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Reheating after inflation occurs due to particle production by the oscillating inflaton field. In this paper we
briefly describe the perturbative approach to reheating, and then concentrate on effects beyond the perturbation
theory. They are related to the stage of parametric resonance, which we callpreheating. It may occur in an
expanding universe if the initial amplitude of oscillations of the inflaton field is large enough. We investigate
a simple model of a massive inflaton fieldf coupled to another scalar fieldx with the interaction termg2f2x2.
Parametric resonance in this model is very broad. It occurs in a very unusual stochastic manner, which is quite
different from parametric resonance in the case when the expansion of the universe is neglected. Quantum
fields interacting with the oscillating inflaton field experience a series of kicks which, because of the rapid
expansion of the universe, occur with phases uncorrelated to each other. Despite the stochastic nature of the
process, it leads to exponential growth of fluctuations of the fieldx. We call this processstochastic resonance.
We develop the theory of preheating taking into account the expansion of the universe and back reaction of
produced particles, including the effects of rescattering. This investigation extends our previous study of
reheating after inflation. We show that the contribution of the produced particles to the effective potentialV(f)
is proportional not tof2, as is usually the case, but toufu. The process of preheating can be divided into
several distinct stages. In the first stage the back reaction of created particles is not important. In the second
stage back reaction increases the frequency of oscillations of the inflaton field, which makes the process even
more efficient than before. Then the effects related to scattering ofx particles on the oscillating inflaton field
terminate the resonance. We calculate the number density of particlesnx produced during preheating and their
quantum fluctuationŝx2& with all back reaction effects taken into account. This allows us to find the range of
masses and coupling constants for which one can have efficient preheating. In particular, under certain condi-
tions this process may produce particles with a mass much greater than the mass of the inflaton field.
@S0556-2821~97!05418-0#

PACS number~s!: 98.80.Cq

I. INTRODUCTION

According to inflationary theory,~almost! all elementary
particles populating the universe were created during the
process of reheating of the universe after inflation@1,2#. It
makes this process extremely important. However, for many
years the theory of reheating remained the least developed
part of inflationary theory. Even now, when many features of
the mechanism of reheating are understood, the literature on
this subject is still full of contradictory statements.

The basic idea of reheating after inflation was proposed in
the first paper on new inflation@3#: reheating occurs due to
particle production by the oscillating scalar fieldf. In the
simplest inflationary models, this field is the same inflaton
field f that drives inflation at the early stages of the evolu-
tion of the universe. After inflation, the scalar fieldf ~which
we will call inflaton! oscillates near the minimum of its ef-
fective potential and produces elementary particles. These
particles interact with each other and eventually they come to
a state of thermal equilibrium at some temperatureT. This
process completes when all~or almost all! the energy of the
classical scalar fieldf transfers to the thermal energy of

elementary particles. The temperature of the universe at this
stage is called the reheating temperature,Tr .

A first attempt at a phenomenological description of this
process was made in Ref.@4#. The authors added various
friction terms to the equation of motion of the scalar field in
order to imitate energy transfer from the inflaton field to
matter. However, it remained unclear what kind of terms
should be added and whether one should add them at the
stage of slow rolling of the inflaton field, or only at the stage
of rapid oscillations of the inflaton field.

The theory of reheating in application to the new inflation
scenario was first developed in Refs.@5,6#, and, in applica-
tion to R2 inflation, in Ref.@7#. It was based on perturbation
theory, which was quite sufficient for obtaining the reheating
temperature,Tr , in many realistic models. We will give a
detailed description of this theory and develop it even further
in a forthcoming publication@8#. However, perturbation
theory has certain limitations, which have been realized only
very recently. In particular, the mechanism of decay of the
inflaton field to the vector fields discussed in@5# is efficient
only at an intermediate stage of reheating in the new inflation
model considered. The decay of the inflaton field to fermions
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described in@6# typically is important only at very late stages
of reheating. In many inflationary models neither of these
mechanisms gives a correct description of the first stages of
the process.

Indeed, recently it was understood@1# that in many infla-
tionary models the first stages of reheating occur in a regime
of a broad parametric resonance. To distinguish this stage
from the subsequent stages of slow reheating and thermali-
zation, we called itpreheating. The energy transfer from the
inflaton field to other bose fields and particles during pre-
heating is extremely efficient. As we pointed out in@1#, re-
heating never completes at the stage of parametric resonance;
eventually the resonance becomes narrow and inefficient,
and the final stages of the decay of the inflaton field and
thermalization of its decay products can be described by the
elementary theory of reheating@5,6,8#. Thus, the elementary
theory of reheating proves to be very useful even in the theo-
ries where reheating begins at the stage of parametric reso-
nance. However, it should be applied not to the original co-
herently oscillating inflaton field, but to the products of its
decay, as well as to the part of the inflaton field which sur-
vived preheating. The short stage of explosively rapid pre-
heating in the broad resonance regime may have long-lasting
effects on the subsequent evolution of the universe. It may
lead to specific nonthermal phase transitions in the early uni-
verse @9,10# and to topological defect production, it may
make possible novel mechanisms of baryogenesis@11,12#,
and it may change the final value of the reheating tempera-
ture Tr .

The theory of parametric resonance in application to par-
ticle production by oscillating external fields was developed
more than 20 years ago, see, e.g.,@13#. The methods used in
this theory were developed mainly for the case of narrow
parametric resonance. A first attempt to apply this theory to
reheating after inflation was made by Dolgov and Kirilova
@14# and by Traschen and Brandenberger@15# for the narrow
resonance regime in the context of the new inflation. In@14#
it was conjectured that the parametric resonance in an ex-
panding universe cannot lead to efficient reheating. The au-
thors of Ref.@15# came to an important conclusion that para-
metric resonance in new inflation can be efficient. However,
their investigation of parametric resonance was not quite cor-
rect; see Sec. IV of this paper.

In any case, at the moment we do not have any consistent
inflationary models based on the new inflation scenario. The
step towards the general theory of reheating in chaotic infla-
tion was rather nontrivial. Indeed, the effective potential in
new inflation is anomalously flat nearf50. As a result of
this fine-tuned property of the effective potential, the Hubble
constant at the end of inflation in this scenario is much
smaller than the mass of the oscillating scalar field. There-
fore the effects related to the expansion of the universe are
not very destructive for the development of the resonance,
which may be rather efficient even if the resonance is nar-
row. Narrow resonance can be rather efficient in chaotic in-
flation as well, in the context of conformally-invariant theo-
ries of the type oflf4. In such theories the expansion of the
universe does not interfere with the development of the reso-
nance, and therefore preheating may be efficient even if the
resonance is rather narrow@1,16–19#. However, generally
the effective potential is quadratic with respect tof near the

minimum of the potential, which breaks the conformal in-
variance. As we will show in this paper, for the simplest
models of inflation, such as the theory of a massive inflaton
field f with quadratic effective potential and interaction
g2f2x2, preheating is efficient only if the resonance is ex-
tremely broad. The theory of a broad parametric resonance in
an expanding universe is dramatically different from the
theory of a narrow resonance.

The basic features of the theory of a broad parametric
resonance were outlined in@1#, where the theory of preheat-
ing was developed in the context of the chaotic inflation
scenario, taking into account back reaction of created par-
ticles and the expansion of the universe. This issue was stud-
ied later by many other authors, and a lot of very interesting
results on parametric resonance and particle production have
been obtained@16–31#. Of all these papers one is especially
relevant to our investigation. Khlebnikov and Tkachev@30#
performed a detailed three-dimensional numerical lattice
simulation of broad parametric resonance in an expanding
universe, taking into account the back reaction of produced
particles, including, in particular, their rescattering. Their
method~see also@24,28,29#! is based on solving numerically
the classical equations for fluctuations of all interacting
fields. It is presumably the best way to perform computer
simulations of preheating.

From the point of view of analytical investigation of pre-
heating in the broad resonance regime we should mention
Ref. @21#, where this regime was investigated for the case of
a nonexpanding universe, and some of the results of Ref.@1#
concerning this regime were obtained by a different method.
However, after our paper@1# there was not much progress in
analytical investigation of the broad resonance regime in an
expanding universe. This is not very surprising, because the
analytical investigation of preheating including back reaction
is very difficult; one must describe a system of particles far
away from equilibrium in the regime where effective cou-
pling becomes strong because of anomalously large occupa-
tion numbers of bose particles produced by parametric reso-
nance. But the main problem was related to the very unusual
nature of broad parametric resonance in an expanding uni-
verse. As we will show in this paper, instead of staying in a
particular resonance band, each growing mode scans many
stability/instability bands within a single oscillation of the
inflaton field, so the usual concept of separate resonance
bands becomes inadequate. It is a stochastic process, during
which the number of produced particles changes in a chaotic
way. On average, the number of produced particles grows
exponentially, but at some moments their number may de-
crease; a process which would be impossible at the classical
level. We call this processstochastic resonance. The stan-
dard methods developed for investigation of parametric reso-
nance simply do not apply here, so it was necessary to de-
velop a new, more general approach.

The main purpose of the present paper is to develop the
theory of preheating with an account taken of the expansion
of the universe and the back reaction of created particles,
including the effects of their rescattering. We will give here
a detailed derivation of the results of Ref.@1#, and describe
recent progress in the understanding of physical processes
which occur soon after the end of inflation.

We will begin our paper with discussion of the evolution
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of the scalar fields after inflation neglecting the effects of
reheating, see Sec. II. Section III contains an introduction to
the elementary theory of reheating@5,6,8#. We will then de-
velop the theory of particle production due to parametric
resonance following@1#. First of all, in Sec. IV we introduce
the theory of reheating due to parametric resonance and dis-
cuss the relation between this theory and the elementary
theory of reheating. Both theories are very simple, but the
transition from one to the other is quite nontrivial; it is very
difficult to understand the theory of parametric resonance
using the elementary theory of reheating as a starting point,
and, conversely, perturbation theory is not simply a limiting
case of a weak parametric resonance. A more detailed dis-
cussion of all these issues will be contained in our forthcom-
ing paper@8#.

In Sec. V we discuss the difference between the narrow
and broad resonance regimes. Section VI is devoted to a
qualitative description of the development of broad reso-
nance in an expanding universe. We describe the effect of
stochastic resonance and illustrate this effect by solving the
resonance equations numerically, taking into account the ex-
pansion of the universe. We find that it is much easier to
perform the investigation in terms of the number of created
particles, which is an adiabatic invariant, rather than in terms
of wildly oscillating quantities such aŝx2& which are stud-
ied in many publications on preheating. In particular, in
some caseŝx2& continues to grow even after the resonance
ceases to exist and the number ofx particles remains con-
stant. In Sec. VII we develop analytic methods for the de-
scription of broad resonance. These methods are especially
appropriate for the investigation of stochastic resonance.
They are applicable in those cases where the standard ap-
proach based on the investigation of Mathieu or Lame equa-
tions fails.

Section VIII contains a discussion of the back reaction of
thex particles created by parametric resonance on the effec-
tive potential of the inflaton field. In Sec. IX we describe the
process of reheating in the broad resonance regime with an
account taken of the change of the frequency of oscillations
of the inflaton field due to its interaction with thex particles
produced during preheating. In Sec. X we discuss the process
of rescattering ofx particles and the production off par-
ticles in this process. We also consider some modifications
of the picture of the second stage of reheating with an ac-
count taken of rescattering. We calculate the number of par-

ticles produced during reheating and the amplitude of pertur-
bations^x2&. In Sec. XI we investigate the possibility of a
copious production of particles with mass much greater than
the inflaton mass. Finally, in Sec. XII we give a summary of
our results and discuss their possible implications.

II. EVOLUTION OF THE INFLATON FIELD

During inflation the leading contribution to the energy-
momentum tensor is given by the inflaton scalar fieldf with
the Lagrangian

L~f!5 1
2 f ,if

,i2V~f!, ~1!

whereV(f) is the effective potential of the scalar fieldf.
The evolution of the~flat! FRW universe is described by the
Einstein equation

H25
8p

3M p
2S 1

2
ḟ21V~f! D , ~2!

whereH5ȧ/a. The Klein-Gordon equation forf(t) is

f̈13H ḟ1V,f50. ~3!

For sufficiently large initial values off.M p , the ‘‘fric-
tion’’ term 3Hḟ in Eq. ~3! dominates overf̈ and the poten-
tial term in Eq.~2! dominates over the kinetic term. This is
the inflationary stage, where the universe expands quasiex-
ponentially, a(t)5a0exp„*dtH(t)…. For definiteness, we
will consider here the simplest models of chaotic inflation:

V(f)5 1
2 mf2 @2#. In these models inflation occurs at

f*M p . Density perturbations responsible for large-scale
structure formation in these models are produced at
f;324M p . With a decrease of the fieldf below M p the
‘‘friction’’ term 3 Hḟ becomes less and less important, and
inflation terminates atf;M p/2.

When making numerical estimates one should take into
account that at the last stages of inflation the friction term is
still non-negligible, and therefore during the first oscillation
the amplitude of the field rapidly drops down.

For the quadratic potentialV(f)5 1
2 mf2 the amplitude

after the first oscillation becomes only 0.04M p , i.e., it drops
by a factor of ten during the first oscillation; see Fig. 1. Later

FIG. 1. Oscillations of the fieldf after infla-
tion in the theorym2f2/2. The value of the sca-
lar field here and in all other figures in this paper
is measured in units ofM p ; time is measured in
units of m21.
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on the solution for the scalar fieldf asymptotically ap-
proaches the regime

f~ t !5F~ t !sin mt,

F~ t !5
M p

A3pmt
;

M p

2pA3pN
. ~4!

HereF(t) is the amplitude of oscillations;N is the number
of oscillations since the end of inflation. For simple estimates
which we will make later one may use

F~ t !'
M p

3mt
'

M p

20N
. ~5!

The scale factor averaged over several oscillations grows as
a(t)'a0(t/t0)2/3. Oscillations of f in this theory are
sinusoidal, with the decreasing amplitudeF(t)
5(M p /3)(a0 /a(t))3/2. The energy density of the fieldf
decreases in the same way as the density of nonrelativistic

particles of massm: rf5 1
2 ḟ21 1

2 m2f2;a23. Hence the co-
herent oscillations of the homogeneous scalar field corre-
spond to the matter dominated effective equation of state
with vanishing pressure.

Reheating occurs when the amplitude of oscillations of
the inflaton fieldf decreases much faster than in Eq.~4!, and
its energy density is transferred to the energy density of other
particles and fields.

III. OSCILLATIONS AND DECAY
OF THE SCALAR FIELD

In the present section, we will discuss the elementary
theory of reheating developed in@5,6#; see also@2#. A more
detailed discussion of this theory will be contained in@8#.
We will consider a basic model describing the inflaton scalar
field f interacting with a scalar fieldx and a spinor fieldc:

L5 1
2 f ,if

,i2V~f!1 1
2 x ,ix

,i2 1
2 mx

2~0!x21 1
2 jRx2

1 c̄„ig i] i2mc~0!…c2 1
2 g2f2x22hc̄cf. ~6!

Hereg, h, andj are small coupling constants,R is the space-
time curvature, andV(f) is the effective potential of the
field f. We will suppose here, for generality, that the effec-
tive potential has a minimum atf5s, and near the mini-
mum it is quadratic with respect to the fieldf:

V(f); 1
2 m2(f2s)2. Herem2 is the effective mass squared

of the fieldf. After the shiftf2s→f, the effective poten-
tial acquires the familiar form1

2 m2f2, and the Lagrangian
acquires an interaction term which is linear with respect to
the field f: DL52g2sfx2. This term vanishes in the
case without spontaneous symmetry breaking, wheres50.
The masses of thex particles andc after the shift become
mx5Amx

2(0)1g2s2 and mc5mc(0)1hs. In this section
we will consider the casem@mx , mc . We will assume that
after inflationH!m. This condition is always satisfied dur-
ing the last, most important stages of reheating.

We will study now the oscillation of the scalar field near
the minimum of its effective potential. The energy density of
the oscillating field ~after the shift f2s→f) is

rf5 1
2 ḟ21 1

2 m2f2. If we ignore for a moment the effects
associated with particle creation, the fieldf after inflation
oscillates near the pointf50 with the frequencyk05m.
The amplitude of oscillation decreases asa23/2 due to the
expansion of the universe, and the energy of the fieldf
decreases in the same way as the density of nonrelativistic

particles of massm: rf5 1
2 ḟ21 1

2 m2f2;a23. A homoge-
neous scalar field oscillating with frequencym can be con-
sidered as a coherent wave off particles with zero momenta
and with particle densitynf5rf /m. In other words,nf os-
cillators of the same frequencym, oscillating coherently with
the same phase, can be described as a single homogeneous
wave f(t). Note that if we consider time intervals larger
than the typical oscillation timem21, the energy density of
the oscillating field, and the number density of the particles
nf will be related to its amplitudeF in a simple way:

rf5 1
2 m2F2, ~7!

nf5 1
2 mF2. ~8!

Now we will consider effects related to the expansion of
the universe and to particle production. For a homogeneous
scalar field in a universe with a Hubble constantH, the equa-
tion of motion with nongravitational quantum corrections is

f̈13H~ t !ḟ1@m21P~v!#f50. ~9!

HereP(v) is the flat space polarization operator for the field
f with four-momentumki5(v,0,0,0),v5m.

The real part ofP(v) gives only a small correction to
m2, but whenv>min(2mx,2mc), the polarization operator
P(v) acquires an imaginary part ImP(v). We will assume
that m2@H2, m2@ Im P. The first condition is automati-
cally satisfied after the end of inflation; the second is
usually also true. We have F(t)5F0a23/2(t)

5F0exp„2 3
2 *dtH(t)…. Neglecting for simplicity the time-

dependence ofH and ImP due to the expansion of the
universe, we obtain a solution of Eq.~9! that describes
damped oscillations of the field near the pointf50:

f5F~ t ! exp~ imt!'f0 exp~ imt!

3expF2
1

2S 3H1
Im P~m!

m D t G . ~10!

From unitarity it follows that@32#

Im P5mG, ~11!

whereG5G(f→xx)1G(f→cc) is the total decay rate of
f particles.~In a more general case one should calculate not
only the imaginary part of the polarization operator, but the
imaginary part of the effective action@5#.! Thus Eq. ~10!
implies that the amplitude of oscillations of the fieldf de-

creases as exp@21
2(3H1G)t# due to particle production which

occurs during the decay of the inflaton field.
Note that under the conditionm@H, the polarization op-

eratorP and the decay ratesG do not depend on the curva-
ture of the universe~and thus on time! and coincide with
their flat-space limits. In particular, the probability of decay
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of a f particle into a pair of scalarx particles or spinorc
particles form@mx ,mc is given by the expressions@2#

G~f→xx!5
g4s2

8pm
, G~f→cc!5

h2m

8p
. ~12!

For a phenomenological description of the damping of
oscillations of the scalar fieldf ~10! one may add an extra
friction term Gḟ to the classical equation of motion of the
field f, instead of adding the term proportional to the imagi-
nary part of the polarization operator:

f̈13H~ t !ḟ1Gḟ1m2f50. ~13!

This phenomenological equation together with relation~11!
for G reproduces the damped oscillator solution~10! of Eq.
~9!. The idea that one can describe effects of reheating by
adding friction terms to the equation of motion goes back to
one of the first papers on reheating@4#. At first the physical
origin of such terms as well as their value remained obscure.
Some authors added various auxiliary friction terms to the
equations of the inflaton field in order to slow down its mo-
tion and make inflation longer; see, e.g.,@4,33#. From the
derivation of expression~11! for G it follows, however, that
the simple phenomenological equation~13! is valid only at
the stage of rapid oscillations of the fieldf near the mini-
mum of V(f). This equation cannot be used to investigate
the stage of slow rolling of the fieldf during inflation.

According to Eq.~10!, the field amplitudeF(t) obeys the
equation

1

a3

d

dt
~a3F2!52GF2. ~14!

If one multiplies it bym, one obtains the following equation
for the number density~8! of the coherently oscillatingf
particles:

d

dt
~a3nf!52Ga3nf . ~15!

This equation has a simple interpretation. It shows that the
total comoving number density of particles;a3nf exponen-
tially decreases with the decay rateG. Similarly, one obtains
the following equation for the total energy of the oscillating
field f:

d

dt
~a3rf!52Ga3rf . ~16!

The decay products of the scalar fieldf are ultrarelativ-
istic ~for m@mx ,mc), and their energy density decreases
due to the expansion of the universe much faster than the
energy of the oscillating fieldf. Therefore, reheating in our
model ends only when the Hubble constantH;2/3t be-
comes smaller thanG, because otherwise the main portion of
energy remains stored in the fieldf. Therefore the age of the

universe when reheating completes is given byt r;
2
3 G21. At

that stage the main part of the matter in the universe becomes
ultrarelativistic. The age of the universe with the energy den-

sity r is t5AM p /A6pr @2#. This, together with the condi-

tion t r;
2
3 G21, gives the energy density at timet r :

r~ t r !.
3G2M p

2

8p
. ~17!

If thermodynamic equilibrium sets in quickly after the
decay of the inflaton field, then the matter acquires a tem-
peratureTr , which is defined by the equation

r~ t r !.
3G2M p

2

8p
.

p2N~Tr !

30
Tr

4 . ~18!

HereN(T) is the number of relativistic degrees of freedom at
the temperatureT; one should take 1 for each scalar, two for
each massless vector particle, etc.@2#. In realistic models one
may expectN(Tr);1022103, which gives the following es-
timate of the reheating temperature:

Tr.0.2AGM p. ~19!

Note thatTr does not depend on the initial value of the field
f; it is completely determined by the parameters of the un-
derlying elementary particle theory.

