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Viscous cosmology in the Kasner metric
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A Bianchi type-I metric of the Kasner form is used as input in Einstein’s equations to explore which
consequences thereby occur for the equation of state for the cosmic fluid. Both shear viscosity and bulk
viscosity coefficients are assumed to be present. The solutions of Einstein’s equations can naturally be catego-
rized into two classe<ither the space becomes anisotropic, and the equation of state is determined once the
Kasner parameterg; are given.Or the space becomes isotropic, and the equation of state emerges in the
conventional fornp/p=y— 1 with a definite value of. We also calculate the rate of entropy productioper
particle, and find thatr becomes as large as of order*X0? if we go back to the very early universe,
~10 *s. We also discuss the possibility of testing the anisotropy of the universe by means of redshift
experiments[S0556-282(197)06218-9

PACS numbes): 98.80.Hw, 98.80.Bp

I. INTRODUCTION have been larger. The possibility of a state of anisotropy at
very early times is in our opinion a very natural idea to
The construction of thermodynamic theories of the earlyexplore, as an attempt to explain, among other things, the
universe is a topic that has attracted considerable interest iarge local anisotropies that we observe in the universe today
recent years. This is quite understandable, in view of thén galaxies and supergalaxig&l]. Some other recent papers
great predictive power of the thermodynamic formalism indealing with anisotropic cosmologies are R¢22—25.
general, and also because the whole inflationary idea as such We shall in the following be concerned with the simplest
is very suitable for a thermodynamic treatment. of all metric classes, viz. the Bianchi type-I class. The line
The recent development is many-faceted, and may be delement can then be expressed as
vided into categories in various ways. The most simple ap- 9, 2 2, w2 9, 02
proach is to let the cosmic fluid be endowed with a bulk ds’=—dt?+Ri(HdX*+R3(t)dy’+ R3()dZ. (D)

viscosity, i.e., a viscosity coefficient which is able to de-Th. del iSotroni lizati fthe Fried
scribe the expansion of the thermodynamic theory to first IS MOdel IS an anisotropic geéneralization of the Friedmann

order in the deviation from thermal equilibrium, while still model with Euclidean spatial geometry. There are three ex-

being compatible with the assumption of an isotropic uni_pgnspn,factorsR_l, Ry, andR;, which are detgrmmed via
verse. If in addition a shear viscosity is allowed for, oneElnstems equations. Actually we shall restrict ourselves

becomes able to describe also an anisotropic universe. aven fqrth?r, ?nd tccllnsiﬂerKonly thfe SUb_CIaSS in which the
useful review of viscous cosmology up to 1990 is given byexpansmn actors take the Kasner fof26]:

Gron [1]. More recent papers alo_ng the same lines are Refs. d?= — dt2+t2P1dx2 + t2P2dy? + t2P2d 2. @)
[2-13. In these papers, the universe is for the most part

the idea that the energy of the vacuum decreases with cosmig pe constants. The Kasner universe, in the classical sense,

modynamic theories, such as the Israel-Stewart theory.  gatisfy the equations

A second kind of approach to modern cosmology is to
explore the consequences of the idea that there occurred a P1+pPy+ps=1, pi+ps+pi=1. &)
creation of matter in the early universe. See, for example,

Refs.[14-19. A central topic that one desires to explain is In the present case, where we will be concerned with a vis-
the presence of the very large specific entrépy-10° in  cous fluid instead of empty space, E¢®. will no longer be
nondimensional terms, per baryan the universe. valid in general.

A third kind of approach—the one to be studied in the In the next section we establish the basic formalism, and
present paper—is to allow for aanisotropyin the early give the expression for the energy-momentum tensor of the
universe, and explore where this assumption leads. As for theosmic fluid in Eq.(9). In Sec. lll we point out the two
presentuniverse, it is known that the anisotropy is very distinct categories naturally following from the application
small. Thus Bunnet al. [20] made recently a statistical of Einstein’s equations: one possibility being that the space
analysis of 4-yr data from the COBE satellite, and concludeds anisotropic, and that the equation of state follows from
that the present amount of sheair/H)y, is less than Egs.(29) and(30); the other possibility being that the space
3x10°°. In the early universe, however, the anisotropy mayis isotropic, and that the equation of state is as in B8).

