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A Bianchi type-I metric of the Kasner form is used as input in Einstein’s equations to explore which
consequences thereby occur for the equation of state for the cosmic fluid. Both shear viscosity and bulk
viscosity coefficients are assumed to be present. The solutions of Einstein’s equations can naturally be catego-
rized into two classes.Either the space becomes anisotropic, and the equation of state is determined once the
Kasner parameterspi are given.Or the space becomes isotropic, and the equation of state emerges in the
conventional formp/r5g21 with a definite value ofg. We also calculate the rate of entropy productionṡ per
particle, and find thatṡ becomes as large as of order 104 s21 if we go back to the very early universe,t
;1024 s. We also discuss the possibility of testing the anisotropy of the universe by means of redshift
experiments.@S0556-2821~97!06218-8#

PACS number~s!: 98.80.Hw, 98.80.Bp

I. INTRODUCTION

The construction of thermodynamic theories of the early
universe is a topic that has attracted considerable interest in
recent years. This is quite understandable, in view of the
great predictive power of the thermodynamic formalism in
general, and also because the whole inflationary idea as such
is very suitable for a thermodynamic treatment.

The recent development is many-faceted, and may be di-
vided into categories in various ways. The most simple ap-
proach is to let the cosmic fluid be endowed with a bulk
viscosity, i.e., a viscosity coefficient which is able to de-
scribe the expansion of the thermodynamic theory to first
order in the deviation from thermal equilibrium, while still
being compatible with the assumption of an isotropic uni-
verse. If in addition a shear viscosity is allowed for, one
becomes able to describe also an anisotropic universe. A
useful review of viscous cosmology up to 1990 is given by
Gro”n @1#. More recent papers along the same lines are Refs.
@2–13#. In these papers, the universe is for the most part
taken to be isotropic. Several authors@2,7,8,10,13# deal with
the idea that the energy of the vacuum decreases with cosmic
expansion. Others@3,5,6# consider causal higher order ther-
modynamic theories, such as the Israel-Stewart theory.

A second kind of approach to modern cosmology is to
explore the consequences of the idea that there occurred a
creation of matter in the early universe. See, for example,
Refs.@14–19#. A central topic that one desires to explain is
the presence of the very large specific entropy~s;109 in
nondimensional terms, per baryon! in the universe.

A third kind of approach—the one to be studied in the
present paper—is to allow for ananisotropy in the early
universe, and explore where this assumption leads. As for the
presentuniverse, it is known that the anisotropy is very
small. Thus Bunnet al. @20# made recently a statistical
analysis of 4-yr data from the COBE satellite, and concluded
that the present amount of shear, (s/H)0 , is less than
331029. In the early universe, however, the anisotropy may

have been larger. The possibility of a state of anisotropy at
very early times is in our opinion a very natural idea to
explore, as an attempt to explain, among other things, the
large local anisotropies that we observe in the universe today
in galaxies and supergalaxies@21#. Some other recent papers
dealing with anisotropic cosmologies are Refs.@22–25#.

We shall in the following be concerned with the simplest
of all metric classes, viz. the Bianchi type-I class. The line
element can then be expressed as

ds252dt21R1
2~ t !dx21R2

2~ t !dy21R3
2~ t !dz2. ~1!

This model is an anisotropic generalization of the Friedmann
model with Euclidean spatial geometry. There are three ex-
pansion factors,R1 , R2 , andR3 , which are determined via
Einstein’s equations. Actually we shall restrict ourselves
even further, and consider only the subclass in which the
expansion factors take the Kasner form@26#:

ds252dt21t2p1dx21t2p2dy21t2p3dz2. ~2!

Herep1 , p2 , andp3 are three numbers that will be required
to be constants. The Kasner universe, in the classical sense,
refers to avacuumspace only; in such a case, the numberspi
satisfy the equations

p11p21p351, p1
21p2

21p3
251. ~3!

In the present case, where we will be concerned with a vis-
cous fluid instead of empty space, Eqs.~3! will no longer be
valid in general.

