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The problem of determining the electromagnetic and gravitational ‘‘self-force’’ on a particle in a curved
spacetime is investigated using an axiomatic approach. In the electromagnetic case, our key postulate is a
‘‘comparison axiom,’’ which states that whenever two particles of the same chargee have the same magnitude
of acceleration, the difference in their self-force is given by the ordinary Lorentz force of the difference in their
~suitably compared! electromagnetic fields. We thereby derive an expression for the electromagnetic self-force
which agrees with that of DeWitt and Brehme as corrected by Hobbs. Despite several important differences,
our analysis of the gravitational self-force proceeds in close parallel with the electromagnetic case. In the
gravitational case, our final expression for the~reduced order! equations of motion shows that the deviation
from geodesic motion arises entirely from a ‘‘tail term,’’ in agreement with recent results of Minoet al.
Throughout the paper, we take the view that ‘‘point particles’’ do not make sense as fundamental objects, but
that ‘‘point particle equations of motion’’ do make sense as means of encoding information about the motion
of an extended body in the limit where not only the size but also the charge and mass of the body go to zero
at a suitable rate. Plausibility arguments for the validity of our comparison axiom are given by considering the
limiting behavior of the self-force on extended bodies.@S0556-2821~97!05518-5#

PACS number~s!: 04.25.2g, 04.30.2w

I. INTRODUCTION

In this paper, we shall investigate the motion of an iso-
lated body coupled to classical fields in the limit where the
spatial extent of the body is small enough that the detailed
structure of the body is unimportant, but where the lowest
order effects of the ‘‘self-field’’ of the body~which are re-
sponsible for ‘‘radiation reaction’’! are taken into account.
Specifically, we shall consider~i! the motion of a charged
body coupled to a Maxwell field on an arbitrary, fixed curved
background and~ii ! the motion of a massive body in an
otherwise vacuum spacetime in general relativity.

No difficulty of principle is encountered in the calculation
of the motion of any extended body once one has specified
what matter fields compose the body and the equations of
motion of these matter fields. If one then gives the initial
data for these matter fields~as well as for the classical fields
to which they are coupled!, the complete motion of the body
is determined unambiguously by the full set of continuum
field equations. However, in practice, the details of the mo-
tion of an extended body will be very complicated and will
depend on the detailed ‘‘internal structure’’ of the body.
Thus, if one deals with general, extended bodies, it is highly
unlikely that any simple results can be obtained which apply
to large classes of systems.

One would expect the details of the internal structure of
the body to become less and less important in the limit as
one makes the body smaller. Thus, one obvious way to seek
a class of simple, general results is to take the limit of the
continuum equations as the spatial extent of the body goes to
zero, thereby obtaining equations of motion for a ‘‘point par-
ticle’’ idealization of an extended body. However, as is well
known, serious difficulties arise in attempting to take the

point particle limit in a straightforward manner, keeping the
total charge,e, and mass,m, of the body fixed. In the elec-
tromagnetic case, the linearity of Maxwell’s equations al-
lows one to make sense of the electromagnetic field of a
body of finite charge in the point particle limit. However, the
stress-energy of the electromagnetic field becomes singular
in this limit, and the stress-energy of the matter fields com-
prising the body must become correspondingly singular in
order for it to ‘‘hold itself together.’’ Hence, there is no
reason to expect that a well defined point particle limit will
exist. In general relativity, the situation is even worse, since
the nonlinearity of Einstein’s equation does not allow one
even to make sense of the ‘‘gravitational field’’ of a point
mass@1#; physically, an extended body would presumably
collapse to a black hole before a point particle limit could be
achieved. Thus, it does not appear to be mathematically or
physically sensible to attempt to take a point particle limit—
holding the charge or mass fixed—in either the electromag-
netic or gravitational cases.

Nevertheless, we believe that there should exist some
simple and general results regarding the motion of bodies in
the limit where the size of the body is sufficiently small~as
compared, in particular, with the scale of variation of the
background electromagnetic field and/or the radius of curva-
ture of the background spacetime! and the charge and mass
of the body also are sufficiently small that ‘‘self-field’’ ef-
fects do not become dominant—but are not negligible. Math-
ematically rigorous results of this sort presumably would
take the form of statements about limits of smooth, one-
parameter families of solutions to the full continuum equa-
tions in which both the spatial extent of the body and the
total charge,e, and/or mass,m, of the body are simulta-
neously taken to zero in a suitable manner. Geodesic motion
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should result in such a limit.1 For a charged body, the Lor-
entz force law in the background electromagnetic field
should then arise as a correction to geodesic motion, with the
acceleration of the body being of ordere/m. For such a
charged body, we seek in this paper to find the further cor-
rections to this result to ordere2/m. Similarly, for an un-
charged body, we seek to obtain the corrections to geodesic
motion to orderm in the acceleration of the body. These
corrections arise from the ‘‘self-field’’ of the body and usu-
ally are referred to as ‘‘radiation reaction’’ or ‘‘self-force’’
effects. In both cases, we shall not seek to obtain any addi-
tional corrections to the motion due to the finite size and
asphericity of the bodies. There is an extensive literature on
the equations of motion of extended bodies~see, e.g., Dixon
@4# and references cited therein! which takes into account the
lowest order deviations from Lorentz force or geodesic mo-
tion due to such finite size effects, but neglects theO(e2/m)
andO(m) corrections which concern us here. Presumably, to
lowest order, the combined effects of both types of correc-
tions would be obtained by simply adding together the radia-
tion reaction force due to self-field effects given here and
‘‘multipole’’ forces due to the background field which can be
found elsewhere in the literature.

Thus, the goal of this paper is to obtain effective equa-
tions of motion for a point particle which are accurate to the
orders specified in the previous paragraph. It should be em-
phasized that~in contrast to some other analyses of radiation
reaction phenomena! our philosophy isnot to view a point
particle of finite charge or mass as a fundamental object, but
rather to view the point particle equations of motion we ob-
tain as a formal device to express approximate results for the
continuum theory, in the limit where not only the size but
also the charge and/or mass of the body are sufficiently
small.

As already indicated above, it should be possible to derive
the results we seek rigorously, without any additional hy-
potheses, by considering suitable one-parameter families of
solutions in which the size, charge, and mass of the extended
body go to zero in an appropriate manner, and suitable as-
sumptions are made about the composition and initial state of
the body so that its deviations from sphericity are kept under
good control in this limit. However, although we shall take a
few first steps in this direction in Sec. II A, we shall not
proceed in this manner here. Rather, we shall instead attempt
to ‘‘guess’’ the correct equations by defining a set of axioms
which we believe the total force on the particle should obey.
These axioms uniquely determine the force, and we then
shall give an explicit prescription which satisfies our axioms.

Our approach bears some similarity to an approach of
Penrose@3# for obtaining the electromagnetic self-force in
the sense that, in both approaches, the self-force is given by
the ordinary Lorentz force associated with a regularized elec-
tromagnetic field. However, the regularization is accom-
plished in very different ways in the two approaches. In the

approach of@3#, the electromagnetic field of a point particle
is regularized by means of the Kirchhoff-d’Adhemar for-
mula, whereas in our approach, the electromagnetic field is
effectively regularized by considering differences in the
fields associated with different particle trajectories in~possi-
bly different! spacetimes. We have not investigated whether
these regularization schemes are equivalent.

In Sec. II, we apply our approach to the case of charged
point particles coupled to Maxwell fields on an arbitrary
curved background. Our results agree with those of DeWitt
and Brehme@5# ~as corrected by Hobbs@6#!, but the calcu-
lations required to obtain the radiation reaction force are con-
siderably simpler and they generalize much more naturally to
the gravitational case. In Sec. III, we carry out this generali-
zation to obtain theO(m) correction to geodesic motion for
a point particle propagating on an otherwise vacuum back-
ground. Our final results agree with those recently obtained
by Mino et al. @7#, but, again, the calculations required in our
approach are considerably simpler.

II. ELECTROMAGNETIC RADIATION REACTION

A. Introduction and motivation for the ‘‘comparison axiom’’

In this section, we shall consider an arbitrary spacetime
(M ,gab) containing an arbitrary timelike world linez(t)
with tangentub representing a point charge of chargee and
massm. We consider an arbitrary solution,Fab, of Max-
well’s equations with the point particle as its source

¹aFab524peE d„x,z~t!…ub~t!dt ~1!

such thatFab is smooth except on the world line of the
particle. Our aim is to give a prescription for assigning to
each point of the world line a vectorf a—which we shall
refer to as thetotal electromagnetic force—such that the
point particle equation of motionab5 f b/m, will be valid to
ordere2/m as an equation of motion for a sufficiently small,
nearly spherical charged body, as discussed in the previous
section.

