
Black holes in the Brans-Dicke-Maxwell theory

Rong-Gen Cai
CCAST (World Laboratory), P. O. Box 8730, Beijing 100 080, China

and Institute of Theoretical Physics, Academia Sinica, P. O. Box 2735, Beijing 100080, China

Y. S. Myung
Department of Physics, Inje University, Kimhae 621-749, Korea

~Received 24 October 1996!

The black hole solutions in the higher dimensional Brans-Dicke-Maxwell theory are investigated. We find
that the presence of the nontrivial scalar field depends on the spacetime dimensions (D). When D54, the
solution corresponds to the Reissner-Nordstro¨m black hole with a constant scalar field. In higher dimensions
(D.4), one finds the charged black hole solutions with the nontrivial scalar field. The thermal properties of
the charged black holes are discussed and the reason why the nontrivial scalar field exists are explained. Also
the solutions for higher dimensional Brans-Dicke theory are given for comparison.@S0556-2821~97!03818-6#

PACS number~s!: 04.50.1h, 97.60.Lf

As is well known, differing from general relativity with
the metric, the Brans-Dicke~BD! theory@1# describes gravi-
tation in terms of the metric as well as a scalar field. Because
of the scalar field, the BD theory and general relativity must
have distinctions in some domains, although they can be in
agreement under the post-Newtonian approximation. In re-
cent years, much attention has been drawn in the BD theory,
in particular, in the strong field domains. A strong field ap-
peared in the early universe. La and Steinhardt@2# have
shown that the BD theory seems to be better than the Ein-
stein theory of gravity for solving the ‘‘graceful exit’’ prob-
lem in the inflation model. This is because the scalar field in
the BD theory provided a natural termination of the inflation-
ary era via bubble nucleation without the need for finely
tuned cosmological parameters.

The other example comes from the black holes in the BD
theory. More recently, many authors have investigated the
gravitational collapse and black hole formation in the BD
theory@3–7#. It turned out that the dynamic scalar field in the
BD theory plays an important role in the process of collapse
and critical phenomenon. Hawking@8# proved first that in the
four-dimensional vacuum BD theory, the black hole solution
is just the Schwarzschild solution with a trivial constant sca-
lar field ~hereafter the black holes in this paper mean the
static, asymptotically flat, and spherically symmetric solu-
tions with horizon!. Further the stability of black holes in the
BD theory has been investigated in Ref.@9#. On the other
hand, the vacuum BD theory can be transformed into the
Einstein-massless scalar theory by using a conformal trans-
formation. In Ref.@10#, the solution to Einstein-massless sca-
lar equations was given. Although this solution has an as-
ymptotically flat region and the scalar field approaches zero
at spacelike infinity, it exhibits a naked singularity. When the
scalar field is constant, the solution reduces to the Schwarzs-
child case. It is also noted that the black hole solution in the
vacuum BD theory corresponds to the Schwarzschild solu-
tion with a constant scalar field. This can also be confirmed
from the no scalar-hair theorem by Bekenstein@11# and Saa
@12#.

On the other hand, it is well known that the black hole
solution to Einstein-Maxwell equations is the Reissner-
Nordström solution. In higher dimensions, its solution can be
regarded as a simple dimensional generalization of Reissner-
Nordström solution@13#. In order to investigate the distinc-
tions between the BD and Einstein theories, it is important to
see whether the black hole solution in the Brans-Dicke-
Maxwell theory belongs to the Reissner-Nordstro¨m solution
or its trivially dimensional extension. We find that theD54
black hole solution in the BD-Maxwell theory belongs to the
Reissner-Nordstro¨m solution with a constant scalar field. In
higher dimensions (D.4), however, one obtains the black
hole solutions with the nontrivial scalar. This is because the
stress-energy tensor of Maxwell field is not traceless in the
higher dimensions and the action of Maxwell field is not
invariant under conformal transformations. Accordingly, the
Maxwell field can be regarded as the source of the scalar
field in the BD theory. The main purpose of this paper is to
report this result.

