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Optical properties of the Einstein—de Sitter—Kasner universe
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Most studies of gravitational lensing and their impact on observations concentrate on lensing structures
which are bounded, that is, of some finite size in an otherwise reasonably smooth background universe. In this
paper, we consider a model of the universe, the “cheese slice” universe, where the lensing is caused by very
large scale structures: large slabs of alternating pure vacuum and Friedmaniir&dRabertson-Walker
(FLRW) dust. The ray tracing problem is solved and shows that only the Kasner regions will introduce a
bending in the beam as it propagates. The Kasner slices also introduce anisotropic redshift effects. The optical
scalar equations are used as a tool to obtain the cross-sectional area and shape of the beam. All physical
properties of a bundle of rays traveling through the cheese slice model are obtained analytically. The only
nonanalytical result is the evaluation, in Kasner regions, of the time variable along the beam as a function of
the affine parameter. Practical model results are obtained from a computer code. Multislice models are studied
and the resulting impact on astronomical observations, which includes the introduction of shear and amplifi-
cation, is demonstratefiS0556-282(197)00918-]

PACS numbg(s): 98.80.Hw

I. INTRODUCTION orthogonal thick slabs of matter, separated by regions of low
density(vacuum regions in the simplest cas&éhe range of

While it is clear that the universe does not have an homostructures includes large bounded voids, sheets, filantants
geneous matter distribution on most observable sdal@%, the intersections of two orthogonal sheetnd quasispheri-
we still have very limited models to describe the inhomoge-cal clumps(at the intersections of three mutually orthogonal
neities observed. Most attention is given to “clumps” in the sheets As with any cosmological model, the lattice universe
distribution, by which we mean spatially bounded or quasi-is a significant simplification of reality, but it could be ex-
spherical concentrations of mattE8—11]. There is ample pected to show some of the effects that one would expect in
evidence for other structural classes, such as filaments more realistic, but more intractable representation.
sheets, and quasispherical voids or underdense regions. It is The lattice models differ significantly from the FLRW
difficult to incorporate some of these structufparticularly  models on scales comparable to the lattice distances, but on
the sheet and filament componenia the conventional very large scales they would likewise obey an appropriately
Friedmann-Lemane-Robertson-Walker (FLRW) space- averaging cosmological principle, at least as it depends on
times and the usual perturbation schemes utilized to studthe average density. In addition, the lattice models would
inhomogeneous matter distributions. appear anisotropic to a local observer, due to the optical

Many recent observational results point to an observableffects that are dependent on the degree of alignment be-
large scale structure for the universe, which includes largéween a given line of sight and the principal axes of the
void regions and significant layering in the distribution of sheets. In order to properly ascertain the observable proper-
visible matter as indicated by the distribution of galaxies andies of these models, which are significantly complicated by
quasars. The study by Broadhuestal. [12] shows apparent the optical effects mentioned above, a proper solution of the
layering in the distribution of galaxies. Preferred redshifts inEinstein field equations is required to maintain consistency
the distribution of quasars have been studied for many yearin the optical calculations.
beginning with Burbidge and Burbiddd3], and confirmed Using the restriction to Newtonian gravity and a static
by a number of later studies. Argt al. [14] have demon- universe, Lehlg15] has shown that there could be signifi-
strated significant periodicity in the quasar redshift distribu-cant observable effects in such a lattice universe. However,
tion looking in two principal directions of the sky. The peri- because of the restrictions inherent to his approach, his work
odicity they found extends out to redshifts as high as 3.47did not show some of the redshift effects discussed in this
with five or more cycles being evident. paper.

A useful approach to developing models which include While the formalism for joining two different space-times
the more general structures discussed above is to considarwell developed16], examples of its successful application
models in which the universe has a lattice configurationare rare and highly nontrivial to obtain. Therefore, as a first
Such a construction would consist of three sets of mutuallystep in studying models with the desired lattice structure, we

consider the simpler case of a universe which has a multi-

slice structure on a large scale and is constructed by alternat-

*Present address: Partement de Physique et Observatoire duing slices of Einstein—de Sitter dust and Kasner vacuum re-
Mont Megantic, UniversiteLaval, Ste-Foy, Queec, G1K 7P4, gions(see Fig. 1 Although the universe does not appear to
Canada. Electronic address: slandry@phy.ulaval.ca have such a “cheese slice” structure, our model allows us to
Electronic address: dyer@manitou.astro.utoronto.ca investigate the effects of very large inhomogeneities on the
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scalars associated with the FLRW and Kasner regions,
respectively:

The null tangent vector to the geodesicd= dx3/dr=x?2,

KASNER can be obtained directly from the Euler-Lagrange equations
d oL L 0 3
e e ©®

KASNER

whereL = (ds/d7)? is the Lagrangian describing the gravi-
tational field. The general form for the Lagrangian in
Einstein—de Sitter space-time is

12 ~2:4/3.2 242, 52
KASNER LF—t at*™(re+rogpc+2z9). (4
Since we are free to orient our coordinate system so that
¢=const andd¢$=0, we can choos&’=d¢/dr=0. The
Lagrangian reduces to

L =t*—a’t"(r?+2?), (5)

FIG. 1. Proposed model: the cheese slice universe.

and the null tangent vector is

L ! ¢

propagation of a beam of light. The geometry of the cheese k2=8t7,3, k=g, 2 and k§=8z—4,3, (
slice universes is tractable, since the system described yields t nat nat

an exact solution to the Einstein field equations, as discusse{ﬂhereg and » are positive definite constants of integration.

in Ref.[17]. . ) . 7
The matching of FLRW space-times onto a KasnerThe sign of each component kt is carried through distinct

) ) . . indicatorse , € , and e_ which can take on one of two
vacuum region has been investigated in R&¥]. We have t’ z i )
shown that only a spatially flat Einstein—de Sitter region carvalues 1. The actual value will be determined by the
be joined smoothly to a special case of the Kasner spacelype” of ray considered: time reversed:(=—1,¢ =+1,
time. We have also demonstrated that the pressure must vaand &,== 1) or time forward (9t= +1, g == 1, and

ish for the permanent matching to be possible. The metricg = 1 1), when time-reverseg-forward rays are consid-

g\r\éolved, in comoving cylindrically symmetric coordinates, ered, we are simply studying their behavior bafsrward)

into time.
d=d2—a2t*3(dr2+r2d¢?+ d2) (1) In Kasner space-time, the general form for the Lagrangian
is

