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Using expressions for the complete perturbations of solutions of the Einstein equations with sources in terms
of potentials, the perturbations of the space-time representing the collision of plane polarized plane gravita-
tional waves possibly coupled with electromagnetic waves or with neutrinos are obtained in the regions prior
to the collision; in the case where there is a background electromagnetic field, the problem is reduced to solve
a system of two second-order linear ordinary differential equations for two complex scalar functions, called the
master equations. When the source is a neutrino field, the master equations are a system of four first-order
linear ordinary differential equations for four complex scalar functions.@S0556-2821~97!06716-7#

PACS number~s!: 04.20.Jb, 04.40.Nr

I. INTRODUCTION

The study of collisions of gravitational waves coupled
with electromagnetic waves or with neutrino waves has
shown, among other things, the appearance of singularities
as a result of mutual focusing of the colliding waves, such as
curvature singularities, Killing-Cauchy horizons, etc.@1–4#.
The following natural step in these lines is to investigate the
stability of these properties against external perturbations,
for example, infinitesimal perturbations of different sorts. To
this end, Yurtsever has studied the persistence of some sin-
gularities that appear in the collisions of plane gravitational
waves and of almost plane gravitational waves under pertur-
bations that preserve the planar symmetry@5#, although these
plane symmetric perturbations have the unsatisfactory prop-
erty that they carry infinite energy. With the purpose of con-
sidering perturbations that do not respect the planar symme-
try and motivated by the negative results obtained by
Chandrasekhar and Xanthopoulos in the study of the gravi-
tational and electromagnetic perturbations of the Bell-
Szekeres solution@6#, Xanthopoulos has considered the
coupled perturbations for the most general metric represent-
ing plane waves bound for a collision, and his conclusion
was that among the perturbations of this general metric there
are no purely incoming perturbations@7#. In all these works,
the method employed to obtain the coupled perturbations
consists in solving the linearized Newman-Penrose equations
for the perturbations, which amounts to considering a high
number of differential equations to solve. Moreover, using
this approach, in Ref.@8# Xanthopoulos does not succeed in
expressing the perturbations of the Newman-Penrose quanti-
ties completely algebraically in terms of a single function;
this difficulty is solved in the present paper with another
approach described below. In addition, in a recent paper@9#
it has been demonstrated that in the regions prior to the col-
lision in the Bell-Szekeres solution there exist nontrivial
purely incoming perturbations. These new results have been
obtained using a pair of scalar potentials which determine
completely the gravitational and electromagnetic perturba-
tions of a solution of the Einstein-Maxwell equations with a
null background electromagnetic field. The results of Ref.@9#
were obtained by means of Wald’s method of adjoint opera-

tors which applies when we can obtain a decoupled set of
equations from the original equations for the perturbations
@10–14#. The use of such scalar potentials requires the solu-
tion of few differential equations and automatically gives the
correct relative normalization between all the components of
the perturbations@15,16#.

In this paper we make use of the expressions found in
Ref. @9# to study the perturbations of the general metric con-
sidered in Ref.@8#; we find that in all cases there exist non-
trivial purely incoming perturbations, contrary to the results
of Ref. @7#, and furthermore, in contrast with Ref.@8#, we
also show that when the perturbations also depend on the
advanced time, all of them can be written in terms of a single
function that obeys a second-order ‘‘master equation.’’ Thus,
our description and results differ in radical aspects from
those reached in Refs.@7,8#. The main reason of this signifi-
cant discrepancy is that in Refs.@7,8# it is considered that all
the perturbed quantities may have a common dependence of
the form ei (k1x11k2x21k3u) in the ignorable coordinates
u,x1,x2 of the metric for waves bound to the collision; how-
ever, this is not necessarily the case, because some perturbed
quantities must contain the factorsei (k1x11k2x21k3u) and
e2 i (k1x11k2x21k3u) simultaneously~see, e.g., Refs.@14,17#!.
This issue will be extended later on. Specifically, in Sec. II
we obtain the components of the electromagnetic field per-
turbations and the components of the Weyl spinor perturba-
tions; these expressions are written down for future reference
and finally will be used in Sec. III to find the perturbations of
the solution that represents plane waves in the preinteraction
regions. Similarly, in Sec. IV we find the perturbations of
solutions to the Einstein-Weyl equations in the precollision
regions such that the flux vector of the neutrino field is nor-
mal to the wave front.