In theD(>4) dimensions, the action of the Brans-Dicke-
Maxwell theory is given by

I 5
1

16pE dDxA2gS fR2
v

f
gmn¹mf¹nf2FmnFmnD ,

~1!

whereR is the scalar curvature,Fmn is the Maxwell field,v
is the coupling constant, and thef denotes the BD scalar
with the dimensionsG21. HereG is a D-dimensional New-
tonian constant. In this paper, we choose units such that
c5G51. In this BD frame, test particles have constant rest
mass and move along the geodesics. That is, matter fields are
coupled to gravity only via the metric, and do not interact
with the scalarf. So we introduce the Maxwell kinetic term
as in Eq. ~1!. Varying ~1! yields equations of motion:
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fGmn[fS Rmn2
1

2
gmnRD
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fF¹mf¹nf2
1

2
gmn~¹f!2G

12S Fm
l Fnl2

1

4
gmnF2D1¹m¹nf2gmn¹2f,

~2!

05¹m~Fmn!, ~3!

¹2f52
d21

2@~d11!v1~d12!#
F2, ~4!

whereGmn is the Einstein tensor,¹ represents the covariant
differentiation in the spacetime metricgmn , and d5D23.
Solving Eqs.~2!–~4! directly is a nontrivial task because the
right hand side of Eq.~2! includes the second derivatives of
the scalar. We can remove this difficulty by a conformal
transformation.

Considering a conformal transformation

gmn5V2 ḡmn , ~5!

with

V2~d11!5f ~6!

and

f̄5A2aEfdf

f
5A2alnf, a5

d12

d11
1v, ~7!

the BD-Maxwell theory ~1! can be transformed into the
Einstein-Maxwell theory with a minimally coupled scalar
field (f̄)

Ī 5
1

16pE dDxA2 ḡ F R̄2
1

2
~¹̄f̄ !22e2bf̄F̄2G , ~8!

where

b5
d21

d11

1

A2a
, ~9!

R̄ and ¹̄ are the scalar curvature and covariant differentia-
tion in the new metricḡmn , respectively. Here a few points
should be stressed. First of all, Eq.~7! implies a.0
@v.2(d12)/(d11)#, and one hasf̄50 at spacelike infin-
ity. Second, the action remains unchanged under the confor-
mal transformation (Ī and I give us a difference of surface
term associated with the scalar field!. This point plays an
important role in dealing with physical quantities between
the two frames. Third, we stress that the BD theory~1! is
only mathematically equivalent to the theory~8!. In the Ein-
stein frame~8!, the test particle will take variable rest mass
with spacetime and move no longer along the geodesics.
Note that there exists a coupling between Maxwell field and
scalar field. Finally, it is worth noting thatb50 whenD54.

In four dimensions the Maxwell field is decoupled from the
scalar field in the Einstein frame and further in the BD frame,
it cannot be considered as the source of the scalar fieldf
@see Eq.~4!#. Hence it turns out thatD54 is a special case in
the BD-Maxwell theory.

Varying the action~8!, we can obtain equations of motion

Ḡmn[R̄mn2
1

2
ḡmnR̄

5
1

2
¹̄mf̄¹̄nf̄2

1

4
ḡmn~¹̄f̄ !2

12e2bf̄S F̄m
l F̄ nl2

1

4
ḡmnF̄2D , ~10!

¹̄2f̄52be2bf̄F̄2, ~11!

05¹̄m~e2bf̄F̄mn!. ~12!

Comparing Eqs.~2!–~4! with Eqs.~10!–~12!, one finds that
if ( ḡmn , f̄, F̄mn) is the solution to Eqs.~10!–~12!, then

~gmn ,f,Fmn!5S exp2S 2

~d11!A2a
f̄ D ḡmn ,

3expS 1

A2a
f̄ D ,F̄mnD ~13!

is the solution of Eqs.~2!–~4!. In order to demonstrate
clearly, let us consider first the absence of the Maxwell field.
In four dimensions, Brans@14# constructed the static solu-
tions in the Brans-Dicke frame. Here we will provide the
solutions of higher dimensional BD theory by the conformal
transformation. In the absence of Maxwell field, Eqs.~10!–
~12! have the following solution with isotropic coordinates
@10#:

d s̄252efdt21e2h~dr21r 2dVd11
2 !, ~14!

f̄5F2~d11!

d
~12g2!G1/2

ln
r d2r 0

d

r d1r 0
d

, ~15!

where

ef5F r d2r 0
d

r d1r 0
dG 2g

, ~16!

e2h5F12
r 0

2d

r 2dG 2/dF r d2r 0
d

r d1r 0
dG22g/d

. ~17!

