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The interior structure of the static spherically symmetric black holes in the SU~2! Einstein-Yang-Mills
theory is investigated both analytically and numerically. It is shown that violation of the no-hair conjecture in
this theory has a nontrivial manifestation also inside the event horizon. Although both Schwarzschild and
Reissner-Nordstro¨m-type interiors still may be realized for certain discrete horizon radii, a generic solution
exhibits an infinitely oscillating behavior near the singularity. No inner horizons are formed and the singularity
is spacelike, although an infinite sequence of ‘‘almost’’ Cauchy horizons is encountered. The amplitude of
metric oscillations grows exponentially as the singularity is approached. An approximate two-dimensional
dynamical system is derived, which describes an asymptotic structure of space-time near the singularity.
@S0556-2821~97!03018-X#

PACS number~s!: 04.40.Nr, 04.20.Jb, 04.70.Bw

Discovered soon after the regular Bartnik-McKinnon
~BK! solutions@1#, Einstein-Yang-Mills~EYM! black holes
~see@2–4#, and references therein! provided new insight into
black hole physics, related to the no-hair and uniqueness
issues. It was soon realized that in many non-Abelian field
theories the naive no-hair conjecture does not hold and black
holes may possess exterior fields that are not generated by
the conserved U~1! charges@5#. So far discussion of these
solutions has been restricted mostly to the region outside the
horizon. Meanwhile, the exterior hair certainly continues in-
side the black hole and can be expected to cause substantial
modification of the interior structure including the singular-
ity.

The nature of a singularity inside a black hole is a funda-
mental question of the gravitational collapse in spite of the
fact that the singularity is hidden from an external observer.
It is believed that the space-time outside a compact neutral
spherical collapsing body is given by the Schwarzschild so-
lution. An associated singularity is spacelike and strong.
However, a small Maxwell field in the case of a charged
body changes substantially the nature of the singularity, con-
verting it to timelike. On a perturbative level one observes
that, whereas the scalar radiative multipoles generally de-
pending on the Schwarzschild coordinatesr , t decay for
large t ~space coordinate in the interior region! and increase
for r→0 ~time coordinate!, in the Maxwell case there is a
particular spatially homogeneous mode~i.e., depending only
on ‘‘time’’ r ) which diverges asr→0 and which is respon-
sible for creation of the Cauchy horizon and transformation
of the singularity into timelike@6#. Since the Cauchy horizon
is unstable@7#, this model, however, does not seem realistic,
and various attempts were undertaken@8# to understand the
nature of a singularity in ‘‘physical’’ black holes. Perturba-
tive analysis predicts that generically a strong spacelike sin-
gularity should form, perhaps accompanied by the null weak
precursor singularity@9#.

In non-Abelian gauge theories vector and scalar fields
may form non-Coulomb static equilibrium configurations
outside the event horizon. Inside the black hole they also
constitute homogeneous configurations but essentially differ-
ent from those in the U~1! case. Since such theories are be-
lieved to be more ‘‘generic’’ than the Maxwell theory, one
can gain new insight into the singularity problem exploring
the internal structure of non-Abelian black holes. Our inves-
tigation, of which we give brief results here, shows that a
generic singularity inside the EYM black holes is strikingly
different from those in the Schwarzschild~S! and Reissner-
Nordström ~RN! solutions. Both S- and RN-type singulari-
ties may still be developed but only for a discrete set of the
event horizon radii. This ‘‘second quantization’’ is similar to
the ‘‘first quantization’’ of the exterior solutions and math-
ematically follows from the same kind of nonlinear boundary
value problem. Meanwhile agenericEYM black hole devel-
ops the spacelike singularity of an oscillatory nature. This is
conformable with an expectation that no Cauchy horizons
should form in ‘‘realistic’’ black holes and that the singular-
ity must be of mixmaster type@10#. However, this is not
exactly the case since the mixmaster regime corresponds to
the Bianchi-type homogeneous three-metric while the inte-
rior of a static spherical black hole has as a cosmological
counterpart a Kantowski-Sachs spacetime not belonging to
the Bianchi family. So the nature of oscillations turns out to
be entirely different. Previous qualitative discussion of the
EYM black hole interiors can be found in@3#.