II. PERTURBATIONS OF SOLUTIONS
OF THE EINSTEIN-MAXWELL EQUATIONS

When we consider a solution of the Einstein-Maxwell
equations with a null background electromagnetic field~and
a possibly nonzero cosmological constant!, we can takew0
505w1 and, therefore,k505s and C0505C1 . Under
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these conditions, thereal complete metric and vector potential perturbations are given by@9#

hmn522$ l ml n@~d13b1ā2t!~d14b13t!2l̄~D14«13r!#1mmmn~D13«2 «̄2r!~D14«13r!2 l (mmn)@~D13«

1 «̄2r1 r̄ !~d14b13t!1~d13b2ā2t2p̄ !~D14«13r!#%cG1c.c., ~1!

bm5 1
2 @ l m~d12b1t!2mm~D12«1r!#cE1c.c. ~2!

~modulo gauge transformation!, where the two complex scalar potentialscE andcG satisfy the equations@9#

@~D13g2ḡ1m̄ !~D14«13r!2~ d̄13a1b̄2 t̄ !~d14b13t!23C2#cG2w2cE50,

2w2~D13«2 «̄2r!~D14«13r!cG1@~D1g2ḡ1m̄ !~D12«1r!2~ d̄1a1b̄2 t̄ !~d12b1t!#cE50. ~3!

Then, the components of the electromagnetic field perturbations with respect to the original tetrad are given by@9#

w0
B[ l mm̄nFmn

B 5 1
2 ~D1«2 «̄2r!~D12«1r!cE ,

w1
B[ 1

2 ~ l mnn1mmm̄n!Fmn
B 5 1

4 @~D1«1 «̄2r1 r̄ !~d12b1t!1~d1b2ā2t2p̄ !~D12«1r!#cE ,

w2
B[mmnnFmn

B 5 1
2 @~d1b1ā2t!~d12b1t!2l̄~D12«1r!#cE1w2~D2«13«̄2 r̄ !~D14«̄13r̄ !cG, ~4!

whereFmn
B 5]nbn2]nbm represents the electromagnetic field perturbation. The components of the Weyl spinor perturbations

with respect to the unperturbed tetrad can be obtained from Eq.~1! making use of the formula

CACDE
B 5 1

2 ¹R8
(A¹S8

ChDE)R8S81
1
2 h(AC

R8S8FDE)R8S8 .

In this manner, we find that

2C0
B5~D1«23«̄2r!~D12«22«̄2r!~m̄mm̄nhmn!,

8C1
B5@~d1b23ā23p̄2t!~D12«22«̄2r!1~D1«2 «̄2r1 r̄ !~d12b22ā22p̄2t!#~m̄mm̄nhmn!

12~D1«2 «̄2r1 r̄ !~D12«2r1 r̄ !~nmm̄nhmn!,

24C2
B52~D1 «̄1«12r̄2r!~D12«̄12«12r̄2r!~nmnnhmn!2~D1 «̄1«12r̄2r!@l̄~mmmnhmn22m̄mm̄nhmn!#2~ d̄1b̄

2a1p12t̄ !~ d̄12b̄22a1p12t̄ !~mmmnhmn!2@~d1b2ā2t22p̄ !~d12b22ā22p̄2t!23l̄~D12«22«̄

2r!#~m̄mm̄nhmn!1@~D1 «̄1«12r̄2r!~ d̄12b̄12p12t̄ !1~ d̄1b̄2a1p12t̄ !~D12«̄22r12r̄ !#~nmmnhmn!

22@~D1 «̄1«12r̄2r!~d12b2t2p̄ !1~d1b2ā2t22p̄ !~D12«2r1 r̄ !#~nmm̄nhmn!, ~5!

16C3
B52@~d1ā1b2p̄2t!~D12«̄12«2r12r̄ !1~D13«̄1«2r13r̄ !~d12ā12b2t!#~nmnnhmn!2~d1ā1b2p̄

2t!@l~mmmnhmn!#2~D13«̄1«2r13r̄ !@n~mmmnhmn!#2@~ d̄13b̄2a1p13t̄ !~D12ḡ22g1m!1~D1ḡ2g

2m̄1m!~d̄1p12b̄22a12t̄ !#~mmmnhmn!12~d1ā1b2p̄2t!@l̄~m̄mm̄nhmn!#12l̄~d12b̄22ā2t22p̄ !

