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Internal structure of Einstein-Yang-Mills black holes
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The interior structure of the static spherically symmetric black holes in th€@)SEinstein-Yang-Mills
theory is investigated both analytically and numerically. It is shown that violation of the no-hair conjecture in
this theory has a nontrivial manifestation also inside the event horizon. Although both Schwarzschild and
Reissner-Nordstro-type interiors still may be realized for certain discrete horizon radii, a generic solution
exhibits an infinitely oscillating behavior near the singularity. No inner horizons are formed and the singularity
is spacelike, although an infinite sequence of “almost” Cauchy horizons is encountered. The amplitude of
metric oscillations grows exponentially as the singularity is approached. An approximate two-dimensional
dynamical system is derived, which describes an asymptotic structure of space-time near the singularity.
[S0556-282(197)03018-X

PACS numbd(s): 04.40.Nr, 04.20.Jb, 04.70.Bw

Discovered soon after the regular Bartnik-McKinnon In non-Abelian gauge theories vector and scalar fields
(BK) solutions[1], Einstein-Yang-Mills(EYM) black holes may form non-Coulomb static equilibrium configurations
(see[2—4], and references thergiprovided new insight into  outside the event horizon. Inside the black hole they also
black hole physics, related to the no-hair and uniquenesgonstitute homogeneous configurations but essentially differ-
issues. It was soon realized that in many non-Abelian fielcent from those in the (1) case. Since such theories are be-
theories the naive nO'hair.ConjeCtUre does not hold and blaqlkved to be more “generic” than the Maxwell theory, one
holes may possess exterior fields that are not generated by gain new insight into the singularity problem exploring
the conserved U) charges5]. So far discussion of these e internal structure of non-Abelian black holes. Our inves-
solutions has been restricted mostly to the region outside thﬁgation, of which we give brief results here, shows that a

h%r'thn' g/llealr(wr\]/hile, th; extetr)mr hair 2etrjtatlnly contmute).\stm-t neric singularity inside the EYM black holes is strikingly
side the black hole and can be eXpected 1o cause substantigie ont from those in the Schwarzschil8) and Reissner-

modification of the interior structure including the singular- - (RN) solutions. Both S- and RN-type singulari-

ity. . . .
The nature of a singularity inside a black hole is a funda-tIes may .St'" be d__eveI(_)psd but only for_a d_lsc,r’e_te _se'; of the
event horizon radii. This “second quantization” is similar to

mental question of the gravitational collapse in spite of the

fact that the singularity is hidden from an external observerth€ “first quantization” of the exterior solutions and math-

It is believed that the space-time outside a compact neutrgmatically follows from the same_kind of nonlinear boundary
spherical collapsing body is given by the Schwarzschild soYalue problem. Meanwhile genericEYM black hole devel-
lution. An associated singularity is spacelike and strong©PS the spacelike singularity of an oscillatory nature. This is
However, a small Maxwell field in the case of a Chargedconformable_W|th an expectation that no Cauchy _horlzons
body changes substantially the nature of the singularity, conshould form in “realistic” black holes and that the singular-
verting it to timelike. On a perturbative level one observesity must be of mixmaster typgl10]. However, this is not
that, whereas the scalar radiative multipoles generally de€xactly the case since the mixmaster regime corresponds to
pending on the Schwarzschild coordinatest decay for the Bianchi-type homogeneous three-metric while the inte-
larget (space coordinate in the interior regjcand increase 0r of a static spherlcal_ black hole ha_s as a cosmol(_)glcal
for r—0 (time coordinatg in the Maxwell case there is a counterpart a Kantowski-Sachs spacetime not belonging to

particular spatially homogeneous mae., depending only  the Bianchi family. So the nature of oscillations turns out to
on “time” r) which diverges as—0 and which is respon- be entirely dlffergnt. .PreV|ous qualitative discussion of the
sible for creation of the Cauchy horizon and transformationE YM black hole interiors can be found [13]. _

of the singularity into timelikd6]. Since the Cauchy horizon _ ASSume the static spherically symmetric magnetic ansatz
is unstablg 7], this model, however, does not seem realistic,for the YM potential,

and various attempts were undertak8hto understand the

nature of a singularity in “physical” black holes. Perturba- A=[W(r)—1](T,d6—T,sindde)