In the next section we establish the basic formalism, and
give the expression for the energy-momentum tensor of the
cosmic fluid in Eq.~9!. In Sec. III we point out the two
distinct categories naturally following from the application
of Einstein’s equations: one possibility being that the space
is anisotropic, and that the equation of state follows from
Eqs.~29! and~30!; the other possibility being that the space
is isotropic, and that the equation of state is as in Eq.~33!.
Section IV deals with the generation of entropy in the aniso-
tropic universe, and Sec. V focuses on the calculation of the
rate of specific entropy productionṡ, employing, in particu-*Electronic address: Iver.H.Brevik@mtf.ntnu.no
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lar, the expressions for the viscosity coefficients as following
from relativistic kinetic theory in the early part of the plasma
era (t51000 s). It turns out that the value ofṡ at this instant
is small. Going back to earlier times, however, for instance
to t5231024 s characterizing the start of the lepton era, we
find that ṡ is much greater, of the order of 104 s21. In the
final Sec. VI we give a brief discussion on the possibility of
testing the anisotropy by means of redshift experiments.

II. BASIC EQUATIONS

Similarly as in earlier works@4,19# we use conventions
for which c51, the Minkowski metrichmn is ~2111!, and
the sign of the curvature tensor is as in Misneret al. @27#.
The cosmological constantL will be set equal to zero. The
Einstein equations are conveniently written in the form

Rmn58pGS Tmn2
1

2
gmnTa

aD . ~4!

We first give the components of the Ricci tensorRmn , as-
suming the metric~2!: the nonvanishing components of the
Christoffel symbols are

G i i
0 5pit

2pi21, G i0
i 5G0i

i 5pi /t ~5!

~no sum overi !, and so we calculate

R005@p11p21p32~p1
21p2

21p3
2!#t22, ~6!

Rii 5pi~p11p21p321!t2pi22. ~7!

Consider next the energy-momentum tensorTmn in Eq.
~4!. Let Um5(U0,Ui) be the four-velocity of the cosmic
fluid, and letz andh be respectively the bulk viscosity and
the shear viscosity. Since the Kasner space, in spite of being
anisotropic, is a homogeneous space,z and h will not be
dependent on position. However, because of the time-
dependent geometry of the Kasner space, they can in prin-
ciple depend on time. Withhmn denoting the projection ten-
sor,

hmn5gmn1UmUn , ~8!

we can then write

Tmn5rUmUn1~p2zu!hmn22hsmn , ~9!

wherer is the mass density andp the isotropic pressure, both
taken in the local rest inertial frame. We have here intro-
duced also the scalar expansionu as the traceum

m5U ;m
m of the

expansion tensor

umn5
1

2
~Um;ahn

a1Un;ahm
a !, ~10!

as well as the traceless shear tensor

smn5umn2
1

3
hmnu, s25

1

2
smnsmn. ~11!

In the present case,

u0050, u i i 5pit
2pi21,

u5~p11p21p3!t21, other umn50, ~12!

s0050, s i i 5Fpi2
1

3
~p11p21p3!G t2pi21,

s252
1

2t2 F1

3
~p11p21p3!22~p1

21p2
21p3

2!G ; ~13!

othersmn50 ~no sum overi !.
It is to be noted that there are no terms describing heat

flux in the expression~9!. Again, the homogeneity of the
Kasner space is crucial here: any heat flux would have to
be proportional to the spatial gradient of the temperatureT,
and must be zero in our case sinceT is the same everywhere,
for a given time~cf. also the discussion in@4#!.

Einstein’s field equations~4! can now be found, for the
Kasner metric~2!. In the next section we intend to explore
which implications result from them on the possible forms of
the equation of state of the fluid.

III. EQUATION OF STATE FOR THE FLUID

To simplify the formalism somewhat, we introduce the
symbolS for the sum of thepi andQ for the sum of thepi

2:

S5p11p21p3 ,

Q5p1
21p2

21p3
2. ~14!

Moreover, we introduce the symbolk by

k58pG. ~15!

The trace of the energy-momentum tensor becomes

Ta
a52r13p23zS/t. ~16!

