
Dynamics of perturbations of rotating black holes

William Krivan
Department of Astronomy and Astrophysics and Center for Gravitational Physics and Geometry, Penn State University,

University Park, Pennsylvania 16802
and Institut für Astronomie und Astrophysik, Universita¨t Tübingen, D-72076 Tu¨bingen, Germany
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We present a numerical study of the time evolution of perturbations of rotating black holes. The solutions
are obtained by integrating the Teukolsky equation written as a first order in time, coupled system of equations.
We address the numerical difficulties of solving the equation in its original form. We follow the propagation
of generic initial data through the burst, quasinormal ringing and power-law tail phases. In particular, we
calculate the effects due to the rotation of the black hole on the scattering of incident gravitational wave pulses.
These effects include the amplitude enhancement due to so-called super-radiance. The results may help explain
how the angular momentum of the black hole affects the gravitational waves that are generated during the final
stages of black hole coalescence.@S0556-2821~97!05318-6#

PACS number~s!: 04.25.Dm, 04.30.Nk

I. INTRODUCTION

Numerical relativity, i.e., the numerical construction of
solutions to the Einstein equations, is a rapidly advancing
field. Reliable multidimensional simulations of astrophysi-
cally relevant scenarios should become possible in the near
future. The systematic exploration of the nonlinear content of
Einstein’s theory is of major importance for this accelerated
progress. In the pursuit of numerically solving nonlinear sys-
tems,intrinsic accuracy tests, such as convergence, help es-
tablish the reliability of the solution and its proximity to the
continuum limit. However, recurrent experiences suggest
that tests,extrinsic to the discretization process, are also
valuable tools for assessing the reliability of complicated nu-
merical algorithms. One versatile tool, providing a number
of such extrinsic tests, is the investigation of the linear re-
gime of nonlinear systems. In the appropriate limit, numeri-
cal solutions of nonlinear systems should agree with the con-
siderably simpler perturbative solutions. This testing
approach is bound to have fundamental importance to nu-
merical relativity as the field progresses.

Perturbative methods enjoy renewed attention in their
own right. The emphasis now is on the application of the
standard perturbative methodology to particular realistic sys-
tems that are thought to be of interest to the emerging field of
gravitational wave astronomy. Perhaps the most important
one among those systems is the collision of inspiraling black
hole binaries. The key premise of the perturbative approach

to black hole collisions is that, during the last stages of the
coalescence~the close limit!, the spacetime can be accurately
approximated as that of a single perturbed black hole. A
particular subclass of such problems is the study of black
hole collisions as perturbations of Schwarzschild spacetimes;
these are situations~e.g., head-on collisions! for which the
end product of the collision is a slowly or nonrotating black
hole. Mathematically they are described by the gauge invari-
ant Zerilli function@1#. The numerical solution of the Zerilli
equation does not pose difficulties and has been employed in
estimating aspects of gravitational wave physics in the con-
text of black holes@2#. The generalization of this framework
to rotating black holes is physically relevant; it is likely that,
during the inspiral collision of black holes, the system will
not be able to radiate all of its angular momentum and will
leave behind a single, rotating black hole. The work in this
paper constitutes an important step towards the goal of gen-
eralizing the close-limit treatment of black hole collisions to
that of perturbations about a single, rotating black hole. The
general framework to achieve this goal requires:~a! the con-
struction of appropriate initial data describing two orbiting
black holes,~b! the subtraction of the Kerr background from
the initial data, to read off the initial perturbations, and~c!
the evolution of these perturbations. In this paper, we con-
centrate on the last point, namely the evolution of gravita-
tional perturbations of the Kerr spacetime.

Previously, we investigated the dynamics of scalar fields
in the background of rotating black holes@3# ~from here on
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referred to as paper I!. We considered both slowly and rap-
idly rotating black holes. For slowly rotating black holes the
background geometry can be treated as a perturbed
Schwarzschild spacetime, with the angular momentum per
unit mass playing the role of a perturbative parameter. The
study was centered on the late-time dynamics of the scalar
field and showed that, for rotating black holes of arbitrary
angular momentum, the late-time dynamics is dominated by
the lowest allowed multipole (l 50). Here we undertake the
development of a numerical scheme for the study of gravita-
tional perturbations of Kerr black holes in the time domain.
The main objective of this work is to follow the propagation
of generic initial data through the burst, quasinormal ringing
and power-law tail phases of the evolution. In particular, we
are interested in investigating the effects of black hole rota-
tion on the scattering of incident gravitational wave pulses.
A characterization of such effects provides an indication of

the role that rotation plays on signals produced during the
final stages of black hole coalescence.

