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The problem of determining the electromagnetic and gravitational “self-force” on a particle in a curved
spacetime is investigated using an axiomatic approach. In the electromagnetic case, our key postulate is a
“comparison axiom,” which states that whenever two particles of the same ckdrgee the same magnitude
of acceleration, the difference in their self-force is given by the ordinary Lorentz force of the difference in their
(suitably comparedelectromagnetic fields. We thereby derive an expression for the electromagnetic self-force
which agrees with that of DeWitt and Brehme as corrected by Hobbs. Despite several important differences,
our analysis of the gravitational self-force proceeds in close parallel with the electromagnetic case. In the
gravitational case, our final expression for {neduced ordgrequations of motion shows that the deviation
from geodesic motion arises entirely from a “tail term,” in agreement with recent results of klirao.
Throughout the paper, we take the view that “point particles” do not make sense as fundamental objects, but
that “point particle equations of motion” do make sense as means of encoding information about the motion
of an extended body in the limit where not only the size but also the charge and mass of the body go to zero
at a suitable rate. Plausibility arguments for the validity of our comparison axiom are given by considering the
limiting behavior of the self-force on extended bodig30556-282(97)05518-5

PACS numbdrs): 04.25~g, 04.30-w

[. INTRODUCTION point particle limit in a straightforward manner, keeping the
total chargeg, and massm, of the body fixed. In the elec-

In this paper, we shall investigate the motion of an iso-tromagnetic case, the linearity of Maxwell's equations al-
lated body coupled to classical fields in the limit where thelows one to make sense of the electromagnetic field of a
spatial extent of the body is small enough that the detailedbody of finite charge in the point particle limit. However, the
structure of the body is unimportant, but where the lowesttress-energy of the electromagnetic field becomes singular
order effects of the “self-field” of the bodywhich are re- in this limit, and the stress-energy of the matter fields com-
sponsible for “radiation reaction)’are taken into account. prising the body must become correspondingly singular in
Specifically, we shall considdii) the motion of a charged order for it to “hold itself together.” Hence, there is no
body coupled to a Maxwell field on an arbitrary, fixed curvedreason to expect that a well defined point particle limit will
background andii) the motion of a massive body in an exist. In general relativity, the situation is even worse, since
otherwise vacuum spacetime in general relativity. the nonlinearity of Einstein’s equation does not allow one

No difficulty of principle is encountered in the calculation even to make sense of the “gravitational field” of a point
of the motion of any extended body once one has specifiethass[1]; physically, an extended body would presumably
what matter fields compose the body and the equations afollapse to a black hole before a point particle limit could be
motion of these matter fields. If one then gives the initialachieved. Thus, it does not appear to be mathematically or
data for these matter fieldas well as for the classical fields physically sensible to attempt to take a point particle limit—
to which they are coupledthe complete motion of the body holding the charge or mass fixed—in either the electromag-
is determined unambiguously by the full set of continuumnetic or gravitational cases.
field equations. However, in practice, the details of the mo- Nevertheless, we believe that there should exist some
tion of an extended body will be very complicated and will simple and general results regarding the motion of bodies in
depend on the detailed “internal structure” of the body. the limit where the size of the body is sufficiently smlbk
Thus, if one deals with general, extended bodies, it is highlycompared, in particular, with the scale of variation of the
unlikely that any simple results can be obtained which applybackground electromagnetic field and/or the radius of curva-
to large classes of systems. ture of the background spacetijrend the charge and mass

One would expect the details of the internal structure ofof the body also are sufficiently small that “self-field” ef-
the body to become less and less important in the limit agects do not become dominant—but are not negligible. Math-
one makes the body smaller. Thus, one obvious way to seekmatically rigorous results of this sort presumably would
a class of simple, general results is to take the limit of thetake the form of statements about limits of smooth, one-
continuum equations as the spatial extent of the body goes fgarameter families of solutions to the full continuum equa-
zero, thereby obtaining equations of motion for a “point par-tions in which both the spatial extent of the body and the
ticle” idealization of an extended body. However, as is welltotal charge,e, and/or massm, of the body are simulta-
known, serious difficulties arise in attempting to take theneously taken to zero in a suitable manner. Geodesic motion
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should result in such a limit.For a charged body, the Lor- approach of 3], the electromagnetic field of a point particle
entz force law in the background electromagnetic fieldis regularized by means of the Kirchhoff-d’Adhemar for-
should then arise as a correction to geodesic motion, with theula, whereas in our approach, the electromagnetic field is
acceleration of the body being of ordefm. For such a €ffectively regularized by considering differences in the
charged body, we seek in this paper to find the further corfields associated with different particle trajectoriegpossi-
rections to this result to ordes?/m. Similarly, for an un-  bly differeng spacetimes. We have not investigated whether
charged body, we seek to obtain the corrections to geodesiR€Se regularization schemes are equivalent.

motion to orderm in the acceleration of the body. These !N Sec. Il, we apply our approach to the case of charged
corrections arise from the “self-field” of the body and usu- POINt particles coupled to Maxwell fields on an arbitrary
ally are referred to as “radiation reaction” or “self-force” curved background. Our results agree with those of DeWitt

effects. In both cases, we shall not seek to obtain any addfd Brehmé5] (as corrected by HobH$)), but the calcu-
tional corrections to the motion due to the finite size and@tions required to obtain the radiation reaction force are con-

asphericity of the bodies. There is an extensive literature of/derably simpler and they generalize much more naturally to

the equations of motion of extended bodisse, e.g., Dixon the gravitational case. In Sec. Ill, we carry out this generali-

[4] and references cited thergiwhich takes into account the Zation to obtain th&(m) correction to geodesic motion for
lowest order deviations from Lorentz force or geodesic mo@ POINt particle propagating on an otherwise vacuum back-

tion due to such finite size effects, but neglects@e?/m) ground. Our final results agree with those recently obtained

andO(m) corrections which concern us here. Presumably, 1Y Mino et al.[7], bl}t, again, t_he calculations required in our
lowest order, the combined effects of both types of correc&PProach are considerably simpler.

tions would be obtained by simply adding together the radia-

tion r_eaction force due to self-field effect_s giver_l here and Il. ELECTROMAGNETIC RADIATION REACTION
“multipole” forces due to the background field which can be
found elsewhere in the literature. A. Introduction and motivation for the “comparison axiom”

Thus, the goal of this paper is to obtain effective equa- |n this section, we shall consider an arbitrary spacetime
tions of motion for a point particle which are accurate to the(\,g,,) containing an arbitrary timelike world ling(7)
orders specified in the previous paragraph. It should be emgjith tangentu® representing a point charge of chamand
phasized thatin contrast to some other analyses of radiationmassm. We consider an arbitrary solutiof2°, of Max-
reaction phenomefaur philosophy isnot to view a point \e|I's equations with the point particle as its source
particle of finite charge or mass as a fundamental object, but
rather to view the point particle equations of motion we ob- ab_ b
tain as a formal device to express approximate results for the VaF™ = _47Tef 8(x,z(7))u>(r)dr @
continuum theory, in the limit where not only the size but
also the charge and/or mass of the body are sufficientl
small.