Einstein’s equations~4! can now be written in comoving
coordinates as

S2Q1
3

2
ktzS5

1

2
kt2~r13p!, ~17!

pi~12S22kth!1
1

2
ktS z1

4

3
h DS5

1

2
kt2~p2r!.

~18!

Here, Eq.~17! corresponds tom5n50 in Eq. ~4!, whereas
Eq. ~18! corresponds tom5n5 i (51,2,3).

We can now distinguish between various cases, which we
will discuss in the order of increasing complexity.

A. Vacuum space

When p5r50 we obtain from Eqs.~17! and ~18! S
5Q, pi(12S)50. Thus

S5Q51, ~19!

which are the constraints leading to the classical Kasner so-
lution. It is instructive to give a geometrical interpretation of
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the constraints@28#: the three differentpi values are given
in an xy plane as thex coordinates of the corners of an
equilateral triangle inscribed in a circle of radius 2/3 centered
at the point~1/3, 0!.

B. Perfect fluid

When z5h50 in Eqs.~17! and ~18!, there are two op-
tions.

First option. S51. The equation of state then becomes

p5r. ~20!

This is the characteristic equation for the relativistic
Zel’dovich fluid; the velocity of sound is equal to the veloc-
ity of light. Moreover,

Q5122krt2, ~21!

r}t22. ~22!

The present theory does not give any information about how
to calculate the proportionality constant in Eq.~22!. But if
this constant happens to be known, we can calculate the val-
ues of the three parameterspi on basis of the known values
of S andQ. Thepi are in general different, so that the space
is anisotropic. The above results agree with those obtained
by Benton and Tupper@29# and Halpern@23#.

Second option. SÞ1. From Eqs.~17! and ~18! it is clear
that the space must in this case beisotropic:

p15p25p3[a5const. ~23!

Moreover,

r}t22, p}t22 ~24!

in order to makepi constant, and we get

r5
3a2

kt2 , p5
2a23a2

kt2 . ~25!

The equation of state can thus be written as

p

r
5

2

3a
21, ~26!

which agrees with the conventional formp/r5g21 often
assumed in cosmology. Whereas the first option above cor-
responded tog52, the second option corresponds tog
52/(3a).

C. Viscous fluid

Whenz andh are different from zero, we see first of all
that

z}t21, h}t21, ~27!

r}t22, p}t22. ~28!

Similarly as above, we cannot from the present theory fix the
values of the constants of proportionality. We again distin-
guish between two options.

First option. Ssatisfies the equation

S5122kth. ~29!

The space is in general anisotropic. The three values ofpi
can be calculated from Eq.~29! and the equation forQ:

Q511
1

2
kt@3z24h26ktzh2t~r13p!#, ~30!

if the four constants of proportionality in Eqs.~27! and~28!
are known. Conversely, if one starts from a given set of
values forpi , Eqs.~29! and ~30! can be used to derive the
equation of state for the fluid.

Second option.Equation~29! is not satisfied. The space
then becomes isotropic; this being analogous to the second
option in the previous subsection. Letp15p25p3[a @the
constanta of course being in general different from that
appearing in Eq.~23!#; then we get

r5
3a2

kt2 , ~31!

p5
2a23a2

kt2 1
3az

t
. ~32!

From a comparison with Eq.~25! we see that the bulk vis-
cosity, in contradistinction to the shear viscosity, contributes
to the pressure in the fluid. From Eqs.~31! and ~32! it fol-
lows that the equation of state can be written as

p

r
5

213ktz

3a
21. ~33!

That means that it is still possible to write the state equation
in the form p/r5g21, but now with the value (2
13ktz)/(3a) for the constantg. When z50, Eq. ~26! is
recovered.