tive analysis predicts that generically a strong spacelike sin-

gularity should form, perhaps accompanied by the null weakT,, , are spherical projections of the &) generatork and
precursor singularity9]. the following parametrization of the metric:
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FIG. 1. W(r},) for the S- and RN-type interior solutions. Dashed FIG. 2. Then=1 EYM black hole(S type.
lines —W"(ry,) for n=1,2 (highern curves lie between tha=2
one and the boundary,= 1—W,?, dotted ling. Note that S and RN W= —1+br2+b?(3—8b)r®(30my)+O(r®),

curvesW(r,) do not merge.
m=my(1—4b2r2+8b**) +2b%r3+0(r5), (5
ds?=(A/r?)a?dt?>—(r?/A)dr?—r2dQ?, (1)
wherem,, b are (the only) free parameters.
wheredQ2=d 6%+ sirféde? andA, o depend orr. The second is the Reissner-Nordstrtype solution,
The field equations consist of a coupled systemviora, ~ Which can be found assuming the leading termofo be a
positive constant. This requirdd/(0)=Wy# =1 and gives

A(W'/r) +FW' =WV/r, 2 [3]

YV 2 3 4
(A/r)’+2A(W'/r)2=F, 3 W=Wy—Wyr</(2Vy)+cr3/(2Vy) +0(r?), ®)

_\2 2 2\.3 4
whereV=(W?2—1), F=1-V?%r?, and a decoupled equation A=Vo2mor 7+ 2Wo(C-+ moWo /Vo)r ™+ O(r),
for o which corresponds to the RN metric of the maggand the
, 1o (magneti¢ chargeP?=V2, Vo= V(W,). The expansion con-
(Ino)’=2W"r. @ tains three free parametev,, my, C.
The third local power series solution can be found assum-

These equations admit black hole solutions in the domair ; . ; .
r=r, for any radius of the event horizan,. The solutions hg anegativevalue forA(0) (ie., imaginary P):
are specified by the numbare N of nodes ofW thus form- W=Wy*r—Wor?/(2Vy) +0(rd),
ing a discrete set for eaaty . Although it is not guaranteed
a priori that the chart(1) is extendible to the full region A= —V§I4WOV0r+O(r2), (7
r<ry,, for asymptotically flat solutions one does not meet
any singularity in the interior region, unless the genuine one o=0,(r>F4W,yr3/Vy) +0(rd).
r=0 is reached. So the parametrizatidn may also be used
under the horizon whera <0. Here there is only one free paramet&vy) for W, A. The

The singular point =0 gives rise to several local solution corresponding space-time near the singularity is conformal to
branches. In terms of coordinatéd one can find three dis- R*X S?. After a time rescaling one obtains
tinct local power series solutions. The first one is 0 o , )
Schwarzschild-like(S); it corresponds to the vacuum value ds’=r*(dr?—dt*~d6*—sir’6d¢?). ®
of the YM field |W(0)|=1. Using the mass functiom(r),

A=r2—2mr, one getd3] This geometry was encountered in the previous study of

black hole interiors in the framework of the perturbed
Einstein-Maxwell theory[11,12] and called homogeneous

TABLE I. S- and RN-type solutions. . )
P mass inflationHMI).

S-type,n=1 RN-type,n=2 RN-type,n=3 It is easy to realize.that neither of these.asymptotics may
correspond to ageneric black hole. Imposing “boundary

rn 0.613861419 1.273791 1.0318420  conditions” in the singularity, we obtain the same kind of
W(ry) —0.8478649145 —0.113763994 —0.10185163  singular boundary value problem as one encountered previ-
r — 0.02171654 0.08948446  ously in the exterior problem where a similar role is played
W(0) -1 —1.212296124 —1.3566052 by the asymptotic flatness condition. The latter is known to
a(0) 0.2263801 599122010 2 1.751928 102  result in the “quantization” of the allowed value&™(ry,).
Mass 0.8807931 1.018002 1.000277 The internal “boundary value” problem leads to the second

“quantization” condition, now for the event horizon radius
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FIG. 3. Then=2 EYM black hole(RN type). FIG. 5. Interior solution meeting expansiof® atr=0.

