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Most studies of gravitational lensing and their impact on observations concentrate on lensing structures
which are bounded, that is, of some finite size in an otherwise reasonably smooth background universe. In this
paper, we consider a model of the universe, the ‘‘cheese slice’’ universe, where the lensing is caused by very
large scale structures: large slabs of alternating pure vacuum and Friedmann-Lemaıˆtre-Robertson-Walker
~FLRW! dust. The ray tracing problem is solved and shows that only the Kasner regions will introduce a
bending in the beam as it propagates. The Kasner slices also introduce anisotropic redshift effects. The optical
scalar equations are used as a tool to obtain the cross-sectional area and shape of the beam. All physical
properties of a bundle of rays traveling through the cheese slice model are obtained analytically. The only
nonanalytical result is the evaluation, in Kasner regions, of the time variable along the beam as a function of
the affine parameter. Practical model results are obtained from a computer code. Multislice models are studied
and the resulting impact on astronomical observations, which includes the introduction of shear and amplifi-
cation, is demonstrated.@S0556-2821~97!00918-1#

PACS number~s!: 98.80.Hw

I. INTRODUCTION

While it is clear that the universe does not have an homo-
geneous matter distribution on most observable scales@1,2#,
we still have very limited models to describe the inhomoge-
neities observed. Most attention is given to ‘‘clumps’’ in the
distribution, by which we mean spatially bounded or quasi-
spherical concentrations of matter@3–11#. There is ample
evidence for other structural classes, such as filaments,
sheets, and quasispherical voids or underdense regions. It is
difficult to incorporate some of these structures~particularly
the sheet and filament components! in the conventional
Friedmann-Lemaıˆtre-Robertson-Walker ~FLRW! space-
times and the usual perturbation schemes utilized to study
inhomogeneous matter distributions.

Many recent observational results point to an observable
large scale structure for the universe, which includes large
void regions and significant layering in the distribution of
visible matter as indicated by the distribution of galaxies and
quasars. The study by Broadhurstet al. @12# shows apparent
layering in the distribution of galaxies. Preferred redshifts in
the distribution of quasars have been studied for many years,
beginning with Burbidge and Burbidge@13#, and confirmed
by a number of later studies. Arpet al. @14# have demon-
strated significant periodicity in the quasar redshift distribu-
tion looking in two principal directions of the sky. The peri-
odicity they found extends out to redshifts as high as 3.47,
with five or more cycles being evident.

A useful approach to developing models which include
the more general structures discussed above is to consider
models in which the universe has a lattice configuration.
Such a construction would consist of three sets of mutually

orthogonal thick slabs of matter, separated by regions of low
density~vacuum regions in the simplest case!. The range of
structures includes large bounded voids, sheets, filaments~at
the intersections of two orthogonal sheets!, and quasispheri-
cal clumps~at the intersections of three mutually orthogonal
sheets!. As with any cosmological model, the lattice universe
is a significant simplification of reality, but it could be ex-
pected to show some of the effects that one would expect in
a more realistic, but more intractable representation.

The lattice models differ significantly from the FLRW
models on scales comparable to the lattice distances, but on
very large scales they would likewise obey an appropriately
averaging cosmological principle, at least as it depends on
the average density. In addition, the lattice models would
appear anisotropic to a local observer, due to the optical
effects that are dependent on the degree of alignment be-
tween a given line of sight and the principal axes of the
sheets. In order to properly ascertain the observable proper-
ties of these models, which are significantly complicated by
the optical effects mentioned above, a proper solution of the
Einstein field equations is required to maintain consistency
in the optical calculations.

Using the restriction to Newtonian gravity and a static
universe, Lehle@15# has shown that there could be signifi-
cant observable effects in such a lattice universe. However,
because of the restrictions inherent to his approach, his work
did not show some of the redshift effects discussed in this
paper.

While the formalism for joining two different space-times
is well developed@16#, examples of its successful application
are rare and highly nontrivial to obtain. Therefore, as a first
step in studying models with the desired lattice structure, we
consider the simpler case of a universe which has a multi-
slice structure on a large scale and is constructed by alternat-
ing slices of Einstein–de Sitter dust and Kasner vacuum re-
gions~see Fig. 1!. Although the universe does not appear to
have such a ‘‘cheese slice’’ structure, our model allows us to
investigate the effects of very large inhomogeneities on the
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propagation of a beam of light. The geometry of the cheese
slice universes is tractable, since the system described yields
an exact solution to the Einstein field equations, as discussed
in Ref. @17#.

The matching of FLRW space-times onto a Kasner
vacuum region has been investigated in Ref.@17#. We have
shown that only a spatially flat Einstein–de Sitter region can
be joined smoothly to a special case of the Kasner space-
time. We have also demonstrated that the pressure must van-
ish for the permanent matching to be possible. The metrics
involved, in comoving cylindrically symmetric coordinates,
are

ds25dt22a2t4/3~dr21r 2df21dz2! ~1!

in the Einstein–de Sitter region and

ds25dT22a2T4/3~dr21r 2df2!2b2T22/3dZ2 ~2!

in the Kasner region. Constantsa and b are introduced to
ensure proper unit bookkeeping. The two metrics are identi-
cal for surfaces withz5Z5const andt5T. In the cheese
slice cosmological model, the initial conditions of very thin
and dense slices of matter in a vacuum background evolve
into a universe almost entirely filled with cosmological dust
with only thin slices of vacuum. In this paper, we shall use
the optical scalar formalism to investigate the effects of such
large inhomogeneities on the propagation of a beam of light.
The propagation of a single light ray is studied in detail in
the next section. In Sec. III, the cross-sectional area and
shape of a beam of light traveling through our model are
derived. Multislice models are investigated in Sec. IV, and
the major conclusions are summarized in Sec. V.

II. RAY PROPAGATION

The propagation of a single light ray through the cheese
slice model is the topic of this section. From now on, we will
use the symbolsF andK to designate indexed quantities or

scalars associated with the FLRW and Kasner regions,
respectively.1

The null tangent vector to the geodesics,ka5dxa/dt[ ẋa,
can be obtained directly from the Euler-Lagrange equations

d

dt

]L

] ẋa
2

]L

]xa
50, ~3!

whereL5(ds/dt)2 is the Lagrangian describing the gravi-
tational field. The general form for the Lagrangian in
Einstein–de Sitter space-time is

L
F
5 ṫ22a2t4/3~ ṙ 21r 2ḟ21 ż2!. ~4!