Assume the static spherically symmetric magnetic ansatz
for the YM potential,

A5@W~r !21#~Twdu2Tusinudw!

@Tw,u are spherical projections of the SU~2! generators#, and
the following parametrization of the metric:
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ds25~D/r 2!s2dt22~r 2/D!dr22r 2dV2, ~1!

wheredV25du21sin2udw2, andD, s depend onr .
The field equations consist of a coupled system forW, D,

D~W8/r !81FW85WV/r , ~2!

~D/r !812D~W8/r !25F, ~3!

whereV5(W221), F512V2/r 2, and a decoupled equation
for s:

~ lns!852W82/r . ~4!

These equations admit black hole solutions in the domain
r>r h for any radius of the event horizonr h . The solutions
are specified by the numbernPN of nodes ofW thus form-
ing a discrete set for eachr h . Although it is not guaranteed
a priori that the chart~1! is extendible to the full region
r ,r h , for asymptotically flat solutions one does not meet
any singularity in the interior region, unless the genuine one
r 50 is reached. So the parametrization~1! may also be used
under the horizon whereD,0.

The singular pointr 50 gives rise to several local solution
branches. In terms of coordinates~1! one can find three dis-
tinct local power series solutions. The first one is
Schwarzschild-like~S!; it corresponds to the vacuum value
of the YM field uW(0)u51. Using the mass functionm(r ),
D5r 222mr, one gets@3#

W5211br21b2~328b!r 5/~30m0!1O~r 6!,

m5m0~124b2r 218b4r 4!12b2r 31O~r 5!, ~5!

wherem0, b are ~the only! free parameters.
The second is the Reissner-Nordstro¨m-type solution,

which can be found assuming the leading term ofD to be a
positive constant. This requiresW(0)5W0Þ61 and gives
@3#

W5W02W0r 2/~2V0!1cr3/~2V0!1O~r 4!,
~6!

D5V0
222m0r 1r 212W0~c1m0W0 /V0

2!r 31O~r 4!,

which corresponds to the RN metric of the massm0 and the
~magnetic! chargeP25V0

2, V05V(W0). The expansion con-
tains three free parametersW0, m0, c.

The third local power series solution can be found assum-
ing a negativevalue forD(0) ~i.e., imaginary P):

W5W06r 2W0r 2/~2V0!1O~r 3!,

D52V0
274W0V0r 1O~r 2!, ~7!

s5s1~r 274W0r 3/V0!1O~r 3!.

Here there is only one free parameter (W0) for W, D. The
corresponding space-time near the singularity is conformal to
R23S2. After a time rescaling one obtains

ds25r 2~dr22dt22du22sin2udw2!. ~8!

This geometry was encountered in the previous study of
black hole interiors in the framework of the perturbed
Einstein-Maxwell theory@11,12# and called homogeneous
mass inflation~HMI !.

It is easy to realize that neither of these asymptotics may
correspond to ageneric black hole. Imposing ‘‘boundary
conditions’’ in the singularity, we obtain the same kind of
singular boundary value problem as one encountered previ-
ously in the exterior problem where a similar role is played
by the asymptotic flatness condition. The latter is known to
result in the ‘‘quantization’’ of the allowed valuesWn(r h).
The internal ‘‘boundary value’’ problem leads to the second
‘‘quantization’’ condition, now for the event horizon radius

TABLE I. S- and RN-type solutions.

S-type,n51 RN-type,n52 RN-type,n53

r h 0.613861419 1.273791 1.0318420
W(r h) 20.8478649145 20.113763994 20.10185163
r _ — 0.02171654 0.08948446
W(0) 21 21.212296124 21.3566052
s(0) 0.2263801 5.99121031023 1.75192831023

Mass 0.8807931 1.018002 1.000277

FIG. 1. W(r h) for the S- and RN-type interior solutions. Dashed
lines – Wn(r h) for n51,2 ~higher-n curves lie between then52
one and the boundaryr h512Wh

2, dotted line!. Note that S and RN
curvesW(r h) do not merge.

FIG. 2. Then51 EYM black hole~S type!.
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r h . Therefore, EYM black holes with S and RN interiors
may constitute only the set of zero measure in the whole
EYM black hole solution space. For a genericr h the interior
metric is strikingly different.

