PHYSICAL REVIEW D VOLUME 56, NUMBER 1 1 JULY 1997

Towards determining ¢, with B—D®*)D®)
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We present an isospin analysis of the decay m(BiesDD_, D*D_, DE‘, and D*ﬁ, which allows the
determination of the final-state interaction phases. As these transitions have branching ratios of the order
107* or larger, they could be useful in detecting tBd-violating phaseg,=arg(— V¥ VeqVip Vi) in the
first-round experiments of B-meson factory. The problem of penguin pollution may still be present. Once the
Kobayashi-Maskawa matrix elements are known, it is possible to obtain the magnitudes and relative phases of
hadronic matrix elements fa—D®)D™). This will in turn lead to some information about the penguin
pollution. [S0556-282(97)00713-3

PACS numbgs): 13.25.Hw, 11.30.Er, 12.15.Ff, 14.40.Nd

I. INTRODUCTION weak interactions and have comparable branching ratios, al-
though they are not the exaCtP-even eigenstatd$].
Within the standard electroweak model, three angles of Of course, the measurement oEP violation in

the Kobayashi-MaskawéKM) unitarity triangle By—D*D~ cannot only cross-check the extraction ®f
from By— ¢/Kg, but also shed some light on the penguin
VipVudt VepVeat Vi Via=0, ) effects and final-state interactioiBSI's) in nonleptonicB

decays to double charmed mesons. For this reason, it is
denoted byg; (i=1,2,3), are determined fro@P asymme- Wworth studying bothB4—D*D~ and B;—D°D° in a
tries in neutralB-meson decays to hadron@P eigenstates Model-independent approach. The similar treatment is appli-
[1-3]. It is expected thath,=arg(— Vg, VeqVinViy) can be  cable to the process&—DD*, D*D, etc.
unambiguously extracted from the decay rate difference be- In this work we shall carry out an isospin analysis of the
tween Bi— Kg and Bl— /K. While this decay mode processesB—D™*)D™), to relate their weak and strong
should be sufficient for determiningy;, the initial luminosity ~ phases to the relevant observables. It is found that the time-
of a B factory may require us to search for some additionaldependent measurementsBy—D "D~ andBd—>D°F to-
decay channels which could help us establish the presence géther with the time-independent measurements of
CP violation as quickly as possibld]. For this purpose, we BJ%D*F’ andB; —D DO allow one to extract a phase

shall investigate parameterp; , which consists of bothp, and the penguin-
induced phase information. Direc€P asymmetries in

B—DD, D*D, DD*, D*D* (2 B,—~D"D~ andDD® are time-independently detectable on

the Y(4S) resonance. For numerical illustration, we apply

in some detail. the effective weak Hamiltonian and factorization approxima-
In practical experiments the decay mo&—D*D~ tion to BJ—»D(*)J“E*)O andBJ—>D(*)‘D(*)°, since each

should have fairly large branching ratio. Under (SJUsym-

o of them is only involved in a single isospin amplitude. We
metry, one can make the rough estimation

find that their branching ratios are all above f0and the
0 e ) 0 . relevant time-independer@ P asymmetries may reach the
B(Bq—D*D")~sirgcB(Bg—DsD") 3% level. The time-dependentCP asymmetries in
~(3.4+1.9 X104, 3 Bg—D®)"D™)” andD*)D™) are expected to be of or-
der one. We also emphasize that it is possible to obtain some
information on the magnitudes and relative phases of ha-
dronic matrix elements in the isospin approach, once the KM
matrix elements have been known.

where 6. is the Cabibbo angle, ancB(Bg—>D§D*)
=(7=4)x10 % has been measured in experimeffs.
Also, the penguin effect ilB4—D D~ is expected to be
smaller than that irBy— 7" 7. Thus theCP asymmetry
betweeng—>D+D‘ and§S—>D+D‘ may be dominated by II. ISOSPIN ANALYSIS
the angleg;. In contrast withB,—D*D ~, the decay modes
Bgq—D'D*~, D**D~, and D* *D*~ undergo the same The effective weak Hamiltoniins, responsible for
B,—D D° BS—D*D~, BY—DD? and their CP-
conjugate processes, have the isospin structim@s— 1/2)
*Electronic address: Sanda@eken.phys.nagoya-u.ac.jp and|1/2,+ 1/2), respectively. The decay amplitudes of these
Electronic address: Xing@eken.phys.nagoya-u.ac.jp transitions can be written in terms of the isospin amplitudes:
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342 A. I. SANDA AND ZHI-ZHONG XING 56
contain the tree-level and penguin contributions. This point
can be seen more clearly if one writes the isospin amplitudes
A, andA, (1=1,0) with the help of the low-energy effective
AB=*1 Hamiltonians. For exampléy, can be given as

_ G
A/={((DD)||Het(AB=+1)|B)= —;qE [(VEVaa) ST,

%

FIG. 1. The isospin triangles &—DD in the complex plane.

