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We present a numerical study of the time evolution of perturbations of rotating black holes. The solutions
are obtained by integrating the Teukolsky equation written as a first order in time, coupled system of equations.
We address the numerical difficulties of solving the equation in its original form. We follow the propagation
of generic initial data through the burst, quasinormal ringing and power-law tail phases. In particular, we
calculate the effects due to the rotation of the black hole on the scattering of incident gravitational wave pulses.
These effects include the amplitude enhancement due to so-called super-radiance. The results may help explain
how the angular momentum of the black hole affects the gravitational waves that are generated during the final
stages of black hole coalescenf80556-282197)05318-§

PACS numbd(s): 04.25.Dm, 04.30.Nk

[. INTRODUCTION to black hole collisions is that, during the last stages of the
coalescencéhe close limij, the spacetime can be accurately
Numerical relativity, i.e., the numerical construction of approximated as that of a single perturbed black hole. A
solutions to the Einstein equations, is a rapidly advancingarticular subclass of such problems is the study of black
field. Reliable multidimensional simulations of astrophysi-hole collisions as perturbations of Schwarzschild spacetimes;
cally relevant scenarios should become possible in the nedinese are situation&.g., head-on collisionsfor which the
future. The systematic exploration of the nonlinear content oend product of the collision is a slowly or nonrotating black
Einstein’s theory is of major importance for this acceleratechole. Mathematically they are described by the gauge invari-
progress. In the pursuit of numerically solving nonlinear sys-ant Zerilli function[1]. The numerical solution of the Zerilli
tems,intrinsic accuracy tests, such as convergence, help egquation does not pose difficulties and has been employed in
tablish the reliability of the solution and its proximity to the estimating aspects of gravitational wave physics in the con-
continuum limit. However, recurrent experiences suggestext of black holeg2]. The generalization of this framework
that tests,extrinsic to the discretization process, are alsoto rotating black holes is physically relevant; it is likely that,
valuable tools for assessing the reliability of complicated nu-during the inspiral collision of black holes, the system will
merical algorithms. One versatile tool, providing a humbemot be able to radiate all of its angular momentum and will
of such extrinsic tests, is the investigation of the linear redeave behind a single, rotating black hole. The work in this
gime of nonlinear systems. In the appropriate limit, numeri-paper constitutes an important step towards the goal of gen-
cal solutions of nonlinear systems should agree with the coreralizing the close-limit treatment of black hole collisions to
siderably simpler perturbative solutions. This testingthat of perturbations about a single, rotating black hole. The
approach is bound to have fundamental importance to nugeneral framework to achieve this goal requir@sthe con-
merical relativity as the field progresses. struction of appropriate initial data describing two orbiting
Perturbative methods enjoy renewed attention in theiblack holes(b) the subtraction of the Kerr background from
own right. The emphasis now is on the application of thethe initial data, to read off the initial perturbations, afw
standard perturbative methodology to particular realistic systhe evolution of these perturbations. In this paper, we con-
tems that are thought to be of interest to the emerging field ofentrate on the last point, namely the evolution of gravita-
gravitational wave astronomy. Perhaps the most importartional perturbations of the Kerr spacetime.
one among those systems is the collision of inspiraling black Previously, we investigated the dynamics of scalar fields
hole binaries. The key premise of the perturbative approacim the background of rotating black holg3] (from here on
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referred to as pape).IWe considered both slowly and rap- the role that rotation plays on signals produced during the
idly rotating black holes. For slowly rotating black holes thefinal stages of black hole coalescence.

background geometry can be treated as a perturbed

Schwarzschild spacetime, with the angular momentum per

unit mass playing the role of a perturbative parameter. The Il. PERTURBING KERR BLACK HOLES

study was centered on the late-time dynamics of the scalar

field and showed that, for rotating black holes of arbitrary At first instance, a direct derivation of the equations gov-
angular momentum, the late-time dynamics is dominated byrning the perturbations of Kerr spacetimes is to consider
the lowest allowed multipolel & 0). Here we undertake the perturbations of the metric. This path, however, leads to
development of a numerical scheme for the study of gravitagauge-dependent formulations. A theoretically attractive al-
tional perturbations of Kerr black holes in the time domain.ternative is to examineurvature perturbations. Using the
The main objective of this work is to follow the propagation Newman-Penrose formalism, Teukoldiky5] derived a mas-

of generic initial data through the burst, quasinormal ringingter equation governing not only gravitational perturbations
and power-law tail phases of the evolution. In particular, we(spin weights= = 2) but scalar, two-component neutrino and
are interested in investigating the effects of black hole rotaelectromagnetic fields as well. In Boyer-Lindquist coordi-
tion on the scattering of incident gravitational wave pulsesnates and with the use of the Kinnersley null tetf§§ this

A characterization of such effects provides an indication ofmaster evolution equation reads