Here we should make an important comment. In the ab-
sence of fermions, the only contribution to the decay rate
would beG(f→xx)5g4s2/8pm. Note that this term dis-
appears in the theories without spontaneous symmetry break-
ing, wheres50. This does not necessarily mean that there is
no reheating at all in such theories. Indeed, decay is possible
not only in the presence of a constant fields but in the
presence of a large oscillating fieldf(t) as well. In what
follows we will study parametric resonance and reheating in
models withs50, or s!F, whereF is the amplitude of
the oscillations. However, when reheating proceeds andF
becomes small one may expect perturbation theory to work
well. To get an estimate for the decay rate ats50 let
us simply write F instead of s in Eq. ~12!:
G(ff→xx);g4F2/8pm. The problem with this term is
thatF2 decreases ast22 in the expanding universe, whereas
the Hubble constant decreases only ast21. Therefore the
decay rate never catches up with the expansion of the uni-
verse, and reheating never completes. Reheating can be com-
plete only if G decreases more slowly thant21. Typically
this requires either spontaneous symmetry breaking (sÞ0)
or coupling of the inflaton field to fermions withmc,m/2. If
both of these conditions are violated, the inflaton fieldf
never decays completely. Such fields may be responsible for
the dark matter of the universe, but it requires certain fine-
tuning of the parameters. Normally, an incomplete decay of
the inflaton field implies that the universe at the age of 10
billion years is cold, empty, and unsuitable for life. We
should emphasize that this may happen even if the coupling
constantg2 is very large. Thus the requirement that reheating
is complete imposes important constraints on the structure of
the theory.

The elementary theory of reheating described above is
simple and intuitively appealing. It proves to be very suc-
cessful in describing reheating after inflation in many realis-
tic inflationary models. That is why we are going to develop
this theory even further in@8#. However, in some cases
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where the amplitude of the oscillating field is sufficiently
large, reheating occurs in a different way, in the regime of
parametric resonance.

IV. PARAMETRIC RESONANCE AND LIMITS
OF APPLICABILITY OF PERTURBATION THEORY

A. Perturbation theory versus narrow resonance

In the investigation performed above we made a natural
assumption that the decay probabilityG of the scalar fieldf
can be calculated by ordinary methods of quantum field
theory describing the decayf→xx. However, if manyx
particles have already been produced,nk.1, then the prob-
ability of decay becomes greatly enhanced due to effects
related to Bose statistics. This may lead to explosive particle
production.

For simplicity, we consider here the interaction between
the classicalinflaton fieldf and thequantumscalar fieldx̂
with the Lagrangian~6!. The Heisenberg representation of
the quantum scalar fieldx̂ is

x̂~ t,x!5
1

~2p!3/2E d3k„âkxk~ t !e2 ik•x1âk
1xk* ~ t !eik•x

…,

~20!

whereâk andâk
1 are annihilation and creation operators. For

a flat Friedmann background with scale factora(t) the tem-
poral part of the eigenfunction with comoving momentumk
obeys the equation

ẍk13
ȧ

a
ẋk1S k2

a2
1mx

2~0!2jR1g2f2D xk50. ~21!

@The physical momentump5k/a(t) coincides withk for
Minkowski space, wherea51.# Equation~21! describes an
oscillator with a variable frequencyv due to the time-
dependence ofa(t) and the background fieldf(t). Until the
last section of this paper we will suppose that the effective
mass of the fieldx vanishes forf50: mx(0)50. In Sec. XI
we will investigate the opposite case,mx(0)@m.

As in the previous section, consider the simplest potential

V(f); 1
2 m2(f2s)2 ~to mimic the situation with spontane-

ous symmetry breaking! and make the shiftf2s→f, after
which the effective potential becomes1

2 m2f2, and the inter-

action term 2 1
2 g2f2x2 transforms to 2 1

2 g2f2x2

2g2sfx22 1
2 g2s2x2. We shall analyze the general equa-

tion ~21! in different regimes.
Suppose first that the amplitude of oscillationsf is much

smaller thans, and neglect for a moment the expansion of
the universe, takinga51 in Eq.~21!. Then one can write the
equation for modes~quantum fluctuations! of the fieldx with
physical momentumk in the form

ẍk1~k21g2s212g2sF sinmt!xk50, ~22!

wherek5Ak2, andF stands for the amplitude of oscillations
of the inflaton field. This equation describes an oscillator
with a periodically changing frequencyvk

2(t)5k2

1g2s212g2sF sinmt. This periodicity may lead to para-

metric resonance for modes with certain values ofk. The
simplest way to describe this important effect is to make a
change of variablesmt52z2p/2, which reduces Eq.~22! to
the well-known Mathieu equation@34#:

xk91~Ak22qcos2z!xk50. ~23!

HereAk54@(k21g2s2)/m2#, q54g2sF/m2, z5mt/2, and
prime denotes differentiation with respect toz. The proper-
ties of the solutions of the Mathieu equation are well repre-
sented by its stability/instability chart which can be found,
e.g., in@34#. An important feature of solutions of Eq.~23! is
the existence of an exponential instabilityxk}exp(mk

(n)z)
within the set of resonance bands of frequenciesDk(n) la-
beled by an integer indexn. This instability corresponds to
exponential growth of occupation numbers of quantum fluc-
tuationsnk(t)}exp(2mk

(n)z) that may be interpreted as par-
ticle production. In a state with a large number of Bose par-
ticles the estimates forG obtained in the previous subsection
do not apply, and one should use much more elaborate meth-
ods of investigation based on the theory of parametric reso-
nance.

In the case under consideration,gF!gs!m, the theory
of parametric resonance is well known@35#. Indeed, in this
case one hasq!1, and the resonance occurs only in some
narrow bands nearAk. l 2, l 51,2, . . . .Each band in mo-
mentum space has width of orderDk;ql , so for q,1 the
widest and most important instability band is the first one,
Ak;16q5164g2sF/m2.

The factor mk which describes the rate of exponential
growth for the first instability band form2@g2s2 is given by
@34#

mk5A~q/2!22~2k/m21!2. ~24!

Thus resonance occurs fork5(m/2)(16q/2). Theindexmk
vanishes at the edges of the resonance band and takes its
maximal valuemk5q/252g2sF/m2 at k5m/2. The corre-
sponding modesxk grow at a maximal rate exp(qz/2), which
in our case is given by exp(qmt/4)5exp(g2sFt/m).

The growth of the modesxk leads to the growth of the
occupation numbers of the created particlesnk(t). Indeed,
the number densitynk of particles with momentumk can be

evaluated as the energy of that mode1
2 uẋku21 1

2 vk
2uxku2 di-

vided by the energyvk of each particle:

nk5
vk

2 S uẋku2

vk
2

1uxku2D 2
1

2
. ~25!

When the modesxk grow as exp(qz/2), the number ofx
particles grows as exp(qz), which in our case is equal to
exp(qmt/2)5exp(2g2sFt/m).

The fact that the resonance occurs neark5m/2 has a
simple interpretation: In the limitgs!m the effective mass
of the x particles is much smaller thanm. Therefore one
decayingf particle creates twox particles with momentum
k;m/2. This picture is very similar to the process of decay
f→xx discussed in the previous section, but the results are
absolutely different. Indeed, in perturbation theory the
amount of produced particles did not depend on the number
of particles produced earlier, and the rate of production for
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our model was given byG(f→xx)5g4s2/8pm. Thus the
decay rateG21 was suppressed by the factorg4, which made
the decay very slow in the weak coupling limit. By contrast,
in the regime of parametric resonance the rate of production
of x particles is proportional to the amount of particles pro-
duced earlier~which is why we have exponential growth!,
and the rate of the process is given by an absolutely different
expressionmkm;g2sF/m, which is greater thanG for
F.(g2/8p)s.

Thus, before going any further we should understand how
these two processes are related to each other, and why we did
not find the effect of parametric resonance in the investiga-
tion performed in the previous section. Is the perturbation
theory discussed there a limiting case of the narrow reso-
nance regime or is it something else?

The reason we missed the effect of parametric resonance
is rather delicate. In our calculations of the imaginary part of
the polarization operator we assumed that thex particles
produced by the oscillating scalar fieldf are normal par-
ticles on the mass shell,kx

25mx
2 . This is what one would get

solving Eq. ~22! in any finite order of perturbation theory
with respect to the interaction term 2g2xsFsinmt. However,
if one solves the equation for the fluctuations of the fieldx
~22! exactly, one finds exponentially growing modesxk .
This creates a new channel of decay of the scalar fieldf.

Note that exponentially growing modes occupy a very
small portion of momentum space in the narrow resonance
limit. This means that the fluctuations of the fieldx for al-
most allk are normal fluctuations withkx

25mx
2 . In this case

our calculation of the imaginary part of the polarization op-
erator does apply. If the resulting value ofG appears to be
smaller than 2mkm;qm, then the perturbative decay of the
scalar field may coexist with the parametric resonance. One
may consider several different possibilities. In the beginning
the scalar fieldf can be expected to oscillate with amplitude
F.(g2/8p)s. In this regime parametric resonance leads to
the exponential growth of modesxk , as we discussed above.
However, gradually the fieldf loses its energy, and its am-
plitude F becomes smaller than (g2/8p)s. In this regime
the amplitude of the fieldF decays exponentially within a
time G21 which is smaller than the typical time necessary for
parametric resonance to occur. One may say that the pertur-
bative decay makes the energy eigenstate~the mass! of the
field f ‘‘wide,’’ with width G, and when this width exceeds
the width of the resonance band;qm/2, the resonance ter-
minates. Starting from this moment perturbation theory takes
over, and the description of reheating should be given along
the line of the elementary theory described in the previous
section.

Thus, the standard effect of scalar field decay described
by the elementary theory of reheating@5,6,8# and preheating
due to parametric resonance are twodifferent effects. In an
expanding universe there exist other reasons for evolving
from parametric resonance to perturbative decay.

First of all, during the expansion of the universe the field
f decreases not only because of its decay, but because of the
‘‘friction term’’ 3 Hḟ in the equation of motion for the field
f. Thus one should compareqm with the effective decay
rate 3H1G: Parametric resonance occurs only for
qm*3H1G. Note that forG.H perturbative decay leads to

reheating even neglecting parametric resonance. Therefore to
check whether parametric resonance appears at the time
when perturbative decay is inefficient, i.e., in the caseG,H,
it is enough to consider the conditionqm*3H.

Another important mechanism which can prevent para-
metric resonance from being efficient is the redshift of mo-
mentak away from the resonance band. The total width of
the first band is given byqm; the width of the part where the
resonance is efficient is somewhat smaller; one can estimate
it asqm/2. The timeDt during which a given mode remains
within this band depends on the equation of state of matter,
and typically can be estimated byqH21. During this time the
number of particles in growing modes increases as
exp(q2m/2H). This leads to efficient decay of inflatons only if
q2m*H. In the narrow resonance limitq!1 this is a stron-
ger condition than the conditionqm*3H.

In general, it is possible that exponential growth during
the timeDt is small, butDt!H21 and therefore resonance
still plays some role in reheating. However, this is a rather
exceptional situation. Therefore typically the set of condi-
tions for the resonance to be efficient can be formulated as

qm*G, ~26!

q2m*H. ~27!

In the model considered above these conditions yield

F.
g2

32p
s, ~28!

F*
mAmH

4g2s
. ~29!

Thus parametric resonance can be efficient at a suffi-
ciently largeF, but reheating never ends in the regime of
parametric resonance. As soon as the amplitude of oscilla-
tions becomes sufficiently small, parametric resonance termi-
nates, and reheating can be described by the elementary
theory developed in@5,6,8#. Typically the reheating tempera-
ture is determined by these last stages of this process. There-
fore one should not calculate the reheating temperature sim-
ply by finding the endpoint of the stage of parametric
resonance, as many authors do. The role of the stage of pre-
heating is to prepare a different setup for the last stage of
reheating. It changes the reheating temperature, and it may
lead to interesting effects such as nonthermal symmetry res-
toration and new mechanisms of baryogenesis. However, re-
heating never ends in the regime of parametric resonance; it
does not make much sense to calculate the reheating tem-
perature at the end of the stage of preheating.

The expansion of the universe and the inflaton decay are
not the only mechanisms which could prevent the develop-
ment of resonance. As we will show, back reaction of created
particles may change the parametersAk andq. There will be
no resonance if thex particles decay with decay rate
G.mkm, or if within the time ;(mkm)21 they are taken
away from the resonance band because of their interactions.
Also, there is no explosive reheating if the decay products
include fermions since the fermion occupation numbers can-
not be large because of the Pauli principle. This happens, for
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example, in many inflationary models based on supergravity
where inflaton decay is often accompanied by gravitino pro-
duction @36#.

If reheating neverends in a state of narrow parametric
resonance, one may wonder whether reheating maybegin in
a state of narrow resonance. As we are going to show, in
most cases inflation begins in a state of broad parametric
resonance; the resonance typically ceases to exist as soon as
it becomes narrow. But before analyzing this issue, we will
take one last look at the model which we studied above.

B. Processes atf;s

In our investigation of the simple model with spontaneous
symmetry breaking (sÞ0) we assumed that the amplitude
of oscillations of the scalar fieldf is very small,F!s.
Therefore we retained only the quadratic part of the effective
potential,V(f);(f2s)2. However, in realistic models of
spontaneous symmetry breaking this condition is satisfied
only at the end of parametric resonance. Indeed, let us con-
sider a theory with spontaneous symmetry breaking with the
usual potential (l/4)(f22s2)2. Then after spontaneous
symmetry breaking and the corresponding shiftf2s→f
the theory atf!s can be represented as a theory of a mas-
sive scalar field with a massm252ls2 interacting with the
field x which acquires massmx

25g2s2. In this respect, it
coincides with the toy model studied in the previous subsec-
tion. However, there are some important differences.

First of all, the processf→xx is possible only if
m.2mx . This was one of the conditions which we used in
our investigation: we assumed thatm@mx , i.e., l@g2.
However, in this case the interaction (l/4)f4 which we did
not take into account so far may become more important
than the interaction (g2/2)f2x2 which we considered. As a
result, the production off particles may be more efficient
than the production ofx particles.

In order to investigate this possibility let us study
for a moment a model with the effective potential
(l/4)(f22s2)2 in the limit l@g2, i.e., neglecting the in-
teraction (g2/2)f2x2. We will assume here that in the be-
ginning the fieldf was at the top of the effective potential.
At that time its effective mass squared was negative,
m2(0)52ls2. This fact alone, independent of any paramet-
ric resonance, leads to the production of particles of the field
f. The main point here is that all modes withk,Als grow
exponentially, which breaks the homogeneity of the oscillat-
ing scalar field. This is an interesting effect, which has some
nontrivial features, especially if one takes the expansion of
the universe into account. We will return to its discussion
elsewhere. However, this effect does not last long because
away from the maximum of the effective potential its curva-
ture becomes positive.

When the amplitude of the oscillations of the fieldf near
f5s becomes smaller thans, the field begins oscillating
near its minimum with a frequencym'A2ls. The paramet-
ric resonance withf-particle production in this regime can
be qualitatively understood if the equation for the fluctua-
tions dfk is approximately represented as a Mathieu equa-
tion. The modesfk grow in essentially the same way as the
modes in the second instability band of the Mathieu equation
with Ak54k2/m214, q56(F/s). For q*1, we are in the

broad resonance regime, and there is a significant production
of f particles. However, forq!1, i.e., forF!s/6, the para-
metric resonance in the second band becomes very ineffi-
cient. ~One can obtain the same result by a more accurate
investigation of parametric resonance in this situation in
terms of the Lame equation, but this is not our purpose here.!

Thus, we are coming to the following picture of paramet-
ric resonance in this model. In the beginning of the rolling of
the fieldf down to the minimum of the effective potential,
the leading source of particle production is associated with
the tachyonic mass of the fieldf. Soon after that, the leading
mechanism is the decay of a coherently oscillating fieldf
into f particles. This mechanism remains dominant until the
amplitude of the fieldF becomes much smaller thans, after
which the decayf→xx studied in the previous section be-
comes more important.~This process becomes somewhat
more complicated if the back reaction of the produced par-
ticles it taken into account.! Finally, when the amplitude of
the oscillationsF becomes smaller than (g2/32p)s, or
when it becomes smaller thanmAmH/4g2s, whichever
comes first, the parametric resonance ceases to exist, and the
decayf→xx is described by the elementary theory of re-
heating based on perturbation theory.

We should note that thex-particle production in this
model for l@g2 was first studied in@15#. However, as we
just mentioned, atF;s this process is subdominant as com-
pared to thef-particle production, which was not studied in
@15#. The process ofx-particle production is more efficient
thanf-particle production only forF!s. In this regime our
results differ from those obtained in@15# by the factorF/s
in the exponent. This difference is very significant because it
leads to a much less efficient reheating, which shuts down as
soon asF becomes sufficiently small.

The models studied in the last two subsections can be
considered as a good laboratory where one can study differ-
ent features of parametric resonance. However, in our inves-
tigation so far we did not discuss the question of initial con-
ditions for resonance in these models. Indeed, after 15 years
of investigation we still have not found any simple mecha-
nism which will put the inflaton field on the top of the po-
tential atf50 in the new inflation scenario. Also, the shape
of the potential required for new inflation~extremely flat
near the origin! is rather artificial. As soon as we consider
generic initial conditions for the scalar fieldf in more real-
istic inflationary models, such as chaotic inflation in the
theory with a simple potentialm2f2/2, the theory of para-
metric resonance becomes different in many respects from
the simple theory described above.

V. BROAD RESONANCE VERSUS NARROW RESONANCE
IN MINKOWSKI SPACE

In the chaotic inflation scenario one does not impose any
a priori conditions on the initial value of the scalar field. In
many models of chaotic inflation the initial amplitude of os-
cillations of the fieldf can be as large asM p , i.e., much
greater than any other dimensional parameters such ass.
Therefore in the remaining part of the paper we will concen-
trate on the simplest chaotic inflation model without symme-
try breaking with the effective potentialV(f)5(m2/2)f2,
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and the interaction term2 1
2 g2f2x2. In this case instead of

Eq. ~22! one has

ẍk1„k21g2F2 sin2~mt!…xk50. ~30!

This equation describes an oscillator with a periodically
changing frequencyv2(t)5k21g2F2 sin2mt. One can write
it as a Mathieu equation@Eq. ~23!# with Ak5k2/m212q,
q5g2F2/4m2, z5mt.

For gF,m we have a narrow resonance withq!1. In
this regime the resonance is more pronounced in the first
resonance band, for modes withk2;m2(122q6q). The
modesxk with momenta corresponding to the center of the
resonance atk;m grow aseqz/2, which in our case equals
emkmt;exp(g2F2 t/8m), and the number ofx particles grows
as e2mkz;eqz;exp(g2F2 t/4m). This process can be inter-
preted as a resonance with decay of twof particles with
massm to two x particles with momentak;m. We show the
results of the numerical solution of Eq.~30! for the fastest
growing modexk in the narrow resonance regime in Fig. 2.
Typically, the rate of development of the parametric reso-
nance does not differ much from the rate of the growth of the
leading modexk ; see a discussion of this issue in the next
section.

On the other hand, for oscillations with a large amplitude
F the parameterq5g2F2/4m2 can be very large. In this
regime the resonance occurs for a broad range of values ofk,
the parametermk can be rather large, and reheating becomes
extremely efficient. The resonance occurs for modes with
k2/m25A22q, i.e., above the lineA52q on the stability-
instability chart for the Mathieu equation@1#. The standard

methods of investigation of narrow parametric resonance do
not work here. The difference between these two regimes can
be easily grasped by comparing solutions of Eq.~30! for
small and for largeq; see Figs. 2 and 3.

The time evolution is shown in unitsm/2p, which corre-
sponds to the number of oscillationsN of the inflaton fieldf.
The oscillating fieldf(t);Fsinmt is zero at integer and
half-integer values of the variablemt/2p. This allows us to
identify particle production with time intervals whenf(t) is
very small.

During each oscillation of the inflaton fieldf, the fieldx
oscillates many times. Indeed, the effective mass
mx(t)5gf(t) is much greater than the inflaton massm for
the main part of the period of oscillation of the fieldf in the
broad resonance regime withq1/25gF/2m@1. As a result,
the typical frequency of oscillationv(t)5Ak21g2f2(t) of
the fieldx is much higher than that of the fieldf. Within one
period of oscillation of the fieldf the fieldx makesO(q1/2)
oscillations. That is why during the most of this interval it is
possible to talk about an adiabatically changing effective
massmx(t). Therefore, in the broad resonance regime the
amplitude ofxk is minimal at the points where the frequency
is maximal,uxku}v(t)21/2, i.e., atf(t)5F, and it increases
substantially near the points at whichf(t)50.

For very smallf(t) the change in the frequency of oscil-
lations v(t) ceases to be adiabatic. The standard condition
necessary for particle production is the absence of adiabatic-
ity in the change ofv(t):

dv

dt
*v2. ~31!