II. PERTURBING KERR BLACK HOLES

At first instance, a direct derivation of the equations gov-
erning the perturbations of Kerr spacetimes is to consider
perturbations of the metric. This path, however, leads to
gauge-dependent formulations. A theoretically attractive al-
ternative is to examinecurvature perturbations. Using the
Newman-Penrose formalism, Teukolsky@4,5# derived a mas-
ter equation governing not only gravitational perturbations
~spin weights562! but scalar, two-component neutrino and
electromagnetic fields as well. In Boyer-Lindquist coordi-
nates and with the use of the Kinnersley null tetrad@6#, this
master evolution equation reads

2F ~r 21a2!2

D
2a2 sin2uG] ttC2

4Mar

D
] tfC22sF r 2

M ~r 22a2!
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D G]ffC12sFa~r 2M !
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i cosu

sin2u G]fC2~s2 cot2u2s!C50, ~1!

whereM is the mass of the black hole,a its angular momen-
tum per unit mass, andD[r 222Mr 1a2. For gravitational
perturbations, the functionC is given in terms of the Weyl
tensor tetrad componentsc0 and c4 . That is,C5c0 for s
512 and C5r24c4 for s522, with r521/(r
2 ia cosu).

The Teukolsky equation~1! reduces to the Bardeen-Press
equation@7# in the limiting case of nonrotating black holes.
For the cases50, it yields the equation for a scalar wave
propagating in a Kerr background, a system which we stud-
ied numerically in paper I.

A result of great importance for perturbation theory was
Teukolsky’s discovery that, when viewed in the frequency
domain, Eq.~1! is separable in ther andu coordinates~sepa-
ration of the azimuthal angular dependence is always pos-
sible!. To our knowledge, most of the work on the dynamics
of perturbations of Kerr spacetimes has been performed in
the frequency domain~or under the assumption of a har-
monic time dependence!. This has certainly been the case for
studying quasinormal mode frequencies@8–11#, wave scat-
tering @12#, and the motion of test particles in the Kerr back-
ground@13–15#.

Here we are interested in the time integration of physical
initial data, possibly from the inspiral collision of binary
black holes. The data may be analytic approximate solutions
to the linearized constraints, or numerical solutions of the
nonlinear constraints.

In principle, one can Fourier transform the initial data and
perform the evolution of such data for each frequency. Af-
terwards, the data are transformed back to the time domain if
needed. From the computational point of view, however, this
approach is far more expensive than it is to solve the prob-

lem in the time domain. For several reasons the number of
frequencies that one has to consider is orders of magnitude
higher than the number of angular components required to
resolve theu direction: While the angular directions are
bounded, the time direction is only bounded from below by
the initial data surface. Focusing on the investigation of qua-
sinormal modes~QNMs! and power-law tails, one would
first of all expect that one needs quite a fine resolution near
the v50 point in order to be able to correctly resolve the
tails. Similarly, the resolution of the QNM would be very
sensitive to the spacing in frequencies. With this in mind, we
have chosen to solve the Teukolsky equation int, r , andu
coordinates.

The resulting 211 evolution equation is a hyperbolic,
linear equation which is quite amenable to numerical treat-
ment, provided suitable coordinates, variables, and boundary
conditions are chosen. The major numerical difficulty in
solving the Teukolsky equation in the time domain arises
from the term linear ins, involving the first-order time de-
rivative. Depending on the relative sign between the coeffi-
cients of] tC and] ttC, one may view] tC either as a damp-
ing term ~when the signs of both coefficients agree! or an
antidamping term~otherwise!. Without the factor 2s, the real
part of the coefficient of] tC reads

C~r !5
M ~r 22a2!

D
2r . ~2!

In the physically allowed range@r 1 ,`), where r 1[M
1AM22a2 represents the event horizon, the functionC is
monotonic in r , with limr→r 1

C5` and limr→` C52`.

Therefore, there exists a pointr c such thatC(r ,r c).0 and
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C(r .r c),0. On the other hand, the coefficient of] ttC is
always negative. Consequently, fors.0, the term] tC acts
as a~anti!damping term for (r ,r c)r .r c . The situation re-
verses fors,0. Of course, there is no real damping or anti-
damping. For axisymmetric modes there exists, even in the
case of rotating black holes, a conserved integral that dem-
onstrates the conservative nature of the wave dynamics@24#.
For general perturbations, several investigations provide
strong evidence for bounded evolutions~see@24# and refer-
ences therein!. Hence, the dependence of the sign of the co-
efficient~s! on the coordinates should only affect the
asymptotic falloff behavior of ingoing and outgoing radia-
tion. However, the above analogy with systems with un-
bound dynamics suggests that in numerical work the pres-
ence of such terms could lead to exponentially growing
modes. Those unphysical modes are not part of the family of
solutions to the Teukolsky equation. Indeed, in our first at-
tempts of solving the Teukolsky equation, such growing
modes were present in our simulations. These modes were
clearly of numerical origin. The suppression of these insta-
bilities proved to be an interesting and challenging exercise
in the construction of numerical algorithms. The deeper
numerical-analytic reason for this class of instabilities is not
yet clear.

Two key factors in successfully solving the Teukolsky
equations were first, to rewrite Eq.~1! in a form that brings
out explicitly the radial characteristic directions, and second,
to carefully select the evolution field and its asymptotic be-
havior.

