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Perturbations in a spherically symmetric inhomogeneous cosmological model
with the self-similar region
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To clarify the evolution of inhomogeneous substructures in large-scale structures such as voids, we study the
perturbations in a spherically symmetric inhomogeneous model with the self-similar region outside the inner
low-density homogeneous region, first based on the Gerlach-Sengupta general-relativistic formulation for
perturbations in spherically symmetric inhomogeneous models. Owing to self-similarity, the analysis for all
kinds of perturbations at the early stage is simplified in a similar way to homogeneous models. Next we take
the approximate treatment due to the local homogeneous model with the average density parameter which is
considered at each point, in order to study the behavior of perturbations on small scales. It is found that the
growth rate of density perturbations in the outside self-similar region can be larger by abeR0%0(for
z=2-3) than that in the corresponding ordinary low-density homogeneous ni8@&l56-282(97)05218-1

PACS numbds): 98.80.Hw, 04.40.Dg

[. INTRODUCTION In Sec. Il the background model is shown in connection

with the Gerlach-Sengupta formalism. In Sec. Il the pertur-

There are various large-scale dynamical structures such &gtion equations in the self-similar model are derived from
superclusters and voids which are evolving with cosmic exthe equations by Gerlach and Sengufdts and in Sec. IV
pansion. In these structures, substructures such as galaxié¢ analytic solutions in a series expansion arogrd and

appear as a result of the growth of perturba’[ions_ The beha\ﬂualitative behavior of numerical solutions in the region of

ior of perturbations in general inhomogeneous structures i§<1 are shown. In Sec. V, it is shown that the perturbations

very complicated, but it may be rather simplified in spheri-in the local homogeneous models are useful for the approxi-
cally symmetric structures. mate treatment of the perturbations on small spatial scales

and, assuming that the inside and outside of a spherical void
re expressed by homogeneous and self-similar models, re-
pectively, the growth of density perturbations in the outside

The general-relativistic theory of perturbations in a
spherically symmetric inhomogeneous model was derived b

Qerla}ch and Sengup@]. They gave the .elegant gauge” <eit-similar region of the void is shown in comparison with
invariant formulation, but the solutions in cosmological . : : .

. : that in the corresponding ordinary homogeneous model in
problems have not been derived so far. This may be due t ppendixes A, B, C, and D, the tensor calculus in the sub-
the situation that their perturbation equations are partial dif;, 1 it014s bas’ic ,equ’ations i,n the even parity, various formu-
ferential equations inconvenient for analytical treatments angl, i, the ,series expansion, and the perturba’tions in a homo-
intuitive insight, and that three kinds of perturbations are nobeneous model in Gerla{ch and Sengupta’s formalism

decoupled and their coupling is complicated, as in anisoespectively, which are necessary for calculations in the text.
tropic cosmological mode[2-4]. So far the perturbations of
spherically symmetric inhomogeneous cosmological models

have been studied in a few treatmefs6], but they were

limited to spherically symmetric perturbations. The Lemaitre-Tolman-Bondi solution for spherically
In this paper we study the perturbations in an inhomogesymmetric inhomogeneous cosmological models with pres-

neous background model with the self-similar region outsidesureless mattefTolman[12], Landau and Lifshit13]) is
the inner low-density homogeneous region, which includesepresented by the line element

pressureless matter. In this self-similar region, dynamics is
described using a single coordindgtect/r [7—10], wheret
andr are the cosmic time and a radial coordinate, and the

Il. BACKGROUND MODEL

ds?’=4g,,,dx*dx”

perturbation equations are also reduced to ordinary differen- (1+rS'/S)2

tial equationgsee also a treatment in the partially symmetric = —c2dt?+ S(t,r) Wdr2+ r2dQ?y,
case[11] for comparisoh Moreover, the background in this @

region is isotropic and homogeneous in the ligit0, so (2.1

that the behavior of perturbations is similar to that in the

Friedmann model in this limit. Because of these situations,ere &01;1,;2,;3):(%“6,@), d02=d 6+ sirfd¢?,
the perturbations can be most easily analyzed in a self&(r) is an arbitrary function of coordinate radius and
similar model among general inhomogeneous models. Th '—a5ar. Th tion fol(= oS/ at) is ai b
perturbations are studied first due to Gerlach and Sengupta r. The equation fol§( ) is given by
formalism, and next in the approximate treatment due to lo- )
cal homogeneous models. (S)2=c?(BS 1—ka), (2.2
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with the signk(= *=1) of the spatial curvature, and its solu- by whichr is related toz, using Eq.(2.8). Forz;<1, we

tion is expressed as have ag=(1-Q¢)Z%, r;=0%%,, and, for z;=1 and
2(024=0.2), we havar;=0.398,1.095,r,=0.412,0.684, re-
Sitr) = B(r) [1_ do(7) (0.3  spectively.
' 2ka(r)| dng |’ ' In the self-similar regionS(t,r) is a function of only
&(=t/r), anda(r) andB(r) are taken to be
B(r) 2
cft—7(r)]=———=[n—0 , 2.4 a(r) ag=B(r)l Bo=1/7, (213
(t=r(D)= ol @4 0 0
. _ so thate(r)r? and 8(r)r? may be constant and continuous
where(r) and (r) are arbitrary functions, and at the boundary =r . Equationg(2.3) and(2.6) lead to Eq.
. . (2.9 and
o(n)=siny, sinhy for k=1,—1, (2.5
respectively. The matter density is expressed as ¢ t_Ho (" lQO( hy— 1), (2.14
. =-—=——"———(sin .
o r 2(1 Q )3/2 =7
3c2B(r
p= Sfé Ls314rs9) Y (2.6 3H200( 14| %[ S| 3 B

where B(r)=p8(r)+ 2rB’(r). In this paper we adopt
k=—1, assumer(r)=0 , and use the uni¢=1 for simplic-
ity.

For convenience we assume that the spacetime consists %?

where ¢ denotes the partial derivativid 9¢.
Line element(2.1) in the self-similar region is expressed

the inner homogeneous region<(r;) and the outer self- (1-£S,/9)?
similar inhomogeneous regiom%r,), as in Ref[8]. In the ds?=—dt’+ Sz(g)[wmzﬂzdﬂz .
limit r;—0, the model is covered by the latter region. In the 0 (2.16

inner homogeneous region we have(r)/aq=B(r)/Bo
=1/(r,)?, where Bo=Hq %(r;)? and HOE(S/S)t:tO- The If we use forr a radial coordinate defined byr/r;=exp(),

Hubble constanH, corresponds to the present epogh  the line element is
Then Egs(2.3) and(2.6) at epocht, lead to

ds?=g,,dx*dx"=r2d s?, (2.17)
3H, o
Q0=pn(to) / (swe) =U(HS)® (27 d'57=,,,dxdx’= ~ dg>~ 26d 0t MA(£) o
and +S%(£)d0?, (2.18
012 3)_—
aol(rl)zz(l_ﬂo)/(ﬂo)ZIS, (28) where é( , X7, X5, X )—(§,X,0,<p),
2_n2 _ g2
for S;=5(t,,0). The solutions are expressed as MZ=N(£)— &7 (2.19
Q, and
S/ ——~—(cos 1 2.9
S721 -0y D! 29 N2(£)=S%(1-£S:/S)?/(1+ ay). (2.20
0 o 219 The metric components are
Hot= —————-(sinhy—17), 2.1 o o
201~ 8o) 0. =T"Gus,  9*'=r 2g”, (2.2
3Ho*o - with
. . » (900,901,910 =(—1,— £,M?),
Here the parameter, or r is arbitrary, and the positions
of observers are also arbitrary. If an observer is at the center (?o—o 11) (—M2,— ¢,1)/N2. 2.22

and we consider a light ray which is emitted at the redshift
from the boundary and reaches the observer at the center

f‘ﬁe conformal spacetime witths? is homogeneous in the
present epoch8], the light-ray equation leads to b 9

direction in the sense that it is invariant for the spatial trans-
formation x—x+const. For the mathematical analysis, the