r,. Therefore, EYM black holes with S and RN interiors possess an inner Cauchy horizon at somecr, with
may constitute only the set of zero measure in the wholéw(r )|>1 (Figs. 3 and % -
EYM black hole solution space. For a genericthe interior Solutions of the third typé7) were studied numerically,
metric is strikingly different. starting from the vicinity of the origin. The unique solution
The systen(2) and(3) was integrated numerically in the has been found for the horizon data subject to the necessary
region O<r<ry using an adaptive step size Runge-Kuttaconditions for asymptotic flatne$gv,|<1 and 1-W3<r,,,
method for VariOUSh: 10_8, . 1(? Starting at the left vi- for the upper Sign in Eq(?) and W(O): _09330656’ cor-
cinity of the event horizonr,, with one free parameter responding to,=1.889088Fig. 5. This solution, however,
W,,=W(ry,) satisfying inequalitie$W,|<1 and I-W;<ry,,  does not meet any valu&"(r,) and thus does not represent
which are the necessary conditions for asymptotic flatnesg black hole. Nevertheless, it is still interesting due to the
(see the Appendix for detajlsFor givenry, the interior  fact that the metric has no Cauchy horizons. We will come
solutions meeting the expansiof®—(7) may exist only for  back to this point after discussing the nature of a generic
some appropriaté/}, . A numerical strategy used to find such solution.
W(ry,) consisted in detecting the change of a sign of the Hence, we have found that the EYM black holes with the
derivative W’. In the S case we found the curW(ry),  “standard” interiors of the S and RN types exist only for
which starts at—1 asr,—0 and approaches 0.1424125 certain discrete values af,,. For all other(continuously
for largery (Fig. 1) (without loss of generality we choose varying r,, one observes oscillations df in the lower half-
W, <0). Our S curve intersects time=1 branch of the fam-  plane with an infinitely growing amplitude near the singular-
ily of trajectoriesW"(r},), corresponding to the set of exter- ity. The oscillation region starts with an exponential fall of
nal asymptotically flat solutions. Parameters of this blackA, which typically occurs after passing a local maximum
hole solution are shown in Table I, its global behavior isr™® (Fig. 6). In this regime the right-hand side of E(R)
depicted in Fig. 2. becomes comparatively small with respect to other terms,
Interior solutions of the RN type, meeting the expansionsand one can simplify the system analytically. Neglecting the
(6) in the singularity, were found far,>r} =0.990288617. right side of Eq(2), one obtains the followin¢approximatg
The corresponding curv&/(r,) (also shown in Fig. llinter-  first integral of the systent?)—(4)
sects the trajectorieg/"(ry,) for all n=2. These solutions
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FIG. 6. The beginning ofA oscillations forn=1, r,=2,
FIG. 4. Then=3 EYM black hole(RN type. W(r,)=—0.342072.
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TABLE Il. Oscillations parameters far,=2, W,,=—0.342072 i=1 black hole.

r W(r) W' (r)/r A(r)
rinax 4.32x10 2 —0.881410 27.89 —2.52x10 2
rn 1.12x10°? —0.922056 67.03 —-1.68<1071
rax 6.63x10°4 —0.926862 7.3810° —4.16x1074
rym 4.73x10°° —0.930103 1.4910% —8.12x< 10°%¢
r3e 6.44x 1074 —0.930120 41810 —-1.36x1077°
rymn 8.81x 10783 —0.930136 8.0x 107 _ 2% 1016107
rax 2% 10~ 1-16x1077 —0.930136 0.5x 10>32< 107 —2x 10 232x10"7
Z=AW'o/r?=const. 9) o is still varying slowly. Since the coordinate practically

In what follows we will describe in more detail the lower
case(qualitatively the behavior ok in the oscillating regime
is the same for alh). Starting from some point, close to
rMa& (ro=r™ the quantity U=W’/r becomes approxi-
mately constant)=Uy>1r"*>1 (r™*<1 for lower n).
Then, using Eqs3) and(9), one finds the following expres-
sion for A valid in the region of the exponential f4lL3]

A(ro)

)

A(r)= rexqU3(r3—r?)]. (10)

remains unchanged, from E(Q) one can see that the prod-
uct UA remains almost constant. Finally reaches the next
local maximum (asymptotic points of local maxima ap-
proaching zerp and then a new oscillation cycle starts with
an increasing amplitud@able I, Figs. 7, 8. It is clear from
Eq. (4) that & monotonically decreases while going left-
wards, exhibiting rapid falls during exponential falls Af
and keeping almost constant values whileis increasing.
Thus, o tends to(but does not reagha zero limit asr —0.
Although the derivativeW'’ takes rather large absolute
values on some intervals, the corresponding variatiow i
still small because these intervals are also extremely small.