The system~2! and ~3! was integrated numerically in the
region 0,r ,r h using an adaptive step size Runge-Kutta
method for variousr h51028, . . . , 106 starting at the left vi-
cinity of the event horizonr h with one free parameter
Wh5W(r h) satisfying inequalitiesuWhu,1 and 12Wh

2,r h ,
which are the necessary conditions for asymptotic flatness
~see the Appendix for details!. For given r h , the interior
solutions meeting the expansions~5!–~7! may exist only for
some appropriateWh . A numerical strategy used to find such
W(r h) consisted in detecting the change of a sign of the
derivative W8. In the S case we found the curveW(r h),
which starts at21 as r h→0 and approaches20.1424125
for large r h ~Fig. 1! ~without loss of generality we choose
Wh,0). Our S curve intersects then51 branch of the fam-
ily of trajectoriesWn(r h), corresponding to the set of exter-
nal asymptotically flat solutions. Parameters of this black
hole solution are shown in Table I, its global behavior is
depicted in Fig. 2.

Interior solutions of the RN type, meeting the expansions
~6! in the singularity, were found forr h.r h* 50.990288617.
The corresponding curveW(r h) ~also shown in Fig. 1! inter-
sects the trajectoriesWn(r h) for all n>2. These solutions

possess an inner Cauchy horizon at somer _,r h with
uW(r _)u.1 ~Figs. 3 and 4!.

Solutions of the third type~7! were studied numerically,
starting from the vicinity of the origin. The unique solution
has been found for the horizon data subject to the necessary
conditions for asymptotic flatnessuWhu,1 and 12Wh

2,r h ,
for the upper sign in Eq.~7! andW(0)520.9330656, cor-
responding tor h51.889088~Fig. 5!. This solution, however,
does not meet any valueWn(r h) and thus does not represent
a black hole. Nevertheless, it is still interesting due to the
fact that the metric has no Cauchy horizons. We will come
back to this point after discussing the nature of a generic
solution.

Hence, we have found that the EYM black holes with the
‘‘standard’’ interiors of the S and RN types exist only for
certain discrete values ofr h . For all other ~continuously
varying! r h one observes oscillations ofD in the lower half-
plane with an infinitely growing amplitude near the singular-
ity. The oscillation region starts with an exponential fall of
D, which typically occurs after passing a local maximum
r max ~Fig. 6!. In this regime the right-hand side of Eq.~2!
becomes comparatively small with respect to other terms,
and one can simplify the system analytically. Neglecting the
right side of Eq.~2!, one obtains the following~approximate!
first integral of the system~2!–~4!

FIG. 3. Then52 EYM black hole~RN type!.

FIG. 4. Then53 EYM black hole~RN type!.

FIG. 5. Interior solution meeting expansions~7! at r 50.

FIG. 6. The beginning ofD oscillations for n51, r h52,
W(r h)520.342072.
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Z5DW8s/r 25const. ~9!

In what follows we will describe in more detail the lowern
case~qualitatively the behavior ofD in the oscillating regime
is the same for alln). Starting from some pointr 0 close to
r max (r 0&r max) the quantity U5W8/r becomes approxi-
mately constantU5U0@1/r max@1 (r max!1 for lower n).
Then, using Eqs.~3! and~9!, one finds the following expres-
sion for D valid in the region of the exponential fall@13#

D~r !5
D~r 0!

r 0
rexp@U0

2~r 0
22r 2!#. ~10!

From this expression it is clear that the fall must stop at the
local minimum

r min5~A2uU0u!21.

According to~9! and~10!, s decreases exponentially dur-
ing the fall of D:

smin;smaxexp@2~U0r max!2#, U0r max@1

~typically r min!r max). After r min is passed,U still remains
almost unchanged, and hence the exponential factor in Eq.
~10! becomes irrelevant. It follows that after passing the
minimum,D starts to increase linearly so thatuD/r u'2m is
constant. This regime breaks down whenuDu becomes com-
parable withV2. Then a rapid growth ofU takes place, while

s is still varying slowly. Since the coordinater practically
remains unchanged, from Eq.~9! one can see that the prod-
uct UD remains almost constant. FinallyD reaches the next
local maximum ~asymptotic points of local maxima ap-
proaching zero!, and then a new oscillation cycle starts with
an increasing amplitude~Table II, Figs. 7, 8!. It is clear from
Eq. ~4! that s monotonically decreases while going left-
wards, exhibiting rapid falls during exponential falls ofD
and keeping almost constant values whileD is increasing.
Thus,s tends to~but does not reach! a zero limit asr→0.

