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Perturbations of solutions of the Einstein equations which represent colliding plane waves

R. Cartas-Fuentevilla
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Using expressions for the complete perturbations of solutions of the Einstein equations with sources in terms
of potentials, the perturbations of the space-time representing the collision of plane polarized plane gravita-
tional waves possibly coupled with electromagnetic waves or with neutrinos are obtained in the regions prior
to the collision; in the case where there is a background electromagnetic field, the problem is reduced to solve
a system of two second-order linear ordinary differential equations for two complex scalar functions, called the
master equations. When the source is a neutrino field, the master equations are a system of four first-order
linear ordinary differential equations for four complex scalar functi¢88556-282(97)06716-7

PACS numbd(s): 04.20.Jb, 04.40.Nr

[. INTRODUCTION tors which applies when we can obtain a decoupled set of
equations from the original equations for the perturbations
The study of collisions of gravitational waves coupled [10—14. The use of such scalar potentials requires the solu-
with electromagnetic waves or with neutrino waves hagion of few differential equations and automatically gives the
shown, among other things, the appearance of singularitiegorrect relative normalization between all the components of
as a result of mutual focusing of the colliding waves, such aghe perturbation$15,16.
curvature singularities, Killing-Cauchy horizons, eft—4]. In this paper we make use of the expressions found in
The following natural step in these lines is to investigate theRef. [9] to study the perturbations of the general metric con-
stability of these properties against external perturbationssidered in Ref[8]; we find that in all cases there exist non-
for example, infinitesimal perturbations of different sorts. Totrivial purely incoming perturbations, contrary to the results
this end, Yurtsever has studied the persistence of some siff Ref. [7], and furthermore, in contrast with R¢B], we
gularities that appear in the collisions of plane gravitationaflSo show that when the perturbations also depend on the
waves and of almost plane gravitational waves under pertuddvanced time, all of them can be written in terms of a single
bations that preserve the planar symm¢Hy although these  function that obeys a second-order “master equation.” Thus,
plane symmetric perturbations have the unsatisfactory profur description and results differ in radical aspects from
erty that they carry infinite energy. With the purpose of con-those reached in Reff7,8]. The main reason of this signifi-
sidering perturbations that do not respect the planar symméant discrepancy is that in Refd.8] it is considered that all
try and motivated by the negative results obtained bythe perturbed quantities may have a common dependence of
Chandrasekhar and Xanthopoulos in the study of the gravithe form e!(kixX'+k2®+ksW) i the ignorable coordinates
tational and electromagnetic perturbations of the Bell-u,x!,x? of the metric for waves bound to the collision; how-
Szekeres solutior[6], Xanthopoulos has considered the ever, this is not necessarily the case, because some perturbed
pouplled perturbatil;)ns fgrfthe moTI'g generaldmﬁ'tric feplres_enhuantities must contain the factoms (ki +kax®+kst) gnq
ing plane waves bound for a collision, and his conclusion, ik x+kx+kau) i
was that among the perturbations of this general metric there v ) simultaneouslysee, e.g., Refq14,17).

are no purely incoming perturbatiop2]. In all these works, we obtain the components of the electromagnetic field per-

the method employed to obtain the coupled perturbationﬁ”bations and the components of the Weyl spinor perturba-

consists in solving the linearized Newman-Penrose equatlon[ﬁ)ns; these expressions are written down for future reference

for the perturbations, which amounts to considering a highémd finally will be used in Sec. lll to find the perturbations of

Phgmber of drl]ffe_regtlalse;](ua?r?ns tol so(ljve. Morteover, uj'_ngthe solution that represents plane waves in the preinteraction
is approach, in Re{8] Xanthopoulos does not succeed in regions. Similarly, in Sec. IV we find the perturbations of

expressing the perturbations of the Newman-Penrose quantly|tions to the Einstein-Weyl equations in the precollision