Section IV deals with the generation of entropy in the aniso-
tropic universe, and Sec. V focuses on the calculation of the
*Electronic address: Iver.H.Brevik@mtf.ntnu.no rate of specific entropy productian, employing, in particu-
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lar, the expressions for the viscosity coefficients as following 000=0, 6;=p;tPi 1,
from relativistic kinetic theory in the early part of the plasma
era (=1000 s). It turns out that the value efat this instant 0=(p;+pa+ps)t~t, other 6,,=0, (12

is small. Going back to earlier times, however, for instance
tot=2x10"* s characterizing the start of the lepton era, we
find that o is much greater, of the order of 487 In the o00=0, 0=
final Sec. VI we give a brief discussion on the possibility of
testing the anisotropy by means of redshift experiments.

1 2p;i—1
Pi— 3 (Patp2tps) (P75

2 111 2 2 2 2y .
o= o [g (P1t P2t P3) = (p1t+ P2+ ps)} 13
II. BASIC EQUATIONS
othero,,=0 (no sum over).

It is to be noted that there are no terms describing heat
flux in the expression(9). Again, the homogeneity of the
Kasner space is crucial here: any heat flux would have to
be proportional to the spatial gradient of the temperaiyre
and must be zero in our case sirlcés the same everywhere,

1 for a given time(cf. also the discussion i]).
RMVZSWG(TMV_ > gWTg)_ (4) Einstein’s field equation$4) can now be found, for the
Kasner metric(2). In the next section we intend to explore
which implications result from them on the possible forms of
the equation of state of the fluid.

Similarly as in earlier workg4,19] we use conventions
for whichc=1, the Minkowski metricy,,, is (—+++), and
the sign of the curvature tensor is as in Mismgral. [27].
The cosmological constamt will be set equal to zero. The
Einstein equations are conveniently written in the form

We first give the components of the Ricci ten®y,, as-
suming the metrid2): the nonvanishing components of the

Christoffel symbols are
Ill. EQUATION OF STATE FOR THE FLUID

0_ +2p—1 i1l —n . . . .
Fi=pt®? %, Tie=To=pi/t ) To simplify the formalism somewhat, we introduce the

(no sum ovei), and so we calculate symbol S for the sum of the; andQ for the sum of thepiz:

S=p;+ Pyt Ps,
Roo=[P1+ P2+ Ps—(pT+p3+p3)It 2, (6) P17 P2 Ps

Q=pi+p3+ps. (14)

Moreover, we introduce the symbelby

Rii=pi(py+patps— L2 (7)

Consider next the energy-momentum ten3gy, in Eq.
(4). Let U#=(U°U') be the four-velocity of the cosmic k=87G. (15
fluid, and let and 7 be respectively the bulk viscosity and
the shear viscosity. Since the Kasner space, in spite of beinghe trace of the energy-momentum tensor becomes
anisotropic, is a homogeneous spageand » will not be N
dependent on position. However, because of the time- To=—p+3p—3¢S/t. (16
dependent geometry of the Kasner space, they can in pri
ciple depend on time. With ,, denoting the projection ten-
sor,

"Einstein’s equationg4) can now be written in comoving
coordinates as

3 1
h,,=9,,+U,U,, 8 S-Q+ 5 Kt{S= > kt?(p+3p), (17)

we can then write

4 _1 )
{t3m 5—5 kt“(p—p).
(18

1
T,,=pU,U,+(p—L0)h,,~270,,, ) Pi(1=S=2xty)+ 7 «t

wherep is the mass density amithe isotropic pressure, both

taken in the local rest inertial frame. We have here intro-Here, Eq.(17) corresponds tau=»=0 in Eq. (4), whereas

duced also the scalar expansi@as the trac#,=U% ofthe  Eq.(18) corresponds tu=v=i(=1,2,3).

expansion tensor We can now distinguish between various cases, which we
will discuss in the order of increasing complexity.