(r’+a?)® 4Mar M(r2—a?) e et 1 _
- T—a St | oy W — Taw\lf—Zs r—T+IaCOS9 GV +A"%9, (A a,‘lf)+?naag(smeae‘l')
+ Do, wr0d M 1009 @ coro—sw=0 1
site & |V T Ty T gipg |4 (ST cotdm S =0, W)

whereM is the mass of the black hola,its angular momen- lem in the time domain. For several reasons the number of
tum per unit mass, and=r?—2Mr +a?. For gravitational frequencies that one has to consider is orders of magnitude
perturbations, the functioi is given in terms of the Weyl higher than the number of angular components required to
tensor tetrad componentg, and ¢,. That is, ¥ =, for s resolve theé# direction: While the angular directions are
=+2 and V=p 4y, for s=—2, with p=—1/r bounded, the time direction is only bounded from below by
—ia cosd). the initial data surface. Focusing on the investigation of qua-

The Teukolsky equatiofil) reduces to the Bardeen-Press Sinormal modesQNMs) and power-law tails, one would

equation[7] in the limiting case of nonrotating black holes. first of all expect that one needs quite a fine resolution near

—0 it vi . the w=0 point in order to be able to correctly resolve the
For the cases=0, it yields the equation for a scalar wave | . o .
y 9 tails. Similarly, the resolution of the QNM would be very

propagatlng n a Kerr background, a system which we Studsensitive to the spacing in frequencies. With this in mind, we
ied numerically in paper I. Lo
: . have chosen to solve the Teukolsky equation,in, and 6
A result of great importance for perturbation theory was :
o X . coordinates.
Teukolsky’s discovery that, when viewed in the frequency

d . . ble in th d di The resulting 2-1 evolution equation is a hyperbolic,
omain, Eq(1) is separable in the and § coordinatessepa-  jinear equation which is quite amenable to numerical treat-

ration of the azimuthal angular dependence is always poSyent, provided suitable coordinates, variables, and boundary
sible). To our knowledge, most of the work on the dynamicsqngitions are chosen. The major numerical difficulty in
of perturbations of Kerr spacetimes has been performed i§olving the Teukolsky equation in the time domain arises
the frequency domairtor under the assumption of a har- from the term linear irs, involving the first-order time de-
monic time dependeng.€This has certainly been the case for rjyative. Depending on the relative sign between the coeffi-
studying quasinormal mode frequenci@-11], wave scat-  cients of3, ¥ andd, ¥, one may view, ¥ either as a damp-
tering[12], and the motion of test particles in the Kerr back- jng term (when the signs of both coefficients agree an

ground[13-15. _ o . ~ antidamping ternfotherwisg. Without the factor 2, the real
Here we are interested in the time integration of physicalhart of the coefficient of, W reads

initial data, possibly from the inspiral collision of binary
black holes. The data may be analytic approximate solutions M(r2—a?)
to the linearized constraints, or numerical solutions of the C(ry=————-r. (2
nonlinear constraints. A

In principle, one can Fourier transform the initial data and )
perform the evolution of such data for each frequency. Af-" the physically allowed rangg¢r . ), wherer, =M
terwards, the data are transformed back to the time domain it VM“—a“ represents the event horizon, the functidns
needed. From the computational point of view, however, thignonotonic inr, with lim,_, C=% and lim_. C=—=.
approach is far more expensive than it is to solve the probTherefore, there exists a point such thatC(r<r.)>0 and
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C(r>r.)<0. On the other hand, the coefficient &V is lim |¥g~A~" (6)
always negative. Consequently, fer-0, the termg, ¥ acts r*——o

as a(antjdamping term for {<r.)r>r.. The situation re- ) ) o
verses fors< 0. Of course, there is no real damping or anti- Here we have used the Kerr tortoise coordirtette which is
damping. For axisymmetric modes there exists, even in théefined by

case of rotating black holes, a conserved integral that dem-

onstrates the conservative nature of the wave dynaf@igs dr* =
For general perturbations, several investigations provide A
strong evidence for bounded evolutiosee[24] and refer-

ences therein Hence, the dependence of the sign of the co- The convenient properties of thee=—2 choice can be
efficients) on the coordinates should only affect the verified by looking at the asymptotic form of propagating
asymptotic falloff behavior of ingoing and outgoing radia- waves near the horizomr{— —«). For s= -2, the solu-
tion. However, the above analogy with systems with un-tions are bounded for any direction of propagation; in con-
bound dynamics suggests that in numerical work the pregrast, fors=2 the ingoing solution diverges as the horizon is
ence of such terms could lead to exponentially growingapproached4{—0). The asymptotic behavior fa=—2 at
modes. Those unphysical modes are not part of the family of* — + % can subsequently be fixed by requiring that outgo-
solutions to the Teukolsky equation. Indeed, in our first ating waves have asymptotically bound amplitude also in this
tempts of solving the Teukolsky equation, such growinglimit. For the Teukolsky function¥_,, this is achieved
modes were present in our simulations. These modes wetbrough a rescaling by an appropriate functiorr ofA con-
clearly of numerical origin. The suppression of these instavenient and simple choice i$, a factor that is regular at the
bilities proved to be an interesting and challenging exercisdorizon.