A successful numerical evolution of the Teukolsky equa-
tion was achieved for thes522 case. The choice ofc4 as
the evolution field is required for any astrophysical applica-
tion of the method, since the radiation content at~null! infin-
ity is directly described in terms of that field. Evolving the
s52 perturbations is of interest with respect to radiation
from the black hole, and is required in order to reconstruct
the perturbation of the metric coefficients from the solution
of the Teukolsky equation, if such a reconstruction is desir-
able.

In our investigation the choice of thes522 equation was
dictated both by its direct physical relevance and by the need
to obtain, numerically, well behaved evolutions near the ho-
rizon. In our approach, i.e., evolvingc4 , it is possible to
recover the metric perturbations only at infinity. Local infor-
mation about the perturbed spacetime, yielding for example
perturbed geodesics, is not available.

For a given spin weights, outgoing waves correspond to
solutions to Eq.~1! with the limiting behavior@5#

lim
r*→1`

uCsu;1/r 2s11, ~3!

lim
r*→2`

uCsu;1 ~4!

at spatial infinity and the event horizon, respectively. Mean-
while, ingoing waves behave as

lim
r*→1`

uCsu;1/r , ~5!

lim
r*→2`

uCsu;D2s. ~6!

Here we have used the Kerr tortoise coordinater * , which is
defined by

dr* 5
r 21a2

D
dr. ~7!

The convenient properties of thes522 choice can be
verified by looking at the asymptotic form of propagating
waves near the horizon (r *→2`). For s522, the solu-
tions are bounded for any direction of propagation; in con-
trast, fors52 the ingoing solution diverges as the horizon is
approached (D→0). The asymptotic behavior fors522 at
r *→1` can subsequently be fixed by requiring that outgo-
ing waves have asymptotically bound amplitude also in this
limit. For the Teukolsky functionC22 , this is achieved
through a rescaling by an appropriate function ofr . A con-
venient and simple choice isr 3, a factor that is regular at the
horizon.

Regarding the choice of spatial coordinates, we use the
Kerr tortoise coordinater * defined by Eq.~7!. As azimuthal
coordinate, we use the Kerrf̃ coordinate instead of the
Boyer-Lindquist coordinatef. The coordinate transforma-
tion to f̃ is defined by

df̃[df1
a

D
dr. ~8!

The azimuthal coordinatef̃ was previously used for the sca-
lar field evolution in order to ameliorate coordinate patholo-
gies near the horizon. A discussion of those pathologies and
their precise manifestation in the slow rotation limit is given
in paper I.

III. SOLVING THE TEUKOLSKY EQUATION

We can now introduce the following ansatz for the solu-
tion to the Teukolsky equation:

C~ t,r * ,u,f̃ ![eimf̃r 3F~ t,r * ,u!. ~9!

It follows that the Teukolsky equation forF(t,r * ,u) has a
structure similar to that of Eq.~1!, and therefore the same
analysis of the damping or antidamping nature of first-order
time derivative terms applies. After a series of unsuccessful
numerical experiments with this second order in time and
space equation forF, we found that numerical instabilities
were suppressed by introducing an auxiliary fieldP that con-
verts the Teukolsky equation to a coupled set of first-order
equations in space and time. This can be accomplished by
defining

P[] tF1b] r* F, ~10a!

b[
r 21a2

S
, ~10b!

S2[~r 21a2!22a2D sin2u. ~10c!
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The resulting form of the Teukolsky equation has the struc-
ture

] tu1M] r* u1Lu1Au50, ~11!

whereu[$FR ,F I ,PR ,P I% is the solution vector withI and
R labeling the imaginary and real parts, respectively. The
coefficient matricesM andA are given by

M[S b 0 0 0

0 b 0 0

m31 m32 2b 0

2m32 m31 0 2b

D ~12!

and

A[S 0 0 21 0

0 0 0 21

a31 a32 a33 a34

2a32 a31 2a34 a33

D , ~13!

respectively. Finally,L is a matrix operator that contains all
the angular derivatives and has the following nonvanishing
elements:

L[S 0 0 0 0

0 0 0 0

l 31 0 0 0

0 l 31 0 0

D . ~14!

The coefficients in the above matrices are given explicitly in
the Appendix.

The first-order system given by Eq.~11!, when restricted
in the radial dimension, readily displays its hyperbolicity, in
the sense that the eigenvalues ofM are real andM is a
complete set of linearly independent eigenvectors. Diagonal-
ization of the matrix M and construction of evolution
schemes based on the eigenfields generated stable evolu-
tions. However, it turned out that this last step was not nec-
essary. Stable evolutions were also achieved using a modi-
fied Lax-Wendroff method~see, for example,@16#! applied
to Eq. ~11! when this equation was rewritten as

] tu1D] r* u5S, ~15!

with D5diag(b,b,2b,2b) and S52(M2D)] r* u2Lu
2Au.