1
0W=§ (Upiahy + UV:ahM)' (10 A. Vacuum space
When p=p=0 we obtain from Eqs(17) and (18) S
as well as the traceless shear tensor =Q, p;(1-S)=0. Thus
1 2 1 S=Q=1 (19
=0~ 3 h,0, o =3 T o’ (11 '

which are the constraints leading to the classical Kasner so-
In the present case, lution. It is instructive to give a geometrical interpretation of
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the constraint$28]: the three differenp,; values are given
in an xy plane as thex coordinates of the corners of an

V. PETTERSEN 56

S=1-2«t7. (29

equilateral triangle inscribed in a circle of radius 2/3 centeredrhe space is in general anisotropic. The three values; of

at the point(1/3, 0.

B. Perfect fluid

When = %=0 in Egs.(17) and (18), there are two op-
tions.
First option. S=1. The equation of state then becomes
pP=p. (20
This is the characteristic equation for the relativistic
Zel'dovich fluid; the velocity of sound is equal to the veloc-
ity of light. Moreover,

Q=1-2«kpt? (22)

pot™2, (22)

The present theory does not give any information about how

to calculate the proportionality constant in E§2). But if

this constant happens to be known, we can calculate the val-

ues of the three parametguson basis of the known values

can be calculated from E@29) and the equation fo®:

Q:l‘f‘%Kt[3§_477_6Kt§77—t(p+3p)], (30

if the four constants of proportionality in Eq&7) and (28)

are known. Conversely, if one starts from a given set of
values forp;, Egs.(29) and(30) can be used to derive the
equation of state for the fluid.

Second optionEquation(29) is not satisfied. The space
then becomes isotropic; this being analogous to the second
option in the previous subsection. Lpi=p,=ps;=a [the
constanta of course being in general different from that
appearing in Eq(23)]; then we get

B 3a? a1

P_ Kt2 ] ( )
2a—3a? 3al

P~ Tt (32)

of SandQ. Thep; are in general different, so that the space

is anisotropic. The above results agree with those obtaine

by Benton and Tuppdrr9] and Halpern23].
Second option. $1. From Eqs(17) and (19) it is clear
that the space must in this caseibetropic

p1=p,=pz=a=const. (23
Moreover,
pct™2, pxt? (24)
in order to makep; constant, and we get
3a? 2a—3a?
P PT T 29
The equation of state can thus be written as
% = 32—a— 1, (26)

which agrees with the conventional forpip=y—1 often
assumed in cosmology. Whereas the first option above co
responded toy=2, the second option corresponds 40
=2/(3a).

C. Viscous fluid

When ¢ and » are different from zero, we see first of all
that
gt (27

(28

VES

pxt 2 pxt 2

Erom a comparison with Eq25) we see that the bulk vis-
cosity, in contradistinction to the shear viscosity, contributes
to the pressure in the fluid. From Eq81) and (32) it fol-
lows that the equation of state can be written as

p 2+3kt¢
PRET 1. (33
That means that it is still possible to write the state equation
in the form p/p=y—1, but now with the value (2
+3«t{)/(3a) for the constanty. When (=0, Eq. (26) is
recovered.

We close this section with some remarks emphasizing the
conceptual meaning of the present theory. Recall first the
line of reasoning in standard isotropic cosmology: in that
case, one starts from the general metric for an isotropic and
homogeneous universe, viz. the Friedmann-Robertson-
Walker (FRW) metric, and derives the constraints imposed
by Einstein’s field equations on this metric. The equation of
state for the fluid is thereafter imposed asexternal ther-
modynamic equation; there are no initial limiting conditions
arising from the metric on this equation. On the basis of this
set of equations, one is able to predict the behavior of the
universe completely. In the present Kasner theory the line of
reasoning is different: the equation of state emerges in each
subcase as aonsistency conditignafter the imposition of
Einstein’s equation§l7) and(18). One may ask what is the
physical reason why the equation of state is determined from
the formalism alone, i.e., why have we lost the freedom that
we had previously in Friedmann cosmology to choose freely
the equation of state? The answer lies in our adoption of the
metric in the Kasner forn{2), where the numberg; are