in the construction of numerical algorithms. The deeper Regarding the choice of spatial coordinates, we use the
numerical-analytic reason for this class of instabilities is noterr tortoise coordinate* defined by Eq(7). As azimuthal

yet clear. coordinate, we use the Kerp coordinate instead of the
Two key factors in successfully solving the Teukolsky Boyer-Lindquist coordinatep. The coordinate transforma-

equations were first, to rewrite E(L) in a form that brings  jgn tog) is defined by

out explicitly the radial characteristic directions, and second,

to carefully select the evolution field and its asymptotic be- - a

havior. dgp=do+ Zdr. (8
A successful numerical evolution of the Teukolsky equa-

tion was achieved for the= —2 case. The choice af, as The azimuthal rdinatdé w revious| d for th
the evolution field is required for any astrophysical applica- € azimuthal coo ap was p eviously used lor the sca-
lar field evolution in order to ameliorate coordinate patholo-

tion of the method, since the radiation contengratll) infin- . the hori A di ; f th tholoai d
ity is directly described in terms of that field. Evolving the gies near the norizon. A discussion ot those pathologies an
their precise manifestation in the slow rotation limit is given

s=2 perturbations is of interest with respect to radiation.
from the black hole, and is required in order to reconstruct PPer g

the perturbation of the metric coefficients from the solution

of the Teukolsky equation, if such a reconstruction is desir- lll. SOLVING THE TEUKOLSKY EQUATION
able.

In our investigation the choice of thee= — 2 equation was
dictated both by its direct physical relevance and by the nee
to obtain, numerically, well behaved evolutions near the ho-
rizon. In our approach, i.e., evolving,, it is possible to
recover the metric perturbations only at infinity. Local infor-
mation about the perturbed spacetime, yielding for exampl
perturbed geodesics, is not available.

For a given spin weighs$, outgoing waves correspond to
solutions to Eq(1) with the limiting behaviof5]

r2+a?

dr. 7

We can now introduce the following ansatz for the solu-
H’on to the Teukolsky equation:

W(t,r*,0,4)=eMPr3d(1,r*,6). 9)

& follows that the Teukolsky equation feb(t,r*,6) has a
structure similar to that of Eq.l), and therefore the same
analysis of the damping or antidamping nature of first-order
time derivative terms applies. After a series of unsuccessful
numerical experiments with this second order in time and
space equation fo, we found that numerical instabilities

lim [ Wg~1/r2, 3 were suppressed by introducing an auxiliary fiHldhat con-
Mo verts the Teukolsky equation to a coupled set of first-order
equations in space and time. This can be accomplished by
lim |¥g~1 (4)  defining
r*~>—oo
[M=6,®+bd,+D, (109
at spatial infinity and the event horizon, respectively. Mean-
while, ingoing waves behave as b= r?+a? (10D
=—
lim |Wg~1r, (5)

* b 32=(r?+a?)?—a%A sirfé. (109
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The resulting form of the Teukolsky equation has the strucwhere we have omitted the angular indigefr clarity. The
ture fields werej centered in the angular direction with angular
derivatives approximated by the appropriate second-order
du+Mapxu+Lu+Au=0, (1) centered expressions. Radial derivativesSh,,, were ap-
) ) ] proximated by centered difference expressions of field values
whereu={®g,®,,Ilg,II,} is the solution vector with and _ 4tj andj+1. Similarly, algebraic terms iD!, ;,, andS", .,
R labeling the imaginary and real parts, respectively. Theere obtained by averaging over the values aindi+ 1.
coefficient matriced! andA are given by The second and final step was a Staggered leapfrog step:

b 0 0 0 i1 L Dn R ) - 2
ul T t=ul— ot &_*Din (U —ul ) — S :
. ) (12 17)

-mgp; my; 0 —b Here the centered difference expressions and averages for
S'*Y2 and D" Y2 were taken from values at';?? and
and u'*Y2  Examination of the radial and angular characteristic
directions at arbitrary locations showed that the appropriate
0 0 -1 0 Courant-Friedrichs-Lewy (CFL) condition is &t
0 0 0o -1 =min{or*,556}, whereét is the evolution time step.
A= a a a au | (13 Boundary conditions are required at the horizon, at the
1 Fs2 T o4 rotation axis of the black hole and at radial infinity. The
—dazy 3431 —Aaz Aas3 exact boundary conditions at the horizon dre=11=0, as

) . ) . ) follows immediately from the asymptotic behavior of ingo-
respectively. Finallyl is a matrix operator that contains all ing waves[see Eq.(6)]. Depending on the value of the an-
the angular derivatives and has the following nonvanishinggmar momentum parameter, these conditions were im-
elements: posed at a typical finite distance from the black hole given by

r*~—100M. This approximation of Eq:6) causes no prob-

0 0 00 lems, since in terms of the Boyer-Lindquistcoordinate it
0O 0 OO corresponds to a coordinate distance |ofr |~10"%4

