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Black holes in the Brans-Dicke-Maxwell theory
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The black hole solutions in the higher dimensional Brans-Dicke-Maxwell theory are investigated. We find
that the presence of the nontrivial scalar field depends on the spacetime dimemsjorwhenD =4, the
solution corresponds to the Reissner-Nordstitiack hole with a constant scalar field. In higher dimensions
(D>4), one finds the charged black hole solutions with the nontrivial scalar field. The thermal properties of
the charged black holes are discussed and the reason why the nontrivial scalar field exists are explained. Also
the solutions for higher dimensional Brans-Dicke theory are given for compafiS6656-282(197)03818-4

PACS numbdps): 04.50+h, 97.60.Lf

As is well known, differing from general relativity with On the other hand, it is well known that the black hole
the metric, the Brans-DickéBD) theory[1] describes gravi- solution to Einstein-Maxwell equations is the Reissner-
tation in terms of the metric as well as a scalar field. Becaus®lordstran solution. In higher dimensions, its solution can be
of the scalar field, the BD theory and general relativity mustregarded as a simple dimensional generalization of Reissner-
have distinctions in some domains, although they can be ilNordstran solution[13]. In order to investigate the distinc-
agreement under the post-Newtonian approximation. In retions between the BD and Einstein theories, it is important to
cent years, much attention has been drawn in the BD theongee whether the black hole solution in the Brans-Dicke-
in particular, in the strong field domains. A strong field ap- Maxwell theory belongs to the Reissner-Nordstreolution
peared in the early universe. La and Steinhd@lt have or its trivially dimensional extension. We find that tBe=4
shown that the BD theory seems to be better than the Einblack hole solution in the BD-Maxwell theory belongs to the
stein theory of gravity for solving the “graceful exit” prob- Reissner-Nordstr solution with a constant scalar field. In
lem in the inflation model. This is because the scalar field imigher dimensions®>4), however, one obtains the black
the BD theory provided a natural termination of the inflation-po|e solutions with the nontrivial scalar. This is because the
ary era via bubble nucleation without the need for finelygiess.energy tensor of Maxwell field is not traceless in the

tun_l?g Coshmologlcal Iparamete][s. he black holes in th BDhigher dimensions and the action of Maxwell field is not
e other example comes from the plack holes in the BL - iant under conformal transformations. Accordingly, the
theory. More recently, many authors have investigated th

gravitational collapse and black hole formation in the BD(R/IaXWE’II field can be regarded as the source of the scalar

theory[3-7]. It turned out that the dynamic scalar field in the field in the BD theory. The main purpose of this paper is to
BD theory plays an important role in the process of collapse,r(apOrt this result. . . . .

and critical phenomenon. Hawkihg] proved first that in the In theD(>4) _dlm_en5|ons, the action of the Brans-Dicke-
four-dimensional vacuum BD theory, the black hole solutionMaxwell theory is given by

is just the Schwarzschild solution with a trivial constant sca-

lar field (hereafter the black holes in this paper mean the

static, asymptotically flat, and spherically symmetric solu- 1 ®

tions with horizon. Further the stability of black holes inthe | = _J dPx \/__g( $R— —g"'V ¢V ,b—F , F*"|,

BD theory has been investigated in RE#]. On the other 16m ¢ # #

hand, the vacuum BD theory can be transformed into the @)
Einstein-massless scalar theory by using a conformal trans-

formation. In Ref[10], the solution to Einstein-massless sca- ) ) )

