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To clarify the evolution of inhomogeneous substructures in large-scale structures such as voids, we study the
perturbations in a spherically symmetric inhomogeneous model with the self-similar region outside the inner
low-density homogeneous region, first based on the Gerlach-Sengupta general-relativistic formulation for
perturbations in spherically symmetric inhomogeneous models. Owing to self-similarity, the analysis for all
kinds of perturbations at the early stage is simplified in a similar way to homogeneous models. Next we take
the approximate treatment due to the local homogeneous model with the average density parameter which is
considered at each point, in order to study the behavior of perturbations on small scales. It is found that the
growth rate of density perturbations in the outside self-similar region can be larger by about 30220% ~for
z5223) than that in the corresponding ordinary low-density homogeneous model.@S0556-2821~97!05218-1#

PACS number~s!: 98.80.Hw, 04.40.Dg

I. INTRODUCTION

There are various large-scale dynamical structures such as
superclusters and voids which are evolving with cosmic ex-
pansion. In these structures, substructures such as galaxies
appear as a result of the growth of perturbations. The behav-
ior of perturbations in general inhomogeneous structures is
very complicated, but it may be rather simplified in spheri-
cally symmetric structures.

The general-relativistic theory of perturbations in a
spherically symmetric inhomogeneous model was derived by
Gerlach and Sengupta@1#. They gave the elegant gauge-
invariant formulation, but the solutions in cosmological
problems have not been derived so far. This may be due to
the situation that their perturbation equations are partial dif-
ferential equations inconvenient for analytical treatments and
intuitive insight, and that three kinds of perturbations are not
decoupled and their coupling is complicated, as in aniso-
tropic cosmological models@2–4#. So far the perturbations of
spherically symmetric inhomogeneous cosmological models
have been studied in a few treatments@5,6#, but they were
limited to spherically symmetric perturbations.

In this paper we study the perturbations in an inhomoge-
neous background model with the self-similar region outside
the inner low-density homogeneous region, which includes
pressureless matter. In this self-similar region, dynamics is
described using a single coordinatej[ct/r @7–10#, wheret
and r are the cosmic time and a radial coordinate, and the
perturbation equations are also reduced to ordinary differen-
tial equations~see also a treatment in the partially symmetric
case@11# for comparison!. Moreover, the background in this
region is isotropic and homogeneous in the limitj→0, so
that the behavior of perturbations is similar to that in the
Friedmann model in this limit. Because of these situations,
the perturbations can be most easily analyzed in a self-
similar model among general inhomogeneous models. The
perturbations are studied first due to Gerlach and Sengupta’s
formalism, and next in the approximate treatment due to lo-
cal homogeneous models.

In Sec. II the background model is shown in connection
with the Gerlach-Sengupta formalism. In Sec. III the pertur-
bation equations in the self-similar model are derived from
the equations by Gerlach and Sengupta@1#, and in Sec. IV
the analytic solutions in a series expansion aroundj50 and
qualitative behavior of numerical solutions in the region of
j*1 are shown. In Sec. V, it is shown that the perturbations
in the local homogeneous models are useful for the approxi-
mate treatment of the perturbations on small spatial scales
and, assuming that the inside and outside of a spherical void
are expressed by homogeneous and self-similar models, re-
spectively, the growth of density perturbations in the outside
self-similar region of the void is shown in comparison with
that in the corresponding ordinary homogeneous model in
Appendixes A, B, C, and D, the tensor calculus in the sub-
manifolds, basic equations in the even parity, various formu-
las in the series expansion, and the perturbations in a homo-
geneous model in Gerlach and Sengupta’s formalism,
respectively, which are necessary for calculations in the text.

II. BACKGROUND MODEL

The Lemaitre-Tolman-Bondi solution for spherically
symmetric inhomogeneous cosmological models with pres-
sureless matter~Tolman @12#, Landau and Lifshitz@13#! is
represented by the line element

ds25 g̃mnd x̃md x̃n

52c2dt21S2~ t,r !H ~11rS8/S!2

12ka~r !r 2 dr21r 2dV2J ,

~2.1!

where (x̃0, x̃1, x̃2, x̃3)5(ct,r ,u,w), dV25du21sin2dw2,
a(r ) is an arbitrary function of coordinate radiusr , and
S85]S/]r . The equation forṠ(5]S/]t) is given by

~Ṡ!25c2~bS212ka!, ~2.2!
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with the signk(561) of the spatial curvature, and its solu-
tion is expressed as

S~ t,r !5
b~r !

2ka~r !F12
ds~h!

dh G , ~2.3!

c@ t2t~r !#5
b~r !

2k@a~r !#3/2
@h2s~h!#, ~2.4!

whereb(r ) andt(r ) are arbitrary functions, and

s~h!5sinh, sinhh for k51,21, ~2.5!

respectively. The matter density is expressed as

r5
3c2b̄ ~r !

8pG
S23~11rS8/S!21, ~2.6!

where b̄ (r )5b(r )1 1
3 rb8(r ). In this paper we adopt

k521, assumet(r )50 , and use the unitc51 for simplic-
ity.

For convenience we assume that the spacetime consists of
the inner homogeneous region (r ,r 1) and the outer self-
similar inhomogeneous region (r .r 1), as in Ref.@8#. In the
limit r 1→0, the model is covered by the latter region. In the
inner homogeneous region we havea(r )/a05b(r )/b0

51/(r 1)2, where b05H0
21(r 1)2 and H0[(Ṡ/S) t5t0

. The

Hubble constantH0 corresponds to the present epocht0.
Then Eqs.~2.3! and ~2.6! at epocht0 lead to

V0[r in~ t0!Y S 3H0
2

8pGD51/~H0S0!3 ~2.7!

and

a0 /~r 1!25~12V0!/~V0!2/3, ~2.8!

for S0[S(t0,0). The solutions are expressed as

S/S05
V0

2~12V0!
~coshh21!, ~2.9!

H0t5
V0

2~12V0!3/2
~sinhh2h!, ~2.10!

r in5S 3H0
2V0

8pG D S S

S0
D 23

. ~2.11!

Here the parametera0 or r 1 is arbitrary, and the positions
of observers are also arbitrary. If an observer is at the center
and we consider a light ray which is emitted at the redshiftz1
from the boundary and reaches the observer at the center at
present epoch@8#, the light-ray equation leads to

Aa05
4A12V0

V0
2~11z1!

F12V01
V0

2
~11z1!

1S V0

2
21DA11V0z1G , ~2.12!

by which r 1 is related toz1 using Eq.~2.8!. For z1!1, we
have a0.(12V0)z2, r 1.V0

1/3z1, and, for z151 and
2(V050.2), we havea050.398,1.095,r 150.412,0.684, re-
spectively.

In the self-similar region,S(t,r ) is a function of only
j([t/r ), anda(r ) andb(r ) are taken to be

a~r !/a05b~r !/b051/r 2, ~2.13!

so thata(r )r 2 andb(r )r 2 may be constant and continuous
at the boundaryr 5r 1. Equations~2.3! and ~2.6! lead to Eq.
~2.9! and

j[
t

r
5

H0
21~r 1!21V0

2~12V0!3/2
~sinhh2h!, ~2.14!

r5
3H0

2V0

8pG S r 1

r D 2S S

S0
D 23

~12jS,j /S!21, ~2.15!

where ,j denotes the partial derivative]/]j.
Line element~2.1! in the self-similar region is expressed

as

ds252dt21S2~j!H ~12jS,j /S!2

12ka0
dr21r 2dV2J .

~2.16!

If we use forr a radial coordinatex defined byr /r 1[exp(x),
the line element is

ds25gmndxmdxn5r 2d s̄2, ~2.17!

d s̄25 ḡmndxmdxn52dj222jdjdx1M2~j!dx2

1S2~j!dV2, ~2.18!

where (x0,x1,x2,x3)5(j,x,u,w),

M2[N2~j!2j2, ~2.19!

and

N2~j![S2~12jS,j /S!2/~11a0!. ~2.20!

The metric components are

gmn5r 2 ḡmn , gmn5r 22 ḡmn, ~2.21!

with

~ ḡ00, ḡ01, ḡ11!5~21,2j,M2!,

~ ḡ00, ḡ01, ḡ11!5~2M2,2j,1!/N2. ~2.22!

The conformal spacetime withd s̄2 is homogeneous in thex
direction in the sense that it is invariant for the spatial trans-
formation x→x1const. For the mathematical analysis, the
coordinates (j,x) are convenient, while the coordinates (t,r )
are better for the physical interpretation. Accordingly, these
two sets of coordinates will be used in the following.