As already indicated above, it should be possible to deriv
the results we seek rigorously, without any additional hy- X
potheses, by considering suitable one-parameter families &ef_er to as thetotal electromagnetic foreesuch that the

solutions in which the size, charge, and mass of the extendetP!Nt particle equation of motioa™= f*/m, will be valid to

body go to zero in an appropriate manner, and suitable aé)_rderezlm as an equation of motion for a sufficiently small,

sumptions are made about the composition and initial state d}ear_ly spherical charged body, as discussed in the previous
the body so that its deviations from sphericity are kept undeP€ction- _ o

good control in this limit. However, although we shall take a _In order to motivate the axiomatic approa_ch that we shall
few first steps in this direction in Sec. Il A, we shall not Ultimately adopt, let us see what happens if we attempt to
proceed in this manner here. Rather, we shall instead attemf/ V€ & formula fof® by considering a small, nearly spheri-

to “guess” the correct equations by defining a set of axiomsc@l e€xtended body and taking a “point particle limit.” To

which we believe the total force on the particle should obey@V0id unnecessary complications, we shall initially restrict

These axioms uniquely determine the force, and we thedttention in the discussion below to the case of a body mov-
shall give an explicit prescription which satisfies our axioms.N9 IN M!nkowskl spacetime. , . .
Our approach bears some similarity to an approach of The first .d'.ff'CUIt ISsue we enpounter |n.th|s program 15
Penrose[3] for obtaining the electromagnetic self-force in that of obtaining a “representative world line” in the ex-
the sense that, in both approaches, the self-force is given H§nded body which can be viewed as describing the motion

the ordinary Lorentz force associated with a regularized elec_-'c the bf’dy' SO that we may contem_plate the limiting beha_lv-
tromagnetic field. However, the regularization is accom-ior of this world line as the body shrinks toward zero spatial
plished in very different ways in the two approaches. In the€Xtent. We shall not attempt to analyze this issue here, but
will merely assume that by methods similar to those of Bei-
glback [8], it is possible to define a “center of mass” or
“center of motion” world line such that—to an excellent

1This should follow directly from the theorem of Geroch and Jang imati hen the body i fficientl Il and |
[2] that any world line in a fixed background spacetime having theappro.lea lon when the body IS .Su Iciently sma .an hearly
pherical—we have, at each point of the world line,

property that every neighborhood of it admits a conserved stress
energy tensor satisfying the dominant energy condition must be a
timelike geodesic. pA=muf, 2

)éuch thatF2P is smooth except on the world line of the
é;)article. Our aim is to give a prescription for assigning to
each point of the world line a vectd®—which we shall
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whereu® is the tangent to the representative world line andfield by T28,. For further generality, we also shall allow the
p? is given by body to be coupled to additional classical mattehich does
not couple to the electromagnetic figldith stress-energy
pa:J (ngdy)ebcde, €) tensor T3 (This additional matter can be thought of as a
X “hand” or “string” which pulls on the charged body. We
will set T2%=0 when we wish to obtain the equations of
motion for a charged body acted upon only by an electro-

h lanes. dicul a Y d h magnetic field, but permitting this extra coupling will allow
yperplanez perpendicular tau®. Here €,pcq denotes the ¢ 15 150 obtain an expression for the radiation reaction

volume four-form determined by the metric, and the inte-ty o for arbitrary world lines, when the charge is being

grand s to .be viewed as a vector-v alued three-form; the glo"pulled.” ) By conservation of total stress-energy, we have
bal parallelism of flat spacetime is used here to define the

integrals of tensor fields. It should be noted that the difficul-

ties in controlling errors in Eq(2) and the corresponding

equation in curved spacetime probably constitute the most

serious obstacle to converting the arguments given in thiBy Maxwell's equations, we have

paper into rigorous theorems about radiation reaction forces ab _ cab

which do not rely on any additional axioms. VoTem=—F"b, ©
We define the force on the extended body by

WhereTf)‘gd is the stress-energy of the bodyot including
the electromagnetic fieJdand the integral is taken over the

\Y b[ngdy_" Tew+ Tanl =0. 8

and therefore we can rewrite E(Y) as

_.b
fa=u"Vy(p?). (4) fa= f FacgwPds, +f2 (10
2(7)

Given Eq.(2), we see thaa®=uPV,u? will be given by the  \yhere

projection of f2/m orthogonal tou?. [This projection will

actually be unnecessary her_e in the _eIectromag_netlc_case fa V. T0wCds.

when we obtain the point particle equations of motion, since ext (7 bl ext c
. a . . T,

our final answer foff? as defined by Eq4) will turn out to

be orthogonal tas?, corresponding tan being independent For a body which accelerates with four-acceleratdn the

(11)

of 7in Eq. (2).] We have lapse function is given by
q N=wlu,=1+r"a, (12
- b - b
fa_@( JZ(T)(Tgody) ébcde) - L(T)£w((Tgody) €ncde): where here we have extended the definitiorudfover the

(5) hypersurface by parallel transpéiie., u? is the unit normal
to 3 (7)] andr? are the Cartesian coordinate components of

wherew? is the vector field which generates the map be-the displacement vector dii(7) with origin at the represen-
tween the successive spatial sliéésr). Note that the value tative world line. Thus, we obtain
of the integral does not depend upon how we choose to iden-
tify successive spatial slices, i.e., it depends only on the nor-
mal component ofv? (the lapse functionand not on its fEMEfa_faext:f FaﬁJBNdV, (13
spatial projection int& () (the shift vectoy. Using the stan- 3(7)
dard identity

wheredV denotes the ordinary volume element in the Eu-
Eapu=wW-du+d(w-p) (6)  clidean three-spac®(r) and the Greek indices denote com-
ponents in a global inertial coordinate system.
on a differential formu (where the centered dot denotes Let us now simplify the situation considerably further by
contraction into the first index of the foyntogether with  assuming that the body is exactly spherically symmetric and
Stokes’ theorem, we can rewrite the integrand to obtain  “at rest” with respect tou? at “time” 3(7), so that
J28=p(r)u® on X(7). (However, we make no symmetry or
other assumptions concerning the electromagnetic field.
fa= L( )Vng(l))d))chECv (7)  Then we have

where we now have rewritten our volume integral in more fEM=f p(r)E*NdV, (14
standard notation by writing/°d3. . in place ofw®e;ges- ()

We now assume that the body is coupled to a classicalhere EaEFaﬁuB_ We defineq(r) to be the total charge
electromagnetic fieldF ,, which satisfies Maxwell's equa- \ithin radiusr so that
tions with source given by the charge-current density of
the body. ThusF,, includes both the “self-field” of the ?BDBq(r)=4wr2p(r). (15)
body and any “background” electromagnetic field which
may be present. We denote the stress-tensor of the Maxwellhen, we have
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rPDga(r) réq(r) q(r) . ré
fo =f LE“Ndvzf D E*N dv—f 18D ,(E“N dv—f D rNE*NdV
M s amr? st P\ 4mr? S(n4arr? gl ) st P\ amr? a(r)
a(R) f q(r){&E"‘ . f
= E“NdS— N+rPa,E*|dV— 83(r)q(r)E*NdV
er47rR2 S(ndar?] or A S(7) (ra(r)
q(r){aE“ R
=e(E°N —f N+rfazE*|dV, 16
(ENom s(ndmr? or ’ 18

even in the regime where one would expect this force to be
where R represents the outer radius of the charged bodyessentially composition independent. However, inspection of
e=(q(R) is the total charge, angr denotes the average over Eq. (16) provides a possible means of dealing with this dif-
the sphere=R. ficulty, and this comprises the key new idea of this paper:
The difficulties encountered in trying to obtain a prescrip-Suppose that, rather than calculating the electromagnetic
tion for f,, in a simple, straightforward manner by taking force (16) on a particular body, we instead attempt to calcu-
the point particle limit of the equations of motion for an late thedifferencein the electromagnetic force on two bodies
extended body can be seen directly from Etf). Let us  Of the same(or very similaj composition, which move on
split the total electromagnetic fields,,, into a smooth different world lines in(possibly different spacetimes. Then,
“packground piece,”F(®), which has a smooth limit as the Under appropriate circumstanceee below, it seems plau-
size of the body is shrunk to zero and a pi:F(g@ which we sible that we may identify neighborhoods of the bodies in

may view as being “due to the charge” itseliMost com- Slrighitarwlail/ tg?;rtqd'ﬁizelngem t?is eI(f-:‘crtrtchlm?v%nebtlcdifleld N
monly F(Y) would be taken to be the retarded solution with "¢ 'S fe'evant irst spatial derivatives for the two bodies ca

sourceJ.) When the size of the body becomes sufficientl remain bounded as both of the bodies shrink to zero size at
Y y €N the same rate. If so, the volume integral contribution to the
small (in particular, much smaller than the scale of varlatlondifferencein f2_for the two bodiesthe last term on the
of F)), the contribution ofF ) to the volume integral in right side of EEM(lB)] will go to zero. The difference i
Eq. (16) becomes negligible, whereas the surface tern} N . N ~ TEM
straightforwardly vields the Lorentz force law or the two bodies will then be given by a version of the
9 vy Lorentz force law, wherein we take the difference in the
electromagnetic fields, average this difference over the sur-
f(0a_ o p(0)aby, (17) face of the(identified bodies as in the first term on the right
EM b side of Eq.(16) (with N=1), and then let the bodies shrink
to zero size. Thus, if we consider the difference in electro-