Similarly as above, we cannot from the present theory fix théaken to be constants. This initial assumption about the met-
values of the constants of proportionality. We again distin-ric is physically more restrictive than is the standard FRW

guish between two options.
First option. Ssatisfies the equation

assumption in isotropic cosmology. Thus it is most appropri-
ate in the present case to say that the equation of state, al-



56 VISCOUS COSMOLOGY IN THE KASNER METRIC 3325

though following formally from Einstein's equations, is we obtain, taking Eqg11) and(13) into account,
physically a direct consequence of the chosen metric.

Another notable property of the obtained equations of 1
state for a viscous fluid is that they contain the viscosity S’;(LM:W PSZJF 27
coefficients; cf., for instance, the appearancé of Eq. (33).
This seems to be at variance with usual first order nonequi- i ) .
librium thermodynamics; in such a case the equilibrium'-et us evaluate the left-hand s@e of thlsS equa}uon in the
equation of state is assumed to remain valid although th§omoving frame of reference: singe-g=t* we first get
fluid as a whole is out of equilibrium. Does this kind of
behavior imply that there is a physical drawback of the S;"MIt*S(tsnkBo)vo. (40
present theory? At present, we are hardly in a position to
express a firm opinion on this point. What we feel safe to\ygreover, the conservation equation for baryon particle
conclude |s.that the presence of \(|sc03|ty coefficients 'n,th‘?lumber, aU~).,=0, implies that (Sn),o=0 in the comov-
state equation makes the theory in some sense exceptlonﬁ{g frame. Altogether, the left-hand side of Ed0) simpli-

Of course, this behavior is again rooted in the particulafjgg tq kgno. Finally including the anisotropy parameter
choice(2) for the metric. The correctness of the theory MUstfom Eq. (36), we can write Eq(39) as

ultimately be tested by comparing its predictions with ex-
periment.

1
Q-3 52) . (39

352
77 MkeTH2
IV. GENERATION OF ENTROPY nkgTt

2
i+ nA). (41)

A central issue in the study of viscous cosmology—gniopy production in the anisotropic universd#0) is
beginning with the classical papers of Misti@6] and Wein-  onnected with the shear viscosity as we would expect.
berg[31]—has ever since then been to find a natural appli-

cation of the viscosity concept to explain the large entropy
per baryon observed in the universe. Usually, one restricts V. NUMERICAL CONSIDERATIONS

oneself to including only the bulk viscosity, in view of the Our considerations have so far been formal. Let us now

large degree of |soFropy n the prgsent universe. Here, Whake some estimates about the magnitudes of the viscosity
shall be interested, in particular, with the anisotropy and the

corresponding shear viscosity in the early universe coefficients, and the influence from them upon the entropy
4 e ; ) N roduction.

Let us begin by defining an analytic nondimensional ex—p . - . . .
pression for St;he a¥1isotrop3 of the Kgsner metric. We follow The first question 'S hpw fqr n the hlstor_y_of the universe
the definition used by Gro[32,1]: for the Bianchi type-| can we go back, assigning viscosity coefficients to the cos-

spaces the average expansion anisotro arariser mic fluid in a meaningful way? No consensus on this issue
P 9 P Py P seems so far to have been obtained. There are various opin-