From this expression it is clear that the fall must stop at they|| the above featuregsmall variation ofZ and W, con-

local minimum

rmin=(2|Uq|) 1.

According to(9) and(10), o decreases exponentially dur-
ing the fall of A:

o™~ oM ¥ex] — (Ugr™)2], Uorm¥1

(typically r™n<r™) - After r™" is passedlU still remains

stancy ofU while |A| is falling down become more pro-
nounced while oscillations progress, implying that bath
andW have finite limits ag —0. Then neglecting the right
side of Eq.(2), omitting 1 in F, and replacingW by its
limiting value W, one arrives at the following two-
dimensional autonomous dynamical system:

q=p, p=(3e 9-1)p+2e 29-1/2, (11)

almost unchanged, and hence the exponential factor in EquvhereA = —(VS/Z)exp(q), and an overdot stands for deriva-
(10) becomes irrelevant. It follows that after passing thetives with respect tar=2In(r,/r). This system has ongo-

minimum, A starts to increase linearly so that/r|~2m is
constant. This regime breaks down wHe¥} becomes com-
parable withv?. Then a rapid growth df) takes place, while
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FIG. 7. |A|™! for the second oscillation ofi=1 black hole
solution withr,=2, W,,= —0.342072.

cal) fixed point (=0, g=In2) with eigenvalues
A=(1=*i/15)/4; its phase portrait is shown in Fig. 9 to-
gether with an invariant sgt= — e~ 9—1/2 corresponding to
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FIG. 8. In(A|™Y) for the third oscillation.
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the RN-type solution. The oscillating solutions lie above thisasymptotic form of a more general solution to the same
curve. The phase motion in this region is unbounded, andnodel, Page[11] was able to derive recurrent formulas
there are no limiting circles. The limg=—« (A=0) can- showing infinite oscillations with growing amplitude. The
not be reachedA remains negative valued as—=0 and model is rather different from the present one, although both
passes an infinite sequence of local maxima and minimhave important common features such as a conformal nature
(Fig. 9. (T,,=0) and a homogeneitidependence only on) of the

Thus, the YM hair in non-Abelian black holes is not only matter source. Note that our definition of the mass function is
an “exterior” phenomenon. It also has important implica- different from that in[11,12: in our case there is no reason
tions on the structure of the singularity hidden inside theto extract the charge contribution from
event horizon. Remarkably, the nature of the singularity The influence of the black hole “interior hair’ on the
dominated by the YM “interior hair” is fairly compatible singularity is likely to be a general phenomenon in the non-
with general expectations based on the strong cosmic censOkpelian field theories. The “second quantization” precludes
ship (absence of internal Cauchy horizgmsid an oscillatory e nossibility of the standard S- or RN-type interiors in the
hature O.f th_e generic cosmologlcal s[ngulalﬂl)f)]. Another . generic solutions. A generic regime may be either of oscil-
(nonoscﬂl_atmg E%Im?q C%Tfat'ble VIV'th the_itr(r)]ng_ COSMIC |atory type, or exhibit a power-law divergence of the mass
censorship could be the type solution with the 'MagiNant nction near the singularity. Asymptotic solution of this sec-
charge(7), also known as the HMI solutiofl2]. But in the S : . )

ond type, which is realized, e.g., for the Einstein-Yang-

present context the HMI internal solution is not asymptoti- _,. ) .
cally flat. Deviating from the horizon data that correspond toM'"S'(_jllaton (EYMD) theory[14], tumns O.Ut to b_e generic by
ounting free parameters. The power index itself is one of