lar equations was given. Although this solution has an asWhereR is the scalar curvaturé; ,, is the Maxwell field,w
ymptotically flat region and the scalar field approaches zerds the coupling constant, and thg denotes the BD scalar
at spacelike infinity, it exhibits a naked singularity. When thewith the dimension& ~*. HereG is a D-dimensional New-
scalar field is constant, the solution reduces to the Schwarzonian constant. In this paper, we choose units such that
child case. It is also noted that the black hole solution in thee=G=1. In this BD frame, test particles have constant rest
vacuum BD theory corresponds to the Schwarzschild solumass and move along the geodesics. That is, matter fields are
tion with a constant scalar field. This can also be confirmedoupled to gravity only via the metric, and do not interact
from the no scalar-hair theorem by Bekenstgit] and Saa  with the scalarp. So we introduce the Maxwell kinetic term
[12]. as in Eg.(1). Varying (1) yields equations of motion:
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1 In four dimensions the Maxwell field is decoupled from the
$G,,= ¢( Ruv— EQWR) scalar field in the Einstein frame and further in the BD frame,
it cannot be considered as the source of the scalar &eld
1 5 [see Eq(4)]. Hence it turns out thdd =4 is a special case in
Vu#Vid=59,,(Ve) the BD-Maxwell theory.
Varying the action8), we can obtain equations of motion

¢

+2

1
A 2
F,u,FV)\_ Zg,uVF

+V,u,VV¢_g,uVV2¢1 J— _ 1
G,LLVE R,u,y_ Eg ,uvR

2
1 _
0=V ,(F*"), 3 =5VudVid= 79,V
V2p=— -1 F? ) b FYE 1o B2
2[(d+Dw+(d+2)] +2e "% FuF = 79uF7), (10)

whereG,,, is the Einstein tenso represents the covariant

2 _ha-boE2
differentiation in the spacetime metrg;,,, andd=D —3. Vig=—be ""F*, (1D
Solving Egs.(2)—(4) directly is a nontrivial task because the _ —
right hand side of Eq(2) includes the second derivatives of 0=V (e P?FrY). (12
the scalar. We can remove this difficulty by a conformal
transformation. Com_pari@ @5(2)—(4) with Egs.(10)—(12), one finds that
Considering a conformal transformation if (9., &, F,,) is the solution to Eqs10)—(12), then
0., =070, (5) e ( 2 ﬁ_
Ouv @, D EXP— | ——————— Ouvs
with SR (d+1)y2a”) "
—(d+1)_ 1 .

2 ¢ © ><exp< —ﬁ ,FM) (13

and V2a
42 is the solution of Egs.(2)—(4). In order to demonstrate

— sdg d . ) ,
¢= \/Ef —=2alng, a=-— +o, (7)  clearly, let us consider first the absence of the Maxwell field.
¢ d+1 In four dimensions, Brangl4] constructed the static solu-
tions in the Brans-Dicke frame. Here we will provide the
solutions of higher dimensional BD theory by the conformal
transformation. In the absence of Maxwell field, EGE))—

the BD-Maxwell theory(1) can be transformed into the
Einstein-Maxwell theory with a minimally coupled scalar

field (¢) (12) have the following solution with isotropic coordinates
1 : 1 o [10]:
=15 | d°xV=g[R-Z(Vg)*~e ™F?|, (8 _
16w . ds?=—eldt?+e "(dr2+r2dQ3, ,), (14
where d
— [2(d+1) , M2 rd—rg
oo d—-1 1 o o= d (1=v9) Inmy (15
“d+1 2 ®
where
R andV are the scalar curvature and covariant differentia- 4 d12y
tion in the new metriagy ,,, respectively. Here a few points of = M To (16)
should be stressed. First of all, Eq7) implies a>0 rd+r8 '
[w>—(d+2)/(d+1)], and one hag=0 at spacelike infin-
ity. Second, the action remains unchanged under the confor- p2d) 2 pd_ pd] =200
mal transformation [ and! give us a difference of surface e "=|1-— T d 17
r ré+rg