Although the derivativeW8 takes rather large absolute
values on some intervals, the corresponding variation ofW is
still small because these intervals are also extremely small.
All the above features~small variation ofZ and W, con-
stancy ofU while uDu is falling down! become more pro-
nounced while oscillations progress, implying that bothZ
andW have finite limits asr→0. Then neglecting the right
side of Eq. ~2!, omitting 1 in F, and replacingW by its
limiting value W0, one arrives at the following two-
dimensional autonomous dynamical system:

q̇5p, ṗ5~3e2q21!p12e22q21/2, ~11!

whereD52(V0
2/2)exp(q), and an overdot stands for deriva-

tives with respect tot52ln(rh /r). This system has one~fo-
cal! fixed point (p50, q5 ln2) with eigenvalues
l5(16 iA15)/4; its phase portrait is shown in Fig. 9 to-
gether with an invariant setp52e2q21/2 corresponding to

TABLE II. Oscillations parameters forr h52, Wh520.342072 (n51 black hole!.

r W(r ) W8(r )/r D(r )

r 1
max 4.3231022 20.881410 27.89 22.5231022

r 1
min 1.1231022 20.922056 67.03 21.6831021

r 2
max 6.6331024 20.926862 7.303103 24.1631024

r 2
min 4.7331025 20.930103 1.493104 28.1231036

r 3
max 6.44310244 20.930120 4.1031081 21.36310279

r 3
min 8.81310283 20.930136 8.0131081

223101.1631077

r 4
max

231021.1631077
20.930136 0.53102.3231077

2231022.3231077

FIG. 7. uDu21 for the second oscillation ofn51 black hole
solution with r h52, Wh520.342072. FIG. 8. ln(uDu21) for the third oscillation.
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the RN-type solution. The oscillating solutions lie above this
curve. The phase motion in this region is unbounded, and
there are no limiting circles. The limitq52` (D50) can-
not be reached,D remains negative valued asr→0 and
passes an infinite sequence of local maxima and minima
~Fig. 9!.

Thus, the YM hair in non-Abelian black holes is not only
an ‘‘exterior’’ phenomenon. It also has important implica-
tions on the structure of the singularity hidden inside the
event horizon. Remarkably, the nature of the singularity
dominated by the YM ‘‘interior hair’’ is fairly compatible
with general expectations based on the strong cosmic censor-
ship~absence of internal Cauchy horizons! and an oscillatory
nature of the generic cosmological singularity@10#. Another
~nonoscillating! regime compatible with the strong cosmic
censorship could be the RN-type solution with the imaginary
charge~7!, also known as the HMI solution@12#. But in the
present context the HMI internal solution is not asymptoti-
cally flat. Deviating from the horizon data that correspond to
the interior HMI solution, one is pushed to the continuous set
of oscillatory solutions. It has to be noted that the nature of
oscillations in our case is essentially different from that in
the mixmaster solution. The first reason is that the static
spherical black hole interior does not belong to any of the
Bianchi types in the cosmological interpretation. The second
distinction is that the singularity is matter dominated with a
specific form of the YM field configuration.

The solutions obtained are essentially nonperturbative in a
sense that the internal hair is not small. It is interesting to
note, however, that in the earlier discussion of the black hole
interiors both HMI and oscillating regimes were detected in
the framework of the perturbed Einstein-Maxwell theory.
Namely, as we have already discussed, a model of charged
black hole interior witht-independent crossflows of ingoing
and outgoing radiation developed in@11# admits a particular
solution @12# with the asymptotic Eq.~7!. Analyzing an

asymptotic form of a more general solution to the same
model, Page@11# was able to derive recurrent formulas
showing infinite oscillations with growing amplitude. The
model is rather different from the present one, although both
have important common features such as a conformal nature
(Tm

m50) and a homogeneity~dependence only onr ) of the
matter source. Note that our definition of the mass function is
different from that in@11,12#: in our case there is no reason
to extract the charge contribution fromD.