Since we are free to orient our coordinate system so that
f5const anddf50, we can choosek2[df/dt50. The
Lagrangian reduces to

L
F
5 ṫ22a2t4/3~ ṙ 21 ż2!, ~5!

and the null tangent vector is

kF
05«

t

j

t2/3
, kF

15«
r

jAh221

hat4/3
, and kF

35«
z

j

hat4/3
, ~6!

wherej andh are positive definite constants of integration.
The sign of each component ofka is carried through distinct
indicators «

t
, «

r
, and «

z
which can take on one of two

values 61. The actual value will be determined by the
‘‘type’’ of ray considered: time reversed («

t
521, «

r
511,

and «
z
521) or time forward («

t
511, «

r
521, and

«
z
511). When time-reversed~-forward! rays are consid-

ered, we are simply studying their behavior back~forward!
into time.

In Kasner space-time, the general form for the Lagrangian
is

L
K

5Ṫ22a2T4/3~ ṙ 21r 2ḟ2!2b2T22/3ż2. ~7!

Again, symmetry considerations enable us to choose
kK

2 [kK
f50. L

K
reduces to

L
K

5Ṫ22a2T4/3ṙ 22b2T22/3ż2, ~8!

and the null tangent vector has the components

kK
0 5«

t
T22/3Aa21S g

bD 2

T2, kK
1 5«

r

a

aT4/3
,

and

kK
3 5«

z

g

b2
T2/3, ~9!

1Throughout this paper Greek indices take the range 1–3 and
Latin indices the range 0–3. The indices~0,1,2,3! correspond to (t,
r ,f,z) or (T,r ,f,Z) depending on the metric used.

FIG. 1. Proposed model: the cheese slice universe.
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wherea andg are positive-definite constants of integration.
We need to determine howka crosses the boundary. We

first consider a point comoving with the boundary surface
separating the two regions. The observer’s four-velocity and
the null tangent vector to the geodesic must satisfy

~u
a
ka!F5~u

a
ka!K and ~u

a
ua!F5~u

a
ua!K51. ~10!

The first condition simply means that an observer fixed to a
point measures the same frequency whether it is measured in
the Einstein–de Sitter or Kasner space-times. The second
equation requires that the observer be timelike in both
frames. These conditions imply thatat the surface
(k0)F5(k0)K ~i.e., the time component of the null tangent
vector is continuous across the boundary!. Hence, relations
~6! and ~9! yield

j5Aa21S g

bD 2

t in
2 , ~11!

wheret
in

is the time evaluated at entry of the current Kasner

slice.2

We now consider an observer moving on the interface, in
the radial direction. The metric elements involved are the
same on both sides of the boundary, and hence
(u

a
)F5(u

a
)K . The condition that the frequency be continu-

ous and (k0)F5(k0)K requires that at the surface
(k1)F5(k1)K . From Eqs.~6!, ~9!, and~11! we can write

a5j
Ah221

h
and

gt
in

b
5

j

h
. ~12!

The null tangent vector then has components

kK
0 5«

t

j

hT2/3A~h221!1S T

t
in
D 2

,

kK
1 5«

r

jAh221

haT4/3
, andkK

3 5«
z

jT2/3

hbt
in

. ~13!

Finally, the physical symmetries of the model and the fact
that ka is a null vector suggest thatk3 is not continuous
across the boundary butg

33
k3k3 is continuous.

A. Bending angle

We defineC as the angle between a three-vector normal
to the boundary surfaceVW , and the tangent three-vector to the
geodesickW . C can easily be calculated from the familiar
equation for scalar productsVW •kW5uVW ikW ucosC. Sinceka is a
null vector,g

ab
is diagonal, andVW is normal to the boundary,

we have cosC52ug
33

u1/2(k3/k0) and sinC5ug
11

u1/2(k1/k0),

which yields

tanC52S ug
11

u

ug
33

u D
1/2

k1

k3
. ~14!

Through the Einstein–de Sitter line element, Eq.~1!, and
relations~6! and ~14!, we obtain

tanC
F
5Ah221[const. ~15!

This result was expected since the Einstein–de Sitter space-
time is homogeneous and isotropic. Similarly, Eqs.~2!, ~13!,
and ~14! enable us to write, for the Kasner region

tanC
K

5
Ah221

~T/t
in

!
5

tanC
F

~T/t
in

!
, ~16!

whereC
F

was evaluated in theprevious Einstein–de Sitter

slice. At the crossing of the boundary into the Kasner region,
no bending will occur at the surface. As a time-forward
~-reversed! ray propagates through the Kasner slice, it will be
forced to move towards~away from! the normal to the sur-
face separating the two regions~see Fig. 2!.

We now substitute relation~15! into Eqs.~6! and~13! and
write the null tangent vector in its final form

kF
05«

t

j

t2/3
, kF

15«
r

jsinC
in

at4/3
, and kF

35«
z

jcosC
in

at4/3

~17!

and

kK
0 5«

t

jcosC
in

T2/3 Atan2C
in

1S T

t
in
D 2

,

kK
1 5«

r

jsinC
in

aT4/3
, and kK

3 5«
z

jT2/3cosC
in

bt
in

~18!

for Einstein–de Sitter and Kasner slices, respectively.

2Since at each interfaceT5t, we will use t
in

(t
out

) as the time
evaluated at entry~exit! of the current slice.

FIG. 2. Time-forward ray propagating through the cheese slice
universe.
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The distance traveled by the central ray in the radial andz
directions as a function of time along the beam can be com-
puted by integratingdr/dt, dz/dt, dr/dT, and dZ/dT. In
Einstein–de Sitter space-time, the two equations of interest
are

a~r 2r
in

!
F
523t in

1/3sinC
inH S t

t
in
D 1/3

21J ~19!

and

a~z2z
in

!
F
53t in

1/3cosC
inH S t

t
in
D 1/3

21J , ~20!

where, as previously defined, the subscript ‘‘in’’ designates
the value taken by a given variable at entry of the current
slice. In Kasner regions, we must numerically integrate the
equations

a~r 2r
in

!
K

52t in
1/3tanC

inEt
in

T d~T/t
in

!

~T/t
in

!2/3Atan2C
in

1~T/t
in

!2

~21!

and

b~Z2Z
in

!
K

5t in
4/3E

t
in

T ~T/t
in

!4/3d~T/t
in

!

Atan2C
in

1~T/t
in

!2
. ~22!

A Simpson rule integrator is used to perform these integra-
tions.

B. Redshift factor

An observer with four-velocityua observes a photon with
null tangent vectorka to have a frequency proportional to
u

a
ka. Hence, the redshift factor across a slice, that is, the

ratio of observed frequencies, for a time-reversed ray can be
written as x[11 redshift 5(u

a
ka)

out
/(u

a
ka)

in
. Since the

boundaries are comoving surfaces in both regions, we have

x
F
5S t

in

t
out

D 2/3

, ~23!

x
K

5
cosC

in
Atan2C

in
1~ t

out
/t

in
!2

~ t
out

/t
in

!2/3
~24!

for the Einstein–de Sitter and Kasner regions, respectively.
Time-reversed rays@i.e., rays for which (t

out
/t

in
),1] will

experience the usual redshift effect each time an Einstein–de
Sitter slice is crossed.