Gerlach and Sengupta’s gauge-invariant theory for pertur-
bations on general spherically symmetric spacetimes is used
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in the next section. In their notation the background metrics
in the self-similar region are written as

ds25gABdxAdxB1R2~xC!dV2, ~2.23!

d s̄25ds2/r 25 ḡABdxAdxB1S2~xC!dV2, ~2.24!

where capital latin indicesA,B,C refer to time and radial
coordinates, latin indicesa,b,c refer to u and w, and
R5S(j)r 1exp(x). On the two-dimensional submanifold
spanned byxC(C50,1),R(xC),vA([R,A), andgAB(xC) are
regarded as scalar, vector, and tensor fields, and the barred
quantities corresponding to them are defined as the quantities
obtained after extracting all factors ofr from them. Then the
components ofvA andvA are

~v0 ,v1!5~ v̄ 0 , v̄ 1!5~S,0 /S,1!,

r 2~v0,v1!5~ v̄ 0, v̄ 1!5~M2S,0 /S11,jS,0 /S21!.
~2.25!

The energy-momentum tensor for pressureless matter is ex-
pressed as

t̃ mnd x̃md x̃n5 t̃ 00~d x̃0!2, ~2.26!

tmndxmdxn5t00~dx0!212t01dx0dx1, ~2.27!

in the (t,r ) and (j,x) coordinates, respectively. Here
t̃ 005t005 t̄ 005r 2r@5 r̄ }1/(S2N)#, t015 t̄ 015jt00, and
t1150, because t005(]t/]j)2 t̃ 00, t015]t/]j]r /]x t̃ 01.
From Eq.~2.15! it is found that t̄ 00 and t̄ 01 depend only on
j, as well asv̄ 0 and v̄ 1.

The quantitiestAB and vA satisfy the background equa-
tions

1
2 ktAB522~vAuB1vBuA!1~2vC

uC13vCvC2R22!gAB

[GAB , ~2.28!

vC
uC1vCvC2R50, ~2.29!

wherek516pG/c4,uA denotes the covariant derivative with
respect toxA in the two-dimensional submanifold with met-
ric gAB , andR is the Gaussian curvature of the submanifold.
In the barred quantities they are

1
2 k t̄ AB522~ v̄ AuB1 v̄ BuA!14~dA

1 v̄ B1dB
1 v̄ A!

1~2 v̄ C
iC13 v̄ C v̄ C2S2224 v̄ 1! ḡAB

[ ḠAB , ~2.30!

v̄ C
iC1 v̄ C v̄ C2R̄50, ~2.31!

whereiA denotes the covariant derivative with respect toxA

in the submanifold with metricḡAB and ḡAB, andR̄5r 2R.

III. PERTURBED QUANTITIES IN THE SELF-SIMILAR
SPACETIME

The angular dependence of all perturbations can be ex-
pressed using spherical harmonics such asYlm(u,w) with
angular integersl and m, and they have odd parity
@(21)l 11# or even parity@(21)l #, corresponding to the ro-
tation on the two-dimensional submanifold withx05const
and x15const ~Regge and Wheeler@14#, Gerlach and Sen-
gupta@15#!. In the following these two kinds of perturbations
are separately considered.

A. Odd-parity perturbations

The perturbations of metric and energy-momentum ten-
sors are expressed as

hmndxmdxn52hA~xC!Sa~u,w!dxAdxa

1h~xC!~Sa;b1Sb;a!dxadxb, ~3.1!

Dtmndxmdxn52DtA~xC!Sa~u,w!dxAdxa, ~3.2!

where semicolons indicate the covariant derivatives on the
unit sphere and the vector harmonicsSa is transverse
(Sa

;a5Sa
;a50). Since we treat pressureless matter, we have

no components withm52,3, i.e.,L in Eq. GS~7b! of Ref.
@1# vanishes. In the following, GS denotes the equation num-
ber in Ref.@1#.

The gauge-invariant quantities corresponding tohmn and
Dtmn are

kA5hA2R2~h/R2! ,A , ~3.3!

LA5DtA , ~3.4!

where ,A denotes]/]xA. The gauge transformations are
shown in their paper.

Because of self-similarity,ḡmn , ḡmn, t̄ mn , and t̄ mn de-
pend only onj, and they can be regarded as quantities in the
conformal spacetime with metricd s̄2, as in the previous
section. In the same way it is imposed that (e22xhmn ,Dtmn)
or (e22xkA ,LA) are regarded as quantities in the conformal
spacetime, which is homogeneous in thex direction. Then
we can assume that they are Fourier expanded in the form of
exp(ipx), where p is a wave number. Each component is
expressed as

hA5e2x h̄A , h5e2x h̄ , DtA5D t̄ A , ~3.5!

and the gauge-invariant quantities are

kA5e2x k̄ A , LA5 L̄ A , ~3.6!

where h̄A , h̄ , k̄ A ,D t̄ A , L̄ A have the common factor
exp(ipx). The relations between them are

k̄ 05 h̄02S2~ h̄ /S2! ,0 , ~3.7!

k̄ 15 h̄12 ip h̄ , ~3.8!

where ,0 means]/]j.
The quantities with upper indices are defined as
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k̄ A5 ḡABk̄ B , L̄ A5 ḡABL̄ B , ~3.9!

so that

kA5 k̄ A, LA5e22xL̄ A. ~3.10!

The Einstein equations for gauge-invariant quantities@GS
~9a!, ~9b!, and~14!# reduce to the following ordinary differ-
ential equations. First, we obtain from GS~9a!

k̄ A
iA12 k̄ 150 or ~N k̄0! ,0 /N1~ ip12! k̄ 150 ~ l>2!

~3.11!

and from GS~14!

S2L̄ A
iA12S2L̄ 150

or

~S2NL̄0! ,0 /N1S2~ ip12! L̄ 150 ~ l>1!, ~3.12!

whereiA denotes the covariant derivative in the submanifold
with metric ḡAB , introduced in the previous section. If we
defineBAC by

BAC5R4@~R22kA! uC2~R22kC! uA#, ~3.13!

GS ~16b! is expressed as

2@~ B̄AC! iC12B̄A1#1~ l 21!~ l 12! k̄ A5kS2L̄ A,
~3.14!

whereBAB5 B̄AB, the nonvanishing component ofB̄AB is

B̄0152 B̄105~S/N!2@2 ip k̄ 01S2~ k̄ 1 /S2! ,0#, ~3.15!

and

B̄iC
AC5 B̄,C

AC1~N,0 /N!B̄AC. ~3.16!

For A50, therefore, we obtain

2~ ip12!B̄011~ l 21!~ l 12! k̄ 05kS2L̄ 0 ~3.17!

and forA51,

B̄,0
011~N,0 /N!B̄011~ l 21!~ l 12! k̄ 15kS2L̄ 1. ~3.18!

If we eliminateB̄01 from Eqs.~3.17! and~3.18! and use Eq.
~3.11!, we obtain Eq.~3.12! again. If we use the relations
k̄ 052 k̄ 02j k̄ 1 and k̄ 152j k̄ 01M2 k̄ 1 with Eq. ~3.11!,
Eq. ~3.17! reduces to

S k̄ 0

S2 D
,00

1F2S S,0

S
1

M ,0

M D1
N,0

N
1

2~11 ip !j

M2 G S k̄ 0

S2 D
,0

1F S 2
S,0

S
1

N,0

N D
,0

1S 2
S,0

S
1

N,0

N D S 2
M ,0

M
1

ipj

M2 D
1

21p22 ip

M2 1~ l 21 l 22!S N

MSD 2G k̄ 0

S2
5S N

M2S4Dk L̄ 0.

~3.19!

As a result we derivek̄ 0 and L̄ 0 solving Eqs.~3.12! and
~3.19! and getk̄ 1 from Eq. ~3.11!.

In this parity, perturbations include rotational motions and
gravitational waves. IfL̄ 050, the perturbations consist of
free gravitational waves. The rotational motions withL̄ 0

Þ0 have conserved angular momentum satisfying Eq.
~3.12!.

B. Even-parity perturbations

The perturbations of metric and matter tensors are

hmndxmdxn5hAB~xC!Y~u,w!dxAdxB12hAY,adxAdxa

1R2@KY~u,w!gab1GY,a;b#dxadxb,

~3.20!