. : . magnetic forces between two bodies rather than the force on
since the lapse functiol, may be approximated as 1 when i 0 10y the “point particle limit” should be much less

- ) N L
the body shrinks to zero size witlh" remaining bounded. delicate, and, in particular, much less sensitive to small de-

Indeed, even if the body were nonspherical and/or not per-. . L .
fectly “at rest,” there would be no significant difficulty in viations from sphericity, etqprovided, of course, that these

btaining the | t order finite si tiong & deviations are essentially the same for both bgdies
Zga'gin)(%n[g])owes order finite Size correction (see, Indeed, even if the bodies are in different curved space-

o ) _ times, it should be possible to keep the difference in the
H(cl);/vever, the situation is completely gl)fferent W|th2regard electromagnetic forces on thetsuitably identifiedl bodies
H H 1] l a

toFgp , which coptrlputes(% self-force'fgyy” of ordere”. It ynder good control. In a curved spacetime, the above calcu-
the total charge is fixed7;, and its spatial derivatives be- |ations would be modified in the following ways. First, we
come unboundedly large as the size of the body is madgust use parallel transport to define the integral expression
small, so that the integrals appearing in ELf) cannot eas- for p. To do this explicitly, it is convenient to introduce an
ily be controlled. These integrals could still have a well de-arbitrary unit vector,k?, at a point on the representative
fined limit as a result of cancellations over the different por-world line and then parallel transpde along the worldline.
tions of the body, but the situation clearly is extremely For eachr, let 3(7) be the hypersurface generated by geo-
delicate. In particular, small deviations from exact sphericitygesics orthogonal te® at pointz(7) of the representative
or being exactly “at rest”(as well as small corrections due orld line. For eachr, we definek® on 3(7) by parallel
to curvature when we consider the motion of charged bOdieﬁansport along these geodesics, thereby defiiign a

in curved spacetimecould easily contribute finite correc- neighborhood of the entire worldline. We define the four-
tions to f(§)*. Indeed, corrections to Eq2) itself could be  momentump? at pointz(7) by

large in the point particle limit.

The singular behavior of the self-field in the point particle
limit makes it very difficult to directly extract from Eq16) K pa:f k(T2 )e (18)
any guidance as to what the electromagnetic force should be, a al " body’=beder
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Again, we assume that a representative world line can be Fab (X)=2€ 002l | F 2K UPQP+ Er_lK_gaan
found for the extended body such that Eg) holds to an
excellent approximation when the body is sufficiently small
and nearly spherical.

If we introduce Riemann normal coordinates at paifit)

1 1 . 2 )
4 — -5,anby2__ ~ ,_—35a bi— —4,a,,b
8K u?QPa 5K a*Q) 3K a%u

i i i i 1 1
in plac_e of the Cartes_lan co_ordlnates of the flat spacetime + — kW20 R- =k~ 1UARP,Q°
derivation, the calculation which produced Ef6) from Eq. 12

(5) is essentially unchanged, with the curvature of the back- 1 1

ground mtrod.ucmg'only a few corrections to E(gﬁ). F|r.st, + EK*lQaRbCchr EK*lanbRcdgcgd
a new term involvingVk, explicitly appears in the inte-

grand in Eq«(7). Further corrections also result from the fact 1 1

that the Riemann normal coordinate componentk®fre + ExflRadeUCQd— 1—2K*3u5‘QbRcdu°u@I

not constant. In additiony°d3,, deviates slightly fronNdV,
wheredV is the Riemann normal coordinate volume element 3 ach g 5 ach
for the hypersurface. However, these corrections all decrease + gKﬁ UTR ‘U Qeiglf U?R®.U°
with the size of the particle and should become negligible in
the point particle limitR— 0.

When will two bodiegpossibly in different curved space-
times be such that the difference in their electromagnetic
fields will be suitably bounded as their size shrinks to zeroHere, u® denotes the four-velocity of the point charge at
To answer this question properly, we would need to carefullyooint z(7) on its world line, andx denotes a point suffi-
examine the behavior of the “self-field” of extended bodies ciently nearz(7) lying on the hypersurface generated by
as the “point particle limit” is approached. We shall not geodesics fromz(7) which are orthogonal tou®. The
attempt to analyze this here. However, a good guess as to tifgltward-directed unit tangent 2¢7) to the geodesic passing
answer to this question can be obtained by examining théwoughx is denoted by)?, and the affine parameter &f
exterior field of a point charge in a curved spacetime, andi-€., the distance ot from the world ling is denoted by
finding the conditions under which the difference betweerf’rimed indices refer to teni),rsm,twhile unprimed indices
the fields of two such charges is—with a suitable identifica+efer to tensors at(7), andg? ,(x,z(7)) denotes the biten-
tion of neighborhoods of the world lines of the particles— sor of geodesic parallel transport. The quanktys defined
suitably bounded as one approaches a point on the world liney k= +/—u?uV,V,o—a?V o, whereo denotes thdisca-
of the particle. lar of squared geodesic distanoshich plays a fundamental

To do so, we need to study the singular behavior of thgole in all of these expansiongThe normalization ofo is
electromagnetic field of a point charge in curved spacetiméuch thato(x,z(7))=r?2.] We have se@®=u°V,u* and
as one approaches the world line of the point charge. As®=uPV,a?. The last term in the above equation is usually
stated above, we are concerned only with solutions taBqg. referred to as the “tail term,” and it results from the failure
which are singular precisely on the world line of the particleof Huygen's principle in curved spacetime. In that term,
itself. It follows from the general theory of propagation of Gj,a,,(x,z( 7")) denotes the advanced/retarded Green'’s func-
singularities(see theorem 26.1.1 of Hormandé&0]), that all  tion for the vector potential in the Lorentz gauge, so that
such solutions have the same singular behavior, i.e., the dif-
ference between any two solutions must be smooth on the VbeG
world line of the particle itself. Thus, to examine the singu-

lar behavior, it suffices to focus attention on any particularand +* denotes the proper time of the point on the world line
solution. When M,g,;,) is globally hyperbolic, it is conve- of the charged particle which intersects the future/past light
nient to examine the advanced and retarded solutions. Thgone of x. [The alternating sign in front of the tail term
behavior of these solutions near the world line of the particldntegral in Eq.(19) merely puts the limits in the appropriate
can be calculated by the Hadamard expansion techniques déme order] The integral in the tail term runs fromr{ + ¢€)
tailed by DeWitt and Brehmgs]. The result is to o with the limit e—0 then being takef.No distribu-
tional component ofG;a,,(x,z(qJ’)) is encountered in the
integral, and we shall assume that the tail term remains
smooth asx approacheg(r) (as should be the case if suit-
°Note that this implies, in particular, that the advanced minusable asymptotic conditions are placed on the world line and
retarded solution is always smooth throughout the spacetime—the spacetime
including on the world line of the particle—provided only that the
advanced and retarded solutions themselves are nonsingular off of
the world line of the particle(However, as illustrated by the ex-  SIf the world line is not completdi.e., if it does not extend to
ample of a uniformly accelerating charge in Minkowski spacetime,infinite proper time in the future/pastthen the upper limit of the
the advanced and retarded solutions need not always be nonsingutail term integral should be the maximum/minimum proper time
away from the world line of the particle. values of the curve.