Equation ~15! was discretized on a uniform two-
dimensional rectangular grid. Typically we used a computa-
tional domain of size2100M<r i* <500M and 0<u j<p
with 0< i<8000 and 0< j <32. The Lax-Wendroff updating
of field valuesui

n given on a time steptn consisted of two
steps. In the first step, intermediate field valuesui 11/2

n11/2 were
obtained from

ui 11/2
n11/25

1

2
~ui 11

n 1ui
n!2

dt

2 F 1

dr *
Di 11/2

n ~ui 11
n 2ui

n!2Si 11/2
n G ,

~16!

where we have omitted the angular indicesj for clarity. The
fields werej centered in the angular direction with angular
derivatives approximated by the appropriate second-order
centered expressions. Radial derivatives inSi 11/2

n were ap-
proximated by centered difference expressions of field values
at i and i 11. Similarly, algebraic terms inDi 11/2

n andSi 11/2
n

were obtained by averaging over the values ati and i 11.
The second and final step was a Staggered leapfrog step:

ui
n115ui

n2dtF 1

dr *
Di

n11/2~ui 11/2
n11/22ui 21/2

n11/2!2Si
n11/2G .

~17!

Here the centered difference expressions and averages for
Si

n11/2 and Di
n11/2 were taken from values atui 11/2

n11/2 and
ui 21/2

n11/2. Examination of the radial and angular characteristic
directions at arbitrary locations showed that the appropriate
Courant-Friedrichs-Lewy ~CFL! condition is dt
<min$dr* ,5du%, wheredt is the evolution time step.

Boundary conditions are required at the horizon, at the
rotation axis of the black hole and at radial infinity. The
exact boundary conditions at the horizon areF5P50, as
follows immediately from the asymptotic behavior of ingo-
ing waves@see Eq.~6!#. Depending on the value of the an-
gular momentum parametera, these conditions were im-
posed at a typical finite distance from the black hole given by
r * '2100M . This approximation of Eq.~6! causes no prob-
lems, since in terms of the Boyer-Lindquistr coordinate it
corresponds to a coordinate distance ofur 2r 1u'10214,
leading toD2'10228. The distinction of ingoing and outgo-
ing waves near the Kerr event horizon requires a careful
definition because of the rotational dragging of inertial
frames@5#. However, in practice it clearly does not matter if
we set both propagation modes to zero. At the axis, only a
condition onF is required. Depending on the behavior of the
angular eigenfunction belonging to the azimuthal numberm
near the axis, one imposes eitherF50 or ]uF50 @12#.
Finally, the boundary conditions at infinity are much harder
to impose when using a finite radial grid. Approximate
schemes allow the transmission of waves across the bound-
ary, but the implied truncation of the equation’s coefficients
interferes strongly with physical features of the evolution
such as quasinormal ringing and tails. A clean solution can
be achieved via ‘‘Cauchy-characteristic matching’’~see
@17,18# and references therein!. However, this approach will
not be pursued here. For the problems of immediate interest
the computational domain can be made sufficiently large that
errors generated at the outer boundary will not affect the
results. Consequently, we setF andP arbitrarily to zero at
the outer boundary, and our results are computed only from
information inside the maximal Cauchy development of the
initial data surface.

The stability of the code was verified with long-time evo-
lutions, of the order of 1000M . Its accuracy was tested using
standard convergence tests. The code was found to be second
order convergent for evolution timest,50M . The conver-
gence rate degrades as the total evolution time is increased,
but is consistently above 1.3. A note on the nature of the
unstable modes discussed previously is of some relevance
here. Linear systems with constant coefficients may exhibit
numerical instabilities if the eigenvalues of the update matrix
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have modulus larger than unity. This phenomenon is easily
analyzed with the so-called Von Neumann analysis of the
difference equation. A similar analysis can be used in equa-
tions with variable coefficients, via local stability analysis,
but the method becomes far less conclusive in that case. For
the Teukolsky equation, a number of simple, locally stable,
discretizations turned out to be unstable for late times. The
instabilities depended on the numerical discretization
lengths, with increased resolution generally leading to slower
growth rates for the unphysical modes. Yet only impracti-
cally high resolutions would suppress the instabilities for the
long evolution times required for the applications discussed
here.

IV. THE EFFECT OF ROTATION
ON SCATTERED PULSES

The initial data for gravitational perturbations of rotating,
asymptotically flat spacetimes can be broadly divided into
two classes: Waves coming in from infinity and then scatter-
ing off the black hole background, and waves emanating
from the black hole as a result of an external excitation of the
black hole. The latter case is perhaps the most interesting
since it includes the description of the final stages of a binary
black hole coalescence within the close-limit approximation.

In general, the evolution of both types of initial data con-
sists of three stages, as seen by an observer located away
from the hole. During the first stage, the observed signal
depends on the structure of the initial pulse and its reflection
by the curvature potential~burst phase!. This phase is fol-
lowed by the exponentially decaying quasinormal ringing of
the black hole~quasinormal phase!. In the last stage, the
wave slowly dies off as a power-law tail~tail phase!. The
precise manifestation of the last two phases is dictated by the
subtle interference of the respective amplitudes. The com-
plex frequencies of the QNMs for various values ofa are
well known @8–11# and we can use them to test the present
code’s accuracy. Similarly, the late-time tail phenomenon is
mathematically well understood in spherically symmetric
backgrounds, where tails have been predicted and verified
@19,20#. For rotating black holes, the background is no
longer spherically symmetric, but numerical results for scalar
waves in Kerr backgrounds suggest that power-law tails will
also be present for spin-2 fields@3#. Furthermore, it has re-
cently been argued that these tails should take the same form
as for nonrotating black holes@21#.