Dtmndxmdxn5DtAB~xC!Y~u,w!dxAdxB

12DtA~xC!Y,adxAdxa, ~3.21!

whereD1 andD2 in GS ~4b! do not appear because of pres-
sureless matter. The corresponding gauge-invariant quanti-
ties are

kAB5hAB2~pAuB1pBuA!, ~3.22!

k5K22vApA , ~3.23!

TAB5DtAB2tAB
uC pC2~ tCApuB

C 1tCBpuA
C !, ~3.24!

TA5DtAK22tA
CpC , ~3.25!

where

pA5hA2 1
2 R2G,A ~3.26!

andT1 andT2 in GS ~8b! vanish.
In the same way as in the odd-parity case, it is imposed

that h̄mn(5r 22hmn) and D t̄ mn(5Dtmn) depend only onj,
i.e.,

hAB5r 2 h̄AB~j!, hA5r 2 h̄A~j!, pA5r 2 p̄A~j!,

~K,G!5„K̄~j!,Ḡ~j!…, DtAB5D t̄ AB~j!,

DtA5D t̄ A~j!, ~3.27!

and the gauge-invariant counterparts are

kAB5r 2 k̄ AB , k5 k̄ , TAB5 T̄AB , TA5 T̄A .
~3.28!

Then Einstein equations for barred quantities are reduced to
ordinary differential equations with respect toj. Equations
for the gauge-invariant quantities are given in GS~10a!–
~10d! and GS~15a! and ~15b!. In the following we show
them using the above barred quantities.

First we obtain, from GS~15a!,

S22~S2T̄A! iA12T̄15 1
2 t̄ ABk̄ AB , ~3.29!
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whereT̄1 vanishes because of pressureless matter. From GS
~15b! we obtain similarly

S22~S2T̄A
B! iB12T̄A

12dA
1 T̄C

C2 l ~ l 11!S22T̄A

5 1
2 k̄ ACiA t̄ BC1 k̄ iB

CB t̄ CA2 1
2 k̄ CiB

C t̄ A
B2 k̄ ,C t̄ A

C

1 k̄ BC~2 v̄ B t̄ CA1 t̄ CAiB2dA
1 t̄ BC!. ~3.30!

In the derivation of these and following equations we used
the relations shown in Appendix A.

Moreover we obtain, from GS~10d!,

k̄ C
C50, ~3.31!

sincekC
C5 k̄ C

C . From GS~10b!,

k̄ A2 k̄ AiC
C 22 k̄ A

11dA
1 k̄ C

C1~ k̄ C
C! ,A2 v̄ A k̄ C

C52k T̄A
~3.32!

and, from GS~10c!,

k̄
iC
iC12 v̄ C2 k̄ ,C2 k̄ iDC

CD 2@N~2 k̄ 1C2 ḡC1 k̄ B
B!# ,C22 v̄ C k̄ iD

CD

22~ v̄ CiD1 v̄ C v̄ D! k̄ CD1~ k̄ D
D! iC

iC1 v̄ C~ k̄ D
D! iC

1@R̄2 l ~ l 11!S22# k̄ C
C50. ~3.33!

The above equations can be reduced to forms more conve-
nient for solving them with respect tok̄ , k̄ 00, k̄ 01, T̄0/ r̄ ,
T̄00/ r̄ , and T̄01/ r̄ , which are shown in Appendix B.

Here we examine the physical meaning of the gauge-
invariant quantities in comparison with those in a homoge-
neous and isotropic model. In the scalar perturbations the
metric componentsk and k00 correspond toFH and FA in
Bardeen’s gauge-invariant formalism@16,17#, andT̄00/ r̄ is a
contrast of energy density, whileT̄01/ r̄ andT̄0/ r̄ are veloci-
ties in the radial and angular directions. In order to define the
density contrast corresponding to Bardeen’sem , we first
considerTAB in the submanifold with metricg̃AB and r̃ . The
present definition ofem is given as the density contrast in the
synchronous and comoving reference system. Then we ob-
tain in this system

Ttt5t ttem2t ,t
ttpt22t ttpt

ut , ~3.34!

Tt5t ttpt , ~3.35!

and

ktt52kt
t52pt

ut ~3.36!

from the definition ofT̃AB, T̃A, p̃A , and k̃ AB, where we
put T̃005Ttt, T̃05Tt, and so on. Accordingly, it is found
that

em5
Ttt

r
1

r ,t

r

Tt

r
1ktt. ~3.37!

By transformation from (t,r ) to (j,x), we obtain

em5
T̄00

r̄
12j

T̄01

r̄
1

r̄ ,0

r̄

T̄0

r
1S N

M D 2

~ k̄ 0012j k̄ 01!,

~3.38!

where T̄005 T̄jj, T̄015 T̄jx, t̄ 005 t̄ jj, and t̄ ,0
005 t̄ ,j

jj .

IV. BEHAVIOR OF PERTURBATIONS
IN THE SELF-SIMILAR SPACETIME

In anisotropic cosmological models, three types of pertur-
bations~scalar, vector, and tensor! are not generally decou-
pled and their behavior is complicated, as can be seen in
perturbations of the Bianchi type I anisotropic model@2–4#!.
In the present case, however, it is possible to classify the
perturbations into the above three types aroundj50. This is
because in the limitj→0 the background model tends to an
isotropic spacetime, as follows. In this limit background met-
ric ~2.1! leads to

ds252c2dt21~S1!2S t

r D
4/3H dr2

9~11a0!
1r 2dV2J ,

~4.1!

becauseS(j)5S1j2, whereS1 is constant. By the transfor-
mation r→z[r 1/3 the metric reduces to

ds252c2dt21~S1!2~ct!4/3H dz2

11a0
1z2dV2J . ~4.2!

The perturbations are accordingly supposed to have a similar
behavior to that in the homogeneous and isotropic model in
the limit j→0.

In the following, the solutions in the series expansion are
first derived in connection with the perturbations in a homo-
geneous, isotropic model, which are shown in Appendix D in
the Gerlach and Sengupta formalism. Here we call the three
classified perturbations asprimordial scalar, vector, and ten-
sor perturbations, in the sense that the classification is done
in the neighborhood ofj50. Next the solutions in the whole
region of j are derived numerically, using the solutions in
the series expansion as their initial conditions.

A. Odd parity

First, we expandk̄ 0/S2 as

k̄ 0/S25ja~11a1X1a2X21••• !, ~4.3!

where

X[~6j/j* !2/3, ~4.4!

with

j* [
H0

21~r 1!21V0

2~12V0!3/2
. ~4.5!

Substituting Eq.~4.3! and expansions of the background
quantities~shown in Appendix C! into Eq. ~3.19!, we obtain
the following solutions.
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1. Primordial tensor perturbation

We assumeL̄ 050. Thena satisfies 3a217a1250 or
a522,21/3, which is consistent with Eq.~D19! in the limit
t→0. The coefficientsa1 anda2 are

for a522

a15 1
120@21232180s0110~ l 21 l 22!~s021!

190s0~p223ip !#, ~4.6!

a25 1
5600$193312520s018400s0

21 280
3 ~ l 21 l 22!

3~31226s025s0
2!2840~28195s0!s0p2

1140ips0@33120~ l 21 l 22!~12s0!

1450s02180p2s0#%, ~4.7!

for a521/3

a15 1
40 @14210s015~ l 21 l 22!~s021!215s0~3p21 ip !#,

~4.8!

a25 1
5600$193312520s028400s0

2135~ l 21 l 22!

3~21011221s02120s0
2!1315~532180s0!s0p2

1315ips0@71180p2s0120~ l 21 l 22!~s021!#%,

~4.9!

wheres0[(a011)/a0 anda0 is given in Eq.~2.13!. These
perturbations give free gravitational waves.

2. Primordial vector perturbations

Next let us consider the caseL̄ 0Þ0 and examine the or-
ders of magnitude ofL̄ A . For pressureless matter we have
tmn5rc2umun, and in the odd-parity case
(Dt0a,D1a)5rc2(u0,u1)ua . Sinceu1 andua are of first or-
der,Dt1a is of second order, so thatL1(5Dt1a) vanishes in
our linearized treatment. On the other hand,
L05Dt05rc2u0ua , and L05Dt052rc2u0ua . The inte-
gration of Eq.~3.12! leads to

L̄ 05~ L̄ 0!0 /~S2N!. ~4.10!

This relation means the conservation of angular momentum,
becauser}1/(S2N),u0;1, andua5R2ua5const.

Here we show an inhomogeneous solution in which the
lowest term with respect toj corresponds to the inhomoge-
neous term in the right-hand side of Eq.~3.19!. In this solu-
tion we havea524/3 and the coefficients

a15 1
20 @218.828s012~ l 21 l 22!~s021!