The contribution of each Kasner region, for differentC
in

values, as a function of (T/t
in
) is illustrated in Fig. 3~a!. The

minimum point of x
K

can be found by setting

dx
K
/d(T/t

in
)50. When (T/t

in
)5A2tanC

in
, the contribution

of the Kasner region to the redshift factor will have reached
its lowest numerical value. Substituting this result into rela-
tion ~16! we find that the turnover point is atC

K
.35°.

When traveling through a Kasner slice, the rays will be blue-
shifted as long asC

K
&35°. If C

K
*35°, then the expansion

along the radial coordinate dominates the contraction alongz
and the rays will be redshifted. SinceC is a function of the
thickness of the slice and its value at entry, the net contribu-
tion of a Kasner slice may be a redshift or a blueshift effect.

The behavior ofC as a function of (T/t
in
) as the beam

moves across a Kasner slice is illustrated in Fig. 3~b!. For all
rays withC

in
Þ0 the final value for the bending angle~when

T/t
in

50) is C590°. This outcome is inevitable however

small the initial tilt. This striking degeneracy between rays
with C

in
50 and those withC

in
Þ0 will cause drastic differ-

ences when computing the characteristics of the beam.
Finally, the redshift factor for the entire model is the

product of each contribution.

C. Matching ka at subsequent interfaces

It was shown in Dyer, Landry, and Shaver@17# that for
the matching between an Einstein–de Sitter region and a
Kasner region to be permanent, the only components ofgab
that need be continuous at the boundary surface areg00, g11,
andg22. We have shown in this section thatk0, k1, and the
productg33k

3k3 must also be continuous—we stress the fact
thatg33 andk33 are notindividually continuous at the bound-
ary. We must ensure that the continuity of all previous vari-
ables is preserved at each subsequent interface.

We will use circled numerical indices to specify at which
interface a given quantity is evaluated. At the second bound-
ary surface, the junction of a Kasner slice and an Einstein–de
Sitter slice, the continuity ofk0 requires that

FIG. 3. Kasner slice:x and C ~in degrees!
evaluated usingC

in
50° ~bottom curve!, 5°, 10°,

20°, 40°, 60°, 70°, and 80°~top solid line!. The
dashed line represents the redshift contribution
from an Einstein–de Sitter slice.
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j
b

5j
a

cosC
a
Atan2C

a
1~ t

b
/t

a
!2, ~25!

whereas the continuity ofk1 implies

j
a

sinC
a

5j
b

sinC
b

, ~26!

from which

sinC
b

5
tanC

a

Atan2C
a

1~ t
b

/t
a

!2
~27!

is obtained. This result is equivalent to the bending relation
described by Eq.~16!. In addition, the productg33k

3k3 is
found to be identically matched.

On the third boundary, all quantities of interest are con-
tinuous if j

b
is used as the constant of integration for

(kK
0 )

c
. At the fourth interface, a new value forj will have

to be computed, and so on. When a light ray crosses a
Kasner–Einstein–de Sitter boundary, the constantj must be
computed using the recursion relation

j
si

5j
2si

cosC
2si Atan2C

2si
1~ t

si
/t

2si
!2, ~28!

where the subscriptssi and 2si designate quantities evalu-
ated at the current and previous interfaces, respectively. The
bending angle used at entry of each new slice is obtained
from relations~15! and ~16!.

III. SHAPE AND SIZE OF THE BEAM

In the geometrical optics approximation, the optical scalar
equations~OSE’s! describe the evolution of the cross section
of an infinitesimal beam as the photons propagate. The
Ehlers-Sachs theorem@18# states that the cross section of an
irrotational congruence of null geodesics is expanded and
sheared at the respective rates

Q5
1

2
kia

a and usu5S 1

2
k

~aib!
kaib2Q2D 1/2

, ~29!

with respect to the affine parametert along the beam.ia
denotes covariant differentiation with respect toxa, and ()
represents symmetrization over the enclosed indices. The
only effect ofQ is to rescale the area, and thus it is expected
to be real. Sinces is characterized by an amplitude and an
orientation, it is a complex quantity.

The optical scalarsQ ands are propagated along the null
geodesics according to the OSE’s@18#

Q̇1Q21ss̄5R5 1
2 R

ab
kakb, ~30!

ṡ12Qs5Feib5C
aib j

kakb s̄ i s̄ j , ~31!

where the dot is equivalent tod/dt, the bar denotes complex
conjugation,R

ab
is the Ricci curvature tensor, andC

aib j
is

the Weyl curvature tensor.si is a complex null vector paral-
lelly propagated along the congruence and satisfies the tetrad
conditionssak

a
50 andsa s̄

a
521 ~for 22 signature!. The

Ricci driving termR represents focusing due to matter en-

closed by the beam and is always nonpositive for positive-
definite local energy density, whereas the Weyl driving term
Feib represents focusing by nonlocal matter.

Kantowski @19# derived the relationship between the op-
tical scalars and the curvature structure of the wavefront de-
fined by the intersection of the observer’s rest frame with a
specific null hypersurface. We define the real quantitiesC

7

anda
7

in terms of the two principal curvatures of the wave-

front:

Q6s5
d@ ln~C

7
eia

7!#

dt
. ~32!

We can now write Eqs.~30! and ~31! as

C̈
7

/C
7

1ȧ25R6Fcosb ~33!

and

ä1ȧ~Ċ
1

/C
1

1Ċ
2

/C
2

!52Fsinb. ~34!

If A is the cross-sectional area of the beam, then
Q5Ȧ/(2A). HenceA is proportional toC

1
C

2
, and the

distortion factor is proportional toC
1

/C
2

. This form of the

OSE is very useful in situations where space-times with
much symmetry are involved.

The Einstein–de Sitter space-time is conformally flat, that
is, C

aib j
50 everywhere, and thereforeFeib50. The re-

maining driving term, computed through R
F

5(1/2)R
ab

kakb, is easily obtained since the only nonzero

components of the Ricci tensor areR
00

, R
11

, R
22

, andR
33

.

The Ricci driving term then reduces to

R
F
5

1

2
~R

00
k0k01R

11
k1k11R

33
k3k3!5

22j2

3t10/3
. ~35!