L= | 0 o ol (14 leading toA%2~10"% The distinction of ingoing and outgo-
31 ing waves near the Kerr event horizon requires a careful
0 I 0 O definition because of the rotational dragging of inertial

frames[5]. However, in practice it clearly does not matter if
The coefficients in the above matrices are given explicitly inye set both propagation modes to zero. At the axis, only a
the Appendix. . _ condition ond is required. Depending on the behavior of the

The first-order system given by E€L1), when restricted  angular eigenfunction belonging to the azimuthal nuntber

in the radial dimension, readily displays its hyperbolicity, in near the axis, one imposes eith@=0 or 9,0=0 [12].
the sense that the eigenvalues Mfare real andM is a  Finally, the boundary conditions at infinity are much harder
complete set of linearly independent eigenvectors. Diagonaky impose when using a finite radial grid. Approximate
ization of the matrixM and construction of evolution schemes allow the transmission of waves across the bound-
schemes based on the eigenfields generated stable evoliyy put the implied truncation of the equation’s coefficients
tions. However, it turned out that this last step was not necinterferes strongly with physical features of the evolution
essary. Stable evolutions were also achieved using a modiych as quasinormal ringing and tails. A clean solution can
fied Lax-Wendroff methodsee, for example16]) applied  pe achieved via “Cauchy-characteristic matchingee

to Eq. (11) when this equation was rewritten as [17,19 and references thergirHowever, this approach will
_ not be pursued here. For the problems of immediate interest
du+DIxu=S5, (15 the computational domain can be made sufficiently large that

. . errors generated at the outer boundary will not affect the
with - D=diagb,b,—b,—b) and S=—(M-D)dsu—Lu  roq g Consequently, we s@étandII arbitrarily to zero at
—AU . . , the outer boundary, and our results are computed only from

. Equa}tlon (15 was dlslcretlze.d on a uniform tWo- intormation inside the maximal Cauchy development of the
dimensional rectangular grid. Typically we used a computa;iiial data surface.
tional domain of size-100M=r¥<500M and 0<@;<m The stability of the code was verified with long-time evo-
with 0<i=<8000 and 6= =32. The Lax-Wendroff updating |ytions, of the order of 100@. Its accuracy was tested using
of field valuesu;’ given on a time step, consisted of two  standard convergence tests. The code was found to be second
steps. In the first step, intermediate field valug$;Z were  order convergent for evolution times<50M. The conver-
obtained from gence rate degrades as the total evolution time is increased,

but is consistently above 1.3. A note on the nature of the
u{‘fll,’22=3(u” U - S Dl ) — S unstabl_e modes discus_sed previously is_o_f some releva_n_ce
2 LT g gk T2 EIAL +12) here. Linear systems with constant coefficients may exhibit

(16) numerical instabilities if the eigenvalues of the update matrix
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have modulus larger than unity. This phenomenon is easily TABLE I. The numerically determined power-law exponepts
analyzed with the so-called Von Neumann analysis of thegoverning the late-time behavior dfb|<t™* measured ar*
difference equation. A similar analysis can be used in equa=20M, 6=m/2. The theoretical value fa=0 is u=7.

tions with variable coefficients, via local stability analysis,

but the method becomes far less conclusive in that case. F8fM u(m=0) m(m=1)
the Te_uko_lsky equation, a number of simple, Ioca!ly stable, 0 7.70 769

discretizations turned out to be unstable for late times. The

. - . - . 0.25 7.73 7.77

instabilities depended on the numerical discretization 050 775 768

lengths, with increased resolution generally leading to slower 0'75 7'81 7'79

growth rates for the unphysical modes. Yet only impracti- 0'90 7'68 7'71

cally high resolutions would suppress the instabilities for the
long evolution times required for the applications discussed

here.
Starting with initial datab« _,Y7 (wheregY|" denotes a
IV. THE EFFECT OF ROTATION spin-weighted spherical harmonjave studied the late time
ON SCATTERED PULSES regime fora/M=0, 0.25, 0.5, 0.75, 0.9 anth=0, =1,

o o _ . *2.In all cases, we found a power-law tail behavidr|
The initial data for gravitational perturbations of rotating, «t=# For a nonrotating black hole it is known that the

asymptotically flat spacetimes can be broadly divided intoyower-law exponent should be=2I+3 [20,21]. Indeed,
two classes: Waves coming in from infinity and then scatterfor 3=0 we were able to reproduce the theoretical vaiue
ing off the black hole background, and waves emanating=7 with an accuracy of about 10%. Moreover, our calcula-
from the black hole as a result of an external excitation of thgjons show that the exponents governing the behavioafor
black hole. The latter case is perhaps the most interesting g yemain similar to the Schwarzschild value. These results
since it includes the description of the final stages of a binary e summarized in Table I. We conclude that the power-law
black hole coalescence within the close-limit approximationaj| pehavior is basically determined by the dominant

