as in Fig. 11.
tude Again, this is just a different orientation of the same elemen-
Consider these two new transitions. We begin wWilld)  tary vertex.
(second line in Fig. B_ This transition represents a matrix ~ Now, we could search for an ordering 6f N] yielding a
element of a Hamiltonian that creates a “small” tetrahedronyertex having crossing symmetry. But this task is superfluous
from the state with no loops. The fact that 4D invariancesjnce we already know what we should obtain. We can di-
requires the presence of such “birth” terms has already beepactly postulatethat the Hamiltonian constraint yield cross-
argued, on ger_1era'l grounds,[#6]. In terms of surfaces, the ing symmetry, and deduce the amplitudes of tAgd and
ter$hl_oo_kshas in Fig. 9. . i Eia. 4. and in Fia. 7 (2,2) matrix elements from the value of thi#,3) vertex!?
b tdls ISt et;]/erydi?me ;sur_ac? ?S n 'g ' atr_l |n” Vl\?th There is a physical motivation that supports the above
ut drawn with a difiérent onentation in “spacetime.= Wi argument. It has been obsenfed] that the orderings of the
this orientation, it describes a tetrahedral spin networlﬁ_| oo . . .
: : amiltonian constraint studied so far generate a dynamical
emerging from nothing. : ; “ "
evolution that appear to be excessively “local.” They pre-

Can such a term originate from an ordering of the Hamil- .
tonian constraint? Surprisingly, the answer is positive. weerve the general structure of the network on which they act,

. . simply “dressing” nodes. These difficulties have been re-
sketch here a hand waving argument. The regularized Ham'ﬁently detailed in Ref[6], where it is argued that no long

range interaction is likely to emerge from a Hamiltonian with

n= 3 these features. As pointed out by Thiemann, the argument is

n= 1 4@ _< = _( far from conclusive, because it contains a jump from the
nonphysical (gauge coordinate evolution to the physical

ne= 4 one, and this jump may be ungranted. In any case, adding the

0= 0 ﬂ’ 0 = A new verticeg2,2) and(0,4) would cure these potential diffi-

L= culties. Also, we note that one of the consequences of adding

the new vertices is that the faces of the surfaces in the sum

ne= 2 do not need anymore to Keopologically two disks, as fol-

mn= 2 4@ >—< s X

FIG. 8. The(1,3), (0,4, and(2,2) cuts of the elementary vertex, 2Notice that the symmetrization of the Hamiltonian constraint
and, in the last column, the corresponding spin network transitiongiiven in Eq.(8) can be seen as a first step in this covariantization of
in the Hamiltonian picturefFor (3,1) and (4,0), look at(1,3) and the operator: it is equivalent to the postulate that @) cut has
(0,4) upside down, and reverse the arrow of the transition. the same value as th&,3) cut.
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Q-0 -®-R
FIG. 10. Creation of a tetrahedron from the self-grasping-of

lowed from the original Hamiltonian expansion, and there is
no sense in the requirement of the surfaces being well-
ordered.

Finally, notice that one could also search for the form of
the vertices from general priori requirements. An arbitrary
crossing symmetric vertex is obtained by replacing &)
with a functionA(S,) of the spin networkS, associated to

FIG. 11. The(2,2) vertex.

the vertex physical quantities. Work is in progress in this direction, and
will be reported elsewhere. We close with the following
A(0)=A(S,). (62  comments.