FIG. 2. Narrow parametric
resonance for the fieldx in the
theory m2f2/2 in Minkowski
space forq;0.1. Time is shown
in units of m/2p, which is equal
to the number of oscillations of
the inflaton fieldf. For each os-
cillation of the field f(t) the
growing modes of the fieldx os-
cillate one time. The upper figure
shows the growth of the modexk

for the momentumk correspond-
ing to the maximal speed of
growth. The lower figure shows
the logarithm of the occupation
number of particlesnk in this
mode; see Eq.~25!. As we see, the
number of particles grows expo-
nentially, and lnnk in the narrow
resonance regime looks like a
straight line with a constant slope.
This slope divided by 4p gives
the value of the parametermk . In
this particular casemk;0.05, ex-
actly as it should be in accordance
with the relationmk;q/2 for this
model.
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One should note that for a narrow resonance this condition is
not necessary, because even a small variation ofv(t) may be
exponentially accumulated in the course of time. However,
for a broad resonance one should expect a considerable ef-
fect during each oscillation, which implies that the condition
~31! should be satisfied. To find the time intervalDt* and
the typical momentak* when and where it may happen let
us remember that for smallf one hasḟ'mF. Therefore
our condition~31! implies that

k2&~g2fmF!2/32g2f2. ~32!

Let us consider those momentak2 which satisfy condition
~32! as a function off(t). This condition becomes satisfied
for small k when the field f(t) becomes smaller than
AmF/g. The maximal range of momenta for which particle
production occurs corresponds tof(t)5f* , where

f* '
1

2
AmF/g'

1

3
Fq21/4. ~33!

The maximal value of momentum for particles produced at
that epoch can be estimated bykmax5AgmF/2. In the main
part of the intervalufu&2f* the range of momentum re-
mains smaller but the same order of magnitude askmax. Thus
one may estimate a typical value of momentum of particles
produced at that stage ask* /2, where

k* 5AgmF5A2mq1/4. ~34!

This simple estimate practically coincides with the result of a
more detailed and rigorous investigation which will be per-
formed in Sec. VII. This is a very important result@1#, which
we are going to use throughout the paper.1 This result im-
plies, in particular, that in the broad resonance regime
m!k* !gF.

Each time the fieldf approaches the pointf50, it
spends time

Dt* ;
2f*

ḟ
;

1

AgmF
;k

*
21 ~35!

in the domainufu&f* . During that timek* ;mx5gf* ,
so thatv;k* . This estimate ofDt* tells us that particle
production in the broad resonance regime occurs within a
time of order of the period of one oscillation of the fieldx,
Dt* ;v21, in agreement with the uncertainty principle. One
can easily identify these short intervals in Fig. 3.

In the semiclassical regime when the frequencyvk(t) is
changing adiabatically,nk is a constant which coincides with
an adiabatic invariant. To appreciate the usefulness of the
introduction of the adiabatic invariantnk , one should com-

1In this paper we will use both physical momenta and comoving
momenta. Our definition ofk* refers to physical momentum.

FIG. 3. Broad parametric resonance for the
field x in Minkowski space forq;23102 in the
theory m2f2/2. For each oscillation of the field
f(t) the field xk oscillates many times. Each
peak in the amplitude of the oscillations of the
field x corresponds to a place wheref(t)50. At
this time the occupation numbernk is not well
defined, but soon after that time it stabilizes at a
new, higher level, and remains constant until the
next jump. A comparison of the two parts of this
figure demonstrates the importance of using
proper variables for the description of preheating.
Both xk and the integrated dispersion^x2& be-
have erratically in the process of parametric reso-
nance. Meanwhilenk is an adiabatic invariant.
Therefore, the behavior ofnk is relatively simple
and predictable everywhere except the short in-
tervals of time whenf(t) is very small and the
particle production occurs. In our particular case,
the average rate of growth ofnk is close to the
maximal possible rate for our model,mk;0.3.
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pare the evolution of the modesxk with the evolution of the
occupation numbers corresponding to each of these modes
shown in Figs. 2 and 3. As we see, in the narrow resonance
regimexk vigorously oscillates, whereas lnnk grows like a
straight line. In the broad resonance regime the field ampli-
fication occurs near the pointsf(t)50 where the process is
not adiabatic. The occupation numbernk , being an adiabatic
invariant, changes only during these short time intervals,
when the number of particles is not well defined.

Analytical investigation of the broad resonance regime in
the context of the theory of reheating was first reported in
@1#; see also@20#. Now we are going to perform a much more
detailed investigation of this regime.

VI. STOCHASTIC RESONANCE
IN AN EXPANDING UNIVERSE

To understand why the broad resonance regime is so im-
portant for the theory of reheating in an expanding universe,
let us remember that resonance in an expanding universe
appears only forq2m*H, which in our case reads

gF*2mS H

mD 1/4

. ~36!

In the simplest inflationary models including the model
which we consider now the value of the Hubble constant at
the end of inflation is of the same order as the inflaton mass
m, but somewhat smaller. Indeed, as we already mentioned,
during the first oscillation the amplitude of the fieldF is of
order M p/20, which gives the Hubble constant

H;A2p/3mF/M p;0.1m. Since dependence of the reso-
nance condition onH is very weak (H1/4), one may conclude
that the regime of explosive reheating after inflation may
occur only if the amplitude of oscillation satisfies the condi-
tion F.m/g. Thus explosive decay ends atF&m/g, i.e., at
q&1/4.

This means that preheating in this model cannot begin for
F,m/g, which would correspond to the narrow resonance
regime. Narrow resonance may be important at the late
stages of preheating@1#, but at that stage one should take into
account back reaction of the particles produced at the previ-
ous stage of broad parametric resonance, so the theory of the
narrow resonance at the end of preheating is much more
complicated than the one contained in the previous subsec-
tion.

In fact, efficient preheating often requires extremely large
initial values ofq. Indeed, the amplitude of the scalar field
decreases during the expansion of the universe much faster
thanH1/4, so for not very large initial values ofq the condi-
tion ~36! becomes violated before the resonance has enough
time to transfer the energy of the oscillating fieldf into the
energy ofx particles. As we will show in Sec. IX, in the
model under consideration preheating is efficient only if the
initial value of q at the end of inflation is very large,
q0*103.

In the models with extremely largeq the expansion of the
universe makes preheating very peculiar: instead of a regular
resonance process we encounter a rather unusual effect
which we callstochastic resonance.

Let us first look at the results of the numerical study of the
development of broad resonance in an expanding universe,
and try to interpret them. Note that at this stage we do not
consider the effects of back reaction and rescattering of par-
ticles; we will discuss these effects later. Our main strategy
here is to study a general picture step by step, and then
correct it later, because otherwise the physical interpretation
of the processes which occur during preheating will remain
obscure.

First of all, let us consider Eq.~21! for the modexk in an
expanding universe withmx

250, j50 in the asymptotic re-
gime when a5(t/t0)2/3, and F(t)5M p /A3pmt. Strictly
speaking, the last two conditions are satisfied only for suffi-
ciently larget. However, if we begin counting time from the
end of inflation, taking for definitenesst05p/2m ~which
formally corresponds to the time after a quarter of one oscil-
lation of the fieldf), then we will have an approximation
which is sufficiently good for our purposes. With these defi-
nitions, the initial values of the fieldf and the parameterq
in our calculations are given by

f05
2M p

pA3p
;

M p

5
, q0

1/25
gMp

pA3pm
;

gMp

10m
. ~37!

On the other hand, if one wants to investigate the situation
numerically, one can simply solve a combined system of
equations fora(t), F(t), andxk(t). We will not do it here
because our main goal is to develop an analytical approach
to the theory of preheating.

The investigation of parametric resonance in an expand-
ing universe can be simplified if instead ofxk one introduces
the function Xk(t)5a3/2(t)xk(t), which is given by
(t/t0)xk(t) in our case. Then instead of Eq.~21! we have a
much simpler equation

Ẍk1vk
2Xk50, ~38!

where

vk
25

k2

a2~ t !
1g2F2 sin2mt1D, ~39!

and D5mx
22 3

4 (ȧ/a)22 3
2 (ä/a)2jR. This term is usually

very small. Indeed, we will consider here the case of lightx
particles, such thatmx!k* , in which case one can simply
neglectmx . Also, soon after the end of inflation one has
H25(ȧ/a)2;ä/a!m2. As a result, typically one can ne-
glect the termD altogether. Equation~38! describes an os-
cillator with a variable frequencyvk

2(t) due to the time de-
pendence of the background fieldf(t) and a(t). As an
initial condition one should take the positive-frequency solu-
tion Xk(t).e2 ivkt/A2vk.

The series of three figures in this section shows different
stages of development of the fastest growing modexk in the
broad resonance regime in an expanding universe in the
theory m2f2/2 for an initial value of the parameter
q;33103. Note that during the expansion of the universe
the amplitude of scalar field oscillations decreases approxi-
mately ast21. Therefore in order to illustrate therelative
growth of the fluctuations of the fieldx with respect to the
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amplitude of the oscillating fieldf we show not the growing
modexk itself, but its rescaled valueXk5xk(t/t0), wheret0
corresponds to the beginning of the calculation. One can
construct an adiabatic invariant for Eq.~38!, which has an
interpretation of the comoving occupation number of par-
ticles nk in the modek in an expanding universe:

nk5
vk

2 S uẊku2

vk
2

1uXku2D 2
1

2
. ~40!

Note that this function does not have any factors inversely
proportional to the volumea3. These factors will appear
when we calculate the number density of particles in physi-
cal ~not comoving! coordinates.

In the beginning we have parametric resonance very simi-
lar to the one studied in the previous section; compare Fig. 3
and Fig. 4. As before, one can identify the periods when
x-particle production is most efficient with the intervals
when the fieldf becomes small. An important difference is
that because of the gradual decrease in amplitude of the field
f the effective mass of the fieldx and, correspondingly, the
frequency of its oscillations decrease in time. As a result, in
the beginning within each half of a period of oscillation of
the field f the field xk oscillates many times, but then it
oscillates more and more slowly.

To understand the rather peculiar behavior ofXk andnk in
this process, let us check in which resonance band our pro-
cess develops. The number of the band in the theory of the
Mathieu equation is given byn5AA. In our case reheating
occurs for A;2q, i.e., n;A2q;gF/A2m. Suppose we
have an inflationary theory withm;1026M p , and let us
take as an exampleg;1021. Then after the first oscillation
of the field, according to Eq.~4!, we haveF(t);M p/20,
which corresponds toq;108/16. This gives the band num-
bern;33103. After another oscillation the amplitude of the
field drops by a factor of 2, and the band number decreases
by a factor of 2 as well, down ton;1.53103.

In other words, even during a single oscillation the field
does not remain in the same zone of the Mathieu equation.
Instead of that it jumps over 103 different instability bands.
The theory of a broad resonance in Minkowski space is
much less explored than the theory of a narrow resonance,
but the theory of a broad resonance in an expanding universe
proves to be even more complicated. The standard method of
investigation of resonance using the Mathieu equation in a
single resonance band completely fails here.

Still not everything is lost. Indeed, as we have found in
the previous section, in the broad resonance regime particle
production occurs only in a small vicinity off50, corre-
sponding to integer and half-integerN5mt/2p. Nothing de-
pends on the exact way the fieldf behaves at all other mo-

FIG. 4. Early stages of parametric resonance
in the theorym2f2/2 in an expanding universe
with scale factor a;t2/3 for g5531024,
m51026M p . According to our conventions~37!,
initial value of the parameterq in this process is
q0;33103. Note that the number of particlesnk

in this process typically increases, but it may oc-
casionally decrease as well. This is a distinctive
feature of stochastic resonance in an expanding
universe. A decrease in the number of particles is
a purely quantum mechanical effect which would
be impossible if these particles were in a state of
thermal equilibrium.
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ments. In this sense the description of the process of particle
production atf50 is very robust with respect to change in
the shape of the potentialV(f) and of the equation describ-
ing the fieldx, insofar as it does not alter the behavior of
either field at the stage whenf(t) approaches zero. There-
fore some~but not all! of the results related to the Mathieu
equation can be useful for investigation of broad parametric
resonance in an expanding universe even though the regime
we are going to investigate is fundamentally different.

One of the most important differences between broad
resonance in Minkowski space and in an expanding universe
can be understood by inspecting the behavior of thephaseof
the functionsxk near the points wheref(t)50. Indeed, Fig.
3 shows that near all points wheref50 the phases ofxk are
equal. The physical meaning of this effect is very simple: In
order to open a swinging door by a small force one should
apply it periodically, ‘‘in resonance’’ with the motion of the
door.

However, in an expanding universe such a regime is im-
possible, not only because of the redshift of the momentum
k/a, but mainly because the frequency of oscillations of the
field xk is proportional toF, which decreases in time. The
frequency of oscillations of the modesxk changes dramati-
cally with each oscillation of the fieldf. Therefore for large
q the phases of the fieldxk at successive moments when
f(t)50 are practically uncorrelated with each other. Using
our analogy, one may say that the door is vibrating with a
large and ever changing frequency, so it is very difficult to
push it at a proper moment of time, and successfully repeat it

many times in a row. That is why at some moments the
amplitude of the fieldxk decreases; see Fig. 4.

This could suggest that broad parametric resonance in an
expanding universe is simply impossible. Fortunately, this is
not the case, for two main reasons. First of all, as we are
going to show in the next section, even though the phases of
the field xk at the moment whenf(t)50 in an expanding
universe withq@1 are practically unpredictable, in 75% of
all events the amplitude ofxk grows at that time. Moreover,
even if it were not the case, and the amplitude would grow
only in 50% of all events, the total number ofx particles
would still grow exponentially. Indeed, as we will see, dur-
ing each ‘‘creative moment’’f(t)50 in the broad resonance
regime the number of particles at each mode may either de-
crease by a factor of;10, or grow by a factor of;10. Thus
if we begin with 10 particles in each of the two modes, after
the process we get 1 particle in the first mode and 100 par-
ticles in the second. Therefore the total number of particles
in this example grows by more than a factor of 5. The theory
of this effect is very similar to the theory of self-reproduction
of an inflationary universe, where in most points the inflaton
field rolls down, but those parts of the universe where it
jumps up continue growing exponentially@2#.

As a result, parametric resonance does take place. How-
ever, in order to describe it some new methods of investiga-
tion of parametric resonance should be developed. We will
do this in the next section.

Stochastic resonance occurs only during the first part of
the process, when the effective parameterq is very large and
the resonance is very broad. Gradually the amplitude of the

FIG. 5. The same process as in Fig. 4 during a
longer period of time. The parameter
q5g2F2/4m2 decreases ast22 during this pro-
cess, which gradually makes the broad resonance
more and more narrow. As before, we show time
t in units of 2p/m, which corresponds to the
number of oscillations of the inflaton field.
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field f decreases, which makesq smaller. Expansion of the
universe slows down, the field stays in each resonance band
for a longer time, and eventually the standard methods of
investigation based on the Mathieu equation become useful
again. As we will show in Sec. VII E, stochastic resonance
ends and the standard methods become useful after the first
q0

1/2/A2p oscillations, which may happen even before the
effective parameterq decreases fromq0@1 to q;1; see Eq.
~79!. One of the manifestations of this effect is a short pla-
teau for lnnk which appears in Fig. 5 for 10&t&15. This
plateau corresponds to the time when the stochastic reso-
nance ends, and the modeXk appears in the region of stabil-
ity, which divides the second and the first instability band of
the Mathieu equation; see Fig. 7.

To get a better understanding of this effect one should
continue our calculations for a longer period of time, see Fig.
6. At t.15 the process does not look like a broad resonance
anymore, but the amplitude still grows exponentially at a
rather high rate until the amplitude of the fieldF becomes
smaller thanm/g, which corresponds toq;1/321/4. Soon
after that the resonance ceases to exist and the amplitude
stabilizes at some constant value.

The timet f and the number of oscillationsNf at the end
of parametric resonance in an expanding universe can be
estimated by finding the moment whengF'gMp /3mt is
equal tom:

t f'
gMp

3m2 , Nf'
gMp

6pm
. ~41!

As one can check, this estimate for our case (m51026M p ,
g5531024) gives Nf;26.5, which is in good agreement

with the results of our computer calculations shown in Fig. 6.
A small disagreement~about 10%! appears because our cri-
terion for the end of the resonancegF;m was not quite
precise: the resonance ends somewhat earlier, atgF;1.1m.

This more exact result can be deduced from Fig. 7, which
shows that the first instability band fork50 extends from
q;0.8 to q;1/3. Therefore the growth of all modes with

FIG. 6. The same process during a longer
time, which is shown in the unitsmt/2p, corre-
sponding to the number of oscillationsN. The
figures show the growth of the modeXk for the
momentum k corresponding to the maximal
speed of growth ofnk . In this particular case
k;4m. Towards the end of this period, after ap-
proximately 25 oscillations of the inflaton field,
the resonance ceases to exist, and the occupation
numbernk becomes constant.

FIG. 7. The structure of the resonance bands for the Mathieu
equation along the lineA52q, which correspond to excitations
with k50 in our model. The modes with smallk are especially
interesting because the momenta of the excitations are redshifted
during the expansion of the universe. A small plateau at 10&t&15
on Fig. 5 corresponds to the time where stochastic resonance ceases
to exist, all modes are redshifted to smallk, and the system spends
some time in the interval with 1&q&2, which is outside the insta-
bility zone. The last stage of the resonance shown in Fig. 6 corre-
sponds to the resonance in the first instability band withq,1.
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k!m terminates not atg2F2/4m2;1/4, but slightly earlier,
at g2F2/4m2;1/3.

At the time t;t f /2 one hasq;1. During the time from
t f /2 to t f the resonance occurs in the first resonance band, the
resonance is not very broad and there are no stochastic jumps
from one resonance band to another. At the time just before
t f /2 there was no resonance; the field was in the stability
band betweenq51 andq52; see Fig. 7.

An interesting effect which is shown in Fig. 6 is a slow
growth of the amplitudeXk which continues even after the
resonance terminates andnk becomes constant. This happens
because the momentum of each mode gradually becomes
smaller due to the expansion of the universe, and this leads
to a growth ofxk even thoughnk does not change. This is
one of the examples which shows that in order to describe
parametric resonance one should use proper variables such as
nk , because otherwise one may get the incorrect idea that the
resonance continues even fort.25.

If one ignores a small island of stability neart;12, one
may conclude that during the main part of the process the
slope of the curve lnnk remains almost constant. In our case
this corresponds to the exponential growth of the occupation
numbernk with an effective parametermk;0.13. This fact
will be very useful for us later, when we will calculate the
number of particles produced during the parametric reso-
nance. Such a calculation is our main goal. It is also neces-
sary in order to verify whether one should modify our reso-
nance equations due to the presence ofx particles. As we
will see, no modifications are needed for theories with
g&331024. However, for greater values ofg ~and in par-
ticular for the case ofg;531024 discussed above! the reso-
nance ends in a somewhat different way; see Sec. IX B.

In order to illustrate the stochastic nature of the resonance
in this theory, we will present here at sample of results for
the resonance for several different values of the coupling
constantg in the interval from 0.931024 to 1023. One
might expect the results to change monotonically asg
changes in this interval. However, this is not the case. The
table contains the results concerning the initial momentumk
~in units of m) corresponding to the fastest growing mode,
the total increase of the number of particles lnnk at the end of
the resonance for this mode, the average valuem for this
mode, and the timet f ~the number of oscillations of the field
f) at the end of the resonance:
g k m t f ln nk

0.931024 1.5 0.1 5 6
1024 2 0.14 5 9
1.131024 0.5 0.17 5.5 12
1.231024 1.5 0.12 6 9
1.331024 1 0.13 6.5 11
1.431024 2 0.12 7 11
1.531024 0.5 0.18 7 17
231024 3.5 0.12 11 16
331024 0.5 0.14 14 27
531024 4 0.13 24 40
1023 6 0.12 48 75

Thus we see that the leading mode in this interval of the

coupling constant has initial momentum comparable tom
and slightly smaller than the typical initial width of the reso-
nancek* /2, which changes from 2m to about 5m for g
changing from 1024 to 1023. The reason whyk is usually
~though not always! somewhat smaller thank* /2 is very
simple. The resonance is broad only during the first half of
the time. Narrow parametric resonance which appears during
the second part of preheating typically is more efficient for
smallerk. We should note that forg*331024, at the last
stage of preheating one should take into account back reac-
tion of produced particles, which makes the narrow reso-
nance stage very short; see Sec. IX B. In such a case the
resonance has the widthk* /2 in terms of the value of the
momentumk at the beginning of preheating.

Of course, investigation of the leading growing mode is
insufficient: One should integrate over all modes with all
possiblek, which we are going to do later. However, the
number of particlesnk is exponentially sensitive tok. There-
fore the main contribution to the integral will be given by the
trajectories close to the leading one. It is similar to what
happens, e.g., in the theory of tunneling, where one first finds
the optimal trajectory corresponding to the minimum of ac-
tion, and calculatese2S along this trajectory. Similarly, one
can calculate the rate of growth of the total number ofx
particles by finding the leading trajectory and calculating the
average value ofm along the trajectory.

The table clearly demonstrates that the effective values of
m and especially the final number of particlesnk produced
by the resonance are extremely sensitive to even very small
modifications ofg, and change in a rather chaotic way even
wheng changes by only 10%. That is why we call this pro-
cess ‘‘stochastic resonance.’’ We see from the table that for
g;1023 the occupation numbersnk become incredibly
large. It will be shown in Sec. IX that forg;1024 back
reaction of created particles is not very important, but for
g*331024 back reaction becomes crucial, because it does
not allow the resonance to produce an indefinitely large num-
ber of particles. To investigate these issues we should first
develop the theory of stochastic resonance, and then take
into account back reaction.

VII. ANALYTIC THEORY OF STOCHASTIC RESONANCE

In this section we are going to develop a new method to
study the time evolution of the eigenfunctionsxk(t) in the
most interesting case of broad resonance. This method is
based on the crucial observation made in the previous sec-
tions: In the broad resonance regime the evolution of the
modesxk(t) is adiabatic and the number of particles does
not grow in the intervals whenuf(t)u.f* . The number of
particles changes only in the short intervals when
uf(t)u&f* !F.