:'ﬁs (c:iqﬁrcnplﬁtely algleszallcall% In termstof a S'ngl.fhfund,:ﬂn;regions such that the flux vector of the neutrino field is nor-
is difficulty is solved in the present paper with another o oo e sont.

approach described below. In addition, in a recent p&@kr

it has been demonstrated that in the regions prior to the col-

lision in the.BeII—Szeker(_as solution there exist nontrivial Il. PERTURBATIONS OF SOLUTIONS

purely incoming perturbations. These new results have been OF THE EINSTEIN-MAXWELL EQUATIONS

obtained using a pair of scalar potentials which determine

completely the gravitational and electromagnetic perturba- When we consider a solution of the Einstein-Maxwell
tions of a solution of the Einstein-Maxwell equations with a equations with a null background electromagnetic figidd
null background electromagnetic field. The results of R&f. a possibly nonzero cosmological consjamte can takepg
were obtained by means of Wald's method of adjoint opera=0= ¢, and, thereforex=0=¢ and ¥(=0=¥,. Under

his issue will be extended later on. Specifically, in Sec. Il
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these conditions, theeal complete metric and vector potential perturbations are givef8by

h,,=—2{1,1,[(6+3B+a— T)(5+4,8+37‘)—)\_(D+48+3p)]+mﬂm,,(D+38—8_—p)(D+48+3p)—|(Mm,,)[(D+38
+e—p+p)(6+4B8+37)+(6+3B—a— 71— m)(D+4e+3p)]}ys+c.C., (1)
b,=3[1,(8+28+m)—m,(D+2s+p)]ge+c.c. ©
(modulo gauge transformatipnvhere the two complex scalar potentigls and g satisfy the equationf9]
[(A+3y—"yFu)(D+4z+3p)— (8+3a+—7)(5+45+37)~3W,] Y5 ¢20e=0,
2¢,(D+3e—e—p)(D+4e+3p)hg+[(A+y—y+)(D+2e+p)—(5+a+B—1)(5+2B8+ 1) ]he=0. (3)

Then, the components of the electromagnetic field perturbations with respect to the original tetrad are ¢®len by

eo=I"m"F> =3(D+e—e—p)(D+2e+p) e,

er=3(1"n"+m*m")FS =i[(D+e+e—p+p)(d+2B+7)+(5+B—a—7—m)(D+2e+p)|ye,

eo=m*n"FS =3[(8+ B+ a—1)(5+2B+ 7)—ND+2¢e+p) e+ @o(D—e+ 36 —p)(D+4e+3p) ) (4)

WhereFﬁfaVbV—a,,b# represents the electromagnetic field perturbation. The components of the Weyl spinor perturbations
with respect to the unperturbed tetrad can be obtained fromiIEenaking use of the formula