6)

in the Einstein—de Sitter region and . ] . )
L =T?—a’T¥(r2+r2¢?) —b?T~ %322, (7
d?=dT2-a?T¥¥(dr?+r2d¢?) —b?T 2%z (2) :
, ) ) Again, symmetry considerations enable us to choose
in the Kasner region. Constanéssand b are introduced to K2=k?=0. L reduces to

) . . . ki=kg=0.
ensure proper unit bookkeeping. The two metrics are identi- K
cal for surfaces withe=Z=const andt=T. In the cheese
slice cosmological model, the initial conditions of very thin
and dense slices of matter in a vacuum background evolve
into a universe almost entirely filled with cosmological dust@nd the null tangent vector has the components
with only thin slices of vacuum. In this paper, we shall use 5
the optical scalar formalism to investigate the effects of such KO=g T 23+ / a2+ Y T2 Kl=¢ _*
large inhomogeneities on the propagation of a beam of light. K™% b R Ty
The propagation of a single light ray is studied in detail in
the next section. In Sec. lll, the cross-sectional area andnd
shape of a beam of light traveling through our model are
derived. Multislice models are investigated in Sec. IV, and 3 Y o3
the major conclusions are summarized in Sec. V. kKZSZET : C)

LK:TZ_a2T4/3' 2__ bZT—2/3'22’ (8)

II. RAY PROPAGATION

The propagation of a single light ray through the cheese Throughout this paper Greek indices take the range 1-3 and
slice model is the topic of this section. From now on, we will Latin indices the range 0—3. The indic@s1,2,3 correspond tof(
use the symbol& andK to designate indexed quantities or r,¢,z) or (T,r,¢,Z) depending on the metric used.
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wherea andvy are positive-definite constants of integration.

We need to determine hoW? crosses the boundary. We
first consider a point comoving with the boundary surface
separating the two regions. The observer’s four-velocity and
the null tangent vector to the geodesic must satisfy

K
u k®e=(u k¥ and (u u®)e=(u u®)y=1. (10 L
( a V= ( a K ( a Y= ( a )k (10 (e = (@n%) / (o t

(= >w
The first condition simply means that an observer fixed to a
point measures the same frequency whether it is measured i 1
the Einstein—de Sitter or Kasner space-times. The seconc
equation requires that the observer be timelike in both (\PF)> Fp) = (¥
in

frames. These conditions imply thaat the surface o F
(k%= (K% (i.e., the time component of the null tangent
vector is continuous across the boundaiyence, relations |
(6) and (9) yield

2 FIG. 2. Time-forward ray propagating through the cheese slice
_ 2. (7] ;2 .
E=\/a"+ Yy ti,, (1) universe.
. . 2

wheretin is the time evaluated at entry of the current Kasner |g11| . Kkl
slice? tatv=—| —| —. (14)

' . . . . lg.] K3

We now consider an observer moving on the interface, in 33

the radial direction. The metric elements involved are th
same on both sides of the boundary, and henc
(Ua)F:(Ua)K- The condition that the frequency be continu-

ous and Kk°g=(k%k requires that at the surface tarn® _=/7?— 1=const. (15)
(kY e= (kY. From Eqgs.(6), (9), and(11) we can write F

hrough the Einstein—de Sitter line element, Ef), and
relations(6) and(14), we obtain

This result was expected since the Einstein—de Sitter space-
Vn?—1 o, & time is homogeneous and isotropic. Similarly, E@, (13),

=¢ " and S (120 and(14) enable us to write, for the Kasner region
The null tangent vector then has components — 7°—1 tan\IfF 16
any = = .
T2 (T (T
ke=¢ (7P=1)+| — . o .

tyT23 t Where‘lfF was evaluated in thprevious Einsteinrde Sitter
slice At the crossing of the boundary into the Kasner region,
&n?-1 T2/3 no bending will occur at the surface. As a time-forward
kﬁ=gr 5 and kﬁ:sZ (13)  (-reversediray propagates through the Kasner slice, it will be

7a ’7btm forced to move towardgaway from) the normal to the sur-

) ) ) face separating the two regiofsee Fig. 2
Finally, the physical symmetries of the model and the fact \ve now substitute relatiofL5) into Eqs.(6) and(13) and
that k® is a null vector suggest that® is not continuous yrite the null tangent vector in its final form

across the boundary bg53k3k3 is continuous.

o ¢ ) gsin\lfin 5 fcos\Ifin
A. Bending angle kF:sttT/s' kFZS,W- and kFZSZW
We define¥ as the angle between a three-vector normal (17)
to the boundary surfacé, and the tangent three-vector to the
geodesick. ¥ can easily be calculated from the familiar
equation for scalar product- k=|VIIk|cosP. Sincek? is a £cosy T2
null vector,g_ is diagonal, and/ is normal to the boundary, kﬁZSt 7 " tar?\lfm+ t_) ,
we have co¥'=—1g_|YA(k¥k% and sint=[g [*A(k'/K?), in
which yields 1 §sin‘lfm 3 §T2/3cos\Ifm
kK_SrW’ and kK—SZT (18

in
%Since at each interfacé=t, we will uset, (tou[) as the time
evaluated at entryexit) of the current slice. for Einstein—de Sitter and Kasner slices, respectively.
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80

60 FIG. 3. Kasner slicex and ¥ (in degrees

o evaluated usingfin=0° (bottom curve, 5°, 10°,
40 20°, 40°, 60°, 70°, and 80ftop solid line. The
20 dashed line represents the redshift contribution
from an Einstein—de Sitter slice.
v v by b0 1y 0 g OI...I..II...I...I‘..
0 02 04 06 08 1 0 o2 04 06 08 1
T/tin T/t’in
The distance traveled by the central ray in the radialand cosV \/tanz\lf_ Tt Jt )2
directions as a function of time along the beam can be com- X = in in___ out in (24)
puted by integratingdr/dt, dz/dt, dr/dT, anddZ/dT. In K (t Jt )28
Einstein—de Sitter space-time, the two equations of interest out i
are for the Einstein—de Sitter and Kasner regions, respectively.
" Time-reversed ray$i.e., rays for which (out/tm)<l] will
13 t experience the usual redshift effect each time an Einstein—de
a(r=r, )= —3tpsind, | — | —1 (19 sitter slice is crossed.
in