The quantum field theory of particle creation in a time
varying background is naturally formulated in terms of adia-
batic ~semiclassical! eigenfunctions. This formalism is intro-
duced in the next subsection. Then we will find the change of
the particle number density from a single kick, whenf(t)
crosses zero at some timet j . For this purpose it is enough to
consider the evolution ofxk(t) in the interval whenf2(t) is
very small, so it can be represented by its quadratic part
}(t2t j )

2. This process looks like wave propagation in a
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time dependent parabolic potential. We can combine the ac-
tion of the subsequent parabolic potentials to find the net
effect of the particle creation. Using our formalism, we con-
sider a toy model of broad resonance in Minkowski space,
and broad resonance in an expanding universe, which turns
out to have a stochastic nature.

A. Adiabatic representation of the eigenfunctions

The semiclassical, or adiabatic evolution of the eigenfunc-
tion xk(t) can be represented in a specific mathematical
form. For this we adopt a physically transparent method to
treat Eq.~38! for an arbitrary time dependence of the classi-
cal background field which was originally developed by Zel-
dovich and Starobinsky@37# for the problem of particle cre-
ation in a varying gravitational field.

Let us represent solutions of Eq.~38! as products of its
solution in the adiabatic approximation, exp(6i*dtv), and
some functionsa(t) andb(t):

a3/2xk~ t ![Xk~ t !5
ak~ t !

A2v
e2 i * tvdt1

bk~ t !

A2v
e1 i * tvdt. ~42!

An additional condition on the functionsa and b can be
imposed by taking the derivative of Eq.~42! as if a andb
were time-independent. Then Eq.~42! is a solution of Eq.
~38! if the functionsak ,bk satisfy the equations

ȧk5
v̇

2v
e12i * tvdtbk , ḃk5

v̇

2v
e22i * tvdtak . ~43!

In terms of classical waves of thex field, quantum effects
occur due to departure from the initial positive-frequency
solution; therefore the initial conditions att→0 areak51,
bk50. Normalization givesuaku22ubku251.

The coefficientsak(t) andbk(t) in our case coincide with
the coefficients of the Bogoliubov transformation of the cre-
ation and annihilation operators, which diagonalizes the
Hamiltonian of thex field at each moment of timet. The
particle occupation number isnk5ubku2; see Eq.~40!. The
vacuum expectation value for the particle number density per
comoving volume is

^nx&5
1

2p2a3E
0

`

dk k2ubku2. ~44!

In this section we will calculatebk , nk , and ^nx& in the
nonperturbative regime of broad resonance, where all of
these values can be very large.

It is instructive to return in the framework of this formal-
ism to the simpler perturbative regime which we discussed
earlier in Sec. III. Assumingubku!1, from Eqs.~43! one can
obtain an iterative solution:

bk.
1

2E0

t

dt8
v̇

v
expS 22i E

0

t8
dt9v~ t9! D . ~45!

Using v(t)5A(k/a)21g2F2sin2mt, we can evaluate Eq.
~45! containing an oscillating integrand by the method of
stationary phase@7#. In the case of the massive scalar field
decaying via the interactiong2sfx2, the dominant contribu-

tion is given by the integration near the momenttk , where
a(tk)52k/m. As we already mentioned, this corresponds to
the creation of a pair of masslessx particles with momentum

k5 1
2 a(tk)m from an inflaton with mass~energy! m at the

instanttk of the resonance between the modek and the back-
ground field. The decay rate of the inflaton field calculated
with this method can be described by Eq.~12!.

For the interactionff→xx, the process in the regime
ubku!1 can be interpreted as creation of a pair ofx particles
with momentumk5a(tk)m from a pair of massive inflatons
with energym each. The decay rate of the massive inflaton
field in this case rapidly decreases with the expansion of the
universe as (1/a4)(d/dt)(a4rx)}a26. Therefore a complete
decay of the massive inflaton field in the theory with the
f2x2 interaction is impossible. One should have additional
terms such asg2sfx2 or hc̄cf. This is a very important
conclusion which we already discussed in Sec. III.

B. Interpretation of parametric resonance in terms
of successive scattering on parabolic potentials

We suggest a new analytic method to solve approximately
the basic equations~21! and ~38! for the eigenfunctionsxk
which correspond to thex particles created by the oscillating
inflaton field f(t). This method is rather general; it can be
applied to many models of preheating. One may also apply it
to the idealized case when the universe does not expand and
back reaction is not taken into account. In the cases where
the equation for the modesxk can be reduced to an equation
with periodic coefficients~including the Mathieu equation!,
our method accurately reproduces the solution of this equa-
tion, and gives us an interesting insight into the physics of
parametric resonance. This method is rather powerful; it en-
ables one to investigate some features of the regime of broad
parametric resonance which, to the best of our understand-
ing, have not been known before.

In the realistic situation which we study in this paper,
when the expansion of the universe as well as the back re-
action are taken into account, in some models~e.g., noncon-
formal theory! the equation for the modesxk cannot be con-
sidered as an equation with periodic coefficients, and the
analysis based on standard stability/instability charts is not
applicable. This is the situation where our method will be
especially useful.

Let us consider the general equation~38!. As we noticed,
the eigenfunctionXk(t) has adiabatic evolution between the
momentst j , j 51,2,3, . . . , where the inflaton field is equal
to zerof(t j )50 ~i.e., twice within a period of inflaton os-
cillation!. The nonadiabatic changes ofXk(t) occur only in
the vicinity of t j . Therefore we expect that the semiclassical
solution ~42! of Eq. ~38! is valid everywhere but aroundt j .
Let the waveXk(t) have the form of the adiabatic solution
~42! before the scattering at the pointt j :

Xk
j ~ t !5

ak
j

A2v
expS 2 i E

0

t

vdtD 1
bk

j

A2v
expS 1 i E

0

t

vdtD ,

~46!

the coefficientsak
j andbk

j are constant fort j 21,t,t j . Then
after the scattering,Xk(t), within the interval t j,t,t j 11,
has the form
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Xk
j 11~ t !5

ak
j 11

A2v
expS 2 i E

0

t

vdtD 1
bk

j 11

A2v
expS 1 i E

0

t

vdtD ,

~47!

and the coefficientsak
j 11 and bk

j 11 are constant for
t j,t,t j 11.

Equations~46! and~47! are essentially the asymptotic ex-
pressions for the incoming waves~for t,t j ) and for the out-
going waves~for t.t j ), scattered at the momentt j . There-
fore the outgoing amplitudesak

j 11 , bk
j 11 can be expressed

through the incoming amplitudesak
j , bk

j with help of the
reflectionRk and transmissionDk amplitudes of scattering at
t j :

S ak
j 11e2 iuk

j

bk
j 11e1 iuk

j D 5S 1

Dk

Rk*

Dk*

Rk

Dk

1

Dk*
D S ak

j e2 iuk
j

bk
j e1 iuk

j D . ~48!

Here uk
j 5*0

t jdt v(t) is the phase accumulated by the mo-
ment t j .

Now we specify the scattering at the momentt j . The
interaction term g2f2(t) in Eq. ~38! has a parabolic
form around all the points t j : g2f2(t)
'g2F2m2(t2t j )

2[k
*
4 (t2t j )

2, where the current amplitude
of the fluctuationsF is defined in Eq.~4!, and the character-
istic momentumk* 5AgFm. In the general casek* depends
on time via the time dependence ofF}a23/2. Figure 8 illus-
trates two possible outcomes of the scattering of the wave
Xk(t) on the parabolic potential near zeros of the function
g2f2(t). Depending on the phase of the incoming wave, the
corresponding number of particles may either decrease or
grow.

First, let us consider the mode equation around a single
parabolic potential. In the vicinity oft j the general equation
~38! is transformed to the equation

d2Xk

dt2
1S k2

a2 1g2F2m2~ t2t j !
2DXk50. ~49!

For simplicity we introduce a new time variable
t5k* (t2t j ) and a scaled momentumk5k/ak* . Notice
that k25(Ak22q)/2Aq. In general,k* andk depend ont j
througha(t j ), and should be marked by the indexj , which
we drop for the moment. Then Eq.~49! for eachj is reduced
to the simple equation

d2Xk

dt2
1~k21t2!Xk50. ~50!

The asymptote of this equation, which corresponds to the
incoming wave, matches the form~46!. The asymptote cor-
responding to the outgoing wave matches the form~47!.
Therefore the reflectionRk and transmissionDk amplitudes
of scattering att j are essentially the reflection and transmis-
sion amplitudes of scattering at the parabolic potential. Thus
the problem is reduced to the well-known problem of wave
scattering at a~negative! parabolic potential@38#, which we
consider in the next subsection.

C. Particle creation by parabolic potentials

A general analytic solution of Eq.~50! is the linear com-
bination of the parabolic cylinder functions@39#:
W(2k2/2;6A2t). The reflectionRk and transmissionDk
amplitudes for scattering on the parabolic potential can be
found from these analytic solutions:

Rk52
ieiwk

A11epk2 , ~51!

Dk5
e2 iwk

A11e2pk2 , ~52!

where the anglewk is

wk5argGS 11 ik2

2 D1
k2

2 S 11 ln
2

k2D . ~53!

The anglew depends on the momentumk. Notice the fol-
lowing properties of these coefficients:Rk52 iD ke

2(p/2)k2
;

uRku21uDku251. Substituting Eqs.~51! and ~52! into Eq.
~48!, we can obtain the evolution ofak

j , bk
j amplitudes from

a single parabolic scattering in terms of the parameters of the
parabolic potential and the phaseuk

j only.
The mapping ofak

j , bk
j into ak

j 11 , bk
j 11 reads as

S ak
j 11

bk
j 11D 5S A11e2pk2

eiwk ie2~p/2!k212iuk
j

2 ie2~p/2!k222iuk
j A11e2pk2

e2 iwk
D S ak

j

bk
j D .

~54!

Since the number density ofx particles with momentumk
is equal tonk5ubk(t)u2, from Eq.~54! one can calculate the
number density of outgoing particlesnk

j 115ubk
j 11u2 after the

scattering on the parabolic potential out ofnk
j 5ubk

j u2 incom-
ing particles:

FIG. 8. The change of the comoving particle numbernk due to
scattering at the parabolic potential, calculated from Eq.~50!. The
dotted lines show the sequence of the parabolic potentials
g2f2(t)'g2F2m2(t2t j )

2 where scattering occurs. Time is given
in units of 2p/k. The number of particles can either increase or
decrease at the scattering, depending on the phase of the incoming
wave.
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nk
j 115e2pk2

1~112e2pk2
!nk

j

22e2~p/2!k2A11e2pk2Ank
j ~11nk

j !sinu tot
j ,

~55!

where the phaseu tot
j 52uk

j 2wk1argbk
j 2argak

j .
Before we apply the formalism~48! and ~55! to specific

models, we shall analyze these generic equations. Although
we did not specify yet the phaseu tot

j , we already can learn a
lot from the form ~55!. First of all, the number of created
particles is a steplike function of time. The value ofnk

j is a
constant between two successive scatterings at pointst j and
t j 11. The number of particles is changed exactly at the in-
stancest j in a steplike manner, in full agreement with the
exact numerical solution; see Fig. 4. The effect of particle
creation is significant ifpk2&1, otherwise the exponential
term e2pk2

suppresses the effect of particle accumulation.
This gives us the important general criterion for the width of
the resonance band@1#:

k25
A22q

2Aq
<p21, ~56!

where A5k2/a2m212q, q5g2F2/4m2. Equivalently, one
can write this condition in the form

k2

a2 <k
*
2 /p5gmF/p. ~57!

This estimate of the resonance widthk&k* /Ap practically
coincides with the estimatek&k* /2 ~34! derived in Sec. V
by elementary methods.

Next, let us consider the large occupation number limit,
nk@1. From Eq.~55! we derive

nk
j 11'~112e2pk2

22sinu tot
j e2~p/2!k2A11e2pk2

!nk
j .
~58!

The factor in the right-hand side of this equation depends
on the coupling constantg through k2}g21. This depen-
dence has the structure exp(21/g), which is a nonanalytic
function of g at g50. Therefore the number of particles
generated in the broad resonance regime cannot be derived
using a perturbative series with respect to coupling param-
eterg. Thus formula~58! clearly manifests the nonperturba-
tive nature of the resonance effects.

The growth indexmk is defined by the formula

nk
j 115nk

j exp~2pmk
j !. ~59!

Comparing Eqs.~59! and ~58! we find

mk
j 5

1

2p
ln~112e2pk2

22sinu tot
j e2~p/2!k2A11e2pk2

!.

~60!

The first two terms in Eq.~58! correspond to the effect of
spontaneous particle creation, which always increases the
number of particles. The last term corresponds to induced
particle creation, which can either increase or decrease the
number of particles. At first glance it looks paradoxical that

the number of particlesnk
j created from the time-varying

external field cannot only increase but sometimes decrease,
i.e., the growth indexmk can be not only positive but some-
times negative. Indeed, it is well known that if theu in&-state
of the quantum fieldx corresponds ton particles, then the
number of particles in theuout&-state due to the interaction
with the external field will always be greater thann. This is
how to resolve the paradox: the particles created from the
vacuum by the time-varying external field are not in the
n-particleu in&-state but are in the squeezedu in&-state. In this
case the interference of the wave functions can lead to a
decrease of the particle number.

The whole effect of the particle production crucially de-
pends on the interference of the wave functions, i.e., the
phase correlation/anticorrelation between successive scatter-
ings at the parabolic potentials. The maximal value ofm is
reached for positive interference when sinutot521 and is
equal to m5(1/p)ln(11A2)'0.28; see also@1,20#. The
typical value ofm corresponds to sinutot50 and is equal to
m5(1/2p)ln 3'0.175. The value ofm is negative for nega-
tive interference when sinutot51. Therefore the behavior of
the resonance essentially depends on the behavior of the
phaseuk

j as a function ofk for different time intervalsj ; see
Fig. 8. In the case of a fixed amplitude of the background
field F(t)5const anda(t)5const, the phasesuk

j do not de-
pend on time but only onk. In this case we expect the exis-
tence of separate stability and instabilityk bands. However,
this separation is washed out as soon as the phasesuk

j are
significantly varying with time due to changes in the param-
eters of the background field, for instance, inF(t) anda(t).

Now we estimate the net effect of particle creation after a
number of oscillation of the inflaton field. Equations~48! and
~55! are recurrence relations for theak

j and bk
j coefficients

and for the number of particlesnk
j after successive actions of

the parabolic potentials centered att1 ,t2 , . . . . To find the
number of particles created up to the momentt j , one has to
repeat the formulasj times for the initial valuesak

051,
bk

j 50, nk
050 and a random initial phaseuk

0 .
After a number of inflaton oscillations, the occupation

number ofx particles is

nk~ t !5
1

2
expS 2p(

j
mk

j D'
1

2
expS 2mE t

dtmk~ t ! D ,

~61!

where we convert the sum overmk
j to an integral overmk(t).

In some cases the indexmk(t) does not depend on time. In a
more general case one can replacemk(t) by an effective
index mk

eff defined by the relation* tdtmk(t)5mk
efft, which,

for brevity, we will write simply asmkt. Then the total num-
ber density of created particles is given by

nx~ t !5
1

~2pa!3E d3knk~ t !5
1

4p2a3E dk k2e2mmkt.

~62!

The functionmk has a maximummmax[m at somek5km .
The integral~62! can be evaluated by the steepest descent
method:
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nx~ t !.
1

4p2a3

km
2 e2mmt

A2p mt mk9
.

1

8p2a3

Dkkm
2 e2mmt

Apmmt
,

~63!

where mk9 is the second derivative of the functionmk at
k5km which we estimated asmk9;2m/Dk2, Dk being the
width of the resonance band. Thus the effect of particle cre-
ation is defined by the leading value of the growth indexm,
by the leading momentumkm and by the width of the reso-
nance bandDk. In practice typicallykm;Dk;k* /2, so we
can use an estimate

nx~ t !;
k
*
3

64p2a3Apmmt
e2mmt. ~64!

In order to calculaten(t) one should find the values of the
parametersm andk* .

In what follows in this section we will apply the general
formalism of successive parabolic potentials first to the toy
model without the expansion of the universe, where
a(t)5const andF(t)5const, in the case of broad reso-
nance,q@1. We will find the resonance zones and the num-
ber of particles which would be created in such a model.
Then we consider a realistic case with the expansion of the
universe taken into account. It turns out that the resonance in
an expanding universe is very different from that without
expansion.

D. Broad parametric resonance without expansion
of the universe

Let us apply the general formalism of the previous sub-
section to the toy model neglecting the expansion of the
universe. This is equivalent to takinga(t)51. Thus, we will
study the evolution of the eigenfunctions in the case with
fixed values of the background parameters and without back
reaction of created particles. In this case Eq.~21! is reduced
to the standard Mathieu equation~23! with Ak5k2/m212q,
q5g2f2/4m2, z5mt.

As we saw in Sec. VI, for the realistic situation with the
expansion of the universe the Mathieu equation is applicable
only at the last stages of the resonance whenq<1. Forq@1
this equation has only a heuristic meaning for our problem.

For the Mathieu equation with a large value ofq ~which is
a constant in this subsection! we have the broad resonance
regime. In this case the parametersk2 andwk of matrix ~54!
are time-independent, i.e., they are the same for differentj .
The phaseuk

j is simple:uk
j 5ukj . Hereuk5* t j 21

t j dt vk is the

phase accumulating between two successive zeros off(t),
i.e., within one half of a period of the inflaton oscillations,
p/m, so thatuk5*0

p/mdt vk . To find ak
j andbk

j we have to
apply the same matrix~54! j times. We are mainly interested
in the regime with a large number of created particles,
nk

j 5ubk
j u2@1. In this regimeuak

j u'ubk
j u, so ak

j and bk
j are

distinguished by their phases only. In this case there is a
simple solution of the matrix Eq.~54! for an arbitraryj :

ak
j 5

1

A2
e~pmk1 iuk! j , ~65!

bk
j 5

1

A2
eiqe~pmk2 iuk! j , ~66!

whereq is a constant phase. In principle, it is possible to
construct not only the asymptotic solution~65!, ~66!, but the
general solution which starts withbk

050. However, the gen-
eral solution very quickly converges to the simple solution
~65!, ~66!, which contains all the physically relevant infor-
mation. From Eq.~66! the number of particles created by the
time t'p j /m is

nk5
1

2
e2pmkj5

1

2
e2mkmt, ~67!

wheremk from Eqs.~65!, ~66! is indeed the growth index.
Substituting the solution~65!, ~66! into Eq. ~54!, we get a
complex equation for the parametersmk anduk :

e~pmk1 iuk!5A11e2pk2
e2 iwk1 ie2~p/2!k22 iq. ~68!

Along side the solution ~65!, ~66!, there is another
asymptotic solution of the matrix equation~54!:

ak
j 5

1

A2
e~pmk1 iuk1 ip! j , ~69!

bk
j 5

1

A2
eiqe~pmk2 iuk2 ip! j , ~70!

with the condition

2e~pmk1 iuk!5A11e2pk2
e1 iw1 ie2~p/2!k22 iq. ~71!

Excluding the phaseq from the complex equations~68! and
~71!, it is easy to find a single equation for the growth index
mk valid for both solutions:2

epmk5ucos~uk2wk!uA11e2pk2

1A~11e2pk2
!cos2~uk2wk!21. ~72!

In the instability bands, the parametermk in Eq. ~72! should
be real. Therefore, the condition for the momentumk to be in

the resonance band is cos(uk2wk)>1/A(11e2pk2
), or

utan~uk2wk!u<e2~p/2!k2
. ~73!

To further analyze the constraints on the width~73! and
strength ~72! of the resonance, we should find how the
phasesuk andwk depend on the momentumk. The anglewk
as a function ofk is defined by Eq.~53!. For the phaseuk we
have

2Notice that the number of particles calculated with Eq.~72! is in
agreement with the general formula~58!. From the definition of
uk,tot and the solutionsak

j andbk
j we haveuk,tot5wk2q. Therefore

from the complex equations~68! and~71! we have additionally that

cos(uk,tot)5A11epk2
sin(uk2wk).
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uk5E
0

p/m

dtAk21g2f2~ t !'
2gF

m
1

k2

2 S ln
gF

mk2 14ln211D
54Aq1

k2

4Aqm2S lnF4qS m

k D 2G14ln211D . ~74!

To obtain these estimates we used the condition that
k2!gF/m for the resonant modes. In Eq.~74! we presented
uk in two equivalent forms: first in terms of the physical
parametersg, F, andk, and second in terms of the param-
etersq andk. Combining Eqs.~74! and ~53! for the phases
uk and wk , we can find howuk2wk depends onk. The
leading term inuk2wk for large values ofq is the term
2gF/m54Aq which does not depend onk. Substituting
uk2wk into Eq.~73! we get the equation for the width of the
resonance explicitly in terms ofk for a given parameterq.
Equation ~73! transparently shows the presence of a se-
quence of stability/instability bands as a function ofk. Typi-
cal half-width of a resonance band isk2;0.1k

*
2 . Substitut-

ing uk2wk into Eq. ~72!, we find the strength of the
resonance as a function ofk. The effect of amplification is
not a monotonic function ofq. The strongest amplification is
realized for discrete values of the parameterq:
q5(np/4)2, wheren is an integer. For this casemk has a
maximum atk50. We can illustrate our results graphically
for this case, since the function argG@(11 ik2)/2# involved
in the expression forwk ~53! has a particularly simple form
for k2!1:

argGS 11 ik2

2 D'20.982k2. ~75!

Then we have

uk2wk'4Aq1
k2

8Aqm2
~ lnq19.474!. ~76!