B _1 R/ S/ 1 R/s/
Wacoe=2V" AV chogris T 2hac™ ° Pogyrrs -

In this manner, we find that
2WE=(D+s-3s—p)(D+2e—2e—p)(mMFm’h,,,),

8WE=[(6+B-3a—37—1)(D+2c—2c—p)+(D+e—c—p+p)(6+2B—2a—2m— 7l(m*m*h,,)
+2(D+e—e—p+p)(D+2e—p+p)(n“m’h,,),
24¥8=—(D+e+e+2p—p)(D+26+2e+2p—p)(n“n’h,,)—(D+e+e+2p—p)[N(m*m*h,,— 2m*m’h ) ]— (6+ 5
—a+w+27)(5+ 2B~ 2a+ w20 (mFmh,,) —[(8+ B—a— 17— 2m)(8+ 28— 2a— 27— 1)~ 3N(D+2e—2&
—p)I(MPMPh ) +[(D+e+e+2p—p)(8+28+2m+27) +(5+ B—a+m+27)(D+2e—2p+2p)J(n*m’h )
—2[(D+e+e+2p—p)(6+2B— 17— )+ (6+B—a—7-2m)(D+2e—p+p)l(n“m’h,,), (5)
16\If_§= —[(6+a+B—m—1)(D+2e+2e—p+2p)+(D+3e+e—p+3p)(5+2a+2B—7)](n*n"h,, )~ (6+a+B—7
— DIN(mFm*h,,) ]~ (D + 38+ 2~ p+3p)[ v(m*m*h )]~ [(5+3B— a+ m+37)(A+2y—2y+pu)+(A+y—y
— i+ ) (8+ 7+ 28— 2a+ 20 J(MPmPh ) +2(8+ a+ B—m— 1)[N(MFMPh ) ]+ 2\(8+ 28— 2a— 7— 277)
X (mfm*h,,) +[(8+a+B—m— (6+2m+2B8+27)+(D+3e+e—p+3p)(A+2y+2u)+(6+38—a+m
+37)(6+2a—27)+(A+y—y—u+u)(D+2e— 2p+Zﬂ](nf‘m”hw)+2(D+SFrs—p+3E[>\_(n“th)]
—2[(8+a+ B—m— 1) (8+2B—r—m) —2N(D +2&— p+p)J(n“m’h,,,),
2WB=[(5+B+3a—1)(6+2B+2a— r)—)x_(D+2.s+28_—p+25](n“nvhw)+[(A— Y+3y+u)(A—2y+2y+pu)
+ (8- 2B+2a)— W8~ 2a+2B+m+20) +{(8+3B+a— 1) v— A\ (M*m*h,,,) —[(A— y+3y+ pu)(5+2a
~27)+(8+B+3a—1)(A+2y+2u) — w(D+ 28— 2p+2p) — N5+ 28+ 2w+ 20 |(n*m’h ) — 2[(5— B+3a

_;))\_](nMWh,uv) + ZK(WWh,uv) - %¢)22( m'umvh;u})l
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e o 5= — (1_02)71/2()(1/2(9)(1_ix*l/ZO-,XZ),
n“n"h,,=—=2[(6+3B+a—1)(6+4B+37) )
—N(D+4e+3p)]ystc.c., _ 1
__ _ 8= — (1-v) YA xMoa+ix Y0,0),
m“m’h,,=—2(D+3e—&—p)(D+4e+3p) g, 6) V2
n“m’h,,=—[(D+3e+e—p+p)(5+4B+37) whereu,v,x!,x? are real coordinates and

+(8+3B—a—1—7)(D+4e+3p) ]y, U=U(v), x=x(). (10)

The only nonvanishing spin coefficients are given[Bg]

which is a consequence of E@l). In addition, in order to
determine the perturbations of the spin coefficients, for ex-
ample, o, we make use of the formulas=—1*m"V,m,
andg*”=21*#n" —2m*m” and obtain

AN=—1AIny, wp=AIn(1-v)Y2 y=—1AInU,
(11

the only nonvanishing component of the curvature is

o=(a—p)m,I¥ = (pm,— 7l ,)mE" = 1*m*(V,m B,

(7) @22=v—12(A INYy1—0v2)2+2(A InU)(A Iny1-v?)

where, as in the preceding equations, the supersBrige-

_1 2
notes the corresponding perturbations; furthermore, it can be a(& Iny)%, (12)

shown that and the only nonvanishing component of the electromagnetic
(VVmM)BzVmei— LmP(V ,h,,+V 0, ~ V0, field is given by
B4 _ 1 02= D572, (13
m,m* =z;m“m’h,,,,
u where we ignore a physically irrelevant phase factor. In this
I“mi: —my %, manner, we can apply the results presented in the preceding

_ _ o section with the null tetrad given in Eq&®). From this null
thus, using these expressions and EQ, one easily finds tetrad, we can see that the coordinates®,x? can be ig-

that Eq.(7) becomes nored, then we seek for solutions of E¢R) of the form
0B=(6-2p—7)m, % —(D+2e—2¢—3p—p) Pe=f(v)eitkd hadikan) g =g al koo tgu)
X(D+3e—e—p)(D+4e+3p) e, (8) (149