the interior HMI solution, one is pushed to the continuous sef
of oscillatory solutions. It has to be noted that the nature offUch parameters. _ _
oscillations in our case is essentially different from that in 1he analysis given here is purely classical. A few words
the mixmaster solution. The first reason is that the stati@® in order about the relevance of the results to the full
spherical black hole interior does not belong to any of theduantum theory. Vacuum polarization of the conformal sca-
Bianchi types in the cosmological interpretation. The secondgr field on the HMI background was considered[ir2], it
distinction is that the singularity is matter dominated with awas found that the correction to the mass function diverges
specific form of the YM field configuration. more strongly than in the classical case. Hence the singular-
The solutions obtained are essentially nonperturbative in #y is not smoothened but rather intensified. In the oscillating
sense that the internal hair is not small. It is interesting taegime there is no hope to compute quantum effects quasi-
note, however, that in the earlier discussion of the black holelassically. Moreover, huge values of the mass funcfion
interiors both HMI and oscillating regimes were detected inPlanck’s unit$ encountered soon after entering such a re-
the framework of the perturbed Einstein-Maxwell theory.gime indicate that quantum behavior of the model should be
Namely, as we have already discussed, a model of chargembnsidered nonperturbatively and may well be qualitatively
black hole interior witht-independent crossflows of ingoing different from the classical picture. However, the conclusion
and outgoing radiation developed[ibl] admits a particular about the spacelike nature of the generic singularity is un-
solution [12] with the asymptotic Eq(7). Analyzing an likely to be changed.
Note added We have become aware of the paper by
Breitenlohner, Lavrelashvili, and Maisofgr-qc/970304Y,
10 — T T T T who treated essentially the same subject and tried to gener-
i alize the results to the Einstein-Yang-Mills-HigggYMH)

8 theory. Their interpretation of the generic EYMH mass func-
6 [ tion m(r) as exponentially inflating towards the singularity is
incorrect: in this case an analytic solution exists that shows
4 that m(r) has a power-law singularity similar to EYMD
theory[14]. In the pure EYMblack holecase their results
2 agree with ours, in addition they found S solutionstior 2.
o

They have also found a hierarchy of the interior S- and RN-
type solutions, as well as some additional interior HMI's
corresponding to the horizon data not satisfying the neces-
sary condition for asymptotic flatness—l/vﬁ<rh. The rel-
evance of these results to the black hole problem, however,
remains unclear. As far as the genefascillating EYM
black hole interiors are concerned, the qualitative discussion
in their paper essentially follows our discussion given earlier,
and a dynamical system describing asymptotic behavior near
10 N T the singularity is the same as our EdJ) up to notation.
2 0 5 4 6 3 Note that in our numerical calculations we were able to ob-
q serve more huge oscillation cycles applying the technique of
integration along integral curves, see Appendix. We are
FIG. 9. Phase portrait dfL1), RN: an invariant set, correspond- grateful to these authors for indicating some misprints and a
ing to the RN-type solutioridashed: zero slope lines possible numerical error in the original version of our paper.
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Afterwards we obtained analytical formulas for the se-for direct integration as oscillations progress. In fact, inte-
guence of characteristic values suchmsat maxima and grating system(A3) for r,=2, W,,=—0.342 072, one ob-
minima of A, etc. in oscillation cycle$14]. Two papers by serves thak practically stops near the third local maximum
Smoller and Wassermangr-qc/9703062, gr-qc/9706089 (“ max 3” in Figs. 7 and 8 with D~ —10"6, W'~ 10" (on
also became available treating mathematical aspects of theePC with 15 digits after the decimal poinfA simple rem-
problem. edy is to desingularize EGA3) by introducing a parametér

D.V.G. thanks the Theory Division, CERN for hospitality as
while the first version of the paper was written. Stimulating
discussions with G. A. Alekseev, |. Bakas, G. @knt, |. G.
Dymnikova, P. S. Letelier, O. I. Mokhov, M. S. Volkov, and dx=xDdt. (A4)
technical assistance of R. N. Zhukov are gratefully acknowl-
edged. The research was supported in part by the RFBR

Grant Nos. 96-02-18899, 18126. But this method is only local: it opens a way to go through
the chosen local maximum, but does not allow one to reach
APPENDIX the next minimum ofD. A more general technique consists

o _ . in integration along the integral curve. LEt be a smooth
Large numbers given in Table Il naturally raise questionscyrve, defined by

about the validity of numerical results obtained. Indeed, a

direct application of standard techniques is not sufficient

here. So we present some details of the numerical proce-

dures, which were used to integrd® and(3) in the region X=¢(t), y=u¢(t), z=x(1), te[a,b],
of huge oscillations encountered in generic solutions.