The functionmk derived with the formulas~72! and ~76! is
plotted in Fig. 9 forq5(64p/4)2. We also plotmk derived
numerically from the Mathieu equation~30!. We conclude
that the predictions of the analytic theory developed here for
the Mathieu equation with largeq are rather accurate.

E. Stochastic resonance in an expanding universe

Let us consider the creation ofx particles by harmonic
oscillations of the inflaton field in an expanding universe.
Because of the expansion of the universe, there are few com-
plications in Eq.~21! for the modesxk in an expanding uni-
verse in comparison with the Mathieu equation. The effect of
the term 3Hẋ can be eliminated by usingXk5a3/2xk ; see
Eq. ~38!. The redshift of momentak→k/a(t) should be
taken into account, especially at the latest stages. The most
important change is the time dependence of the parameter
q5g2F2/4m2: q}t22}N21. For the broad resonance case
whereq@1, this parameter significantly varies within a few
inflaton oscillations; hence, the concept of the static stability-
instability chart of the Mathieu equation cannot be utilized in
this important case.

Surprisingly, the most interesting case when the param-
eterq is large and time-varying can also be treated analyti-
cally by the method of successive parabolic scatterings. In-
deed, the matrix mapping for theak

j and bk
j developed in

subsections B and C is also valid in the case of an expanding
universe. Let us consider the phase accumulating between
two successive zeros of the inflaton field:

uk
j 5E

t j

t j 11
dtAk2/a1g2f2~ t !

'
2gF

m
1

k2

2 S ln
gF

mk2 14ln211D
'

gMp

5m j
1O~k2!, ~77!

where we use Eq.~4! for the amplitude of oscillations,F, as
a function of the number of oscillations,N'2 j . If the initial
value gMp /10m'Aq0 is large, then variation of the phase
duk

j between successive scatterings due to thej dependence
is duk

j .gMp /20m j2, or in terms of the number of oscilla-
tions

duk.
gMp

20mN2 5
Aq

2N2
. ~78!

The crucial observation is the following: for large initial val-
ues ofq, the phase variationduk is much larger thanp for
all relevantk. Therefore, all the phasesu j in Eqs. ~48! and
~55! in this case can be considered to be random numbers.
For givenq, the phases are random for the first

Nstoch.
q1/4

A2p
~79!

FIG. 9. The characteristic exponentmk of the Mathieu equation
~30! as a function ofk2[k2/k

*
2 , for q532p2. The dotted curve is

obtained from a numerical solution. Two instability bands are
shown. The solid curve for these instability bands was derived ana-
lytically with Eqs. ~72! and ~76! where the simple approximation
~75! was used. The numerical and analytical results are in a perfect
agreement for the first band where the approximation~75! is accu-
rate. By improving expansion~75!, one can reach similar agreement
for the higher bands as well.
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oscillations. For example, forq05106 the phases are random
for the first dozen oscillations, and forq05109, neglecting
back reaction effects, the phases would be random for the
first hundred oscillations. During this time each mode expe-
riences chaotic behavior in the standard terms of the theory
of chaotic systems@40#; a small change in the values of
parameters and/or initial conditions can lead to large changes
in the final results.

We will show in Sec. IX B that the back reaction of cre-
ated particles leads to an exponentially rapid decrease ofq
down to q;1/4 at the last moments of preheating. This
means that the parameterq in this regime remains very large
and phases remain random until the very last stages of pre-
heating.

The stochastic character of the phases,uk
j , significantly

simplifies the analysis of the matrix equation~48!. Indeed,
since there is no memory of the phases, each mapping can be
considered as independent of the previous ones.

As we see in Eq.~58!, the number of created particles
depends on the phaseu tot5wk12uk

j 1argbk2argak . In
principle, from the matrix equation~48! one can derive a
series of equations which allow one to express the phases
argbk , argak , and eventuallyu tot through the random phase
uk

j .
For qualitative analysis we simply assume thatu tot is a

random phase. As a result the number of particlesnk
j 11

obeys the recursion equation

nk
j 11'~112e2pk j

2
22sinû e2~p/2!k j

2A11e2pk j
2
!nk

j ,
~80!

whereû is a random phase in the interval (0,2p), andk j
2 is

slowly changing withj ask j
25k2/a2gmF} j 21/3.

Equation~80! defines the number of particles at an arbi-
trary moment as a function of the random phase. Therefore,
nk

j is a random variable which can either increase or decrease
depending on the realization of the phase. Qualitatively, each
mapping corresponds to one of the two possibilities depicted
in Fig. 8. Therefore, the whole process of particle creation is
the superposition of elementary processes wherenk jumps up
or down. This explains the random behavior ofnk in Fig. 5.
On average the number of particles is amplified with time,
i.e., nk increases more often than it decreases.

Stochastic resonance is different in many aspects from the
usual broad parametric resonance of the Mathieu equation,
considered in the previous subsection. Let us investigate the
basic features of the stochastic resonance. First, the structure
of Eq. ~80! does not imply the existence of separate stability
or instability bands. Indeed, the loss of the phase interference
is related to anyk within the broad intervalk<k* , where
the coefficients of the mapping~80! are not exponentially
suppressed. Therefore, as one can see by comparison of Figs.
9 and 10, the stochastic resonance is significantly broader
~almost by an order of magnitude! than each of the stability
zones of the Mathieu equation,Dk;k* . It makes stochastic
resonance much more stable with respect to possible mecha-
nisms which, in principle, could terminate parametric reso-
nance. For instance, the conclusion that theg2f2x2 interac-
tion can terminate broad parametric resonance in Minkowski

space-time@29# cannot be easily generalized to the case of an
expanding universe, where the broad resonance is stochastic
and much wider.

Second, the exponentmk is also a random variable:

mk
j 5

1

2p
ln~112e2pk j

2
22 sin û e2~p/2!k j

2A11e2pk j
2
!.

~81!

The functional form ofmk for stochastic resonance is differ-
ent from that for broad parametric resonance. It changes with
every half period of the inflaton oscillations. An example of
mk calculated at intermediate stage of stochastic resonance
~for j 510 with the initial value of the parameterq5104! is
plotted in Fig. 10.

Equation~81! implies that forpk2!1 the value ofmk
j is

positive ~i.e., the number of particlesgrows! for p/4, û
,3p/4. This occurs for one quarter of all possible values of
û, in the range of2p, û,p. Therefore, positive and nega-
tive occurrences ofm

k
for k!1/Ap appear in the proportion

3:1, so that the probability for the number of particles to
increase is three times higher than the probability of its de-
creasing; see Sec. VI. Computer simulations of this process
confirm this result. However, there will be also a ‘‘natural
selection effect’’: among all modesxk there will be some
modes for which positive occurrences ofmk appear more
often than in the proportion 3:1, and these modes will give
the dominant contribution to the total number of produced
particles. The typical mean value of the characteristic expo-

FIG. 10. The characteristic exponentmk of the mode Eq.~38! in
an expanding universe as a function ofk2 for the initial value of the
parameterq5(32p)2'104, obtained from a numerical solution.
The curve is obtained at the time after the first 5 oscillations, which
corresponds tomk

j with j 510. The envelope of the curve is ob-
tainaed from Eq.~81! by taking there sinû561. We see that there is
a complete agreement between the analytical prediction of the am-
plitude of mk @Eq. ~81!# and the results of the numerical investiga-
tion. Contrary to the static case of Fig. 9, the resonance is much
broader, there are no distinguished stability/instability bands, and
for certain values of momenta the functionmk

j is negative. During
the stochastic resonance regime, this function changes dramatically
with every half period of the inflaton oscillations. Comparison of
Figs. 9 and 10 shows that it is incorrect to use the structure of the
resonance bands of the static Mathieu equation for investigation of
the stage of stochastic resonance, unless one is only looking for a
very rough estimate ofm.
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nent ismk;0.13, but theactual number is very sensitive to
even a very small change of parameters; see the table in Sec.
VI. Based on the central limit theorem, we expect that the
statistics of the random variablenk obey the log-normal dis-
tribution in the regime of the stochastic resonance.

From Eq. ~81! one could expect that the suppression of
particle production occurs not atk2.p21, but at k2

.2p21. However, the situation is more complicated. As
soon as the second term under the logarithm becomes small,
the probability for the number of particles to increase be-
comes equal to the probability of its decreasing, so the pro-
cess of particle production becomes much less efficient.

The stochastic resonance occurs forNstoch oscillations of
the inflaton field defined by Eq.~79!. When the parameterq
decreases because of the expansion of the universe and be-
comes smaller than order 1, which happens forN.Nstoch,
the resonance becomes very similar to the usual parametric
resonance withq<1. However, at some stage it may become
necessary to correct this description by taking into account
back reaction of the created particles.

VIII. RESONANCE, BACK REACTION,
AND RESCATTERING

Until now we have treated the fieldx as a test field in the
presence of the background fieldsf(t) anda(t) which have
independent dynamics. We found the effect of the resonant
amplification of xk(t), which corresponds to the exponen-
tially fast creation ofnx particles. As we have seen, the
resonance in an expanding universe in the beginning may be
very broad, then it becomes narrow, and then eventually dis-
appears.

Because of the exponential instability of thex field, we
expect its back reaction on the background dynamics to
gradually accumulate until it affects the process of resonance
itself. Therefore the development of resonance is divided
into two stages. At the first stage of the process, the back
reaction of the created particles can be neglected. As we will
see, this stage is in fact rather long, and if the initial value of
q was small enough (q0&103) preheating may end before
the back reaction becomes important~see also@28#!. How-
ever, if q0 is greater than about 103, then at some moment
the description of the parametric resonance changes. We en-
ter the second stage of preheating where the back reaction
should be taken into account. In what follows we will treat
the first and second stages of preheating separately.

There are several ways in which back reaction can alter
the process. First of all, interaction with particles created by
parametric resonance may change the effective masses of all
particles and the frequency of oscillation of the inflaton field.
Also, scattering of the particles off each other and their in-
teraction with the oscillating fieldf(t) ~we will vaguely call
both processes ‘‘rescattering’’! may lead to additional par-
ticle production and to the removal of previously produced
particles from the resonance.

In our model there will be two especially important ef-
fects. First,x particles may change the frequencym of os-
cillations of the fieldf(t). This may increase the value ofm
in the mode equation, which can make the resonance narrow
and eventually shut it down.

The second effect is the production off particles, which

occurs due to interaction ofx particles with the oscillating
field f(t). One can visualize this process as scattering ofx
particles on the oscillating fieldf(t). In each act of interac-
tion, eachx particle takes onef particle away from the
homogeneous oscillating fieldf(t). When manyf particles
are produced, they may change the effective mass of the field
x, making x particles so heavy that they no longer can be
produced. Also, scattering, when it occurs for a sufficiently
long time, can destroy the oscillating fieldf(t) by decom-
posing it into separatef particles.

In this section we will derive the general set of equations
which describe the self-consistent dynamics of the classical
homogeneous inflaton fieldf(t), as well as the fluctuations
of the fieldsx and f. We will then discuss different feed-
backs of the amplified fluctuations. In particular, we will
check the energy balance between the background homoge-
neous inflaton fieldf(t), the fluctuationsx(t,x), and the
fluctuationsf(t,x).

A. Self-consistent evolution off and x fields

We can describe all of these effects within a full set of
self-consistent equations. The Friedmann equation for a uni-
verse containing classical fieldf(t) and particlesx and f
with densitiesrx andrf is

3H25
8p

M p
2S 1

2
ḟ21

1

2
m2f21rx1rfD , ~82!

whererx andrf are the energy densities ofx particles and
f particles, respectively.

The mode Eq.~38! for Xk(t)5a3/2(t)xk(t) now should
include a term describing the coupling betweenx and f
fluctuations:

Ẍk~ t !1S k2

a2 1g2F2 sin2mtDXk~ t !

52E dt8Xk~ t8!Px~ t,t8;k!, ~83!

where the polarization operator for the fieldxk5a23/2Xk is
Px(t,t8;k)[*d3xeik(x2x8)Px(t,t8;x2x8).

We will also consider quantum fluctuations of the inflaton
field df(t,x)5f(t,x)2f(t) which can exist on top of the
homogeneous inflaton condensatef(t). The mode equation
for wk(t)[a3/2dfk(t) is

ẅk~ t !1S k2

a2 1m2Dwk~ t !52E dt8wk~ t8!Pf~ t,t8;k!,

~84!

where Pf(t,t8;k) is a corresponding polarization operator
for the fielddfk(t)[a23/2wk(t). The equation for the homo-
geneous condensatef(t) is

f̈~ t !13Hḟ~ t !1m2f~ t !52Gf~ t !52Pf
1 ~ t !f~ t !.

~85!
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HereGf(t) is the tadpole diagram, representing the deriva-
tive of the effective action of the fieldf ~not the decay rate!.
The one-loop diagram representingGf(t) is shown in Fig.
11. The thick line corresponds to the exact solution of the
classical equation of motion of the fieldx in the external
field f.

To get an expression for the polarization operator of the
field f, one should differentiate the effective action twice
with respect to the scalar fielddf. The result can be repre-
sented as a sum of two polarization operators shown in Fig.
12. Pf

1 can be identified with the contribution of the fluctua-
tions of the fieldx to the mass squared of the fieldf:
Dm25g2^x2&. Note that it is directly related toGf :
Gf52P1f. The polarization operatorPf

2 has a more com-
plicated structure; it contains an external scalar fieldf(t) in
each of its vertices due to the interactiong2df f(t)x2.

The self-consistent dynamics described by Eqs.~82!–~85!
is rather complicated and not very well investigated. There

are several different approximations which can be used to
solve these equations in the context of preheating. We will
describe them in this section.

B. Hartree approximation

The simplest way to take into account the back reaction of
the amplified quantum fluctuationsx is to use the Hartree
approximation,

f̈13Hḟ1m2f1g2^x2&f50, ~86!

where the vacuum expectation value forx2 is

^x2&5
1

2p2a3E
0

`

dk k2uXk~ t !u2. ~87!

Quantum effects contribute to the effective massmf of the
inflaton field as follows:mf

2 5m21g2^x2&. The Hartree ap-
proximation corresponds to the first of the two diagrams of
Fig. 12.

Initially, we have no fluctuationswk(t), and we can use
Eq. ~38! for the modesXk . One can expresŝx2& in terms of
the ak(t) andbk(t) coefficients describing the resonance:

^x2&5
1

2p2a3E
0

`dkk2

v

3S ubku21 Re Fakbk* expS 22i E
0

t

vdtD G D .

~88!

This formal expression may need to be renormalized. The
WKB expansion of the solution of Eqs.~43! provides a natu-
ral scheme of regularization@37#. However, in our case the
coefficientsak andbk of the Bogoliubov transformation ap-
pear due to particle production~as opposed to vacuum polar-
ization!, so the integral in Eq.~88! is finite and does not
require further regularization.

Let us estimatêx2& from Eq.~88! using the results of the
previous section. For the resonant creation ofx particles we

have ubku2[nk'
1
2 e2mkmt, Re @akbk* exp(22i *vdt)#

'ubku2cos(2*0
t vdt2argak1argbk). For v'gf(t)

5gFsinmt the phase in this expression is equal to
(2gF/m)cosmt plus a small correctionO(k2). Due to this
small correction, the term (2gF/m)cosmt acquires a nu-
merical factorC,1 after the integration*d3k:

^x2&'
11C cos~2gFcosmt/m!

2p2a3 E
0

`dk k2

v
nk . ~89!

In the broad resonance case whenf.f* ~i.e., for most of
the time!, one hask/a!gf, v'guf(t)u, and, therefore,

^x2&'S 11C cos
2gFcosmt

m D nx

guf~ t !u
. ~90!

This means in particular that in the broad resonance re-
gime the effective mass squared of the background fieldf(t)
in the Hartree approximation

FIG. 11. The one-loop diagrams for the contribution ofx par-
ticles to the effective action of the fieldf ~a! and to its derivative
Gf(t) ~b!. The thick line corresponds to the Green function of thex
particles in the external fieldf(t).

FIG. 12. Two diagrams for the polarization operator of the field
f. Thin and thick lines represent the fieldsf andx, respectively.
The first diagram corresponds to the Hartree approximation which
takes into account the contribution of^x2&. The contributions of
these two diagrams to the effective mass off particles can be
comparable to each other.
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mf
2 5m21S 11C cosS 2gF

m
cosmtD D gnx

uf~ t !u
, ~91!

oscillates with two frequencies. One is the frequency of os-
cillation of uf(t)u, which is equal to 2m. In addition, when
f(t)5F, the effective mass squaredmf

2 oscillates with a
very high frequency;2gF@m. The amplitudes of both os-
cillations are as large as the maximal value ofg2^x2&. One
can easily identify both types of oscillations of^x2& in the
numerical simulations of Khlebnikov and Tkachev@30#.

The resulting equation for the fieldf(t) looks as follows:

f̈13Hḟ1m2f1gnxS 11C cos
2gFcosmt

m D f

ufu
50.

~92!

The last term in this equation oscillates with a frequency
;2gF. In the broad resonance regime withgF@m the
high-frequency oscillation of this term does not much affect
the evolution of the fieldf(t) because the overall sign of the
term C cos(2gFcosmt/m) changes many times during each
oscillation of the field f. One may wonder, however,
whether these high-frequency oscillations may lead to a co-
pious production off particles. A preliminary investigation
of this issue shows that the quasiperiodic change of the last
term in Eq.~92! does not lead to parametric resonance, but a
nonresonant particle production is possible because the ef-
fective mass changes in a very nonadiabatic way:
dm/dt;gmF;k

*
2 @m2.

In the first approximation one may neglect this effect and
write Eq. ~92! as

f̈13Hḟ1m2f1gnx

f

ufu
50. ~93!

Even in this simplified form the last term of this equation
looks rather unusual. It is not proportional tof, which would
be the case ifx particles gave af-independent contribution
to the effective mass of the fieldf. In our case this contri-
bution is inversely proportional toufu. As a result, the field
f behaves as if it were oscillating in the effective potential
gnxufu.

To estimate the change in the frequency of oscillations of
the fieldf due to the termgnx(f/ufu) in Eq. ~93!, one can
neglect the term 3Hḟ in the equation for the homogeneous
field f, becauseH!m at the end of the first stage of pre-
heating, when the termgnx(f/ufu) becomes important. Let
us find when the frequency increase due to the interaction
with x particles becomes greater than the initial frequency
m. In order to do this one should solve the equation
f̈52gnx in the interval 0,f,F. The time during which
the fieldf falls down fromF to 0 is Dt5A2F/gnx. This
time corresponds to one quarter of a period of an oscillation.
This gives the following expression for the frequency of os-
cillations of the fieldf in the regime when it is much greater
than its bare mass squaredm2:

vf5
p

2A2
mf'mf . ~94!

Heremf is the value of the effective mass of the fieldf at
the moment whenf(t)5F ~the oscillations of̂ x2& being
ignored!. Therefore to estimate the change of the frequency
of oscillations of the scalar fieldf one can use the standard
expressionmf

2 5m21g2^x2& for the effective mass squared
of the field f, where by ^x2& one should understand its
smallestvalue per period, which appears forf(t)5F. This
implies that the frequency of oscillations of the inflaton field
does not change until the number ofx particles grows to

nx.
m2F

g
5

2m3

g2 q1/2. ~95!

This is a very important criterion which defines the duration
of the first stage of preheating where the back reaction of the
created particles can be neglected.

For future reference we include here expressions for the
energy density and pressure of the nonrelativisticx particles.
The contribution ofx particles to the energy densityrx(f)
of the oscillating fieldf in terms ofak(t) andbk(t) is given
by

rx~f!5
1

2p2a3E
0

`

dk k2vubku2, ~96!

where ubku25nk . This expression does not have any high-
frequency modulations which we have found for the Hartree
term (g2/2)^x2&f2. During the main part of each oscillation
of the field f, the field x has mass much greater than the
range of the integration ;k* , which means that
v'guf(t)u, and

rx~f!5
gufu

2p2a3E
0

`

dkk2nk5gufunx . ~97!

The contribution ofx particles to pressure in terms of
ak(t) andbk(t) is given by

px~f!52
1

2p2a3E
0

`

dkk2vF ReS akbk* expS 22i E
0

t

vdtD D
1

k2

3v2 ubku2G52gufunxC cos
2gFcosmt

m
. ~98!

The last equality holds in the nonrelativistic limit, for
f@f* . Average pressure in this regime is equal to zero, as
it should be for nonrelativistic particles.

C. Is the Hartree approximation sufficient for the calculation
of particle masses?

In the previous subsection we investigated the change of
frequency of oscillations of the classical background field
f(t) due to its interaction withx particles; see Eqs.~93! and
~94!. What about the spectra of perturbationsdf? In order to
answer this question one should calculate both diagrams
shown in Fig. 12. The first of these diagrams, Fig. 12~a!,
gives the same contributionPf

1 5g2^x2& as the one which
we already calculated when we studied oscillations of the
field f(t). As we have seen, in the situation where fluctua-
tions xk(t) are amplified by resonance, even the calculation
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of this simple diagram is rather nontrivial and leads to an
unusual result~92!. The calculation of the polarization op-
eratorPf

2 , Fig. 12~b!, is much more involved. Similar dia-
grams have been ignored in all previous papers on preheat-
ing. Let us try to understand, however, whetherPf

2 can be
neglected as compared withPf

1 . A positive answer to this
question would imply that the Hartree approximation is suf-
ficient not only for the investigation of the oscillations of the
field f(t), but also for finding the spectrum of perturbations
of the fieldf.