The influence of the black hole ‘‘interior hair’’ on the
singularity is likely to be a general phenomenon in the non-
Abelian field theories. The ‘‘second quantization’’ precludes
the possibility of the standard S- or RN-type interiors in the
generic solutions. A generic regime may be either of oscil-
latory type, or exhibit a power-law divergence of the mass
function near the singularity. Asymptotic solution of this sec-
ond type, which is realized, e.g., for the Einstein-Yang-
Mills-dilaton ~EYMD! theory@14#, turns out to be generic by
counting free parameters. The power index itself is one of
such parameters.

The analysis given here is purely classical. A few words
are in order about the relevance of the results to the full
quantum theory. Vacuum polarization of the conformal sca-
lar field on the HMI background was considered in@12#, it
was found that the correction to the mass function diverges
more strongly than in the classical case. Hence the singular-
ity is not smoothened but rather intensified. In the oscillating
regime there is no hope to compute quantum effects quasi-
classically. Moreover, huge values of the mass function~in
Planck’s units! encountered soon after entering such a re-
gime indicate that quantum behavior of the model should be
considered nonperturbatively and may well be qualitatively
different from the classical picture. However, the conclusion
about the spacelike nature of the generic singularity is un-
likely to be changed.

Note added. We have become aware of the paper by
Breitenlohner, Lavrelashvili, and Maison~gr-qc/9703047!,
who treated essentially the same subject and tried to gener-
alize the results to the Einstein-Yang-Mills-Higgs~EYMH!
theory. Their interpretation of the generic EYMH mass func-
tion m(r ) as exponentially inflating towards the singularity is
incorrect: in this case an analytic solution exists that shows
that m(r ) has a power-law singularity similar to EYMD
theory @14#. In the pure EYMblack holecase their results
agree with ours, in addition they found S solutions forn.2.
They have also found a hierarchy of the interior S- and RN-
type solutions, as well as some additional interior HMI’s
corresponding to the horizon data not satisfying the neces-
sary condition for asymptotic flatness 12Wh

2,r h . The rel-
evance of these results to the black hole problem, however,
remains unclear. As far as the generic~oscillating! EYM
black hole interiors are concerned, the qualitative discussion
in their paper essentially follows our discussion given earlier,
and a dynamical system describing asymptotic behavior near
the singularity is the same as our Eq.~11! up to notation.
Note that in our numerical calculations we were able to ob-
serve more huge oscillation cycles applying the technique of
integration along integral curves, see Appendix. We are
grateful to these authors for indicating some misprints and a
possible numerical error in the original version of our paper.

FIG. 9. Phase portrait of~11!, RN: an invariant set, correspond-
ing to the RN-type solution~dashed: zero slope lines!.
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Afterwards we obtained analytical formulas for the se-
quence of characteristic values such asm at maxima and
minima of D, etc. in oscillation cycles@14#. Two papers by
Smoller and Wassermann~gr-qc/9703062, gr-qc/9706039!
also became available treating mathematical aspects of the
problem.

D.V.G. thanks the Theory Division, CERN for hospitality
while the first version of the paper was written. Stimulating
discussions with G. A. Alekseev, I. Bakas, G. Cle´ment, I. G.
Dymnikova, P. S. Letelier, O. I. Mokhov, M. S. Volkov, and
technical assistance of R. N. Zhukov are gratefully acknowl-
edged. The research was supported in part by the RFBR
Grant Nos. 96-02-18899, 18126.

APPENDIX

Large numbers given in Table II naturally raise questions
about the validity of numerical results obtained. Indeed, a
direct application of standard techniques is not sufficient
here. So we present some details of the numerical proce-
dures, which were used to integrate~2! and~3! in the region
of huge oscillations encountered in generic solutions.

One meets two kinds of problems during numerical inte-
gration of Eqs.~2! and ~3!. First, one has to deal with ex-
tremely small values ofr as r→0 and ofuDu near its local
maxima, as well as with very large values ofuUu as r→0,
and of uDu near its local minima. The second difficulty is
related to the existence of the extremely small intervals ofr
on which variation ofD andU is very fast.