The contribution of each Kasner region, for differeiﬁitn
values, as a function oﬂ'dtm) is illustrated in Fig. 8). The
minimum point of X, can be found by setting

£\ 3 de/d(T/tin) =0. When (I'/tm) = \/Etanlfm, the contribution
a(Z—Zin)F=3ti1r{3C091’in{ <—) —1} , (200 of the Kasner region to the redshift factor will have reached

in its lowest numerical value. Substituting this result into rela-
tion (16) we find that the turnover point is aIsz35°.

where, as previously defined, the subscript “in” designatesyhen traveling through a Kasner slice, the rays will be blue-
the value taken by a given variable at entry of the currentpfied as long a¥ <35°. If W =35°, then the expansion
K : K™ ’

slice. In Kasner regions, we must numerically integrate the . : ' .
9 y 9 along the radial coordinate dominates the contraction atong

and

equations and the rays will be redshifted. Sinde is a function of the
thickness of the slice and its value at entry, the net contribu-
( : T~ fT d(T/t, ) tion of a Kasner slice may be a redshift or a blueshift effect.
a(r—r ) =—t tan¥ : .
in K in n)e (TIt )23 farP®_+(T/t) The behavior of as a_ fur?ct_lon of T/t"?) a_s the beam
mon n '”(21) moves across a Kasner slice is illustrated in Figp).3For all
rays With‘Ifm#O the final value for the bending angl@hen
and T/tin=0) is ¥'=90°. This outcome is inevitable however
small the initial tilt. This striking degeneracy between rays
T (TIO)™Rd(TIt) with \Ifin:O and those withl’inqﬁo will cause drastic differ-
b(z-z ) =t n n_ (22)  ences when computing the characteristics of the beam.
K tyary, +(T/t ) Finally, the redshift factor for the entire model is the

product of each contribution.

A Simpson rule integrator is used to perform these integra-
tions. C. Matching k? at subsequent interfaces

It was shown in Dyer, Landry, and Shadr7] that for
B. Redshift factor the matching between an Einstein—de Sitter region and a
Kasner region to be permanent, the only components,pf

An observer with four-velocity® observes a photon with .
null tangent vectok? to have a frequency proportional to that need be continuous at the_bounqary surface g,
andg,,. We have shown in this section thft, k*, and the

a . . ;
uak . Hence, the redshift factor across a slice, that is, th%roductgg3k3k3 must also be continuous—we stress the fact

rat_io of observed freque_ncies, fora time-reverse_d ray can bﬁﬁatggg andk3 are notindividually continuous at the bound-
written asx=1+ redshift =(u k%) /(u k), . Since the gy We must ensure that the continuity of all previous vari-
boundaries are comoving surfaces in both regions, we havebles is preserved at each subsequent interface.
o3 We will use circled numerical indices to specify at which
t interface a given quantity is evaluated. At the second bound-
X_= ) (23)  ary surface, the junction of a Kasner slice and an Einstein—de

out Sitter slice, the continuity ok® requires that
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& =& cosV _\Jtart¥ _+(t_/t )2 (25)  closed by the beam and is always nonpositive for positive-
@ "0 ®\/ © 90 definite local energy density, whereas the Weyl driving term
whereas the continuity d€* implies Fe'# represents focusing by nonlocal matter.
Kantowski[19] derived the relationship between the op-

& sinP_=¢_sinP_, (26) tical scalars and the curvature structure of the wavefront de-

o o "o @ fined by the intersection of the observer’s rest frame with a
from which specific null hypersurface. We define the real quantiﬂgs

and« _ in terms of the two principal curvatures of the wave-
tan¥ T
front:
simy = © @n Oon
@ Jtarf® _+(t_/t_)? :
© OO0 dlIn(C_e'*s)]
. . . . . . . O+rg=—-"——. (32
is obtained. This result is equivalent to the bending relation dr
described by Eq(16). In addition, the productssk®k® is
found to be identically matched. We can now write Eq9(30) and(31) as
On the third boundary, all quantities of interest are con- .

tinuous if §® is used as the constant of integration for C_I/C_+a?=R=* FcoB (33
(k2)©. At the fourth interface, a new value f@rwill have
to be computed, and so on. When a light ray crosses gnd
Kasner—Einstein—de Sitter boundary, the consfamiust be S : _ .
computed using the recursion relation ata(C /C +C_IC_)=—Fsing. (34)

/ 2 If A is the cross-sectional area of the beam, then
<D+(t ®t ®) , (29 \
- - ®=A/(2A). HenceA is proportional toC+C_, and the

where the subscript® and — ® designate quantities evalu- distortion factor is proportional tﬁ:+lcf . This form of the
ated at the current and previous interfaces, respectively. Th@SE is very useful in situations where space-times with
bending angle used at entry of each new slice is obtaineg,ch symmetry are involved.

from relations(15) and (16). The Einstein—de Sitter space-time is conformally flat, that
is, Caibjzo everywhere, and therefor&e'#=0. The re-

maining  driving term, computed through RF

In the geometrical optics approximation, the optical scalar:(l/z)R k2k®, is easily obtained since the only nonzero
equationdOSE’s describe the evolution of the cross section om onggts of the Ricci tensor R R andR
of an infinitesimal beam as the photons propagate. Th&OMP o Ripr Rop: 33

Ehlers-Sachs theorefi8] states that the cross section of an The Ricci driving term then reduces to
irrotational congruence of null geodesics is expanded and
sheared at the respective rates

§®= 3 ®coslf7®\/tar?‘1'

Ill. SHAPE AND SIZE OF THE BEAM

1 — 282

0,0 1)1 313y —
RF—Z(ROOk kK°+R k'k +R33k k)= 3105

(35

1
0=k, and |o|=

2

1 1/2
- alb_ @2
DK k=0 ) (29

The Kasner space-time is a vacuum solution of the Ein-

stein field equations, and hen®&e = 0. Following Dyer[20]
with respect to the affine parameteralong the beamla

denotes covariant differentiation with respectx and ()
represents symmetrization over the enclosed indices. T
only effect of® is to rescale the area, and thus it is expected BoX_ . _BXLa
to be real. Sincer is characterized by an amplitude and an KPK?=20,7K%, (36)
orientation, it is a complex quantity. B ) )