Usually when one calculates similar diagrams at high
temperature, the polarization operatorPf

1 in the high-
temperature limit is proportional toT2, whereasPf

2 is less
divergent at large momenta and therefore grows only asT.
Therefore in the high-temperature approximation, the first
diagram, which corresponds to the Hartree approximation,
gives the leading contribution. In our case this issue should
be reconsidered because the leading contribution to the dia-
grams is given by particles with large occupation numbers
and relatively small momenta.

The back reaction of created particles becomes essential
only at later stages of reheating, when, as we will see shortly,
H!m. Therefore at that stage one can neglect the expansion
of the universe when calculating polarization operators, and
it is more convenient to perform all calculations in terms of
the usual, physical~rather than comoving! momentak and
the modesxk(t). Therefore throughout the rest of the paper
we will use physical momenta,k, p, etc. During the last
stages of reheating they remain almost constant, but in order
to relate them to the original physical momenta for each
mode xk one should remember that physical momenta are
redshifted asa21(t).

To calculatePf
2 one needs to know the Green function of

the fieldx in an external fieldf(t), which is given by

Gx~x,x8!5E d3k T@xk~ t !xk~ t8!#eik~x2x8!, ~99!

where T stands for time ordering. The calculation of the
diagram forPf

2 , Fig. 12~b!, using this Green function for the
internal lines of the fieldx is rather tedious. Therefore, we
will make certain simplifications. Consider the broad reso-
nance regimeq@1 at a time whenf(t)@f* . At this stage
there is no particle production, and the adiabatic form~42!
can be used for the eigenfunctionxk(t). Consider a time
interval Dt,m21 near the time when the inflaton fieldf(t)
reaches its maximum,F. During this short interval, one can
neglect the expansion of the universe and the change of the
field f(t), i.e., one may takef(t)'F. The Green function
in the space-time representation consists of two parts. The
first part is similar to the standard Green function in
Minkowski space in the fixed background fieldf. The sec-
ond part contains the high frequency modulationeiv(t1t8).
Both terms are of the same order. One can show that in this
regime the first term in the expression for the Green function
~99! has a simple form in the momentum representation:

G~k!5
i

k22mx
2 12pnkd~k22mx

2!. ~100!

Here mx5gf(t), andk is a physical momentum. The first
term in this equation is the standard Green function for quan-
tum fluctuations in the vacuum. The second term is propor-
tional to the occupation numbernk5ubku2 of thex particles.

The second part of the full Green function containing the
modulationeiv(t1t8) does not have a simple interpretation in
the momentum representation. Omitting this part does not
affect the order-of-magnitude estimate of the polarization op-
erator. This can be most easily seen for the diagram Fig.
12~a!, where the calculations are much simpler. Indeed, with
the complete Green function~99! one can immediately re-
produce the result~92! for the diagram in Fig. 12~a!. Mean-
while, if one uses Eq.~100!, then in the largenk limit one
gets the first, nonoscillating term in the brackets of Eq.~91!:

Pf
1 .

g2

~2p!4E d4p 2pd~p22mx
2!np5

gnx

uf~ t !u
. ~101!

The part of the Green function containing the modulation
eiv(t1t8) in this case gives us the second~rapidly oscillating!
term in Eq.~91!.

Thus, whereas in the first approximation one can interpret
the growing modes of the fieldx during parametric reso-
nance as normal particles on the mass shell with the standard
Green function~100!, this interpretation in general is not
quite adequate and may lead to the loss of some terms such
as the oscillating term discussed above. Still we correctly
reproduced the most important part of the polarization opera-
tor Pf

1 .
Let us try to estimate the polarization operatorPf

2 using
the simple Green function~100! for uf(t)u'F. The general
structure of the polarization operator is given by

Pf
2 ~k!;2 i

g4F2

~2p!4E d4p G~p!G~p2k6q!. ~102!

The sign ofq depends on whether the external fieldf(t)
brings the momentumq05m,q50 to the two vertices of the
polarization operator or takes this momentum away.

It is not our purpose now to perform a complete calcula-
tion of Pf

2 in this paper because we do not need to know the
exact spectrum of perturbationsdf. Our main goal here is to
find out whether or notPf

2 may contain terms comparable to
the Hartree operatorPf

1 . And indeed, if one calculates, for
example, the diagram where the external fieldf(t) brings a
momentumq05m,q50 to the first vertex and takes it away
from the second vertex, one finds~ignoring factors of order
1! that this contribution to the real part ofPf

2 for
k05m, k50 in the limit np@1 has the same structure as
Pf

1 :

Re Pf
2 ;2

g4F2

~2p!3E npd3p

p0~p0
22m2!

;2
gnx

F
. ~103!

Herep0[v5Ap21g2F2'gF for a typical resonant mode
with g2F2@p2;gmF@m2. Thus, for uf(t)u'F the sec-
ond polarization operator of Fig. 12 contains terms of the
same order of magnitude as the value of the polarization
operator in the Hartree approximation. This result indicates
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that one may need to go beyond the Hartree approximation
used in many papers on preheating.

This result looks paradoxical. In particular, one could ar-
gue that the Hartree approximation is closely related to the
1/N approximation, which is expected to give exact results in
the limit N→`. Indeed, instead of a singlex field one can
takeN fieldsx i with the interaction (g2/2N)f2x i

2 . The Har-
tree diagram is proportional tog2, i.e., it survives in the limit
N→` , whereas the expression for the polarization operator
Pf

2 is proportional tog4/N. That is why usually at largeN
one can neglect contributions likePf

2 as compared withPf
1 .

Indeed, this would be true in our case as well if the fieldx
had a largef-independent mass. But in the theory we are
discussing now its mass squared is (g2/N)f2. As we have
seen, when one calculatesPf

2 this mass squared appears in
the denominator. As a result, the factorg4/N in front of the
diagram becomesg2, so that this diagram also survives in the
limit N→` and has the same order of magnitude as the
Hartree diagram in the 1/N approximation. This means, in
particular, that without a complete calculation ofPf

2 one
cannot be sure that the 1/N approximation gives a correct
spectrum of particles in the limitN→` when applied to the
theory of preheating.

To avoid misunderstandings we should reiterate that this
problem appears in the calculations of the effective masses
of the f particles but not in the calculation of corrections to
the equation of motion of the background fieldf(t), which
was our main goal in Sec. VIII.

D. Classical approximation to the self-consistent dynamics

Fluctuations of Bose fields generated from vacuum by an
external field in the large occupation number limit can be
considered as classical waves with Gaussian statistics; see,
e.g., @41#. Therefore in the first approximation all fieldsx,
df can be treated as interacting classical waves. This makes
it possible to study preheating by investigating a system of
nonlinear classical equations or by lattice numerical simula-
tions of the interacting classical scalar fields@24,28–30#.

The Fourier decomposition of the Klein-Gordon equations
of the interacting fields can be reduced to mode equations.
The mode equation forXk5a3/2xk is

Ẍk1S k2

a2 1g2f2~ t ! DXk52
g2f~ t !

~2p!3a3/2

3E d3k8Xk2k8wk82
g2

~2pa!3

3E d3k8d3k9Xk2k81k9wk8wk9 .

~104!

The mode equation fordfk(t)[a23/2wk(t) is

ẅk1S k2

a2 1m2Dwk52
g2f~ t !

~2p!3a3/2

3E d3k8Xk2k8Xk82
g2

~2pa!3

3E d3k8d3k9wk2k81k9 Xk8Xk9 .

~105!

The first term in the right-hand side of this equation de-
scribes rescattering ofx particles on the classical fieldf(t),
which leads tof-particle production. The second term de-
scribes scattering off particles andx particles. Corrections
to the effective mass of the modesfk appear as a result of
the iterative solution of the system of equations which we
now present.

The equation for the oscillating background fieldf(t)
looks as follows:

f̈13Hḟ1m2f52
g2f

~2p!3a3

3E d3k8Xk8
2

2
g2

~2p!3a9/2

3E d3k8d3k9wk92k8Xk8Xk9 .

~106!

The first term on the right-hand side of this equation is pro-
portional to the polarization operatorPf

1 , which is shown in
Fig. 12~a!. The second term describes rescattering, which is
related to the imaginary part of the polarization operatorPf

2 ,
Fig. 12~b!. Neglecting this term, one reproduces Eq.~86!
with the term containing*d3kuXku2 playing the role of the
induced mass. Thus the classical approximation reproduces
the Hartree approximation, but it also takes into account ef-
fects related to rescattering.

In the beginning one can neglectwk(t) and the corre-
sponding integral terms in Eq.~104!. Later, the fluctuations
Xk(t) are amplified by the resonance and give rise towk(t)
fluctuations via the integral terms in Eq.~105!. When the
amplitude of fluctuationswk(t) grows significantly, they be-
gin to contribute to the integral terms of Eq.~104!. We will
show ~see Sec. X B! that the amplitudewk(t) grows with
time ase2mmt. Therefore the number of particles correspond-
ing to df fluctuations grows ase4mmt, i.e., much faster than
nx . The interaction terms in Eqs.~104! and ~105! can be
interpreted as scattering ofx particles on the inflaton field.
Because of the very fast generation ofdf fluctuations,
udfu2}e4mt, the process of rescattering can be very impor-
tant. However, it is not so easy to evaluate its full signifi-
cance for the efficiency of the resonance. For example, if the
particles f produced during rescattering have small mo-
menta k, they cannot be distinguished from the homoge-
neous oscillating scalar field, and therefore they do not make
any difference to the development of the resonance, see the
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discussion of this issue in Sec. X. Therefore we need to
know not only how manydf particles are produced, but also
whether they are ‘‘hard’’ particles with large momenta or
‘‘soft’’ particles with small momenta. We will return to this
question in Sec. X.

IX. TWO STAGES OF PREHEATING, RESCATTERING
BEING NEGLECTED

Previously, we were mainly following the evolution of
each particular modexk . Now we will study their integral
effect in an expanding universe.

As we have found in the previous section, the develop-
ment of broad parametric resonance can be divided into two
stages. In the first stagenx,m2F/g, back reaction of the
particlesx can be neglected, and the frequency of oscilla-
tions of the fieldf is determined by its massm. ~We will
argue later that at this stage their scattering also does not lead
to any important effects.! In the second stagenx.m2F/g,
and the frequency of oscillations of the fieldf becomes
determined not by its bare mass, but by its interaction withx
particles. Now we will study the first and second stage of
broad parametric resonance.

We begin with the first stage when the back reaction of
created particles can be neglected. Then we consider the sec-
ond stage where back reaction is important assuming a cer-
tain hierarchy of the feedback effects: effective mass of the
inflaton is changed first, and rescattering may become impor-
tant afterwards. In this section we will neglect rescattering.
In the next section we will discuss rescattering and the va-
lidity of the assumption mentioned above.

A. The first stage of preheating: no back reaction
and no rescattering

In the first stage of preheating one can ignore the back
reaction of created particles on the frequency of oscillations
of the fieldf(t). As we have found in Sec. IX A, this stage
ends at the momentt1 when

nx~ t1!.
m2F~ t1!

g
. ~107!

In the next section we will show that the effects related to
rescattering also do not alter the development of the reso-
nance during this stage. In this section we will estimate the
duration of the first staget1, the number of inflaton oscilla-
tions N1 at the timet5t1, the number of created particles
nx(t1), the energy density of these particlesrx(t1) and the
value of ^x2(t1)&. We will use symbolsF, q, andk* with-
out any indices for the running~time-dependent! values of
the amplitude of the fieldf(t), of the q factor, and of
AgmF(t), whereas, for example,q0 will correspond to the
value ofq at the beginning of preheating, andq1 will corre-
spond to its value in the end of the first stage of preheating.

One can use Eq.~64! to estimatenx . First one should
determine which fluctuationsxk are amplified during the en-
tire period of the resonance. The fluctuations amplified by
the broad resonance have physical momenta
k&k* /2;AgmF/2; see Eq.~34!. @More precisely, one may
expectk&k* /Ap, see Eq.~56!.# Then the amplitudeF in

this expression decreases as aboutM p/3mt. Therefore, the
resonance width decreases ask;t21/2, whereas redshift of
the momenta of previously produced particles occurs as
a21;t22/3, i.e., somewhat faster.@In terms of comoving mo-
menta k, the resonance width grows ask.a(t)AgmF/2
}t1/6.# This means that those modes which have been ampli-
fied at the first stages of the process continue to be amplified
later on. There are modes which were outside of the reso-
nance band in the very beginning, but entered the resonance
band later. However, after a time;(2mm)21 the fluctua-
tions which have been amplified from the very beginning
will be exponentially larger than the ‘‘newcomers.’’ There-
fore the modes which do not enter the resonance band from
the beginning typically give a subdominant contribution to
the net effect.

Thus, with reasonably good accuracy, during the first
stage of preheating one may consider only those fluctuations
which have been amplified from the very beginning.3 This is
important because it means that in all integrals one should
consider only momenta which initially, whena(t0)51,
F(t)5F0, were in the interval

k~ t0!<k* ~ t0!/2.AgmF0/2.mq0
1/4/A2, ~108!

whereq05g2F0
2/4m2.

The most important element of our calculations is the ex-
ponentially growing occupation number of particles with
k,km : n(t)}e2mmt. Herem is an effective index which de-
scribes an average rate of growth for modes withk&k* ; see
Sec. VII C. In our modelm depends ong, but not very
strongly; see the table in Sec. VI. Typically it is in the range
0.1–0.2. For definiteness, in our estimates we will use
m50.13 which we have found numerically for a certain
range of values of the coupling constantg; see the table in
Sec. VI. As we will see, in the context of our approach an
error in our estimate ofm, say of 10%, does not create an
exponentially large error in the final result~contrary to the
remark of @17#!; it only leads to an error of 10% in the
calculation of the duration of the first stage of preheating.
Our final results will be even less sensitive to the value of the
subexponential factor in Eq.~64!.

Substituting Eq.~108! into Eq. ~64!, we find

nx~ t !.
~gmF0!3/2

64p2a3Apmm~ t2t0!
e2mm~ t2t0!, ~109!

where t0 is the beginning of the inflaton oscillation. The
convention we used in Sec. VI is thatt05p/2m, which gives

3The total duration of the first stage of preheating in our model
typically is about 102m21. If one compares the redshifted value
k* (t0)/a(t) of the physical momentum which was equal to
k* (t0);AgmF0 at the beginning of preheating, and the running
value ofk* (t);AgmF(t), one finds out that in the beginning these
two quantities coincide, whereas at the end of the first stage of
preheating the running value ofk* is greater than the redshifted one
by only a factor;2. Therefore at the end of the first stage and at
the beginning of the second stage of preheating instead of calculat-
ing the redshifted value ofk* (t0)/2 one may simply use the condi-
tion k&k* (t)/4 for the growing modes.
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F0.M p/5 andq051010g2. Our choice is also very close to
the convention of Ref.@30#. ~This particular choice is not
going to be important because the total duration of the pro-
cess is much greater thant0.! With this choice oft0 we have
a(t)5(2mt/p)2/3. For t@t0 one has4

nx~ t !.1024
~gmMp!3/2

~mt!5/2m1/2
e2mmt. ~110!

Now we have to substitute Eq.~110! andF(t).M p/3mt
into Eq. ~107!. The result can be transformed into an equa-
tion for t1:

t1.
1

4mm
ln

106m~mt1!3

g5M p

. ~111!

An approximate solution of Eq.~111! for m.0.13 is
t1.(1/4mm)ln(1012m/g5M p) @1#. As we will see soon, this
is a good estimate not only for the duration of the first stage
of preheating, but for the duration of the whole process, be-
cause the second stage of preheating typically is rather short.

For a realistic valuem.1026M p in chaotic inflation in
the theorym2f2/2, our estimate gives@9#

t1.
5

4mm
ln

15

g
. ~112!

For instance, form50.13 andg50.1 one hast1.50m21;
for g51022 one has t1.70m21; for g51023 one has
t1.90m21, etc.

The value of the fieldF1[F(t1) at the end of this first
stage is given by

F1.
M p

3mt1
5

4mM p

3
ln21

1012m

g5M p

. ~113!

Another important quantity is the value of the parameter
q5g2F2/4m2 at the end of the first stage:

q1
1/25

gF1

2m
5

2gmM p

3m
ln21

1012m

g5M p

. ~114!

To find the typical occupation numbers at the end of the
first stage of reheating, let us remember that
nx5(1/2p2)*k2dk nk , and that integration typically goes
from 0 to the physical momentum;k* /2. This gives an
estimate

nk.
48p2nx

k
*
3 . ~115!

The occupation numbers ofx particlesnk(t1) by the end
of that stage can be estimated asnk(t1).33102g22q1

21/4;
see Eqs.~61! and ~111!.

Using the results of this section, for different values of the
coupling constantg one can estimate the initial valueq0 of
the parameterq, its valueq1 at the end of the first stage of
preheating, the valueF1, and the number of oscillationsN1
which the fieldf makes from the end of inflation to the end
of the first stage. In the table below we give somewhat
rounded numbers:
g q0 q1 F1 /M p N1

1023 104 3 3.531023 15
1022 106 550 531023 11
1021 108 105 731023 8

The energy density at the end of the first stage is given by

m2F1
2

2
.

8m2m2M p
2

9
ln22

1012m

g5M p

. ~116!

It is worth comparing the frequency of the inflaton oscilla-
tions m with the Hubble parameter at that time:

H~ t1!'mAp/3
2F1

M p
.m

8m

3
ln21

1012m

g5M p

. ~117!

For instance, form50.13,g51022, m51026M p , one has

H~ t1!;1022m. ~118!

Thus, at the last stages of preheating~though not at the be-
ginning! one can, in the first approximation, neglect the ex-
pansion of the universe.

At that time, wheng2^x2&.m2, the total energy density
@on the right-hand side of Eq.~82!# becomes approximately
equally distributed between the interaction energy
Vx(f)5gF1nx5m2F1

2 and the potential energy density

m2F1
2/2 of the fieldf. The kinetic energy ofx particles can

be estimated as ^(¹x)2&.k
*
2 ^x2&.gF1m^x2&

.m2F1
2 (m/gF1).m2F1

2q1
21/2.

If preheating does not end with the end of the first stage,
i.e., if q1@1/4, then the kinetic energy remains small:
^(¹x)2&.m2F1

2q1
21/2!g2F1

2^x2&.m2F1
2. However, if at

the end of the first stageq1;1, then at that time a consider-
able fraction of the energy of the inflaton field will have been
transformed into the kinetic energy of thex particles:
^(¹x)2&.m2F1

2 q1
21/2.m2F1

2.
Let us find the range of values of the coupling constantg

for which preheating ends during the first stage and for
which investigation of back reaction is not necessary. With-
out taking account of the back reaction preheating ends at the
time t f when gF(t) drops down to m, which gives
t f'gMp /3m2 ~see Sec. VI!. Therefore, preheating ends in
the first stage ift f&t1, i.e., if

g&
4m

mM p
ln

15

g
. ~119!

4Equation~110! is a starting point for our further estimates. To
derive this equation we used the theory of successive parabolic
scatterings. However, the general structure of Eq.~110! can be eas-
ily understood even without any use of this theory. As we already
mentioned, the value ofm can be obtained by solving the Mathieu
equation numerically in an expanding universe; see Sec. VI. One
can make a simple estimate ofm even without using a computer.
Indeed, we know that the parameterm along the line A52q
changes from 0 to 0.28@1#. An average of these numbers, 0.14,
provides an excellent approximation to the true value ofm.
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For our values of parameters this gives the condition
g&331024. In our convention, this corresponds to an initial
valueq0&103.

In this regime the total number density ofx particles cre-
ated during preheating is given by

nx.
m4

gMp
exp

2gmM p

3m
, ~120!

and thex fluctuations at the end of this stage are given by

^x2&.
m3

gMp
exp

2gmM p

3m
. ~121!

Equation ~119! implies that for g'331024 this quantity
should coincide with the value of^x2& at the end of the first
stage of preheating,^x2&5m2/g2. Thus, forg'331024 one
has

A^x2&.331016 GeV. ~122!

The possibility to obtain enormously large fluctuations of
the fieldx is one of the most remarkable features of preheat-
ing. For comparison, if the fieldx were in a state of thermal
equilibrium, the dispersion of its fluctuations would be given
by A^x2&5T/2A3 @42#. Therefore in order to obtain
A^x2&;331016 GeV one would need to haveT*1017

GeV, which is practically impossible in the context of infla-
tionary cosmology. Here such fluctuations can be generated
prior to thermalization due to the resonance at the stage of
preheating. Fluctuations~122! change the effective masses of
particles interacting with the fieldx. The simplest way to
study this possibility is to add to our model another scalar
field h with a potential describing symmetry breaking, for
example, V(h,x)5l@(h22h0

2)21h2x2#. For sufficiently
smalll this addition does not affect preheating and does not
change any of our results concerning^x2&. It is obvious that
the generation of perturbations^x2& leads to symmetry res-
toration in this model forh0&A^x2& on a scale up to
h0;1016 GeV @9,10#. Such effects may have important cos-
mological implications@43#.

Thus, we can distinguish between different scenarios de-
pending on the coupling constantg.

For g!331024 the broad resonance ends during the first
stage. In this case parametric resonance is not efficient
enough to transfer a significant part of the energy of the
inflaton field to the energy ofx particles. The most important
part of the process of preheating in such theories is described
by the elementary theory of reheating@5,6,8#.

For g;331024, at the end of the first stageq1;1/4, and
the energy becomes approximately equally distributed be-
tween the energy of the oscillating scalar fieldf and the
energy ofx particles produced by its oscillations.

For g.331024 the broad resonance continues after the
end of the first stage. To investigate the further development
of the resonance one should study quantum effects which
could be produced by thex fluctuations interacting with the
oscillating fieldf(t).