16s0~3p225ip !#, ~4.11!

a252 1
8400$1648.823444s021120s0

21 56
3 ~ l 21 l 22!

3~1062121s0115s0
2!2168~911135s0!s0p2

184ips0@237130s02180p2s0

120~ l 21 l 22!~12s0!#%. ~4.12!

These perturbations express rotational motions of pressure-
less matter.

According to the numerical solution, we find as general
behavior that the solutions change smoothly following the
power-series solutions, ifj!S/p and, after the epoch
j;S/p, the solutions oscillate generally.

As j increases,M2 decreases and becomes negative forj
larger than a critical valuejcr at which X;1/s0(,1). For
negativeM2, the hypersurface ofj5const is partially time-
like, and so the expansion in terms of exp(ipx) is insignifi-
cant, except for the case with small values ofl andp. In the
latter case it is found by numerical analysis that the behavior
of perturbations is consistent with those in homogeneous
models at the nearly isotropic stage ofh,2.0 ~cf Sec. V!.

B. Even parity

1. Primordial scalar perturbations

The metric components of scalar perturbations in a homo-
geneous model satisfy the relationsk5kr

r andktr50, as can
be seen in ~D1! of Appendix D. Using the condition
kt

t1kr
r50 and transforming the coordinates from (t,r ) to

(j,x), we obtain the relationsk̄ 005(11j2/N2) k̄ and k̄ 015

2@j/(N21j2)# k̄ 00. If we expand the metric perturbations as

k̄ 5ja~11a1X1••• !, ~4.13!

k̄ 005ja~11b1X1••• !, ~4.14!

k̄ 52s0ja21~11c1X1••• !, ~4.15!

the constantsa,a1 ,b1 ,c1 satisfy the relations

b15a11s01db1 ~4.16!

and

c15a11 1
10 1dc1 , ~4.17!

wheredb1 anddc1 vanish in the homogeneous model. In the
present self-similar model,db1 and dc1 do not vanish and
must be determined together witha anda1.

For this purpose, we use first Eq.~B10! or ~C14! to get

~ ip15/3!db15~a17/3!dc1 . ~4.18!

For the metric perturbations in Eqs.~4.13!–~4.15!, we have
T̄00, T̄01, and T̄0 shown in Eqs.~C15!–~C17!, and the con-
sistency conditions that they should obey Eqs.~B2!–~B4! are
given by Eqs. ~C18!–~C20!. In the present case with
b05c051 we obtaina(a25/3)50 from the condition in
the lowest order, and from the conditions in the next order
and Eq.~4.18!, we obtain the following two sets of consistent
constants:

a50:a152 9
35 , db15 2

5 , dc15 6
35 ~ ip1 5

3 !,
~4.19!

a52 5
3 :db152a1 , dc152 3

2 ~ ip1 5
3 !a1 , ~4.20!

wherea1 has not yet been determined fora525/3. This is
because the vector perturbations can be also included for
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a525/3, as well as scalar perturbations. To determine the
value of a1, it is necessary to impose the condition of no
rotation.

The vorticity tensorvmn is

vmn[ 1
2 Pm

l Pn
s~ul;s2us;l!, ~4.21!

wherePmn5gmn1umun and ; denotes four-dimensional co-
variant differentiation. Its components reduce tov2350, and

~v12,v13!5@Ttr /r2~Tt /r! ,r #~Y,2 ,Y,3! ~4.22!

in the (t,r ) coordinates, wherer(5t tt) is the background
matter density. The condition is, therefore, expressed as

Ttr /r5~Tt /r! ,r . ~4.23!

Here sinceTAB5 T̄AB , TA5 T̄A , andr5r 22 r̄ , we have

Ttr /r5r 22~T012jT00!/r5~ T̄012j T̄00!/ r̄ ~4.24!

and

~Tt /r! ,r5~r 21T0 /r! ,r r
212j~T0 /r! ,0r

22

5~r T̄ 0 / r̄ ! ,1r
212j~ T̄0 / r̄ ! ,0 ~4.25!

in terms of the (j,x)@5(x0,x1)# coordinates. The above con-
dition is rewritten as

T̄012j T̄005 T̄0~ ip11!2j r̄ ~ T̄0 / r̄ ! ,0 ~4.26!

or

N2T̄015 T̄0~ ip11!2j r̄ ~ T̄0/ r̄ !0 , ~4.27!

where T̄052 T̄0, T̄005T̄0012j T̄01, and T̄015(j2

2M2) T̄011j T̄00.
Substituting Eqs.~C15!–~C17! into Eq. ~4.27!, we obtain

another condition for constants. Fora525/3 with
b05c051, the lowest-order condition is automatically satis-
fied and in the next order it gives

a15
25114s014~31s0!ip

5~1019ip !
. ~4.28!

The physical contrast of matter density is defined in Eq.
~3.38! and shown in Eq.~C21! in Appendix C. In the present
case we have

em5 1
12 @2s0211~ l 21 l 22!~s021!23ips019p2s0#X

10~X2! for a50 ~4.29!

and

em5 1
12 @1228s0211~ l 21 l 22!~s021!

233ips019p2s0#X/j5/310~X2/j5/3! for

a525/3. ~4.30!

The result shows that the cases ofa50 anda525/3 are
the growing and decaying modes of density perturbations,

respectively, whose behavior is quite same as those in a ho-
mogeneous model, with respect to the powers in the lowest
order.

Next we can analyze the perturbations in larger values of
j by numerically solving ordinary differential equations
~B2!, ~B3!, ~B4!, ~B9!, ~B10!, and ~B13! for
k̄ ,0 ,( k̄ 00),0,( k̄ 01),0,( T̄00/ r̄ ) ,0 ,( T̄01/ r̄ ) ,0 ,( T̄0/ r̄ ) ,0 , where
the above solutions in the series expansion are used as the
initial conditions atj5j i!1. As the result we find that at
the intervalj i,j&1 the numerical solutions can be well
reproduced by those in the series expansions~4.13!–~4.15!
and ~C9!–~C17!.

At a point j5jcr with X;1/s0(,1), the factorM2 in
denominators vanishes and, as was stated in the odd-parity
case, the present treatment cannot be used inj.jcr , except
for small values ofl andp. It should be noted, however, that
at this point there is no physical singularity, because the
vanishing numerators exist always corresponding to them,
and so the numerical calculations can be continued after the
point in which X.1/s0. It is found as the result that it is
larger thanem in the homogeneous model with the inner
density parameterV0 by the factor which is 1.23 at the
boundaryr 5r 1 at epochz1, and thatem at the emission
epochs withz.z1 is always larger than that in the ordinary
homogeneous model. Here the radial coordinater is con-
nected withz and h ~at the emission epoch! by Eqs.~3.6!
and ~3.9! in Ref. @6#, and the initial value (em) i is given for
arbitraryr at the initial hypersurfacet5t i , so that the initial
valueh i in the self-similar region is related to (h in) i in the
inner region by

2~12V0!3/2

V0
H0t i5sinh~h in! i2~h in! i5

r

r i
~sinhh i2h i !,

~4.31!

where Eqs.~2.10! and~2.14! were used. The behavior ofem
at the emission epochs is shown in Fig. 1 in an example in
which V050.2 andz151.5 and 2.0.

FIG. 1. The ratioem(z)/em(0) in the self-similar region is
shown for the inhomogeneous models of~a! V050.2, z151.5,
and ~b! V050.2, z152.0. For comparison the ratio in~c! the or-

dinary homogeneous model withV050.2 is also shown.
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2. Primordial vector perturbations

The metric perturbations atj.0 can be given in the same
form as1 and the constant coefficients reduce to the set in
Eq. ~4.20!, while the set in Eq.~4.19! gives only a density
perturbation. In the present case,a1 should be determined
under the condition that the divergence of the velocity van-
ishes. Here it should be noted that, as was shown in1, the
velocity vector (TtrY,TtY2 ,TtY3)/r is gradient in the lowest
order for a525/3 and b051, but at the same time the
physical density contrastem50. Accordingly, the vector is
meaningless in the lowest order. Here we will consider only
the terms in the next order (T̃trY,T̃tY2 ,T̃tY3)/r. Then the
condition is given by

~ T̃tr /r•Y! ur1g22~ T̃t/r•Y,2! u21g33~ T̃t/r•Y,3! u350
~4.32!

in the (t,r ) coordinates and in the (j,x) coordinates it re-
duces to

j~ T̃̄01/ r̄ ! ,01F j2S,00/S

jS,0 /S21
12j

S,0

S
2~21 ip !G T̃̄01/ r̄

1
l ~ l 11!