One meets two kinds of problems during numerical inte- , , , :
gration of Egs.(2) and (3). First, one has to deal with ex- whered, 4, Xecl[a'b.]' a_ndd) “+y'?+x'*>0in[ab].
tremely small values of asr—0 and of|A| near its local €N the lengti. of I'is given by
maxima, as well as with very large values |&f| asr—0,
and of |A| near its local minima. The second difficulty is
related to the existence of the extremely small intervals of b
on which variation ofA andU is very fast. sz V' 2+ ¢/ %+ x'4dt.

The problems of the first kind can be avoided by substi- a
tutions like In(1t), Inin(1/r), etc. forr; In(—A), In|in(—A)|,
etc. forA and similarly for other quantities. The second dif- Thjs formula suggests a choice of an integration parameter
ficulty has been overcome as follows while obtaining nu-instead ofx (or r), which allows one to pass the intervals
merical data for three sequential oscillations presented in Tasf apparent “stops” ofx easily. Introduce a parametér
ble 1I. so that dl=(W'2+P'2+D'%)¥dx [or, for example,

Rewrite the systen?), (3) as dl=(1+P'?)Ydx to integrate alongP, etc], and rewrite

the system({A3) addingt=Inx as a new dependent variable.

, L1 Changing tadG=In(—D) one is able not only to pass the third
DW'+FW :QVW’ (A1) ocal maximum, but also to reach the third local minimum
[see Eq(10) and Fig. §. Thus, the system will read
D'+ aw?- —|D=F A2
“ 2x) (A2) Pl ; ; . . ;
where x=(r/r,)?, D=2A/rZ, a=4k2, V=(W?>-1)/2, 1355
F=1-—aV?/x, and'=d/dx. HereW’ plays the samerole as  .1z4|

U in (2), (3). Putting it in a first order form, suitable for the

Runge-Kutta procedure 1.365}

-1.87F

W=P, P'= (Wt aVP)— - S
= , = — o - -,

xD D 1.38f

-1.385

1 1.391

D’=F—<aP2—2— D, (A3)

X -1.395
one observes that near the local maximeDo& very small 227 8260 3268 3267 3.266 3265 3264 3263 -3262 -3261
absolute value of denominatoD may cause numerical x10*

problems. Though unessential for some first maxithiaax
1" and “max 2" in Fig. 6), this really becomes an obstacle FIG. 10. A vs|: the third local maximum.
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" 1 introduce another parametpr such thatdl=—Ddp. Then
t one obtains
. eP
WI_9 - ovw A5 : 1 ]
1 .
G = —ae'P?—N t
2 W dp| Eexp(t+2)
whereQ=exp(-G), H=e'—aV2, N=HQ, the overdot de- 5 dl| H—VWexp(-2) ’
notesd/dl, and, e.g.dl=(1+ G?) ¥4t for integration along _ 1
G. This system allows one to go through the third local | G EE_H_“EeXp(HZZ)

maximum and along the segmemtsand B of the third os-
cillation cycle (Figs. 8 and 10 (Note thatB in fact can be whereE=exp(G). This system works well both alor@ and

passed just using=Inx as an independent variable. while passing through the local maxirffaoth “max 3” and
Next, one has to move along the segménfFig. 8 and  “max 4”).
to reach(and paspthe fourth local maximum ofA. |A] To perform integration in the region of the next oscilla-

decreases very fast in this interval forcid§ to increase as tion cycle one has to introduce the next order logarithmic
[UA|~|U(r3™®)| [15]. At this step one has to introduce in substitutions (Inin(X), etc), while the whole numerical

Eq. (A5) Z=InW' [this can be done before passingnax  strategy remains the same. More details on the subject can be
3,” but the original systen{A5) works better along the seg- found in gr-qc/9704080. Although an overall accuracy is
mentA.] Alternatively, one can improve the system in order progressively lost at each step of the calculation, the relative
to integrate alongC in a way similar to Eq.(A4). Let us  error is kept small.
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