Before doing so, let us remember that the presence of the
interactiong2f2x2 typically leads to radiative corrections to
the effective potential of the type (g4f4/32p2)ln f. For

g*1023 this term becomes greater than the termm2f2/2 for
f;4M p , when the density perturbations determining the
structure of our part of the universe were produced. Thus one
may argue that in models of the type considered aboveg
should be smaller than 1023. If g belongs to the narrow
interval between 331024 and 1023, reheating ends soon
after the end of the first stage, and the effects of back reac-
tion are only marginally important. For the description of
preheating in such theories it is sufficient to use the simple
estimates obtained in this section.

However, in supersymmetric theories radiative correc-
tions from bosons and fermions have a tendency to cancel
each other. In such theories the coupling constantg can be
much greater than 1023. Therefore, we will continue to con-
sider all possible values of the coupling constantg without
assuming thatg,1023.

B. The second stage of preheating, neglecting rescattering

We defined the second stage of preheating,t.t1, as the
stage when the frequency of inflaton oscillations due to the
feedback of amplifiedx fluctuations is no longerm but is
determined by the back reaction ofx particles. In this section
we will investigate preheating neglecting rescattering. In the
next section we will discuss the validity of this assumption.
The frequency of the inflaton oscillations during this stage
was derived in Sec. VIII B and given by Eq.~94!. Since this
frequency is much greater than the bare massm, the second
stage is much shorter than the first one. Indeed, at this stage
each oscillation takes a time which is much shorter than
2pm21, whereas the number of particles, as before, grows
as e4pmN, whereN is the number of oscillations. Therefore
the number of particles can grow exponentially within a time
which is much shorter thanH21. This implies that one can
neglect expansion of the universe and the corresponding de-
crease of the total energy density of matter during the second
stage of preheating.

Let us consider the inflaton oscillationsf(t) during the
second stage. From Eq.~93! in the limit H!mf we have

f̈1m2f1gnxsgnf50, ~123!

where sgnf is 61 depending on the sign of the valuef,
nx(t) is a function of time, the expansion of the universe is
neglected, andm2f!g2nxsgnf. The solution of this equa-
tion f(t) consists of a sequence of segments of parabolas
with opposite orientation that are symmetric relative to thet
axis and match atf50. The equation for the modesxk(t)
will contain the square ofgf(t) instead ofg2F2sin2mt.
Thus the behavior ofxk(t) for f(t) determined by Eq.~123!
is somewhat different from the behavior ofxk as described
by the Mathieu equation. Nevertheless, this is not a real
problem here.

Indeed, if one does not take back reaction into account,
then, according to our investigation in Sec. VI, the system
spends half of the time in the broad resonance regime, and
another half of the time in the regime withq;1, so this
regime is very important. However, let us consider the ef-
fects of back reaction. The parameterq5g2F2/4mf

2 at the
second stage can be estimated using the ‘‘effective mass’’
~or, more exactly, the frequency of oscillations of the field
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f) mf
2 ;gnx /F;g2^x2& ~94!. This gives q;gF3/4nx .

The end of the resonance, as before, occurs atq;1/4, see
below. The number ofx particles grows exponentially, so
during the previous oscillation one hadq;e4pm/4;1, and
during the previous oscillationq was much greater than 1.
Therefore during all the time except the last one or two os-
cillations the parameterq was very large, the resonance was
very broad, and it could be described by the theory of sto-
chastic resonance. This theory is very robust; it depends only
on the speed of the fieldf nearf50. Thus the difference
between the Mathieu equation and the equation for the
modesxk in the fieldf(t) satisfying Eq.~123! in this con-
text becomes unimportant.

On the other hand, at the time whenq decreases, the
structure of the first resonance band becomes important. We
investigated this issue by solving equations for the modesxk
numerically. We found that if the fieldf(t) obeys Eq.~123!,
the structure of the first resonance band forxk at small mo-
menta is very similar to that of the Mathieu equation. There-
fore, the second stage of preheating in this case ends when

q5
g2F2

4mf
2

.
g2F2

4g2^x2&
.

gF3

4nx
;1/4, ~124!

just as before. This happens at some momentt2 when

gF2.mf~ t2!, F2.A^x2&2 , nx~ t2!.
guF2u3

4
.

~125!

At this time the total energy density becomes approxi-
mately equally distributed between the kinetic energy ofx
particles;(gmfF/8)^x2& and the energy;gFnx of their
interaction with the fieldf ~which includes the potential
energy of the fieldf). This energy should be equal to the
total energy of the system at the timet1, which is given by
3m2F1

2/2. The final value of the inflaton field at the end of
resonance is

F2.F1q1
21/4. ~126!

Thus,F2 is somewhat smaller thanF1 for q1.1:

F2.A^x2&2.S 8mmMp

3g
ln21

1012m

g5M p
D 1/2

. ~127!

To find the typical occupation numbers of the modes with
k;k* at the end of the second stage of reheating, let us
remember thatnk.48p2nx /k

*
3 . This corresponds to enor-

mously large occupation numbers@1#

nk~ t2!.102g22. ~128!

This result indicates potential problems with the perturba-
tive investigation of preheating at the end of its second stage.
Adding extra internal lines of the diagrams may introduce
enormous factorsnk.102g22, which may cancel extra de-
grees ofg2 which appear in the higher order corrections.

In order to calculate the duration of the second stage let us
note that nx(t2)'nx(t1)e4pmN2. One can show that
nx(t2)/nx(t1).4q1

1/4. Therefore, the duration of the second
stage is

N2.
1

4pm
ln4q1

1/4. ~129!

Using the table of values ofq1 given in the previous subsec-
tion, one can conclude that the second stage may take from 2
oscillations ~for g51023) to about 10 oscillations~for
g51021).

Numerical estimates ofF2;A^x2&2 show that it can be
in the range of 1015 to 1016 GeV. As an example, for
g51022, which corresponds to q0.106, one has
F2;A^x2&2.1016 GeV. An interesting feature of Eq.~127!
is the inverse dependence ofA^x2&2 on the value of the
coupling constant.

Note that in addition to the high-frequency oscillations
with frequency;gF discussed in Sec. VIII B, the amplitude
of fluctuationsA^x2& experiences oscillations with a fre-
quency 2m. At the end of the second stage these two fre-
quencies coincide. In all our estimates we calculated the
minimal value of A^x2& which occurs whenuf(t)u.F. It
was important for us because this is the time which deter-
mines the frequency of oscillations of the fieldf(t). Near
f(t)50 the amplitude of fluctuationsA^x2& is greater than
at uf(t)u.F, but close to the end of the second stage of
preheating this difference becomes less significant.

The results of numerical calculations ofA^x2& performed
in @30# are in agreement with our estimates forg&331024

but give a few times greater value ofA^x2&2 for larger g.
The difference can be interpreted as a result of rescattering of
x particles during the second stage of preheating.

X. RESCATTERING

Theoretical considerations contained in@24–27,30# and
numerical lattice simulations of preheating@24,28–30# indi-
cate that there is another effect which should be incorporated
into the preheating scenario. In the context of the model
investigated in this paper, one should consider the generation
of inflaton fluctuationsdf due to the interaction ofx par-
ticles with the oscillating inflaton fieldf(t), and subsequent
interaction betweenx anddf fluctuations. We already dis-
cussed in Sec. VIII D the possibility to describe this process
by equations for classical waves. One may also represent the
classical scalar field as a condensate off particles with zero
momentum, and interpretf-particle production as a result of
rescattering ofx particles and thef particles in the conden-
sate@24,25,29,30#. This ‘‘particlelike’’ interpretation of the
interaction allows one to use the concept of cross section of
the interacting particles, and the Boltzmann equation for the
occupation numbers.

The theory of this process is rather complicated, and its
interpretation in terms of the rescattering of elementary par-
ticles is not universally valid; see Sec. X B. Still we can
formulate the following apparently general results. First,
there is a significant generation of rapidly growing fluctua-
tions df}e2mmft due to the interaction betweenx particles
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and the oscillating fieldf(t). Second, the generation of large
fluctuations ofdf can terminate the resonant creation ofx
particles only at the end of the second stage of reheating. In
this section we will try to justify these statements.

A. Generation of f particles by rescattering

To evaluate the effects of rescattering we will use here the
‘‘particlelike’’ interpretation of rescattering. First, one
should make an estimate of the cross sections for the scat-
tering of x particles with an effective massgf(t) and a
typical physical momentum.k* /25AgmF/2 on f par-
ticles of massm with zero initial momentum which consti-
tute the oscillating fieldf(t). The effective mass of the field
x is time dependent. This makes investigation of their scat-
tering rather complicated. However, in the broad resonance
regime during the main part of the oscillation@for

ufu.f* . 1
3 Fq21/4 ~33!#, the fieldx changes adiabatically.

During this time, the effective mass of the fieldx also
changes adiabatically, so one may considerx particles as
ordinary particles with an effective massgf(t). We will also
consider the oscillating scalar fieldf(t) as a collection of
particlesf with an effective massmf and number density
nf5mfF2/2.

We will suppose now that in such situation one can use
the standard result for the cross section for elementary par-
ticles f andx with constant masses:

S ds

dV D
c.m.

5
upfuM2

64p2EfEx~Ef1Ex!uvf2vxu
. ~130!

Here all energiesEf ,Ex and velocitiesvf ,vx are given in
the center-of-mass~c.m.! frame and refer to the initial state,
except forpf which refers to the final state.M2 is the square
of the matrix element, which is given byg4 @32#.

During most of an oscillation one hasufu.f*
. 1

3 Fq21/4, and mx5gf@k* ;AgmfF. In this case both
thef particles andx particles are nonrelativistic. If one goes
to the c.m. frame one finds that thef particles have a small

speedvf' 1
2 Amf /gf@vx . Thus Ef5mf , Ex'gf. For

gf@mf the absolute value of the momentum of thef par-
ticles does not change after scattering,
upfu'(mf /2)Amf /gf!mf . This gives, after the integra-
tion of Eq. ~130! over dV, a single particle cross section
s1;g4/16pEx

25g2/16pf2.
Now one should take into account that the actual cross

section will be much greater because the scattering occurs
not in a vacuum, but in a state which already contains many
bosonsf andx. There are manyx particles from the reso-
nance and many inflaton particlesf. Naively one would ex-
pect that the cross section should be proportional to the prod-
uct of the occupation numbersnp

f and nk
x in the final state.

However, the corresponding terms disappear in the collision
integral in the Boltzmann equation, which takes into account
all the channels of scattering. Therefore in the investigation
of enhancement of the cross section due to the large occupa-
tion numbers of particles in the final state, one should con-
sider terms proportional either tonp

x or nk
f , but not tonp

fnk
x .

In the beginning of the processnx@nf , and the cross sec-

tion s1 should be multiplied bynp
x.48p2nx(t)/k

*
3 . This

gives, forf(t).F, s;3pg2nx /k
*
3 F2.

Using this result, one can estimate the time for eachx
particle to experience one scattering with af particle be-
longing to the oscillating field f(t): t51/snfvf
.0.5(F2/nx). In particular, at the end of the first stage,
nx.mf

2 F1 /g, which yields

t.mf
21q1

1/2. ~131!

For g;1023 this time is of the same order as the time of one
oscillation of the fieldf; see the table in Sec. IX. However,
just one oscillation before the end of the first stage the den-
sity of particles was much smaller and rescattering was inef-
ficient. Forg*1022 this time is much greater than the time
of one oscillation, which means that rescattering occurs only
during the second stage of preheating.

In the ‘‘particlelike’’ picture the number ofx particles
does not change in each act of interaction~apart from its
growth due to the resonance!, but each collision releases one
f particle from the homogeneously oscillating fieldf(t).
Since the scattering time for eachx particle t}nx(t), one
may conclude that the number of freef particles grows with
time asnf}5nx

2/F2mf}e4mmft. However, the true depen-
dence is more complicated because during each interaction
thex particles will slow down. This affects their subsequent
interactions.

B. On the validity of the ‘‘particlelike’’ interpretation
of rescattering

In the previous subsection we considered rescattering of
particles during time intervals whenf(t).f* . At that stage
x particles are nonrelativistic. In contrast, during the short
time intervalsDt* .k

*
21 , whenuf(t)u,f* , x particles are

ultrarelativistic, and their effective massgf is very small
comparing to their typical momenta;k* /2. If one uncriti-
cally repeats the calculation of the rescattering for the case of
ultrarelativisticx particles in the time intervalDt* , one ob-
tains a much higher cross section and a much shorter rescat-
tering timet.mf

2 /3p2g2nx than that of the nonrelativistic
case of the previous subsection.

However, within the very short time interval
Dt* .q21/4mf

21 , one cannot use the standard methods of
calculation@32# developed for the investigation of processes
which begin att52` and end att51`. The uncertainty
principle tells us that during the timeDt* one cannot specify
the energy of particles with an accuracy better thank* .
Therefore during the short intervalDt* one cannot tell the
difference between af particle with momentumk50, be-
longing to the classical fieldf(t), and a freef particle with
momentumk,k* , i.e., one cannot tell whether scattering
occurred or not. This question can be answered only by ob-
serving the system for a longer time, comparable tomf

21 , but
during the main part of such intervals the effective mass of
eachf particle is large, and cross section is much smaller
than the cross section which one would obtain by naive ap-
plication of theS matrix approach during a small interval
Dt* . In other words, we cannot use the standard formalism
of particle scattering to describe scattering around zeros of
the inflaton field. Another element missing in this formalism
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is that the fieldx is not in annx-particle quantum state, but
is in the squeezed state.~We have discussed already one of
the nontrivial consequences of this fact, namely the high-
frequency modulation of̂ x2&.! Thus one may wonder
whether one can trust the results of our calculations for the
more safe situation whenf.f* , and what we can say
about the contribution of the intervals withf,f* to the net
rescattering effect?

Here we will outline a possible way to answer this ques-
tion. Let us consider the self-consistent set of equations
~104! and ~105! for the interacting fields in the classical ap-
proximation. Equation~105! describes the evolution of the
dfk(t) fluctuation. Let us concentrate on the first integral
term in Eq.~105!, assuming for the moment that the second
term is subdominant untildfk(t) increases sufficiently.
What we obtain is the equation for the forced oscillations of
dfk(t). The homogeneous part of this inhomogeneous linear
differential equation has a simple Green function
}sinVk(t2t8), where Vk

25k21mf
2 . Then the solution of

Eq. ~105! with only the first integral term is

dfk~ t !52
g2

~2p!3Vk
E

0

t

dt8sinVk~ t2t8!f~ t8!

3E d3k8xk2k8~ t8!xk8~ t8!1H.c. ~132!

Here, as before,k is a physical momentum. This solution
expresses the functiondfk(t) via the known functionsf(t)
describing the inflaton oscillations, see Eq.~4!, and the func-
tions xk(t); see Sec. VII. Equation~132! takes into account
all the regimes off(t), as well as the resonant amplification
of xk . In particular, from this it follows that the amplitude
wk(t) grows with time ase2mmft, because the amplitudexk
grows asemmft. Therefore the number of particles corre-
sponding to df fluctuations is proportional tonx

2(t)
}e4mmft, i.e., grows much faster thannx . Another specific
prediction which follows from Eq.~132! is that the random
field df(t,x… at the early stages of its generation will have
non-Gaussian statistics in contrast to the random Gaussian
field x t,x .

Let us further investigate the solution~132!. The inner
integral*d3k8xk2k8(t8)xk8(t8) is time-dependent. It is con-
venient to change the order of integration of*dt8 and*d3k8.
Then the right-hand side of the solution~132! will contain
terms such as

g2FeiVkt

~2p!3Vk
E d3k8E

0

t

dt8
bk8bk2k8

*

Avk2k8~ t8!vk8~ t8!

3expS 2 iVkt81 imft82 i E t8
dt9vk2k8~ t9!

1 i E t8
dt9vk8~ t9! D , ~133!

wherevk
2(t)5k21g2f2(t). During each half of the oscilla-

tion bk is constant; see Sec. VII A.~Note that the coefficients
bk corresponding to the classical waves will be dimension-
less if one uses discrete modesk.!

It is easy to see that different choices of signs in Eq.~133!
correspond to different channels of scattering betweendf,
x, andf waves. The terms~133! correspond to the genera-
tion of df fluctuations due to the scattering ofx and f
waves. Obviously, one can leave in the inner integral*0

t only
the segment* t j

t ~where t,t j1p/mf) from the most recent

cycle of the inflaton oscillation, whenbk8 is the largest. Dur-
ing this intervalbk8 is constant. Therefore to further investi-
gate the inner integral* t j

t , we shall consider the variation

of the phase of the exponent in Eq.~133!

u.2Vkt81mft82* t8dt9vk2k8(t9)1* t8dt9vk8(t9) within
this time intervalt2t j,p/mf , which describes the interfer-
ence of the four interacting wavesf(t), dfk , xk8 ,
and xk2k8 . Earlier we estimated the integral
* t8dt9vk8(t9)'(2gF/mf)cosmft81O(k2); see Eq. ~77!.
The crucial observation is that for the process
xk8f0→dfkxk82k the large terms (2gF/mf)cosmft in the
expression foru are cancelled and the phaseu does not
oscillate within each half of the period,t2t j,p/mf . As a
result, the integral*dt cannot be reduced to the usual delta-
function d(2Vk1mf2vk2k81vk8), as one would expect
in the ‘‘particle-like’’ picture. Instead, in the wave picture
we will have nonvanishing contributions from the bunches of
modesk and k8 for which the phaseu.p, which corre-
sponds to the interaction of packets ofx and df waves.
In contrast to the process of rescattering, the annihil-
ation process xkxk8→dfk9dfk1k82k9 and the inverse
process will be suppressed because the corresponding
time integrals have very rapidly oscillating exponents
exp@6 i (4gF/mf)cosmft#.

The analysis of Eq.~133! shows the hard componentdf
with k.k* can be generated only during the very short time
intervals Dt* .k

*
21 around zeros of the inflaton field. The

soft component with momentak!k* is generated all the
time. Soft particles produced atufu.f* have very small
momenta in the range of 0,k,m. It makes sense to talk
about such particles as freef particles removed from the
coherently oscillating fieldf(t) only at time intervals
t@mf

21 . An estimate of the soft component from Eq.~133!
at the beginning of the process iŝf2&soft.g2nx

2/mf
4 ,

whereas for the hard component one has
^f2&hard.^f2&soft/Aq. Sincedf grows very fast, one has to
be careful with the range of validity of the solution~132!.
Indeed, Eq.~132! is only the first term in the iterative solu-
tion of Eq.~105!. As soon asdf grows, we have to consider
the iterative solutions of both Eqs.~104! and~105!. We have
to take into account the corrections toXk due to theX andw
coupling on the right-hand side of Eq.~104! as well as the
second bilinear term on the right-hand side of Eq.~105!.
Because of the exponential growth in the number of par-
ticles, these corrections to the simple solution~132! very
quickly become important, which makes further investiga-
tion rather complicated.

One should note that in addition to rescattering, there may
exist other mechanisms off-particle production. For ex-
ample, let us consider fluctuationsdf with effective mass
squaredg2^x2&. As we already emphasized, this term is
time-dependent. First of all, it experiences quasiperiodic
high-frequency modulation, which, as we already noted in
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Sec. VIII B, may serve as an additional source off particles.
In addition, the termg2^x2& oscillates with periodp/mf .
During each oscillation it changes from its minimal value
gFnx @for uf(t)u5F# to a much greater value;3gFnxq1/4

@for uf(t)u5f* #. This leads to a significant periodic change
in the properties off particles, which is especially pro-
nounced whenuf(t)u&f* . A preliminary investigation of
this issue indicates the possibility of a parametric resonance
with f-particle production.

Our main purpose here was not to give the final analysis
of this issue but rather to outline different approaches to the
problem of rescattering andf-particle production, which
should provide a proper framework for future investigation.

C. Rescattering and the end of preheating

Can rescattering kill the resonance? In Sec. X A we found
that rescattering can be rather efficient at the second stage of
preheating. What can we say about the influence of rescat-
tering on the development of parametric resonance?

The simplest idea would be to estimate the effective mass
of the x particles induced by the fluctuationŝf2&:
Dmx

2;g2^f2&. However, this would not be quite correct.
Indeed, the whole process ofx-particle production occurs
in the interval ufu&f* during the time
t* ;(gmfF)21/25k

*
21 ; see Eq.~35!. If oscillations of the

modesdf occur during a longer time, then from the point of
view of the creation ofx particles they cannot be distin-
guished from the oscillations of the fieldf(t), and therefore
they do not harm the development of stochastic resonance.
We called such modes ‘‘soft,’’ and the modes withk*k* /4
‘‘hard.’’

Fluctuations of the scalar fieldf can be harmful to the
development of the resonance if they can considerably alter
the motion of the fieldf in the intervalufu&f* . The only
fluctuations which can change the direction of their motion
during the short time t* ;k

*
21 are the modes with

k*2pk* @k* . This effect does not seem to be very impor-
tant. At the time when the homogeneous modef(t) enters
the intervalufu.f* , it has a kinetic energyḟ2/2;mf

2 F2/2.
In order to alter the motion of the fieldf the ‘‘hard’’ fluc-
tuationsdf should~occasionally! have comparable~and op-
posite! speed, and therefore they should have a kinetic en-
ergy comparable tomf

2 F2/2. Thus, the resonance disappears
only after the kinetic energy off particles with momenta
k@k* becomes comparable to the total energy of the oscil-
lating field f(t). This could happen only at the very end of
preheating.