The optical scalar® ando are propagated along the null Where o™ are the spinor connectiofistor the purpose of

one may use spinor formalism to determisie At any point,
hlg‘ defines a one-spindt”, up to a phase factor, throupi]

geodesics according to the OSEX3] finding the Weyl driving term, we will consider time-forward
o null tangent vectors. Hence, thet+* sign in Eq. (36) will
0+0%+go=R=3R_k%*", (30 be chosen. Sinck? is real,k?=0, ando* is the only com-
plex spin connection matrix, it follows that®K* must be
o+200=FeB=C _b_kakbsi s, (31) real. HenceK! andK? must have the same phase factor. In
aibj

order to establish a basis for spinors, we introduce a second
. . H A — 2
where the dot is equivalent t'dr, the bar denotes complex ©ne-spinoru such thak”x =1, and then define the com-
conjugation,R_ is the Ricci curvature tensor, ar@_ - is  plex null vectors®= o3, KEuX. The parallel propagation of

the Weyl curvature tensos. is a complex null vector paral- k2 ands? along the geodesic requires thé® and x® must
lelly propagated along the congruence and satisfies the tetrad

conditionss""ka=0 andsas_az —1 (for —2 signaturg The
Ricci driving termR represents focusing due to matter en- S3Capital Latin letters take the values 1 and 2.
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also be parallel propagated. We may cho&geto be real 1 tany
without losing generality ok®. From Eqs(18) and(36) we lo| =e &sinb - in _
finally obtain Koor i\ 2arT#® 2753, /tar?qu+(T/tm)2
(43
1 1 2 1
K :ﬁﬂﬂ and K ZWY, , (37 The real part of Eq(31) is satisfied if cosg-w,)=-1, and
SO we can choosﬁ—wsz. Sinceﬁ:const,wK is also a

whereY  ={k+bT 3%3}2 constant.

Because of cylindrical symmetry, we expect that, at a Ve are then free to choose, in both space-tiet) be
given time, the Weyl driving term should be independent off€al initially. We will definew=0, which impliesg= 7 and
the radial coordinate. The nonzero components of the Weyl a=0.* Equation(34) is then identically satisfied. Sinck _

tensorareC . Coo00r Coaoa Cia1or Crapa ANAC,555- This  and 7, are both simple functions of time coordinate, it is

enables us to write more suitable to use(or T), instead of the affine parameter,
e as the independent variable. Relati@&3) is then reduced to
— 213 — f —_aT the decoupled pair
s'= 5 (g+h), s°=—, and s zﬁ(g—h),
' 39 KOK°C™ +KO(k%)'CL=(RF F)C_, (44)

whereg=(KYK?)(s1-if), h=(K¥KY(st+if), andf  Where the prime denotes total differentiation with respect to
is an unknown function ofT. Hence, it follows that t (or T). We can also rewrite relatio(82) in the simpler

Caibjkakbt "tTec f f/T2. Finally, the normalization condition form
KA/.LA:]. enable us to write the Weyl driving term as KoC”
O+|o|=—". (45)
_ 28w Cs
felB:CaibjkakaISJ:W (39) -
1. Observer's slice
up to a constant phase factge., 3= cons}. We now consider a conical beam of light with vertex at

the observer and its base on the source of interest, séthat
vanishes at the observer. In addition, the radial coordinate of
_ _ the central ray evaluated at the vertex of the cone is, by
_ The expansion and shearing rates undergone by a beam @éfinition,r | =0. Therefore, it is inappropriate to use rela-
light traveling through an Einstein—de Sitter slice onceyjon (45) in order to determine solutions for the principal

shearing effects have been introducgel., when the slice of - ¢y atures in the observer's slice. Instead, we will solve Eq.
interest is not the observer’s slicean be computed via Egs. (44) directly in the initial slice.

(17) and (29): In Einstein—de Sitter space-time, Eg¢4) becomes

A. Principal curvatures: Solutions

3t2C” —2tCL+2C_=0. (46)
0 =¢ 5

2 siny.
— 40)
F tg 3t5/3 2al’t4/3 (

Since the space-time is homogeneous and isotropic, we are

and free to choos@+ =C_=Cinitially. The general solution is
_ C=a1t2’3+ at and AxC?. For small redshift [20],°
e &sinl, A= (x—1)?/2 which enables us to find the constants of inte-
ol =——25" (41)
2art
2

One can easily verify that Eq$30) and (31) are satisfied, A =2 ' (47

gration, and the cross-sectional area of the beam is
t 2/3 t

and that the phase factor of=|c|e'® is a constanti.e., F g B E

wFZO).

Similarly, in Kasner regions®) and|o| may be com- wheretyis the time variable evaluated at the observer or, if
puted through relation&l8) and (2K9): K expressed as a function of redshift factor,

cosPin(tarF\Ifin+4(T/tin)2) sin®
- “Note that in an Einstein—de Sitter sligg is irrelevant since
6T5’fﬂ/tzﬁqu+(T/tm)2 2arT43 FeiB—.
(42 SThe cross-sectional area used throughout this paper has been res-
caled in order to eliminate the solid angﬁeﬂobs at the observer:
and A=D2/2, whereD_ is the angular size distance.

O=2¢
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AF=2X—5/2[X1/4—X—1/4]2_ (48)  The cross-sectional area of the beam is then
The peak value oA is reached whent(t,,) = 8/27=0.296 b 23 1
or at redshift 1.25X=2.25). Ac=PuTan, Yl(u)[l+PO(ar)K] cosV
In Kasner space-time, E¢44) becomes ob (55
2 2 2
3u*(tarf¥ | +u?)CY +u(—2tarfW¥  +u?)Ch where P. is a constant yet to be determined and

+2tafV C =0 49  P,=—1(3tg5sin,,). In order forA_ to be a solution to
- obs~ F !