+

ief’ 2V (5 G u® (7)d7+0(r).  (19)

*
pe

=+

aa’

Rabita’ =" 47Tg_aa’ 5()(12)! (20)
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In addition to obvious notational differences, our expres- In order to find the singular behavior Ef;b, , we need to

sion differs from Eq.(5.12 of DeWitt and Brehmg5] in . —
) ) xpand the coordinate componentsgf., and x. Both of
three ways. First, we have added the terms that DeWitt an ese quantities take particularly simple forms in terms of

Brehme omitted due to a trivial calculational err(see ; :

Hobbs[6]). Second, we have written the tail term in tgr‘ms Oleemann normal coordinates baseczet). We have
the Green’s functiorﬁj,a,,(x,z(f’)) rather than the Had- — o ) S’ 3
amard expansion term, o»(x,z(7")). The latter expression 9% =9 a+gr Q7R 45+ 0(r7) (21
gives the correct form of the tail term only whenis suffi-

ciently close taz(7"), and, in general, is not even defined for and

large separationfwhen, in particular, there need not be a

unique geodesic joining andz(7")]. Finally, our sign con- K= \/1+ra“Qa+ %rzu“uﬁQ“VQ&Ra%B(ﬁ o(r®. (22
vention for the Riemann tensor is that [dfl], which is op-
posite to that of DeWitt and Brehme. Substituting these expansions into Efj9), we have

* -2 1 —1/qa 3 a 2 1 -1
Fa,ﬁ,(x)=2er u[a’QB’]_Er (a Qa)u[a,ﬂﬁ,]+§(a Q,) u[a,Qﬂ,]Jrzr apaUpr

1 a B v o 3 a 1 aMyoO T 1 2 1.
—gu u Q Q Ra,le(sU[a/QBI]_Z(a Qa)a[a/uﬁr]-l—EQ[B,RO/]UQTU Q Q +§U[a/Qﬁ/]a _Ea[alﬂﬁ/]

1 v o 1 v o
u[a'Qﬁ’/]Ryd“()’ Q +§R[a/‘y‘ﬁl]5u Q

2. 1 1 1
iga[a/ulg/]‘i‘ _u[a/Q,B']R_ _u[a/RB’]’yQy_'— EQ[Q,RBI]VUY_'— 1_2

12 6

+

ief_ VipGanet® (7)d7+0(r). (23

T

1 T 1 79 E—l Y
_TZU[a/QBI]Ry(gU u +6U[a/RBI]y56U u Q +§U[a/R5/],yu

Although this formula is explicitly for the advanced/retardedright side of Eq.(16) (with N=1), and then let —0. This

solution in a globally hyperbolic spacetime, as noted aboveprovides the motivation for axiom 1 below.

the singular behavior df ,;, will be the same as in Eq23)

for any solution of Maxwell's equations with sour® in a B. The axioms

(possibly non-globally-hyperbolicspacetime, provided only

thatF,;, is smooth away from the world line of the particle.
From Eq.(23), it can be seen that the divergent terms in

F;b, depend only upon the four-velocity and the four- _ ps . o _ .

acceleration of the world line &( 7). In particular, they do two pomts_,P andP, each lying on t|mel|ke_ world I|nes_|n

not depend upon the spacetime curvature or derivatives CQossmlyfln‘ferent spacehme; which contain Maxwell fields

the acceleration. Furthermore, although many of the finitd-an @ndF4p, sourced by particles of chargeon the world

terms (which do depend upon the curvature aad) are lines. If the four-accelerations of the world linesraand P

direction-dependent and thus have singular angular derivdiave the same magnitude, and if we identify the neighbor-

tives on the world line, the radial derivatives of these termshoods ofP andP via Riemann normal coordinates such that

[which is all that enters the volume term in E4.6)] are the four-velocities and four-accelerations are identifed, then

bounded. Therefore, it seems plaUSible that if we have tWQhe difference in the e|ectr0magnetic ford@wI and?%M is

bodies with the same magnitude of acceleration at corregiven by the limit asr—0 of the Lorentz force associated

sponding point$® and P on their representative world lines with the difference of the two fields averaged over a sphere

and if we identify neighborhoods & andP using Riemann  at geodesic distancefrom the world line atP.

normal coordinates, with® aligned withu® anda® aligned a  Fa g ab =ab

with a2, then the singular contributions of the “self-fields” few™ Tem ,Iino(“: PN, 24

to f2,, in the point particle limit should cancel. Thus, the

difference infg,, for the two bodies in the point particle limit Axiom 1 is a very powerful one, since it enables us to

should be given by a version of the Lorentz force lawcompute the difference in electromagnetic force between any

wherein we average the difference in the electromagnetitwo particles which have the same instantaneous accelera-

fields over a surface of radiusas in the first term on the tion. Thus, to obtainf},, for an arbitrary trajectory in an

We now are ready to state our main axiom, the motivation
for which was given in the previous subsection.
Electromagnetic axiom 1 (comparison axiomfonsider
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arbitrary curved spacetime, it suffices to knd@, for a  four-velocity u?=u? and acceleratiom®=a?. By axiom 2,

uniformly accelerating particle—with arbitrary accelerationthe electromagnetic force on this uniformly accelerating

a®—in Minkowski spacetime, with the electromagnetic field Minkowski trajectory vanishes when the electromagnetic

chosen to be, say, the half-advanced, half-retarded solutiorfield is given by the (Minkowski) half-advanced, half-
Let us, then, consider this special case. By symméfly, retarded solution.

must be proportional ta?. If the proportionality factor were In (M,gap), We write Fi;bz Fab— Fa,, whereF,, denotes

constant, such a force would correspond merely to a “masghe retarded solution, and it is assumed A3t is smooth on

renormalization,” and could be redefined away. On the otheg, \yorid fine of the particle. Near the actual trajectory of the
hand, such a redefinition would not be possible if the propor-

tionality factor varied with acceleration. We see no argumenEarthle[In M ’gab).]’ Fap IS given by' Eq.(23). on th.e other
from symmetry considerations alone which would forbid the and, near the~un|form|y _accelergtmg trajectory in the tan-
presence of such a term. However, this spacetime, worl@ent space atP, the (Minkowski) half-advanced, half-
line, and Maxwell field possess a time reversal symmetryetarded solutiorF ,,=3(F,,+F.,) also is given by Eq.
about each point on the world line, which suggests that thg23) except that the “tail term” and all of the terms involv-
particle always should be absorbing as much electromagnetifg the curvature are absent, and there is cancellation of

energy as it radiates, so the electromagnetic field should bt%rms involvinga and a?. Axiom 1 instructs us to subtract

doing "no ”e‘awfrk on t'he particle. Thls.‘ n turn, strongly this Minkowski retarded solution frork ,,, (using the expo-

suggests thattz,,=0 in this case. Indeed, if we did not have nentiall map—or, equivalenty, Riemann  normal
a o : : : ! i , ,

few=0, the type of calculation given in section 17.2 of Jack-y o ginates—to compare thg¢naverage this difference over

son[12] would show that our resulting prescription fbf, a sphere of radius, and then let —0. The electromagnetic

WO.UId fail _to conserve energy for apo int partiple trajectoryforce on the particle @ is then just the Lorentz force asso-
which begins and ends in inertial motigwhere, in this cal- ciated with the resulting field. We obtain

culation, the infinite self-energy of the Coulomb field of the
particle is discarded at the initial and final time$his mo- _ 2 1
tivates the following additional axiom, which agrees with f2,,=e(F")2Pu,+ —e?(a?—a%u?)+ = e?(R3,u®
standard claims made in textboolsee, e.g., Jacksdi2)): 3 3
Electromagnetic axiom 2 (flat spacetime axiom)f - )
(M,gap) is Minkowski spacetime, the world line is uni- +uaRbcubu°)+e2ubJ VIe(GT)A U (7)d 7.
formly accelerating, and~,, is the half-advanced, half- o
retarded solutionF ,,=3[F,,+F.,], then f3=0 at every (25
point on the world line.
Note that, since the advanced and retarded solutions for _ _ . _
F ., for a uniformly accelerating charge in Minkowski space- The corresponding equation of motion of a charged particle
time coincide in a neighborhood of the world litiedeed, Subject to no additionali.e., nonelectromagneticeexternal
within the entire “Rindler wedge” containing the world line forces is then simplyfg,,=ma®.
[13]), it follows immediately from axiom 1 that we also have  Our result(25) agrees with that of DeWitt and Brehrfig]
f2=0 whenF,, is given by the advanced solutioR,,, or ~ as corrected by Hobbi6]. Although we, of course, made
by the retarded solutiork,,. Thus, we would obtain an crucial use of the Hadamard expansion for the retarded
equivalent axiom if we replaced the half-advanced, half-Green’s function(23), no other lengthy computations were
retarded solution by the advanced solution or the retardefieéeded in our approach, since we did not need to compute
solution. the behavior of the electromagnetic stress-energy tensor near
In the next subsection, we shall use axioms 1 and 2 togethéfe world line of the particle.

with Eq. (23) to computef?,, for an arbitrary charged par- Note that the first term in Ed25) is the ordinary Lorentz
ticle trajectory in an arbitrary curved spacetime. force due to the incoming field. The second term corresponds

to the familar flat spacetime Abraham-Lorentz damping
term. The third term is a local curvature term, whose pres-
ence is necessary to maintain conformal invariancé2gf.