S2

T̃̄0

r̄
50, ~4.33!

where T̃AB5 T̃̄AB and r5 r̄ /r 2. Imposing Eq. ~4.33! for
a525/3 andb051, we obtain

a15
1

30

12~62245p21111ip !s0

20130s016p~8i 23p!s02~ l 21 l 22!~s021!
.

~4.34!

In the next order,em does not vanish but it has no mean-
ing as the density contrast, because the velocity is not gradi-
ent.

3. Primordial tensor perturbations

For tensor perturbations a more complicated form of met-
ric perturbations is necessary, in the same way as in a homo-
geneous model. Here we assume the form with constantsb0
and c0 shown in Eqs.~C10!–~C12! in Appendix C. Since
there are neither density perturbations nor rotational velocity
perturbations in the present case, we impose thatem50 and
the velocity vector is gradient. From the conditionem50 and
Eq. ~C21! we obtain first in the lowest order

a~12b0!50. ~4.35!

For a50, the other constants are determined as follows by
the consistency conditions~C13!, ~C18!–~C20!, and em50
in the next order in Eq.~C21!:

b05
3@18p2s02~ l 21 l 22!~12s0!212ips0#

10220s017~ l 21 l 22!~12s0!26~ ip121p2!s0
,

~4.36!

c05b01 3
5 ~b021!ip, ~4.37!

a152 9
140@~10s021!b01~14b0131!p2s02 5

2 ~ l 21 l 22!

3~b011!~12s0!1 ips0
28
45 ~52s02101!#, ~4.38!

b15
1

56s0
@~76s022!b0190p2s025~ l 21 l 22!~b011!

3~12s0!1 6
5 ips0~41b0266!#, ~4.39!

c15
1

70c0
$20a11b0~4150b1150s0!2100c0s0

13ip@21210a11b0~1110b1110s0!220c0s0#%.

~4.40!

For b051, the consistency conditions~C18!–~C20! in the
lowest order lead to

a525/3 ~4.41!

and

c05 1
2 ~11b1 /s0!. ~4.42!

The conditions~C14!, ~C18!–~C20!, and ~C21! in the next
order give two relations between three parametersa1 ,b1 ,
and c1. In the same way as in the scalar perturbations for
a525/3, we use the condition of vanishing vorticity vector
given by Eq.~4.27!. Then the three parameters are deter-
mined as

a15 1
5 @14s02514~31s0!ip#/~1019ip !, ~4.43!

b152
1

15~61 ip !
@3a1121~220290p2!s0210~ l 21 l 22!

3~s021!1315ip#, ~4.44!

c15 1
20 @113b1 /s0260a1#/~11b1 /s0!. ~4.45!

Thus we have two modes of tensor perturbations with
powersa50 and25/3. They correspond to two modes of
tensor perturbations in a homogeneous model, though the
dependence of constants onp and l is very complicated.

The behavior of the perturbations in the regionj;1 is
shown by solving Eqs.~B2!, ~B3!, ~B4!, ~B9!, ~B13!, and
~B14! numerically and using the above solutions as the initial
conditions. It is found as the result that forj!1 they are
smooth and follow the solutions in series expansion, and for
pj*1, they become oscillatory as expected from the com-
parison with the perturbations in homogeneous models.

V. APPROXIMATE TREATMENT
DUE TO PERTURBATIONS IN LOCAL HOMOGENEOUS

MODELS

In this section we consider an approximate treatment in
which the background inhomogeneous model is replaced by
a stepwise series of virtual local homogeneous models and
the perturbations are assumed to be caused in these homoge-
neous models. Because the homogeneous models with
S5S(t) must be isotropic at the same time, the perturbations
are those in the Friedmann model, which is shown in Appen-
dix D.
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To determine the model parameter of the local homoge-
neous models, we define the expansion ratesHt ,Hr , andQ
in the transverse and radial directions, and in the average as

Ht[j~ lnS! ,j , Hr[j@ ln~S2jS,j!# ,j , ~5.1!

and

Q[~2Ht1Ht!/3, ~5.2!

respectively. Their values at the present epoch~i.e., in the
t5t0 hypersurface! are the corresponding Hubble constants
(Ht)0 ,(Hr)0 , andQ0. The Hubble constant in the inner re-
gion is H0, the present cosmic time ist0, and (Ht)0 is equal
to Eq.~2.18! in Ref. @8#. The local density parameters can be
defined in the two directions, and the average parameter is

V̄[r~ t0!Y F3~Q0!2

8pG G
5

2

3

~coshh̄21!

sinh2h̄
Y F12

sinhh̄ ~sinhh̄2 h̄ !

~coshh̄21!2 G , ~5.3!

where a mistake in the original expression was corrected~cf.
@9#! andh̄ is the present value ofh defined by Eqs.~2.19! in
Ref. @8#. The radial coordinater is connected withz andh
~at the emission epoch! by Eqs.~3.6! and ~3.9! in Ref. @8#.
The behavior ofV̄ and h ~at the emission epoch! is also
shown in Fig. 2 as a function ofz.

Here we assume that the local homogeneous models have
the average density parameterV̄, and draw attention to the
scalar perturbation. The density contrastem is derived by
solving Eq. ~D55! from an initial epocht i to the emission
epoch te , where the initial value ofem is assumed to be
equal everywhere. The relation betweenh and the corre-
spondingh̃ in the local homogeneous model is given so that
the cosmic timet may be equal. Accordingly, we have the
following two relations at the initial and emission epochs:

t i5
V0 /H0

~12V0!3/2
@sinh~h in! i2~h in!#

5
V/Q0

~12V!3/2
~sinhh ĩ2h ĩ ! ~5.4!

and

te5
r i

r

V0 /H0

~12V0!3/2
~sinhhe2he!5

V/Q0

~12V!3/2
~sinhh ẽ2h ẽ!,

~5.5!

where (h in) i is the initial value ofh in the inner homoge-
neous region andhe is the value ofh in the self-similar
region at an emission epoch with redshiftz.

As a result of numerical calculations, the behavior of
em(z)/em(0) at each emission epoch is shown in Fig. 3 as a
function ofz at the emission epochs, in an example in which
the boundary between the inner homogeneous region and the
self-similar region corresponds to the epochz151.5 and 2.0.
In these two cases, the ratioem(z)/em(0) is about 30–20%
~for z52 –3! larger than that in the ordinary homogeneous
model. If we compare this figure with the corresponding one
in the previous section, this approximate treatment is found
to be good enough and useful.

This consistency may be due to the situation in which the
anisotropy is comparatively small and so the coupling be-
tween different modes is negligible. In fact, the anisotropy is
defined by

A[Ht /Q21, ~5.6!

and it is shown that, forh!1, A.0.033h2, and for
h51.0, 1.5, 2.0, and 3.0,A50.031, 0.065, 0.104, and
0.177, respectively. On the other hand, the values ofh at the
emission and present epochs in the self-similar region are
nearly equal to or smaller than 2.0 and 3.0, respectively.

FIG. 2. The local value of the density parameterV at present
epoch is shown in solid lines. The density parameterV0 in the inner
homogeneous region is assumed to be 0.2. The values ofh/3 are
also shown in dotted lines. The models withz151.5 and 2.0 are
denoted by a and b, respectively.

FIG. 3. The ratioem(z)/em(0) is shown for the local homoge-
neous models corresponding to the cases of~a! V050.2, z151.5,
and ~b! V050.2, z152.0. For comparison the ratio in~c! the or-

dinary homogeneous model withV050.2 is also shown.
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VI. CONCLUDING REMARKS

In this paper the gravitational instability in the self-similar
region in an inhomogeneous cosmological model was first
studied by paying attention to the self-similar hypersurface
with j5const. The perturbation equations reduced to the or-
dinary differential equations with respect toj by expanding
perturbations in terms of exp@ipln(r/ri)#. However, the for-
malism was found to be useless forj.jcr , except for those
on large scales such thatp50;1 and l'1, because the
above hypersurface becomes timelike in the radial direction.