(10
A+_E<D+D_|Hef‘f|83>:%(A1+A0)1 Wlth
00— /OO Oy_ 1 _ _ _
AT=(D D Herl By =2 (A= Ao), S1=cy((DD),|QY[B) + c»((DD)|QYIB)
ATO=(D DY Her|B ) =A;, (4) 10 _
+ >, [c{(DD),|Qi|B)], (12)
and =3

AT T=(D"D | Hex| B =2(A1+Ay), where Wilson coefficients; and four-quark operator®; at

the scaleu=0(m,) have been well defined in Rdf7]. The
expression ofA,; is straightforwardly obtainable from Eq.
(10) through the replacementV{,Vqq)— (VqoVqa)- The
tree- and penguin-type hadronic matrix elementsSinare

_ _ expected to consist of different strong phases, and these
HereA; (A1) andAq (Ao) are the isospin amplitudes with phases should be different from those $h. This implies

| =1 andl =0, respectively. Clearly, the isospin relatidds ¢ ihe overall phases 8, (A;) andA, (A,) are nonlinear
tombinations of the same weak phases and the different

A%=(DD HeBY) =3 (A1—Ap),

A~0=(D DY HeBy)=A;. (5)

plane(see Fig. 1 for illustration

A+7 +A00=A+0

AT +AW=A0, ®)

One is able to determine the relative size and phase differ(-:
ence of isospin amplitude&; (A;) and Ay (Ag) from the

above triangular relations. Denoting

Ao

z2d?. =760, @)

then we obtain

2(|AT [P+ |A™)
z= -1,
|A+O|2

strong phases, thereforé,(a_) is neither purely weak nor
purely strong.
Finally, it is worth mentioning that the same isospin rela-

tions hold for the decay mod&—DD* andB—D*D. Of
ourse, the isospin parametes (z) and 6 (6) in
B—DD, DD*, andD*D may be different from one an-

other due to their different FSI's. As foB—D*D*, the
same isospin relations hold separately for the decay ampli-
tudes with helicity\=—1, 0, or+1.

Ill. TIME-INDEPENDENT MEASUREMENTS

The quantitieA*°| and|A~°| are obtainable from the
time-independent measurements of decay rates of

B/ —D*D° and B, ~D D° A determination of|A*~|
(|A%9) and |AT7] (|A%) is possible through the time-

- arcco%lpﬁ |2_|A00|2) ®) integrated measurements Bf vs By—D*D~ (D°D°) on
z]ATO? ’ the Y (4S) resonance, where the two producBg mesons
are in a coherent statavith odd charge-conjugation parjty
and until one of them decays. In practice, one can use the semi-
— — leptonic transition of ond4 meson to tag the flavor of the
— \/2<|A+‘|2+|A°°|2> e D o 10 DD »
7= ! -1 other meson decaying @ " D~ or toD*D". The probability
|A~O2 ’ for observing such a joint decay event ref8$]
el AR ] AT [+ A
Hzaf‘:co{W ©) R(I+X+;D*D)XIA||2(%

If z=1 and§=0, for example, we find thdA%| =0, i.e., the

decay mode8J—D°D? is forbidden.

Note thaté (0_) is in general a m_ixture of the_vveak and
strong phase shifts, since bo#ty (Ay) and A; (A;) may

1 |ATT2—|AT]2
14 2

) , (12

or
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_ o |A00|2+|ﬁ0|2 NijEKRqsiquu*)'f'K_leSfS}:*)
RO*X*;:DDY)«|A |2 ————
2 — cospsRe( SUST* + SIS, (16)
- 1 |A00|2—|A00|2) with «=|V,,Vyd/|VepVedl. For the processeBy—D D~
1+X5 2 ’ andD®DP, pure signals of diredE P asymmetries may mani-

(13)  fest themselvesn theY (4S) resonance

where  |Al=[1" X" [Hegd BYI=[(1 "X |Ho BY|  under _R("X";D*D)-R("X;D'D)
CPT symmetry, andkg=Am/T'~0.73 is a measure @J- T ROITXTDTD)+R(ITXT;DTD)