3~m̄mm̄nhmn!1@~d1ā1b2p̄2t!~ d̄12p12b̄12t̄ !1~D13«̄1«2r13r̄ !~D12ḡ12m!1~ d̄13b̄2a1p

13t̄ !~d12ā22t!1~D1ḡ2g2m̄1m!~D12«̄22r12r̄ !#~nmmnhmn!12~D13«̄1«2r13r̄ !@ l̄~nmm̄nhmn!#

22@~d1ā1b2p̄2t!~d12b2t2p̄ !22l̄~D12«2r1 r̄ !#~nmm̄nhmn!,

2C4
B5@~d1b13ā2t!~d12b12ā2t!2l̄~D12«12«̄2r12r̄ !#~nmnnhmn!1@~D2g13ḡ1m!~D22g12ḡ1m!

1n~d22b12ā !2 n̄~ d̄22a12b̄1p12t̄ !1$~d13b1ā2t!n2ll̄%#~mmmnhmn!2@~D2g13ḡ1m!~d12ā

22t!1~d1b13ā2t!~D12ḡ12m!2 n̄~D12«̄22r12r̄ !2l̄~ d̄12b̄12p12t̄ !#~nmmnhmn!22@~d2b13ā

2p̄ !l̄#~nmm̄nhmn!12ll~m̄mm̄nhmn!2 1
2 F22~mmmnhmn!,
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with

nmnnhmn522@~d13b1ā2t!~d14b13t!

2l̄~D14«13r!#cG1c.c.,

m̄mm̄nhmn522~D13«2 «̄2r!~D14«13r!cG ,

nmm̄nhmn52@~D13«1 «̄2r1 r̄ !~d14b13t!

1~d13b2ā2t2p̄ !~D14«13r!#cG ,

~6!

which is a consequence of Eq.~1!. In addition, in order to
determine the perturbations of the spin coefficients, for ex-
ample, s, we make use of the formulass52 l mmn¹nmm
andgmn52l (mnn)22m(mm̄n) and obtain

sB5~ ā2b!mml Bm
2~rmm2t l m!mBm

2 l mmn~¹nmm!B,
~7!

where, as in the preceding equations, the superscriptB de-
notes the corresponding perturbations; furthermore, it can be
shown that

~¹nmm!B5¹nmm
B2 1

2 mr~¹mhrn1¹nhrm2¹rhmn!,

mmmBm
5 1

2 mmmnhmn ,

l mmm
B52mml Bm

,

thus, using these expressions and Eq.~1!, one easily finds
that Eq.~7! becomes

sB5~d22b2t!mml Bm
2~D12«̄22«23r̄2r!

3~D13«̄2«2 r̄ !~D14«̄13r̄ !cG, ~8!

and similarly for the remaining spin coefficients. The quan-
tity mml Bm

corresponds to one of six degrees of tetrad gauge
freedom that the perturbations of the null tetrad (n,l ,m,m̄)
have @7#; making a comparison, from Eqs.~4!–~6!, we can
see that the perturbations of the electromagnetic field and of
the Weyl spinor do not contain similar terms depending on
this gauge freedom since, as we have indicated, these expres-
sions correspond to the perturbations of the fields projected
on the unperturbed tetrad~which is assumed fixed!, without
having to take into account the perturbed tetrad; thus, they
are fully specified by Eqs.~1! and ~2!, unlike the similar
quantities in Ref.@8#, which involve the perturbed tetrad.
The reason to prefer quantities that do not involve the per-
turbed tetrad, like those of Eqs.~4!–~6!, it is that they are
more appropriate to compute, for example, fluxes of energy
@18#, and to match the perturbations between the different
regions occurring in the collision of plane waves@19#.

III. COLLIDING WAVES

The metric in the regions prior to the collision of the
colliding plane waves can be specified by the null tetrad@20#

D5
&

U
]u , D5

&

U
]v , ~9!

d5
1

&
~12v2!21/2~x1/2]x12 ix21/2]x2!,

d̄5
1

&
~12v2!21/2~x1/2]x11 ix21/2]x2!,

whereu,v,x1,x2 are real coordinates and

U5U~v !, x5x~v !. ~10!