Next, perturbations were treated approximately as those in
local homogeneous~isotropic! models with the same density
parameterV(r ) as in the inhomogeneous model. This ap-
proximation is good for perturbations on small scales, but it
was found that it gives the result consistent with that in the
above treatment on large scales~for p50 andl'1). In the
super-horizon-scale inhomogeneous~void! model consisting
of the inner low-density homogeneous (z<z1) and the outer
self-similar region (z>z1), the density contrast in the latter
region was shown to be larger by about 20% than that in the
corresponding one in the ordinary homogeneous model in
the case ofV050.2 andz151.5–2.0. If we take a steeper
void model with a larger density gap in the boundary be-
tween the inner and outer regions, the density contrast in the
outer region will be larger, compared with that of the ordi-
nary homogeneous model.

The latter treatment will be improved by taking into ac-
count the deviation of the background from its local inhomo-
geneity as an expansion with respect to the ratio of the spa-
tial scales of perturbations to the scale of the background
inhomogeneity. The present analysis is in the zeroth order of
this expansion. In the next order the coupling will appear
between two modes such as scalar and tensor perturbations.

APPENDIX A: TENSOR CALCULUS
IN THE SUBMANIFOLDS

In the two submanifoldsM2 andM̄2 with metricsgAB and
ḡAB(5gAB /r 2), the covariant derivatives to vectorskA and
k̄ A are defined as

kA
uB5kA

,B1GBC
A kC, ~A1!

k̄ A
iB5 k̄ A

,B1 ḠBC
A k̄ C. ~A2!

The upper and lower indices of tensors inM2 and M̄2 are
changed using the metricgAB and ḡAB , respectively. The
Christoffel symbolsGAB

C @51/2gCD(gDA,B1gDB,A2gAB,D)#

and ḠAB
C @51/2ḡCD( ḡDA,B1 ḡDB,A2 ḡAB,D)# are related by

ḠAB
C 5GAB

C 1dB
1dA

C1dA
1dB

C2 ḡC1 ḡAB . ~A3!

Accordingly, we have, forkA5r n k̄ A,kA5r n12 k̄ A ,

kA
uB5r n@ k̄ A

iB1~n11!dB
1 k̄ A2 ḡA1 k̄ B1dB

A k̄ 1#, ~A4!

kAuB5r n12@~ k̄ A! iB1~n11!dB
1 k̄ A2dA

1 k̄ B1 ḡABk̄ 1#,
~A5!

wheren50 for kA in Sec. III. In the same way we have, for
kAB5r n k̄ AB, kAB5r n14 k̄ AB ,

kAB
uC5r n@kAB

iC1~n12!dC
1 k̄ AB1dC

B k̄ 1A1dC
A k̄ 1B

2 ḡB1 k̄ C
A2 ḡA1 k̄ C

B#, ~A6!

kABuC5r n14@kABiC1~n12!dC
1 k̄ AB1 ḡBCk̄ A

11 ḡACk̄ B
1

2dB
1 k̄ AC2dA

1 k̄ BC#, ~A7!

wheren522 for kAB in Sec. III.
The components of barred symbols in coordinates

(x0,x1)5(j,x) are

~ Ḡ00
0 ,Ḡ00

1 !5~j,21!/N2, ~A8!

~ Ḡ01
0 ,Ḡ01

1 ,Ḡ11
0 ,Ḡ11

1 !5~2j,1,M2,j!MM ,0 /N2. ~A9!

In an arbitrary tensorl̄ ABC in M̄2, we have a formula

~r 2 l̄ ABC! uC5~ l̄ ABC! iC2dA
1 l̄ DB

D2dB
1 l̄ AD

D1 l̄ 1
BA

1 ḡ1C l̄ ACB . ~A10!

Here it should be noticed thatdAuB
1 vanishes inM̄2, but dAiB

1

does not vanish as

dAiB
1 52 ḠAB

1 . ~A11!

Using Eq.~A10!, we obtain forkAB with n522 the follow-
ing relation, for example,

R22~R2kABuC! uC5 k̄ ABiC22dA
1~ k̄ BC! iC22dB

1~ k̄ AC! iC

12 k̄ AiB
1 12 k̄ BiA

1 22dA
1 k̄ B

122dB
1 k̄ A

1

12dA
1 k̄ B

1 k̄ C
C22 ḡ11k̄ AB12 ḡABk̄ 11

1 ḠAC
1 k̄ B

C1 ḠBC
1 k̄ A

C , ~A12!

R22@R2~kABuC2kACuB2kBCuA!# uC

52@~S,0 /S! ḡC01 ḡC1#@ k̄ ABiC2 k̄ ACiB2 k̄ BCiA

22 ḡABk̄ C
1 12dC

1 k̄ AB#1kABiC
iC1dB

1 ḡCD k̄ DCiA

22 ḡABk̄ C
1iC22 ḡCDḠCD

1 k̄ AB , ~A13!

and

R22~R2kAC! uAC5r 22@~ k̄ AC! iAC1~N k̄1C! ,C /N2~ k̄ C
C! i1

12 v̄ C~ k̄ CiA
A 12 k̄ C

1 2dC
1 k̄ D

D!

12S22~S2 v̄ A k̄ C
A! iC14 v̄ A k̄ B1#. ~A14!
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APPENDIX B: BASIC EQUATIONS
IN THE EVEN PARITY

From Eq.~3.29! we obtain

k̄ 1152~ ḡ00k̄ 0012 ḡ01k̄ 01!/ ḡ11 ~B1!

and from Eq.~3.27!

~ T̄0/ r̄ ! ,05
1
2 k̄ 005

1
2 ~N/M !2~ k̄ 0012j k̄ 01!. ~B2!

From Eq.~3.28! we get forA50

~ T̄00/ r̄ ! ,052~ ip1222jN,0 /N!~ T̄01/ r̄ !

1 l ~ l 11!S22~ T̄0/ r̄ !2 3
2 ~ k̄ 00! ,022j~ k̄ 01! ,0

2 k̄ 01 f 00k̄ 001 f 01k̄ 01 ~B3!

and forA51

~ T̄01/ r̄ ! ,0522~N,0 /N!~ T̄01/ r̄ !2 3
2 M 22~ k̄ 0012j k̄ 01!

1h00k̄ 001h01k̄ 01, ~B4!

where

f 0052 3
2

ipj

M2 2jS 1

N2 1
1

M2D1
j2

N2

M ,0

M
, ~B5!

f 0152S 11
3j2

M2 D ip1S 31
4j2

M2 D S jMM ,0

N2
21D

1j2S 2

M2 2
1

N2D2jS 2M ,0

M
1

N,0

N D , ~B6!

h005
ip

2M2 1S j
M ,0

M
21D S 1

N2 2
1

M2D , ~B7!

h015jS 1

N2 2
2

M2D1S 11
2j2

M2 D j2

N2

M ,0

M
2

j2

M2

N,0

N
1

ipj

M2 .

~B8!

From Eq.~3.30! we get, forA50,

~M /N!2 k̄ ,01~ k̄ ! ,0
005k T̄02 ipjN22 k̄ 22~N,0 /N! k̄ 00

2~ ip12! k̄ 01 ~B9!

and, forA51,

~ k̄ 01! ,05N22~2j k̄ ,01 ip k̄ !1e00k̄ 001e01k̄ 01,
~B10!

where

e005
1

N2 2
1

M2S ip121
jMM ,0

N2 D , ~B11!

e0152
N,0

N
2

2

M2 ~ ipj12j1MM ,0!. ~B12!

Moreover, from Eq.~3.32! we obtain, forA5B50,

2S M

N D 2H F S M

N D 2S,0

S
1

N,0

N
1

j

N2G k̄ ,01S S,0

S
1

j

M2D k̄ ,0
00J

5k T̄001F2ipM2

N4 S 2j
S,0

S
122j

M ,0

M D2
2p2

N2

2S M

N D 2 l 21 l 22

S2 G k̄ 1c00k̄ 001c01k̄ 01, ~B13!

for A50, B51,

2

N2F S M

N D 2S j
S,0

S
1j

M ,0

M
12

j2

N2D1 ipG k̄ ,02
2

N2S 12j
S,0

S D k̄ 00

5k T̄011
1

N2H 2ipS M

N D 2F2S 11
2j2

M2 DS,0

S
1

M ,0

M
1

2j

M2G
2j

l 21 l 22

S2 J k̄ 1d00k̄ 001d01k̄ 01, ~B14!

where

c005k t̄ 002
2

N2S NN,001j
N,0

N
11D1

2ip

N2 S 211j
S,0

S D
2

2MM ,0

N2 S M2

N2 12DS,0

S
2

2M2

N2 FS,00

S
1S S,0

S D 2

1S 2

M2 1
1

N2D j
S,0

S G 2
l ~ l 11!