Here g and r 0 are two integration constants. Obviously,
when r→`, one hasf→0, h→0, andf̄→0. Therefore the
spacetime~14! has asymptotically flat region and the scalar
field f̄ vanishes at spacelike infinity. From Eq.~15! it fol-
lows 0<g2<1. WhengP@21,0), however, the solution has
a ‘‘negative’’ Arnowitt-Deser-Misner~ADM ! mass@10#. In
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particular, for g521 the solution is theD-dimensional
Schwarzschild solution with a negative mass, which de-
scribes a naked singularity spacetime. In order for the solu-
tion ~14! to be a physical solution, we confineg to 0<g<1.
The special example isg51. In this case, the scalar field
vanishes. Equation ~14! describes a D-dimensional
Schwarzschild black hole geometry with massM52r 0

d . In
other cases, Eq.~14! describes spacetime with a naked sin-
gularity, whose singular point isr 5r 0. To observe it explic-
itly, let us calculate the scalar curvature of Eq.~14!. This
leads to

R̄5
4d~d11!r 0

2d~12g2!r 2~d11!

~r d1r 0
d!2~d111g!/d~r d2r 0

d!2~d112g!/d
. ~18!

From Eq.~18! it is shown that in the cases ofg2Þ1, space-
time ~14! has a naked scalar curvature singularity atr 5r 0,
which cannot be removed by coordinate transformations.
Therefore, in the higher dimensional (D>4) Einstein-
minimally coupling massless scalar field system, the only
black hole solution is aD-dimensional Schwarzschild solu-
tion with a trivial scalar field.

In the D-dimensional vacuum BD theory, using Eq.~13!,
we can obtain its solution:

ds25V2d s̄25S r d1r 0
d

r d2r 0
dD 2/~d11

@~d11!~12g2!/ad#1/2d s̄2,

~19!

f5S r d2r 0
d

r d1r 0
dD [ ~d11!~12g2!/ad] 1/2

, ~20!

whered s̄2 is given by Eq.~14!. It is easy to show that the
solution ~19! has asymptotically flat space and the point
r 5r 0 corresponds to a naked singularity still. This can be
found from calculating the scalar curvature of the solution
~19! through the relation

R5V22R̄22~d12!V23 ḡmn¹̄m¹̄nV

2~d12!~d21!V24 ḡmn¹̄mV¹̄nV. ~21!

Again, when g51, the solution ~19! is reduced to the
D-dimensional Schwarzschild solution with the constant sca-
lar field (f51). In that case, the BD theory degenerates into
the Einstein theory of gravitation. From Eq.~15! we find
f̄<0 ~because ofr 0>0). So the scalarf in the BD theory
belongs to the regionfP(0,1#. When the Maxwell field is
absent, however, the action~8! and equations of motion
~10!–~12! remain unchanged under the transformation
f̄→2f̄. Thus, we can obtain another solution of the
vacuum BD theory:

ds25S r d2r 0
d

r d1r 0
dD 2/d11[~d11!~12g2!/ad] 1/2

d s̄2, ~22!

f5S r d1r 0
d

r d2r 0
dD [ ~d11!~12g2!/ad] 1/2

, ~23!

whered s̄2 is still given by Eq.~14!. In this case, the scalar
field f takes values in the region@1,̀ ). But the spacetime
~22! has still asymptotically flat region and the pointr 5r 0 is
a curvature singularity unlessg51. Wheng51, the scalar
field is a constant and the solution~22! is theD-dimensional
Schwarzschild solution. Thus, we emphasized again that the
black hole solution of the vacuum BD theory is the
Schwarzschild solution with a constant scalar field in higher
dimensions.