term associated with the scalar figld'his point plays an
important role in dealing with physical quantities between . . :
théO two frames. Third, v%e stregsythat thqe BD thettyis €€ ¥ andro are two integration constants. Obviously,
only mathematically equivalent to the thed8). In the Ein-  Whenr—, one hasf—0, h—0, and¢—0. Therefore the
stein frame(8), the test particle will take variable rest mass SPacetime(14) has asymptotically flat region and the scalar
with spacetime and move no longer along the geodesicdield ¢ vanishes at spacelike infinity. From E@5) it fol-
Note that there exists a coupling between Maxwell field andows 0< y?*<1. Whenye[ —1,0), however, the solution has
scalar field. Finally, it is worth noting th&t=0 whenD=4.  a “negative” Arnowitt-Deser-MisnefADM) mass[10]. In
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particular, for y=—1 the solution is theD-dimensional [(d+1)(1—y?)/ad) 2

d
Schwarzschild solution with a negative mass, which de- = TatTo ’ (23
scribes a naked singularity spacetime. In order for the solu- rd—rg

tion (14) to be a physical solution, we confineto O y<1. o
The special example ig=1. In this case, the scalar field whered s? is still given by Eq.(14). In this case, the scalar
vanishes. Equation (14) describes a D-dimensional field ¢ takes values in the regidrl»). But the spacetime
Schwarzschild black hole geometry with mads= 2r8. In (22) has still asymptotically flat region and the pointr is
other cases, Eq14) describes spacetime with a naked sin-a curvature singularity unlesg=1. Wheny=1, the scalar
gularity, whose singular point is=r,. To observe it explic- field is a constant and the soluti¢22) is the D-dimensional
itly, let us calculate the scalar curvature of Ef4). This  Schwarzschild solution. Thus, we emphasized again that the
leads to black hole solution of the vacuum BD theory is the
Schwarzschild solution with a constant scalar field in higher
2d/q _ 2\ ,.2(d+1) dimensions.
4d(d+Dro (1= y7)r (18 We now turn to the charged case. Introducing the Max-
well field, the situation is changed significantly. Consulting
with the conformal transformatiof6)—(7), instead of Egs.
From Eq.(18) it is shown that in the cases of# 1, space- (2)—(4), Egs.(10)—(12) can be used for looking for the so-
time (14) has a naked scalar curvature singularity atr,,  lutions. The black hole solutions for the actions similar to
which cannot be removed by coordinate transformationsEd- (8) have been found in Ref$15,16. Considering the
Therefore, in the higher dimensionaD&4) Einstein- dual form of the black holes given in R¢fL6], we obtain the
minimally coupling massless scalar field system, the onlyPlack hole solutions of Eq$10—(12),
black hole solution is @&-dimensional Schwarzschild solu-

- (194 r8)2(@+ 19080 d)2(@+ 1=y

o2 _ 2
tion with a trivial scalar field. d s°=—A%dt?+B%dr*+ C%dQg, ,, (24)
In the D-dimensional vacuum BD theory, using EG43), dad
- L — r_\““
we can obtain its solution: ebq;:[l_(T) , 25
d ., .d\ 2/d+1
d?=02d s2= 0 [(d+1)(1—y?)/ad]¥?d s2, — Q
rd—rg Fo=—r1 (26)
(19 '
where
d_ .d\ [(d+Da—yP/ad ™

dy .d
r-—+rg

’ (20) AZ(r):[1_<r_+)d

r7dlfad
] e

whered s2 is given by Eq.(14). It is easy to show that the B2(r)=| 1—| = q-t 1-[= et 29
solution (19) has asymptotically flat space and the point r r '
r=rq corresponds to a naked singularity still. This can be

found from calculating the scalar curvature of the solution 5 ) r_\9«
(19) through the relation Cr)=r1- ~ | (29
R=0"2R-2(d+2)Q %g#'V,V,Q 2b%(d+1)
- a= > . (30
—(d+2)(d-1)Q %g»'V,av,0. (2D d[2d+b*(d+1)]