Jap= ANI= 8o — Qo+ %(1+zl) coordinates §,x) are convenient, while the coordinatesr{
Q%(1+2y) 2 are better for the physical interpretation. Accordingly, these
0 two sets of coordinates will be used in the following.
0 Gerlach and Sengupta’s gauge-invariant theory for pertur-
+|—=—-1|J1+ ) ; . . ; )
( 2 1N+ Qoza ), (212 bations on general spherically symmetric spacetimes is used
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in the next section. In their notation the background metrics 1ll. PERTURBED QUANTITIES IN THE SELF-SIMILAR

in the self-similar region are written as

ds?=gagdx dxB+ R2(x%)dO?, (2.23

d s2=ds¥/r2= g gdx dxB+ S2(x%)dQ2, (2.24
where capital latin indice#\,B,C refer to time and radial
coordinates, latin indices,b,c refer to # and ¢, and
R=5(&)r,expk). On the two-dimensional submanifold
spanned bx®(C=0,1),R(x%),vA(=R ), andgg(x°) are

regarded as scalar, vector, and tensor fields, and the barred
guantities corresponding to them are defined as the quantities

obtained after extracting all factors offrom them. Then the
components ob 4 andv” are

(vo,01)=(v0,01)=(So/S1),

r2(w%uh)=(v%0vY)=(M2Sy/S+1,£S0/S—1).
(2.25

SPACETIME

The angular dependence of all perturbations can be ex-
pressed using spherical harmonics suchYas(6,¢) with
angular integersl and m, and they have odd parity
[(—1)'*] or even parity[ (—1)'], corresponding to the ro-
tation on the two-dimensional submanifold witi=const
and x!=const(Regge and Wheeldtl4], Gerlach and Sen-
guptal[15]). In the following these two kinds of perturbations
are separately considered.

A. Odd-parity perturbations

The perturbations of metric and energy-momentum ten-
sors are expressed as
h,,,dx“dx"=2h(x%)S,( 8, p)dx*dx?
+h(X%)(Sapt+Spa)dx3dx®, (3.
At dx“dx’=2AtA(X%)S,(0,0)dx* X3, (3.2

where semicolons indicate the covariant derivatives on the

The energy-momentum tensor for pressureless matter is exthit sphere and the vector harmoni& is transverse

pressed as

T,,dx“d X" =To(dX%)2,

(2.2

t,,,dX*dX”=tgo(dx%) 2+ 2t;dxX°dxt, (2.27)

in the (t,r) and (£x) coordinates, respectively. Here
10=too= too=r?p[= px LU(S’N)], to;=t=étgy, and
t;;=0, because tooz(at/ag)ﬁoo, tor= I EITTIX T 5.
From Eq.(2.19 it is found thatt oo and t 5; depend only on

£ as well asvo and v ;.
The quantitiestpg and v, satisfy the background equa-
tions

3 Ktap= _Z(UA\B+UB|A)+(2vc‘c+3UCvC_ R™%)0as

(2.28

EgAB,
velC+ovv®—R=0, (2.29

wherex=167G/c% | A denotes the covariant derivative with
respect tax” in the two-dimensional submanifold with met-

ric gag, andR is the Gaussian curvature of the submanifold.

In the barred quantities they are

1 ktag=—2(v s+ vpja) +A(Svp+ S50 )
+(2vI°+3vcvC—S2-4vT)gap

Eg_ABr

(2.30
vl®+vcvC-R=0,

(2.3)

where||A denotes the covariant derivative with respeckto
in the submanifold with metrig g and g8, andR=r?R.

(Sy#=S",=0). Since we treat pressureless matter, we have
no components withu=2,3, i.e.,L in Eq. GS(7b) of Ref.
[1] vanishes. In the following, GS denotes the equation num-
ber in Ref.[1].

The gauge-invariant quantities correspondindiig and
At,, are

ka=ha—R?*(h/R?) 4, (3.3

LA: AtA ’ (34)
where A denotesd/dx”. The gauge transformations are
shown in their paper.

Because of self-similarityg ,,,9*", t ,,, and t*" de-
pend only oné, and they can be regarded as quantities in the
conformal spacetime with metrid s?, as in the previous
section. In the same way it is imposed thaf(xhw At,,)
or (e"2k,,L,) are regarded as quantities in the conformal
spacetime, which is homogeneous in thelirection. Then
we can assume that they are Fourier expanded in the form of
exp(px), wherep is a wave number. Each component is
expressed as

ha=eZh,, h=e*h, Atx=At,, (3.5
and the gauge-invariant quantities are
ka=€*Kn, La=La, (3.6

where h_A,h,kA,At_A,L_A have the common factor
exp(pX). The relations between them are

ko=ho—S*(h/S?), 3.7
ki=h;—iph, (3.9

where ,0 meansg/Jé.
The quantities with upper indices are defined as
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KA=gABk,, LA=g"BL,, (3.9 As a result we derivek® and L° solving Egs.(3.12 and
(3.19 and getk?® from Eq. (3.11).
so that In this parity, perturbations include rotational motions and
KA=KA LA—g 2]A (3.10 gravitational waves. IfL°=0, the perturbations consist of

The Einstein equations for gauge-invariant quantifieés
(9a), (9b), and(14)] reduce to the following ordinary differ-
ential equations. First, we obtain from GSa)

kAa+2kI=0 or (NKO) o/N+(ip+2)ki=0 (I=2)
(3.11)

and from GS(14)
SLAA+28%L1=0
or

(NLO) o/N+S(ip+2)Lt=0 (I1=1), (3.12

free gravitational waves. The rotational motions witf
#0 have conserved angular momentum satisfying Eq.

(3.12.
B. Even-parity perturbations
The perturbations of metric and matter tensors are
h,,dx“dx"=hag(X©) Y (8, ) dX*dxB+2h,Y Ldx*dx?
+RIKY(0,0) Yapt+ GY a:p]dX7dX,
(3.20
At dx*dx"=Atag(X°) Y (6, )dx dx®

+2AtA(XC)Y LdxAdx3, (3.21

where| A denotes the covariant derivative in the submanifold L .
with metric g g, introduced in the previous section. If we WhereA® andA®in GS(4b) do not appear because of pres-

defineBA€ by
BAC— RA[(R_ZkA)lc_(R_ZkC)lA], (313)

GS (16b) is expressed as

—[(BAS)|c+2BA+(I-1)(1+2) kA= kSPLA,
(3.14

whereB*B=BAB the nonvanishing component BB is

B%=—B™=(S/N)’[~ipko+S’(k /S o, (3.19

and
B =B+ (N o/N)BAC, (3.16
For A=0, therefore, we obtain
—(ip+2)B+(1-1)(1+2)k°=«S?L® (3.17)

and forA=1,
B+ (N o/N)B+ (I-1)(1+2) kT=kS?LL. (3.18

If we eliminateB%! from Egs.(3.17 and(3.18 and use Eq.