Let P be a point on the world line of a charged particle in Finally, the fourth term is the so-called “tail term” resulting
a curved spacetimeM,g,;,) containing a Maxwell field=,,  from the failure of Huygen’s principle in curved spacetime.
satisfying Eq.(1), whereF,j, is singular only on the world Due to the presence of the Abraham-Lorentz term, the
line of the particle. For simplicity we assume thM {gap) IS equation of motionf2,,=ma® shares the unphysical “run-
globally hyperbolic so a unique retarded Green’s functionaway solutions” of the ordinary flat spacetime equation of
exists; as explained at the end of this subsection, our formumotion. As in the flat spacetime case, this difficulty can be
las can easily be generalized to the non-globally-hyperboli¢esolved through the reduction of order technique. An expo-
case. Lew? denote the four-velocity of the world line &  sition of the rational for this technique as well as an expla-
and leta® denote its acceleration & nation of how to implement it in a general context can be

We may view the tangent space Bt as a copy of found in Sec. IV D of[16]. To implement it here, we view
Minkowski spacetime. We shall denote the origin of this e=e?/m as a “small parameter.” We differentiate E(R5)

tangent space b§. In this Minkowski spacetime, consider a (with f2\ set equal tana?) to obtain an expression f@®,
uniformly accelerating trajectory passing throughwith  and then substitute this expression back in 8), neglect-

C. The prescription
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ing terms which are higher than first order én We then ticle limit” as a convenient mathematical means of summa-
similarly eliminate the terms involving® from the right side  rizing results concerning the behavior of one-parameter
of Eq. (25). The result is families of extended body solutions in the limit where not
only the size but also the charge and mass of the body go to
zero in a suitable manner. Nevertheless, in the electromag-
netic case, there is no difficulty in making sense of solutions
to Maxwell's equations if we let the size of the body shrink
to zero keeping its charge fixed. This enabled us to pase
propose an answer Jtdhe following idealized question in
Sec. lI: Given a solution to Eq1) for a Maxwell field with
point particle source, what is the total electromagnetic force
on the charged particle? On the other hand, the correspond-
ing question in the gravitational case would be the following:
T wlb - alc Nt Given a solution to Einstein’s equation with a point particle
fﬁxV[ (GT)¥ug(r)d7". 26 source, what is the total “gravitational force” on the par-
ticle? However, as already noted in the Introduction, this
We believe that this equation properly describes the motiogjuestion makes no sense, since there is no notion of a solu-
of a small, nearly spherical charged body in a curved spacgion to Einstein’s equation with a “point mass” sourf].
time, taking into account the leading order effects of the A resolution of this difficulty is suggested by the fact that
body’s “self-field.” we are really interested in the case(sfal) extended bod-

_Inasmuch as they require the retarded solution 10 Dgyg \hose self-gravity is “weak® Thus, it should be ad-
singled out, expression@5) and (26) are applicable as they equate to treat the gravitational effects of the body via lin-

stand only for a pa}mcle In a globally hyperbolic spacetime. o, ;e perturbation theory off of a background vacuum
prever, since axiom 1 did not require global hyperbo"c'ty’.spacetime. For linear equations, there is no difficulty in mak-
itis clear that our axioms a_lso _determlne the electromagne_tlfhg sense of solutions with distributional sources, so, when
force and equations of motion in the non-gIobalIy-hyperbollcworking with the linearized equations, it becomes math-

case as well. Perhaps the simplest way of generalizing.o%maﬂca”y legal to let the size of the body shrink to zero,
formulas to the non-globally-hyperbolic case is as follows: Ifkeeping its mass fixed. This suggests that we pose the fol-

: - a . :
‘é"ﬁa‘r’v'zz toz:rztcell:anf e 6: ic?r?mrtzn(tgllomtheer\gglrilg “snzgét?me lowing question, which is directly analogous to the question
- - y . . O . . .
simpglly ch%ose a(sufficien'[lyg smal]y gI)é)Fl)Jally hypgrbolic posed in S_ec. I.I' Leth ’.g(ab)) be a spacetime saﬂsfymg_ the
neighborhood of(7). Equations(25) and (26) then hold at vacuum Einstein equation, le{7) be an arbitrary timelike
9 7). E4 world line in (M,g{9), and lety,, be a solution of the lin-

z(7), whereF}} and the tail term are defined in the appro- __. . X . . . .
priate manner, relative to that neighborhood. earlze.d Emsteln_equatlon sgurce_d by a partlclti following this
worldline. What is the total “gravitational force” on the par-
ticle?
Unfortunately, the above question also suffers from seri-
In this section, we seek to obtain the gravitational analous Mmathematical inconsistencies: By the linearized Bianchi
of our formula(25) above for the total electromagnetic force 'dentity, the linearized Einstein equation implies exact con-
(including radiation reactionon a charged particle, as well Servation of the stress-energy of thiimearized source with
as the analog of our equation of moti¢®6) above. The espect to the backgrqund metric. In the.I|m|t Whgare the
latter will provide us with the lowest order correction to geo- SOUrce is a point particle, this conservation requires the
desic motion of a particle resulting from radiation reactionWorld line of the particle to be a geodesic of the background
effects. In our approach, we shall not make any of the slownetric. Thus, ifz(7) is not chosen to be a geodesicaif) ,
motion or post-Newtonian approximations common to mosthe above question makes no sense since there does not exist
other treatments of gravitational radiation reaction. On theny solutiony,, whatsoever to the linearized Einstein equa-
other hand, the applicability of our results will be limited to tion with this source. But, a knowledge of the total “gravi-
the motion of a small, nearly spherical body. tational force” only for geodesics ojg%) would not be ad-
There are many physical and mathematical similarities irequate for obtaining the self-consistent motion of the particle
the analyses of the electromagnetic and gravitational radiainder the influence of its own gravitational ‘“self-force,”
tion reaction forces, and our analysis of gravitational radiasince such a particle will deviate from geodesic motion.
tion reaction will ultimately closely parallel that of the elec-  The origin of this difficulty can be understood as follows.
tromagnetic case. However, there also are a number of vergven for an extended body with very weak self-gravity, the
significant differences between these two cases. We begiinearized Einstein equation does not hold exactly; rather
our analysis of the gravitational case by explaining in detaithere are nonlinear corrections to this equation. Although
the nature of these differences. these nonlinear terms make only a very small correction to
Probably the most significant difference between the elec-
tromagnetic and gravitational cases concerns the formulation—
of the question which we would like to pose. As discussed in “However, we do not wish to preclude the possibility of eventu-
detail in the Introduction, we do not view a “point particle” ally extending our analysis to small bodies with strong self-gravity;
as a fundamental object, but, instead, view the “point parsee[14].

a_e inyab 282 e c inyab
a _E(F ) Ub+§m EU VC(F ) Up
eZ inyabpgin | ¢ eZ a/inybc in  d
+E(F ) Fbcu _Fu (F ) UcFpgU
e2
+ = — (R U+ u?R,uPu®)
3 m b bc
e2
+Eub

