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Reheating after inflation occurs due to particle production by the oscillating inflaton field. In this paper we
briefly describe the perturbative approach to reheating, and then concentrate on effects beyond the perturbation
theory. They are related to the stage of parametric resonance, which waretadlating It may occur in an
expanding universe if the initial amplitude of oscillations of the inflaton field is large enough. We investigate
a simple model of a massive inflaton fieldcoupled to another scalar fiejdwith the interaction terng?$?x2.
Parametric resonance in this model is very broad. It occurs in a very unusual stochastic manner, which is quite
different from parametric resonance in the case when the expansion of the universe is neglected. Quantum
fields interacting with the oscillating inflaton field experience a series of kicks which, because of the rapid
expansion of the universe, occur with phases uncorrelated to each other. Despite the stochastic nature of the
process, it leads to exponential growth of fluctuations of the field/e call this processtochastic resonance
We develop the theory of preheating taking into account the expansion of the universe and back reaction of
produced particles, including the effects of rescattering. This investigation extends our previous study of
reheating after inflation. We show that the contribution of the produced particles to the effective pdtegiial
is proportional not tog?, as is usually the case, but fe|. The process of preheating can be divided into
several distinct stages. In the first stage the back reaction of created particles is not important. In the second
stage back reaction increases the frequency of oscillations of the inflaton field, which makes the process even
more efficient than before. Then the effects related to scatteringpzirticles on the oscillating inflaton field
terminate the resonance. We calculate the number density of particfe®duced during preheating and their
quantum fluctuationgx?) with all back reaction effects taken into account. This allows us to find the range of
masses and coupling constants for which one can have efficient preheating. In particular, under certain condi-
tions this process may produce particles with a mass much greater than the mass of the inflaton field.
[S0556-282(97)05418-0

PACS numbds): 98.80.Cq

[. INTRODUCTION elementary particles. The temperature of the universe at this
stage is called the reheating temperatdre,
According to inflationary theory(almos} all elementary A first attempt at a phenomenological description of this

particles populating the universe were created during th@rocess was made in Rg#]. The authors added various
process of reheating of the universe after inflafi&@]. It  friction terms to the equation of motion of the scalar field in
makes this process extremely important. However, for manyrder to imitate energy transfer from the inflaton field to
years the theory of reheating remained the least developadatter. However, it remained unclear what kind of terms
part of inflationary theory. Even now, when many features ofshould be added and whether one should add them at the
the mechanism of reheating are understood, the literature astage of slow rolling of the inflaton field, or only at the stage
this subject is still full of contradictory statements. of rapid oscillations of the inflaton field.

The basic idea of reheating after inflation was proposed in  The theory of reheating in application to the new inflation
the first paper on new inflatiof8]: reheating occurs due to scenario was first developed in RefS§,6], and, in applica-
particle production by the oscillating scalar fiefgl In the  tion to R? inflation, in Ref.[7]. It was based on perturbation
simplest inflationary models, this field is the same inflatontheory, which was quite sufficient for obtaining the reheating
field ¢ that drives inflation at the early stages of the evolu-temperatureT,, in many realistic models. We will give a
tion of the universe. After inflation, the scalar figfd(which  detailed description of this theory and develop it even further
we will call inflaton) oscillates near the minimum of its ef- in a forthcoming publication[8]. However, perturbation
fective potential and produces elementary particles. Thestheory has certain limitations, which have been realized only
particles interact with each other and eventually they come twery recently. In particular, the mechanism of decay of the
a state of thermal equilibrium at some temperafiireThis inflaton field to the vector fields discussed[Bl is efficient
process completes when &lir almost all the energy of the only at an intermediate stage of reheating in the new inflation
classical scalar fieldp transfers to the thermal energy of model considered. The decay of the inflaton field to fermions
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described if 6] typically is important only at very late stages minimum of the potential, which breaks the conformal in-
of reheating. In many inflationary models neither of thesevariance. As we will show in this paper, for the simplest
mechanisms gives a correct description of the first stages ahodels of inflation, such as the theory of a massive inflaton
the process. field ¢ with quadratic effective potential and interaction