(3.12), we obtain Eq.(3.12 again. If we use the relations

ko=—k%— ¢k and k;=—£k%+M?kT with Eq. (3.1,
Eq. (3.17 reduces to

W) [ So Mg\ Ny 2(1+ip)gKW)
2 2

(s 0 S M/ N M </,
So Npo So Npo|( Mg ipé

* 2§+W)0+(2§+W 2wz

2+p%—ip

2110 N o
+—M2—+(|2+|—2)(MS) g—(W)KLO.

sureless matter. The corresponding gauge-invariant quanti-
ties are

Kag=hag—(Pas+ Paja): (3.22
k=K—20v"p,, (3.23
Tag=Atag—thGPc— (tcaPfp+tcepa), (329
Ta=AtaK—2t$pe, (3.25

where
Pa=ha— 3 R?G (3.29

andT! andT? in GS(8b) vanish.
In_the same way as inihe odd-parity case, it is imposed
that h,(=r"%h,,) andAt,(=At,,) depend only org,
ie.,
PA=12Pa(é),

hag=r2has(§), ha=rZhA(¢),

(K,G)=(K(£),G(£)), Atag=Atag(é),

Ata=Ata(d), (3.27
and the gauge-invariant counterparts are
kAB:rzk_ABi k=k, TAB:T_ABa TA:T_A-
(3.28

Then Einstein equations for barred quantities are reduced to
ordinary differential equations with respect §o Equations
for the gauge-invariant quantities are given in G9a—
(10d and GS(159 and (15b). In the following we show
them using the above barred quantities.

First we obtain, from G$15a),

S YSPTA)a+2TI=5 1 ABK g, (3.29
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whereT! vanishes because of pressureless matter. From GS T00 TO01 ;0 TO /N\2 —50 —51.
(15b) we obtain similarly €m==—="F2i =+ =—+| (K™+28k™),
p p p P
S 2(SPTB) g+ 2TL— LTS 1(1+1)S 2T, (339
- _ — TO0_ TE TOl_TEx (O00_ & —O0_ TE
:%kAC”AthJFE?BBtCA_ %?guBTE\_ k,Ct_,(i whereT™=T¢%, TH=T%, t t5, andty=1t%.
+kBC(2vgtcat tea— Satee)- (3.30 IV. BEHAVIOR OF PERTURBATIONS

IN THE SELF-SIMILAR SPACETIME
In the derivation of these and following equations we used

the relations shown in Appendix A. In anisotropic cosmological models, three types of pertur-
Moreover we obtain, from G&L0d), bations(scalar, vector, and tengaare not generally decou-
pled and their behavior is complicated, as can be seen in
?8=O, (3.30) perturbations of the Bianchi type | _anisotr(_)pic mo[ml-él]_).
In the present case, however, it is possible to classify the
sincekS= k<. From GS(10b), perturbations into the above three types aroéind. This is
¢ nc (100 because in the limig—0 the background model tends to an
7_—2“c_2?£+ 6,1\?8+(F8),A—U_A?8= _ KT_A isotropic spacetime, as follows. In this limit background met-
ric (2.1) leads to
(3.32
4/3 2
and, from GS(100), _ o2 o[t r 2402
o - B ds? cdt+(Sl)<r 9(1+a0)+rdﬂ ,
K[g+2v =k o~ kg~ [N(2k*—g“kp)] c—2v ckfp 4.

becauseS(¢)=S,£2, whereS; is constant. By the transfor-

_ o T\ CD T,.Dy|IC ~C/,D _ i
2(vgjptvcvp)kP+ (kD) e+ v (kD) mationr — {=r the metric reduces to

2

ds?= —c?dt’+ (Sl)z(ct)4,3[d_§ + §2d92} . (4.2
1+ ao

+[R—1(1+1)S ?]k&=0. (3.33

The above equations can be reduced to forms more conve-

H : H 00 1,01 0, .
nient for solving them with respect th, k™, k™, Tp, The perturbations are accordingly supposed to have a similar

00, AndTOY - wwhi : :
T%p, andT%p, which are shown in Appendix B. behavior to that in the homogeneous and isotropic model in
Here we examine the physical meaning of the gaugegne |imit &-0.

invariant quantities in comparison with those in a homoge- |, the following, the solutions in the series expansion are
neous and isotropic mod(()eol. In the scalar perturbations thgys; derived in connection with the perturbations in a homo-
metric component& andk™ correspond toby and®, in geneous, isotropic model, which are shown in Appendix D in
Bardeen’s gauge-invariant formaligit6,17, andT%%p isa  the Gerlach and Sengupta formalism. Here we call the three
contrast of energy density, Whi@llp_andﬁ/p_are veloci- classified perturbations gsimordial scalar, vector, and ten-
ties in the radial and angular directions. In order to define th&or perturbations, in the sense that the classification is done
density contrast corresponding to Bardeem;s, we first in the neighborhood of=0. Next the solutions in the whole
considerT™B in the submanifold with metrig gz andp. The ~ '€gion of & are derived numerically, using the solutions in
present definition o€, is given as the density contrast in the 1€ Series expansion as their initial conditions.

synchronous and comoving reference system. Then we ob-

tain in this system A. Odd parity
- 70/c2
Ttt=tn6m—tf§pt—2tnp|tt, (3.34 First, we expanck“/S- as
Tt—tltp, (3.39 KO/SP=g*(1+a X+ a,X2+ ), 4.3

and where

Kit= —k!=2pl! (3.3 X=(6¢/£,)%", (4.9
from the definition of TAB, TA, P, andk*B, where we With
put T=T" TO=T! and so on. Accordingly, it is found PP
that g=o W D 45

21— '
_Ttt P,t Tt "
6m_7+?F+k : (3.39 Substituting Eq.(4.3) and expansions of the background

guantities(shown in Appendix Cinto Eqg.(3.19, we obtain
By transformation fromf{(r) to (£,x), we obtain the following solutions.
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1. Primordial tensor perturbation

We assumd.®=0. Thena satisfies 3>+ 7a+2=0 or
a=—2,—1/3, which is consistent with ED19) in the limit
t—0. The coefficient®; anda, are

for a=—-2

a;= 135 —123- 1800+ 10(1%+1—2)(oo— 1)

+900(p?—3ip)], (4.6)

a,= 525511933+ 25200 + 840003+ Z2(12+1 - 2)
X (31— 260 — 505) — 840 28+ 9507) o'op?
+140pog[33+20(12+1—-2)(1—0y)
+4500,— 18000}, @.7)

for a=—-1/3

a;=#%[14— 1000+ 5(1%2+1—2)(0o— 1) — 150(3p2+ip)],
4.9

a,= sg5{ 1933+ 25207 — 84003+ 35(12+1 — 2)
X (— 101+ 2210y — 12003) + 315 53— 1800() 7op?
+318p o[ 7+ 180%0y+20(12+1—2) (09— 1)1},
(4.9

whereoy=(ay+1)/ay anday is given in Eq.(2.13. These
perturbations give free gravitational waves.

2. Primordial vector perturbations

Next let us consider the cas?+0 and examine the or-

ders of magnitude of 5. For pressureless matter we have
case and

t*’=pc?ubu’, and in the  odd-parity
(At%3 A1) =pc2(u®,ut)u,. Sinceu® andu? are of first or-
der, At*? is of second order, so that(=At,,) vanishes in
our linearized treatment. On the other
Lo=Ato=pc2ugu,, and L°=At%=—pc?ulu,. The inte-
gration of Eq.(3.12) leads to

LO=(L%q/(S?N).

(4.10

hand,
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These perturbations express rotational motions of pressure-
less matter.

According to the numerical solution, we find as general
behavior that the solutions change smoothly following the
power-series solutions, i£<S/p and, after the epoch
&~ SIp, the solutions oscillate generally.