The only nonvanishing spin coefficients are given by@20#

l52 1
2 D lnx, m5D ln~12v2!1/2, g52 1

2 D lnU,
~11!

the only nonvanishing component of the curvature is

F225
1

v2 ~D lnA12v2!212~D lnU !~D lnA12v2!

2 1
4 ~D lnx!2, ~12!

and the only nonvanishing component of the electromagnetic
field is given by

w25AF22/2, ~13!

where we ignore a physically irrelevant phase factor. In this
manner, we can apply the results presented in the preceding
section with the null tetrad given in Eqs.~9!. From this null
tetrad, we can see that the coordinatesu,x1,x2 can be ig-
nored, then we seek for solutions of Eqs.~3! of the form

cE5 f ~v !ei ~k1x11k2x21k3u!, cG5g~v !ei ~k1x11k2x21k3u!,
~14!

wherek1 , k2 , andk3 are constants. Substituting Eqs.~9!–
~11! and ~14! into Eqs.~3!, one obtains the following set of
linear ordinary differential equations, which will be referred
to as the master equations:

2ik3

d

dv
@U22g#1

k1
2x1k2

2x21

2~12v2!
g22ik3U22

v
12v2 g

5w2f ,
~15!

2ik3

d

dv
@U21f #1

U3~k1
2x1k2

2x21!

2~12v2!
f 22ik3U

v
12v2 f

54k3
2Uw2g.

Although we cannot find the general solutions to Eqs.~15!
for arbitrary functionsU(v) andx(v), the perturbations can
be expressed, in principle, in terms of the scalar potentials
cG andcE ; from Eqs.~4!–~6! and ~9!–~13!, one obtains

w0
B52

k3
2

U2 f ~v !ei ~k1x11k2x21k3u!, ~16!

w1
B52 i

U~k2x21/21 ik1x1/2!

2k3A12v2
w0

B,
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w2
B52

U2

2k3
2 F ~k2x21/21 ik1x1/2!2

2~12v2!
1

ik3
2

U2

d lnx

dv Gw0
B2

2w2

U2 k3
2g~v !ei ~k1x11k2x21k3u!,

C0
B52

4k3
4

U4 g~v !ei ~k1x11k2x21k3u!,

C1
B52 i

U~k2x21/21 ik1x1/2!

2k3A12v2
C0

B,

C2
B5

U2

8k3
2 F ~k2x21/21 ik1x1/2!2

~12v2!
1

2ik3

U2

d lnx

dv GC0
B,

C3
B52 i

U3~k2x21/21 ik1x1/2!

8k3
3A12v2 F ~k2x21/21 ik1x1/2!2

2~12v2!
1

3ik3

U2

d ln x

dv GC0
B,

C4
B5

U4

4k3
4 H ~k2x21/21 ik1x1/2!2

2~12v2! F6ik3

U2

d ln x

dv
1

~k2x21/21 ik1x1/2!2

2~12v2! G2
3k3

2

U4 S d lnx

dv D 2J C0
B2

U2

4k3
4~12v2!

3H ik3~k1
2x2k2

2x21!
d lnx

dv
2

U2~k1
2x1k2

2x21!2

4~12v2!
24ik3~k1

2x1k2
2x21!

d lnU

dv J C0
B1

1

k3
2 F 2

U

d2U

dv2 210S d lnU

dv D 2

2
4v

12v2

d lnU

dv
1

1

4 S d lnx

dv D 2GC0
B2

2k3

U2 F4k3

U2 S 3
d lnU

dv
1

v
12v2D2 i

~k1
2x1k2

2x21!

12v2 G dg

dv
ei ~k1x11k2x21k3u!

1
4k3

2

U4

d2g

dv2 ei ~k1x11k2x21k3u!.