In order to motivate the axiomatic approach that we shall
ultimately adopt, let us see what happens if we attempt to
derive a formula forf a by considering a small, nearly spheri-
cal extended body and taking a ‘‘point particle limit.’’ To
avoid unnecessary complications, we shall initially restrict
attention in the discussion below to the case of a body mov-
ing in Minkowski spacetime.

The first difficult issue we encounter in this program is
that of obtaining a ‘‘representative world line’’ in the ex-
tended body which can be viewed as describing the motion
of the body, so that we may contemplate the limiting behav-
ior of this world line as the body shrinks toward zero spatial
extent. We shall not attempt to analyze this issue here, but
will merely assume that by methods similar to those of Bei-
glböck @8#, it is possible to define a ‘‘center of mass’’ or
‘‘center of motion’’ world line such that—to an excellent
approximation when the body is sufficiently small and nearly
spherical—we have, at each point of the world line,

pa5mua, ~2!

1This should follow directly from the theorem of Geroch and Jang
@2# that any world line in a fixed background spacetime having the
property that every neighborhood of it admits a conserved stress
energy tensor satisfying the dominant energy condition must be a
timelike geodesic.
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whereua is the tangent to the representative world line and
pa is given by

pa5E
S
~Tbody

ab !ebcde, ~3!

whereTbody
ab is the stress-energy of the body~not including

the electromagnetic field! and the integral is taken over the
hyperplaneS perpendicular toua. Here eabcd denotes the
volume four-form determined by the metric, and the inte-
grand is to be viewed as a vector-valued three-form; the glo-
bal parallelism of flat spacetime is used here to define the
integrals of tensor fields. It should be noted that the difficul-
ties in controlling errors in Eq.~2! and the corresponding
equation in curved spacetime probably constitute the most
serious obstacle to converting the arguments given in this
paper into rigorous theorems about radiation reaction forces
which do not rely on any additional axioms.

We define the force on the extended body by

f a5ub¹b~pa!. ~4!

Given Eq.~2!, we see thataa[ub¹bua will be given by the
projection of f a/m orthogonal toua. @This projection will
actually be unnecessary here in the electromagnetic case
when we obtain the point particle equations of motion, since
our final answer forf a as defined by Eq.~4! will turn out to
be orthogonal toua, corresponding tom being independent
of t in Eq. ~2!.# We have

f a5
d

dtS ES~t!
~Tbody

ab !ebcdeD 5E
S~t!

£w„~Tbody
ab !ebcde…,

~5!

where wa is the vector field which generates the map be-
tween the successive spatial slicesS(t). Note that the value
of the integral does not depend upon how we choose to iden-
tify successive spatial slices, i.e., it depends only on the nor-
mal component ofwa ~the lapse function! and not on its
spatial projection intoS(t) ~the shift vector!. Using the stan-
dard identity

£wm5w•dm1d~w•m! ~6!

on a differential formm ~where the centered dot denotes
contraction into the first index of the form! together with
Stokes’ theorem, we can rewrite the integrand to obtain

f a5E
S~t!

¹bTbody
ab wcdSc , ~7!

where we now have rewritten our volume integral in more
standard notation by writingwcdSc in place ofwcecde f .

We now assume that the body is coupled to a classical
electromagnetic field,Fab , which satisfies Maxwell’s equa-
tions with source given by the charge-current density,Ja, of
the body. Thus,Fab includes both the ‘‘self-field’’ of the
body and any ‘‘background’’ electromagnetic field which
may be present. We denote the stress-tensor of the Maxwell

field by TEM
ab . For further generality, we also shall allow the

body to be coupled to additional classical matter~which does
not couple to the electromagnetic field! with stress-energy
tensorText

ab . ~This additional matter can be thought of as a
‘‘hand’’ or ‘‘string’’ which pulls on the charged body. We
will set Text

ab50 when we wish to obtain the equations of
motion for a charged body acted upon only by an electro-
magnetic field, but permitting this extra coupling will allow
us to also obtain an expression for the radiation reaction
force for arbitrary world lines, when the charge is being
‘‘pulled.’’ ! By conservation of total stress-energy, we have

¹b@Tbody
ab 1TEM

ab 1Text
ab#50. ~8!

By Maxwell’s equations, we have

¹bTEM
ab 52FabJb , ~9!

and therefore we can rewrite Eq.~7! as

f a5E
S~t!

FacJcw
bdSb1 f ext

a , ~10!

where

f ext
a [2E

S~t!
¹bText

abwcdSc . ~11!

For a body which accelerates with four-accelerationab, the
lapse function is given by

N[waua511r gag ~12!

where here we have extended the definition ofua over the
hypersurface by parallel transport@i.e., ua is the unit normal
to S(t)# and r g are the Cartesian coordinate components of
the displacement vector onS(t) with origin at the represen-
tative world line. Thus, we obtain

f EM
a [ f a2 f a

ext5E
S~t!

FabJbNdV, ~13!

wheredV denotes the ordinary volume element in the Eu-
clidean three-spaceS(t) and the Greek indices denote com-
ponents in a global inertial coordinate system.

Let us now simplify the situation considerably further by
assuming that the body is exactly spherically symmetric and
‘‘at rest’’ with respect to ua at ‘‘time’’ S(t), so that
Ja5r(r )ua on S(t). ~However, we make no symmetry or
other assumptions concerning the electromagnetic field.!
Then we have

f EM
a 5E

S~t!
r~r !EaNdV, ~14!

whereEa[Fabub . We defineq(r ) to be the total charge
within radiusr so that

r̂ bDbq~r !54pr 2r~r !. ~15!

Then, we have
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f EM
a 5E

S~t!

r̂ bDbq~r !

4pr 2
EaNdV5E

S~t!
DbS r̂ bq~r !

4pr 2
EaND dV2E

S~t!

q~r !

4pr 2
r̂ bDb~EaN!dV2E

S~t!
DbS r̂ b

4pr 2D q~r !EaNdV

5E
r 5R

q~R!

4pR2
EaNdS2E

S~t!

q~r !

4pr 2F]Ea

]r
N1 r̂ babEaGdV2E

S~t!
d3~r !q~r !EaNdV

5e^EaN&R2E
S~t!

q~r !

4pr 2F]Ea

]r
N1 r̂ babEaGdV, ~16!

where R represents the outer radius of the charged body,
e[q(R) is the total charge, and̂&R denotes the average over
the spherer 5R.

The difficulties encountered in trying to obtain a prescrip-
tion for f EM

a in a simple, straightforward manner by taking
the point particle limit of the equations of motion for an
extended body can be seen directly from Eq.~16!. Let us
split the total electromagnetic field,Fab , into a smooth
‘‘background piece,’’Fab

(0) , which has a smooth limit as the
size of the body is shrunk to zero and a pieceFab

(1) which we
may view as being ‘‘due to the charge’’ itself.~Most com-
monly Fab

(1) would be taken to be the retarded solution with
sourceJa.! When the size of the body becomes sufficiently
small ~in particular, much smaller than the scale of variation
of Fab

(0)), the contribution ofFab
(0) to the volume integral in

Eq. ~16! becomes negligible, whereas the surface term
straightforwardly yields the Lorentz force law

f EM
~0!a5eF~0!abub , ~17!

since the lapse function,N, may be approximated as 1 when
the body shrinks to zero size withEa remaining bounded.
Indeed, even if the body were nonspherical and/or not per-
fectly ‘‘at rest,’’ there would be no significant difficulty in
obtaining the lowest order finite size corrections tof EM

(0)a ~see,
e.g., Dixon@9#!.

However, the situation is completely different with regard
to Fab

(1) , which contributes a ‘‘self-force’’f EM
(1)a of ordere2. If

the total charge is fixed,Fab
(1) and its spatial derivatives be-

come unboundedly large as the size of the body is made
small, so that the integrals appearing in Eq.~16! cannot eas-
ily be controlled. These integrals could still have a well de-
fined limit as a result of cancellations over the different por-
tions of the body, but the situation clearly is extremely
delicate. In particular, small deviations from exact sphericity
or being exactly ‘‘at rest’’~as well as small corrections due
to curvature when we consider the motion of charged bodies
in curved spacetime! could easily contribute finite correc-
tions to f EM

(1)a . Indeed, corrections to Eq.~2! itself could be
large in the point particle limit.