As ¢ increasesM? decreases and becomes negativetfor
larger than a critical valug., at which X~ 1/oo(<1). For
negativeM?, the hypersurface of=const is partially time-
like, and so the expansion in terms of eixp{ is insignifi-
cant, except for the case with small valued aindp. In the
latter case it is found by numerical analysis that the behavior
of perturbations is consistent with those in homogeneous
models at the nearly isotropic stage 2.0 (cf Sec. V.

B. Even parity
1. Primordial scalar perturbations

The metric components of scalar perturbations in a homo-
geneous model satisfy the relatioks k; andk' =0, as can
be seen in(D1) of Appendix D. Using the condition
ki+ki=0 and transforming the coordinates frortir{ to
(¢,x), we obtain the relation& %°= (1+ ¢%/N?) k and k%=
—[&/(N?+ £2)1k . If we expand the metric perturbations as

k=&%(1+aX+---), (4.13
K= g2(1+by X+ - --), (4.14
k=—0of* Y(1+c X+ 1), (4.15
the constantsv,a,,b,,c, satisfy the relations
b,=a,+ o+ b, (4.16
c,=a;+i+d6cy, (4.17

whereéb,; anddc, vanish in the homogeneous model. In the
present self-similar model§b,; and ¢, do not vanish and
must be determined together withanda;.

For this purpose, we use first E@B10) or (C14) to get

(ip+5/3)6by=(a+7/3) 8¢, (419

This relation means the conservation of angular momentum,

becausg = 1/(S?N),u’~ 1, andu,=R?u®=const.

For the metric perturbations in Eg&l.13—(4.15, we have

Here we show an inhomogeneous solution in which ther00 701 anqT0 shown in Eqs(C15—(C17), and the con-
lowest term with respect tg corresponds to the inhomoge- sjstency conditions that they should obey E&2)—(B4) are

neous term in the right-hand side of E8.19. In this solu-
tion we havea = —4/3 and the coefficients

a;=[—18.8-80¢+2(12+1-2)(0p— 1)

+600(3p°—5ip)], (4.17)

a,= — 5251 1648.8- 344407 — 11205 *+ L (1% +1-2)
X (106— 12104+ 15035) — 168 91+ 1350) oop?
+ 84| p(To[ - 37+ 300'0_ 18q:)20'0

+20(124+1—2)(1—0¢) 1} (4.12

given by Egs.(C18—(C20. In the present case with
bo=co=1 we obtaina(a—5/3)=0 from the condition in
the lowest order, and from the conditions in the next order
and Eq.(4.18), we obtain the following two sets of consistent
constants:

sby=%, Sci=x(ip+3),

(4.19
scy=—3(ip+3)a1, (4.20

a=0:a;=— 3,

a=—§35b1=—al,

wherea; has not yet been determined fer= —5/3. This is
because the vector perturbations can be also included for
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a=—5/3, as well as scalar perturbations. To determine the 12 T AT AT T T
value of aj, it is necessary to impose the condition of no
rotation.

The vorticity tensorw,,, is
®,,=3PLPI(Uy;o=Ugnp), (4.21)

whereP,,=g,,+u,u, and ; denotes four-dimensional co- 06

variant differentiation. Its components reduceutgy= 0, and
(012,019 =T /[p—(Ti/p) (J(Y 2, Y3 (422

in the (t,r) coordinates, wherg(=t") is the background
matter density. The condition is, therefore, expressed as

€n(z) / €m(0)

0.4

0.2

oo e A e by b Ly

LI N B L ) I 572 L

0 oo b b by e b b L
0.5 1 15 2 25 3 35

Ttr/P:(Tt/P),r- (4.23 z

Here SinceTAB=T_AB TA:T—A andp=r_2p—we have FIG. 1. The ratioe,(z)/€(0) in the self-similar region is
' ’ ' shown for the inhomogeneous models @ Q,=0.2, z;=1.5,
Tolo=t"ATu—To o= (Tri— T 0 (4.2 and(b) Q,=0.2, z;=2.0. For comparison the ratio i) the or-
w’p (Tor=€Tod/p=(Tor=€Too)/ p (424 dinary homogeneous model wifh,=0.2 is also shown.

o
'S

and
o . s respectively, whose behavior is quite same as those in a ho-
(Ti/p) =(r"Tolp),r "= E&Tolp) of mogeneous model, with respect to the powers in the lowest
- — _ - — order.
=(1Tolp)ar = &(Tolp)o (4.29 Next we can analyze the perturbations in larger values of
in terms of the €,x)[ = (x°,x%)] coordinates. The above con- & by numerically solving ordinary differential equations
dition is rewritten as @2)’_(83)’_(54)'_(8_9)’ (_Blg aﬂj_(Bl?’) for
K0, (k%) 0,(k™) 0,(T* ) 0,(T%p) 0,(T% p) 0, where
To1— fT_oozT_o(ip+1)_§HT_0/E,o (4.26  the above solutions in the series expansion are used as the
initial conditions até=¢;<1. As the result we find that at
or the interval §,<é<1 the numerical solutions can be well
L o reproduced by those in the series expansi@gh$3—(4.15
N*TO=T%ip+1)~ép(T%p)o, (427  and(CY—(C17).

At a point é= &, with X~1/oo(<1), the factorM? in
where To=—TO0 Too=T%+2£T%  and To=(¢&2  denominators vanishes and, as was stated in the odd-parity
—M?2)TOLy £T00 case, the present treatment cannot be us€d-id,,, except

Substituting Eqs(C15—(C17) into Eq.(4.27), we obtain  for small values of andp. It should be noted, however, that
another condition for constants. Fom=—5/3 with at this point there is no physical singularity, because the
bo=Co=1, the lowest-order condition is automatically satis- Vanishing numerators exist always corresponding to them,

fied and in the next order it gives and so the numerical calculations can be continued after the
point in which X>1/a(. It is found as the result that it is
—5+ 140+ 4(3+ 0y)ip larger thane,, in the homogeneous model with the inner
a;= 5(10+9ip) : (4289  density parametef), by the factor which is 1.23 at the

boundaryr=r, at epochz;, and thate, at the emission

The physical contrast of matter density is defined in Eq&Pochs withz>z, is always larger than that in the ordinary
(3.38 and shown in Eq(C21) in Appendix C. In the present homogeneous model. Here the radial coordinatis con-
case we have nected withz and » (at the emission epogtby Egs.(3.6)

and(3.9) in Ref.[6], and the initial value €,,); is given for
€m=5[200— 1+ (12+1-2)(0p—1)—Bipoy+9p2ay]X arbitraryr at the initial hypersurface=t;, so that the initial
value #; in the self-similar region is related tap(,); in the

+0(X?) for =0 (429 jnner region by
and
2(1— Q)% r
€m=12[1-2800— 1+ (I*+1=2) (o~ 1) (Q—O)HotiISim’(ﬂin)i_(ﬂin)i:r—(Sinhﬂi—ﬂi),
. .
—33ip oyt 9pPag X/ £+ 0(XH £ for | (4.31)

a=—5/3. (4.30
where Egs(2.10 and(2.14 were used. The behavior ef,
The result shows that the casesaof 0 anda=—5/3 are  at the emission epochs is shown in Fig. 1 in an example in
the growing and decaying modes of density perturbationsywhich (14=0.2 andz;=1.5 and 2.0.
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2. Primordial vector perturbations a;=— 195[ (100 — 1)by+ (14bo+ 31) p?op— 2(12+1—2)
The metric perturbations @&=0 can be given in the same . g
form as1 and the constant coefficients reduce to the set in X(0g+1)(1=00) +ipooas(5200—101)], (4.39