®=(dA/d7)/(2A), it must reduce tA xu®¥ar) Y (u),
where the asterisk denotes total differentiation with respeclvhich can only be accomplished ifC(—%—)Klob #0. Since
S

to U=T/teps. The anisotropic nature of the vacuum region here s no locally isotropic scale in Kasner space-tiire,
suggests that the importance of the_ axis _of symmetry Can”%thearing effects can never be ignoreal bundle of rays will
be ignored. Consequently, if the first slice is to be repreygyer focus back to a point if it is solely traveling in that

sented by the Kasner metric, bath andC_ will be needed

to computeA.
Once a particular solution to E@49) is known, further

solutions can be obtained from a differential equation of

lower order(see, for example, Ref22]). A particular solu-
tion for (C ) is

—-1/3 2
C,, ~u X‘/tar?\lfob;ru =Y, (u).

A second particular solution can be found v'ﬁ+2
ocv(u)Yl(u), where v(u) is a solution to v*
u*¥(tarf®  +u’)**  giving voc(ar)K+Yl’1><const,
where @r)K is described by Eq(21). Since both particular

(50

space-time. Thus no beam of interest can be “launched” in a
Kasner region.

2. Subsequent slices

Once the beam has been properly launched in an
Einstein—de Sitter region, that is, when the apex of the cone
is at a caustic poinfi.e., A=0), we are free to integrate Eq.
(45) in order to determine the principal curvatures of a beam
traveling in the remaining slabs of the cheese slice model.

The tangential extent of a beam traveling in the
Einstein—de Sitter space-time can be independently obtained
through the line element described by &t | = at?’r 5¢,

where §¢ is the beam opening angle projected along the
tangential directiohor

solutions are linearly independent on the domain of interest,

the general solution 1‘0@+ is

— 1/3
(C+)K—alYl(u)Jraz[(ar)KYl(u)+3tob5tarﬂ1f0bg,
(51)
whereal and a, are constants of integration.
Similarly, a particular solution toC is C_

1
ocu2’3(ar)K, which yieldsC v (u)u2’3(ar)K wherev (u)

is a solution toF*(u)ocl/(uz’E‘(ar)@/ta?\lfobsﬂL u?), from

which ;c(ar)g“r const is obtained. The general solution

for C is
(Cf)KzaIu2’3(ar)K+a’2* u??, (52)

wherea; andaj are constants of integration.

If AK:(C+)K(C)K is to be a viable solution in the first

dl/dt 5 esi¥ o sin¥
v _Z, r in_“__ n (56)

I 3t gart?® 3t grt??’

tg t

We now substitute Eqg40) and (41) and kgzst§/t2’3
into Eq. (45), giving

dc_/dt) o sin¥_
C T3t art?3 57
- F
and
(dc+/dt) 2 .
1
cC, i 3

A straightforward comparison between relatiof®6) and

slice, we must require that both principal curvatures vanisQ57) yields (C )e=I =rt23 Since Einstein—de Sitter space-
- _ g

at the observer. This requirement is easily met

/ . _ .
a,=—a/(3tgpsin? )=a xP and a;=0, since
ulobsE(T/tobs)lob:l and @r)K|ObS=O. (C,) and C ),
then reduce to

(C ) =a Y (W[1+P (ar), ]-

(53

co obs,

and

(C ) =aju*ar),. (54)

"time hasF=0, the real part of Eq(31) reduces to |(a|A)F

*(|o].C, C_)g=const, from which (3+)Foct2’3 is obtained.

We stress the fact thétr| is theamplitudeof the shearing
rate and it is not, in our case, a positive-definite function.
The biperiodicity property of the phase factor®fforces us
to choose the proper sign by requiring the correspondence
betweeritg andC to be consistent in both time directions.

8 1g IS tangential to the axis of symmetry and lies in a plane per-
pendicular to it.
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Finally, a convenient normalization & andC with ¢ ¢
i y i k=g —, ki=kZ=0, ki=s — (64)
respect to output values from the previous Kasner slice F= & o KF=Kp=U, Kg=¢e —75,
- t at
yields
23/ and the expansion and shearing rates reduce to
(C)H=CHi1—] [—
oF - tin rin 2¢ 2
®F:8t?5/3 and |0'|F:O. (65
and
23 The central ray is traveling solely in the direction, and
(C).=(C ) |— (59) hence there will be no distortion of the cross-sectional area
+F +7in| ' of the beam. Since the Ricci driving term is due to matter
n

enclosed in the beam, it is still described by E8p).

where the index “in” denotes variables evaluated at the en- Similarly, in Kasner space-timé* becomes
trance of the current Einstein—de Sitter slice., exit values

from previous Kasner slige 0_ €78 1_1,2_ 3_ 177
i kx=e,——, kx=kg=0, kx=¢ , (66)
In Kasner space-time, we expedE (), to behave the t ot Z pt
same way as (];7)F since the metrics in both regions of " "
interest have the same expansion factor wdesdZ=0.  and the optical scalars reduce to
This assumption is easily verified through
2¢
® =¢ —— and |o|2=0. (67)
aigaT| 2 tan¥_ iy 728 i
| 3T arT?8 ftat ¥ +(T/t )?
tg K in in

Again there will be no distortion of the beam area; only an
( dC/dT) expansion will occur, consistent withi=0 for‘szo, from
K

(60) Eq. (39).
In both regions of interest, the dimensions of the beam
can be obtained through relati¢45):

C

which confirms that (:_)K=Itgo<rT2’3. (C,), can be ob- s
tained by solving the first-order differential equation C=C =(C) (tlme) (69)
+7in !

+ t
n

(dC /dT) (Tt )2—tart¥
+ n in

:2T{tar?\If, T terr (6D anq Aoc.Ci . The_only relevant_principal curvature @T ,
K n n which is proportional to the diameter of the beam in the
_ 3 . . radial direction. Clearly, if a bundle of rays has a circular
with '”C+°‘(1/6)|n{(v+ta”2q’m) Iv} as its solution, where  .,sq section, it will remain circular if and only#_ =0.
v=(T/t, )% Once again, we normaliz8  andC_ with re- Finally, even though the principal curvature is described
spect to output values from the previous Einstein—de Sitteby relation(68) in both space-times, the time ratio is com-
slice, and we finally obtain puted through two distinct equations. In Einstein—de Sitter

regions, the ratio is obtained via

ST
o . (62 a(z—z) 3
b Cin (i) :(—"”:+1) , (69)

t 3tircosP

n/ g

C
+

(C)=(C),

and

tanzq’m“L (T/tm)z Where‘PinZWobsz 0, while

(C,) =(C,), cos¥, 7 (63
3/4

in in (T/tin) T 4b(z_zin)K
—| =|——27 —*t1 (70
t 3t

3. Degenerate case¥ =0 in/ g n
If the tilt angle at the observer vanishes, then the beammust be used in Kasner regions

will remain parallel to the axis of symmetry as it is propa- 9 :

gated through the cheese slice model, consistent with Egs. _ _

(15) and (16). Sincer_ =0, the radial coordinate of the B. First three slices

central ray will remairr =0 anddr/dr=k'=0. We now investigate the changes in key properties of a