§g mixing [5]. By now the semileptoni®, transitions such
asBJ—~D™) 1"y andB3—D™)*I" v have been well re-
constructed5], i.e., |A;| has been detected independent of
the above joint decay modes. On&{|I=X™;D"D ") and 17)
R(1*X™;D°DP) are measured, we shall be able to determine
the quantitiedA™ | (|A%)) and|A* | (|A%). and

The time-independent measurements mentioned above al- _ _
low one to construct the isospin triangles in Fig. 1. Conse- ~ R(I"X*;DD% - R(1"X";DD%)
quently, the isospin parameteziz_) and 6 (0_) are extract- 00— R(-X";D°DY%)+R(I*X :D°DY)
able in the absence of any time-dependent measurement. If

2sings IM(SyST* + SpSp* + 156" + $pSi*)
C1+x5 N1+ Noo+ Nigt+ Nog '

the branching ratios oBJ—D°D° and B3—D°D? are too _ 2sings IM(S{S}" + 5" — SiSy" —SSS‘E*).
small to be observable, then large cancellation between the 1+%5 N1+ Ngo—Ngo—Ngg
isospin amplitude#\; (A1) andA, (AO)Eust take place. In (18)

the case thaB]—D "D~ andB_; —D "D have been mea-
sured earlier thaB3—D°D®, a lower bound on the rate of |f the decay mode®3—D°D° and B— D°DP are forbid-

the latter decay mode is model-independently achievablgen due to the absence of final-state rescattgliieg 6~0
from the isospin relations obtained above. Sincefstds we  and z~1, or Si~SJ), then measuring th€P asymmetry

get from Eq.(8) that Aqo is practically impossible. In this case, we arrive at an
interesting relation between the asymmetrigs., and

[5Bg-D'D) ’ A
B(B; —D*D%

X B(B;—D*DY), (14)

B(BS—D°DY%) =

Asg=~(1+x3) A, _~1.54, _. (19

The validity of this relation is testable in forthcoming experi-

ments at éB-meson factory.

where tiny isospin-violating effects induced by the mass dif- |t is worthwhile at this point to give a brief comparison
ferencemDo— m._ and the lifetime difference_ —r_ have

B, B, between the isospin Iangua% and the intuitive quark-
been neglected. This bound should be useful to set a limit fodiagram description foB—D®*)D™), Both the isospin am-
the results ofB(Bg_)DOD_O) obtained from specific models plitudesA; andA, are dominated by the spectaf@xternal
of hadronic matrix elements. Following the same way, oné/V emission quark graph with the KM factoWgpVeq, but
can find the lower bounds for the branching ratios ofthey also receive some small contributions from the loop-
Bﬁ—»D*OF), DOD*°, andD*°D*0. induced penguin and annihilation-type tree quark diagrams.

i i 0 () tpkx)-
The nonvanishing asymmetry between the decay rates (hlfnce (:E‘f_gr)%mh'”g ratios oB3—D"’"D and
B —D*D° andB; —D D signifies the existence of di- B, —D"™"D may be of the same order. In the assump-

rect CP violation. By use of the isospin amplitudes in Egs. tion  of no final-state rescattering or channel mixing,
(10) and(11), we obtain theCP asymmetry BS—D®)°D*)0 takes place only through the annihilation-
type quark graphs, which are expected to have significant
form-factor suppression in the factorization approximation.

R(B; —D*D®)-R(B, ~D D This argument is compatible with the isospin analysis, since

Aso= R(B; —~D*D%+R(B; —D D° the cancellation betweef; and A, in A% implies that the
. dominant spectator diagram does not contribute to
Im(S{S5*) 0_. (x)0p(*)0 in mi
— 2sinds 191 (15) By—DY/"D"™’". However, one should keep in mind that

Ny FSI effects are possible to significantly enhance the decay
rate ofB3—D*)°D™*)0 to the level comparable with that of
wheregy=arg(— VX VyqVe,V2y) is an angle of the KM uni-  BS—D®)*D®*)~ or of B} —D™*)*D®*)° making the naive
tarity triangle, and\,4 can be read from quark-diagram language a failure.
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IV. TIME-DEPENDENT MEASUREMENTS