Eq. (4.20, while the set in Eq(4.19 gives only a density 1
perturbation. In the present cas®, should be determined |, — [(7606—2)bg+90p20o— 5(12+1 — 2)(by+1)
under the condition that the divergence of the velocity van- 5609

ishes. Here it should be noted that, as was showh, ithe _ 6: _

velocity vector Y, TtY,,T'Y3)/p is gradient in the lowest X(1=00) +5ipoo(410o—66)], (439
order for a=—5/3 andby=1, but at the same time the
physical density contrast,,=0. Accordingly, the vector is ¢,
meaningless in the lowest order. Here we will consider only
the terms in the next ordefT{"Y, T'Y,, TtY3)/p. Then the +3ip[—1-10a;+by(1+ 10b; + 100) — 20ce0]}-
condition is given by

:_{206.1+ b0(4+ 5%1"' 500'0) - 10(1:00'0
70c,

(4.40
(T"p-Y) + 9% Tp-Y ) 1a+9%(Tp- Y 3)3=0 Forby=1, the consistency conditiori€18—(C20) in the
(4.32 lowest order lead to
in the (,r) coordinates and in theg(x) coordinates it re- a=-5/3 (4.4
duces to and
5(761/504- 525,00/S +2§i)—(2+ip) fr'—01/p— Co=3(1+by/0oy). (4.42
" 1€S0/571 S The conditions(C14), (C18—(C20), and(C21) in the next
I(1+1) T0 order give two relations between three parameterd,,
— —=0, (4.33 andc,. In the same way as in the scalar perturbations for
S P a=—>5/3, we use the condition of vanishing vorticity vector

given by Eq.(4.27. Then the three parameters are deter-
where Tag=Tag and p=p/r2 Imposing Eq.(4.33 for ~ Mined as
@=—"5/3 andbo=1, we obtain a;= $[140g—5+4(3+ a)ip]/(10+9ip), (4.43

1 1—(62—45p%+ 111ip) oy

_1 1
#1730 20+ 3000+ 6p(81—3p)oe— (IP+1-2)(0o- 1) P1=~ Tg5ip) (381t 2+ (220-90p) 00— 101°+1-2)
(4.349
X(0p—1)+315p], (4.49
In the next orderg,,, does not vanish but it has no mean- L
ing as the density contrast, because the velocity is not gradi- C1= 20[1+3b; /09— 60a;]/(1+by/0p). (445

ent. Thus we have two modes of tensor perturbations with

powersa=0 and—5/3. They correspond to two modes of
tensor perturbations in a homogeneous model, though the
For tensor perturbations a more complicated form of metdependence of constants prand! is very complicated.

ric perturbations is necessary, in the same way as in a homo- The behavior of the perturbations in the regiér 1 is
geneous model. Here we assume the form with constants shown by solving Eqs(B2), (B3), (B4), (B9), (B13), and

and ¢y shown in Egs.(C10—(C12 in Appendix C. Since (B14) numerically and using the above solutions as the initial
there are neither density perturbations nor rotational velocityonditions. It is found as the result that f§<1 they are
perturbations in the present case, we impose ¢hat0 and  smooth and follow the solutions in series expansion, and for
the velocity vector is gradient. From the conditigh=0 and  p&=1, they become oscillatory as expected from the com-

3. Primordial tensor perturbations

Eq. (C21) we obtain first in the lowest order parison with the perturbations in homogeneous models.
a(1—bg)=0. (4.35 V. APPROXIMATE TREATMENT
DUE TO PERTURBATIONS IN LOCAL HOMOGENEOUS
For a=0, the other constants are determined as follows by MODELS

the consistency condition&13), (C18—(C20), and €,,=0

in the next order in Eq(CZl)Z In this section we consider an approximate treatment in

which the background inhomogeneous model is replaced by
: a stepwise series of virtual local homogeneous models and
_ 3[18p* 0o~ (I+1-2)(1~ 7p) ~ 12ip 7] the perturbations are assumed to be caused in these homoge-
10— 2000+ 7(1°+1-2) (1~ 0¢) —6(ip+21p?) o’ neous models. Because the homogeneous models with
(4.36 S=S(t) must be isotropic at the same time, the perturbations
are those in the Friedmann model, which is shown in Appen-
00:b0+%(b0_1)|p, (437) dix D.

bo
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FIG. 2. The local value of the density paramefgrat present FIG. 3. The ratioe(2)/e,(0) is shown for the local homoge-
epoch is shown in solid lines. The density paramékgin the inner  neous models corresponding to the case&pf),=0.2, z;=1.5,
homogeneous region is assumed to be 0.2. The valugg3oare and(b) Qy=0.2, z;=2.0. For comparison the ratio i) the or-

also shown in dotted lines. The models with=1.5 and 2.0 are dinary homogeneous model with,=0.2 is also shown.
denoted by a and b, respectively.

To determine the model parameter of the local homoge- i_M
neous models, we define the expansion ratedd, , and©® (1— Q)%
in the transverse and radial directions, and in the average as

[SINN(7in)i— (7in) ]

00, ==
H=&0nS) ¢, H=¢lIn(S-£S91,, (5.0 (1o S ) 64
and and
O=(2H,+H,)/3, (5.2
ri QOIHO . Q 0 L — —
respectively. Their values at the present ep¢oh, in the — te=1 (1-Q )3,2(5'”h’7e_ 7e) = —(1_9)3,2(3'”h77e_ 7e),
t=t, hypersurfacgare the corresponding Hubble constants 0 (5.5

(Hyo,(H;)o, and®,. The Hubble constant in the inner re-
ion isH, the present cosmic time tg, and is equal ) L i )
'?o Eq.(2.g8) in Igef. [8]. The local denzity parQ;rt%gters?:an beWhere (7in); is the initial value of in the inner homoge-
defined in the two directions, and the average parameter ig'€0US region andy, is the value ofy in the self-similar
region at an emission epoch with redstaft
. 3(0,)? As a result of numerical calculations, the behavior of
QEp(to)/ [ 8.G €m(2)/ €,(0) at each emission epoch is shown in Fig. 3 as a
™ function ofz at the emission epochs, in an example in which

— L the boundary between the inner homogeneous region and the
= E M { — Slnhn(SEhn ) , (5.3 self-similar region corresponds to the epagk=1.5 and 2.0.
3 sinlty (coshy—1)2 In these two cases, the ratig,(z)/e,(0) is about 30—20%

(for z=2-3 larger than that in the ordinary homogeneous
where a mistake in the original expression was corre@®d model. If we compare this figure with the corresponding one
[9)) and?is the present value of defined by Eqs(2.19 in in the previous section, this approximate treatment is found
Ref. [8]. The radial coordinate is connected witlz and 7  to be good enough and useful.