Our construction is strongly reminiscent of discretized
For instance, for trivalent nodes, is a tetrahedron: the duantum gravity on a latticf20,49-5], particularly in its
function A() must respect tetrahedral invariance. Notice thagimplicial formulationg9,45]. It is shown in[9] that one can

there are not many functions with these features. A naturdfiScretize general relativity over a simplicial lattice, and ex-
choice is press the gravitational degrees of freedom as colored

branched surfaces over thdual) two-skeleton:® Even more
remarkably, the partition function is given in the discretized
63) case by a construction very similar to that given here: the
contribution of a vertex is determined by the intersection
between the boundary of a four-simplex around the branch-
wherea—f are the colors of the links o, and Tetis the  ing point of the surfaces and the surface. This defines a spin
totally symmetric form of the §-symbols([48] and[21]).  N€WorkS,, which, in the discretized case, can be any sub-

; h fi in thi ; h lor- 9raph of the one-skeleton of a four-simplex. Therefore ver-
?/r:/ge. think that a theory defined in this way is worth explor fices have up to five edges and ten fa Appendix Bin

the discretized case. In this paper, nonvanishing vertices
have four edges and an arbitrary number of faces. Thus, the
VI. CONCLUSION simplicial construction corresponds to a cut of the &)
in two respects: the maximum number of vertices is fixed by
the triangulation, and vertices have ten faces at most.
(— iy O_ne C?T_| viel\(/y the_sum olver sufrfaces defingd hlerg az a
o - version of Hawkings’ integral over four-geometries. Indeed,
P(S.siiT) = 2;‘ n(o)! ULIU] Au(a). (69 a colored two surface defines a discrete four-geometry. The
do=sjUst integral is replaced here by a sum, and explicit computation
can be performed. Presumably, the construction can then be
[see Eqgs(56) and (57)], which expresses the dynamics of used to define a humber of related theoretical tools such as
guantum general relativity in terms of a sum over surfaces partition functions, the Hartle-Hawking state, and otH&is
More precisely, the proper time propagator of quantum Each individual term in the expansidsb) is finite. Di-
GR can be expressed in terms of a sum over topologicallyergences can arise in summing the series, and in integrating
inequivalent branched colored surfaces, bounded by the inbver proper time.
tial and finals knots. The contribution of each surface to the  The similarity with the formulation of string theory as a
sum is the product of one factor per each veriesanching  path integral over world sheets is tantalizing. On this, see the
point) of the surface. The contribution at each vertex is adiscussion iff7]. Thedynamicss different. In string theory,
simple SW2)-invariant functionA, (o) of the colors of the the contribution of each surface to the sum is given by the
faces and edges adjacent to the vertex. This function charaarea of the surface, and therefore it depends on a fixed back-
terizes the quantum theory in the same manner in which thground metric on the manifold. Here, on the contrary, the
Feynman graph vertices characterize a quantum field theorgontribution of each surface depends only on toeloring
The vertexA, (o) of general relativity is given by a product and topology of the surface. Thus, quantum GR resembles a
of Wigner 3n-j symbols[26]. “background-independent” version of string theory. The
The essential property of the expansi@) is that it is  techniques developed here could perhaps have relevance for
finite order by order, and explicitly computable. This finite- connecting loop quantum gravity with string the¢/53—
ness is intriguing. In order to calculate physical quantities,
we must have the proper time propagator for multifingered—
proper times and we must integrate over the multifingered 3Surfaces seem to be playing an increasing role as a way to
proper time. We expect that the integration could yield finitecapture the gravitational field degrees of freedom. See for instance
results if performed over expectation values of appropriat¢s2].

a b c

A(s,,>=Ter{d o

Our main result is contained in the equation
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or for the construction of a nonperturbative background-many ways the world sheet su,48]** for the projector on
independent formulation of string theory. physical stated) 5oy of the OCY model.

The OCY model is a 4D generalization of the Ponzano-
Regge-Turaev-VirdPRTV) model[12,13, which, in turn,
can be seen as a quantization of 3D GR, or a quantization of