. - . - wherek;, k,, andks are constants. Substituting E(9)—
and similarly for the remaining spin coefficients. The quan-(11) and(14) into Egs.(3), one obtains the following set of

tity m,,I®” corresponds to one of six degrees of tetrad gaug@near ordinary differential equations, which will be referred
freedom that the perturbations of the null tetragl (m,m) to as the master equations:

have[7]; making a comparison, from Eq&)—(6), we can

see that the perturbations of the electromagnetic field and of  d ) kix+koxt _ , U

the Weyl spinor do not contain similar terms depending on  2iks 3~ [U "]+ 20009 9—2iksU " 7—>49

this gauge freedom since, as we have indicated, these expres-

sions correspond to the perturbations of the fields projected = @,f,

on the unperturbed tetra@vhich is assumed fixgdwithout

having to take into account the perturbed tetrad; thus, they ~ d US(K2xy+kax 1) ) v

are fully specified by Eqs(1) and (2), unlike the similar  2iks 3~ [U™']+ T20=0d f=2iksU 7—> f

guantities in Ref[8], which involve the perturbed tetrad.

The reason to prefer quantities that do not involve the per- =4k§U ©20.

turbed tetrad, like those of Eq&4)—(6), it is that they are

more appropriate to compute, for example, fluxes of energylthough we cannot find the general solutions to E{®)

[18], and to match the perturbations between the differenfor arbitrary functiondU(v) andyx(v), the perturbations can

regions occurring in the collision of plane wad®]. be expressed, in principle, in terms of the scalar potentials
s and g ; from Egs.(4)—(6) and(9)—(13), one obtains

2
R 3 : 1 2
The metric in the regions prior to the collision of the ¢3=—m f(v)e! koo rkat), (16)
colliding plane waves can be specified by the null tef2@

(15

Ill. COLLIDING WAVES

%) V2 P U(kox ™ Y2+ ikqx?) —5
D—Uﬁu, A—Uo"v, 9 b1 2k3\/m Pos
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— U [(kx YP+ikx*®? ik dIny]— 26,

B_ _ _ 2 i (kX +kox2 +Kgu)
®2 Eg 2(1_U2) UZ do ®o UZ_k3g(v)e )
4
q,_g: _ 4U_kj' g(v)ei(k1x1+k2x2+k3u)’
T _i U(kox ™ 2 +ikyx™?) B
! 2Kz 1— 02 o
5_ U? [(kox ™ Y2+ikx"H?  2iks d Iny]—5
2 8_k§ (1-02) U2 do 0
g Wlkex ik [(kox Hikax™)? | Siks dIn x| g
8 8k3V1—v2 2(1-v?) Uz duv o
_B: U_4 (k2X71/2+ik1X1/2)2 6|k3 d In X (k2X71/2+ilel/2)2 _ 3_'(% (d |n)()2 _B_ U2
4 4kg 2(1-v?) Uz do 2(1-v?) Ul do 0 4k3(1-v?)
dliny U(Kx+kix 1?2 d Inu 1[2 d%U d Inu\?
. 2. 2. -1 _ : 2 2. -1 B, — |2~
X{'ks(le Kox ™) do 4(1—0?) 4iks(kix +kox ™) do q’o"‘k% U do2 10 do

4v dInU E(d'”X>2 5 2k3[4k3( dinu v 2>_i(k§X+k§X—1)}d_gei(klxl+kzxz+k3u)
v

- + - = +
1-v? dv 4\ dv 0 y?|u? dv 1- 1-v? dv
272
4_k3 d_g ei(k1x1+k2x2+k3u)
U4 dov? '