13 H.\2 ions expressed in the literature, and one has even suggested
A= — 2 (1_ _') , (34) that there occured phase transitions in the universe making it
3= H physically meaningful to introduce the viscosity concept as
early as at inflationary time$=10" 33 s. Here, let us at first
be more modest and estimate the viscosities in the first part
of the plasma eréalso called the radiation eraor definite-
1 ness, we shall put=1000 s=t;,. The physical advantage of
H=—, H== (Hy+H,+Hs). (35)  considering this relatively late instant in the history of the
R; 3 universe is that the magnitudes of the physical quantities are
_ relatively safe, and moreover that the physical conditions in
In our caseR; =t", so thatH;=p;/t andH=S/(3). From " \hiverse have become so nonextreme that conventional
Eq. (34) we then get relativistic kinetic theory can be employed to calculate the
30 viscosity coefficients.
A= =z 1. (36) According to standard cosmolod3,34], at t=1000s
the universe is characterized by ionized H and He in approxi-
It follows immediately that in the vacuum Kasner space,mate. eqL_JiIibrium with radiation. The existence of energy dis_-
with S=Q=1, one hasA=2. sipation is caused by the fact that the thermal equilibrium is

Consider next the production of entropy. The entropy Cur_not quite perfect. The numsber densities of electrons. and pro-
, and the temperature i$=

) . : tons aren=n,~10" cm~
rent four-vector, in the absence of heat flux, is 4% 10°F K=3.5x10-2MeV (the redshift iz~ 1%). In view

S*=nkgoUH, (37)  of the radiation dominance, the energy density is, in ordinary
cgs units, pc®=a,T* where a,=n?kg/(15:5c%)=
wheren is the baryon number density awdthe nondimen- 7.56x10 ® ergcm 3K~ is the radiation constant. The

whereH; are the directional Hubble factors ahtdthe aver-
age Hubble factor:

sional entropy per baryon. Since pressure i=pc?/3. As for the viscosity coefficients, it is
) ; here sufficient to include only the first terms in the polyno-
Sﬂﬂz?ﬂ &yt : 92 (38) mial approximations worked out by Caderni and FalpB§]

(cf. also[4]):
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5m208§(3) 4 hydrogen occurs at a temperaturelf,~4000 K at the time
7= 9nh3etn, X (42)  t,,~4x10°yr=1.26x10'3s). However, the expressio@8)
turns out to diminish rapidly with time. The following brief
wc?hen, estimate is sufficient to show this: let us insert into &)
8 (43 the numerical values corresponding to the instant of recom-

(= seazas X
25627¢(3) bination. In addition to the values of . and t,.. given

Here x=m.c?/kgT, £(3)=1.202 being the Riemann zeta above, we thgr; need the baryon density, which[38]
function of argument 3. Whe=4x10° K, one getsx Nrec=4x10° cm %, and we need the value of.,. The latter

—14.8. Then quantity follows from the proportionalitypect—* [cf. Eq.
(27)], which is a condition on which the present theory is
Mooo &=2.8X10% gem ts Y based. Thusjec= 7intin/trec, @nd so we obtain from E¢48)
_ o ; ) ) \3
L1000 &7.0¢10°% gom b s (44) Tree_ Mo T ‘ﬂ) ~12¢10° (50
Tin Nrec Trec | trec

One remarkable fact is evident from these expressions: the

shear viscosity is vastly greater than the bulk viscosity.This result signifies that a drastic reduction in the rate of

Physically this is quite an important point; it means that thespecific entropy production takes place during the plasma

entropy production associated with even a slight anisotropygra. The value ofy;, that we adopted in Eq44) is thus

of the universe may easily outweigh the entropy generatednable to account for the large entropys=4x10°, in the

by the bulk viscosity. A similar large difference betwegn universe. It is of interest to compare this with the analogous

and{ may be verified to be present also for later times in theconclusion drawn from a study of the use of the kinemati-

plasma erd4]. cally derivedbulk viscosity in the isotropic and homoge-
Let us consider successively the same options as in Sepeous universe: also in that case the theoretically calcu-