The Kasner space-time is a vacuum solution of the Ein-
stein field equations, and henceR

K
50. Following Dyer@20#

one may use spinor formalism to determines̄ i . At any point,
ka defines a one-spinorKA, up to a phase factor, through@21#

KBK̄Ẋ56sa
BẊka, ~36!

wheresa
BẊ are the spinor connections.3 For the purpose of

finding the Weyl driving term, we will consider time-forward
null tangent vectors. Hence, the ‘‘1 ’’ sign in Eq. ~36! will

be chosen. Sinceka is real,k250, ands2
BẊ is the only com-

plex spin connection matrix, it follows thatKBK̄Ẋ must be
real. Hence,K1 andK2 must have the same phase factor. In
order to establish a basis for spinors, we introduce a second
one-spinorm

A
such thatKAm

A
51, and then define the com-

plex null vectorsa5sBẊ
a

KBm̄ Ẋ. The parallel propagation of
ka andsa along the geodesic requires thatKB andmB must

3Capital Latin letters take the values 1 and 2.
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also be parallel propagated. We may chooseKA to be real
without losing generality onka. From Eqs.~18! and~36! we
finally obtain

K15
1

21/4
Y

1
and K25

1

21/4
Y

2
, ~37!

whereY
6

5$kK
0 6bT21/3kK

3 %1/2.

Because of cylindrical symmetry, we expect that, at a
given time, the Weyl driving term should be independent of
the radial coordinater . The nonzero components of the Weyl
tensor areC

0101
, C

0202
, C

0303
, C

1212
, C

1313
, andC

2323
. This

enables us to write

s̄05
aT2/3

2
~g1h! , s̄25

f̄

r
, and s̄35

aT

2b
~g2h!,

~38!

whereg[(K1/K2)( s̄12 i f̄ ), h[(K2/K1)( s̄11 i f̄ ), and f̄
is an unknown function ofT. Hence, it follows that
C

aib j
kakb t̄ i t̄ j} f̄ f̄ /T2. Finally, the normalization condition

KAm
A
51 enable us to write the Weyl driving term as

Feib5C
aib j

kakb s̄ i s̄ j5
2j2sin2C

in

3T10/3
~39!

up to a constant phase factor~i.e., b5const!.

A. Principal curvatures: Solutions

The expansion and shearing rates undergone by a beam of
light traveling through an Einstein–de Sitter slice once
shearing effects have been introduced~i.e., when the slice of
interest is not the observer’s slice! can be computed via Eqs.
~17! and ~29!:

Q
F
5«

t
jS 2

3t5/3
2

sinC
in

2art4/3D ~40!

and

usu
F
5

«
r
jsinC

in

2art4/3
. ~41!

One can easily verify that Eqs.~30! and ~31! are satisfied,
and that the phase factor ofs[usueiv is a constant~i.e.,
v̇

F
50).

Similarly, in Kasner regions,Q
K

and usu
K

may be com-

puted through relations~18! and ~29!:

Q
K

5«
t
jS cosC

in
„tan2C

in
14~T/t

in
!2

…

6T5/3Atan2C
in

1~T/t
in

!2
2

sinC
in

2arT4/3D
~42!

and

usu
K

5«
r
jsinC

inS 1

2arT4/3
2

tanC
in

2T5/3Atan2C
in

1~T/t
in

!2D .

~43!

The real part of Eq.~31! is satisfied if cos(b2v
K
)521, and

so we can chooseb2v
K

5p. Sinceb5const,v
K

is also a

constant.
We are then free to choose, in both space-times,s to be

real initially. We will definev50, which impliesb5p and
ȧ50.4 Equation~34! is then identically satisfied. SinceR

F
andF

K
are both simple functions of time coordinate, it is

more suitable to uset ~or T), instead of the affine parameter,
as the independent variable. Relation~33! is then reduced to
the decoupled pair

k0k0C79 1k0~k0!8C78 5~R7F!C
7

, ~44!

where the prime denotes total differentiation with respect to
t ~or T). We can also rewrite relation~32! in the simpler
form

Q6usu5
k0C78

C
7

. ~45!

1. Observer’s slice

We now consider a conical beam of light with vertex at
the observer and its base on the source of interest, so thatA
vanishes at the observer. In addition, the radial coordinate of
the central ray evaluated at the vertex of the cone is, by
definition, r

obs
[0. Therefore, it is inappropriate to use rela-

tion ~45! in order to determine solutions for the principal
curvatures in the observer’s slice. Instead, we will solve Eq.
~44! directly in the initial slice.

In Einstein–de Sitter space-time, Eq.~44! becomes

3t2C79 22tC78 12C
7

50. ~46!

Since the space-time is homogeneous and isotropic, we are
free to chooseC

1
5C

2
[C initially. The general solution is

C5a
1
t2/31a

2
t and A}C2. For small redshift @20#,5

A.(x21)2/2 which enables us to find the constants of inte-
gration, and the cross-sectional area of the beam is

A
F
52F S t

tobs
D 2/3

2S t

tobs
D G 2

, ~47!

wheretobs is the time variable evaluated at the observer or, if
expressed as a function of redshift factor,

4Note that in an Einstein–de Sitter sliceb is irrelevant since
Feib50.

5The cross-sectional area used throughout this paper has been res-
caled in order to eliminate the solid angleDV

obs
at the observer:

A[D,
2 /2, whereD, is the angular size distance.
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A
F
52x25/2@x1/42x21/4#2. ~48!

The peak value ofA is reached when (t/tobs)58/27.0.296
or at redshift 1.25 (x52.25).

In Kasner space-time, Eq.~44! becomes

3u2~ tan2C
obs

1u2!C7** 1u~22tan2C
obs

1u2!C7*

62tan2C
obs

C
7

50, ~49!

where the asterisk denotes total differentiation with respect
to u[T/tobs. The anisotropic nature of the vacuum region
suggests that the importance of the axis of symmetry cannot
be ignored. Consequently, if the first slice is to be repre-
sented by the Kasner metric, bothC

1
andC

2
will be needed

to computeA.
Once a particular solution to Eq.~49! is known, further

solutions can be obtained from a differential equation of
lower order~see, for example, Ref.@22#!. A particular solu-
tion for (C

1
)K is

C
11

}u21/33Atan2C
obs

1u2[Y
1
~u!. ~50!

A second particular solution can be found viaC
12

}v(u)Y
1
(u), where v(u) is a solution to v*

}u4/3/(tan2C
obs

1u2)3/2 giving v}(ar)
K

1Y1
213const,

where (ar)
K

is described by Eq.~21!. Since both particular

solutions are linearly independent on the domain of interest,
the general solution forC

1
is

~C
1

!
K

5a
1
Y

1
~u!1a

2
@~ar !

K
Y

1
~u!13tobs

1/3tanC
obs

#,
~51!

wherea
1

anda
2

are constants of integration.