We are particularly indebted to Jim Hartle, Gary Horow- 3D Chern-Simon theory. If14] it was shown that the PRTV
itz, and John Baez for extensive discussions during whichmodel is a theory of the dynamics of spin netwotk®ps in
various aspects of this work were clarified. We thank Donthe terminology of{14]) having the same physical interpre-
Marolf for key suggestions in an early stage of the work,tation as the spin network basis states in continuum 3D GR.
Bernie Brigmann for criticisms and suggestions, ThomasThus one might expect a similarity between the kinematics
Thiemann for a detailed and valuable critical reading of theof the OCY model and loop quantized GR4]. On the other
manuscript, Roberto DePietri and Roumen Borissov, fohand, the 4D OCY model as with the 3D PRTV model, but
pointing out and correcting several errors, and Lee Smolinynlike 4D GR has no local degrees of freedom, so one also
Seth Major, Jerzy Lewandowski, Louis Crane, John Bakerexpects large differences between the theories.
and Abhay Ashtekar for suggestions and discussions. This In this section, we sketch the OCY theory, outline a con-
work was partially supported by NSF Grant Nos. PHY-5-struction of the world sheet sum for the partition function
3840400, PHY-9515506, PHY95-14240, and the Eberly reZgF of the OCY model along the lines ¢8 15 and discuss
search fund of PSU. C.R. thanks the A. Einstein Institute ints similarities and differences with the formulation of quan-
Potsdam, and the Physics Department of the University ofum GR presented here. We believe that this comparison
Roma for hospitality during the preparation of this work.  helps illuminate the much debated issue of the relation be-
tween quantum gravity and TQFT[45].

We introduce here Ooguri’'s original versiddO] the
OCY model heuristically, as a discretization of BF theory

To help the reader, we collect here a list of terms em-Without cosmological constant. BF theory is given in terms
ployed. of two fields, an S(®) connectiorA', with curvatureF', and

Node Point in 3D space where the links of a spin networkan SU2) algebra valued two-forng', by the actior{54]
meet.

Link: Line in 3D space connecting two nodes of a spin SBF:J BIAE (B1)
network.

Face Surface in 4D spacetim@wept by a link. . o .

Edge Line in 4D spacetime where several faces meet, Before Pfocee"'?‘@ It Is Interesting to note that conven-
(swept by a node tional general relativity can be obtained from BF theory by

Vertex Point in 4D spacetime where several edges meetSimply adding a constraint term. Indeed one can show that

A spin network is formed by nodes and links. A branchedthe theory
surface is formed by faces, edges, and vertices. For the
branched surfaces that live on the two-skeleton of the dual SGRZJ B'AF'+ ¢;,B/\B, (B2)
triangulation of the manifold in simplicial BF theory, faces,
edges, and vertices live on two-, one-, and zero-cells, respegy, o g e Lagrange multipliep;; is traceless and symmet-
tively, of the cellular decomposition dual to the simplicial fic, is equivalent to general reIétivi[yBS]
triangulation. They are therefore associated to four-, three-, ,Consider the partition function of thé BF theory
and two-simplices of the triangulation, respectively. There-
fore a vertex corresponds to a four-simplex, an edge to a

ACKNOWLEDGMENTS

APPENDIX A: TERMINOLOGY

tetrahedron, and a face tits dua) triangle. Zszf [dA][dB]e /B/F (B3)
APPENDIX B: COMPARISON WITH THE OOGURI- Integrating oveB, we obtain

CRANE-YETTER 4D TQFT

The structure of quantum general relativity in the form ZBFZJ [dA]SLF]; (B4)

presented in this paper is surprisingly similar to the Ooguri-

Crane-Yetter(OCY) four-dimensional topological quantum namely, an integral over flat @) connections. Let us de-

field theory[10,11], a rigorously defined simplicial lattice fine a lattice version of this theory by fixing a simplicial

version of four-dimensional S1) BF theory(see alsd58]). decomposition of the 4D manifoldSee alsd51].)