These perturbations may diverge atv51, depending on
the explicit expressions forU and x. These expressions
differ from those given in Ref.@8#, since, as can be seen
in Eqs. ~16!, some perturbed quantities must contain simul-
taneously terms proportional toei (k1x11k2x21k3u) and
e2 i (k1x11k2x21k3u), in disagreement with the assumption
made in Ref.@8#, that all the perturbed quantities have the
same dependence onx1, x2, and u of the form
ei (k1x11k2x21k3u), suppressing incorrectly this factor and pre-
serving the same symbols as describing the amplitudes of the
corresponding perturbations in the equations, although some
of these equations considered in that paper clearly contain
the perturbations of the electromagnetic field, of the confor-
mal curvature, and of the spin coefficients and their complex
conjugates~see, e.g., Eqs.~R.d!, ~R.f!, ~R.o!, ~R.r!, ~B.d!,
~B.g!, ~B.h! of Ref. @7#!. This error has been committed sys-
tematically in most works on the subject, whose clarification
has been part of the aim of Refs.@9,18#.

Theu-independent perturbations are especially important,
since they correspond to purely ingoing perturbations, which
correspond tok350; these perturbations were studied by
Xanthopoulos@7#, who found that there exist no nontrivial
u-independent perturbations, contrary to the results presented
below; in this case it is convenient to define the complex
variable

z[
x21/2x11 ix1/2x2

&
~17!

and its complex conjugate to replace the real coordinates
x1 andx2. Then, the only relevant members of null tetrad~9!
ared5(12v2)21/2]z andd̄5(12v2)21/2] z̄ . Assuming that
the potentialscG andcE do not depend onu, Eqs.~3! be-
come

~12v2!21]z] z̄cG1w2cE50, ]z] z̄cE50, ~18!

whose solutions are given by

cG5~12v2!2@ z̄F~v,z!1G~v,z!#,
~19!

cE52
~12v2!

w2
]zF~v,z!,

where F(v,z) and G(v,z) are arbitrary functions and the
factors (12v2) are introduced for convenience. From Eqs.
~4!–~6!, the only nonvanishing components of the electro-
magnetic field perturbations and of the Weyl spinor pertur-
bations are

w2
B52

1

2w2
]z

3F~v,z!,
~20!

C4
B52 z̄]z

4F~v,z!2]z
4~v,z!.

Thus, there exist nontrivialu-independent perturbations
which need not diverge atv51. Furthermore, when the elec-
tromagnetic field perturbations vanish~i.e., ]z

3F50!, the
nonvanishing purely gravitational perturbations~20! not only
correspond to a solution of the linearized Einstein-Maxwell
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equations, but they also correspond to anexactsolution of
the Einstein-Maxwell equations@21#.

IV. THE EINSTEIN-WEYL CASE

The metric ~9! is also a solution of the Einstein-Weyl
equations, assuming that the flux vector of the neutrino field
is parallel toD, which defines the direction of propagation of
the colliding wave; then, denoting byhA the components of
the neutrino field,h050 and h1 depends onv only. The
Einstein field equations reduce to

F2252ik~h1Dh12h1Dh1!,

with F22 given by Eq.~12!, andk being a real constant. The
complete perturbations of solutions of the Einstein-Weyl
equations such that the flux vector of the neutrino field is
tangent to a shear-free congruence of geodesics can also be
expressed in terms of complex scalar potentials@22# which,
in the present case, satisfy the following set of equations:

d̄M182~D12g1m!M085h1cG ,

DM182dM085h1cN ,
~21!

~D1g1m!cN2dcG52 ikh̄1~DM181dM08!,

d̄cN2DcG522ikh̄1DM08 ,

whereM08 andM18 are two auxiliary potentials.
The components of the perturbations of the neutrino field

are given by@22#

h̄0
B5

1

4ik
DcN , h̄1

B5
1

4ik
dcN , ~22!

while hmn is given in Eq.~1! @thus, the perturbations of the
Weyl spinor are those given in Eqs.~5! and ~6!#.

Now, we seek for solutions of Eqs.~21! of the form

cG5g~v !ei ~k1x11k2x21k3u!,

cN5 f ~v !ei ~k1x11k2x21k3u!,
~23!

M085h1~v !ei ~k1x11k2x21k3u!,

M185h2~v !ei ~k1x11k2x21k3u!.

Substituting Eqs.~9!, ~11!, and~23! into Eqs.~21!, we obtain
the following set of linear ordinary differential equations,
which correspond to the master equations:

dh1

dv
2F d

dv
lnU1

v
12v2Gh15 i

U~k1x1/21 ik2x21/2!