To probe theCP asymmetry induced by the interplay of

direct decay andB0 4 mixing in Bd*)DD the time-
dependent measurements are necessary oY {4&) reso-

nance at asymmetriB factories. In such an experimental

scenario, the joint decay rates can be givefi8s

_ ATTI24+|AT |2
R(I*X7, DD ~;t)oc|A|2e~ T AT AT E

2
AT P |AT ]
T cogxglt)
2
12yl 3
*|A |Im(p )sm(xdl“t)}
(20)

and

R(I*XT,

o A002 4 | 7002
o ] P

|A00|2_ |ﬁ0|2
IfCOiXdFt)

A0
- |A°°|2Im(g —o> m(xdl“t)}

(21)

wheret is the proper time difference between the semilep-

tonic and nonleptonic decaysand

5\9
p

stands for the phase information frd&ﬁ-gg mixing [3]. For
simplicity, we denote the phase difference betwégnand

A, as

1R
(p—zal' A_j_

exp( —i2¢o)~exp(—i2¢g) (22

Tl

1 [ VepVeg Si— kSiexp(—i ¢3)
~ 27 Vi Voo Si— kSlexp(+ida) |
(23

and
|m<9 A_z) =M[ Sin(2¢]) + zsin( 6+ 25
pA 4] A% ! !
—zsin(6—2¢7)+2zsin( 6~ 6—2¢7)],
(25
where ¢1= ¢o— ¢. All the quantities on the right-hand side

of Eq. (24) or (25), excepte;, can be determined through
the time-independent measurements Bf~DD on the
Y (4S) resonance. Thus measuring i@-violating observ-
able on the left-hand side of E§R4) or (25) will allow a
model-independent extraction gf; .

Let us make two remarks about the results obtained
above.

(1) Within the standard modet)o~ ¢, holds to an excel-
lent degree of accuracy. If the tree-level quark transition
b—)(C c)d dominates the decay amplitude Bff —D ™ D?
[ie., [S{|>|S]] in Eg. (23], then we get
p~arg(VepVeg) ~0 as a pure weak phase. In this case, the
magnitude of ¢, is extractable from the time-dependent
measurement oB4—D "D~ or of B4—D°D? [1,2]. Note
that a model-dependent estimation in the standard model
gives ¢~ —3° (see the Appendijx It is worth pointing out
that theBO 4 Mixing phaseg, can be reliably determined

from the CP asymmetry |r13d S Bd—> K either within or
beyond the standard modéIThus a comparison op, (ex-
tracted from By—y¢Kg) with ¢; (extracted from
Bq—D*"D~ or B4—D’D% will constrain ¢, which may
reflect the penguin-induced phase informatiorBirDD.

(2) Itis interesting to note that we can, in principle, obtain
phases and magnitudes of the hadronic matrix elenfghts
On the experimental sidéAy| (|Aol), |A1]l (JA4]), and @

(#) can be determined from the time-independent measure-
ments; and¢; can be extracted from the time-dependent
measurements. If the KM phases are known, the hadronic
matrix elementsSy, S;, S§, and S; represent seven un-
known parameters as the overall phases of them are physi-
cally irrelevant. Thus the magnitudes and relative phases of
these quantities should be determinable from experimental
measurements of the relevant branching ratios@Rdsym-
metries.

A special but interesting caseis z=1. This will lead,

In terms of the isospin parameters, coefficients of thefor arbitrary values ofy and 6, to the results

sin(xgl't) term in Egs.(20) and(21) are given by

gA"| |ATOATO|
Im BAJr,

AAT |2[ sin(2¢1) —zsin(6+2¢;)

+Zsin(6—2¢;)+zzsin(0— 0—2¢])]
(24

0 0
AT |=|A"Clcos;,  |AM=|A"Csing,  (26)

— — 0 — — 0
|A+*|=|A*O|cos§, |A°°|=|A*°|sin§.

2This point relies on the condition that no significant penguin

INote that the proper time sum of the semileptonic and nonlepeffect exists inBq— #Kg, and it is testable through the time-
tonic decays has been integrated out, since it will not be measurdfidependent measurement of the decay rate difference between

at anyB-meson factory.