We close this section with some remarks emphasizing the
conceptual meaning of the present theory. Recall first the
line of reasoning in standard isotropic cosmology: in that
case, one starts from the general metric for an isotropic and
homogeneous universe, viz. the Friedmann-Robertson-
Walker ~FRW! metric, and derives the constraints imposed
by Einstein’s field equations on this metric. The equation of
state for the fluid is thereafter imposed as anexternal, ther-
modynamic equation; there are no initial limiting conditions
arising from the metric on this equation. On the basis of this
set of equations, one is able to predict the behavior of the
universe completely. In the present Kasner theory the line of
reasoning is different: the equation of state emerges in each
subcase as aconsistency condition, after the imposition of
Einstein’s equations~17! and~18!. One may ask what is the
physical reason why the equation of state is determined from
the formalism alone, i.e., why have we lost the freedom that
we had previously in Friedmann cosmology to choose freely
the equation of state? The answer lies in our adoption of the
metric in the Kasner form~2!, where the numberspi are
taken to be constants. This initial assumption about the met-
ric is physically more restrictive than is the standard FRW
assumption in isotropic cosmology. Thus it is most appropri-
ate in the present case to say that the equation of state, al-
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though following formally from Einstein’s equations, is
physically a direct consequence of the chosen metric.

Another notable property of the obtained equations of
state for a viscous fluid is that they contain the viscosity
coefficients; cf., for instance, the appearance ofz in Eq. ~33!.
This seems to be at variance with usual first order nonequi-
librium thermodynamics; in such a case the equilibrium
equation of state is assumed to remain valid although the
fluid as a whole is out of equilibrium. Does this kind of
behavior imply that there is a physical drawback of the
present theory? At present, we are hardly in a position to
express a firm opinion on this point. What we feel safe to
conclude is that the presence of viscosity coefficients in the
state equation makes the theory in some sense exceptional.
Of course, this behavior is again rooted in the particular
choice~2! for the metric. The correctness of the theory must
ultimately be tested by comparing its predictions with ex-
periment.

IV. GENERATION OF ENTROPY

A central issue in the study of viscous cosmology—
beginning with the classical papers of Misner@30# and Wein-
berg @31#—has ever since then been to find a natural appli-
cation of the viscosity concept to explain the large entropy
per baryon observed in the universe. Usually, one restricts
oneself to including only the bulk viscosity, in view of the
large degree of isotropy in the present universe. Here, we
shall be interested, in particular, with the anisotropy and the
corresponding shear viscosity in the early universe.

Let us begin by defining an analytic nondimensional ex-
pression for the anisotropy of the Kasner metric. We follow
the definition used by Gro”n @32,1#: for the Bianchi type-I
spaces the average expansion anisotropy parameterA is

A5
1

3 (
i 51

3 S 12
Hi

H D 2

, ~34!

whereHi are the directional Hubble factors andH the aver-
age Hubble factor:

Hi5
Ṙi

Ri
, H5

1

3
~H11H21H3!. ~35!

In our caseRi5tpi, so thatHi5pi /t andH5S/(3t). From
Eq. ~34! we then get

A5
3Q

S2 21. ~36!

It follows immediately that in the vacuum Kasner space,
with S5Q51, one hasA52.

Consider next the production of entropy. The entropy cur-
rent four-vector, in the absence of heat flux, is

Sm5nkBsUm, ~37!

wheren is the baryon number density ands the nondimen-
sional entropy per baryon. Since

S;m
m 5

2h

T
smnsmn1

z

T
u2 ~38!

we obtain, taking Eqs.~11! and ~13! into account,

S;m
m 5

1

Tt2 FzS212hS Q2
1

3
S2D G . ~39!

Let us evaluate the left-hand side of this equation in the
comoving frame of reference: sinceA2g5tS we first get

S;m
m 5t2S~ tSnkBs! ,0 . ~40!

Moreover, the conservation equation for baryon particle
number, (nUm) ;m50, implies that (tSn) ,050 in the comov-
ing frame. Altogether, the left-hand side of Eq.~40! simpli-
fies to kBnṡ. Finally including the anisotropy parameter
from Eq. ~36!, we can write Eq.~39! as

ṡ5
3S2

nkBTt2 S z1
2

3
hAD . ~41!

Entropy production in the anisotropic universe (AÞ0) is
connected with the shear viscosityh, as we would expect.

V. NUMERICAL CONSIDERATIONS

Our considerations have so far been formal. Let us now
make some estimates about the magnitudes of the viscosity
coefficients, and the influence from them upon the entropy
production.