More specifically, our expression for the proper time propa- Consider the dual of the simplicial decomposition. There

gatorU(T) of GR as a sum over world sheets resembles ins one element of this dual cellular decomposition that plays
a central role in the construction: the “wedge.” Consider a
dual-two-facef. A dual-two-face is a 2D poligon. It inter-

“The world sheet sum di48] is actually for the 3D Ponzano- Sects a two-face of the simplicial decomposition in a “cen-

Regge-Turaev-VirdPRTV) model, but is easily extended to the

OCY model. lwasakj50] has proposed an interesting alternative, a

closely related world sheet formulation of the PRTV model which °The construction outlined here is a sort of baby version of that

is also easily extended to the OCY model. for simplicial GR in[46].
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4-symplex over group elementt) and W associated to segments and
half integersj associated to wedges:

Zoe= | taultawss TT (2w +1]
X[ Us(W)Ua(W)Wy(W)Wo(w) . (B7)

We can view the group element$ and W as the discrete
version of the connectiod\, the j’'s as a discrete version
Wedge of the two form B, and the expression
TrywlUi(w)U(w) W, (w)W,(w)] as the discrete version
of the expression exp(iB'/\AF').

Next, let us perform the group integration in E@7)
dexplicitly. By integrating over the group elements we
rce the colors of the wedges belonging to the same dual
o-cell to be equal. By integrating over the group elements
we force thej’s of the (four) dual two-cells that join on a
one-cell to satisfy the Clebsch-Gordan relation where they
meet, leaving an extra degree of freeddmassociated to
each such dual one-cell; runs over the independent cou-
5plings of four SUW2) representations. Finally, we end up with
1numerical factors associated to the zero-cells of the dual tri-
angulation(plus other factors associated to faces and edges,
%vhich we disregard here in order not to make the exposition

FIG. 12. A dual-two face and its decomposition in wedges.

tral” point o. Its vertices are centers of four-symplices an
its sides are lines connecting such centers. Each of the 8
sides, which connects the centers of two-simplices, cross
the tetrahedron that forms the boundary between the tw
simplices. Letp be the crossing point. Each poimtcuts one
of the sides of the polygofi. By drawing lines connecting
the pointsp to O, we divide the polygorf in quadrangles,
called “wedges.” A wedge is thus a 2D quadrangle that ha:
four sides: two of these are 1D lines that join centers o
four-simplices with(the centep of) a bounding tetrahedron;
these are denoted 3-4 flags. The other two lines join th
center of a tetrahedron with the center of a two-face. Thes
are denoted 3-2 flags, see Fig. 12.

We choose to represent the connection by means of gro
elements associated to 1D elements in the dual cellular d
composition. More precisely, we associate a group eleme
U to each 2-3 flagsegment connecting the center of a two-
simplex with the center of one of the tetrahedra surroundin
it), and one group elemel¥ to each 3-4 flagsegment con-

00 heavy. Such numerical factors turn out to be L5ym-
ols associated to the fiviés of the five one-cells and the ten
Uos of the ten two-cells adjacent to each verté®erforming
hese integrations explicitly is a simple and interesting exer-
ise. After these integrations over the group elements, the
theory is therefore reduced to a sum over colorings on the
@/vvo—cells and one-cells, satisfying Clebsch-Gordan relations.
e can interpret a zero color as no surface at all, and iden-
IJiify the two-cells with faces and the one-cells with edges of

necting the center of a tetrahedron with the center of ab hed colored surf Th ite th i
adjacent four-simplex These group elements can be thought ranched colored surfaces. Thus, we can write the partition
unction as a sum over branched colored surfaces living on

of as the exponential of the connection along the segments; SN .
Each wedgew is bounded by four such segmentsvo e dual two skeleton of the simplicial triangulation. We ob-

of the 2-3 kind and two of the 3-4 kipd let "

U (w),U,(w), W (w),W,(w) be the group elements associ-

ated to the segments that bound the wedgéNe can ex- Zgr=2, Agd o] (B8)
press the requirement that the connection is flat by requiring o

that the holonomy of the connection around each wedge is o )
trivial. Then a discretization of EqB4) is given by where the contribution of each surface(ig to the face and
edge factors we have disregarded for simplicayproduct of

vertices's factors
Zor= | QUIAWITT a1U. (W)U W)Wy ) Wt

(BS) A o1=11 Agr,(0); (B9

where theé function is thed function of the unit on the
SU(2) group. We can expand thé function in characters. the vertex factor is the 15-symbol of the colorings adjacent