We now turn to the charged case. Introducing the Max-
well field, the situation is changed significantly. Consulting
with the conformal transformation~5!–~7!, instead of Eqs.
~2!–~4!, Eqs.~10!–~12! can be used for looking for the so-
lutions. The black hole solutions for the actions similar to
Eq. ~8! have been found in Refs.@15,16#. Considering the
dual form of the black holes given in Ref.@16#, we obtain the
black hole solutions of Eqs.~10!–~12!,

d s̄252A2dt21B2dr21C2dVd11
2 , ~24!

ebf̄5F12S r 2

r D dGad

, ~25!

F̄ tr5
Q

r d11
, ~26!

where

A2~r !5F12S r 1

r D dGF12S r 2

r D dG12ad

, ~27!

B2~r !5F12S r 1

r D dG21F12S r 2

r D dGa21

, ~28!

C2~r !5r 2F12S r 2

r D dGa

, ~29!

a5
2b2~d11!

d@2d1b2~d11!#
. ~30!

HereQ, r 1 , andr 2 are integration constants. According to
the Gauss theorem, the electric charge is

q5
1

4pEr→`
F̄ trA2 ḡdd11x5

Ad11

4p
Q, ~31!

where Ad11 is the volume of the~d11!-dimensional unit
sphere. The constantQ is related to the constantsr 1 andr 2 :

Q25
ad3~r 1r 2!d

2b2
. ~32!

From Eq.~25! we see that the scalar field is bounded every-
where, except atr 50. Whena50, the solution~24!–~26!
reduces to aD-dimensional Reissner-Nordstro¨m solution
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with the vanishing scalar field. Thus, the constantsr 1 andr 2

can be interpreted in terms of the outer horizon and inner
horizon ~assumingr 1>r 2) but, for a generala, the point
r 2 is a scalar curvature singularity. This can be seen from
the scalar curvature of the solution~24!:

R̄5
a2d4r 2

2d

2b2r 2d12F12S r 1

r D dGF12S r 2

r D dG2~a11!

2
2~d21!Q2

~d11!r 2d12F12S r 2

r D dG2a

, ~33!

which diverges atr 5r 2 unlessa50. This also confirms
that the inner horizon ofD-dimensional Reissner-Nordstro¨m
black holes is instable. In the our case, due to the appearance
of the scalar field, the inner horizon is converted into a scalar
curvature singularity.

With the Euclidean action method@17,18#, we obtain the
ADM mass (M̄ ), Hawking temperature (T̄), and the entropy
( S̄) of the black hole solution:

M̄5
Ad11

16p
~d11!@r 1

d 1~12a2ad!r 2
d #, ~34!

T̄5
d

4pr 1
F12S r 2

r 1
D dG12a~d11!/2

, ~35!

S̄5
1

4
S̄5

Ad11r 1
d11

4 F12S r 2

r 1
D dGa~d11!/2

, ~36!

whereS̄ is the horizon area of the black hole~24!. With Eq.
~13!, one finds the charged black hole solution in the Brans-
Dicke-Maxwell theory~frame!:

ds25V2d s̄25F12S r 2

r D dG22ad/~d21!

d s̄2, ~37!

f5expS 1

A2a
D f̄5F12S r 2

r D dGad~d11!/~d21!

, ~38!

Ftr5 F̄ tr5
Q

r d11
, ~39!

where d s̄2 is given by Eq.~24!. The charged black hole
solution ~37! has an asymptotically flat region. The scalar
field is bounded at the horizon, vanishes at singular point
r 5r 2 , and tends tof51 at spacelike infinity. The action
~8! and its equations of motion cannot remain unchanged
under the transformationf̄→2f̄ if the Maxwell field is
present. Therefore, unlike the absence of Maxwell field, we
obtain solution~37!–~39!. In addition, it is easy to show that
the ADM mass, Hawking temperature, and the entropy of
black hole ~37! are still given by Eqs.~34!–~36!, respec-
tively. This is so because the Euclidean action is invariant
under the conformal transformation~up to a surface term
associated with the scalar field!. But it seems that the entropy
of solution~24! satisfies the area formula, but the entropy in
solution ~37! does not. This is due to the fact that the black

hole entropy comes from the surface term in the Euclidean
action formalism. The surface term in the Einstein frame~8!
is given by

Ī surface52
1

8pE] V̄
dd12xAh̄ @K̄2K̄0#, ~40!

whereK̄ represents the extrinsic curvature in the metrich̄ of
a constantr .r 1 timelike supersurface] V̄. And K̄0 is the
extrinsic curvature of vacuum background~here it is the
D-dimensional Minkowski spacetime!. One can show that in
Einstein frame the entropy satisfies the 1/4 area formula
~Ref. @19#!