The singular behavior of the self-field in the point particle
limit makes it very difficult to directly extract from Eq.~16!
any guidance as to what the electromagnetic force should be,

even in the regime where one would expect this force to be
essentially composition independent. However, inspection of
Eq. ~16! provides a possible means of dealing with this dif-
ficulty, and this comprises the key new idea of this paper:
Suppose that, rather than calculating the electromagnetic
force ~16! on a particular body, we instead attempt to calcu-
late thedifferencein the electromagnetic force on two bodies
of the same~or very similar! composition, which move on
different world lines in~possibly different! spacetimes. Then,
under appropriate circumstances~see below!, it seems plau-
sible that we may identify neighborhoods of the bodies in
such a way that thedifferencein the electromagnetic field
and its relevant first spatial derivatives for the two bodies can
remain bounded as both of the bodies shrink to zero size at
the same rate. If so, the volume integral contribution to the
differencein f EM

a for the two bodies@the last term on the
right side of Eq.~16!# will go to zero. The difference inf EM

a

for the two bodies will then be given by a version of the
Lorentz force law, wherein we take the difference in the
electromagnetic fields, average this difference over the sur-
face of the~identified! bodies as in the first term on the right
side of Eq.~16! ~with N51), and then let the bodies shrink
to zero size. Thus, if we consider the difference in electro-
magnetic forces between two bodies rather than the force on
a single body, the ‘‘point particle limit’’ should be much less
delicate, and, in particular, much less sensitive to small de-
viations from sphericity, etc.~provided, of course, that these
deviations are essentially the same for both bodies!.

Indeed, even if the bodies are in different curved space-
times, it should be possible to keep the difference in the
electromagnetic forces on these~suitably identified! bodies
under good control. In a curved spacetime, the above calcu-
lations would be modified in the following ways. First, we
must use parallel transport to define the integral expression
for pa. To do this explicitly, it is convenient to introduce an
arbitrary unit vector,ka, at a point on the representative
world line and then parallel transportka along the worldline.
For eacht, let S(t) be the hypersurface generated by geo-
desics orthogonal toua at point z(t) of the representative
world line. For eacht, we defineka on S(t) by parallel
transport along these geodesics, thereby definingka in a
neighborhood of the entire worldline. We define the four-
momentumpa at pointz(t) by

kapa5E
S
ka~Tbody

ab !ebcde, ~18!

3384 56THEODORE C. QUINN AND ROBERT M. WALD



Again, we assume that a representative world line can be
found for the extended body such that Eq.~2! holds to an
excellent approximation when the body is sufficiently small
and nearly spherical.

If we introduce Riemann normal coordinates at pointz(t)
in place of the Cartesian coordinates of the flat spacetime
derivation, the calculation which produced Eq.~16! from Eq.
~5! is essentially unchanged, with the curvature of the back-
ground introducing only a few corrections to Eq.~16!. First,
a new term involving¹bka explicitly appears in the inte-
grand in Eq.~7!. Further corrections also result from the fact
that the Riemann normal coordinate components ofka are
not constant. In addition,wbdSb deviates slightly fromNdV,
wheredV is the Riemann normal coordinate volume element
for the hypersurface. However, these corrections all decrease
with the size of the particle and should become negligible in
the point particle limitR→0.

When will two bodies~possibly in different curved space-
times! be such that the difference in their electromagnetic
fields will be suitably bounded as their size shrinks to zero?
To answer this question properly, we would need to carefully
examine the behavior of the ‘‘self-field’’ of extended bodies
as the ‘‘point particle limit’’ is approached. We shall not
attempt to analyze this here. However, a good guess as to the
answer to this question can be obtained by examining the
exterior field of a point charge in a curved spacetime, and
finding the conditions under which the difference between
the fields of two such charges is—with a suitable identifica-
tion of neighborhoods of the world lines of the particles—
suitably bounded as one approaches a point on the world line
of the particle.

To do so, we need to study the singular behavior of the
electromagnetic field of a point charge in curved spacetime
as one approaches the world line of the point charge. As
stated above, we are concerned only with solutions to Eq.~1!
which are singular precisely on the world line of the particle
itself. It follows from the general theory of propagation of
singularities~see theorem 26.1.1 of Hormander@10#!, that all
such solutions have the same singular behavior, i.e., the dif-
ference between any two solutions must be smooth on the
world line of the particle itself.2 Thus, to examine the singu-
lar behavior, it suffices to focus attention on any particular
solution. When (M ,gab) is globally hyperbolic, it is conve-
nient to examine the advanced and retarded solutions. The
behavior of these solutions near the world line of the particle
can be calculated by the Hadamard expansion techniques de-
tailed by DeWitt and Brehme@5#. The result is

Fa8b8
6

~x!52e ḡa8[aḡ ub8ub]F r 22k21uaVb1
1

2
r 21k23aaub

1
1

8
k25uaVba22

1

2
k23ȧaVb6

2

3
k24ȧaub

1
1

12
k21uaVbR2

1

6
k21uaRb

cV
c

1
1

2
k21VaRb

cu
c1

1

12
k21uaVbRcdV

cVd

1
1

2
k21Ra

c
b

ducVd2
1

12
k23uaVbRcdu

cud

1
1

6
k23uaRb

cdeu
cudVe7

1

3
k22uaRb

cu
cG

6eE
t6

6`

2¹ [b8Ga8]a9
6 ua9~t9!dt91O~r !. ~19!

Here, ua denotes the four-velocity of the point charge at
point z(t) on its world line, andx denotes a point suffi-
ciently nearz(t) lying on the hypersurface generated by
geodesics fromz(t) which are orthogonal toua. The
outward-directed unit tangent atz(t) to the geodesic passing
throughx is denoted byVa, and the affine parameter ofx
~i.e., the distance ofx from the world line! is denoted byr .
Primed indices refer to tensors atx, while unprimed indices
refer to tensors atz(t), and ḡ a8

a„x,z(t)… denotes the biten-
sor of geodesic parallel transport. The quantityk is defined
by k[A2uaub¹a¹bs2aa¹as, wheres denotes thebisca-
lar of squared geodesic distance, which plays a fundamental
role in all of these expansions.@The normalization ofs is
such thats„x,z(t)…5r 2/2.# We have setaa[ub¹bua and
ȧa[ub¹baa. The last term in the above equation is usually
referred to as the ‘‘tail term,’’ and it results from the failure
of Huygen’s principle in curved spacetime. In that term,
Ga8a9

6
„x,z(t9)… denotes the advanced/retarded Green’s func-

tion for the vector potential in the Lorentz gauge, so that

¹b¹bGaa8
6

2Ra
bGba8

6
524p ḡ aa8d~x,z!, ~20!

andt6 denotes the proper time of the point on the world line
of the charged particle which intersects the future/past light
cone of x. @The alternating sign in front of the tail term
integral in Eq.~19! merely puts the limits in the appropriate
time order.# The integral in the tail term runs from (t66e)
to 6` with the limit e→0 then being taken.3 No distribu-
tional component ofGa8a9

6
„x,z(t9)… is encountered in the

integral, and we shall assume that the tail term remains
smooth asx approachesz(t) ~as should be the case if suit-
able asymptotic conditions are placed on the world line and
the spacetime!.

2Note that this implies, in particular, that the advanced minus
retarded solution is always smooth throughout the spacetime—
including on the world line of the particle—provided only that the
advanced and retarded solutions themselves are nonsingular off of
the world line of the particle.~However, as illustrated by the ex-
ample of a uniformly accelerating charge in Minkowski spacetime,
the advanced and retarded solutions need not always be nonsingular
away from the world line of the particle.!

3If the world line is not complete~i.e., if it does not extend to
infinite proper time in the future/past!, then the upper limit of the
tail term integral should be the maximum/minimum proper time
values of the curve.
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In addition to obvious notational differences, our expres-
sion differs from Eq.~5.12! of DeWitt and Brehme@5# in
three ways. First, we have added the terms that DeWitt and
Brehme omitted due to a trivial calculational error~see
Hobbs@6#!. Second, we have written the tail term in terms of
the Green’s functionGa8a9

6
„x,z(t9)… rather than the Had-

amard expansion termva8a9„x,z(t9)…. The latter expression
gives the correct form of the tail term only whenx is suffi-
ciently close toz(t9), and, in general, is not even defined for
large separations@when, in particular, there need not be a
unique geodesic joiningx andz(t9)#. Finally, our sign con-
vention for the Riemann tensor is that of@11#, which is op-
posite to that of DeWitt and Brehme.