Ill. GRAVITATIONAL RADIATION REACTION
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Yab, it is precisely the presence of these terms which argyey - _ oRe
. L . . cYab

responsible for the deviations from geodesic motion. By

throwing away the nonlinear terms iy, we exclude from

the outset the possibility that the particle fails to move on a = _167ij 5(X,z(7))ug(T)up(7)d7, (29)

geodesic of the background metric, thereby making it math-

ematically inconsistent to study departures from geodesic

—
ab Ycd

motion. where yI = y.p— v, Satisfies the Lorentz gauge condition
To see this more explicitly, consider the exact Einstein(28). What is the total “gravitational force” on the particle?
equation for the metrig{Q+ y,,, Written in the form of the Although the above question is closely analogous to the

linearized Einstein equation foy,y, in the Lorentz gauge, question posed at the beginning of Sec. Il, there still remain
with the nonlinear terms iry,, moved to the right side of the a several notable differences between the electromagnetic

equation(in a schematic manngto aid us in viewing them and gravitational cases. First, since we have made a linear-

as an additional “source term:” ized approximation, it is necessary here tly@; be “small”
compared with the background metg(;%). No correspond-
v©@ey Oy, —2ROe, dy ing restriction onF g, was necessary in the electromagnetic
case. This restriction oy}, will have an important bearing
= —167T,,+[nonlinear terms i (27)  on the final form of the reduced order equations of motion

which we shall obtain at the end of this section. However, it
should be noted that this restriction g}, does not actually
impose any physical restriction on the applicability of our
L results, since if we wished to consider a situation where the
where y,5=Yan— s 79% . incoming, free gravitational radiation is “large,” we could
As already noted above, for a body with weak self-simply incorporate this radiation into the background metric
gravity, the matter stress-enerdy, should dominate the gg%)_ Indeed, there would be n@hysica) loss of generality
“nonlinear terms invy,,.” More precisely, T,y is of order  in demanding that/;,= 0, but we choose not to do so, since
m, whereas if there is no incoming gravitational radiation,there are a wide variety of circumstances where it is both
the nonlinear terms should have magnitude of ordérand  appropriate and convenient to treat the incoming radiation as
higher, wherem denotes the mass of the body. As we shalla linearized perturbation.
see in more detail below, a knowledge of the resulting domi- The second difference concerns the status of “external
nantO(m) contribution toy,y, from T,, will suffice for de-  forces.” In the electromagnetic case, we were free to assume
termining the leading order contribution to the self-force, sothat T35, had no coupling to the electromagnetic field. How-
we should make little error by dropping the nonlinear termsever, in the gravitational case, it is not consistent to assume
However, if we do so, there are no solutions to Hg3) and  that T2/, has no gravitational coupling; we must includig’,
(28) unlessV)13P=0. on the right side of Eq(29), and take into account its con-
However, a means of dealing with this difficulty is sug- tributions toy,,. Since, ultimately, we will seT2°=0 to
gested by the form in which we have written the equationsget the equations of motion of a freely falling particle, this
Even whenV{?)T2"+ 0, no mathematical inconsistencies oc- will not be relevant for our final formula for the equations of
cur in Eq.(27) alone when the nonlinear terms are droppedmotion. However, in our expression f6§ , the presence of
Itis only when the Lorentz gauge conditi¢28) is adjoined T2 will make a contribution toy,,, which must be in-
to this equation that inconsistencies arise. Thus, we proposguded.
to simply relax the Lorentz gauge condtion so that it holds A third important difference concerns the gauge invari-
only to the required accuracy, i.e., @(m). (This can be ance of our results. In the electromagnetic case, both the
ensured by simply requiring that any “incoming radiation” \axwell field, F,;,, and the world linez(7), of the particle
contributions toy,,, satisfy the Lorentz gauge condition; i.e., are gauge invariant. Most importantly, all of the information
VPyMh =0, whereyr,= yao— ¥ap.) The resulting system of concerning the motion of the particle is contained in the
equations should then have the accuracy needed to obtain thpecification oz( 7). However, in the gravitational case, nei-
leading order contribution to the gravitational self-force, butther y,, nor z(7) are gauge invariant, since both can be
should not suffer from the mathematical inconsistenciexhanged by diffeomorphisms. Indeex{;r) can be changed
which would occur if the linearized Einstein equation werearbitrarily by diffeomorphisms. Thus, the specification of
used to relatey,, to T,,. We note that our viewpoint ap- z(7) alone provides no information about the motion of the
pears to correspond to that taken[if], and similar proce- particle. Rather, this information is encoded in the joint
dures for relaxing field equations or gauge conditions at apspecification of bottz(7) and y,,.
propriate orders also occur in many other approaches to Despite the above differences, our analysis of the gravita-
obtaining self-consistent equations of motigsee, e.g., tional self-force will now proceed in close parallel with the
[15]). electromagnetic case. In order to motivate the axioms which
Having reformulated the equations fejy, in this manner,  we ultimately will adopt, we consider a small, nearly spheri-
we now may consider the point particle limit and pose thecal extended body with weak self-gravity, so that the space-
following question: Let M,gg%)) be a spacetime satisfying time metric,g,,, deviates only slightly from a vacuum so-
the vacuum Einstein equation, let7) be an arbitrary time- lution, g{%). We seek to obtain an equation of motion for a
like world line in (M,g{%), and lety,, be a solution of suitable representative world line in the body, expressed in

vOay -0, (28)
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terms of the structures associated with the “background A (O)rab ©)o —ab 1.
spacetime” M,g\?)). To do so, we view the exact four- Kaf :L(O)[kaa Thody™ Ka Vo Thoad W €cder- (39
momentum density,'l(ﬁgdy) €pcde IN the spacetime NI, g,p)

from the perspective of the background spacetiideg’y)).  In the first term, we rewrit& ok as

In parallel with Eq.(18), at a pointz(7) on a representative

world line in the body with tangeni®, we define the four- Vpky = VK = Ch ke, (36)

momentump? by h
where

a_ 0 ab
Kap®= L(O)k; >(Tbody)ebcde- (30 chaE%Q(O)Cd(v(bo)vfaﬁV(ao)ybd—vfjo)yba)- 37
Here3 () is the hypersurface generated by geodesiayBf
which are orthogonafwith respect tog®) to u?, and the Although V{”k{” will make a nonvanishing contribution to
vector fieldk® is given the superscript “0” in order to the integrand due to the chkground curvature, thig contribu-
emphasize that we are extendikgoff of the world line by ~ tion is easily seen to vanish in our final expression fior
parallel transporting it with respect to the background metridVhen we take the point particle limitso we will drop this
gg%) (as opposed tg,;). As in the electromagnetic case, we contribution as well as the other background curvature cor-

assume that a representative world line can be chosen égctions mentioned in the electromagnetic derivation as they

that—to an excellent approximation when the body is suffi-arnse in the calculations below.

ciently small and spherical—we have at each point of the AS in the electromagnetic case, for gene_rallty, we allqw
world line the body to be coupled to additional classical matter with

stress-energy tensofe>. By conservation of total stress-
p*=mu’. (31  energy, we have

Again, the difficulties in justifying this assumption would Vb[ngdwaTgft]:O, (38
provide one of the more formidable obstacles to converting
the motivational arguments given here into theorems abougo that
radiation reaction forces. ab ab
From the perspective of the spacetimé,g'%), the force VbThody= = Vb Text- (39

the body is gi b . .
on the body IS given by Substituting these results in E5), we have

fa=ubv(¥pa, (32)
a_ 0)ra bc d a
Although we would expeay,,p?p® to be constant along the kaf"= wa K CohcThoaW dS g+ Kafly, (40
world line to the order to which we shall work, there is no
reason whyg@p?p® need be constant to this order. Equiva- Where
lently, if we normalizeu? so thatg{®u?uP=—1, there is no
reason why the parameten in Eg. (31) need be constant kafa f (O)—Vb

ext—
along the curve. I5))p?p® fails to be constant? will fail

to be perpendicular to® (in the metricg(y)); we shall retain e now approximate the body to be “at rest” at tinié®),

the component of? parallel tou? in our formula for the bc _ b b i ; ;

gravitati(?nal force beFI)ow However, the deviation from geo-sO that%)gd _plfo;JC' wherel_J S 1he tinit Normai(in the
: S Teh T 2~ "metricgy;) to %Y. We obtain

desic motionu®V’u?, is determined entirely by the projec-

tion of f2 perpendicular tei® in the metricg?) , i.e., we have kofa=k,(fa—f2,

MWV ud=h©2,fb, (33 :f o[
$(0)

Tabwdds,,. (42)

a P Eubucv(o)aybc
whereh@=g®+u,u, and all indices here are raised and
lowered usingg'?). Thus, we ultimately will projecf? per- b co(0) . al..d
pendicular tougbwhen we wish to obtain the equation of —u VE’ e )W . (42)
motion of the particle.