We have used the numerical algorithm described in the
previous section to obtain the time evolution of generic per-
turbations impinging on the rotating black hole. For most of
the results presented here, we have used ingoing initial data
with compact support forFR while F I50. All evolutions
clearly showed the exponentially damped oscillations of the
QNMs and the subsequent late-time power-law tail. We will
now discuss each of these phases in somewhat more detail.

A. Power-law tails

In paper I we showed that the late time evolution of scalar
fields in the background of rotating black holes is qualita-
tively similar to the nonrotating case. Here we extend this
result to the physically more interesting evolution of a spin-2
field.

Starting with initial dataF}22Y2
m ~where sYl

m denotes a
spin-weighted spherical harmonic!, we studied the late time
regime for a/M50, 0.25, 0.5, 0.75, 0.9 andm50, 61,
62. In all cases, we found a power-law tail behavioruFu
}t2m. For a nonrotating black hole it is known that the
power-law exponent should bem52l 13 @20,21#. Indeed,
for a50 we were able to reproduce the theoretical valuem
57 with an accuracy of about 10%. Moreover, our calcula-
tions show that the exponents governing the behavior fora
Þ0 remain similar to the Schwarzschild value. These results
are summarized in Table I. We conclude that the power-law
tail behavior is basically determined by the dominant
asymptotic form of the potential, namely its ‘‘Schwarzs-
child’’ part. That this would be the case has recently been
suggested by analytic arguments@21#. Analytic results~for
nonrotating black holes! can also explain the main discrep-
ancy between our numerically determined power law expo-
nents and the theoretical values. The field will be governed
by a pure power lawuFu}t2(2l 13) only at very late times. In
a somewhat earlier regime ‘‘higher order’’ terms will also be
significant @21#. The presence of such higher order terms
tend to increase the value of a numerically extracted power-
law exponent.

The results discussed above correspond to initial data that
are dominated by the lowest allowed multipolel for the par-
ticular value ofm that is being considered (l>umu). When
this is not the case, we find that different multipoles become
mixed in the evolution. To investigate this, we started from
an initial angular distribution given by22Y4

m , and then com-
puted the power-law exponent for different values ofm. For
m54 the initial pulse used for the two-dimensional evolu-
tion corresponds to the lowest possible value ofl and the late
time power-law behavior is consequently dictated bym
513.2660.45 when averaged over all observed angles. The
situation is different for the casem50, where we find that
the numerically determined power-law exponent is given by
m58.7460.11. That is, the late-time evolution is dominated
by the quadrupole. In contrast, the corresponding Schwarzs-
child evolution exhibits no such mixing of multipoles, and
evolutions forl 54, m50,4 agree well with the theoretical
power-law tail exponentm511. A result similar to this was
discussed in paper I.

This result is, however, not too surprising. The mixing of
multipoles is due to the rotational dragging of inertial
frames. Basically, there are two reasons why different mul-
tipoles will be present in the evolution. The first one is ‘‘im-
perfect’’ initial data: Here we have expressed the initial data
in terms of the spin-weighted spherical harmonicssYl

m . The

TABLE I. The numerically determined power-law exponentsm
governing the late-time behavior ofuFu}t2m measured atr *
520M , u5p/2. The theoretical value fora50 is m57.

a/M m(m50) m(m51)

0 7.70 7.69
0.25 7.73 7.77
0.50 7.75 7.68
0.75 7.81 7.79
0.90 7.68 7.71
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appropriate angular functions that are used when ther andu
components of Eq.~1! are separated are the spin-weighted
spheroidal harmonicssSl

m(u;av) @5#. Hence, because of the
frequency~time! dependence in thesSl

m(u;av), it is difficult
to generate initial data for the Kerr problem that represent a
pure multipolel for a specified value ofm. Furthermore, the
rotation of the black hole will lead to an active coupling
between different multipoles~for a discussion of the analo-
gous situation for rotating stars, see@22#!. So even if we
could initiate the evolution with a pure multipole, other mul-
tipoles would be generated and may play a role at later times.

The mixing of multipoles can have an interesting result.
Suppose that the initial data is dominated by a certain mul-
tipole l but that a relatively small part ofl 21 is also present.
Each of these multipoles will give rise to power-law tails, but
the amplitude of the latter will be much smaller than the first.
In this situation the late-time field should contain both a tail
of form t2(2l 13) and another term that behaves ast2(2l 11).
Since the first term dies off faster than the second it seems
unavoidable, no matter how small the amplitude of the sec-
ond tail term is, that the very late time evolution of the field
will be dominated by thel 21 multipole. The corresponding
time evolution will simply exhibit a late-time change in the
angular behavior. An example of this was discussed in paper
I.