In order to find the singular behavior ofFa8b8
6 , we need to

expand the coordinate components ofḡ a8a and k. Both of
these quantities take particularly simple forms in terms of
Riemann normal coordinates based atz(t). We have

ḡa8
a5da8

a1
1

6
r 2VgVdRa8

gad1O~r 3! ~21!

and

k5A11raaVa1 1
3 r 2uaubVgVdRagbd1O~r 3!. ~22!

Substituting these expansions into Eq.~19!, we have

Fa8b8
6

~x!52eF r 22u[a8Vb8]2
1

2
r 21~aaVa!u[a8Vb8]1

3

8
~aaVa!2u[a8Vb8]1

1

2
r 21a[a8ub8]

2
1

6
uaubVgVdRagbdu[a8Vb8]2

3

4
~aaVa!a[a8ub8]1

1

6
V [b8Ra8]satu

aVsVt1
1

8
u[a8Vb8]a

22
1

2
ȧ[a8Vb8]

6
2

3
ȧ[a8ub8]1

1

12
u[a8Vb8]R2

1

6
u[a8Rb8]gVg1

1

2
V [a8Rb8]gug1

1

12
u[a8Vb8]RgdVgVd1

1

2
R[a8ugub8]dugVd

2
1

12
u[a8Vb8]Rgdugud1

1

6
u[a8Rb8]gdeu

gudVe7
1

3
u[a8Rb8]gugG6eE

t6

6`

¹ [b8Ga8]a9
6 ua9~t9!dt91O~r !. ~23!

Although this formula is explicitly for the advanced/retarded
solution in a globally hyperbolic spacetime, as noted above,
the singular behavior ofFab will be the same as in Eq.~23!
for any solution of Maxwell’s equations with source~1! in a
~possibly non-globally-hyperbolic! spacetime, provided only
that Fab is smooth away from the world line of the particle.

From Eq.~23!, it can be seen that the divergent terms in
Fa8b8

6 depend only upon the four-velocity and the four-
acceleration of the world line atz(t). In particular, they do
not depend upon the spacetime curvature or derivatives of
the acceleration. Furthermore, although many of the finite
terms ~which do depend upon the curvature andȧa) are
direction-dependent and thus have singular angular deriva-
tives on the world line, the radial derivatives of these terms
@which is all that enters the volume term in Eq.~16!# are
bounded. Therefore, it seems plausible that if we have two
bodies with the same magnitude of acceleration at corre-
sponding pointsP and P̃ on their representative world lines
and if we identify neighborhoods ofP andP̃ using Riemann
normal coordinates, withua aligned with ũa andaa aligned
with ãa, then the singular contributions of the ‘‘self-fields’’
to f EM

a in the point particle limit should cancel. Thus, the
difference inf EM

a for the two bodies in the point particle limit
should be given by a version of the Lorentz force law
wherein we average the difference in the electromagnetic
fields over a surface of radiusr as in the first term on the

right side of Eq.~16! ~with N51), and then letr→0. This
provides the motivation for axiom 1 below.

B. The axioms

We now are ready to state our main axiom, the motivation
for which was given in the previous subsection.

Electromagnetic axiom 1 (comparison axiom).Consider
two points,P and P̃, each lying on timelike world lines in
possibly different spacetimes which contain Maxwell fields
Fab and F̃ab sourced by particles of chargee on the world
lines. If the four-accelerations of the world lines atP and P̃
have the same magnitude, and if we identify the neighbor-
hoods ofP andP̃ via Riemann normal coordinates such that
the four-velocities and four-accelerations are identifed, then
the difference in the electromagnetic forcesf EM

a and f̃ EM
a is

given by the limit asr→0 of the Lorentz force associated
with the difference of the two fields averaged over a sphere
at geodesic distancer from the world line atP.

f EM
a 2 f̃ EM

a 5 lim
r→0

~^Fab2F̃ab&!ub . ~24!

Axiom 1 is a very powerful one, since it enables us to
compute the difference in electromagnetic force between any
two particles which have the same instantaneous accelera-
tion. Thus, to obtainf EM

a for an arbitrary trajectory in an
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arbitrary curved spacetime, it suffices to knowf EM
a for a

uniformly accelerating particle—with arbitrary acceleration
aa—in Minkowski spacetime, with the electromagnetic field
chosen to be, say, the half-advanced, half-retarded solution.

Let us, then, consider this special case. By symmetry,f EM
a

must be proportional toaa. If the proportionality factor were
constant, such a force would correspond merely to a ‘‘mass
renormalization,’’ and could be redefined away. On the other
hand, such a redefinition would not be possible if the propor-
tionality factor varied with acceleration. We see no argument
from symmetry considerations alone which would forbid the
presence of such a term. However, this spacetime, world
line, and Maxwell field possess a time reversal symmetry
about each point on the world line, which suggests that the
particle always should be absorbing as much electromagnetic
energy as it radiates, so the electromagnetic field should be
doing ‘‘no net work’’ on the particle. This, in turn, strongly
suggests thatf EM

a 50 in this case. Indeed, if we did not have
f EM

a 50, the type of calculation given in section 17.2 of Jack-
son @12# would show that our resulting prescription forf EM

a

would fail to conserve energy for a point particle trajectory
which begins and ends in inertial motion~where, in this cal-
culation, the infinite self-energy of the Coulomb field of the
particle is discarded at the initial and final times!. This mo-
tivates the following additional axiom, which agrees with
standard claims made in textbooks~see, e.g., Jackson@12#!:

Electromagnetic axiom 2 (flat spacetime axiom).If
(M ,gab) is Minkowski spacetime, the world line is uni-
formly accelerating, andFab is the half-advanced, half-

retarded solution,Fab5 1
2 @Fab

2 1Fab
1 #, then f a50 at every

point on the world line.
Note that, since the advanced and retarded solutions for

Fab for a uniformly accelerating charge in Minkowski space-
time coincide in a neighborhood of the world line~indeed,
within the entire ‘‘Rindler wedge’’ containing the world line
@13#!, it follows immediately from axiom 1 that we also have
f a50 whenFab is given by the advanced solution,Fab

1 , or
by the retarded solution,Fab

2 . Thus, we would obtain an
equivalent axiom if we replaced the half-advanced, half-
retarded solution by the advanced solution or the retarded
solution.

In the next subsection, we shall use axioms 1 and 2 together
with Eq. ~23! to computef EM

a for an arbitrary charged par-
ticle trajectory in an arbitrary curved spacetime.

C. The prescription

Let P be a point on the world line of a charged particle in
a curved spacetime (M ,gab) containing a Maxwell fieldFab
satisfying Eq.~1!, whereFab is singular only on the world
line of the particle. For simplicity we assume that (M ,gab) is
globally hyperbolic so a unique retarded Green’s function
exists; as explained at the end of this subsection, our formu-
las can easily be generalized to the non-globally-hyperbolic
case. Letua denote the four-velocity of the world line atP
and letaa denote its acceleration atP.

We may view the tangent space atP as a copy of
Minkowski spacetime. We shall denote the origin of this
tangent space byP̃. In this Minkowski spacetime, consider a
uniformly accelerating trajectory passing throughP̃ with

four-velocity ũa5ua and accelerationãa5aa. By axiom 2,
the electromagnetic force on this uniformly accelerating
Minkowski trajectory vanishes when the electromagnetic
field is given by the ~Minkowski! half-advanced, half-
retarded solution.

In (M ,gab), we writeFab
in 5Fab2Fab

2 , whereFab
2 denotes

the retarded solution, and it is assumed thatFab
in is smooth on

the world line of the particle. Near the actual trajectory of the
particle@in (M ,gab)#, Fab

2 is given by Eq.~23!. On the other
hand, near the uniformly accelerating trajectory in the tan-

gent space atP̃, the ~Minkowski! half-advanced, half-

retarded solutionF̃ab[
1
2 (F̃ab

2 1F̃ab
1 ) also is given by Eq.