Similarly, a particular solution to C
2

is C
21

}u2/3(ar)
K

, which yieldsC
22

} v̄ (u)u2/3(ar)
K

where v̄ (u)

is a solution tov̄ * (u)}1/(u2/3(ar)K
2Atan2C

obs
1u2), from

which v̄ }(ar)K
211const is obtained. The general solution

for C
2

is

~C
2

!
K

5a1* u2/3~ar !
K

1a2* u2/3, ~52!

wherea1* anda2* are constants of integration.
If A

K
5(C

1
)

K
(C

2
)

K
is to be a viable solution in the first

slice, we must require that both principal curvatures vanish
at the observer. This requirement is easily met if
a

2
52a

1
/(3tobs

1/3sinC
obs

)[a
1
3P

0
and a2* 50, since

uu
obs

[(T/t
obs

)u
obs

51 and (ar)
K
u
obs

50. (C
1

)
K

and (C
2

)
K

then reduce to

~C
1

!
K

5a
1H Y

1
~u!@11P

0
~ar !

K
#2

1

cosC
obs
J ~53!

and

~C
2

!
K

5a1* u2/3~ar !
K

. ~54!

The cross-sectional area of the beam is then

A
K

5P
1
u2/3~ar !

KFY
1
~u!@11P

0
~ar !

K
#2

1

cosC
obs

G ,

~55!

where P
1

is a constant yet to be determined and

P
0
[21/(3tobs

1/3sinCobs). In order forA
K

to be a solution to

Q5(dA/dt)/(2A), it must reduce toA
K
}u2/3(ar)

K
Y

1
(u),

which can only be accomplished if (C
1

)
K
u
obs

Þ0. Since

there is no locally isotropic scale in Kasner space-time~i.e.,
shearing effects can never be ignored!, a bundle of rays will
never focus back to a point if it is solely traveling in that
space-time. Thus no beam of interest can be ‘‘launched’’ in a
Kasner region.

2. Subsequent slices

Once the beam has been properly launched in an
Einstein–de Sitter region, that is, when the apex of the cone
is at a caustic point~i.e., A50), we are free to integrate Eq.
~45! in order to determine the principal curvatures of a beam
traveling in the remaining slabs of the cheese slice model.

The tangential extent of a beam traveling in the
Einstein–de Sitter space-time can be independently obtained
through the line element described by Eq.~1!: l

tg
5at2/3rdf,

where df is the beam opening angle projected along the
tangential direction6 or

dl
tg
/dt

l
tg

5
2

3t
1

«
r
sinC

in

«
t
art2/3

5
2

3t
2

sinC
in

art2/3
. ~56!

We now substitute Eqs.~40! and ~41! and kF
05«

t
j/t2/3

into Eq. ~45!, giving

S dC
2

/dt

C
2

D
F

5
2

3t
2

sinC
in

art2/3
~57!

and

S dC
1

/dt

C
1

D
F

5
2

3t
. ~58!

A straightforward comparison between relations~56! and
~57! yields (C

2
)F5 l

tg
}rt 2/3. Since Einstein–de Sitter space-

time hasF50, the real part of Eq.~31! reduces to (usuA)
F

}(usu
F
C

1
C

2
)F5const, from which (C

1
)

F
}t2/3 is obtained.

We stress the fact thatusu is theamplitudeof the shearing
rate and it is not, in our case, a positive-definite function.
The biperiodicity property of the phase factor ofs forces us
to choose the proper sign by requiring the correspondence
betweenl

tg
andC

2
to be consistent in both time directions.

6l tg is tangential to the axis of symmetry and lies in a plane per-
pendicular to it.
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Finally, a convenient normalization ofC
1

and C
2

with

respect to output values from the previous Kasner slice
yields

~C
2

!
F
5~C

2
!

inS t

t
in
D 2/3S r

r
in
D

and

~C
1

!
F
5~C

1
!

inS t

t
in
D 2/3

, ~59!

where the index ‘‘in’’ denotes variables evaluated at the en-
trance of the current Einstein–de Sitter slice~i.e., exit values
from previous Kasner slice!.

In Kasner space-time, we expect (C
2

)
K

to behave the

same way as (C
2

)
F

since the metrics in both regions of

interest have the same expansion factor whendz5dZ50.
This assumption is easily verified through

S dl
tg
/dT

l
tg

D
K

5
2

3T
2

tanC
in

arT2/3Atan2C
in

1~T/t
in

!2

5S dC
2

/dT

C
2

D
K

, ~60!

which confirms that (C
2

)K5 l
tg
}rT2/3. (C

1
)

K
can be ob-

tained by solving the first-order differential equation

S dC
1

/dT

C
1

D
K

5
~T/t

in
!22tan2C

in

2T$tan2C
in

1~T/t
in

!2%
1

1

6T
, ~61!

with lnC
1

}(1/6)ln$(v1tan2C
in
)3/v% as its solution, where

v[(T/t
in
)2. Once again, we normalizeC

1
andC

2
with re-

spect to output values from the previous Einstein–de Sitter
slice, and we finally obtain

~C
2

!
K

5~C
2

!
inS T

t
in
D 2/3S r

r
in
D ~62!

and

~C
1

!
K

5~C
1

!
in
cosC

in

Atan2C
in

1~T/t
in

!2

~T/t
in

!1/3
. ~63!

3. Degenerate case:C50

If the tilt angle at the observer vanishes, then the beam
will remain parallel to the axis of symmetry as it is propa-
gated through the cheese slice model, consistent with Eqs.
~15! and ~16!. Since r

obs
50, the radial coordinate of the

central ray will remainr 50 anddr/dt[k150.
For this special case only, the null tangent vector in

Einstein–de Sitter regions has components

kF
05«

t

j

t2/3
, kF

15kF
250, kF

35«
z

j

at4/3
, ~64!

and the expansion and shearing rates reduce to

Q
F
5«

t

2j

3t5/3
and usuF

250. ~65!

The central ray is traveling solely in thez direction, and
hence there will be no distortion of the cross-sectional area
of the beam. Since the Ricci driving term is due to matter
enclosed in the beam, it is still described by Eq.~35!.

Similarly, in Kasner space-time,ka becomes

kK
0 5«

t

jT1/3

t
in

, kK
1 5kK

2 50, kK
3 5«

z

jT2/3

bt
in

, ~66!

and the optical scalars reduce to

Q
K

5«
t

2j

3t
in
T2/3

and usuK
2 50. ~67!

Again there will be no distortion of the beam area; only an
expansion will occur, consistent withF50 for C

in
50, from

Eq. ~39!.
In both regions of interest, the dimensions of the beam

can be obtained through relation~45!:

C[C
1

5~C
1

!
inS time

t
in

D 2/3

, ~68!

and A}C1
2 . The only relevant principal curvature isC

1
,

which is proportional to the diameter of the beam in the
radial direction. Clearly, if a bundle of rays has a circular
cross section, it will remain circular if and only ifC

obs
50.