BS— yKg and BJ— ¢Ks on the Y (4S) resonance.
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As a straightforward consequence, one gets cay modeB—D®*)D™) at the forthcoming factories, be-
fore the measurements &— 77 and other charmlesB
AT 7|2+ |A%2=|ATO)2, decays become available, will be able to cross-check the ex-

traction of the weak anglé; from By— ¢Kg, to shed some
light on the penguin and FSI effects B decays to double
charmed mesons, and to probe dir€d® violation in both
i.e., the two iscEpin triangles in Fig. 1 become right-anglea‘:harged and neutré-meson systems.

triangles. If6= 0 is further assumed, we obtain

(AT 2+ [AM2= AP, 27
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One can see that these t@dP-violating quantities have the

guasiseesaw dependence on the isospin phase éshihe
magnitude of sin(®;) turns out to be

qﬁo |A+OFO| . '\ 0
Im 5 AT :_Wsm(qul)smzz. (28)

APPENDIX

Here we calculate the branching ratios of

1 qAt- Bf—=D®)*D™)0 and B, ~D*)"D™*)° as well as their
: Ny +—12
sin(2¢p1)=— |ATOA 0] |AT7[%Im 5 AT CP asymmetries numerically, in order to give one a feeling
of ballpark numbers to be expected within the standard
q ‘A00 model. It is suitable to apply the effective weak Hamiltonian
+|A%2Im b A | (290  and factorization approximation to these decay modes, be-

cause each of them only has a single isospin amplitude. In
apparenﬂy independent of 'Contrast',Bd—>D('*)+D.(*)7 Or'Bd—>D(*)OD(*)O' is inVOIV.ed '
in two different isospin amplitudes; thus a direct application
of the factorization approximation to such transitions may be
problematic unless the FSI effects are negligibly small.

We have presented an isospin analysis of the weak decays |n estimating the branching ratios oB  —D*D°,
B—D®D®™). The main results can be summarized as fol-p*+po p+p*0, andD* *D*?, it is instructive to neglect

lows. small contributions from the hadronic matrix elements

(@) The time-independent measurements of these transj +=0|~u |p+ S +=0 +
tions on theY (4S) resonance allow one to extract the iso-{D D°|Qi /B, ) (annihilation and (D"D°Qz-1dBy)
spin quantities and probe the diréeP asymmetries in them.
It is possible to extract a phase parameter, which consists

V. SUMMARY AND CONCLUSION

(penguin. These transitions have the weak interaction simi-

dar to that inB; —~D/ D% D¥ *D° DS D*°, andD} *D*°,

the phase information from both—gg mixing and pen- whose decay rates havg already been measured in experi-
. . ents[5]. Then a comparison between the above two sets of

guin diagrams, from the time-dependent measurements ecay modes, with the help of the factorization approxima-

By—~D "D~ and D°D°. A comparison of this phase with {jon, leads straightforwardly to the leading-order results
that extracted fronBy4— /K s will be interesting, since their

difference signifies the penguin-induced phase information (2
(no matter whether new physics is present or.not + +0y . D" + +350
(b) Once the KM matrix elements have been determined, 5(B,—b"DY éf'nZeCB(B“ —bsDY, (A
the relevant hadronic matrix elemergiscluding their phase s
information can be determined, through the isospin analysis, ;2
- e + R —
fnr]%r;:i:gme measurements of the decay rates@Rdasym B(BJHD*D*O)%fE SiPOB(BY DI D),
N
In the Appendix, we have made use of the effective weak Ds
Hamiltonian and naive factorization approximation to esti-
mate the branching ratios o) —~D®*)*D*)0 and i _

_ v . . + * +10 D* " sir? + * +190
B, —»D®*)"D*)0 as well as theirCP asymmetries. It is B(B, —D* "D")~——sin6cB(B, —Ds "D"),
remarkable that all these decay modes can well be detected ;"
in the first-round experiments of B-meson factory. In par-
ticular, only about 18B events are expected to be needed 5
for the exploration of direc€ P-violating signals in thentat — Op«+ . —
the 3% level. B(Bf —D*"D*%)~——sirfg.B(B; —D*"D*?),

D*+

We conclude that a careful experimental study of the de- s
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where 6 is the Cabibbo anglefy and gx* (X=D* or (V-A)(V+A) currents into Y—A)(V—A) ones for
D) are the decay constants. Since our present knowd 5-8; anqu(kZ) denotes the penguin loop-integral function
Ietsjge offp-, for. g andg is quite poor[5], we with momentum transfek at the scaleu=0(m,):

DT DS, D*+1 D*+ I

S

take fD+~fDS+~O.8 anng*+~g +~0.8 for simplicity mé—kzx(l—x)

DY ———|. (A3)
and illustration [9]. Choosing the central values My

of B(Bi—D:D%, etc. [5], we approximately ob-

tain B(B; —D*D%~5.3x104, B(BI—-D*D*%~3.1 The absorptive part df,(k?) emerges fok?=4m¢, leading
x10°%,  B(B] —D* “D%~3.7x104, and BB} to the possibility of direSCP violgtion [10].
—D**D*%~7.1x10"4. From this rough estimation one One can calculates, and S; for the decay modes