(at the emission epottby Egs.(3.6) and (3.9) in Ref. [8]. This consistency may be due to the situation in which the

The behavior of and 7 (at the emission epoglis also anisotropy is comparatively small and so the coupling be-
shown in Fig. 2 as a function of tween different modes is negligible. In fact, the anisotropy is

Here we assume that the local homogeneous models ha\(}i@f'ned by
the average density paramef@r and draw attention to the
scalar perturbation. The density contrast is derived by A=H/6-1, (5.9
solving Eq.(D55) from an initial epocht; to the emission
epochte, where the initial value of, is assumed to be and it is shown that, forp<1, A=0.0337? and for
equal everywhere. The relation betwegnand the corre- ;=1.0, 1.5, 2.0, and 3.0A=0.031, 0.065, 0.104, and
spondingz in the local homogeneous model is given so that0.177, respectively. On the other hand, the values af the
the cosmic time may be equal. Accordingly, we have the emission and present epochs in the self-similar region are
following two relations at the initial and emission epochs: nearly equal to or smaller than 2.0 and 3.0, respectively.
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VI. CONCLUDING REMARKS wheren=0 for k” in Sec. llI. In the same way we have, for

. L . e L. AB_ .n, AB _en+4y
Inth|spaperthegrawtatmnalmstablllty|ntheseh‘—S|m|Iark =r"k"%, kag=r"""kas,

region in an inhomogeneous cosmological model was first
studied by paying attention to the self-similar hypersurface
with ¢é=const. The perturbation equations reduced to the or-
dinary differential equations with respect §édby expanding
perturbations in terms of ekpln(r/r;)]. However, the for-
malism was found to be useless fr &, except for those
on large scales such that=0~1 andl~1, because the
above hypersurface becomes timelike in the radial direction.
Next, perturbations were treated approximately as those in
local homogeneousotropig models with the same density AB -
parameter)(r) as in the inhomogeneous model. This ap-Wheren=—2 for k™" in Sec. llI. _ .
proximation is good for perturbations on small scales, but it OThle components of barred symbols in coordinates
was found that it gives the result consistent with that in the(X"x")=(£,x) are
above treatment on large scalgsr p=0 andl~1). In the
super-horizon-scale inhomogenedusid) model consisting
of the inner low-density homogeneous<{z,) and the outer
self-similar region ¢=z,), the density contrast in the latter
region was shown to be larger by about 20% than that in the
corresponding one in the ordinary homogeneous model in
the case of();=0.2 andz,=1.5-2.0. If we take a steeper
void model with a larger density gap in the boundary be-
tween the inner and outer regions, the density contrastinthe — o — o 4 5 47 p, 71
outer region will be larger, compared with that of the ordi- (11 agc)™=(1 agc) Saloe” —dglap * 1A
nary homogeneous model. (A10)
The latter treatment will be improved by taking into ac-
count the deviation of the background from its local inhomo- L
geneity as an expansion with respect to the ratio of the spadere it should be noticed thm}qB vanishes irM ,, but 5/1AHB
tial scales of perturbations to the scale of the backgroundoes not vanish as
inhomogeneity. The present analysis is in the zeroth order of
this expansion. In the next order the coupling will appear
between two modes such as scalar and tensor perturbations.

KABlc=r"KAB/c+ (n+2) SgkAB+ 52 k A+ o2k 1B

— g% ke gMkel, (A6)

Kagc= "4 kagjc+(n+2) ScKas+ 9sck A+ Oacks

— 5gkac— Sakacl, (A7)

(T8, T30 =(£&—1)IN?, (A8)

(T, T8, T, T1)=(—£1M2EMM o/N%. (A9)

In an arbitrary tensot sgc in M,, we have a formula

Licy
+97 | ace-

Sae= T As- (A12)

Using Eqg.(A10), we obtain fork,g with n=—2 the follow-

APPENDIX A: TENSOR CALCULUS ing relation, for example,

IN THE SUBMANIFOLDS

In the two submanifold#, andM_2 with metricsg,g and
9as(=0as/r?), the covariant derivatives to vectok$ and
k”* are defined as

R™2(R%kapic)/C= K agjc—28x(kpo)C—285(kac) I

+2K g+ 2Kgja— 263k~ 255Kz

+205kgkE—29M Kk g+ 29 agk ™

kA g=k" g+ TacKS, (A1)
o +T ack§+TackS, (A12)
kA”B: kA‘B+ FBCkC. (AZ)

The upper and lower indices of tensorshh, and M_2 are
changed using the metrigyg and g,g, respectively. The
Christoffel symbolsI"§g[ =1/29°P(gpa s+ 9ps.a— 9asp)]

andT e[ =1/29%°(gpa e+ Goe.a— Uasp)] are related by
TSe=T et 0505+ 0nd5— 9% gms- (A3)
Accordingly, we have, fok*=r"k” ka=r""2k ,

kA‘BZ I’n[k_AHB+ (n+1) 5ék_A—g—Alk—B+ 5@?], (A4)

kA|B=r"*2[<k_A>B+<n+1>5ék_A—5ik_B+&BF]é |
A5

R™?[R*(Kagic—Kacjg— ch\A)]IC
= 2[(5,0/5)9_C0+9_Cl][k_ABHc_k_AcuB_k_Ban
— 20k +25EKag]+ kABHC”C+ 5ég_CDk_DCHA

—2gaskgd©—29°PT ¢k ag, (A13)

and

R™2(R?%kno)AC=1 2 (KA%)act (NKIC) c/N— (kI

+ 208 (KR 2KE - 5EKB)

+2S (SPv akQ) ct+4vakP]. (A14)



56 PERTURBATIONS IN A SPHERICALLY SYMMETRC . ..

APPENDIX B: BASIC EQUATIONS
IN THE EVEN PARITY

From Eq.(3.29 we obtain

k== (gook®+290:k/ g1, (B1)
and from Eq.(3.27
(T%p) o= 3 koo=3(N/M)2(k®+2£k%).  (B2)

From Eq.(3.28 we get forA=0
(T%p) o=—(ip+2—2&N o/N)(T% p)

+HI(1+1)S 2(T% p)— £ (k%) g—2¢(k%) 4

— KO+ ok 00+ f o1k O (B3)
and forA=1
(T%p) o= —2(No/N)(T% p)— M ~2(k+2£k0
+hook -+ hg, kL, (B4)
where
ipé 1 1 £ M
fooz—gw—f(mﬂw—) N2 M , (B5)
3¢ 482\ [ EMM
fOl:_ 1+W |p+ 3+ W NZ -1
2 1 2M, Ny
2 _ N I S T
e B e
ip Mo 1 1
hOO:2M2+ gv_l W_W 1] (87)

1 2 282\ & My £ Ny ipé
“0125(—2‘—)+(1+ M2)WV_WW+W'
(89)
From Eq.(3.30 we get, forA=0,

(M/N)ZK o+ (k) F=kTO—ip&N~2k —2(N o/N)k®

—(ip+2)k°t (B9)
and, forA=1,
(KO 0=N"2(— §k_,o+ ipk)+ ek +ep k%,
(B10)
where
1 1/, EMM 0
GOOZW—W ip+2+ NE , (Bll)
No 2 .
eOlz_W’_W“pg"‘Zf"'MMyo). (812)

Moreover, from Eq(3.32 we obtain, forA=B=0,

3351

N

M\*Sy No ¢]—
ERTHA

SN e Kot

SO f )?00]

Sl

— [2ipM2/ s, Mo 2p?
— 00 e g =
KT + N4 ( §S+2 SM WT
2|2+| 1, 00 1, 01
— W S— k+C00k +Cork ™ (B13)
for A=0, B=1,
2[(M\2[ S; M, & 2
W[(W) EZTE T2/ Hip Ko —@l 1 g e
— 1 M2 262\S, M, 2¢
— 01, — ] »; _ _ PSS DA I b E
=«xT +N2 2ip N { 1+M2)S+M+M2
12 |—
- K+ dogk %+ dg kL, (B14)
where
2 N o 2ip
Coo=Kt00—W<NNVOO+§W+ N2( 1+&-=2 )
MMM 1S, 2MASg (o)
N2 | N2 S N?|S S
2 1)\ .S 1(1+1)
HveTNé sl T T (B15)
—o AM?(Sy & _
Cor=éxt _W §+W (2+ip), (B16)

o i

dOOZWKt I RV B S
+$( B %)>_zihf2%)(%)+%) (817)
dor— 1+i/|—§22)%,<ﬁo_|(|;21)

x| i §+(M2+2§2)MOM 04 =
P N2 | NS M T w?