For eachw, we have to the vertex.
The similarity of this result with the construction in this
LU (W)U (W)W (W)Wo(w)] paper, Eqs(56), (57), (59), is striking. In both cases, we
have a sum over the same kind of branched colored surfaces,
:2 (2] +1)Tri[U (W)U (W)W (W) W,(w) ], and the weight for each surface is the product of vertex fac-
i
(B6)

187 dual zero-cell is always adjacent to five one-cells and ten
wherej labels the irreducible representations of(3lJand  two-cells, because it corresponds to a four-simplex of the original
Tr;(U) is the trace of the group elemedtin the represen-  simplicial decomposition, which is bounded by five tetrahedra and
tation j. Using this, we can rewrite EqB5) as an integral ten faces.
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tors, where vertex factors are simple @Winvariant func-

tions of the adjacent colorings. Thus, the structure of quan-

tum general relativity turns out to be extremely similar to the - VAN
structure of a topological quantum field theory. Of course

there are differences, and these differences are crucial. Let us

examine them in detail. . . FIG. 13. The elementary vertex of BF theory. Notice that there
First of all, the world sheet amplitudes in the BF theory gre 5 nodes and 10 links, yielding 15 colors. The value of this

that we are considering are the amplitudes in the projector oertex is the 15- symbol of their 15 colors.

physical states, while the GR world sheet amplitudes of the

present paper are from the sum for the proper time propaga- These points illuminate the difference between quantum

tor U(T), so we might be comparing apples and orangesGR and topological field theories. Let us discuss this point in

However, if we accept the not unreasonable hypothesis thanore detail.

U(T) is a partial sum of terms in a sum over surfacesor Both theories are invariant under diffeomorphism. How-

in GR, we can compare the theories in a direct way. ever, diffeomorphism invariance does not Imply that a quan-
The vertex factor is different in the two theories: in BF tum theory is topological in the sense of having a finite num-

theory it is a 15¢ symbol, while in GR it is a combination of ber of degrees of freedom. We expect GR_to h,ave an infinite

9-j and 6§ symbols. This difference depends on the different?Umber of degrees of freedom. Thus Atiyah's axioms for

dynamics of the two theories, and should be at the root of théopological quantum field theory are likely to be suitable for

other differences quantum general relativity as well, if we drop the request that

) . : the Hilbert spaces attached to boundaries of the four-
In the case of BF theory there is a crucial theorem hold- . T ;
: . o - . .~ manifold be finite dimensional.
ing: triangulation independence. Refining the triangulation

that the classical theory has no local degrees of freedom. Ipeqry in terms of its vertex. A BF vertex has five edges and
GR, nothing similar holds, because GR has genuine locakn faces. Assume that one of these edges comes from the
(although nonlocalizeddegrees of freedom. Therefore there past, and four go to the futuighe other cases are given by
is no reason to expect anything similar to triangulation indecrossing symmetry, that clearly holds in BF theor mo-
pendence for GR. ment of reflection shows that the elementary vertex of BF