. + po p*0 D*0 [|ci
can see that the above decay modes are definitely detectatffe —P* D7, P+D* , andD* +D*. using the same factor-
in the first-round experiments of B-meson factory. ization approximation. If the polarizations of final-state vec-
To roughly estimate theCP asymmetry between {OF mesons are summed over, we arrive at the same formulas

B —~D*D% andB; —D DO, we take the timelike penguin 8 EQ. (A2) with £=0 for D**D°, &= —_2m%+/
contribution into accounf10]. The annihilation and space- [m,(m,+m.)] for D*D*?, and ¢&,=0 for D* *D*°. Of

like penguin effects are expected to be negligible if we insistourse, such results depend upon the assumptions made
on the significant form-factor suppression associated witlabove and cannot be taken too seriously.

them? Then the overall decay amplitudes can be calculated, With the help of Eqs(A2) and(A3), one is able to evalu-
by use of the QCD-improved effective weak Hamiltonian ate theCP asymmetryA. o defined in Eq(15) and the phase
and factorization approximation, in a renormalization- parameterp given in Eq.(23). For illustration, we typically
scheme independent wdyt1,12. Instead of repeating the choose m,=5 MeV, m;=1.35 GeV, my=5 GeV, and
technical details of such a treatment, here we only write outn,=174 GeV. The Wolfenstein parameters are taken to be
the resultant expressions & and S in the assumptions \=0.22,A=0.81, p=0.05, andn=0.36. We adopt values
made above: of the Wilson coefficientsc; obtained in Ref[13]. The un-
known penguin momentum transfkf is treated as a free
parameter changing from O.ﬁhﬁ to mf,. A few points can be

1
Fq(k2)=4f0 dxx(1—x)In

. [C3 — Cg — Cg — C; — drawn from the explicit numerical calculations.
S1%| 3+ Cat g+ Coo| F| 5 CeT 5+ Cséc (a) The QCD(gluonid penguin effect plays the dominant
o role in the overall penguin amplitude, while the electroweak
1+&| — — ¢, 10 ) penguin effect is negligibly small. A= 4mZ~0.3mZ both
9, | C2%sT Cl+? @l T +Fu(kI], A.o and tan(2) undergo a remarkable change in magni-
tude.
(b) The CP  asymmetries A., between
o e e B —=D®)*D*)0 andB,; —~D*)~ D)0 have the same sign
S ?1+ C2+?3+ Cat ?9+ C1o and are of the order 3%. The relative change of each asym-
metry due to the uncertain penguin momentum transfes
. . less than 15%.
+ _5+C_6+_7 +Cg|ée (c) With the inputs listed above, the phase parametes
3 3 estimated to be around 3°. Considering the large uncer-
— tainties associated with the inputs and the approach itself, we
1486 — —, G 10 2 believe that a significant deviati f
+ 2 et | Ot | e [ 2+ Fo(K?)], gnificant deviation af rom zero (e.g.,
97 3 ¢~—10°) cannot be excluded even within the standard
(A2) model.

(d) Observation of the abov@ P-violating signals to three

standard deviations needs abouf B}, events, if the com-
where the common hadronic matrix elementposite detection efficiency is at the 10% level. Such mea-
<D+|(E)V—A|O><F|(R)V—A|B:> has been singled out surements are possible in the first-round experiments at the

from S} andS;. In Eq. (A2), a5 and a,, are the strong and forthcomingB factories.

— (*)0n (%)0
electroweak coupling constants, respectivaty;stands for In the case that the decay channBls~D™"'D are

the renormalization-scheme-independent Wilson coefficients"gn'ﬂc"’Intly suppressed, we expect that the dieBtasym-

2 . . Mmetries inBy4—D®)*D*)~ are comparable in magnitude
&.=2my . /[m(m,—mc)] arises from the transformation of with those icrj1 BJ—>D(*)+H*)° Vs BJp—>D(*)*D(*)°g[see
Eq. (19) for illustration]. Nevertheless, much morB$B)
3However, one should keep in mind that such an argument magvents are needed to detect the former onYi(éS) reso-
not be on solid ground and has to be examined after some theorgtance due to the cost for flavor tagging. Measurement of
ical (experimental progress is made in a deeper understanding ofdirect CP-violating signals in B4—D®*)*D®*)~ in the
the dynamics of nonleptoni® decays. second-round experiments ofBameson factory is likely.
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