S 2M? EM
163 - B - )

(B18)

45( So My 2§2>

EMM

e

e

APPENDIX C: SERIES EXPANSION

At the early staged=0), Sand¢ in Egs.(2.9) and(2.14
are expanded in terms of and, by expanding them in-
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versely, the following relations are obtained in termséof
and X, whereX is defined in Eqs(4.4) and (4.5). First we
have

7= X 1= X+ X+ ], (CD
SIS, = X[ 1+ 55X — 5555X2+ - - -], (C2
where
Qg
S*ZZ(TWSO_\/Q_Og* : (C3
Moreover,
2 1 13 2
S,OIS:3—§[1+mX—mX +-~-], (C4)
& Ly, 9 y2
NZG\/U_X[l_EX+mX +---], (CH
0
2 2 2 (g*)z 2 1 1 2
M7=N"—§ :360())( [1- (ot o)X+ X+ -],
(C6)
2 1 11 2
NY0/N=3—§[1—EX+M,X +-~-], (C?)
where
0'0=(1+a0)/a0. (C8)
For the energy density,
KWOZKp=§§72[1—21—OX+%X2+--~]. (C9
For the metric perturbations,
k=¢"(1+aX+---), (C10
KO=bo&¥(1+b X+ ), (C11)
k%= — goCoé N1+ Cy X+ -+ 1). (C12
From Eq.(B10) we first obtain
(at+3)(Co—1)=(3+ip)(bo—1) (C13
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in the lowest order and

c1=—[30(a+7/3)co] Y —3a—4by—3c,— a,(20+ 30a)
—5(1)0b1+ S(XZCO_ b0)0'0+ |p[3_3b0+ 303.1

—3(])0b1+ 30(200_b0)0'0]} (C14)

in the next order. From EqgB9), (B13), and (B14), we
obtain

X

700, Ne—a_ 1
(T®p)e =} a(2+bo) +15

{6a+40(2+3a)a; +6ab,

+20(2+3a)bgb; +5(12+1—2)(1+bg)

X (0o—1)+10 —9a+ (10+3a)b,

—12cy+9p?Jog+30(—2+by—4cy)ipoy),
(C1H

(T%p) % (0pX) =3[ (4—bg)a+ip(3a+2by)]

X
+ 50(36a+80(2+3a)ay

+(20—3a)by—20(2+ 3a)bgb,
+20cy+ 10(12+1-2)
X(op—1)(1—-co)

+20(3a+9by— 7¢o) oo+ [ 12+ 27a
+60(2+3a)a;+24(1+5b;)b,

— 1
(TO/P)f_l_a=§(3a+4b0+3ab0)

X
+ {gol3a+ 202+ 3a)a + abg

+6(X2+ a)bobl—G(Xa-i- 200)0'0

Moreover, we obtain from Eq$B2), (B3), and(B4):

X
ch00=a[2+2a+(3+ a)bg] +%{21a+ 9a?+20(10+ 21a+ 9a?)a; + (20+ 21a+ 9a?) b+ 10(22+ 39 + 90a?) bob,

+5(12+1-2)(1—bg)(0o— 1)+ 15a(1—9a) oo+ (320+ 1352 + 45a2) byo g — 5401+ a) Coog+ 90(1— by) p2og

+6(X_ 1+3a+ 6b0_5C0_3CKCO)|pUO}:0|

(C19
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X
ch0l=a[4+4a+(1—a)by+ip(3+3a+2by)]+ 1—80{12(11a+ 9)a+80(10+21a+ 9a?)a; + (100+ 93a—9a?)b,

+20(2—3a—9a?)bgh; —20(5+3a)co+ (12+1—2) (07— 1)10(5+ 3a)(1—cy) + 60 5a + 3a®+ 19,
+15aby— 18co(1+ a)Jog+ 3ip[ 20+ 45a+ 270+ 20(10+ 21a+ 9a?)a; + 4(5+ 6a)by+ 402+ 3a) byb,
—20(5+3a) 0o+ 1801+ a)byoo—80(2+3a)ceoo]}

=0, (C19

X
ch0=a(3+3a+7by+3aby) +4(2cqog—byoy—bghb;) + 2—0(a+ [3a+202+3a)a;+3aby+ 1201+ a)bgb,

—60(a+200)0'0+60(1—C0)Ip0'0]=0 (CZO)
|
From Eq.(3.38 we obtain 1. Odd parity
a. Tensor perturbations
emlE9=12a(1—bg) + %)[1q2+3a)(a1— bob;) Tensor harmonic&;; with the odd parity satisfies
+ (10079~ 2)bo+5(12+1—2)(1+bg) (05— 1) Gilj=—(n*+3)Gi, G=06/=0, (09
+30(8a+ 7by— aby—6co+3p?) oy and the components are expressed u$liigandY;,, as
+30(—5+6a+5bg—cy)ipog]. (C2) G11=0, (D6)
2
APPENDIX D: PERTURBATIONS IN A HOMOGENEOUS Goo=Jar?J1+ar? HL,1+ FH'n) (= Xim/sing),
MODEL

(D7)
The perturbation behavior in a homogeneous model is
shown in the Gerlach and Sengupta formalism and the _ 5 3 1 E | :
gauge-invariant quantities in this formalism are compared Gas= \/Zr 1+ar® My, + an Ximsing, — (D8)
with those in the Bardeen formalism. Tensor and vector
spherical harmonics derived by Gerlach and Sengupta Ref.

2 .
[15] are used. The following background metric is used here: Gos= Var?\J1+ar?| I} .+ FH'n)WnnSlnﬁ, (D9)
24424 <2 dr? 2402 a I .
ds’= —c’dt*+ S(1) 17 g2 Trdaes, 0y Gio= \/ 73 o2l = DU+ 2= Vi o/sin6),
(D10
wherex®=ct, x!=r, x?=4, andx®>=¢. Scalar spherical
harmonicsQ of ordern satisfies Gia= /—21+aar (I1=1)(1 +2)IT' Y ssin6,  (D11)
i_ _ (n2
Qi=—(n*+1)Q D2\ 1ere
in the open modelK=—1), whereli is a covariant deriva- Xim=2(Y|m 23— COtY | 3), (D12
tive in thet=const hypersurface, an@ is expanded using
the usual spherical harmonidg,, as Wim=Y|m 22— COOY | ,— Y,m133/sin20. (D13
The metric components are
Q=TIN(r)Yim(6,¢). (D3) P
ho=0, hy=n(t)20E2) (D14)
i i = ) =v - /s H
Then we obtain from the above two equations 0 1 Atarz "
r(1+ar®)I 3+ (2+3ar?)Il, 2
H ! h=v(t)r2yi+ar? I, ,+ —H'n), (D15)
+[(n?+1)ar—1(1+21)/r]II s

=0. (D4) and the gauge-invariant quantities are



3354
0 So 2 2[ 17! 2
ko=—k"= ng—vvor V1+ar Hn’1+rl_[ ,
(D16)
s (Pt lar?
T A N e A T

where we used EqD4) for II),.
From GS(9a with L=0 we obtain an equation far(t):

So

n2+1 S0
V,OO S V'0+ —

a

¥ * %3

>V=0. (D18)

In the limit t— 0, we have two solutions

vt 14+0(t27)], t*Y1+0(t¥¥], (D19

so that the lowest order ¢t~ 23 t.

b. Vector (rotational) perturbations
Vector harmonicd/; satisfies

Vilk=—(?+2)v;, vli=o. (D20)

Their components are expressed as
V1=0, (D21)
V,=— \/;rH[‘YYS/sina, (D22)
Vy=/ar 1Y ,sing. (D23)

TheseV; (i=1,2,3) are different from the two-dimensional
(a=2,3) on the hypersurface = const,
whereS,=—Y 3/sing, $=Y ,sind. The metric components

harmonics S,

are

ho=B(t)rII", (D24)
hl=H(t)r< n— %H{‘), (D25)
h=H(t)rI1’, (D26)

and the gauge-invariant quantities are
ko=—K°=Vrll]', ¥=B-S*H/S%, (D27

2

k1=1+ar2k1=0. (D28)
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sponds to¥ in the Bardeen formalism. Sinck®S, is
pulu,(=pudR2,a=2,3), V.=(L%p)/R is the velocity in
the angular direction, corresponding ¢Q in the Bardeen
formalism.