~23! except that the ‘‘tail term’’ and all of the terms involv-
ing the curvature are absent, and there is cancellation of

terms involvingȧ and a2. Axiom 1 instructs us to subtract
this Minkowski retarded solution fromFab ~using the expo-
nential map—or, equivalently, Riemann normal
coordinates—to compare them!, average this difference over
a sphere of radiusr , and then letr→0. The electromagnetic
force on the particle atP is then just the Lorentz force asso-
ciated with the resulting field. We obtain

f EM
a 5e~F in!abub1

2

3
e2~ ȧa2a2ua!1

1

3
e2~Ra

bub

1uaRbcu
buc!1e2ubE

2`

t2

¹ [b~G2!a]c8uc8~t8!dt8.

~25!

The corresponding equation of motion of a charged particle
subject to no additional~i.e., nonelectromagnetic! external
forces is then simplyf EM

a 5maa.
Our result~25! agrees with that of DeWitt and Brehme@5#

as corrected by Hobbs@6#. Although we, of course, made
crucial use of the Hadamard expansion for the retarded
Green’s function~23!, no other lengthy computations were
needed in our approach, since we did not need to compute
the behavior of the electromagnetic stress-energy tensor near
the world line of the particle.

Note that the first term in Eq.~25! is the ordinary Lorentz
force due to the incoming field. The second term corresponds
to the familar flat spacetime Abraham-Lorentz damping
term. The third term is a local curvature term, whose pres-
ence is necessary to maintain conformal invariance off EM

a .
Finally, the fourth term is the so-called ‘‘tail term’’ resulting
from the failure of Huygen’s principle in curved spacetime.

Due to the presence of the Abraham-Lorentz term, the
equation of motionf EM

a 5maa shares the unphysical ‘‘run-
away solutions’’ of the ordinary flat spacetime equation of
motion. As in the flat spacetime case, this difficulty can be
resolved through the reduction of order technique. An expo-
sition of the rational for this technique as well as an expla-
nation of how to implement it in a general context can be
found in Sec. IV D of@16#. To implement it here, we view
e[e2/m as a ‘‘small parameter.’’ We differentiate Eq.~25!

~with f EM
a set equal tomaa) to obtain an expression forȧa,

and then substitute this expression back in Eq.~25!, neglect-
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ing terms which are higher than first order ine. We then
similarly eliminate the terms involvingaa from the right side
of Eq. ~25!. The result is

aa5
e

m
~F in!abub1

2

3

e2

mS e

m
uc¹c~F in!abub

1
e2

m2
~F in!abFbc

in uc2
e2

m2
ua~F in!bcucFbd

in udD
1

1

3

e2

m
~Ra

bub1uaRbcu
buc!

1
e2

m
ubE

2`

t2

¹ [b~G2!a]cuc~t8!dt8. ~26!

We believe that this equation properly describes the motion
of a small, nearly spherical charged body in a curved space-
time, taking into account the leading order effects of the
body’s ‘‘self-field.’’

Inasmuch as they require the retarded solution to be
singled out, expressions~25! and~26! are applicable as they
stand only for a particle in a globally hyperbolic spacetime.
However, since axiom 1 did not require global hyperbolicity,
it is clear that our axioms also determine the electromagnetic
force and equations of motion in the non-globally-hyperbolic
case as well. Perhaps the simplest way of generalizing our
formulas to the non-globally-hyperbolic case is as follows: If
we wish to obtainf EM

a at a pointz(t) on the world line of a
charged particle in a non-globally-hyperbolic spacetime,
simply choose a~sufficiently small! globally hyperbolic
neighborhood ofz(t). Equations~25! and ~26! then hold at
z(t), whereFab

in and the tail term are defined in the appro-
priate manner, relative to that neighborhood.

III. GRAVITATIONAL RADIATION REACTION

In this section, we seek to obtain the gravitational analog
of our formula~25! above for the total electromagnetic force
~including radiation reaction! on a charged particle, as well
as the analog of our equation of motion~26! above. The
latter will provide us with the lowest order correction to geo-
desic motion of a particle resulting from radiation reaction
effects. In our approach, we shall not make any of the slow
motion or post-Newtonian approximations common to most
other treatments of gravitational radiation reaction. On the
other hand, the applicability of our results will be limited to
the motion of a small, nearly spherical body.

There are many physical and mathematical similarities in
the analyses of the electromagnetic and gravitational radia-
tion reaction forces, and our analysis of gravitational radia-
tion reaction will ultimately closely parallel that of the elec-
tromagnetic case. However, there also are a number of very
significant differences between these two cases. We begin
our analysis of the gravitational case by explaining in detail
the nature of these differences.

Probably the most significant difference between the elec-
tromagnetic and gravitational cases concerns the formulation
of the question which we would like to pose. As discussed in
detail in the Introduction, we do not view a ‘‘point particle’’
as a fundamental object, but, instead, view the ‘‘point par-

ticle limit’’ as a convenient mathematical means of summa-
rizing results concerning the behavior of one-parameter
families of extended body solutions in the limit where not
only the size but also the charge and mass of the body go to
zero in a suitable manner. Nevertheless, in the electromag-
netic case, there is no difficulty in making sense of solutions
to Maxwell’s equations if we let the size of the body shrink
to zero keeping its charge fixed. This enabled us to pose~and
propose an answer to! the following idealized question in
Sec. II: Given a solution to Eq.~1! for a Maxwell field with
point particle source, what is the total electromagnetic force
on the charged particle? On the other hand, the correspond-
ing question in the gravitational case would be the following:
Given a solution to Einstein’s equation with a point particle
source, what is the total ‘‘gravitational force’’ on the par-
ticle? However, as already noted in the Introduction, this
question makes no sense, since there is no notion of a solu-
tion to Einstein’s equation with a ‘‘point mass’’ source@1#.

A resolution of this difficulty is suggested by the fact that
we are really interested in the case of~small! extended bod-
ies whose self-gravity is ‘‘weak.’’4 Thus, it should be ad-
equate to treat the gravitational effects of the body via lin-
earized perturbation theory off of a background vacuum
spacetime. For linear equations, there is no difficulty in mak-
ing sense of solutions with distributional sources, so, when
working with the linearized equations, it becomes math-
ematically legal to let the size of the body shrink to zero,
keeping its mass fixed. This suggests that we pose the fol-
lowing question, which is directly analogous to the question
posed in Sec. II: Let (M ,gab

(0)) be a spacetime satisfying the
vacuum Einstein equation, letz(t) be an arbitrary timelike
world line in (M ,gab

(0)), and letgab be a solution of the lin-
earized Einstein equation sourced by a particle following this
worldline. What is the total ‘‘gravitational force’’ on the par-
ticle?

Unfortunately, the above question also suffers from seri-
ous mathematical inconsistencies: By the linearized Bianchi
identity, the linearized Einstein equation implies exact con-
servation of the stress-energy of the~linearized! source with
respect to the background metric. In the limit where the
source is a point particle, this conservation requires the
world line of the particle to be a geodesic of the background
metric. Thus, ifz(t) is not chosen to be a geodesic ofgab

(0) ,
the above question makes no sense since there does not exist
any solutiongab whatsoever to the linearized Einstein equa-
tion with this source. But, a knowledge of the total ‘‘gravi-
tational force’’ only for geodesics ofgab

(0) would not be ad-
equate for obtaining the self-consistent motion of the particle
under the influence of its own gravitational ‘‘self-force,’’
since such a particle will deviate from geodesic motion.

The origin of this difficulty can be understood as follows.
Even for an extended body with very weak self-gravity, the
linearized Einstein equation does not hold exactly; rather
there are nonlinear corrections to this equation. Although
these nonlinear terms make only a very small correction to

4However, we do not wish to preclude the possibility of eventu-
ally extending our analysis to small bodies with strong self-gravity;
see@14#.
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gab , it is precisely the presence of these terms which are
responsible for the deviations from geodesic motion. By
throwing away the nonlinear terms ingab , we exclude from
the outset the possibility that the particle fails to move on a
geodesic of the background metric, thereby making it math-
ematically inconsistent to study departures from geodesic
motion.

To see this more explicitly, consider the exact Einstein
equation for the metricgab

(0)1gab , written in the form of the
linearized Einstein equation forgab in the Lorentz gauge,
with the nonlinear terms ingab moved to the right side of the
equation~in a schematic manner! to aid us in viewing them
as an additional ‘‘source term:’’

¹~0!c¹c
~0! ḡ ab22R~0!c

ab
dḡ cd

5216pTab1@nonlinear terms ingab#, ~27!