The first question is how far in the history of the universe
can we go back, assigning viscosity coefficients to the cos-
mic fluid in a meaningful way? No consensus on this issue
seems so far to have been obtained. There are various opin-
ions expressed in the literature, and one has even suggested
that there occured phase transitions in the universe making it
physically meaningful to introduce the viscosity concept as
early as at inflationary times,t.10233 s. Here, let us at first
be more modest and estimate the viscosities in the first part
of the plasma era~also called the radiation era!. For definite-
ness, we shall putt51000 s[t in . The physical advantage of
considering this relatively late instant in the history of the
universe is that the magnitudes of the physical quantities are
relatively safe, and moreover that the physical conditions in
the universe have become so nonextreme that conventional
relativistic kinetic theory can be employed to calculate the
viscosity coefficients.

According to standard cosmology@33,34#, at t51000 s
the universe is characterized by ionized H and He in approxi-
mate equilibrium with radiation. The existence of energy dis-
sipation is caused by the fact that the thermal equilibrium is
not quite perfect. The number densities of electrons and pro-
tons arene5np.1019 cm23, and the temperature isT.
43108 K53.531022 MeV ~the redshift isz.108!. In view
of the radiation dominance, the energy density is, in ordinary
cgs units, rc25arT

4, where ar5p2kB
4/(15\3c3)5

7.56310215 erg cm23 K24 is the radiation constant. The
pressure isp5rc2/3. As for the viscosity coefficients, it is
here sufficient to include only the first terms in the polyno-
mial approximations worked out by Caderni and Fabbri@35#
~cf. also@4#!:
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h5
5me

6c8z~3!

9p3\3e4ne
x24, ~42!

z5
pc2\3ne

256e4z~3!
x3. ~43!

Here x5mec
2/kBT, z(3)51.202 being the Riemann zeta

function of argument 3. WhenT543108 K, one getsx
514.8. Then

h1000 s.2.831014 g cm21 s21,

z1000 s.7.031023 g cm21 s21. ~44!

One remarkable fact is evident from these expressions: the
shear viscosity is vastly greater than the bulk viscosity.
Physically this is quite an important point; it means that the
entropy production associated with even a slight anisotropy
of the universe may easily outweigh the entropy generated
by the bulk viscosity. A similar large difference betweenh
andz may be verified to be present also for later times in the
plasma era@4#.

Let us consider successively the same options as in Sec.
III, at the instantt51000 s. For simplicity we replace every-
where the superscript ‘‘1000 s’’ by ‘‘in’’.

First option (anisotropic space).From Eq.~29! we obtain,
in dimensional terms:

Sin5122kc2~ th! in5121.031029, ~45!

where we have usedkc251.87310227 cm g21. Moreover,
from Eq. ~30! we obtain, when omitting the negligibly small
z terms,

Qin.12
1

2
kc2@4th1t2~rc213p!# in

512kc2~2th1art
2T4! in

5123.631024. ~46!

Numerically it actually turns out that the contribution fromh
in this expression is negligible. The only nonvanishing influ-
ence fromh thus occurs in the expression~45! for Sin . The
anisotropy parameterAin follows from Eq.~34!:

Ain5221.131023. ~47!

The deviation from the anisotropy of the classical vacuum
Kasner space is thus small. From Eq.~41! we obtain the rate
of entropy production per particle per unit time:

ṡ.
4h

nkBTt2
. ~48!

It gives for t51000 s

ṡ in52.031023 s21. ~49!

The entropy production is thus quite small. If the expression
~48! stayed approximately constant during the long plasma
era ~also called the radiation era!, it would seem possible to
obtain an appreciable amount of entropy~recombination of

hydrogen occurs at a temperature ofTrec.4000 K at the time
t rec.43105 yr51.2631013 s!. However, the expression~48!
turns out to diminish rapidly with time. The following brief
estimate is sufficient to show this: let us insert into Eq.~48!
the numerical values corresponding to the instant of recom-
bination. In addition to the values ofTrec and t rec given
above, we then need the baryon density, which is@33#
nrec.43103 cm23, and we need the value ofh rec. The latter
quantity follows from the proportionalityh}t21 @cf. Eq.
~27!#, which is a condition on which the present theory is
based. Thush rec5hint in /t rec, and so we obtain from Eq.~48!