11, at the instant=1000 s. For simplicity we replace every- lated entropy is far too small to account for the observed

where the superscript “1000 s” by “in”. value of o [31,36,4.
First option (anisotropic spacefrom Eq.(29) we obtain, Second option (isotropic spaceMll parametersp; are
in dimensional terms: equal a). From Eq.(31) we get, in cgs units,
Sn=1-2kc*(tn)j;=1-1.0x10", (45) a=+/(kc?)(pc?)/3t=kc%a,/3tT2. (51)

where we have usedc?=1.87x10 2" cm g 1. Moreover, InsertingT;,=4x10°K for t=1000 s we get hera=0.347
from Eq.(30) we obtain, when omitting the negligibly small which, according to Eq(33), yields y=1.92. There is thus
{ terms, apparently a deviation here from the value 2 which char-
acterizes a Zel'dovich fluid. However, some care is called
for, as regards the interpretation of the calculated valug of
since our input value of in Eq. (51) is after all not very
1 kG2t A t2TH). accurate. If the correct value af were insteaca=1/3, we
wC*(2tn+a Jin would arrive at an equation of state very close to that of a
=1-3.6X10°4 (46)  Zel'dovich fluid. Probably the most important physical point
to be borne in mind here is that the influence from viscosity
Numerically it actually turns out that the contribution fragn  on the equation of state is at this instant very small.
in this expression is negligible. The only nonvanishing influ-  One may expect that, as calculated from Ed41), be-
ence fromz thus occurs in the expressigas) for S,. The  comes larger if one instead considers earlier times. For in-

1
Qu=1- 5 ke 4t7+2(pc?+3p)]i

anisotropy parametek;, follows from Eq.(34): stance, let us focus attention on the instant at which
. =10" K. This instant is often taken to serve as some kind of
Ain=2-1.1X10"". (47)  limit for standard cosmological theory: whéf>10%K,

o ) _ the universe is flooded with all kinds of particles and anti-
The deviation from the anisotropy of the classical vacuuMparticles. But wherm < 10*2 K, the large number of hadrons
Kasner space is thus small. From E41) we obtain the rate - has disappeared, and the universe consists mainly of leptons,
of entropy production per particle per unit time: antileptons, and photons, plus a few surviving nucle@nis
is the beginning of the lepton eraFrom[33] we quote the

o= nk4—7]'|'tz (48  following values, aff =10" K:
B
t=2%x10"% s, p=5x10 g/cm 3
It gives fort=1000 s
n=6x10?° cm3. (52)
0in=2.0x10"3s7L, (49

We now return to the proportionalitie$27) and (28).
The entropy production is thus quite small. If the expressionWhereas Eqg.28) are satisfied automatically in the standard
(48) stayed approximately constant during the long plasmaheory of the radiation dominated universe, we may make
era(also called the radiation erat would seem possible to use of Eqs(27), which are characteristic for the present kind
obtain an appreciable amount of entrofsgcombination of of theory, to calculate and » at T=10"2 K. Actually, we
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need only to observe that the constancy of the produtts the history of the universe, for instance to the instant
andty makesS andQ time independentf. Egs.(29) and  2x 10 “ s characterizing the start of the lepton era, and if
(30). Consequently the anisotropy parameieras defined in  one uses the requirements thaand ¢ be inversely propor-
Eq. (36), is time independent also. Consider then the exprestional tot, then the calculated entropy production becomes
sion (41) for o it will vary with time in the same way as quite appreciable, as shown in E§J).

does the productn(Tt®) ~*. According to standard cosmol- ~ We close our work with some remarks on the redshift
ogy, n=T? andteT~?, so thatox T2 Altogether, making problem. We consider the three coordinate directions sepa-
use of Eq.(48) we get rately: imagine first that an electromagnetic wave is travel-
102 12 ing to us along the-x direction. The equation of motion of
- _ 3 —1_ —1 a wave crest is, according to the metfR), dt=—tPidx.
o=2.0107 9% S 125¢10° s%. (53 Assume that the crest leaves a galaxy located at the position

X at timet,, and reaches us at the origii=0 at timet,.
This is quite an appreciable amount of entropy production. [integrating the equation of motion we get
lies at hand therefore to conclude that one has to go back to
the violent conditions in the very early universe in order to to
- i : : tPidt=Xe.
get a viscous entropy production that is large enough to give . e
any hope of explaining the large observed entropy in the

universe. A related, but more drastic way of approach wouldy, the comoving frame of reference the spatial coordinates of

be to assign an “impulse” viscosity to the eaﬂy UNIVerse. 5 galaxy stay constant. Therefore, if the next wave crest
For example, in Ref4] it was shown that in the=0 FRW 05yesx" at time t,+ ot,, it will arrive here at a timet,