S2 , ~B15!

c015jk t̄ 002
4M2

N2 S S,0

S
1

j

M2D ~21 ip !, ~B16!

d005
j

2M2 k t̄ 002
2ip

N2 S S,0

S D1
j

M2 2
2j

N2FS,00

S
1S S,0

S D 2G
1

2j

N4S 12j
S,0

S D2
2jM2

N4

M ,0

M S S,0

S
1

j

M2D , ~B17!

d015S 11
2j2

M2 D1

2
k t̄ 002

l ~ l 11!

S2

12S 2N,00

N
1

1

N2 2
j

N2

N,0

N D2
4

N2S S,0

S
1

j2

M2D
3F ipj1~M212j2!

M ,0M

N2 G2
4j

N2S 2
S,0

S
2

M ,0

M
1

2j2

M2 D
1

4

N2S 12
jMM ,0

N2 D S 12j
S,0

S D2
2M2

N4 S 12
jM ,0

M D .

~B18!

APPENDIX C: SERIES EXPANSION

At the early stage (j.0), S andj in Eqs.~2.9! and~2.14!
are expanded in terms ofh and, by expanding them in-

56 3351PERTURBATIONS IN A SPHERICALLY SYMMETRIC . . .



versely, the following relations are obtained in terms ofj
and X, whereX is defined in Eqs.~4.4! and ~4.5!. First we
have

h5X1/2@12 1
60X1 1

1400X
21•••#, ~C1!

S/S* 5 1
2 X@11 1

20X2 3
2800X

21•••#, ~C2!

where

S* [
V0

2~12V0!
S05Aa0j* . ~C3!

Moreover,

S,0 /S5
2

3j
@11 1

20X2 13
2800X

21•••#, ~C4!

N5
j*

6As0

X@12 1
20X1 9

2800X
21•••#, ~C5!

M25N22j25
~j* !2

36s0
X2@12~ 1

10 1s0!X1 1
112X21•••#,

~C6!

N,0 /N5
2

3j
@12 1

20X1 11
2800X

21•••#, ~C7!

where

s05~11a0!/a0 . ~C8!

For the energy density,

k t̄ 005kr5 8
3 j22@12 1

20X1 23
560X21•••#. ~C9!

For the metric perturbations,

k̄ 5ja~11a1X1••• !, ~C10!

k̄ 005b0ja~11b1X1••• !, ~C11!

k̄ 0152s0c0ja21~11c1X1••• !. ~C12!

From Eq.~B10! we first obtain

~a1 5
3 !~c021!5~ 5

3 1 ip !~b021! ~C13!

in the lowest order and

c152@30~a17/3!c0#21$23a24b023c02a1~20130a!

250b0b1150~2c02b0!s01 ip@323b0130a1

230b0b1130~2c02b0!s0#% ~C14!

in the next order. From Eqs.~B9!, ~B13!, and ~B14!, we
obtain

~ T̄00/ r̄ !j2a5 1
2 a~21b0!1

X

120
$6a140~213a!a116ab0

120~213a!b0b115~ l 21 l 22!~11b0!

3~s021!110@29a1~1013a!b0

212c019p2#s0130~221b024c0!ips0%,

~C15!

~ T̄01/ r̄ !j12a/~s0X!5 1
4 @~42b0!a1 ip~3a12b0!#

1
X

240
$36a180~213a!a1

1~2023a!b0220~213a!b0b1

120c0110~ l 21 l 22!

3~s021!~12c0!

120~3a19b027c0!s01@12127a

160~213a!a1124~115b1!b0

160~2113b024c0!s0# ip%, ~C16!

~ T̄0/ r̄ !j212a5
1

8
~3a14b013ab0!

1
X

160
@3a120~213a!a113ab0

160~21a!b0b1260~a12c0!s0

160~12c0!ips0#, ~C17!

Moreover, we obtain from Eqs.~B2!, ~B3!, and~B4!:

ch00[a@212a1~31a!b0#1
X

90
$21a19a2120~10121a19a2!a11~20121a19a2!b0110~22139a190a2!b0b1

15~ l 21 l 22!~12b0!~s021!115a~129a!s01~3201135a145a2!b0s02540~11a!c0s0190~12b0!p2s0

160~2113a16b025c023ac0!ips0%50, ~C18!
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ch01[a@414a1~12a!b01 ip~313a12b0!#1
X

180
$12~11a19!a180~10121a19a2!a11~100193a29a2!b0

120~223a29a2!b0b1220~513a!c01~ l 21 l 22!~s021!10~513a!~12c0!160@5a13a2119b0

115ab0218c0~11a!#s013ip@20145a127a2120~10121a19a2!a114~516a!b0140~213a!b0b1

220~513a!s01180~11a!b0s0280~213a!c0s0#%

50, ~C19!

ch0[a~313a17b013ab0!14~2c0s02b0s02b0b1!1
X

20
~a1 5

3 !@3a120~213a!a113ab01120~11a!b0b1

260~a12c0!s0160~12c0!ips0#50. ~C20!

From Eq.~3.38! we obtain

em /ja5 1
4 a~12b0!1

X

120
@10~213a!~a12b0b1!

1~10s022!b015~ l 21 l 22!~11b0!~s021!

130~8a17b02ab026c013p2!s0

130~2516a15b02c0!ips0#. ~C21!

APPENDIX D: PERTURBATIONS IN A HOMOGENEOUS
MODEL

The perturbation behavior in a homogeneous model is
shown in the Gerlach and Sengupta formalism and the
gauge-invariant quantities in this formalism are compared
with those in the Bardeen formalism. Tensor and vector
spherical harmonics derived by Gerlach and Sengupta Ref.
@15# are used. The following background metric is used here:

ds252c2dt21S2~ t !F dr2

11ar 2 1r 2dV2G , ~D1!

where x05ct, x15r , x25u, and x35w. Scalar spherical
harmonicsQ of ordern satisfies

Qu i
u i52~n211!Q ~D2!

in the open model (k521), whereu i is a covariant deriva-
tive in the t5const hypersurface, andQ is expanded using
the usual spherical harmonicsYlm as

Q5P l
n~r !Ylm~u,w!. ~D3!

Then we obtain from the above two equations

r ~11ar 2!P ,111~213ar 2!P ,1

1@~n211!ar 2 l ~ l 11!/r #P

50. ~D4!

1. Odd parity

a. Tensor perturbations

Tensor harmonicsGi j with the odd parity satisfies

Giku j
u j52~n213!Gik , Gi

k
uk50,Gi

i50, ~D5!

and the components are expressed usingP l
n andYim as

G1150, ~D6!

G225Aar 2A11ar 2S Pn,1
l 1

2

r
Pn

l D ~2Xlm /sinu!,

~D7!

G335Aar 2A11ar 2S Pn,1
l 1

2

r
Pn

l DXlmsinu, ~D8!

G235Aar 2A11ar 2S Pn,1
l 1

2

r
Pn

l DWlmsinu, ~D9!

G125A a

11ar 2~ l 21!~ l 12!Pn
l ~2Ylm,2 /sinu!,

~D10!

G135A a

11ar 2~ l 21!~ l 12!Pn
l Ylm,3sinu, ~D11!

where

Xlm52~Ylm,232cotuYlm,3!, ~D12!

Wlm5Ylm,222cotuYlm,22Ylm,33/sin2u. ~D13!

The metric components are

h050, h15n~ t !
~ l 21!~ l 12!

A11ar 2
Pn

l , ~D14!

h5n~ t !r 2A11ar 2S Pn,1
l 1

2

r
Pn

l D , ~D15!

and the gauge-invariant quantities are
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k052k05S 2
S,0

S
n2n ,0D r 2A11ar 2S Pn,1

l 1
2

r
Pn

l D ,

~D16!

k15
S2

11ar 2 k15
~n211!ar 2

A11ar 2
nPn

l , ~D17!

where we used Eq.~D4! for Pn
l .

From GS~9a! with L50 we obtain an equation forn(t):

n ,002
S,0

S
n ,01S n211

S2 a22
S,00

S D n50. ~D18!

In the limit t→0, we have two solutions

n}t1/3@110~ t2/3!#, t4/3@110~ t2/3!#, ~D19!

so that the lowest order ofk0}t22/3, t.

b. Vector (rotational) perturbations

Vector harmonicsVi satisfies

Vi uk
uk52~n212!Vi , Vi

u i50. ~D20!

Their components are expressed as

V150, ~D21!

V252AarP l
nY,3 /sinu, ~D22!