] ) ) HereQ, r, , andr _ are integration constants. According to
Again, when y=1, the solution(19) is reduced to the the Gauss theorem, the electric charge is
D-dimensional Schwarzschild solution with the constant sca-

lar field (¢=1). In that case, the BD theory degenerates into 1 — \/—_d+1
@e Einstein theory of gravitation. From E(L5) we find QZE HmFtr —gd"" x=
¢=<0 (because of ;=0). So the scalap in the BD theory

belongs to the regiow € (0,1]. When the Maxwell field is  where A4, is the volume of the(d+1)-dimensional unit

absent, however, the actiof®) and equations of motion sphere. The consta@t is related to the constants andr _ :
(100—(12) remain unchanged under the transformation

Agi1

Q. @Y

¢——¢. Thus, we can obtain another solution of the ) ad3(r+r,)d
. Q=—— 12 (32)
vacuum BD theory: 2p2
rg—rd 2d+1[(d+DHA-yD)/ad? From Eq.(25) we see that the scalar field is bounded every-
ds?= S g ds?, (220  where, except at=0. Whena=0, the solution(24)—(26)
r’+ro reduces to aD-dimensional Reissner-Nordstno solution
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with the vanishing scalar field. Thus, the constantsandr _ hole entropy comes from the surface term in the Euclidean

can be interpreted in terms of the outer horizon and inneaction formalism. The surface term in the Einstein frai@e

horizon (assumingr , =r_) but, for a generak, the point is given by

r_ is a scalar curvature singularity. This can be seen from 1

the scalar curvature of the soluti¢®4): 0 — f dd+2y \/F_[K_— K_o]:
J

I surface™ —
Vv

(40

a?dr® r,\d r_\9]-(etd
R= Sp2r2die 1- (T) 1- (T) whereK represents the extrinsic curvature in the metriof
a constant >r, timelike supersurface@V. And K, is the
2(d—1)Q? r \d]-e extrinsic curvature of vacuum backgrouridere it is the
— 1| = ; (33 D-dimensional Minkowski spacetimeOne can show that in
(d+1)r2d+2 r ; : e
Einstein frame the entropy satisfies the 1/4 area formula
(Ref.[19])

which diverges at=r_ unlessa=0. This also confirms
that the inner horizon ob-dimensional Reissner-Nordstro o 1 _ 1

black holes is instable. In the our case, due to the appearance S=-— —f dd+ZX\/F[K— Kol==2. (41
of the scalar field, the inner horizon is converted into a scalar 8w, 4

curvature singularity.

With the Euclidean action methdd 7,18, we obtain the Instead in the BD framél), the surface term leads to

ADM mass Q\T) Hawking temperatureT), and the entropy 1 de2
(S) of the black hole solution: surtace™ ~ g J OB hg[K—Ko]. (42
- A . _ . .
= 1%:(d+1)[rf{+(1— a—ad)riy, (34) -tl)—ge black hole entropy in the Brans-Dicke frame is found to
_ p o\ d]l-ad+1)2 1 J' q 1
= = S=—o—| d""*xVh¢[K—Kol=7(r )=, (43
T= G L (r) , (35 g ), 47X GIK-Kol=7 ()X, (43
1 Agritt o\ d]e(d+1)2 where X is the area of horizon in the Brans-Dicke frame
I e— 1- ( — , (36)  (37). It appears that due to the scalar field, the area formula is
+

no longer valid in the BD theorj4]. But making use of Eq.
(37), it is found that Eq.(41) is equal to Eq.(43) and the
entropy remains unchanged under the conformal transforma-
tions.
For the Hawking temperatur@5), in the Einstein frame
r |\ d]-2ad/(d-1) (24), it can be calculated as
=

where?. is the horizon area of the black hai24). With Eq.
(13), one finds the charged black hole solution in the Brans
Dicke-Maxwell theory(frame):

ds? (37

ds?=02d s?=

= (A2)/

p( 1 )_ ¢\ d]add+1)/(d-1) 477—\/Wr :
ol ]

(44)

J2a

: . (39 )

where a prime denotes derivative with respect tdn the
Brans-Dicke frame37), it is
— Q

Ftr:Ftr:rd_+1=

(39) (QZAZ) ’