Indeed, recently it was understopt]] that in many infla-  g2¢2x?, preheating is efficient only if the resonance is ex-
tionary models the first stages of reheating occur in a regim&emely broad. The theory of a broad parametric resonance in
of a broad parametric resonance. To distinguish this stagan expanding universe is dramatically different from the
from the subsequent stages of slow reheating and thermaliheory of a narrow resonance.
zation, we called ipreheating The energy transfer from the The basic features of the theory of a broad parametric
inflaton field to other bose fields and particles during pretesonance were outlined ji], where the theory of preheat-
heating is extremely efficient. As we pointed out[il, re- ing was developed in the context of the chaotic inflation
heating never completes at the stage of parametric resonanagenario, taking into account back reaction of created par-
eventually the resonance becomes narrow and inefficienticles and the expansion of the universe. This issue was stud-
and the final stages of the decay of the inflaton field anded later by many other authors, and a lot of very interesting
thermalization of its decay products can be described by theesults on parametric resonance and particle production have
elementary theory of reheatii§,6,8. Thus, the elementary been obtainefil6—31. Of all these papers one is especially
theory of reheating proves to be very useful even in the theorelevant to our investigation. Khlebnikov and TkacH&@]
ries where reheating begins at the stage of parametric resperformed a detailed three-dimensional numerical lattice
nance. However, it should be applied not to the original cosimulation of broad parametric resonance in an expanding
herently oscillating inflaton field, but to the products of its universe, taking into account the back reaction of produced
decay, as well as to the part of the inflaton field which sur-particles, including, in particular, their rescattering. Their
vived preheating. The short stage of explosively rapid premethod(see alsd24,28,29) is based on solving numerically
heating in the broad resonance regime may have long-lastinge classical equations for fluctuations of all interacting
effects on the subsequent evolution of the universe. It mayields. It is presumably the best way to perform computer
lead to specific nonthermal phase transitions in the early unisimulations of preheating.
verse[9,10] and to topological defect production, it may  From the point of view of analytical investigation of pre-
make possible novel mechanisms of baryogengkisl2, heating in the broad resonance regime we should mention
and it may change the final value of the reheating temperaRef.[21], where this regime was investigated for the case of
tureT,. a nonexpanding universe, and some of the results of[REf.

The theory of parametric resonance in application to pareoncerning this regime were obtained by a different method.
ticle production by oscillating external fields was developedHowever, after our papéd] there was not much progress in
more than 20 years ago, see, e[#3]. The methods used in analytical investigation of the broad resonance regime in an
this theory were developed mainly for the case of narrowexpanding universe. This is not very surprising, because the
parametric resonance. A first attempt to apply this theory t@nalytical investigation of preheating including back reaction
reheating after inflation was made by Dolgov and Kirilovais very difficult; one must describe a system of particles far
[14] and by Traschen and Brandenbergs] for the narrow  away from equilibrium in the regime where effective cou-
resonance regime in the context of the new inflatior|. 14y pling becomes strong because of anomalously large occupa-
it was conjectured that the parametric resonance in an exion numbers of bose particles produced by parametric reso-
panding universe cannot lead to efficient reheating. The auance. But the main problem was related to the very unusual
thors of Ref[15] came to an important conclusion that para-nature of broad parametric resonance in an expanding uni-
metric resonance in new inflation can be efficient. Howeveryerse. As we will show in this paper, instead of staying in a
their investigation of parametric resonance was not quite corparticular resonance band, each growing mode scans many
rect; see Sec. IV of this paper. stability/instability bands within a single oscillation of the