V35AarP l
nY,2sinu. ~D23!

TheseVi ( i 51,2,3) are different from the two-dimensional
harmonics Sa (a52,3) on the hypersurfacer 5const,
whereS252Y,3 /sinu, S35Y,2sinu. The metric components
are

h05B~ t !rP l
n , ~D24!

h15H~ t !r S P l ,1
n 2

1

r
P l

nD , ~D25!

h5H~ t !rP l
n , ~D26!

and the gauge-invariant quantities are

k052k05CrP l
n , C[B2S2~H/S2! ,0 , ~D27!

k15
S2

11ar 2 k150. ~D28!

For the vector perturbations in pressureless matter, we
obtain from GS~14! with L15L50

~S3L0! ,050 or L0}S23 ~D29!

and GS~9b! with A50 and Eq.~D4! give us

k0}C52
k~S3L0!

~n214!aSr
, ~D30!

wherek516pG/c4. The other equations are also consistent
with Eqs. ~D29! and ~D30!. This shows thatk0/S corre-

sponds toC in the Bardeen formalism. SinceL0Sa is
ru0ua(}ruaR2,a52,3), Vc[(L0/r)/R is the velocity in
the angular direction, corresponding tovc in the Bardeen
formalism.

2. Even parity

a. Scalar perturbations.

Scalar spherical harmonicsP satisfies Eq.~D2! and are
expressed as Eq.~D3!. The metric components are expressed
as

h00522AP, ~D31!

h015SBP ,1 , h05SBP, ~D32!

h152S2HT~P ,12P/r !, ~D33!

h115S2F2H1

P

11ar 2 12HTS P ,111
ar

11ar 2 P ,1D G ,
~D34!

K52H1P12HT~11ar 2!P ,1 /r , ~D35!

G52HTP/r 2. ~D36!

The gauge-invariant quantities are

k00522FA1SS B,01
S,0

S
BD2S2S HT,0012

S,0

S
HT,0D GP,

~D37!

k0150, ~D38!

k115
2S2

11ar 2FH11
S,0

S
~SB2S2HT,0!GP, ~D39!

k5k1
15

11ar 2

S2 k11, ~D40!

wherek0
0 andk1

1 correspond to 2FA and 2FH , respectively.
GS ~10d! giveskA

A5k0
01k1

150 or FA1FH50.
For pressureless matter we havedr5d•rP,du052AP,

and dui5v@(11ar 2)P ,1Y,r 22PY,a#, and, for the energy-
momentum tensortmn5rumun , we have its perturbations

Dt005~d•r12rA!P, ~D41!

~Dt0 ,Dt01!52r~S2v1SB!~P,P ,1!, ~D42!

and

Dt15Dt1150. ~D43!

Corresponding gauge-invariant quantities are

T0[2rS2Vs52rS2~v1HT,0!, ~D44!

T15T1150, ~D45!

T005r~egP1k0
0!, ~D46!

T0152rS2Vs,1 , ~D47!
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where

eg[d23
S,0

S
~SB2S2HT,0!. ~D48!

The energy density contrastem defined in a comoving syn-
chronous system is

emP5egP23
S,0

S
S2Vs5

1

rS T0013
S,0

S
T0D2k0

0 .

~D49!

GS ~10b! and GS~15a! give

~Sk! ,05
1
2 k~rS3!Vs ~D50!

and

~S2Vs! ,05
1
2 k005

1
2 k, ~D51!

respectively, from which we obtain

Vs,0015
S,0

S
Vs,01F3

S,00

S
13S S,0

S D 2

1
a

S2GVs50.

~D52!

GS ~10a! with A5B50 leads to

kremP5kS T001rk13
S,0

S
T0D5

2

S2 ~n214!ak.

~D53!

From Eqs.~D50!–~D53! we obtain

em,0012
S,0

S
em,013

S,00

S
em50 ~D54!

or

em91
S8

S
em813S S8

S D 8
em50, ~D55!

where 85]/]h and cdt5a21/2Sdh. In the limit t→0(S
}t2/3), we obtain

Vs}tb, em}tb11~b521/3,22!. ~D56!

b. Vector (rotational) perturbations.

The vector harmonicssa in the even parity satisfying Eq.
~D20! is

s15
l ~ l 11!

rA11ar 2
PYlm , ~D57!

~s2 ,s3!5rA11ar 2~P ,11P/r !~Ylm,2 ,Ylm,3 /sin2u!,
~D58!

and the metric components are

h0050,h05B~ t !rA11ar 2~P ,11P/r !, ~D59!

h015B~ t !l ~ l 11!P/~rA11ar 2!, ~D60!

h15H~ t !rA11ar 2

3F2
2

r
P ,11

2~n212!ar 212~ l 21 l 22!

r 2~11ar 2!
PG ,

~D61!

h115H~ t !
2l ~ l 11!

rA11ar 2
~P ,12P/r !, ~D62!

K52H~ t !l ~ l 11!PA11ar 2/~S2r 2!, ~D63!

G52H~ t !rA11ar 2~P ,11P/r !/~S2r 2!. ~D64!

The gauge-invariant quantities are

k00522C ,0rA11ar 2~P ,11P/r !, ~D65!

k015C
n2ar

A11ar 2
P, ~D66!

k1152SS,0C
r

A11ar 2
~P ,11P/r !, ~D67!

k5k1
1 , ~D68!

where

C5B2S2~H/S2! ,0 . ~D69!

The sumkA
A50 gives

C ,01
S,0

S
C50 or C}1/S. ~D70!

From GS~10b! we obtain

kT05@krC1~n214!aC/S2#rA11ar 2~P ,11P/r !,
~D71!

whereT0sa5ru0ua52ruaR2, and so

Vs[
T0

rR
5

C

S
A11ar 2~P ,11P/r !1Vc , ~D72!

Vc[
~n214!a

2rS3 CA11ar 2~P ,11P/r !}1/S. ~D73!

In these equations,Vs , Vc , and C/S correspond to
Bardeen’svs , vc , andC. Moreover, we obtain

T00/r5S 2C ,023
S,0

S
C D rA11ar 2~P ,11P/r !,

~D74!

andT015T0,1, T15T1150.

c. Tensor perturbations

The tensor harmonics in the even parity satisfying Eq.
~D5! is
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G115
L

r 2~11ar 2!
PYlm , ~D75!

~G22,G33!5FL

2
PYlm1Gl

nWlmG~1,2sin2u!, ~D76!

G235Gl
nXlm , ~D77!

G125~ l 21!~ l 12!~P ,11P/r !Ylm,2 , ~D78!

whereL[ l ( l 11)(l 21)(l 12),

Gl
n5r ~11ar 2!P ,11@ 1

2 ~ l 21 l 12!2~n221!ar 2#P,
~D79!

andXlm ,Wlm are defined in Eqs.~D12! and ~D13!.
The metric components are

h05h005h0150, ~D80!

h15
n~ t !

l ~ l 11!
~P ,11P/r !, ~D81!

h115
n~ t !P

r 2~11ar 2!
, ~D82!

K5
n~ t !

S2r 2F2
1

2
P1

Gl
n

~ l 21!~ l 12!
G , ~D83!

G5
2n~ t !

L

Gl
n

S2r 2
, ~D84!

and the gauge-invariant quantities are

k005@S2~n/S2! ,0# ,0

2

L
Gl

n , ~D85!

k0152
2n2a

L S n ,022
S,0

S
n D ~r 2P! ,1 , ~D86!

k1152
2

L

Gl
n

11ar 2FSS,0S n ,022
S,0

S
n D1~n211!an G ,

~D87!

T0 /r52 1
2 S2~n/S2! ,0

2

L
Gl

n , ~D88!

and T015T0,1, T00/r52k0023(Ṡ/S)T0 /r, T15T1150,
where we used Eq.~D4!. The sum kA

A5k0
01k1

152k00

1(11ar 2)k11/S2 vanishes owing to GS~10d!, so that we
have, from Eqs.~D85! and ~D87!,

n ,002
S,0

S
n ,01S n211

S2 a22
S,00

S D n50 ~D89!

or, for ñ 5n/S2,

ñ ,0013
S,0

S
ñ 1S n211

S2 Da ñ 50. ~D90!

In the limit t→0, n5tb(11n0t2/31•••), wheren0 is a
constant coefficient. Solving Eq.~D88!, we obtainb51/3 or
4/3. For b51/3, we havek00.k}t25/3, and for b54/3,
k01/k00}t, k00.1/2k}const, andk01/k00}t.
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