The calculation off® proceeds in parallel with the calcu- This formula corresponds to E¢L4) in the electromagnetic
lation in the electromagnetic case. Takikyto be parallel —case, with the expression in parentheses playing the role of

transportedwith respect togQ) along the world line, we the electric fieldE® which appeared there. Therefore, we can
have immediately write down the gravitational analog of E&6).

We obtain

kaf =V () (kap?) = L Eu(ke Thouncad - (34

0

SNote that neithetV k, nor V%, would be negligible in the
Applying the identity(6) and using Stokes’ theorem, we ob- point particle limit if k* were defined by parallel transport with
tain respect tag,y, rather tharg(Q .
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to find the conditions under which such a difference will

m(r)| JEE -

fg=m<EgN)R—f ( )2 a—GN+rﬁaBEg dav remain bounded aB— 0, we once again study the singular

X(n)4arr r behavior of the exterior field of a point source in curved
+[terms which vanish a®R— 0], (43) sp_acetime using the Hadamard expansion techniques of De-

Witt and Brehmg5]. Since the trace-reversed metric pertur-

where bation v, satisfies a wave equatidq@9) very similar to the

1 equation for the electromagnetic vector potential, the Had-

g= _uﬁuyva,yﬁy_ uguyvﬂytyx. (44) amard expansion goes through in close parallel with the elec-

tromagnetic case. The covariant expansions ¥gr,, and

In this equation and in all equations henceforth, it is to be¥ ¢’ Yarp- [te gravitational analogs of E(L9)] are given by
understood that all quantities excepf, refer to the back- _ -

ground structure, and the superscript “0” will be omitted on ¥4/ (X)=2MGaraQ o' p)[ 21 ~UPUP £ 4k~ 2a%uP]

the background metric and its derivative operator. As in the

electromagnetic case, a “point particle” limit of the right tmfixGi, . ”ua"(T,,)ub"(f,)d7j,+o(r)
side of Eq.(43) cannot be taken in a straightforward manner. Ls o aprarh
However, we can again consider ttiferencein fg on two (45)

bodies of similar composition that move on different world
lines in (possibly different background spacetimes. In order and

- 1
. L L L B
Ve Yarp (X)=2M0crcGar@lprpy| —2r 2k uuPQ—4r 1k 3a%uPut—r 1k 3uaubaC—ZK Sa2uduPQ°
. ) 2 .
+K‘5uaubu°ade+2K‘3aaubQ°+2K‘3aaabQ°i§K‘6a2uaubuci4x‘4aaubu°14K‘4a""abu°

2 . 2
¥ 4;<*4aauba°I§ k~*uduPa’— 3 Kk 3RyefuduPulOeu’ — 25 3Ry AuPucudQeu’ + 2k TR, fuPudQ®

-2k TR2LOUCT 2k 2Ry 2uPudus+ 2k 2R3 Lucudu®

+
"

+ mf’ VoG aryrU® (71U (7)d 7"+ O(r) . (46)

[In these formulas, we have normalized the advanced and retarded Green’s fu@t;:gg;rp so that they satisfy Eq29) with
source—16mgaa Jppr 9(X,2).]

Expandingg ./, and x, we find that the Riemann normal coordinate componenl@cq_t;b, , in the same notation as Eq.
(23, are

Vy/f,ﬁ,(x) = Zm[ —2r U, ug Q. —4r ta sugnuy, —r T tugugian, Fr Tt U Q,a%0) s+ 63, Ugnu,a’Q s

3 ) 3 S 2 -0 1 eONO K
+§ua,uﬂ,ay,(a Qﬁ)—zua,uﬂ,ﬂy,(a Q5)“+uyUgu,as+ §ua,uB,Qy,R§MKu5u arQ

2 1 : 2 .
- §RQI§AEUA06\()IGUE/Q,YI_ ZaZUQIUﬁ/Q,},/+2a(a/Uﬁ/)Q,y/+2aa/aB/Q,y/igazua/Uﬁ/u,},/I4a(a/uBl)u,}/l

2 . 2
T48,85 Uy F AR Ugnay FolgUpay, — 3 RsenyrUarUpgrUPQ UM = 2Ry (o1 U g, u?Qcut

2R s(ar U UPQ = 2R 501 5 0 UPUSF 2R 1 504Uy U2UE 2R 540 UL UPUS

"

th; V3G g1 ™ (7)UE () d 7+ O(r). (47)
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We have verified Eq45), (46), and(47) using the soft- 5,42 s given by the limit as — 0 of the difference of the
ware package MathTensor. Apart from differences in notagfrective gravitational forces averaged over a sphere at geo-
tion and sign conventions, there are two differences betweegasic distance from the world line atP,

Egs. (45) and (46) and the corresponding Eq&.77) and

(2.33 of [7]. The first is that we write the “tail term” inte- a Ta_ 1_, a 1_.~
grands in terms of the full retarded and advanced Green’s fo— fG_I'”}) 2V e Vore| = 5 Vi 7e
functions, while the authors ¢#] write the “tail term” in- H

tegrands in terms of the Hadamard expansion teggy p, ~a b ¢

in parallel with DeWitt and BrehmE5]. Second, the authors —Vpy%e| ) JuPun.

of [7] have dropped alD(r°) terms in the expression for

Ve ¥, Which contain time derivatives of the particle’s 1N analogy with axiom 2, we also postulate the following.

four-velocity in accordance with an approximation scheme CGravitational axiom 2 (flat spacetime axiont)(M,gap)
adapted to their specific calculation Is Minkowski spacetime, the world line is uniformly accel-

Aside from the obvious complexity introduced by the ad_erating, andy,y, is the half-advanced, half-retarded solution,

ditional index structure, there are two important differencesYan= z[ Yan* ¥anl. thenfg=0 at every point on the world
between the above formulas and the corresponding formuld§€- . b

in the electromagnetic case. First, as stated above, we have AS hoted above, since-C?,u”uc differs for the ad-
assumed here that the background spacetime is a solution yanced and retarded solutions, it does matter in thls case t_hat
the vacuum Einstein equation, so in the gravitational case, ny€ use the half-advanced, half-retarded solution in this
terms are present which involve the Ricci curvature. Al-axiom, rather than, say, the advanced or retarded solution,
though it would be possible to repeat the above analysis b Ithough this c_ilfference does not .affect the projection of the
perturbing off of a nonvacuum solution, the perturbations offorce perpendicular to the world line of the particle. _
the metric and background matter would become coupled at N parallel with the electromagnetic case, the above axi-
linear order, so Eq29) no longer would hold, and the entire ©MSs Yield the following prescription for the gravitational
analysis would have to be redone. Second, due to the prefrce. Let M,g.p) be a solution of the vacuum Einstein
ence of several terms of alternating sign in the above expregduation and ley,, be a solution of Eq(29). At a pointP
sions which do not depend upon curvature, we see that thia" the particle’s world line, we compang,, with the half-
advanced and retarded expressionsytgyand its first spatial ad\./anced,. half-retarded solutlon for a uniformly gcceleratmg
derivative for a uniformly accelerating trajectory in flat trajectory in the tangent spacesing the exponential map to
spacetime do not agree in a neighborhood of the world linénake the comparisonThe gravitational force is then given

of the particle. In parallel with the electromagnetic case, theby calculating the difference in—C? .uPu¢=(1V2y,,
advanced and retarded solutions can be shown to be gaugevbyac)ubuc for these two fields, averaging over a sphere
equivalent within the entire “Rindler wedge” containing the of radius r, and letting r—0. If we write vy,, as
worldline. However, unlike the electromagnetic case, they,, = + - | the resulting expression is

analog of the Lorentz force; C3.uPu®, is not gauge invari-

ant in this case, and it differs for the advanced and retarded , (1__ T
solutions even in the limit as—0. Nevertheless, it can be  f6=M| 5V ¥bc™ Vb(¥")% |uPu"—m
verified that this difference between the forces for the ad-

vanced and retarded solutions is parallel to the four-velocity +m2ubu°fT(EVaG V(G2 )

of the particle. Therefore, when we project the force perpen- _.\2 becarb’ VD ca’b’

dicular to the particle’s four-velocity to produce an equation

of motion, the difference will vanish and the situation is xud'ub'dr. (49
effectively the same as in the electromagnetic case.