The ensemble of surfaces over which the sum is defined itheory “opens up” a four-valent intersection of a spin-
different in the two cases. In the BF case, we sum ovenetwork into a “small” tetrahedron, see Fig. 13.
surfaces over a fixed triangulation. In the case of GR, we The matrix element of the Hamiltonian between these two
sum over all topologically inequivalent surfaces, with an ar-(partia) spin networks is the 15-symbol of the 15 colors
bitrary number of vertices. Therefore, in the case of BFassociated to the four links and the one node of the incoming
theory the surfaces to be considered are finite in number. Iapin network, and the six other links and four other nodes of
the case of GR we have to sum over arbitrarily complicatedhe newly created tetrahedron. It would be interesting to de-
surfaces or, equivalently, sum over arbitrarily fine triangula-rive this Hamiltonian from a Hamiltonian loop quantization
tions of the manifold as well. Notice that this difference is aof BF theory.
consequence of the previous point, namely, triangulation in-
dependence of BF. We could average over arbitrarily fine APPENDIX C: DIFF INVARIANT SCALAR PRODUCT
triangulations in BF as well, but this would not affect the o ]
result, because each triangulation yields the same contribu- We work out here an example of diff-invariant scalar
tion as the coarsest one. Therefatiff invariance of the sum Product betweers-knot states32]. (On the inner product
is implemented in two different ways in BF and in GR, cor-Petween spin networks s¢29,57, and[21] which we fol-
responding to the fact that BF is topological, while GR is Iow here) Let s be thes knot defined as followss has three
not: in BF, invariance is obtained thanks to triangulation four-valent nodesi, j, andk, and the six links
independence; in GR invariance is obtained by summin . . . . . .
overparbitrarily fine triangulations. Y ’ (ki,2),(kj,2),(ki.4),(kj.4).(1].3).(1].5), (CD)

The rigorous version of BF_ theory requires (_SDJto be where each link is indicated by the two nodes it connects and
replaced by quantum SP). This can be seen simply as a js color. Explicitly
smart stratagem for regularizing the sum in an invariant man- '
ner, yielding a finite result. Notice that in GR regularizing
SU(2) to quantum SIP) would not guarantee an overall fi-
nite sum, because the surfaces themselves are infinite in
number. Thus, quantum GR does not admit a rigorous finite
version as quantum BF, at least as far as we can presently
see, even if one attempts to replace (ZUwith quantum
SU(2) in GR [56].

The vertices of BF have always five edges and ten faces,
while vertices of GR havéat least with the ordering consid- To specify the state, we have to give also the coloring of the
ered so farfour edges and an arbitrary number of faces. nodes. We choose an expansion of the nodes in a trivalent

(C2
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graph(in each nodgby pairing the two links colored 2 and where we have indicated witk|); the scalar product re-

4. We have one virtual link for every nodee denote them stricted to the space of one node. Spin-network states with
e, € andey), which we assume to be colored@sc,e;:6  the same trivalent expansion are orthonormal. The change of
andey:2, wherec (which can take the values 6, 4, anyl 2 basis is giverj21] by the recoupling theorem

will be specified later on:

b, . ¢ |

s S gt X

s = iy a d i |lcdjfa d
OO

where the quantitie$§3}} are s|2) six-j symbols(normal-
ized as in[48]). This gives us immediately
Next, let us define the knots'. Let it be the same as above,

but with a different coloring of the node We expand by (SIs")i=1, (C8)
pairing (Kj,2) with (ij,5) and kj,4) with (ij,3). Let the 4 2 3
internal link have color 3: Ay
(81" [5 3 ey (C9)
(@S|S')i= e, (C10
§ o= | 4 2 3
(C4) = _
(aSS)i=1g 5 . (C11)
Therefore
Let us compute the scalar prodys{s’). First, we have to L4 2 3 4 2 3
list the automorphisms of the spin netwd(taking link col- (sIsh=1c 5 g *9%|5 3 (C12

ors, but not node colors into accounrhere is only one
nontrivial automorphismy: it exchanges andj. Thus, Eq. Thus, ifc = 6 there are two contributions to the scalar prod-

(5) gives uct, one from each of the two elements of the automorphism
group of the spin network and we have
(s|s")=(S[S") +(aS|S"), (CH
2 3] 112
whereSe s andS’ e s’ have been selected to have the same <s|s’>=2{ ] = (C13
graph, with the same colored links. The only contribution to 5 3 6 75
Eg. (C5 comes from the nodes. The nolds the same in While if c=2 orc=4
the two states and therefore gives no contributi@atall we ’
have chosen normalized stateShus, we have 2 3 56
I\ — p—
(5I5") =(SIS (SIS} +(aSIS') (a8, (CH) (sls [5 3 6} 75 (19
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