ṡ rec

ṡ in
5

nin

nrec

Tin

Trec
S t in

t rec
D 3

.1.2310210. ~50!

This result signifies that a drastic reduction in the rate of
specific entropy production takes place during the plasma
era. The value ofh in that we adopted in Eq.~44! is thus
unable to account for the large entropy,s.43109, in the
universe. It is of interest to compare this with the analogous
conclusion drawn from a study of the use of the kinemati-
cally derived bulk viscosity in the isotropic and homoge-
neous universe: also in that case the theoretically calcu-
lated entropy is far too small to account for the observed
value ofs @31,36,4#.

Second option (isotropic space).All parameterspi are
equal ([a). From Eq.~31! we get, in cgs units,

a5A~kc2!~rc2!/3t5Akc2ar /3tT2. ~51!

InsertingTin543108 K for t51000 s we get herea50.347
which, according to Eq.~33!, yields g51.92. There is thus
apparently a deviation here from the valueg52 which char-
acterizes a Zel’dovich fluid. However, some care is called
for, as regards the interpretation of the calculated value ofg,
since our input value ofT in Eq. ~51! is after all not very
accurate. If the correct value ofa were insteada51/3, we
would arrive at an equation of state very close to that of a
Zel’dovich fluid. Probably the most important physical point
to be borne in mind here is that the influence from viscosity
on the equation of state is at this instant very small.

One may expect thatṡ, as calculated from Eq.~41!, be-
comes larger if one instead considers earlier times. For in-
stance, let us focus attention on the instant at whichT
51012 K. This instant is often taken to serve as some kind of
limit for standard cosmological theory: whenT.1012 K,
the universe is flooded with all kinds of particles and anti-
particles. But whenT,1012 K, the large number of hadrons
has disappeared, and the universe consists mainly of leptons,
antileptons, and photons, plus a few surviving nucleons~this
is the beginning of the lepton era!. From @33# we quote the
following values, atT51012 K:

t.231024 s, r.531013 g/ cm23,

n.631029 cm23. ~52!

We now return to the proportionalities~27! and ~28!.
Whereas Eqs.~28! are satisfied automatically in the standard
theory of the radiation dominated universe, we may make
use of Eqs.~27!, which are characteristic for the present kind
of theory, to calculatez and h at T51012 K. Actually, we
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need only to observe that the constancy of the productstz
and th makesS andQ time independent; cf. Eqs.~29! and
~30!. Consequently the anisotropy parameterA, as defined in
Eq. ~36!, is time independent also. Consider then the expres-
sion ~41! for ṡ: it will vary with time in the same way as
does the product (nTt3)21. According to standard cosmol-
ogy, n}T3 and t}T22, so thatṡ}T2. Altogether, making
use of Eq.~48! we get

ṡ52.031023F 1012

43108G2

s2151.253104 s21. ~53!

This is quite an appreciable amount of entropy production. It
lies at hand therefore to conclude that one has to go back to
the violent conditions in the very early universe in order to
get a viscous entropy production that is large enough to give
any hope of explaining the large observed entropy in the
universe. A related, but more drastic way of approach would
be to assign an ‘‘impulse’’ viscosity to the early universe.
For example, in Ref.@4# it was shown that in thek50 FRW
universe, an impulse bulk viscosityz infl;1060 g cm21 s21

acting at some kind of phase transition at the end of the
inflationary era corresponds to the correct entropy,s.
43109.

VI. CONCLUSIONS AND FINAL REMARKS

The main purpose of the present work has been to explore
the consequences of using the Kasner form of metric, Eq.
~2!, as input in Einstein’s equations, assuming that the cos-
mic fluid is endowed with a shear viscosityh as well as a
bulk viscosityz. The expression for the energy-momentum
tensorTmn is given in Eq.~9!. The cosmological constantL
has been set equal to zero. Central numerical quantities in the
analysis areS andQ, defined in Eqs.~14!. The main results
emerging from Einstein’s equations are expressed in Eqs.
~17! and ~18!.