_ In general, the evolution of both types of initial data con- agymptotic form of the potential, namely its “Schwarzs-
sists of three stages, as seen by an observer located awgyiiq" part. That this would be the case has recently been
from the hole. During the first stage, the observed signakyggested by analytic argumeril]. Analytic results(for
depends on the structure of the initial pulse and its reflectiomonrotating black holéscan also explain the main discrep-
by the curvature potentidburst phase This phase is fol-  ancy between our numerically determined power law expo-
lowed by the exponentially decaying quasinormal ringing ofnents and the theoretical values. The field will be governed
the black hole(quasinormal phageln the last stage, the py 4 pure power lavib | <t~ 2! +3) only at very late times. In
wave slowly dies off as a power-law taffail phas¢. The 5 'somewhat earlier regime “higher order” terms will also be
precise manifestation of the last two phases is dictated by thggnificant[21]. The presence of such higher order terms
subtle interference of the respective amplitudes. The COMgnq tg increase the value of a numerically extracted power-
plex frequencies of the QNMs for various valuesaofare |5 exponent.
well known[8-11] and we can use them to test the present e resuits discussed above correspond to initial data that
code’s accuracy. Similarly, the late-time tail phenomenon isyre gominated by the lowest allowed multipoléor the par-
mathematically well understood in spherically symmetriCii~1ar value ofm that is being considered £|m|). When

backgrounds, where tails have been predicted and verifiegis is not the case, we find that different multipoles become

[19,20. For rotating black holes, the background is nopiveq in the evolution. To investigate this, we started from

longer spherically symmetric, but numerical results for scala%\n initial angular distribution given by,Y™, and then com-

vvlaves in Kerr btafckgro_ungsf_siﬂgg]eslzt ﬂlﬁt power-l_z;lv;: tails WIIIputed the power-law exponent for different valuesyofFor
also be present Tor Spin- TIelgS]. FUrthn€rmore, 1t nas re- ., 4 ihe jnjtial pulse used for the two-dimensional evolu-

cently been argued that these tails should take the same for{??)n corresponds to the lowest possible valué and the late

as for nonrotating black h°|€{.§1]' . . . time power-law behavior is consequently dictated jhy

We have used the numerical algorithm described in the

. . . ; . . =13.26+0.45 when averaged over all observed angles. The

previous section to obtain the time evolution of generic per-_. "~ "% - .

. S . situation is different for the casm=0, where we find that
turbations impinging on the rotating black hole. For most of

the results presented here, we have used ingoing initial da ge numerically determined power-law exponent is given by

with compact support forbg while ®,=0. All evolutions u=28.74+0.11. That is, the late-time evolution is dominated
R | — Y-

clearly showed the exponentially damped oscillations of theby the quadrupole. In contrast, the corresponding Schwarzs-

QNMs and the subsequent late-time power-law tail. We WiIIchild evolution exhibits no such mixing of multipoles, and

now discuss each of these phases in somewhat more detaﬁ.vOIUtlonS fo_rl =4, m=0,4 agree well W'.th.the thec_)retlcal
power-law tail exponent.=11. A result similar to this was

discussed in paper I.
This result is, however, not too surprising. The mixing of
In paper | we showed that the late time evolution of scalamultipoles is due to the rotational dragging of inertial
fields in the background of rotating black holes is qualita-frames. Basically, there are two reasons why different mul-
tively similar to the nonrotating case. Here we extend thigtipoles will be present in the evolution. The first one is “im-
result to the physically more interesting evolution of a spin-2perfect” initial data: Here we have expressed the initial data
field. in terms of the spin-weighted spherical harmonj¥g'. The

A. Power-law tails
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TABLE Il. The numerically extracted QNM frequencies that 10°
dominate the late-time part of the ringing phaserfor 0,= 1.

a/M oM(m=0) oM(m=|1])
0 0.373+10.0885 0.373-i 0.0885
0.25 0.376-i 0.0885 0.392-i 0.0885 fi
0.50 0.383-i 0.0865 0.426-i 0.0860 o 1L |
0.75 0.398-i 0.0835 0.46#i 0.0795
0.90 0.412-i 0.0780 0.51#i 0.0695

appropriate angular functions that are used wherr thed 6
components of Eq(l) are separated are the spin-weighted |
spheroidal harmonicsS"(¢;aw) [5]. Hence, because of the ~ 107g 100 200 300 400 500 600
frequency(time) dependence in theS"(6;aw), it is difficult M

to generate initial data for the Kerr problem that represent a F|G. 1. Quasinormal ringing foa=0.99M, M=0.5, andm
pure multipolel for a specified value ai. Furthermore, the =2. During 120M <t<160M, the field decays dp|xe~%1"%; the
rotation of the black hole will lead to an active coupling subsequent evolution is dictated by a slower decaying njdde
between different multipole&or a discussion of the analo- e %%,

gous situation for rotating stars, s€22]). So even if we

could initiate the evolution with a pure multipole, other mul- |pterestingly, we find that the numerically extracted QNM
tipoles would be generated and may play a role at later timegrequencies for nonzerm do not depend on the sign o,