B. Quasinormal modes

To further test the performance of the Teukolsky code, we
performed a series of simulations for different values of the
angular momentum parametera and the azimuthal number
m. Then we focused on the later part of the ringing se-
quence, which is dominated by the slowest damped mode of
oscillation, and read off the oscillation frequencyv via a
standard Fourier transform of the time signal. Table II sum-
marizes results obtained in this way.

A comparison of our values for the real part of each QNM
frequency with those given by Leaver@9# and Kokkotas@11#
for m50, a/M50,0.5,0.9 shows an agreement to better than
0.3%. Form521, our results agree with the values of Det-
weiler @8# and Leaver~different sign convention! to within
0.5%. Our results for the imaginary parts are accurate to 1%.
Although higher multipole evolutions are readily obtained,
accurate estimates of the corresponding QNM frequencies
require increasingly higher angular resolution. Hence, we
have only estimated QNM frequencies for the quadrupole
modes. But it should be pointed out that, as was the case for
the power-law tails, QNMs corresponding to other multi-
poles are present in all signals.

Interestingly, we find that the numerically extracted QNM
frequencies for nonzerom do not depend on the sign ofm,
i.e., we get the same values for the QNM frequencies from
evolutions for, e.g.,m561. At first sight this is surprising,
since it seems to contradict well established results. Accord-
ing to, for example, Detweiler@8#, the imaginary parts of the
m511 andm521 modes should become quite different as
a increases.

Fortunately, the answer is simple: The frequencies of both
the m and the2m QNMs are present in a typical evolution.
This also explains the existence of two distinct regimes of
the quasinormal ringing that can be seen in Fig. 1. In this
figure we show the field as seen by an observer atr *
520M , u5p/4 for a50.99M , M50.5, andm52. In the
early phase of QNM ringing (120M<t<160M ), the decay
of the field is approximately given byuFu}e20.175t, whereas
the behavior for late times is governed by a slower decaying
mode, uFu}e20.0605t. These values are in good agreement
with the theoretical values forl 52 andm562, as can be
seen by comparison with Fig. 1~a! in @8#.

One question remains. Why should we expect both these
modes to be present in the signal? The answer can be found
in the symmetries of the problem. In the Schwarzschild case
we know that there will be modes in the first and second
quadrant of the complexv plane~assuming that the modes
have a time-dependenceeivt!. All these modes will contrib-
ute to the signal, but since they occur as complex conjugate
pairs v l and 2v l* ~where the asterisk represents complex
conjugation! the contribution from one set of modes can be
expressed in terms of the other. Hence, the QNM part of the
signal can be evaluated using only modes in the first quad-
rant ~for a study of the Schwarzschild problem, see@21#!.

In the case of Kerr black holes the situation is more com-
plicated. The QNMs no longer occur as complex conjugate
pairs. Let us suppose that we work in the frequency domain,
and that we have a solutionC lm(v,r ,u)eimf to the Teukol-
sky equation for givenl and m. Then it is easy to show
~using the separated equations, see@5#! that a solution to the
equation for2m will follow as

TABLE II. The numerically extracted QNM frequencies that
dominate the late-time part of the ringing phase form50,61.

a/M vM (m50) vM (m5u1u)

0 0.3731 i0.0885 0.3731 i 0.0885
0.25 0.3761 i 0.0885 0.3921 i 0.0885
0.50 0.3831 i 0.0865 0.4201 i 0.0860
0.75 0.3981 i 0.0835 0.4671 i 0.0795
0.90 0.4121 i 0.0780 0.5171 i 0.0695

FIG. 1. Quasinormal ringing fora50.99M , M50.5, andm
52. During 120M<t<160M , the field decays asuFu}e20.175t; the
subsequent evolution is dictated by a slower decaying modeuFu
}e20.0605t.
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C l 2m~v,r ,u!5@C lm~2v* ,r ,p2u!#* . ~18!

This means that ifv is a QNM corresponding tol and m
then the complex conjugate2v* will be a QNM for l and
2m. This symmetry is nicely illustrated in Fig. 3 of Ref.@9#.
We can use this symmetry to express the contribution from
the Kerr QNMs in the second quadrant in terms of modes in
the first quadrant~we will describe this procedure in detail
elsewhere!. If we represent modes in the first quadrant by
v lmn , we can schematically write the QNM contribution to
the signal as

Cm
QNM5(

ln
$F~v lmn!1G~2v l 2mn* !%. ~19!

This explains the presence of both branches of QNMs in our
evolutions.

C. Wave propagation

An interesting direct application of our code is the iden-
tification of effects of the background rotation on the propa-
gation of signals. The idea would be to use the same initial
data for black holes with different rotation rates and see to
what extent the rotation of the black hole can be inferred
from the emerging signals. A stumbling block for work in
this direction, though, is the difficulty to prescribe initial data
that represent the ‘‘same’’ initial physical perturbation for
any value of the black hole angular momentum. This pre-
scription is possible for data coming in from infinity, since
the effects of rotation are negligible for sufficiently large
radii. However, it is not clear how to set up initial data~e.g.
position of the pulse! in the vicinity of the black hole in such
a way that comparison of evolutions for different angular
momenta makes sense. For this reason, we addressed only
the effect of rotation on pulses that were initially far way
from the hole.