For this special case only, the null tangent vector inbeam as it travels througl) a two-slice model constructed
Einstein—de Sitter regions has components with a Kasner region much larger than the observer’s slice
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2-Slice Model (F:K = 1:75) 3-Slice Model (F:K:F = 1:1:75)
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and (2) a three-slice model where the third slab, antraveled in the current Kasner slice can be evaluated by the
Einstein—de Sitter region, is much larger than the two previdirect numerical integration of relatiai21).
ous slices. For two-slice models with a proportionally much larger
Kasner slice, the redshift factor for the entire model is over-
1. Two-slice model whelmed by the Kasner contribution. The behavior of both

The purpose of this special model is to isolate the effec@Nd¥ versus time ratio is almost identical to FiggaBand
of the Kasner space-time on the characteristics of the beaib), respectively. _ _ o
and compare the results with those obtained via the reference Se7veral graphs of key properties are provided in Fig. 4
model: the Einstein—de Sitter cosmological model. We havéleft).” The anisotropic nature of the vacuum region is clearly
chosen the relative “thicknesses” of the two slabs to be inVisible in the strikingly different behavior o€, andC_.
the proportion F:K=1:75 [i.e., the quotient a(zout Furthermorep+ is much smaller than its Einstein—de Sitter

—zin)F/b(Zout— Zm)K is in the ratio 1/75], where the vacuum counterpart, except in circumstances for whi¢h{,) ap-

region is represented by the largest number. The criterioRfoaches zero. Hence, the cross-sectional #e& C_
used to choose individual thicknesses is the following: Aand the distortion factor, computed usi@ /C_, will be
light ray propagated at a tilt angl#’ = =0° must pass hjghly affected. Also, note that the maximum valueohas
through at least 95% of the model. moved to smallert(t,pg.
Once the two-slice model is constructed, the left-hand The minimum point of C ) can be found by setting
. ” +/K
side of Egs(20) and(22) are known quantities and the two yc /4T=0 in Eq. (61). When (T/t )=tar¥ 12 )
timeratios ¢ /t )_and {_ /t ) canbe determined.Inan . * . . in LU
o out in”F "7 Yout inK "7 i will have reached its minimum value. Since we are consid-
Einstein—de Sitter slice, t.hIS ratio is known analytically ering  time-reversed  beams, ¥ must  satisfy
through Eq.(69) and, for time-reversed rayst g/t, )<1 in . .
. ... out in® tan(¥ )m=+2 so that a turnover may occti.e., if
since £ —z )=<O0. In the observer’s slice initial conditions In .
out in ¥ =54.7° then C ) _can only increase

must be used fot =t,,s, ¥. =V  , andz =z =0. In in R K : : :

) in in  obs in “obs Plots in Fig. 5(left) offer a different view of two impor-
the first Kasner slicdi.e., the second slab of the mokel (ont characteristics of the beamandA. Both quantities are
tuftin 1S known ar?alytlcally, via r.elatlon(70), onIy. if " plotted versus the fractional distance traveled by the beam in
¥ =0° whereas in cases for whick | #0°, the time  the z direction. By definition, a fractional distance of 1 is
ratio must be determined numerically. The upper bound ofeached by a beam with | =0°; the larger the initial tilt
the integral described by ER2) must be changed until the
right-hand side of the same relation is equal to
b(Z .~ Z,) inside a preset tolerance range. ONce a Proper 7erom now on, we will usa/t,, to denote the time ratio regard-
value for tout/tin has been ascertained, the radial distancéess of the space-time describing the current slice.
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2-Slice Model (F:K = 1:75)
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3-8lice Model (F:K:F = 1:1:75)
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angle, the smaller the fractional distance will be oncetidal effects introduced in the beam as soon as the first Kas-
(t/topd =0 is reached. ner slice is entered will drastically reduce the ability(bi

to reach high amplitudegexcept in cases with/ty,s—0).

SinceC _ lies perpendicular to the axis of symmetry, it is not
The purpose of the three-slice model is to isolate the efas sensitive to variations in the thickness of the observer's

fect of the Einstein—de Sitter space-time on the characterisjice.

tics of the beam once shearing effects have been introduced. |t js also worth mentioning that all physical properties of

We have chosen the relative “thicknesses” to be in the prog heam of light traveling through the cheese slice model are

portion F:K:F=1:1:75,Where the slice of interest is repre- now known ana|ytica||y_ The on|y exception is the evalua-

sented by the largest number. tion, in Kasner regions, of the time variable along the beam
The time ratio at any point in the third slice may be com-as a function of affine parameter.

puted via relation(69), which enables us to calculate,  As a final note to this section, we now state a special

through Eq.(19), the distance traveled in the radial direc- condition that must be fulfilled in order for Eq&9), (62),

tion. Equationg59) and(68) provide the principal curvatures and (63) to be valid representations of the principal curva-

of the wavefront in cases for whickk | #0° and¥ _=0°,  tures in Einstein-de Sittefonce shearing has been intro-

respectively. Pertinent plots are provided in Figs(righty  duced and Kasner slices, respectively. Because of the de-

and 5(right). generate nature of the characteristics of a beam that is
All curves representing properties of the beam which dgoropagated along the axis of symmethe., Vo= 0), we

not involveC+ are very close to the reference model, which-must require that a beam for whigh W 0 must not contain
obs

everW  is used. Through the behavior &f , it is clear  this axis that is, if § is the beam opening angle in the radial
that the intervening Kasner slice, however small, will causelirection, then¥ > §/2.

drastic changes in the cross-sectional area of the beam. Fi- The properties of complete multislice models are studied
nally, note that the peak value 8fhas now moved to larger in the next section.