¹~0!aḡ ab50, ~28!

where ḡ ab[gab2 1
2 ggab

(0) .
As already noted above, for a body with weak self-

gravity, the matter stress-energyTab should dominate the
‘‘nonlinear terms ingab . ’’ More precisely,Tab is of order
m, whereas if there is no incoming gravitational radiation,
the nonlinear terms should have magnitude of orderm2 and
higher, wherem denotes the mass of the body. As we shall
see in more detail below, a knowledge of the resulting domi-
nantO(m) contribution togab from Tab will suffice for de-
termining the leading order contribution to the self-force, so
we should make little error by dropping the nonlinear terms.
However, if we do so, there are no solutions to Eqs.~27! and
~28! unless¹a

(0)Tab50.
However, a means of dealing with this difficulty is sug-

gested by the form in which we have written the equations.
Even when¹a

(0)TabÞ0, no mathematical inconsistencies oc-
cur in Eq.~27! alone when the nonlinear terms are dropped.
It is only when the Lorentz gauge condition~28! is adjoined
to this equation that inconsistencies arise. Thus, we propose
to simply relax the Lorentz gauge condtion so that it holds
only to the required accuracy, i.e., toO(m). ~This can be
ensured by simply requiring that any ‘‘incoming radiation’’
contributions togab satisfy the Lorentz gauge condition; i.e.,
¹bḡ ab

in 50, whereḡ ab
in [ḡ ab2 ḡ ab

2 .! The resulting system of
equations should then have the accuracy needed to obtain the
leading order contribution to the gravitational self-force, but
should not suffer from the mathematical inconsistencies
which would occur if the linearized Einstein equation were
used to relategab to Tab . We note that our viewpoint ap-
pears to correspond to that taken in@7#, and similar proce-
dures for relaxing field equations or gauge conditions at ap-
propriate orders also occur in many other approaches to
obtaining self-consistent equations of motion~see, e.g.,
@15#!.

Having reformulated the equations forgab in this manner,
we now may consider the point particle limit and pose the
following question: Let (M ,gab

(0)) be a spacetime satisfying
the vacuum Einstein equation, letz(t) be an arbitrary time-
like world line in (M ,gab

(0)), and letgab be a solution of

¹c¹cḡ ab22Rc
ab

dḡ cd

5216pmE d„x,z~t!…ua~t!ub~t!dt, ~29!

where ḡ ab
in [ḡ ab2 ḡ ab

2 satisfies the Lorentz gauge condition
~28!. What is the total ‘‘gravitational force’’ on the particle?

Although the above question is closely analogous to the
question posed at the beginning of Sec. II, there still remain
a several notable differences between the electromagnetic
and gravitational cases. First, since we have made a linear-
ized approximation, it is necessary here thatgab

in be ‘‘small’’
compared with the background metricgab

(0) . No correspond-
ing restriction onFab

in was necessary in the electromagnetic
case. This restriction ongab

in will have an important bearing
on the final form of the reduced order equations of motion
which we shall obtain at the end of this section. However, it
should be noted that this restriction ongab

in does not actually
impose any physical restriction on the applicability of our
results, since if we wished to consider a situation where the
incoming, free gravitational radiation is ‘‘large,’’ we could
simply incorporate this radiation into the background metric
gab

(0) . Indeed, there would be no~physical! loss of generality
in demanding thatgab

in 50, but we choose not to do so, since
there are a wide variety of circumstances where it is both
appropriate and convenient to treat the incoming radiation as
a linearized perturbation.

The second difference concerns the status of ‘‘external
forces.’’ In the electromagnetic case, we were free to assume
that Text

ab had no coupling to the electromagnetic field. How-
ever, in the gravitational case, it is not consistent to assume
that Text

ab has no gravitational coupling; we must includeText
ab

on the right side of Eq.~29!, and take into account its con-
tributions togab . Since, ultimately, we will setText

ab50 to
get the equations of motion of a freely falling particle, this
will not be relevant for our final formula for the equations of
motion. However, in our expression forf G

a , the presence of
Text

ab will make a contribution togab , which must be in-
cluded.

A third important difference concerns the gauge invari-
ance of our results. In the electromagnetic case, both the
Maxwell field, Fab , and the world line,z(t), of the particle
are gauge invariant. Most importantly, all of the information
concerning the motion of the particle is contained in the
specification ofz(t). However, in the gravitational case, nei-
ther gab nor z(t) are gauge invariant, since both can be
changed by diffeomorphisms. Indeed,z(t) can be changed
arbitrarily by diffeomorphisms. Thus, the specification of
z(t) alone provides no information about the motion of the
particle. Rather, this information is encoded in the joint
specification of bothz(t) and gab .

Despite the above differences, our analysis of the gravita-
tional self-force will now proceed in close parallel with the
electromagnetic case. In order to motivate the axioms which
we ultimately will adopt, we consider a small, nearly spheri-
cal extended body with weak self-gravity, so that the space-
time metric,gab , deviates only slightly from a vacuum so-
lution, gab

(0) . We seek to obtain an equation of motion for a
suitable representative world line in the body, expressed in
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terms of the structures associated with the ‘‘background
spacetime’’ (M ,gab

(0)). To do so, we view the exact four-
momentum density, (Tbody

ab )ebcde in the spacetime (M ,gab)
from the perspective of the background spacetime (M ,gab

(0)).
In parallel with Eq.~18!, at a pointz(t) on a representative
world line in the body with tangentua, we define the four-
momentumpa by

kapa5E
S~0!

ka
~0!~Tbody

ab !ebcde. ~30!

HereS (0) is the hypersurface generated by geodesics ofgab
(0)

which are orthogonal~with respect togab
(0)) to ua, and the

vector field ka
(0) is given the superscript ‘‘0’’ in order to

emphasize that we are extendingka off of the world line by
parallel transporting it with respect to the background metric
gab

(0) ~as opposed togab). As in the electromagnetic case, we
assume that a representative world line can be chosen so
that—to an excellent approximation when the body is suffi-
ciently small and spherical—we have at each point of the
world line

pa5mua. ~31!

Again, the difficulties in justifying this assumption would
provide one of the more formidable obstacles to converting
the motivational arguments given here into theorems about
radiation reaction forces.

From the perspective of the spacetime (M ,gab
(0)), the force

on the body is given by

f a[ub¹b
~0!pa. ~32!

Although we would expectgabp
apb to be constant along the

world line to the order to which we shall work, there is no
reason whygab

(0)papb need be constant to this order. Equiva-
lently, if we normalizeua so thatgab

(0)uaub521, there is no
reason why the parameterm in Eq. ~31! need be constant
along the curve. Ifgab

(0)papb fails to be constant,f a will fail
to be perpendicular toua ~in the metricgab

(0)); we shall retain
the component off a parallel to ua in our formula for the
gravitational force below. However, the deviation from geo-
desic motion,ub¹b

(0)ua, is determined entirely by the projec-
tion of f a perpendicular toua in the metricgab

(0) , i.e., we have

mub¹b
~0!ua5h~0!a

bf b, ~33!

wherehab
(0)5gab

(0)1uaub and all indices here are raised and
lowered usinggab

(0) . Thus, we ultimately will projectf a per-
pendicular toua when we wish to obtain the equation of
motion of the particle.

The calculation off a proceeds in parallel with the calcu-
lation in the electromagnetic case. Takingka to be parallel
transported~with respect togab

(0)) along the world line, we
have

kaf a5ub¹b
~0!~kapa!5E

S~0!
£w~ka

~0!Tbody
ab ebcde!. ~34!

Applying the identity~6! and using Stokes’ theorem, we ob-
tain

kaf a5E
S~0!

@¹bka
~0!Tbody

ab 1ka
~0!¹bTbody

ab #wcecde f . ~35!

In the first term, we rewrite¹bka
(0) as

¹bka
~0!5¹b

~0!ka
~0!2Cc

bakc , ~36!

where

Cc
ba[

1

2
g~0!cd~¹b

~0!gad1¹a
~0!gbd2¹d

~0!gba!. ~37!

Although ¹b
(0)ka

(0) will make a nonvanishing contribution to
the integrand due to the background curvature, this contribu-
tion is easily seen to vanish in our final expression forf a

when we take the point particle limit,5 so we will drop this
contribution as well as the other background curvature cor-
rections mentioned in the electromagnetic derivation as they
arise in the calculations below.