. . . . O 71 71
universe, an impulse bulk viscositf;~10°°gcm *s + 8ty which is given by an expression lik&4), only with
acting at some kind of phase transition at the end of the;,o replacements —t,+ t, andt,—to+ oty in the integra-
mflatggnary era corresponds to the correct entropys  (ion |imits. Taking the difference between the two expres-
4x10°. sions we get

(54)

e

VI. CONCLUSIONS AND FINAL REMARKS tgplé‘tO:t;pléte. (55

The main purpose of the present work has been to explore . .
the consequences of using the Kasner form of metric, E The frequencyr, observed here is related_to the emitted
(2), as input in Einstein’s equations, assuming that the cosi'@duencyve by vo/ve= dte/ 8to=(te/to)"*. Since the red-
mic fluid is endowed with a shear viscosityas well as a shift parameterz is defined as the fractional increase in
bulk viscosity Z. The expression for the energy-momentumWavelengthz=\,/\.—1, we obtain in the present case
tensorT,, is given in EQ.(9). The cosmological constark

has been set equal to zero. Central numerical quantities in the . _Ye 1:(t_0 pl_ 1 (56)
analysis areS andQ, defined in Egs(14). The main results T te ’
emerging from Einstein’s equations are expressed in Egs.
(17) and (18). where we have given a subscript 1ztto indicate that we are
We may summarize as follows. dealing with thex direction.
(1) For a perfect fluidy= =0, there is one of two pos- The expressions for the redshifts andz in they andz

sibilities. Either the paramete$ is equal to 1, in which case coordinate directions are analogous. For an anisotropic space
the space becomes anisotropic. The state of equation bere redshift is thus seen to be dependent on direction. If the
comes p=p; i.e., the cosmic fluid becomes exactly a Kasner metric were realized to a good approximation in the
Zel'dovich fluid. Or S is different from 1, implying that the universe, we would herewith have the possibility, at least in
space becomes isotropic. Equati@®) gives then the equa- principle, of testing the magnitude of the anisotropy experi-
tion of state for the fluid. mentally.

(2) For a viscous fluid, the requirement that the three Kas- Naturally the presence of and 7 in the equations of
ner parameterp; be constants implies thgtand» must vary ~ motion complicates the situation considerably. The compli-
with time according ta’ct %, poct~1. Again, there are two cating effect actually turns up already on the level of isotro-
possibilities. Either S satisfies Eq.(29), implying that the pic FRW theory: as long as viscosity is absent, we know
space is anisotropic. For a given set of valuesgpr Eqs.  from adiabaticity that RT=const (R is the scale factor
(29) and (30) determine the equation of stater S does not  Therefore, the temperature obeys the relaflonTy(1+2)
satisfy Eq.(29); then the space is isotropic and the equationwhich, together withv=wvy(1+2z), makes the ratiov/T
of state can be expressed in the conventional fpfm=y =const. Now, the emitted radiation at tirheobeys a Planck
—1, wherey is given by Eq.(33). blackbody spectrum, and in view of the constancwbr it

(3) The general expression for the rate of entropy produceontinues to do so at all subsequent times. Once viscosity
tion o per baryon in the viscous Kasner universe was derivedppears, however, the property of adiabaticity is lost, result-
in Eq. (41). We tentatively investigated the magnitudecf ing in a distortion of the blackbody spectrum. Analogously,
at the instant= 1000 s after the big bang, the reason behindviscosity-induced distortions will occur in the present more
this particular choice of being thatz and{ are then calcu- complex, anisotropic case. An extensive discussion of the
lable from ordinary relativistic kinetic theory. The result, degree of isotropy of the universe, including the role of vis-
given in Eq.(48), is very small. If one goes further back in cosity effects, has been given by Misri&0].
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