(t/top9 -
For comparison purposes, we have included Fig. 6, which

summarizes the properties of a beam propagated through a IV. RESULTS FOR MULTISLICE MODELS

three-slice model with slabs of relative thicknesses in the e initially consider cheese slice models which are con-

proportionF:K:F=1:1:13. From the plots oh andC . /C_ structed with slabs of equal thickness or, more precisely,

we know that, in the sampled range‘bf used only beams slabs for which the left-hand sides of E¢20) and(22) are

for which ¥ =0°-40° were able to reach the third slab, all equal. For all models, we evaluate the change in apparent

while the three most tilted beams ended their journey in the (nagnitude of a source due to lensingm. The corrected
apparent magnitude of the sourcq 28]
Kasner region.

We want to emphasize the importance of the thickness of
the first slice on the amplitude and behavior(bi, with

2. Three-slice model

m = M + 25+ 5Ioglo(c/H0bs)+5IoglO(DL)EmF+Am,

obvious consequences @ and the distortion factor. The (72

0.05 FT T T T T FT T ]
E a15F 4
0.04 E 9 F ]

«0.03F £ F e FIG. 6. Three-slice model withF:K:F
002E St ] =1:1:13.Note that the curves with the smallest
0'01 E go,f, - 3 \Ifobswill break away from the reference curves at

' 0§ F E the largest {/tyy -
E oLE
0
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Case 1 Case 2 Case 3
T 0.008 [prrr T 0.003 [prrrpeprrrrrrrrr

FIG. 7. Multislice models: The 50- and 200-
slice modelqcases 1 and)2are constructed with
slices of equal thickness, while in the 2000-slice
model(case 3 all slices but the first are of equal
thicknesgsee text for more detajlsFor all plots,
as for their counterparts in Fig. 4 we have used
the same parameters in the same sequenma)t(
was evaluated usirvgob3=0° (upper graphand,
for the lower graph, 10fbottom line to 80° (top
line).

(Am),

T e A PN T T Coe b lieetiniteeadd
0 0204 06 08 1 0 0204 06 08 1 0 0204 06 08 1
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obs obs

whereM is the absolute magnitude/HObs is in megapar- x~10°4=2.5, which is quite close to the redshift factor at
secsD, =(1+2)?\/2A is the luminosity distance in units of Which A reaches its maximum value, that i 2.25. We
(c/H_ ), m_ is the apparent magnitude the source W0u|d:i(\e/r2||nd the reader that in Kasner regighpeaks at compara-
have in the reference universe, aﬁdn=2.5loglo(A/AF). y smaller ¢/to,d and higher.

C Figures 7 and 8 also illustrate the properties of a beam
Once.a proper valu_e fok has been determined, the cor- traveling through a 200-slice modétase 2. The structure,
responding cros_s-sgctlonal area the beam would have n tr&?rikingly visible in case 1, has been considerably smoothed
absence of lensing is evaluated at the same redshift factor out, even in cases for whicl__is large. Again.C has
through Eq.(48), and the same time ratid/€,,J9, via rela- ' obs ’ 4

tion (47). Thus, two distinct quantities are obtainedng) been considerably reduced in magnitude. Thus, all curves
X . -
where bothA andA_ are evaluated at the same redshift andSPreSentingA have been scaled down and the distortion
F

. effects enhanced. For a giveh _ , the correction to the

(Am)t where bothA andAF are evaluated at the same time ) obs ,
ratio® Again, we consider time-reversed beams, and so thgpparent magnltudes(m)t needed to account for the lensing
use of (Am) is restricted to cases for whiok=1, since no effects is now large(i.e., more negative although the shape
blueshift eff)((ect can be obtained via the reference model of the curves is similar to the shape of those found for case 1.

The effects on the properties of a beam propagéted In order to isolate the effects of increasing the number of
through a 50-slice moddkase } are presented first. Perti- sl!ces on the propagation of the_ beam, We now use a 2.000'
nent plots are provided in Figs. 7 and 8. For a given timesllce model(case 3 Where_z the first s_Ilce is |dent|(_:al to its
ratio, the cross-sectional area of a beam traveling through thgPunterpart from the previous 200-slice constructioa, all
cheese slice model is smaller than its Einstein—de Sitte$lices but the first are of equal thickngsghis will enable
counterpart, except whet/(,,) approaches 0. The resulting C_ to reach the same amplitude at exit of the first slab, and
amplification of the source translates into a negati&manlt any changes in the characteristics of the beam will be due

for all time ratios but {/t,,9—0. The unmistakable signa- Solely to the now thinner and more numerous slabs. The only
tures of both space-times are clearly visible in the sharperceivable consequence of a tenfold increase in the number
variations of @m) for small tilt angles and low redshifts. Of slices is to amost completely eliminate any irregularities

P ; ; ; in the curves(see Figs. 7 and)8 A further augmentation,
The amplification of the source s at its maximum nearsay, by a factor of 5, would totally hide the identity of indi-

vidual slices; that is, as long as the observer’s slice remains
unchanged, we could not tell in which space-time the beam
8Note that bothA andAF are in units of (:/Hobs)z. If one wishes s traveling into at a givent(t,,d by simply looking at the
to use a different value foHObS in the reference model, a proper plots.
rescaling of allAm curves will have to be made. Finally, a 2000-slice model was constructed using the
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FIG. 8. Multislice models:Am)x versusx and IO%(X)' Bottom graphs:Am)X was computed using'ob: 10° (bottom ling to 80° (top
line).

same observer’s slice and 1999 randomly selected slab thickay, larger then a few thousands, there appears to be no in-
nesses. In order to generate the sample, 1998 random nurentive to warrant the use of random over equal-slice mod-
bers between 0 and 1 were produced and sorted. The relatieds.