Despite the above differences, Ed.7) shares the most As anticipated, this expression contains contributions to
important property of the analogous electromagnetic expresty parallel to the four-velocity?, which merely describe the
sion (23), namely the divergent terms as-0 depend only effect of the metric perturbation on the normalizationu8f
upon the four-velocity and four-acceleration of the particle atTo obtain the equations of motion, we projégtperpendicu-
z(7). Therefore, in direct analogy with axiom 1 in the elec- |ar to u? as in Eq.(33) above. This yields
tromagnetic case. We postulate the following.

Gravitational axiom 1 (comparison axiontfonsider two

(48)

.1,
?a §au

1 ) ) 1 )
at= _Vaylk?c_ Vi( 7In)ac_ _uaudvdylbnc) uPuc

points, P andP, each lying on timelike world lines ifpos- 2 2
sibly differen) spacetimes which contain linearized metric

; ; 1 . (1 _
perturbations sourced by particles of masson the world — m(ad- azua)+mubch ~veg_ .,
lines [see Eq.(29)]. If the four-accelerations of the world 3 _e\ 2 Theab
lines atP andP have the same magnitude, and if we identify 1
the neighborhoods d® andP via Riemann normal coordi- —Vu(GT)2wp — EuaudVdGbca,b,)ua'ub'df’.

nates such that the four-velocities and four-accelerations are
identifed, then the difference in the gravitational fordés (50
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It should be noted that an Abraham-Lorentz term of thewere given, we did not attempt to prove that the electromag-
form (a®—a2u?) appears in Eq(50), but with a sign oppo- hetic axioms follow as a consequence of Maxwell's equa-
site to that of the electromagnetic case, corresponding to théons in curved spacetime together with conservation of total
“antidamping” phenomenon found by Havé$7]. (See also ~ Stress-energy, nor did we attempt to prove that the gravita-
Carmeli[18].) tional axioms follow from Einstein’s equation. Nevertheless,

Finally, we apply to this equation of motion the same We believe that our plausibility arguments have provided the
reduction of order techniques that we applied to the electrofirst steps in that direction. In any case, the problem of pro-
magnetic equation of motion. When we do so, the terms oiiding a rigorous justification for the electromagnetic and
the right side involvingna® andma? get eliminated in favor gravitational self-forces and the corresponding equations of

of terms involvingmy},. However, our equatiorf50) is motion ha_s_ be_en reduced to the problem of providing a rig-
valid only to linear order in bottm and ", so it is not orous justification of our axioms. :

. . . Yab> Finally, we note that on account of the “tail term,” our
consistent to keep terms involving products of these two

tities [Thi irasts st v with the elect " equations of motion in both the electromagnetic and gravita-
quantities[This contrasts s rongly wi € elec romagilnne 'Ctional cases are integro-differential equations which, in prin-
case, we we worked only to linear order é@/m, but ab

X al ciple, require us to know the entire past history of the par-
was allowed to be as large as we liked, so thelm)F,,  ticle. However, if the curvature of spacetime is sufficiently
could be treated as being of order unjtgonsequently, the gmajl and the motion of the body is sufficiently “slow,” one

reduction of order procedure in this case effectively dropsyould expect the “tail term” to become effectively local,
the Abraham-Lorentz terms, leaving the “tail term” as the gjnce the contributions to the “tail term” arising from por-

only contribution to the “self-force:° tions of the orbit distant from the present position of the
1 1 particle should become negligible. Indeed, if the tail term

al=| ZVayn _ v (M2 — Zaydy 4" )ubuc becomes effectlvely_ local, arguments usmg_the standard_ di-

2" Yoe o(Y")% 2 d¥be pole formula for radiated energy together with conservation

i1 of energy(see[12] and the analogous gravitational calcula-
+mubch'T (—Vachafbf_vb(G_)caa’ b tion given below suggest that ifF;,=0 and R,,=0, the
2 “tail term” of Eq. (26) should reduce to the familiar
Abraham-Lorentz damping force

— o0

1 ! ’
- EuaudVdGbca,b,)ua u'dr’. (51) oy
iEM:§<92—3- (52
This formula agrees with the results of Mirt al. [7], al- dt

though they did not include'", in their expression and, as
¢ y Yab P That this is indeed the case was established by DeWitt and

noted previously, they wrote their “tail term” integrand in , O . o
b y y g DeWitt [19] for a charged patrticle in a slow, circular orbit in

terms of the Hadamard expansion tevry, ., rather than - . . ; :
the full advanced/retarded Green’s functions. Note that qut.'r?aeta;';:qiﬁgf’,"iﬁgﬂ!ﬂfﬁgﬁﬁgef'olrtczhglé!j;ﬁle\gﬂ?sisézed

(51) has a very simple interpretation: To lowest nontrivial

order, the particle moves on a geodesigif + y,,, where ~Nere—sincea®=a*=0 for geodesic motion—but, remark-
ably, the tail term mocks up an effective Abraham-Lorentz

Yav=Yan+ Vah and v =gy~ 39y is the last term in o
Eg. (45). In the gravitational case, the standard “quadrupole for-
mula” for radiated power in the slow motion, weak field
IV. CONCLUSIONS limit is

In this paper, we have taken an axiomatic approach to 3ij 43
obtain the lowest order electromagnetic and gravitational - i d*Q” d"Qy
“self-forces” on a small, nearly spherical body of suffi- 45 43 dt®
ciently small charge and/or mass. Our final result for the total
electromagnetic force on a bodyossibly acted upon by an wherei andj are spatial indicesi(j=1,2,3) for a set of
external electromagnetic field as well as additional, nonelecglobal inertial coordinates ar@ is the traceless quadrupole
tromagnetic “external forceg’is given by Eq.(25). If such  moment
a body is subject only to electromagnetic forces, our final
result for the(reduced ordegrequation of motion of the body i 1 i
is given by Eq(26). The corresponding results for the gravi- Q'=q"- §q6‘ '
tational case are given by Eq9.9) and (51).

The above electromagnetic results were derived from the
two axioms given in Sec. Il B, and the corresponding gravi- i — f 00yiyj 43
tational results were obtained from the axioms of Sec. lll. q'=3 | TOxld*. (9

Although plausibility arguments in support of these axioms
So, for a point particle,

(53

(54)

5This contrasts sharply W|t_h the analysis[@¥] which effectively Qi = 3m| xixi— —Xka Sl (56)
neglected the dominant “tail term.” 3
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By conservation of energy, we should have , 2 d°Ql
) ) 6=~ TEM— X (58)
J i _dtz_ij d3QIJ dBQij dt:_i dSQIJ &dt 15 dt
evi 45) 4@ de 45) g5 dt

. It would be interesting to perform the gravitational analog of
6 d°Q'l 1, the analysis of DeWitt and DeWiftL9] to see if this formula
- f 4 ViXj = 30 Vkj dt does, indeed, arise from the tail term of E§1) in the slow
motion, weak field limit.

2 J» (dS ij )
=——m| | ——x; |v,dt, (57)
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