In Fig. 2 we show a series of snapshots inr * of the
evolution of a pulse form52. At t50, the initial data con-
sists of a bell-shaped pulse inr * centered at 75M and propa-
gating inwards. Then the evolution ofFR is shown at
constant u5p/2 and 0<t<200M for four different
values of the angular momentum of the black hole:a/M
50,0.5,0.9,0.99. One immediately sees that an increase in
the angular momentum of the black hole has two effects on
the scattered pulse. Both the amplitude and wavelength of
the emerging signal change. Byt5200M the wavelength in
the trailing part of the signal fora/M50.99 is approximately
half as long as for the nonrotating case. This agrees well with
the anticipated increase in the dominating QNM frequency
@8#. Furthermore, att5200M the amplitudes fora/M50
anda/M50.99 also differ by;25%. The amplitude of the
emerging signal generally decreases as we increasea.

The angular behavior for the scattering scenario also
shows interesting features. An example can be seen in Fig. 3
where we show the evolution fora/M50.99. The initial data
is given byFR}sin2 u, centered inr * at 75M and propagat-
ing inwards, but after some time there is a clear transition of
the angular distribution to22Y2

2}cos4 u/2. This is the domi-
nant angular behavior during the later evolution. That is, the
quadrupole dominates the scattered wave at later times. This

situation is similar to the one we discussed for power-law
tails.

D. Super-radiant scattering

Finally, we would like to establish what effect the so-
called super-radiance has on the evolution of initial data in
the Kerr background. From studies of scattering of mono-
chromatic waves from rotating black holes~see, for example,
@12#!, it is known that frequencies such thatvM,am/2r 1

will correspond to a reflection coefficient with magnitude
larger than unity. The amplitude of such frequencies will be
enhanced in a scattered wave: These frequencies are ‘‘super-
radiant.’’

Super-radiance was not apparent in the results we have
discussed so far, but it should be possible to design an ex-
periment that unveils the effect. In principle, we need to
compare the results for ‘‘qualitatively similar’’ initial pulses,
one which mainly contains frequencies in the interval 0
,vM,am/2r 1 and the other with support only invM
.am/2r 1 . For the comparison, it also helps if these pulses
are ‘‘almost monochromatic.’’ To achieve this, we use an
ingoing Gaussian pulse modulated by a sine wave as initial
data far away from the black hole. Assuming that the initial
pulse is centered atr o* and that the modulation frequency is
s, we set~at t50!

F;e2~r* 2r o* 1t !2/b22 is~r* 2r o* 1t !. ~20!

FIG. 2. Snapshots of the evolution ofFR for m52, at u
5p/2, in the time interval 0<t<200M . For clarity, FR /a is
displayed with a a scale factor:a5(10,103,103,103) for t
5(50,100,150,200)M , respectively. The values used for the angu-
lar momentum area/M50,0.5,0.9,0.99. The initial data consist of a
bell-shaped pulse centered at 75M and propagating inwards. Differ-
ences in the pulses do not become appreciable until the pulse has
been reflected at the potential barrier outside the black hole~seet
5100M snapshot!. At t5200M a decrease of;25% in the wave-
length can be observed. The maximum amplitude of the pulse also
decreases witha.
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This means that the corresponding power spectrum takes the
form

P;e2~v2s!2b2/4. ~21!

From this follows that the modulated pulse leads to a Gauss-
ian frequency distribution peaked atv5s. It is also clear
that the total energy in the initial pulse is independent of the
value of s. This initial data should be ideal for unveiling
super-radiance. For example, scattering of a pulse withsM
,am/2r 1 should show super-radiance, while the effect
should be less relevant forsM.am/2r 1 .

In Table III we show results for such modulated Gaussian
pulses. The pulses are centered atr o* 550M , and we con-
sider three different modulation frequencies: 2sr 1/0.99m
50.9,1.1,1.3. As we increase the rotation of the black hole,
the first of these pulses should become strongly affected by
super-radiance. The initial data is designed in such a way
that almost all the frequencies in the first pulse are super-
radiant for a black hole witha50.99M , while the other two
pulses should have support only in the non-super-radiant re-
gime. To ensure that the ‘‘frequency overlap’’ of the first
pulse into the non-super-radiant regime is small, we use

b252S 40r 1

0.99mD 2

lne, ~22!

which means thatP/Pmax5e at vM50.99Mm/2r 1 . In the
calculations leading to Table III, we usede50.01 and an
angular distribution corresponding to22Y2

2. The same width
was used for all three modulation frequencies.

Having constructed suitable initial pulses, we studied how
the total integrated flux through a sphere atr * 5150M var-
ied with the angular momentum of the black hole. The re-

FIG. 3. Evolution fora/M50.99 at~a! t550M , ~b! t5100M , ~c! t5150M , and~d! t5200M . The initial data consist of a bell-shaped
pulse centered atr * 575M , u5p/2 and propagating inwards. During the evolution there is a clear transition of the angular distribution to

22Y2
2}cos4u/2.