The mixing of multipoles can have an interesting resultj e 'we get the same values for the QNM frequencies from
Suppose that the initial data is dominated by a certain mulayg|utions for, e.g.m= =+ 1. At first sight this is surprising,
tipole| but that a relatively small part ¢f-1 is also present.  sjnce it seems to contradict well established results. Accord-
Each of these multipoles will give rise to power-law tails, buting to, for example, Detweildi8], the imaginary parts of the
the amplitude of the latter will be much smaller than the first.,,— 1 andm= — 1 modes should become quite different as
In this situation the late-time field should contain both a tail

of form t~?*3) and another term that behavesta& *1).

a increases.

Fortunately, the answer is simple: The frequencies of both

Since the first term dies off faster than the second it SeemM$ o m and the—m QNMs are present in a typical evolution
unavoidable, no matter how small the amplitude of the SeCrps 5154 explains the existence of two distinct regimes of
ond tail term is, that the very late time evolution of the fleldthe quasinormal ringing that can be seen in Fig. 1. In this
v_viII be dominated by thé— 1 multipole. The corresponding figure we show the field as seen by an observer*at
time evolution will simply exhibit a late-time change inthe “5q g 14 for a=0.99M M=0.5. andm=2. In the

angular behavior. An example of this was discussed in papeéarly phase of QNM ringing (120<t<160M), the decay

. of the field is approximately given byb|xe %17 whereas
) the behavior for late times is governed by a slower decaying
B. Quasinormal modes mode, |®|xe %99 These values are in good agreement

To further test the performance of the Teukolsky code, wevith the theoretical values fdr=2 andm= =2, as can be
performed a series of simulations for different values of theseen by comparison with Fig(d) in [8].
angular momentum parametarand the azimuthal number One question remains. Why should we expect both these
m. Then we focused on the later part of the ringing se-modes to be present in the signal? The answer can be found
quence, which is dominated by the slowest damped mode df the symmetries of the problem. In the Schwarzschild case
oscillation, and read off the oscillation frequeneyvia a We know that there will be modes in the first and second
standard Fourier transform of the time signal. Table || sum-quadrant of the complew plane (assuming that the modes
marizes results obtained in this way. have a time-dependene&”). All these modes will contrib-

A comparison of our values for the real part of each QNMute to the signal, but since they occur as complex conjugate
frequency with those given by Leavi@] and Kokkotag11]  pairs w; and — o] (where the asterisk represents complex
for m=0,a/M =0,0.5,0.9 shows an agreement to better tharconjugation the contribution from one set of modes can be
0.3%. Form= —1, our results agree with the values of Det- expressed in terms of the other. Hence, the QNM part of the
weiler [8] and Leaver(different sign conventionto within  signal can be evaluated using only modes in the first quad-
0.5%. Our results for the imaginary parts are accurate to 1%ant (for a study of the Schwarzschild problem, §é&]).
Although higher multipole evolutions are readily obtained, In the case of Kerr black holes the situation is more com-
accurate estimates of the corresponding QNM frequencieglicated. The QNMs no longer occur as complex conjugate
require increasingly higher angular resolution. Hence, wepairs. Let us suppose that we work in the frequency domain,
have only estimated QNM frequencies for the quadrupoleand that we have a solutiol|,(w,r,8)e'™? to the Teukol-
modes. But it should be pointed out that, as was the case faky equation for giverl and m. Then it is easy to show
the power-law tails, QNMs corresponding to other multi- (using the separated equations, Eef that a solution to the
poles are present in all signals. equation for—m will follow as
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U _m(o,r,0)=[Vn(—o* r,a—0)]". (18

This means that ifw is a QNM corresponding tb and m

then the complex conjugate »* will be a QNM for | and

—m. This symmetry is nicely illustrated in Fig. 3 of R¢€]. <
We can use this symmetry to express the contribution from*
the Kerr QNMs in the second quadrant in terms of modes in
the first quadrantwe will describe this procedure in detail .
elsewherg If we represent modes in the first quadrant by 5[ T
omn, We can schematically write the QNM contribution to L B o e o T T B B T
the signal as [ T

t = 50M 4 t = 100M .

*P?%“M=|E{F(w|mn>+e(—wr_mn>}. (19)

¥/

This explains the presence of both branches of QNMs in out
evolutions.