2A12v2
h2

2
Uh1

&
g,

d f

dv
2F1

2

d

dv
lnU1

v
12v2G f 5kk3h̄1h21

U

2A12v2
~k1x1/2

2 ik2x21/2!~kh̄1h11 ig !,

h1f 5
& ik3

U
h22

i

&A12v2
~k1x1/22 ik2x21/2!h1 ,

k3g5
U~k1x1/21 ik2x21/2!

2A12v2
f 12ikk3h̄1h1 . ~24!

Assuming thatk3Þ0, the most general solution of Eqs.~24!
for f andg is given by

f 5C1

U1/2

A12v2
eiF 1~v !,

g52ikh̄1C2

~12v2!1/2

U
eiF 2~v !

2 i
U3/2~k1x1/21 ik2x21/2!

2k3~12v2!
C1eiF 1~v !,

~25!

whereC1 andC2 are arbitrary constants andF1 andF2 are
real functions given by

F1~v !52
1

&
E UFU~k1

2x1k2
2x21!

2&k3~12v2!
1kh1h̄1Gdv,

~26!

F2~v !5
1

&
E UFU~k1

2x1k2
2x21!

2&k3~12v2!
12kh1h̄1Gdv.

Thus, from Eqs.~22!, one easily finds that

h̄0
B5
&k3

4kU
f ~v !ei ~k1x11k2x21k3u!,

~27!

h̄1
B5

U~k1x1/22 ik2x21/2!

2k3A12v2
h̄0

B ,

and the perturbations of the Weyl spinor are given in Eqs.
~16! with f andg given in this case by expressions~25!.

When k350, and assuming that the potentialscN and
cG do not depend onu, Eqs. ~21! for these potentials be-
come
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S ld1md̄1gd̄2 ikh1h̄1d̄1
Dh̄1

h̄1
d̄ DcN5 d̄dcG ,

dd̄cN50.
~28!

Making use of the definition~17! for the variablesz and z̄,
the solution can be expressed in the form

cN5~12v2!21]zF~v,z!,

cG5~12v2!21/2Fl]z1S m1g2 ikh1h̄1

1
Dh̄1

h̄1
D ] z̄G z̄F~v,z!1G~v,z!,

~29!

whereF(v,z) and G(v,z) are arbitrary functions@in these
expressions forcN and cG we have ignored terms of the
form H(v,z̄) because they yield trivial perturbations#. From
Eqs. ~5!, ~6!, and ~22!, we find that the only nonvanishing
components of the neutrino field perturbations and of the
Weyl spinor perturbations are

h̄1
B5

1

4ik~12v2!3/2 ]z
2F~v,z!,

~30!

C̄4
B52

1

~12v2!3/2 Fm1g2 ikh1h̄11
Dh̄1

h̄1

1l z̄]zG]z
4F~v,z!2~12v2!22]z

4G~v,z!.

When the neutrino field perturbations vanish~i.e., ]z
2F50!,

the nonvanishing purely gravitational perturbations~30! also
correspond to an exact solution of the Einstein-Weyl equa-
tions @21#.

V. CONCLUDING REMARKS

In the approach followed in Ref.@8#, in addition to the
computations that one needs to make in order to find the
perturbations of the Newman-Penrose quantities, these quan-
tities cannot be expressed completely algebraically in terms
of the solutions of what is called the master equation of the
theory in that reference; in the present work we have ob-
tained by a clear and direct way the expressions for the per-
turbations of several Newman-Penrose quantities, being re-
markable the fact that all these quantities can be expressed
completely algebraically in terms of some few scalar poten-
tials or their derivatives, contrary to the findings of Ref.@8#.
@Note that, by eliminating the functionf from Eqs.~15!, one
obtains a single master equation forg, which is analogous to
the master equation found in Ref.@8#.# As we have already
seen, these potentials are solutions of‘‘true’’ master equa-
tions, because the problem is reduced completely to study
the mathematical properties of these equations; for example,
some particular background solutions that lead to singulari-
ties @23#, which possibly will be the aim of a future investi-
gation. It also would be interesting to study the matching of
these perturbations with those in the interaction region of the
colliding waves.
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