TABLE III. The total integrated flux through a sphere atr *
5150M for different modulated Gaussian pulses~initially centered
at r * 550M !. The modulation frequencies are 2sr 1/0.99m50.9,
1.1, 1.3. The width of the pulses is chosen such that almost all
frequencies in the first pulse are super-radiant for a black hole with
a50.99M , while the other two pulses have support only in the
non-super-radiant regime for all values ofa. To indicate the ampli-
tude enhancement in each scattered pulse as the rotation rate of the
black hole increases we tabulate the total integrated flux normalized
to the value obtained for a Schwarzschild black hole.

a/M Normalized total flux
0.9 1.1 1.3

0 1 1 1
0.50 1.29 1.27 1.25
0.90 6.75 3.32 3.02
0.99 356 9.21 4.28
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sults, listed in Table III, indicate that the amplitude of the
scattered wave generally increases witha. But it is also clear
that the amplitude enhancement is much more dramatic for
the pulse that has considerable support in the super-radiant
regime.

These results provide an interesting illustration of super-
radiant scattering, and warrant a more detailed investigation
of super-radiance in evolution problems. Since such a discus-
sion extends beyond the scope of the present paper. We will
return to it in the future.

V. CONCLUSIONS

We have studied the time evolution of perturbations of
rotating black holes by numerically integrating the Teukol-
sky equation written as a system of equations of first order in
time and space. In particular, we investigated the role of the
black holes angular momentum on the dynamics during the
burst, quasinormal ringing and power-law tail phases. We
have reproduced values for the fundamental quasinormal
mode frequencies with an accuracy of better than 1%. As for
the late-time regime, we found power-law tail behavior
analogous to the scalar field case that we had studied previ-
ously. These results are in good agreement with what one
would expect and establish the reliability and accuracy of our
code. We thus have access to a useful numerical laboratory
that can be used to further illuminate the detailed physics of
rotating black holes. As an illustration of this, we constructed
an example that shows the effects of so-called super-radiant
scattering in an evolution scenario.

In the future, we plan to use this laboratory to investigate
other interesting issues. One interesting question concerns
the excitation of quasinormal modes. It is known that the
damping of the2umu modes will vanish asa increases@9#.
This would potentially make the modes of a rapidly rotating
black hole ideal for gravitational wave detection. However,
in an approximate study Ferrari and Mashhoon@23# have
shown that the amplitude of these extremely slowly damped
modes will be negligible. In the extreme Kerr limit no energy
is expected to be radiated through these modes. This result
has proved to be very hard to verify analytically, but it is
testable with the present code. We should be able to establish
whether the extremely slowly damped quasinormal modes
are of astrophysical relevance or not.

Another outstanding problem in black-hole physics con-
cerns the dynamical stability of the Kerr black hole to per-
turbations. So far, only mode stability has been established
@24#. To prove complete stability one must ensure that all
relevant quantities remain point-wise bounded during an
evolution, cf. @25#. It seems plausible that our Teukolsky
code can prove useful also in this context.

Perhaps the most interesting future application of our nu-
merical Teukolsky code will be to evolve initial data quali-
tative similar to the late stages of a binary black hole coales-
cence. The main problem in approximating black hole
collisions with perturbations about Kerr spacetimes is the
construction of initial data. Work so far on the close limit
approximation to construct initial data has heavily depended
on having a conformally flat background geometry. On the
other hand, constant time hypersurfaces in Boyer-Lindquist
or Kerr coordinates are not conformally flat. Hence disentan-

gling these effects is not as straightforward as for nonrotating
black holes. Possible ways of circumventing these obstacles
are presently being investigated@26#.
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APPENDIX

In the following, we give the explicit form of the coeffi-
cients in the matricesM, A, andL in Eq. ~11!. With

c1[2s
23Mr 21Ma21r 31ra2

S2 , ~A1!

c2[22
rD~11s!2M ~a22r 2!s

S2 , ~A2!

c3[2a
2Mrm1Ds cosu

S2 , ~A3!

c4[22am
r 21a2

S2 , ~A4!

the coefficients ofM can be written as

m31[2bc11b
]b

]r *
1c2, ~A5a!

m32[bc32c4 . ~A5b!

Defining

c5[
D~2m222 cosusm2cos2us21sin2us!

S2 sin2u
, ~A6!

c6[24
~r 2M !sma

S2 , ~A7!

the coefficients ofA are given by

a31[c5 , ~A8a!

a32[2c6 , ~A8b!

a33[c1 , ~A8c!

a34[2c2 . ~A8d!

Finally, with
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c7[2
D

S2 , ~A9!

c8[2cotu
D

S2 , ~A10!

the only nonvanishing coefficient of the operator matrixL
reads

l 31[c7

]2

]u2 1c8

]

]u
. ~A11!
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