C. Wave propagation T N R ST I I O O O

An interesting direct application of our code is the iden- r r
tification of effects of the background rotation on the propa- . _
gation of signals. The idea would be to use the same initial_ WF/IZG'if'thsenf}%sehﬁaste?\falth;tzlg(l)u&l/?n F@er Cflc;rritr;—(bz,/zt iz
data for black holes with different rotation rates and see tjSspla’yed with « a scale factor:a=(10,1§,103,1’()3)Rfor t
what extent the rotation of the black hole can be i”fe”eo':(so,loo,lso,zoom, respectively. The values used for the angu-
from the emerging signals. A stumbling block for work in jar momentum are/M =0,0.5,0.9,0.99. The initial data consist of a
this direction, though, is the difficulty to prescribe initial data pe|-shaped pulse centered aF&nd propagating inwards. Differ-
that represent the “same” initial physical perturbation for ences in the pulses do not become appreciable until the pulse has
any value of the black hole angular momentum. This prebeen reflected at the potential barrier outside the black (sslet
scription is possible for data coming in from infinity, since =100M snapshot At t=200M a decrease of-25% in the wave-
the effects of rotation are negligible for sufficiently large length can be observed. The maximum amplitude of the pulse also
radii. However, it is not clear how to set up initial dd&g. decreases wita.
position of the pulsgin the vicinity of the black hole in such

a way that comparison of evoI'utlons for different anQU|ars|ituation is similar to the one we discussed for power-law
momenta makes sense. For this reason, we addressed on |

the effect of rotation on pulses that were initially far Wayt
from the hole.

In Fig. 2 we show a series of snapshotsrif of the
evolution of a pulse fom=2. At t=0, the initial data con- Finally, we would like to establish what effect the so-
sists of a bell-shaped pulselifi centered at 78 and propa- called super-radiance has on the evolution of initial data in
gating inwards. Then the evolution obyr is shown at the Kerr background. From studies of scattering of mono-
constant 6=7/2 and 0O<t<200M for four different chromatic waves from rotating black holese, for example,
values of the angular momentum of the black haéM [12]), it is known that frequencies such thatVl <am/2r
=0,0.5,0.9,0.99. One immediately sees that an increase will correspond to a reflection coefficient with magnitude
the angular momentum of the black hole has two effects oarger than unity. The amplitude of such frequencies will be
the scattered pulse. Both the amplitude and wavelength adnhanced in a scattered wave: These frequencies are “super-
the emerging signal change. By-200M the wavelength in  radiant.”
the trailing part of the signal faa/M =0.99 is approximately Super-radiance was not apparent in the results we have
half as long as for the nonrotating case. This agrees well witldiscussed so far, but it should be possible to design an ex-
the anticipated increase in the dominating QNM frequencyperiment that unveils the effect. In principle, we need to
[8]. Furthermore, at=200M the amplitudes foa/M =0 compare the results for “qualitatively similar” initial pulses,
anda/M =0.99 also differ by~25%. The amplitude of the one which mainly contains frequencies in the interval O
emerging signal generally decreases as we incraase <wM<am/2r, and the other with support only imM

The angular behavior for the scattering scenario also>am/2r, . For the comparison, it also helps if these pulses
shows interesting features. An example can be seen in Fig. &e “almost monochromatic.” To achieve this, we use an
where we show the evolution far M =0.99. The initial data ingoing Gaussian pulse modulated by a sine wave as initial
is given byd g sir? 6, centered ir* at 79V and propagat- data far away from the black hole. Assuming that the initial
ing inwards, but after some time there is a clear transition opulse is centered af; and that the modulation frequency is
the angular distribution ta ,Y3ecog 6/2. This is the domi- ¢, we set(att=0)
nant angular behavior during the later evolution. That is, the W kg
quadrupole dominates the scattered wave at later times. This D~ (771 OB =ia(r™ =rg +1), (20)

D. Super-radiant scattering
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(a) )

FIG. 3. Evolution fora/M =0.99 at(a) t=50M, (b) t=100M, (c) t=150M, and(d) t=200M. The initial data consist of a bell-shaped
pulse centered at* =75M, 6= /2 and propagating inwards. During the evolution there is a clear transition of the angular distribution to
_,Y3xcod 2.

This means that the corresponding power spectrum takes thvehich means thaP/P,,,,=€ at oM =0.9Mm/2r . . In the
form calculations leading to Table Ill, we used=0.01 and an
- angular distribution corresponding th%. The same width
P~e (07 o) (21)  was used for all three modulation frequencies.
Having constructed suitable initial pulses, we studied how
From this follows that the modulated pulse leads to a Gausshe total integrated flux through a spherer gt= 150M var-

ian frequency distribution peaked at=o. It is also clear jed with the angular momentum of the black hole. The re-
that the total energy in the initial pulse is independent of the

value of o. This initial data should be ideal for unveiling TABLE Ill. The total integrated flux through a sphere rit

super-radiance. For example, scattering of a pulse wih  =150M for different modulated Gaussian puldgsitially centered
<am/2r, should show super-radiance, while the effectat r*=50M). The modulation frequencies arerg,/0.99m=0.9,
should be less relevant ferM>am/2r . . 1.1, 1.3. The width of the pulses is chosen such that almost all