As in the electromagnetic case, for generality, we allow
the body to be coupled to additional classical matter with
stress-energy tensorText

ab . By conservation of total stress-
energy, we have

¹b@Tbody
ab 1Text

ab#50, ~38!

so that

¹bTbody
ab 52¹bText

ab . ~39!

Substituting these results in Eq.~35!, we have

kaf a5E
S~0!

2ka
~0!Ca

bcTbody
bc wddSd1kaf ext

a , ~40!

where

kaf ext
a [E

S~0!
2¹bText

abwddSd . ~41!

We now approximate the body to be ‘‘at rest’’ at timeS (0),
so thatTbody

bc 5rubuc, whereub is the unit normal~in the
metric gab

(0)) to S (0). We obtain

kaf G
a[ka~ f a2 f ext

a !

5E
S~0!

ka
~0!rS 1

2
ubuc¹~0!agbc

2ubuc¹b
~0!gc

aDwddSd . ~42!

This formula corresponds to Eq.~14! in the electromagnetic
case, with the expression in parentheses playing the role of
the electric fieldEa which appeared there. Therefore, we can
immediately write down the gravitational analog of Eq.~16!.
We obtain

5Note that neither¹bka nor ¹b
(0)ka would be negligible in the

point particle limit if ka were defined by parallel transport with
respect togab rather thangab

(0) .
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f G
a5m^EG

aN&R2E
S~t!

m~r !

4pr 2F]EG
a

]r
N1 r̂ babEG

aGdV

1@ terms which vanish asR→0#, ~43!

where

EG
a[

1

2
ubug¹agbg2ubug¹bgg

a. ~44!

In this equation and in all equations henceforth, it is to be
understood that all quantities exceptgab refer to the back-
ground structure, and the superscript ‘‘0’’ will be omitted on
the background metric and its derivative operator. As in the
electromagnetic case, a ‘‘point particle’’ limit of the right
side of Eq.~43! cannot be taken in a straightforward manner.
However, we can again consider thedifferencein f G

a on two
bodies of similar composition that move on different world
lines in ~possibly different! background spacetimes. In order

to find the conditions under which such a difference will
remain bounded asR→0, we once again study the singular
behavior of the exterior field of a point source in curved
spacetime using the Hadamard expansion techniques of De-
Witt and Brehme@5#. Since the trace-reversed metric pertur-
bation ḡ ab satisfies a wave equation~29! very similar to the
equation for the electromagnetic vector potential, the Had-
amard expansion goes through in close parallel with the elec-
tromagnetic case. The covariant expansions forḡ a8b8

6 and

¹c8 ḡ a8b8
6 @the gravitational analogs of Eq.~19!# are given by

ḡ a8b8
6

~x!52m ḡa8(aḡ ub8ub)[2r 21uaub64k22aaub]

6mE
t6

6`

Ga8b8a9b9
6 ua9~t9!ub9~t9!dt91O~r !

~45!

and

¹c8 ḡ a8b8
6

~x!52m ḡc8c ḡ a8(aḡ ub8ub)F22r 22k21uaubVc24r 21k23aaubuc2r 21k23uaubac2
1

4
k25a2uaubVc

1k25uaubucȧdVd12k23ȧaubVc12k23aaabVc6
2

3
k26a2uaubuc74k24ȧaubuc74k24aaabuc

74k24aaubac7
2

3
k24uaubȧc2

2

3
k23Rde f

cuaubudVeuf22k23Rde f
aubucudVeuf12k21Rc

ed
aubudVe

22k21Rd
a

e
bVcudue72k22Rc

de
aubudue62k22Rd

a
e
bucudueG

6mE
t6

6`

¹c8Ga8b8a9b9
6 ua9~t9!ub9~t9!dt91O~r ! . ~46!

@In these formulas, we have normalized the advanced and retarded Green’s functionsGaba8b8
6 so that they satisfy Eq.~29! with

source216p ḡ aa8 ḡ bb8d(x,z).#
Expandingḡa8a andk, we find that the Riemann normal coordinate components of¹cḡ a8b8

6 , in the same notation as Eq.
~23!, are

¹g8 ḡ a8b8
6

~x!52mF22r 22ua8ub8Vg824r 21a~a8ub8)ug82r 21ua8ub8ag81r 21ua8ub8Vg8a
dVd16a(a8ub8)ug8a

dVd

1
3

2
ua8ub8ag8~adVd!2

3

4
ua8ub8Vg8~adVd!21ua8ub8ug8ȧ

dVd1
1

3
ua8ub8Vg8RdlekudueVlVk

2
2

3
Ra8dleu

lVdVeub8Vg82
1

4
a2ua8ub8Vg812ȧ(a8ub8)Vg812aa8ab8Vg86

2

3
a2ua8ub8ug874ȧ(a8ub8)ug8

74aa8ab8ug874a(a8ub8)ag87
2

3
ua8ub8ȧg82

2

3
Rdelg8ua8ub8u

dVeul22Rdel~a8ub8)ug8u
dVeul

12Rg8ed~a8ub8)u
dVe22Rda8eb8Vg8u

due72Rg8de~a8ub8)u
due62Rda8eb8ug8u

dueG
6mE

t6

6`

¹g8Ga8b8a9b9
6 ua9~t9!ub9~t9!dt91O~r !. ~47!
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We have verified Eqs.~45!, ~46!, and~47! using the soft-
ware package MathTensor. Apart from differences in nota-
tion and sign conventions, there are two differences between
Eqs. ~45! and ~46! and the corresponding Eqs.~2.77! and
~2.33! of @7#. The first is that we write the ‘‘tail term’’ inte-
grands in terms of the full retarded and advanced Green’s
functions, while the authors of@7# write the ‘‘tail term’’ in-
tegrands in terms of the Hadamard expansion termvaba8b8,
in parallel with DeWitt and Brehme@5#. Second, the authors
of @7# have dropped allO(r 0) terms in the expression for

¹c8 ḡ a8b8
6 which contain time derivatives of the particle’s

four-velocity in accordance with an approximation scheme
adapted to their specific calculation.

Aside from the obvious complexity introduced by the ad-
ditional index structure, there are two important differences
between the above formulas and the corresponding formulas
in the electromagnetic case. First, as stated above, we have
assumed here that the background spacetime is a solution of
the vacuum Einstein equation, so in the gravitational case, no
terms are present which involve the Ricci curvature. Al-
though it would be possible to repeat the above analysis by
perturbing off of a nonvacuum solution, the perturbations of
the metric and background matter would become coupled at
linear order, so Eq.~29! no longer would hold, and the entire
analysis would have to be redone. Second, due to the pres-
ence of several terms of alternating sign in the above expres-
sions which do not depend upon curvature, we see that the
advanced and retarded expressions forgab and its first spatial
derivative for a uniformly accelerating trajectory in flat
spacetime do not agree in a neighborhood of the world line
of the particle. In parallel with the electromagnetic case, the
advanced and retarded solutions can be shown to be gauge
equivalent within the entire ‘‘Rindler wedge’’ containing the
worldline. However, unlike the electromagnetic case, the
analog of the Lorentz force,2Ca

bcu
buc, is not gauge invari-

ant in this case, and it differs for the advanced and retarded
solutions even in the limit asr→0. Nevertheless, it can be
verified that this difference between the forces for the ad-
vanced and retarded solutions is parallel to the four-velocity
of the particle. Therefore, when we project the force perpen-
dicular to the particle’s four-velocity to produce an equation
of motion, the difference will vanish and the situation is
effectively the same as in the electromagnetic case.

Despite the above differences, Eq.~47! shares the most
important property of the analogous electromagnetic expres-
sion ~23!, namely the divergent terms asr→0 depend only
upon the four-velocity and four-acceleration of the particle at
z(t). Therefore, in direct analogy with axiom 1 in the elec-
tromagnetic case. We postulate the following.

Gravitational axiom 1 (comparison axiom).Consider two
points,P and P̃, each lying on timelike world lines in~pos-
sibly different! spacetimes which contain linearized metric
perturbations sourced by particles of massm on the world
lines @see Eq.~29!#. If the four-accelerations of the world
lines atP andP̃ have the same magnitude, and if we identify
the neighborhoods ofP and P̃ via Riemann normal coordi-
nates such that the four-velocities and four-accelerations are
identifed, then the difference in the gravitational forcesf G

a

and f̃ G
a , is given by the limit asr→0 of the difference of the

effective gravitational forces averaged over a sphere at geo-
desic distancer from the world line atP,

f G
a 2 f̃ G

a 5 lim
r→0

S K S 1

2
¹agbc2¹bga

cD2S 1

2
¹ag̃bc

2¹bg̃ a
cD L Dubuc. ~48!