The problems of the first kind can be avoided by substi-
tutions like ln(1/r ), lnln(1/r ), etc. for r ; ln(2D), lnuln(2D)u,
etc. forD and similarly for other quantities. The second dif-
ficulty has been overcome as follows while obtaining nu-
merical data for three sequential oscillations presented in Ta-
ble II.

Rewrite the system~2!, ~3! as

DW91FW85
1

x
VW, ~A1!

D81S aW822
1

2xDD5F, ~A2!

where x5(r /r h)2, D52D/r h
2 , a54/r h

2 , V5(W221)/2,
F512aV2/x, and 8[d/dx. HereW8 plays the same role as
U in ~2!, ~3!. Putting it in a first order form, suitable for the
Runge-Kutta procedure

W85P, P85
1

xD
V~W1aVP!2

P

D
,

D85F2S aP22
1

2xDD, ~A3!

one observes that near the local maxima ofD a very small
absolute value of denominatorxD may cause numerical
problems. Though unessential for some first maxima~‘‘ max
1’’ and ‘‘ max 2’’ in Fig. 6!, this really becomes an obstacle

for direct integration as oscillations progress. In fact, inte-
grating system~A3! for r h52, Wh520.342 072, one ob-
serves thatx practically stops near the third local maximum
~‘‘ max 3’’ in Figs. 7 and 8! with D'210216, W8'1018 ~on
a PC with 15 digits after the decimal point!. A simple rem-
edy is to desingularize Eq.~A3! by introducing a parametert
as

dx5xDdt. ~A4!

But this method is only local: it opens a way to go through
the chosen local maximum, but does not allow one to reach
the next minimum ofD. A more general technique consists
in integration along the integral curve. LetG be a smooth
curve, defined by

x5f~ t !, y5c~ t !, z5x~ t !, tP@a,b#,

wheref, c, xPC1@a,b#, andf821c821x82.0 in @a,b#.
Then the lengthL of G is given by

L5E
a

b
Af821c821x82dt.

This formula suggests a choice of an integration parameter
instead ofx ~or r ), which allows one to pass the intervals
of apparent ‘‘stops’’ ofx easily. Introduce a parameterl
so that dl5(W821P821D82)1/2dx @or, for example,
dl5(11P82)1/2dx to integrate alongP, etc.#, and rewrite
the system~A3! addingt5 lnx as a new dependent variable.
Changing toG5 ln(2D) one is able not only to pass the third
local maximum, but also to reach the third local minimum
@see Eq.~10! and Fig. 8#. Thus, the system will read

FIG. 10. D vs l : the third local maximum.
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F ṫ

Ẇ

Ṗ

Ġ

G5
dt

dlF 1

etP

NP2QVW

1

2
2aetP22N

G , ~A5!

whereQ5exp(2G), H5et2aV2, N5HQ, the overdot de-
notesd/dl, and, e.g.,dl5(11Ġ2)1/2dt for integration along
G. This system allows one to go through the third local
maximum and along the segmentsA andB of the third os-
cillation cycle ~Figs. 8 and 10!. ~Note thatB in fact can be
passed just usingt5 lnx as an independent variable.!

Next, one has to move along the segmentC ~Fig. 8! and
to reach ~and pass! the fourth local maximum ofD. uDu
decreases very fast in this interval forcingW8 to increase as
uUDu'uU(r 3

max)u @15#. At this step one has to introduce in
Eq. ~A5! Z5 lnW8 @this can be done before passing ‘‘max
3,’’ but the original system~A5! works better along the seg-
mentA.# Alternatively, one can improve the system in order
to integrate alongC in a way similar to Eq.~A4!. Let us

introduce another parameterp, such thatdl52Ddp. Then
one obtains

F ṗ

ṫ

Ẇ

Ż

Ġ

G5
dp

dl 3
1

E

Eexp~ t1Z!

H2VWexp~2Z!

1

2
E2H2aEexp~ t12Z!

4 ,

whereE5exp(G). This system works well both alongC and
while passing through the local maxima~both ‘‘max 3’’ and
‘‘ max 4’’ !.

To perform integration in the region of the next oscilla-
tion cycle one has to introduce the next order logarithmic
substitutions (lnln(1/x), etc.!, while the whole numerical
strategy remains the same. More details on the subject can be
found in gr-qc/9704080. Although an overall accuracy is
progressively lost at each step of the calculation, the relative
error is kept small.
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