In Table 11l we show results for such modulated Gaussiarfrequencies in the first pulse are super-radiant for a black hole with
pulses. The pulses are Centered’@: 50M, and we con- a=0.99M, while the other two pulses have support only in the
sider three different modulation frequenciesor2/0.99m non-super-radiant regime for all valuesafTo indicate the ampli-
=0.9,1.1,1.3. As we increase the rotation of the black holetude enhancement in each scattered pulse as the rotation rate of the
the first of these pulses should become strongly affected b lack hole increa_ses we tabulate the totz_il integrated flux normalized
super-radiance. The initial data is designed in such a walP the value obtained for a Schwarzschild black hole.
that almost all the frequencies in the first pulse are super-

radiant for a black hole witla=0.99M, while the other two M Normalized total flux

pulses should have support only in the non-super-radiant re- 0.9 L1 L3

gime. To ensure that the “frequency overlap” of the first 0 1 1 1

pulse into the non-super-radiant regime is small, we use 0.50 1.29 1.27 1.95
0.90 6.75 3.32 3.02

2 40, |2 0.99 356 9.21 4.28
bc=— 099 Ine, (22 : : :
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sults, listed in Table Ill, indicate that the amplitude of the gling these effects is not as straightforward as for nonrotating
scattered wave generally increases vaittBut it is also clear  black holes. Possible ways of circumventing these obstacles
that the amplitude enhancement is much more dramatic faare presently being investigatEa6).
the pulse that has considerable support in the super-radiant
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rotating black holes by numerically integrating the Teukol-
sky equation written as a system of equations of first order in APPENDIX

time and space. In particular, we investigated the role of the | the following, we give the explicit form of the coeffi-

black holes angular momentum on the dynamics during th@jents in the matriceM, A, andL in Eq. (11). With
burst, quasinormal ringing and power-law tail phases. We

have reproduced values for the fundamental quasinormal —3Mr2+Ma2+r3+ra?

mode frequencies with an accuracy of better than 1%. As for c;=2s 5 , (A1)
the late-time regime, we found power-law tail behavior z
analogous to the scalar field case that we had studied previ-
ously. These results are in good agreement with what one rA(1+s)—M(a?-r?)s
would expect and establish the reliability and accuracy of our Co=— 3?2 ' (A2)
code. We thus have access to a useful numerical laboratory
that can be used to further illuminate the detailed physics of OMIm 4+ As cosd
rotating black holes. As an illustration of this, we constructed c;=2a - , (A3)
an example that shows the effects of so-called super-radiant )Y
scattering in an evolution scenario.
In the future, we plan to use this laboratory to investigate r2+ g2
other interesting issues. One interesting question concerns C,=—2am S2 (Ad)

the excitation of quasinormal modes. It is known that the
damping of the—|m| modes will vanish as increaseg9].
This would potentially make the modes of a rapidly rotating
black hole ideal for gravitational wave detection. However, b
in an approximate study Ferrari and Mashhd@3] have M= —bc;+b——+c,, (A5a)
shown that the amplitude of these extremely slowly damped ar

modes will be negligible. In the extreme Kerr limit no energy

is expected to be radiated through these modes. This result mg,=bcz—c,. (A5b)
has proved to be very hard to verify analytically, but it is

testable with the present code. We should be able to establighefining

whether the extremely slowly damped quasinormal modes

the coefficients oM can be written as

are of astrophysical relevance or not. _ A(—m?2—2 cogsm— coZ s+ sirP6s)
Another outstanding problem in black-hole physics con- Cs= S7 5?0 ,  (AB6)
cerns the dynamical stability of the Kerr black hole to per- S|
turbations. So far, only mode stability has been established
[24]. To prove complete stability one must ensure that all c E_4(r—M)sma (A7)
relevant quantities remain point-wise bounded during an 6 32 ’
evolution, cf.[25]. It seems plausible that our Teukolsky
code can prove useful also in this context. the coefficients ofA are given by
Perhaps the most interesting future application of our nu-
merical Teukolsky code will be to evolve initial data quali- a3=Cs, (A8a)
tative similar to the late stages of a binary black hole coales-
cence. The main problem in approximating black hole a3= —Cg, (A8b)
collisions with perturbations about Kerr spacetimes is the
construction of initial data. Work so far on the close limit a335=Cq, (A8c)
approximation to construct initial data has heavily depended
on having a conformally flat background geometry. On the azs=—0C,. (A8d)

other hand, constant time hypersurfaces in Boyer-Lindquist
or Kerr coordinates are not conformally flat. Hence disentanfinally, with
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A
C7="352 (A9)
A
Cg= cotﬁy, (A10)

the only nonvanishing coefficient of the operator matrix
reads

02
|31§C7W+C8ﬁ. (All)
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