In analogy with axiom 2, we also postulate the following.
Gravitational axiom 2 (flat spacetime axiom).If ( M ,gab)

is Minkowski spacetime, the world line is uniformly accel-
erating, andgab is the half-advanced, half-retarded solution,

gab5 1
2 @gab

2 1gab
1 #, then f G

a 50 at every point on the world
line.

As noted above, since2Ca
bcu

buc differs for the ad-
vanced and retarded solutions, it does matter in this case that
we use the half-advanced, half-retarded solution in this
axiom, rather than, say, the advanced or retarded solution,
although this difference does not affect the projection of the
force perpendicular to the world line of the particle.

In parallel with the electromagnetic case, the above axi-
oms yield the following prescription for the gravitational
force. Let (M ,gab) be a solution of the vacuum Einstein
equation and letgab be a solution of Eq.~29!. At a point P
on the particle’s world line, we comparegab with the half-
advanced, half-retarded solution for a uniformly accelerating
trajectory in the tangent space~using the exponential map to
make the comparison!. The gravitational force is then given

by calculating the difference in2Ca
bcu

buc5( 1
2 ¹agbc

2¹bga
c)u

buc for these two fields, averaging over a sphere
of radius r , and letting r→0. If we write gab as
gab5gab

in 1gab
2 , the resulting expression is

f G
a 5mS 1

2
¹agbc

in 2¹b~g in!a
cDubuc2m2S 11

3
ȧa1

1

3
a2uaD

1m2ubucE
2`

t2 S 1

2
¹aGbca8b8

2
2¹b~G2!c

a
a8b8D

3ua8ub8dt8. ~49!

As anticipated, this expression contains contributions to
f G

a parallel to the four-velocityua, which merely describe the
effect of the metric perturbation on the normalization ofua.
To obtain the equations of motion, we projectf G

a perpendicu-
lar to ua as in Eq.~33! above. This yields

aa5S 1

2
¹agbc

in 2¹b~g in!a
c2

1

2
uaud¹dgbc

in Dubuc

2
11

3
m~ ȧa2a2ua!1mubucE

2`

t2 S 1

2
¹aGbca8b8

2

2¹b~G2!c
a

a8b82
1

2
uaud¹dGbca8b8

2 Dua8ub8dt8.

~50!
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It should be noted that an Abraham-Lorentz term of the
form (ȧa2a2ua) appears in Eq.~50!, but with a sign oppo-
site to that of the electromagnetic case, corresponding to the
‘‘antidamping’’ phenomenon found by Havas@17#. ~See also
Carmeli @18#.!

Finally, we apply to this equation of motion the same
reduction of order techniques that we applied to the electro-
magnetic equation of motion. When we do so, the terms on
the right side involvingmȧa andmaa get eliminated in favor
of terms involving mgab

in . However, our equation~50! is
valid only to linear order in bothm and gab

in , so it is not
consistent to keep terms involving products of these two
quantities.@This contrasts strongly with the electromagnetic
case, we we worked only to linear order ine2/m, but Fab

in

was allowed to be as large as we liked, so that (e/m)Fab
in

could be treated as being of order unity.# Consequently, the
reduction of order procedure in this case effectively drops
the Abraham-Lorentz terms, leaving the ‘‘tail term’’ as the
only contribution to the ‘‘self-force:’’6

aa5S 1

2
¹agbc

in 2¹b~g in!a
c2

1

2
uaud¹dgbc

in Dubuc

1mubucE
2`

t2 S 1

2
¹aGbca8b8

2
2¹b~G2!c

a
a8 b8

2
1

2
uaud¹dGbca8b8

2 Dua8ub8dt8. ~51!

This formula agrees with the results of Minoet al. @7#, al-
though they did not includegab

in in their expression and, as
noted previously, they wrote their ‘‘tail term’’ integrand in
terms of the Hadamard expansion termvaba8b8 rather than
the full advanced/retarded Green’s functions. Note that Eq.
~51! has a very simple interpretation: To lowest nontrivial
order, the particle moves on a geodesic ofgab

(0)1gab , where

gab5gab
in 1gab

tail and ḡ ab
tail5gab

tail2 1
2 gab

(0)g tail is the last term in
Eq. ~45!.

IV. CONCLUSIONS

In this paper, we have taken an axiomatic approach to
obtain the lowest order electromagnetic and gravitational
‘‘self-forces’’ on a small, nearly spherical body of suffi-
ciently small charge and/or mass. Our final result for the total
electromagnetic force on a body~possibly acted upon by an
external electromagnetic field as well as additional, nonelec-
tromagnetic ‘‘external forces’’! is given by Eq.~25!. If such
a body is subject only to electromagnetic forces, our final
result for the~reduced order! equation of motion of the body
is given by Eq.~26!. The corresponding results for the gravi-
tational case are given by Eqs.~49! and ~51!.

The above electromagnetic results were derived from the
two axioms given in Sec. II B, and the corresponding gravi-
tational results were obtained from the axioms of Sec. III.
Although plausibility arguments in support of these axioms

were given, we did not attempt to prove that the electromag-
netic axioms follow as a consequence of Maxwell’s equa-
tions in curved spacetime together with conservation of total
stress-energy, nor did we attempt to prove that the gravita-
tional axioms follow from Einstein’s equation. Nevertheless,
we believe that our plausibility arguments have provided the
first steps in that direction. In any case, the problem of pro-
viding a rigorous justification for the electromagnetic and
gravitational self-forces and the corresponding equations of
motion has been reduced to the problem of providing a rig-
orous justification of our axioms.

Finally, we note that on account of the ‘‘tail term,’’ our
equations of motion in both the electromagnetic and gravita-
tional cases are integro-differential equations which, in prin-
ciple, require us to know the entire past history of the par-
ticle. However, if the curvature of spacetime is sufficiently
small and the motion of the body is sufficiently ‘‘slow,’’ one
would expect the ‘‘tail term’’ to become effectively local,
since the contributions to the ‘‘tail term’’ arising from por-
tions of the orbit distant from the present position of the
particle should become negligible. Indeed, if the tail term
becomes effectively local, arguments using the standard di-
pole formula for radiated energy together with conservation
of energy~see@12# and the analogous gravitational calcula-
tion given below! suggest that ifFab

in 50 and Rab50, the
‘‘tail term’’ of Eq. ~26! should reduce to the familiar
Abraham-Lorentz damping force

f EM
i 5

2

3
e2

d3xi

dt3
. ~52!

That this is indeed the case was established by DeWitt and
DeWitt @19# for a charged particle in a slow, circular orbit in
linearized Schwarzschild spacetime. It should be emphasized
that the ‘‘true’’ Abraham-Lorentz force actually vanishes
here—sinceaa5ȧa50 for geodesic motion—but, remark-
ably, the tail term mocks up an effective Abraham-Lorentz
term.

In the gravitational case, the standard ‘‘quadrupole for-
mula’’ for radiated power in the slow motion, weak field
limit is

P5
1

45

d3Qi j

dt3
d3Qi j

dt3
, ~53!

where i and j are spatial indices (i , j 51,2,3) for a set of
global inertial coordinates andQi j is the traceless quadrupole
moment

Qi j [qi j 2
1

3
qd i j , ~54!

qi j [3E T00xixjd3x. ~55!

So, for a point particle,

Qi j 53mS xixj2
1

3
xkxkd

i j D . ~56!
6This contrasts sharply with the analysis of@17# which effectively

neglected the dominant ‘‘tail term.’’
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By conservation of energy, we should have

E f G
i v idt52

1

45E d3Qi j

dt3
d3Qi j

dt3
dt52

1

45E d5Qi j

dt5
dQi j

dt
dt

52
6

45
mE d5Qi j

dt5
S v ixj2

1

3
vkvkd i j Ddt

52
2

15
mE S d5Qi j

dt5
xj D v idt, ~57!

which suggests that the radiation reaction force should be
given by ~see section 36.8 of Misner, Thorne, and Wheeler
@11#!

f G
i 52

2

15
m

d5Qi j

dt5
xj . ~58!

It would be interesting to perform the gravitational analog of
the analysis of DeWitt and DeWitt@19# to see if this formula
does, indeed, arise from the tail term of Eq.~51! in the slow
motion, weak field limit.
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