S̄52
1

8pEr 1

dd12xAh̄ @K̄2K 0̄#5
1

4
S̄. ~41!

Instead in the BD frame~1!, the surface term leads to

I surface52
1

8pE]V
dd12xAhf@K2K0#. ~42!

The black hole entropy in the Brans-Dicke frame is found to
be

S52
1

8pEr 1

dd12xAhf@K2K0#5
1

4
f~r 1!S, ~43!

where S is the area of horizon in the Brans-Dicke frame
~37!. It appears that due to the scalar field, the area formula is
no longer valid in the BD theory@4#. But making use of Eq.
~37!, it is found that Eq.~41! is equal to Eq.~43! and the
entropy remains unchanged under the conformal transforma-
tions.

For the Hawking temperature~35!, in the Einstein frame
~24!, it can be calculated as

T̄5
~A2!8

4pAA2B2U
r 1

, ~44!

where a prime denotes derivative with respect tor . In the
Brans-Dicke frame~37!, it is

T5
~V2A2!8

4pV2AA2B2U
r 1

. ~45!

Because the conformal parameterV2 is regular at the hori-
zon, one can find thatT̄ is equal toT. Therefore, the Hawk-
ing temperature is an invariant quantity under conformal
transformations only if the transformations are regular at
event horizon.

The invariance of the ADM mass of black holes can be
deduced from the first law of thermodynamics:

dM5TdS1•••, ~46!

where the ellipsis means the work terms. Because the Hawk-
ing temperature and entropy are invariant quantities, the
ADM mass must be invariant under the regular conformal
transformations.
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The thermodynamics of the black hole solution~37! is
quite interesting. Whend51 (a50), it reduces to that of
Reissner-Nordstro¨m black holes~see the discussion below!.
For d.1 and r 15r 2 , it follows from Eqs.~35! and ~36!
that the Hawking temperature diverges because of
a(d11)/2.1,S̄50. This property is similar to that of the
a.1 dilaton black holes@20#.

As for the solution ~37! in the Brans-Dicke-Maxwell
theory, we have three points to be stressed. First, when
D54, the solution ~37!–~39! reduces to the Reissner-
Nordström solution with the constant scalar field (f51).
That is, in four dimensions, the black hole solution is just the
Reissner-Nordstro¨m solution. Because the equation of mo-
tion for the scalar becomes the source-free equation@see Eqs.
~4! or ~11!#, there is nothing to support the nontrivial scalar
field. Accordingly, we have only the trivial scalar. This rea-
son also holds for the vacuum BD theory. Second, in higher
dimensions (bÞ0), we have the black hole solution with the
nontrivial scalar field in the BD-Maxwell theory. As is well
known, the Maxwell field is allowed by the no-hair theorem
of black holes. From Eqs.~4! or ~11!, we see that the Max-
well field can be considered as the source of the scalar field.
In this way the Maxwell field supports the nontrivial scalar
field. Here we remind the reader that the stress-energy tensor

of the Maxwell field is traceless only in four dimensions.
Also in the Einstein frame, the action of the Maxwell field is
invariant under four-dimensional conformal transformations.
This can be seen clearly from the action~8!. Finally, we
make a comment on the no-hair theorem. At present, the
interpretations of the no-hair theorem seem to have two as-
pects. One group argues that an asymptotically flat black
hole cannot carry the nontrivial scalar fields bounded on the
regular horizon~see the recent proofs of the no-scalar hair
theorem@11,12,21,22#!. On the other hand, the no-hair theo-
rem means that the black hole can be characterized by only a
few parameters: mass, angular momentum, and electric
~magnetic! charge. In the latter sense, the existence of non-
trivial scalar field in the BD-Maxwell theory does not violate
the no-hair theorem because the solution~37! depends on
only two parameters: the ADM mass and electric charge. In
fact, such scalar hairs exist largely in the black holes of
string theories.
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