We may summarize as follows.
~1! For a perfect fluid,h5z50, there is one of two pos-

sibilities. Either the parameterS is equal to 1, in which case
the space becomes anisotropic. The state of equation be-
comes p5r; i.e., the cosmic fluid becomes exactly a
Zel’dovich fluid. Or S is different from 1, implying that the
space becomes isotropic. Equation~26! gives then the equa-
tion of state for the fluid.

~2! For a viscous fluid, the requirement that the three Kas-
ner parameterspi be constants implies thatz andh must vary
with time according toz}t21, h}t21. Again, there are two
possibilities.Either S satisfies Eq.~29!, implying that the
space is anisotropic. For a given set of values forpi , Eqs.
~29! and~30! determine the equation of state.Or S does not
satisfy Eq.~29!; then the space is isotropic and the equation
of state can be expressed in the conventional formp/r5g
21, whereg is given by Eq.~33!.

~3! The general expression for the rate of entropy produc-
tion ṡ per baryon in the viscous Kasner universe was derived
in Eq. ~41!. We tentatively investigated the magnitude ofṡ
at the instantt51000 s after the big bang, the reason behind
this particular choice oft being thath andz are then calcu-
lable from ordinary relativistic kinetic theory. The result,
given in Eq.~48!, is very small. If one goes further back in

the history of the universe, for instance to the instantt5
231024 s characterizing the start of the lepton era, and if
one uses the requirements thath andz be inversely propor-
tional to t, then the calculated entropy production becomes
quite appreciable, as shown in Eq.~51!.

We close our work with some remarks on the redshift
problem. We consider the three coordinate directions sepa-
rately: imagine first that an electromagnetic wave is travel-
ing to us along the2x direction. The equation of motion of
a wave crest is, according to the metric~2!, dt52tp1dx.
Assume that the crest leaves a galaxy located at the position
xe at time te , and reaches us at the originx50 at timet0 .
Integrating the equation of motion we get

E
te

t0
t2p1dt5xe . ~54!

In the comoving frame of reference the spatial coordinates of
a galaxy stay constant. Therefore, if the next wave crest
leavesxe at time te1dte , it will arrive here at a timet0
1dt0 which is given by an expression like~54!, only with
the replacementste→te1dte andt0→t01dt0 in the integra-
tion limits. Taking the difference between the two expres-
sions we get

t0
2p1dt05te

2p1dte . ~55!

The frequencyn0 observed here is related to the emitted
frequencyne by n0 /ne5dte /dt05(te /t0)p1. Since the red-
shift parameterz is defined as the fractional increase in
wavelength,z[l0 /le21, we obtain in the present case

z15
ne

n0
215S t0

te
D p1

21, ~56!

where we have given a subscript 1 toz to indicate that we are
dealing with thex direction.

The expressions for the redshiftsx2 andz3 in the y andz
coordinate directions are analogous. For an anisotropic space
the redshift is thus seen to be dependent on direction. If the
Kasner metric were realized to a good approximation in the
universe, we would herewith have the possibility, at least in
principle, of testing the magnitude of the anisotropy experi-
mentally.

Naturally the presence ofz and h in the equations of
motion complicates the situation considerably. The compli-
cating effect actually turns up already on the level of isotro-
pic FRW theory: as long as viscosity is absent, we know
from adiabaticity that RT5const ~R is the scale factor!.
Therefore, the temperature obeys the relationT5T0(11z)
which, together withn5n0(11z), makes the ration/T
5const. Now, the emitted radiation at timete obeys a Planck
blackbody spectrum, and in view of the constancy ofn/T it
continues to do so at all subsequent times. Once viscosity
appears, however, the property of adiabaticity is lost, result-
ing in a distortion of the blackbody spectrum. Analogously,
viscosity-induced distortions will occur in the present more
complex, anisotropic case. An extensive discussion of the
degree of isotropy of the universe, including the role of vis-
cosity effects, has been given by Misner@30#.
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