T=—— .
. 47Q%AB? |
where d s? is given by Eq.(24). The charged black hole +

solution (37) has an asymptotically flat region. The scalargecase the conformal paramefe? is regular at the hori-
field is bounded at the horizon, vanishes at singular point i —
r=r_, and tends tap=1 at spacelike infinity. The action zon, one can find that is equal toT. Therefore, the Hawk-

(8) and its equations of motion cannot remain unchange g temperature is an invariant quantity under conformal
L= —, i . ransformations only if the transformations are regular at

under the transformatlprq5—>—¢ if the Maxwell flelc_j IS avent horizon.

present. Therefore, unlike the absence of Maxwell field, we The invariance of the ADM mass of black holes can be

obtain solution(37)—(39)_. In addition, it is easy to show that 4oq,ced from the first law of thermodynamics:

the ADM mass, Hawking temperature, and the entropy of

black hole (37) are still given by Eqs(34)—(36), respec- dM=TdS+-- -, (46)
tively. This is so because the Euclidean action is invariant

under the conformal transformatiqup to a surface term where the ellipsis means the work terms. Because the Hawk-
associated with the scalar figldut it seems that the entropy ing temperature and entropy are invariant quantities, the
of solution(24) satisfies the area formula, but the entropy inADM mass must be invariant under the regular conformal
solution (37) does not. This is due to the fact that the blacktransformations.

(45
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The thermodynamics of the black hole soluti8v) is  of the Maxwell field is traceless only in four dimensions.
quite interesting. Whenl=1 (a=0), it reduces to that of Also in the Einstein frame, the action of the Maxwell field is
Reissner-Nordstra black holes(see the discussion belpw invariant under four-dimensional conformal transformations.
Ford>1 andr,=r_, it follows from Egs.(35) and (36) This can be seen clearly from the acti@). Finally, we

that the Hawking temperature diverges because ofake a comment on the no-hair theorem. At present, the
a(d+1)/2>1,S=0. This property is similar to that of the interpretations of the no-hair theorem seem to have two as-

a>1 dilaton black hole§20] pects. One group argues that an asymptotically flat black
As for the solution (37) 'in the Brans-Dicke-Maxwell Nole cannot carry the nontrivial scalar fields bounded on the

; ; lar horizon(see the recent proofs of the no-scalar hair
theory, we have three points to be stressed. First, whe gu .
D=4, the solution(37)~(39 reduces to the Reissner- Eﬁeorem[ll,lZ,Zl,Z?). On the other hand, the no-hair theo-

Nordstfon solution with the constant scalar fields€1). rem means that the black hole can be characterized by only a

That is, in four dimensions, the black hole solution is just thefew parameters: mass, angular momentum, and electric

Reissner-Nordstra solution. Because the equation of mo- (magneti¢ charge. In the latter sense, the existence of non-

tion for the scalar becomes the source-free equétiea Egs. trivial scal_ar field in the BD-Maxwell theo_ry does not violate
(4) or (11)], there is nothing to support the nontrivial scalar the no-hair theorem. because the solutiG) depends on
field. Accordingly, we have only the trivial scalar. This rea- only two parameters: the A.DM mass gnd electric charge. In
son also holds for the vacuum BD theory. Second, in higheFaqt’ such §calar hairs exist largely in the black holes of
dimensions 6+ 0), we have the black hole solution with the string theories.

nontrivial scalar field in the BD-Maxwell theory. As is well The research of R.G.C. was supported in part by the
known, the Maxwell field is allowed by the no-hair theorem China Postdoctoral Science Foundation. He would like to
of black holes. From Eq<4) or (11), we see that the Max- thank Professor Y. Z. Zhang for helpful discussions. Y.S.M.
well field can be considered as the source of the scalar fieldvas supported in part by the Basic Science Institute Pro-
In this way the Maxwell field supports the nontrivial scalar gram, Korea Ministry of Education, Project No. BSRI-96-
field. Here we remind the reader that the stress-energy tens@r13.
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