Finally, even though the principal curvature is described
by relation~68! in both space-times, the time ratio is com-
puted through two distinct equations. In Einstein–de Sitter
regions, the ratio is obtained via

S t

t
in
D

F

5S a~z2z
in

!
F

3t in
1/3cosC

in

11D 3

, ~69!

whereC
in

5C
obs

50, while

S T

t
in
D

K

5F4b~Z2Z
in

!
K

3t in
4/3

11 G 3/4

~70!

must be used in Kasner regions.

B. First three slices

We now investigate the changes in key properties of a
beam as it travels through~1! a two-slice model constructed
with a Kasner region much larger than the observer’s slice
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and ~2! a three-slice model where the third slab, an
Einstein–de Sitter region, is much larger than the two previ-
ous slices.

1. Two-slice model

The purpose of this special model is to isolate the effect
of the Kasner space-time on the characteristics of the beam
and compare the results with those obtained via the reference
model: the Einstein–de Sitter cosmological model. We have
chosen the relative ‘‘thicknesses’’ of the two slabs to be in
the proportion F:K51:75 @i.e., the quotient a(z

out
2z

in
)

F
/b(Z

out
2Z

in
)

K
is in the ratio 1/75], where the vacuum

region is represented by the largest number. The criterion
used to choose individual thicknesses is the following: A
light ray propagated at a tilt angleC

obs
50° must pass

through at least 95% of the model.
Once the two-slice model is constructed, the left-hand

side of Eqs.~20! and ~22! are known quantities and the two
time ratios (t

out
/t

in
)

F
and (t

out
/t

in
)

K
can be determined. In an

Einstein–de Sitter slice, this ratio is known analytically
through Eq.~69! and, for time-reversed rays, (t

out
/t

in
)<1

since (z
out

2z
in
)<0. In the observer’s slice initial conditions

must be used fort
in
[tobs, C

in
[C

obs
, andz

in
[z

obs
[0. In

the first Kasner slice~i.e., the second slab of the model!
t
out

/t
in

is known analytically, via relation~70!, only if

C
obs

50°, whereas in cases for whichC
obs

Þ0°, the time

ratio must be determined numerically. The upper bound of
the integral described by Eq.~22! must be changed until the
right-hand side of the same relation is equal to
b(Z

out
2Z

in
)

K
, inside a preset tolerance range. Once a proper

value for t
out

/t
in

has been ascertained, the radial distance

traveled in the current Kasner slice can be evaluated by the
direct numerical integration of relation~21!.

For two-slice models with a proportionally much larger
Kasner slice, the redshift factor for the entire model is over-
whelmed by the Kasner contribution. The behavior of bothx
andC versus time ratio is almost identical to Figs. 3~a! and
3~b!, respectively.

Several graphs of key properties are provided in Fig. 4
~left!.7 The anisotropic nature of the vacuum region is clearly
visible in the strikingly different behavior ofC

1
and C

2
.

Furthermore,C
1

is much smaller than its Einstein–de Sitter

counterpart, except in circumstances for which (t/tobs) ap-
proaches zero. Hence, the cross-sectional areaA}C

1
C

2

and the distortion factor, computed usingC
1

/C
2

, will be

highly affected. Also, note that the maximum value ofA has
moved to smaller (t/tobs).

The minimum point of (C
1

)
K

can be found by setting

dC
1

/dT50 in Eq. ~61!. When (T/t
in
)5tanC

in
/A2, (C

1
)

K
will have reached its minimum value. Since we are consid-
ering time-reversed beams, C

in
must satisfy

tan(C
in
)max5A2 so that a turnover may occur@i.e., if

C
in
>54.7° then (C

1
)

K
can only increase#.

Plots in Fig. 5~left! offer a different view of two impor-
tant characteristics of the beam:x andA. Both quantities are
plotted versus the fractional distance traveled by the beam in
the z direction. By definition, a fractional distance of 1 is
reached by a beam withC

obs
50°; the larger the initial tilt

7From now on, we will uset/tobs to denote the time ratio regard-
less of the space-time describing the current slice.

FIG. 4. Two- and three-slice models: When
pertinent, a dashed line representing the variable
of interest evaluated in the Einstein–de Sitter uni-
verse was included as a reference, andt/tobs at
peak value ofC

1
andA in the reference model is

indicated with an arrow.C
1

and A were evalu-
ated usingC

obs
50° ~bottom line!, 10°, 20°, 40°,

60°, 70°, and 80°~top line!. C
2

and C
1

/C
2

were evaluated usingC
obs

510° ~top line forC
2

and bottom line forC
1

/C
2

) to 80° ~bottom line
for C

2
and top line forC

1
/C

2
). C

1
graph in

three-slice model: the curves for whichC
obs

50°
and C

obs
510° are overlapping and undistin-

guishable.
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angle, the smaller the fractional distance will be once
(t/tobs)50 is reached.

2. Three-slice model

The purpose of the three-slice model is to isolate the ef-
fect of the Einstein–de Sitter space-time on the characteris-
tics of the beam once shearing effects have been introduced.
We have chosen the relative ‘‘thicknesses’’ to be in the pro-
portion F:K:F51:1:75,where the slice of interest is repre-
sented by the largest number.

The time ratio at any point in the third slice may be com-
puted via relation~69!, which enables us to calculate,
through Eq.~19!, the distance traveled in the radial direc-
tion. Equations~59! and~68! provide the principal curvatures
of the wavefront in cases for whichC

obs
Þ0° andC

obs
50°,

respectively. Pertinent plots are provided in Figs. 4~right!
and 5~right!.

All curves representing properties of the beam which do
not involveC

1
are very close to the reference model, which-

ever C
obs

is used. Through the behavior ofC
1

, it is clear

that the intervening Kasner slice, however small, will cause
drastic changes in the cross-sectional area of the beam. Fi-
nally, note that the peak value ofA has now moved to larger
(t/tobs).

For comparison purposes, we have included Fig. 6, which
summarizes the properties of a beam propagated through a
three-slice model with slabs of relative thicknesses in the
proportionF:K:F51:1:13. From the plots ofA andC

1
/C

2

we know that, in the sampled range ofC
obs

used, only beams

for which C
obs

50° – 40° were able to reach the third slab,

while the three most tilted beams ended their journey in the
Kasner region.