However, there is another mechanism which may harm
the resonance. Each modexk ‘‘probes’’ space on a length
scaleD l;2pk21. If the field df is homogeneous on this
scale, it acts as a homogeneous background for the modexk .
On the other hand, ifdf is inhomogeneous on this scale,
then the fieldxk has an integrated interaction with all inho-
mogeneities of the fielddf on the scaleD l;2pk21, i.e., it
interacts with the contribution tôf2& from the modes with
momenta greater thank. This corresponds to the appearance
of an ‘‘effective mass squared’’Dmx

2;g2^f2&, but only the
modes with momenta greater thank should be taken into
account in this calculation. Thus, from the point of view of

the development of parametric resonance, one can introduce
a new notion of an effective mass squared
Dmx

2(k);g2^f2&k , where the indexk means that we take
into account only the modes with momenta greater thank.

If the effective mass squaredDmx
2(k) becomes greater

thank2, the equation of motion for such modesxk changes
considerably. This effect kills the resonance for the modexk

if Dmx
2(k) becomes greater than the width of the resonance.

The resonance for the leading modes withk;k* /4 ends
whenDmx

2(k* );g2^f2&hard becomes greater thank* /4.
The difference between the total value of^f2& and

^f2&hard[^f2&k
*

/4 can be quite significant. The number of

f particles produced in each scattering is equal to the num-
ber ofx particles, eachf particle taking away some portion
of the momentumk of the correspondingx particle. If this
portion is small,df fluctuations corresponding to these par-
ticles have momenta much smaller thank* /4. Therefore,
they do not give any contribution to the effective mass
Dmx

2(k;k* /4), so they do not hurt the resonance at such
momenta. If in the first collision ax particle with momentum
k;k* /4 gives a significant portion of its energy to af par-
ticle, then it loses its energy, and in subsequent collisions it
will produce only harmlessdf fluctuations withk!k* /4.

Thus, one may argue that if rescattering is efficient, the
number of ‘‘hard’’ f particles produced byx particles
should be similar to the initial number ofx particles with
momenta;k* /4, i.e., nf

hard&nx , whereas the total number
of f particles produced by rescattering may be much greater.
At the second stage of reheating, wheng2^x2&@mf

2 , one can
use an estimate

^df2&.
1

2p2E k2dk nk
f

Ak21g2^x2&
. ~134!

If ^df2& is dominated by soft fluctuations withk2!g2^x2&,
then at the second stage of the resonance one should expect a
strong anticorrelation between oscillations of^x2& and
^df2&. This prediction is in agreement with the numerical
results of@30#.

Now let us concentrate on the ‘‘hard’’ fluctuations with
typical momenta;k* /4. They can hamper the resonance if
they make the fieldx massive, with an induced effective
mass squaredDm2;g2^df2&hard comparable to the square
of the typical momentum ofx particlesk;k* /4:

g2^df2&hard*gmfF/16. ~135!

Suppose that a fractiong of all energymf
2 F2/2 is trans-

ferred to the kinetic energy (k2/2)^df2&hard of ‘‘hard’’ fluc-
tuations,

gmF

32
^df2&hard.g

mf
2 F2

2
. ~136!

This gives

g2^df2&hard.16ggmfF. ~137!

Comparison of Eqs.~137! and~135! shows thatg*1/256,
i.e., the resonance may slow down and eventually terminate
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only when the oscillating fieldf transfers at least;1/256 of
its energy to the ‘‘hard’’ fluctuationsf. The total energy of
all f particles will be somewhat greater than that. These
particles get their kinetic energy from the kinetic energy ofx
particles;(gmfF/8)^x2&, so one may expect that the reso-
nance terminates only after (gmfF/32)^x2& becomes
greater than 1/256(mf

2 F2/2). This can only occur close to
the end of preheating. LetA^x2& r andF r be the values ofx
fluctuations and amplitude of the background field at the
momentt r when the parametric resonance is terminated by
rescattering. Taking into account that at the second stage of
preheatingmf

2 .g2^x2& one finds that at the end of preheat-
ing

A^x2& r*F r /16. ~138!

Note also thatA^x2& r&F r , because this would correspond
to the result which we obtained in Sec. IX B neglecting re-
scattering. In our subsequent calculations we will use the
estimateA^x2& r;1021F r . This value is somewhat smaller
thanA^x2&2.F2 which we obtained in Sec. IX B neglecting
rescattering. However, the difference between these two val-
ues is in fact not very large becauseF r.F2.

We are going to findA^x2& r and F r , which should re-
place our previous estimates forA^x2&2 andF2 at the end of
the second stage neglecting rescattering. Again we will use
energy conservation. At the end of the first stage the energy
density was equal to the potential energy densitym2F1

2/2 of
the inflaton field plus the energy of its interaction
gF1nx;m2F1

2, wherem is the bare inflaton mass. At the
end of the resonance~at the second stage!, with an account
taken of rescattering, the kinetic energy of thex particles
remains small, so the whole energy;3mf

2 F1
2/2 transforms

to the energy density of interaction betweenx particles and
the fieldf, rx5gF rnx;g2^x2& rF r

2;1022g2F r
4 . Note that

rx includes the energy of the oscillating scalar fieldf(t).
Energy conservation implies thatF r;3.5AmF1 /g
;2.5F1q1

21/4. However, F r obviously cannot be greater
thanF1. This means that rescattering can terminate the reso-
nance either ifA^x2& r@1021F r , in which case we essen-
tially recover the previous results of Sec. IX B, or ifq1*102.
In the last case one hasA^x2& r;0.35AmF1 /g, which yields

A^x2& r;S mmMp

6g
ln21

1012m

g5M p
D 1/2

. ~139!

This estimate should replace Eq.~127! derived without ac-
count taken of rescattering. In particular, forg51022, which
corresponds to q05106, and q1;550, we get
A^x2& r'2.531015 GeV. To compare this result to the result
of @30# one should note that the definition ofq0 in @30#
differs slightly from ours, so it is better to compare our re-
sults for a giveng rather than for a givenq0. In particular,
one should compare their results forq05106 with our results
for g51022: A^x2& r'331015 GeV. This result agrees, to
within a factor of 2, with the results of the lattice simulation
of @30#.

One should not overemphasize the significance of this
agreement. The theory of the last stages of preheating is
extremely complicated, and there are many points in which

our rough estimates could be improved. One should remem-
ber also that we are discussing stochastic resonance, which is
extremely sensitive to even minor changes of parameters; see
the table in Sec. VI@44#. From this perspective it is even
somewhat surprising that one can describe many features of
this process by analytical methods with rather good accu-
racy.

Strictly speaking, the condition which we derived does
not imply that the resonance is completely terminated. The
leading modes, which have been amplified from the very
beginning, stop growing when the effective mass of the field
x becomes greater thank;k* /4. However, the subleading
modes still continue their growth until the effective mass
becomes greater thank* /2. This process is very inefficient,
but ^x2& continues slowly growing for a while. Moreover,
^x2& may grow a little even when the resonance is com-
pletely terminated and new particles are no longer produced.
Indeed, due to the decay of the fieldf(t), the effective mass
of the x particles becomes smaller, and therefore^x2& may
become greater even ifnx remains constant. These effects
are not very significant, but they make it difficult to clearly
recognize the end of parametric resonance by looking at the
behavior of^x2&. That is why throughout this paper, along-
side the dispersion of the fluctuations which is studied in
most papers on preheating, we use the number density of
particles to investigate the resonance.

An estimate of the density ofx particles at the end of the
resonance can be obtained by multiplyinĝx2& r by
gF r;16gA^x2& r . It is given by

nx;0.4g21/2S mmMpln21
1012m

g5M p
D 3/2

. ~140!

It is useful to compare this number with the number off
particlesnf in the oscillating fieldf(t) which survive the
rescattering. To distinguish the particlesf in the oscillating
field and the freef particles created by rescattering, we will
denote the number of particles in the classical field asnf

c . At
the end of the resonance it is given bymfF r

2/2, wheremf

is the effective massgA^x2& r.0.1gF r . Meanwhile
nx;gF r^x

2& r;1022gF r
3 . Therefore,

nx;1021nf
c . ~141!

Equation~141! says that at the end of the resonancex
particles need to rescatter only 10 times to destroy the coher-
ent oscillations of the classical field, i.e., to decompose it
into separatef particles. Therefore one may expect that at
the end of the resonance or very soon after itx particles may
destroy the classical fieldf(t) completely, in agreement
with @30#. This means that the final stage of decay of the
homogeneously oscillating classical scalar field in our model
is determined not by resonance but by rescattering.

The decay of the classical scalar fieldf(t) is not the end
of the story, but rather the beginning of a new stage of re-
heating. As we pointed out in@1#, it does not make much
sense to calculate the reheating temperature at this stage of
the process. Indeed, from the point of view of the energy
stored in thef particles, it is not very important whether it is
in the form off fluctuations or in the form of a coherently
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oscillating field f. According to our estimates, the kinetic
energy ofx particles may constitute only about 1022 of the
total energy at the end of parametric resonance. This estimate
may be too pessimistic, but even if the true energy is much
higher, the main fraction of energy after the end of the reso-
nance remains stored in the energy off particles, and the
energy of their interaction withx particles. The total energy
of x fluctuations at larget decreases asa24, whereas the
energy off fluctuations as well as the energy of the oscil-
lating fieldf(t) at larget decreases asa23. Even if the total
energy of the oscillating fieldf(t) and off particles were
very small after preheating, eventually it would again domi-
nate the energy density of the universe. Equation~141! gives
us additional information: the number off particles after
preheating is at least ten times greater than the number ofx
particles. If these particles do not decay, they will always
dominate the energy density of the universe, which is unac-
ceptable. Therefore when preheating ends one should apply
the elementary~perturbative! theory of reheating@5,6# to de-
scribe the decay of the remnants of the classical oscillating
field f(t) as well as the decay of the large amount off
particles created by rescattering. We will return to the theory
of this process in a subsequent publication@8#.

XI. PRODUCTION OF SUPERHEAVY PARTICLES
DURING PREHEATING

One of the most interesting effects which may become
possible during preheating is the copious production of par-
ticles which have a mass greater than the inflaton massm.
This question is especially interesting in the context of the
theory of GUT baryogenesis, which may occur in a rather
unusual way if superheavy particles with massM a few
times heavier thanm can be produced@11#. Such processes
are impossible in perturbation theory and in the theory of
narrow parametric resonance. However, we are going to
show that superheavyx particles with massM@m can be
produced in the regime of a broad parametric resonance.

In order to study this regime let us return to Sec. V, where
we made a simple derivation of the width of the resonance
band; see Eq.~32!. The only modification which should be
made to this equation in the case where the fieldx has a
f-independent massmx(0)[M is to add it tok2 on the
left-hand side~LHS! of the equation:

k21M2&~g2fmfF!2/32g2f2. ~142!

As before, the maximal range of momenta for which particle
production occurs corresponds tof(t)5f* , where

f* ' 1
2 AmfF/g. The maximal value of momentum for par-

ticles produced at that epoch can be estimated by
kmax

2 1M25gmfF/2. The resonance becomes efficient for

gmfF*4M2. ~143!

Thus, the inflaton oscillations may lead to a copious produc-
tion of superheavy particles withM@m if the amplitude of
the fieldF is large enough,gF*4M2/m.

However, in an expanding universeF andmf are time-
dependent. One should not only have a very large field at the

very beginning of the process; one should continue to have
gmF*4M2 until the end of preheating.

During the second stage of preheating bothmf and F
change very rapidly, but their product remains almost con-
stant because the energy density of the fieldf, which is
proportional tomf

2 F2/2, practically does not change until the
very end of preheating. Therefore it is sufficient to check that
gmF*4M2 at the end of the first stage of preheating. One
can represent this criterion in a simple form:

M&
m

A2
q1

1/4' mS gmM p

3m
ln21

1012m

g5M p
D 1/2

. ~144!

For example, one may takeM52m and g'0.007,which
corresponds toq05106 in the normalization of Ref.@30#. In
this our condition~144! is satisfied, and an investigation with
an account taken of rescattering shows a relatively insignifi-
cant suppression of^x2&, approximately by a factor of 3. Our
investigation suggests that forg@1022 this process should
not be suppressed at all. Equation~144! shows that for suf-
ficiently largeg one can produce superheavy particles with
M@m. For example, production ofx particles with M
510m is possible forg*0.065.

In fact, suppression of superheavy particle production
may be even less significant. Indeed, the resonance becomes
strongly suppressed if it occurs only fork2!k

*
2 /4

;gmfF/4. As a result, the condition for the efficient pre-
heating ~143! can be slightly relaxed:gmfF*2M2. This
small modification implies that heavy particle production is
not strongly suppressed for

M&mg1
1/4'mS 2gmM p

3m
ln21

1012m

g5M p
D 1/2

.

For M510m this leads to a rather mild conditiong
*0.036.

We conclude that at least in our simple model, the pro-
duction of superheavy particles is possible. However, with
an increase ofg the total number of produced particles be-
comes smaller; see Eq.~140!. It would be most interesting to
investigate this issue in realistic models of elementary par-
ticles and to apply the results to the theory of baryogenesis.

XII. DISCUSSION

In this paper we discussed the theory of preheating for the
simple model of a massive inflaton fieldf interacting with
another scalar fieldx. As we have seen, the theory of pre-
heating is very complicated even in such a simple model.
Our main purpose was not to answer all questions related to
the theory of preheating, but to develop an adequate frame-
work in which these questions should be investigated.

In the beginning particle production occurs in the regime
of a broad parametric resonance, which gradually becomes
narrow and then terminates. If the resonance is narrow from
the very beginning, or even if it is not broad enough, it
remains inefficient. We have found that broad resonance in
an expanding universe is actually a stochastic process. The
theory of this process, which can be called stochastic reso-
nance, or stochastic amplification, is dramatically different
from the theory of parametric resonance in Minkowski
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space. Therefore one cannot simply apply the standard meth-
ods of investigation of parametric resonance in Minkowski
space; it was necessary to develop new analytical methods
for the investigation of stochastic resonance in an expanding
universe. We have found the typical width of the resonance
;k* /2 and the typical rate of the exponential growth of the
number of produced particles in this regime. An important
feature of our formalism of investigation of the broad reso-
nance regime is its robustness with respect to modification of
the form of the effective potential. Our methods should apply
not only to theories with the potentialm2f2/2, but to any
potentialV(f) when the resonance is broad.

One should note that the main reason why broad reso-
nance has a stochastic nature is the expansion of the uni-
verse. In the conformally invariant theories such as the
theory (l/4)f41(g2/2)f2x2 with g2@l the resonance is
broad but not stochastic because expansion of the universe
does not interfere with its development@19#. In realistic
theories where the inflaton fieldf has massm the conformal
invariance is broken and one could expect that the broad
resonance becomes stochastic as soon as the amplitude of the
oscillations of the fieldf becomes smaller thanm/Al. In-
deed, forF&m/Al the resonance is described by the model
of a massive inflaton field considered in this paper. A more
detailed investigation of this question shows that in models
with g2@l the resonance becomes stochastic even earlier, at
F&(g/Al)(p2m2/3lM p) @19#.

In our investigation of preheating we took into account
the interaction of the oscillating inflaton fieldf with the
particles produced during preheating. We have found, in par-
ticular, that the correction to the effective mass squared of
the oscillating fieldf is proportional tognx/ufu, and the
equation of motion of the fieldf acquires a term
;gnx(f/ufu). This term experiences quasiperiodic oscilla-
tions with a very high frequency;2gF, which do not much
affect the motion of the fieldf(t) but may serve as an ad-
ditional source off particles.

We have found that if the coupling constantg2 in the
interaction term (g2/2)f2x2 is small (g&331024), the
resonance terminates at the stage when the back reaction of
produced particles is unimportant. For larger values ofg2 the
resonance terminates due to a combined effect of the growth
of the effective mass of the inflaton field and rescattering,
which in its turn increases the effective mass ofx particles,
making them heavy and hard to produce. We made an esti-
mate of the number ofx particles produced during preheat-
ing and their quantum fluctuations^x2& with all back reac-
tion effects taken into account.

Traditionally, the only purpose of the theory of reheating
was to obtain the value of the reheating temperature. From
this point of view the theory of preheating for the simple
model which we studied in this paper does not change the
situation. Forg!331024 the total energy density of pro-
duced particles is exponentially small. Similarly, it remains
extremely small even for largeg if x particles have massM
much greater than about 10m. In the case whenM is small
andg*331024, the x-particle production is very efficient.
However, we have found that even in this case after preheat-
ing one has many moref particles thanx particles. If x
particles are massless, or if they can easily decay, their con-

tribution to the energy density of the universe rapidly de-
creases. Therefore, after preheating the main contribution to
the energy density of the universe is again given by thef
particles. The only difference is that prior to preheating these
particles constitute the oscillating classical inflaton field
f(t), whereas after preheating they acquire various spatial
momenta and become decoherent. Thus, as we already
pointed out in@1#, it does not make much sense to calculate
the reheating temperature immediately after preheating. One
should study the subsequent decay of thef particles. The
theory of this decay is described by the elementary theory of
reheating@5,6,8#. So why should one study extremely com-
plicated nonperturbative effects which may happen at the
stage of parametric resonance, if in the end they will not
greatly change our old estimates of the reheating tempera-
ture?

We believe that the investigation of nonperturbative ef-
fects in the very early universe is worth the trouble. In fact,
the complex nature of this process makes it especially inter-
esting. Indeed, a few years ago the standard picture of the
evolution of the universe included a remarkable stage of ex-
plosive expansion~inflation! in the vacuumlike state, which
is responsible for its large-scale structure, and a rather dull
stage of decay of the inflaton field, which is responsible for
the matter content of the universe. The processes which
could happen during the later stage were typically ignored.

Now we see that the stage of reheating deserves a more
detailed investigation. Explosive processes far away from
thermal equilibrium could impact the further evolution of the
universe. As we know, the appearance of baryon asymmetry
requires the absence of thermal equilibrium, so it is only
natural to investigate the possibility of baryogenesis at the
stage of reheating; see, e.g.,@5,21,11#.

Particles produced by the resonance have energies which
are determined by the properties of the resonance bands.
Typically this energy is much smaller than the temperature
which would appear if the particles were instantaneously
thermalized. Meanwhile, the total number of particles pro-
duced by parametric resonance is much greater than the
number of particles in thermal equilibrium with the same
energy density. Fluctuations associated with these particles
can be anomalously large. For example, we have found that
for certain values of coupling constants in our modelA^x2&
may become of the order of 1016 GeV, andA^f2& may be-
come even greater thanA^x2&. In models describing several
interacting scalar fields such anomalously large fluctuations
may lead to specific nonthermal phase transitions in the early
universe on the scale of 1016 GeV @9,10#. As we pointed out
in @9#, the investigation of such phase transitions in the
theory of a single self-interacting fieldf is rather involved
because one needs to separate the effects related to the os-
cillations from the effects related to the fluctuations of the
same field. Therefore an optimal way to study nonthermal
phase transitions is to investigate the models where the fluc-
tuations produced during preheating restore symmetry for the
field which does not oscillate during the oscillations of the
inflaton field; see Sec. IX. We will return to the discussion of
this effect in a separate publication@42#.

Unlike fluctuations in thermal equilibrium, the nonther-
mal fluctuations produced by a parametric resonance often
exhibit a non-Gaussian nature. In particular, ‘‘fluctuations of
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fluctuations’’ can be very large. This means that in some
regions of the universe one can find fluctuations at a level
much greater than its average value. This effect may play an
important role in the theory of topological defect production.
Indeed, even if the average level of fluctuations is smaller
than the critical level which leads to monopole production,
they may be produced in the rare islands where the level of
the fluctuations is anomalously high. Note that in order to
avoid cosmological problems and burning of neutron stars by
the monopole catalysis of baryon decay, the density of the
primordial monopoles should be suppressed by 20 to 30 or-
ders of magnitude. It was easy to achieve such suppression
for the usual thermal fluctuations which appear after reheat-
ing, but for the nonthermal fluctuations produced by reso-
nance the situation may be quite different.

There is an additional reason which makes the investiga-
tion of preheating so interesting. The theory of particle pro-
duction in the early universe was one of the most challenging
problems of theoretical cosmology in the early 1970s. How-
ever, powerful methods of investigation developed at that
time produced rather modest results: particle creation could
be efficient only near the cosmological singularity, at densi-
ties comparable withM p

4 . This process could not consider-
ably increase the total number of particles in the universe.

Now we see that in the context of inflationary cosmology
all particles populating our part of the universe have been
created due to quantum effects soon after the end of inflation.
The investigation of these effects sometimes requires the de-
velopment of new theoretical methods involving quantum
field theory, cosmology, the theory of parametric resonance,
the theory of stochastic processes, and nonequilibrium quan-
tum statistics.

In a situation where nonperturbative effects play an im-
portant role, and the number of produced particles grows
exponentially, one could expect that the only reliable tool for
the investigation of preheating would be numerical simula-
tions. Fortunately, one can go very far by developing ana-
lytical methods. For sufficiently small values of the coupling
constant (g&331024) these methods allow us to make a
very detailed investigation of preheating. For higher values
of the coupling constant one can describe preheating analyti-
cally during most of the process. At the last stage of preheat-
ing the situation becomes too complicated, and numerical
methods become most adequate. Even in these cases analyti-
cal methods allow us to obtain estimates of the same order of
magnitude as the results of numerical calculations, and
sometimes this agreement is even much better. Taking into
account all of the uncertainties involved in the analytical
investigation of stochastic resonance as well as in the com-
puter simulations, this agreement looks rather encouraging. It
remains a challenge to develop a complete analytical theory
of preheating, and to apply it to realistic inflationary models
with many interacting fields.
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