These perturbations may diverge at1, depending on and its complex conjugate to replace the real coordinates
the explicit expressions fot) and y. These expressions x*andx?. Then, the only relevant members of null tet¢ag
differ from those given in Ref[8], since, as can be seen ares=(1-v?) %9, and 6= (1—v?) 295 Assuming that
in Egs.(16), some perturbed quantities must contain simul-the potentialsyc and ¢ do not depend om, Egs.(3) be-
: i (kpxt+kox? +kgu) come

taneously terms proportional teoe't*1* T¥2X T*Y and

H 2 . . . .
e*'(klxl_+k2x TksW in disagreement with the assumption (1—v2) 10,05+ @othe=0, d,d5%e=0, (18
made in Ref[8], that all the perturbed quantities have the ) .
same dependence onx!, x2, and u of the form Whose solutions are given by

el (kX +k+kaw) - gyppressing incorrectly this factor and pre- Ye=(1-v2)zF(v,2)+G(v,2)],

serving the same symbols as describing the amplitudes of the (19
corresponding perturbations in the equations, although some (1-0v?)

of these equations considered in that paper clearly contain ET T 9:F(v.2),

the perturbations of the electromagnetic field, of the confor-

mal curvature, and of the spin coefficients and their complexvhere F(v,z) and G(v,z) are arbitrary functions and the
conjugates(see, e.g., Eqs(R.d), (R.f), (R.0), (R.», (B.d), factors (1-v?) are introduced for convenience. From Egs.
(B.g), (B.h) of Ref.[7]). This error has been committed sys- (4)—(6), the only nonvanishing components of the electro-
tematically in most works on the subject, whose clarificationmagnetic field perturbations and of the Weyl spinor pertur-

has been part of the aim of Ref$,18]. bations are
The u-independent perturbations are especially important, o 1
since they correspond to purely ingoing perturbations, which (sz ~ 5o (93;:(1,,2),
correspond tok;=0; these perturbations were studied by P2 (20)

Xanthopoulog 7], who found that there exist no nontrivial — —
: : VE=—207F(v,2)— d3(v,2)
u-independent perturbations, contrary to the results presented 4 zh A\ 2 T es

below; in this case it is convenient to define the complexrys there exist nontrivial-independent perturbations
variable which need not diverge at= 1. Furthermore, when the elec-
P CEERIETY. tromagr_1eti_c field perturpati_ons vanis(he.,_&§F=0), the
=4 - A = (17) nonvanishing purely gravitational perturbatid@g) not only
v2 correspond to a solution of the linearized Einstein-Maxwell
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equations, but they also correspond toexactsolution of dh d v U(k, X1/2+|k2X )
the Einstein-Maxwell equatior21]. ——|—Inu+ 5|hy =i h,
dv |dv 1-v 2/1-02
IV. THE EINSTEIN-WEYL CASE Uz,
The metric(9) is also a solution of the Einstein-Weyl - vi >

equations, assuming that the flux vector of the neutrino field
is parallel toD, which defines the direction of propagation of

the colliding wave; then, denoting by, the components of ~ df Eil Ut 2 |f = Kkgzhgt U T
the neutrino field,7,=0 and 7, depends orv only. The  dv |2 dv 1- 371712 2\/1_—,)2( X
Einstein field equations reduce to _
—ikox M) (kpihy+ig),
©2p=2ik(71A 71— 71A 71), . .
V2iks i

f= h,— k l/2_'k —1/2 h ’
with ®,, given by Eq.(12), andk being a real constant. The & U 2 »pJ1-u2 (kax == Tkox79hy

complete perturbations of solutions of the Einstein-Weyl

equations such that the flux vector of the neutrino field is

tangent to a shear-free congruence of geodesics can also be B U (kyx Y2 +ikox )
expressed in terms of complex scalar potentiad which, ksg= 2J1-02

in the present case, satisfy the following set of equations:

Assuming thak;# 0, the most general solution of Eq24)
for f andg is given by

f+2ikkgpihy.  (24)

oM —(A+2y+u)Mg =g,

1/2

DM, — Mgy = s f=C eiFl(U)’
1 o' = MmN 21) 1 \/Ez
(A+‘}/+/.L)I/IN_517//G:_|kE(DMl/+5M0/), o (1_02)1/2 )
9=2ik7.C, — 75— e'F2(v) (25
Syn—Dipg=—2ik77;DMy, UMk Prikox YY) ()
R

whereM,, andM, are two auxiliary potentials.
The components of the perturbations of the neutrino fieldyhereC, andC, are arbitrary constants arfgy andF, are

are given by[22] real functions given by
1 1 UKy +k2x 1) _
;g:m Din, ;‘;:m O, (22 Fi(v)=—— f > tkyimy|dv,
2\/_k3(1 v )
(26)
while h,, is given in Eq.(1) [thus, the perturbations of the 5 5
Weyl spinor are those given in Eq&) and (6)]. 1 U(KEx+kax ™) T
Now, we seek for solutions of Eq&1) of the form Fa(v)= 3 2/2ks(1—v2) +2K7y 7, |dv.
Vo= g(v)eitaxt o +iou) Thus, from Eqgs(22), one easily finds that
v2k
: —B_ 3 i (Kixt 4+ Kox2+KaU)
f(v)e! e T2 e,
—f el(k1x1+k2x2+k3u)’ Mo~ 4KkU
i) @3 @7
Mor:hl(v)ei(k1X1+k2X2+k3u), —B_ U(k1X1/2_ik2X_l/2) —B

AN e A

and the perturbations of the Weyl spinor are given in Egs.
(16) with f andg given in this case by expressiof5).
Substituting Eqs(9), (11), and(23) into Egs.(21), we obtain When k;=0, and assuming that the potentialg, and
the following set of linear ordinary differential equations, ¥ ¢ do not depend om, Egs.(21) for these potentials be-
which correspond to the master equations: come

My =h,(v )ei(k1x1+ kox®+kau)
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- A n. -
NS+ wot yo—ikp Lo+ %?)W:Mlp@,
1
_ (28)
58¢n=0.

Making use of the definitiori17) for the variablesz andz,
the solution can be expressed in the form

In=(1-v?)"19,F(v,2),

pty—iknim,

lﬂe:(l—vz)m{?\ﬂﬁ (29

A |
+$> a%zF(u,z)JrG(v,Z),
7

whereF(v,z) and G(v,z) are arbitrary functiongin these

expressions foryy and ¢ we have ignored terms of the

form H(v,z) because they yield trivial perturbatigng&rom
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the nonvanishing purely gravitational perturbati@86) also
correspond to an exact solution of the Einstein-Weyl equa-
tions[21].

V. CONCLUDING REMARKS

In the approach followed in Ref8], in addition to the
computations that one needs to make in order to find the
perturbations of the Newman-Penrose quantities, these quan-
tities cannot be expressed completely algebraically in terms
of the solutions of what is called the master equation of the
theory in that reference; in the present work we have ob-
tained by a clear and direct way the expressions for the per-
turbations of several Newman-Penrose quantities, being re-
markable the fact that all these quantities can be expressed
completely algebraically in terms of some few scalar poten-
tials or their derivatives, contrary to the findings of Réf].
[Note that, by eliminating the functiohfrom Egs.(15), one
obtains a single master equation fgrwhich is analogous to
the master equation found in R¢8].] As we have already

Egs. (5), (6), and (22), we find that the only nonvanishing seen, these potentials are S(_)IutionS‘tnﬂe” master equa-
components of the neutrino field perturbations and of thdions because the problem is reduced completely to study

Weyl spinor perturbations are

1
M= ——rap IoF (v,2),
4ik(1—v*)
(30
o Ay
pty=iky m+ ——
71

B_ _
V==

+\2d,|d3F (v,2)— (1—v?) "293G(v,2).

When the neutrino field perturbations vanigle., 92F =0),

the mathematical properties of these equations; for example,
some particular background solutions that lead to singulari-
ties[23], which possibly will be the aim of a future investi-
gation. It also would be interesting to study the matching of
these perturbations with those in the interaction region of the
colliding waves.
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