2. Even parity

a. Scalar perturbations.

Scalar spherical harmonidd satisfies Eq(D2) and are
expressed as E¢D3). The metric components are expressed
as

hOO: _ZAH, (D31)
ho]_:SBH’l, hOZSBl_[, (DSZ)
hy=2S*H(I1 1—T1/r), (D33)
) I1 ar
h11=S 2Hlm+2HT H,ll+mn,l y
(D34)
K=2H,I1+2H(1+ ar?)I 4/, (D35)
G=2H-Il/r2. (D36)
The gauge-invariant quantities are
So 5 So
k00:_2 A+S B,O+ E’B -S HT’00+2§YHT'O H,
(D37)
ko1=0, (D38)
2 So )
kll:m Hl+ g(SB—S HT,O) H, (D39)
1 1+ ar?
k:kl:Tkll’ (D40)

wherek$ andk} correspond to @, and 2b,,, respectively.
GS (100 giveska=k5+ki=0 or ®,+®d,=0.

For pressureless matter we hase= 8- pII, su®= — All,
and su'=v[(1+ ar?)I1 ,Y,r 2I1Y ,], and, for the energy-
momentum tensor, ,=pu,u,, we have its perturbations

For the vector perturbations in pressureless matter, we

obtain from GS(14) with L'=L=0

(S°L%) 4=0 or L%=xS™3 (D29

and GS(9b) with A=0 and Eq.(D4) give us
e S D30
V= W ayasr (B30

wherex=16wG/c*. The other equations are also consistent

with Egs. (D29) and (D30). This shows thak®S corre-

Atgo= (8- p+2pA)II, (D41)
(Atg,Atgy) = —p(SPv+SB)(IL,I y), (D42)
and

At;=At;;=0. (D43)

Corresponding gauge-invariant quantities are
To=—pS?Ve=—pS?(v+H1y), (D44)
T,=T1,=0, (D45)
Too=p(€glT+KJ), (D46)
To1=— PSZVs,l, (D47)



where
So 5
€g=0— SE(SB—S Hro). (D48)

The energy density contrast, defined in a comoving syn-
chronous system is

enll=¢€ H—3i’52v = T +33)T -k
m g S s p 00 S 0 0"
(D49)
GS (10b and GS(153 give
(SK 0=3k(pS*)Vs (D50)
and
(S*Vs) 0= 3Koo= 3K, (D51)
respectively, from which we obtain
Sp S0 So 2 a
VS,OO+ 5§V5’0+ 3?4‘3 E + §2 VSZO.
(D52

GS (10a with A=B=0 leads to

So_ |\ 2
kpenll=k Too+pk+3§'T0 =§(n +4)ak.
(D53
From Egs.(D50)—(D53) we obtain
Lo50, 5w (D54)
€m,00 S €m,0 S €m—
or
€'+ gem’+3 g) €n=0, (D55)

where '=0/dn and cdt=a Y?Sdy. In the limit t—0(S
«t?3), we obtain

Vexth, et (B=—1/3-2). (D56)

b. Vector (rotational) perturbations.

The vector harmonics, in the even parity satisfying Eq.
(D20) is

sl—ﬁnv.m, (D57)
(52,53) =11+ ar (TL i+ T1/1)(Yim 2, Yim /SirP6),
(D598)
and the metric components are
hoo=0ho=B(t)r V1+ar?(Il ;+11/r), (D59
hoy=B(t)I(1+1)IL/(r y1+ ar?), (D60)
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h,;=H(t)ry1+ar?
I —(n2+2)ar2+2(I2+I—2)H
X Tt r2(1+ ar?) ’
(D61)
hy=H(t) 2d+1) (I1 ,—1I1/r) (D62)
= _— — r),
" ritar?
K=2H(t)I(I+ 1)1+ ar?/(S*?), (D63)
G=2H(t)r\1+ar®(Il ;+11/r)/(Sr?). (D64
The gauge-invariant quantities are
koo:—Zq”or\/l-i-al’z(]_['l-l-l_[/r), (D65)
L (D66)
ot \/1-|-ch’2 '
K= 25 Sq¥ ———— (T1 4+ 11/r) (D67)
= r),
11 20 m 1
k=ki, (D68)
where
V=B—-S*(H/S?),. (D69)
The sumka=0 gives
So
Vot g¥=0 or ¥=1/S (D70)

From GS(10b) we obtain

kTo=[kp¥ +(N*+4)aW/S?Iry1+ ar®(I1 ;+11/r),

(D7)
whereTs,= pUgu,= — pu?R?, and so
T, ¥
V= p—g = gVI+ar’ (I +11/N+Ve, (D72
n?+4)a
V= %qf VIt ar(Il ;+10/r)<1/S. (D73

In these equationsVg, V., and ¥/S correspond to
Bardeen'svg, v., and¥. Moreover, we obtain

S
Toolp: ( 2\1”0—3§'O\P)r \/1+ arl (Hyl“l‘H/r),
(D74)

and T01: TO,l' T]_: T11: 0 .

c. Tensor perturbations

The tensor harmonics in the even parity satisfying Eq.
(D5) is
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GllzmHYlmv (D75)

L
(G22,G33) = [ HY|m+g|”W|m}(1 sirfg), (D76)

G23=GXim (D77)

Go=(1-1)(1+2)(I1 1+ I1/1) Y| 2, (D78
whereL=I(1+1)(1—-21)(1+2),

GM=r(1+ar?)Il ;+[3(12+1+2)— (n2—1)ar?]Il,

(D79)
and X, ,W,,, are defined in Eq4D12) and(D13).
The metric components are

ho=hoo="ho1=0, (D80)
h,= m() —— (I +1I/r), (D81)

R [(E R
_ v(t)II D82
U 214 ar?)’ (D82
K= n) 11'[ —gln D83
“ T2 T e a2 ) (D83)

2v(t) G

=L (D84)
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and the gauge-invariant quantities are

2 2 2 n

Koo=[S(v/S ),o],oEg| , (D8Y)
2nq So
k01:_ L (VO 2_V>(r H)l' (D86)
= q SS 220 n?+1
1=~ |—1+ar 0| VoS g Y +(n“+1l)av|,

(D87)

2
Tolp=—3SX V/Sz),oEQP , (D88

and Tg=To1, Too/p=—koo—3(S/S)To/p, T1=T1;,=0,
where we used Eq(D4). The sum ka=k5+ki=—Kkgg
+(1+ ar?)ky,/S? vanishes owing to G$10d), so that we
have, from Eqs(D85) and(D87),

So n?+1 Soo
Voo~ g V,0+ S ——a—2—= S v=0 (D89)
or, for v=v/S?,
~ So~ [n?+1)
Voot 331/ g av=0. (D90

In the limitt—0, »=tA(1+vot?>+--.), wherev, is a
constant coefficient. Solving E¢D88), we obtaing=1/3 or
4/3. For B=1/3, we haveky=ke=t~ %3 and for B=4/3,
kOl/kOOxt’ koo2 1/2k const, and(01/k000<t.
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