We want to emphasize the importance of the thickness of
the first slice on the amplitude and behavior ofC

1
, with

obvious consequences onA and the distortion factor. The

tidal effects introduced in the beam as soon as the first Kas-
ner slice is entered will drastically reduce the ability ofC

1

to reach high amplitudes~except in cases witht/tobs→0).
SinceC

2
lies perpendicular to the axis of symmetry, it is not

as sensitive to variations in the thickness of the observer’s
slice.

It is also worth mentioning that all physical properties of
a beam of light traveling through the cheese slice model are
now known analytically. The only exception is the evalua-
tion, in Kasner regions, of the time variable along the beam
as a function of affine parameter.

As a final note to this section, we now state a special
condition that must be fulfilled in order for Eqs.~59!, ~62!,
and ~63! to be valid representations of the principal curva-
tures in Einstein–de Sitter~once shearing has been intro-
duced! and Kasner slices, respectively. Because of the de-
generate nature of the characteristics of a beam that is
propagated along the axis of symmetry~i.e., C

obs
50), we

must require that a beam for whichC
obs

Þ0 must not contain

this axis; that is, if d is the beam opening angle in the radial
direction, thenC.d/2.

The properties of complete multislice models are studied
in the next section.

IV. RESULTS FOR MULTISLICE MODELS

We initially consider cheese slice models which are con-
structed with slabs of equal thickness or, more precisely,
slabs for which the left-hand sides of Eqs.~20! and ~22! are
all equal. For all models, we evaluate the change in apparent
magnitude of a source due to lensing:Dm. The corrected
apparent magnitude of the source is@23#

m
c
5M12515log

10
~c/H

obs
!15log

10
~D

L
![m

F
1Dm,

~71!

FIG. 5. Two- and three-slice models:x andA
versus the fractional distance traveled across each
model. A fractional distance of 1 is reached by a
beam with C

obs
50°, while the smallest frac-

tional distance is reached by a beam with the
largest angle, that isC

obs
580°.

FIG. 6. Three-slice model withF:K:F
51:1:13.Note that the curves with the smallest
C

obs
will break away from the reference curves at

the largest (t/tobs).
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whereM is the absolute magnitude,c/H
obs

is in megapar-

secs,D
L
5(11z)2A2A is the luminosity distance in units of

(c/H
obs

), m
F

is the apparent magnitude the source would

have in the reference universe, andDm52.5log
10

(A/A
F
).

Once a proper value forA has been determined, the cor-
responding cross-sectional area the beam would have in the
absence of lensing is evaluated at the same redshift factorx,
through Eq.~48!, and the same time ratio (t/tobs), via rela-
tion ~47!. Thus, two distinct quantities are obtained: (Dm)

x
where bothA andA

F
are evaluated at the same redshift and

(Dm)
t

where bothA andA
F

are evaluated at the same time

ratio.8 Again, we consider time-reversed beams, and so the
use of (Dm)

x
is restricted to cases for whichx>1, since no

blueshift effect can be obtained via the reference model.
The effects on the properties of a beam propagated

through a 50-slice model~case 1! are presented first. Perti-
nent plots are provided in Figs. 7 and 8. For a given time
ratio, the cross-sectional area of a beam traveling through the
cheese slice model is smaller than its Einstein–de Sitter
counterpart, except when (t/tobs) approaches 0. The resulting
amplification of the source translates into a negative (Dm)

t
for all time ratios but (t/tobs)→0. The unmistakable signa-
tures of both space-times are clearly visible in the sharp
variations of (Dm)

x
for small tilt angles and low redshifts.

The amplification of the source is at its maximum near

x;100.4.2.5, which is quite close to the redshift factor at
which A

F
reaches its maximum value, that is,x52.25. We

remind the reader that in Kasner regionsA peaks at compara-
tively smaller (t/tobs) and higherx.

Figures 7 and 8 also illustrate the properties of a beam
traveling through a 200-slice model~case 2!. The structure,
strikingly visible in case 1, has been considerably smoothed
out, even in cases for whichC

obs
is large. Again,C

1
has

been considerably reduced in magnitude. Thus, all curves
representingA have been scaled down and the distortion
effects enhanced. For a givenC

obs
, the correction to the

apparent magnitude (Dm)
t
needed to account for the lensing

effects is now larger~i.e., more negative!, although the shape
of the curves is similar to the shape of those found for case 1.

In order to isolate the effects of increasing the number of
slices on the propagation of the beam, we now use a 2000-
slice model~case 3! where the first slice is identical to its
counterpart from the previous 200-slice construction~i.e., all
slices but the first are of equal thickness!. This will enable
C

1
to reach the same amplitude at exit of the first slab, and

any changes in the characteristics of the beam will be due
solely to the now thinner and more numerous slabs. The only
perceivable consequence of a tenfold increase in the number
of slices is to almost completely eliminate any irregularities
in the curves~see Figs. 7 and 8!. A further augmentation,
say, by a factor of 5, would totally hide the identity of indi-
vidual slices; that is, as long as the observer’s slice remains
unchanged, we could not tell in which space-time the beam
is traveling into at a given (t/tobs) by simply looking at the
plots.

Finally, a 2000-slice model was constructed using the

8Note that bothA andA
F

are in units of (c/H
obs

)2. If one wishes
to use a different value forH

obs
in the reference model, a proper

rescaling of allDm curves will have to be made.

FIG. 7. Multislice models: The 50- and 200-
slice models~cases 1 and 2! are constructed with
slices of equal thickness, while in the 2000-slice
model~case 3! all slices but the first are of equal
thickness~see text for more details!. For all plots,
as for their counterparts in Fig. 4 we have used
the same parameters in the same sequence. (Dm)

t
was evaluated usingC

obs
50° ~upper graph! and,

for the lower graph, 10°~bottom line! to 80° ~top
line!.
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same observer’s slice and 1999 randomly selected slab thick-
nesses. In order to generate the sample, 1998 random num-
bers between 0 and 1 were produced and sorted. The relative
thicknesses were computed by the subtraction of two neigh-
boring numbers, and a scaling factor, representative of the
total thickness desired, was used to calculate the final thick-
ness for each slab. This simple method ensured that no
overly large or small slabs were part of the sample. Slight
differences were noticeable at largeC

obs
for C

1
and A,

whereas (Dm)
x

differed from the previous model at low red-

shift and smallC
obs

. However, if the number of slabs be-

tween the observer and the source is expected to be large,

say, larger then a few thousands, there appears to be no in-
centive to warrant the use of random over equal-slice mod-
els.