thicknesses were computed by the subtraction of two neigh- From the observer’s point of view, the look-back time is
boring numbers, and a scaling factor, representative of thaot a suitable choice of independent variable, and thus the
total thickness desired, was used to calculate the final thickredshift factor is used in all remaining plots. Graphs of the
ness for each slab. This simple method ensured that nangular size distanceD_., the Iluminosity distance
overly large or small slabs were part of the sample. SlighD —(1+z)2D<, and the axial ratio £ distortion factor

differences were noticeable at large = for C_ and A, o<C+/C ) as functions of redshift factor are provided in
whereas dm)_differed from the prewous model atlow red- Figs. 9 and 10 for variouy’ |+ oW . Each graph contains

shift and smaII\If - However, if the number of slabs be- five curves which |IIustrate the varlatlons in the results
tween the observer and the source is expected to be largeaused by a slight change in the direction of observation. In
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FIG. 9. In the Einstein—de Sitter cosmolo¢fydeS, D . reaches peak value atel+z:2.25.\lfobS:2°t0.2° graphs: observational
tests for\Ifobs= 1.8° (bottom curve or curve that reaches lowrstalug, 1.9°, 2.0°, 2.1°, and 2.2(top curvg. The maximum value ob

is now much lower and near=1.05. Since shearing effects are introduced in the beam early on, the image of the source will be highly
deformed even at very low redshift‘if.obs= 10°+2° graphs: observational tests f@robs=8° (bottom curve, 9°, 10°, 11°, and 12{top

curve. The peak value oD_ is now located in a broader range xf 1.07<x<1.1. \I' pe 207+ 2% observational tests fo[f b 18°
(bottom curve, 19°, 20°, 21°, and 22ftop curve.

all cases but | =2°, redshift factors up to 4 were consid- the image of the source is circular if no lensing occurs.
ered. BothD _ and D, are expressed in units ofAH The behavior oD - andD for smaII\If |s somewhat

whereas the axial rat|o is dimensionless. A 5000-slice modéFompleX since overall bluesh|ft effects are poss(lskee Fig.
constructed with slabs of equal thickness was used to prc?, and both functions can take more than one vaIue at a
duce the results. The cross-sectional area of the beam is ch@lven x, whereasD . andD evaluated for large®

sen to be initially circular; i.e., it is assumed that on averageonsiderably reduced in amplltude but similar |n shape to
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FIG. 10. 5000-slice model: observational tests‘Iogbsz 80°+2.0°.

their Einstein—de Sitter counterparts. Hence, considerabl@ant images is of particular interest. This distortion has the

amplification effects are expected; i.e., the source appeasame radial compression and tangential stretching familiar

brighter than it would in the absence of lensing. with the more conventional gravitational lens effects of gal-
Forall¥ ., the image ellipticity increases sharply with axies or clusters of galaxies. In our case, this distortion arises

x (i.e., the axial ratio decreaseas soon as tidal distortions from a uniformly thick slab of matter, while in the conven-
are introduced in the beam. The distribution of ellipticitiestional situation, where the gravitational lensing effects are
about the axis of symmetry is quite spectacular. The minosimply overlaid on the background FLRW universe, the uni-
axis of the cross-sectional area of the bea(En+X always formly thick slab introduces no distortion.
points towards the axis of symmetry, while the major axis The cheese slice model displays strong inhomogeneity
(C ) is tangential to the axis of symmetry and lies in a planehile remaining dynamically self-consistent. This differs
perpendicular to it. The alignment of all minor axes and thestﬁrcontgly from the m,?re usugl Icalcfu'laﬁons of opfervatl?]nal
alignment of all major axes suggest a simple scheme to Ioﬁa\ejcz n supe(;pl;)& lon Mo tﬁs ot mt omogenelg, ‘Zlic as
cate the direction of layering in the matter distribution. In € been used by many au ¢ instance, see Ref24]

i . . . and references thergirThese approaches suffer from prob-
addition, as¥ | increases the redshift factor at whi€h. . . . . : - ;

77 obs ) ) ) lems of internal inconsistencies, since it is not possible to
reaches its maximum value is shifted towards largein  overlay an arbitrary inhomogeneity on the background
most cases, the slope Df curves increaseg.e., the appar-  F| Rw model without destroying the important properties of
ent brightness of a given source decreaseﬁ(%gincrease)s the FLRW model itself.
and in most cases, for redshift factors larger than at peak !t is well known that to preserve the foundations of the
value, a noticeable flattening & curves occurs. FLRW model, one can only insert spherically symmetric,

If we were to use a cheese slice model with a differentMass-compensating, matter distributions, of which the clas-
number of slabs, or one with a larger first slice, variations inSical Swiss cheese vacuole model is the extreme limit, and
the results would of course occur but the major trends disth® rest of which can be described by the Bondi-Tolman
cussed above would still apply. solutions _and their generalizations. For the_ case of spatially
bounded inhomogeneous structures, there is always the hope
that averaging over a sufficiently large scale will recover
some of the FLRW properties, since the “mass excessid

The observational relations in a universe with density in-thus the Weyl curvature representing the tidal effeatay
homogeneities extending over the largest distance scald® relatively diminished in well chosen cases.
have been studied in the exact case where the lensing is The possibility of averaging over sufficiently large scales
caused by large slabs of alternating pure vacuum and dust order to diminish the influence of a given quasispherical
Significant bending and anisotropic redshift effects are introinhomogeneity does not present itself for topologically open
duced in the beam. It is clear that the introduction of suchstructures like large sheets, for a number of reasons. In the
large inhomogeneous structures can have dramatic effects @ase at hand, there will not exist any distance scale over
the physical properties of a bundle of rays. which the effects discussed above can be made to relatively

In all multislice models considered, the action of the tidalvanish. This significantly changes the approach that must be
forces on the beam results in a peculiar distribution of ellip-taken, and in particular it means that the requirement for
ticities about the axis of symmetry of the model. This align-self-consistency cannot be ignored quite so easily as in the
ment pattern does not seem to agree with observations, ajfuasispherical case. It now becomes very important that the
though an apparent layering in the distribution of galaxiesdynamics of the constituents of the model universe remain
was reported by several authors, as discussed in the Introducensistent over large times rather than just over short peri-
tion. Furthermore, the image axial ratio decreases sharplgds.
with redshift as soon as shear is introduced in the béam The present work has been restricted to the consideration
as soon as the first Kasner slab is cro$sém fact, if one  of a single parallel family of slicings in the universe. The
wishes to retrieve the Einstein—de Sitter space-time, thelanar symmetry inherent to the cheese slice matter distribu-
source must be located in the observer’s sli, one must tion causes the action of the tidal forces to be highly direc-
extend the observer’s slice to include the entire observablgonal. In order to eliminate such a preferred direction, future
universe. work should consider the case where there are three sets of

The systematic and direction-dependent distortion of dismutually orthogonal slicings so that one may fully model a

V. CONCLUSIONS
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lattice universe. Consideration of this case is in progress, but ACKNOWLEDGMENTS
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