From the observer’s point of view, the look-back time is
not a suitable choice of independent variable, and thus the
redshift factor is used in all remaining plots. Graphs of the
angular size distanceD,, the luminosity distance
D

L
5(11z)2D,, and the axial ratio ([ distortion factor

}C
1

/C
2

) as functions of redshift factor are provided in

Figs. 9 and 10 for variousC
obs

6dC
obs

. Each graph contains

five curves which illustrate the variations in the results
caused by a slight change in the direction of observation. In

FIG. 8. Multislice models: (Dm)
x

versusx and log
10

(x). Bottom graphs: (Dm)
x

was computed usingC
obs

510° ~bottom line! to 80° ~top
line!.
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all cases butC
obs

52°, redshift factors up to 4 were consid-

ered. BothD, and D
L

are expressed in units of (c/H
obs

),

whereas the axial ratio is dimensionless. A 5000-slice model
constructed with slabs of equal thickness was used to pro-
duce the results. The cross-sectional area of the beam is cho-
sen to be initially circular; i.e., it is assumed that on average

the image of the source is circular if no lensing occurs.
The behavior ofD, andD

L
for small C

obs
is somewhat

complex since overall blueshift effects are possible~see Fig.
9!, and both functions can take more than one value at a
given x, whereasD, and D

L
evaluated for largerC

obs
are

considerably reduced in amplitude but similar in shape to

FIG. 9. In the Einstein–de Sitter cosmology~EdeS!, D, reaches peak value atx[11z52.25.C
obs

52°60.2° graphs: observational
tests forC

obs
51.8° ~bottom curve or curve that reaches lowestx value!, 1.9°, 2.0°, 2.1°, and 2.2°~top curve!. The maximum value ofD,

is now much lower and nearx.1.05. Since shearing effects are introduced in the beam early on, the image of the source will be highly
deformed even at very low redshifts.C

obs
510°62° graphs: observational tests forC

obs
58° ~bottom curve!, 9°, 10°, 11°, and 12°~top

curve!. The peak value ofD, is now located in a broader range ofx: 1.07,x,1.1. C
obs

520°62°: observational tests forC
obs

518°
~bottom curve!, 19°, 20°, 21°, and 22°~top curve!.
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their Einstein–de Sitter counterparts. Hence, considerable
amplification effects are expected; i.e., the source appears
brighter than it would in the absence of lensing.

For all C
obs

, the image ellipticity increases sharply with

x ~i.e., the axial ratio decreases! as soon as tidal distortions
are introduced in the beam. The distribution of ellipticities
about the axis of symmetry is quite spectacular. The minor
axis of the cross-sectional area of the beam (C

1
) always

points towards the axis of symmetry, while the major axis
(C

2
) is tangential to the axis of symmetry and lies in a plane

perpendicular to it. The alignment of all minor axes and the
alignment of all major axes suggest a simple scheme to lo-
cate the direction of layering in the matter distribution. In
addition, asC

obs
increases the redshift factor at whichD,

reaches its maximum value is shifted towards largerx, in
most cases, the slope ofD

L
curves increases~i.e., the appar-

ent brightness of a given source decreases asC
obs

increases!,

and in most cases, for redshift factors larger than at peak
value, a noticeable flattening ofD, curves occurs.

If we were to use a cheese slice model with a different
number of slabs, or one with a larger first slice, variations in
the results would of course occur but the major trends dis-
cussed above would still apply.

V. CONCLUSIONS

The observational relations in a universe with density in-
homogeneities extending over the largest distance scales
have been studied in the exact case where the lensing is
caused by large slabs of alternating pure vacuum and dust.
Significant bending and anisotropic redshift effects are intro-
duced in the beam. It is clear that the introduction of such
large inhomogeneous structures can have dramatic effects on
the physical properties of a bundle of rays.

In all multislice models considered, the action of the tidal
forces on the beam results in a peculiar distribution of ellip-
ticities about the axis of symmetry of the model. This align-
ment pattern does not seem to agree with observations, al-
though an apparent layering in the distribution of galaxies
was reported by several authors, as discussed in the Introduc-
tion. Furthermore, the image axial ratio decreases sharply
with redshift as soon as shear is introduced in the beam~i.e.,
as soon as the first Kasner slab is crossed!. In fact, if one
wishes to retrieve the Einstein–de Sitter space-time, the
source must be located in the observer’s slice~i.e., one must
extend the observer’s slice to include the entire observable
universe!.

The systematic and direction-dependent distortion of dis-

tant images is of particular interest. This distortion has the
same radial compression and tangential stretching familiar
with the more conventional gravitational lens effects of gal-
axies or clusters of galaxies. In our case, this distortion arises
from a uniformly thick slab of matter, while in the conven-
tional situation, where the gravitational lensing effects are
simply overlaid on the background FLRW universe, the uni-
formly thick slab introduces no distortion.

The cheese slice model displays strong inhomogeneity
while remaining dynamically self-consistent. This differs
strongly from the more usual calculations of observational
effects in superposition models of inhomogeneity, such as
have been used by many authors~for instance, see Ref.@24#
and references therein!. These approaches suffer from prob-
lems of internal inconsistencies, since it is not possible to
overlay an arbitrary inhomogeneity on the background
FLRW model without destroying the important properties of
the FLRW model itself.

It is well known that to preserve the foundations of the
FLRW model, one can only insert spherically symmetric,
mass-compensating, matter distributions, of which the clas-
sical Swiss cheese vacuole model is the extreme limit, and
the rest of which can be described by the Bondi-Tolman
solutions and their generalizations. For the case of spatially
bounded inhomogeneous structures, there is always the hope
that averaging over a sufficiently large scale will recover
some of the FLRW properties, since the ‘‘mass excess’’~and
thus the Weyl curvature representing the tidal effects! may
be relatively diminished in well chosen cases.

The possibility of averaging over sufficiently large scales
in order to diminish the influence of a given quasispherical
inhomogeneity does not present itself for topologically open
structures like large sheets, for a number of reasons. In the
case at hand, there will not exist any distance scale over
which the effects discussed above can be made to relatively
vanish. This significantly changes the approach that must be
taken, and in particular it means that the requirement for
self-consistency cannot be ignored quite so easily as in the
quasispherical case. It now becomes very important that the
dynamics of the constituents of the model universe remain
consistent over large times rather than just over short peri-
ods.

The present work has been restricted to the consideration
of a single parallel family of slicings in the universe. The
planar symmetry inherent to the cheese slice matter distribu-
tion causes the action of the tidal forces to be highly direc-
tional. In order to eliminate such a preferred direction, future
work should consider the case where there are three sets of
mutually orthogonal slicings so that one may fully model a

FIG. 10. 5000-slice model: observational tests forC
obs

580°62.0°.
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lattice universe. Consideration of this case is in progress, but
there are significant difficulties in finding appropriate solu-
tions to the Einstein field equations. Nevertheless, the cheese
slice model provides new and interesting results since it is
one of the rare attempts at studying the effects of very large
scale inhomogeneities on the propagation of light beams.
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