In any case, at the moment we do not have any consisteintflaton field, so the usual concept of separate resonance
inflationary models based on the new inflation scenario. Théands becomes inadequate. It is a stochastic process, during
step towards the general theory of reheating in chaotic inflawhich the number of produced particles changes in a chaotic
tion was rather nontrivial. Indeed, the effective potential inway. On average, the number of produced particles grows
new inflation is anomalously flat nea=0. As a result of exponentially, but at some moments their number may de-
this fine-tuned property of the effective potential, the Hubblecrease; a process which would be impossible at the classical
constant at the end of inflation in this scenario is muchlevel. We call this processtochastic resonancélhe stan-
smaller than the mass of the oscillating scalar field. Theredard methods developed for investigation of parametric reso-
fore the effects related to the expansion of the universe areance simply do not apply here, so it was necessary to de-
not very destructive for the development of the resonanceyelop a new, more general approach.
which may be rather efficient even if the resonance is nar- The main purpose of the present paper is to develop the
row. Narrow resonance can be rather efficient in chaotic intheory of preheating with an account taken of the expansion
flation as well, in the context of conformally-invariant theo- of the universe and the back reaction of created particles,
ries of the type of ¢*. In such theories the expansion of the including the effects of their rescattering. We will give here
universe does not interfere with the development of the resca detailed derivation of the results of RgL], and describe
nance, and therefore preheating may be efficient even if theecent progress in the understanding of physical processes
resonance is rather narroft,16—19. However, generally which occur soon after the end of inflation.
the effective potential is quadratic with respecigimear the We will begin our paper with discussion of the evolution
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of the scalar fields after inflation neglecting the effects ofticles produced during reheating and the amplitude of pertur-
reheating, see Sec. II. Section Il contains an introduction tdations{x?). In Sec. XI we investigate the possibility of a
the elementary theory of reheatiff,6,8. We will then de-  copious production of particles with mass much greater than
velop the theory of particle production due to parametricthe inflaton mass. Finally, in Sec. XII we give a summary of
resonance following1]. First of all, in Sec. IV we introduce our results and discuss their possible implications.

the theory of reheating due to parametric resonance and dis-

cuss the relation between this theory and the elementary Il. EVOLUTION OF THE INFLATON FIELD

theory of reheating. Both theories are very simple, but the

transition from one to the other is quite nontrivial; it is very ~ During inflation the leading contribution to the energy-
difficult to understand the theory of parametric resonancénomentum tensor is given by the inflaton scalar figlavith
using the elementary theory of reheating as a starting pointhe Lagrangian

and, conversely, perturbation theory is not simply a limiting

case of a weak parametric resonance. A more detailed dis- L(¢)=3 "= V(), ()
cussion of all these issues will be contained in our forthcom-
ing paper[8]. whereV(¢) is the effective potential of the scalar fielbl

In Sec. V we discuss the difference between the narrow he evolution of theflat) FRW universe is described by the
and broad resonance regimes. Section VI is devoted to Ginstein equation
qualitative description of the development of broad reso-
nance in an expanding universe. We describe the effect of 228_77(5('1)2“/( b)
stochastic resonance and illustrate this effect by solving the SMS 2
resonance equations numerically, taking into account the ex-
pansion of the universe. We find that it is much easier tovhereH =a/a. The Klein-Gordon equation fop(t) is
perform the investigation in terms of the number of created
particles, which is an adiabatic invariant, rather than in terms ;;'s+ 3H q'b+v,¢=0. 3)
of wildly oscillating quantities such as¢?) which are stud-
ied in many publications on preheating. In particular, inFor sufficiently large initial values oth>M,, the “fric-

some caseéy?) continues to grow even after the resonancetion” term 3H¢ in Eq. (3) dominates overs and the poten-
ceases to exist and the numberyoparticles remains con- tjal term in Eq.(2) dominates over the kinetic term. This is
stant. In Sec. VIl we develop analytic methods for the de+the inflationary stage, where the universe expands quasiex-
scription of broad resonance. These methods are especialjpnentially, a(t)=agexp(fdtH(t)). For definiteness, we
appropriate for the investigation of stochastic resonanceyill consider here the simplest models of chaotic inflation:

They are applicable in those cases where the standard agw):%md)z [2]. In these models inflation occurs at

Eg%ascpai?:lsed on the investigation of Mathieu or Lame equa(—ﬁzM p- Density perturbations responsible for large-scale

: . . . : tructure formation in these models are produced at
Section VIII contains a discussion of the back reaction o . .
. . ¢~3—4M,. With a decrease of the fiel¢ below M, the
the y particles created by parametric resonance on the effec-

tive potential of the inflaton field. In Sec. IX we describe the Tiction” term 3 H¢ becomes less and less important, and
process of reheating in the broad resonance regime with dfflation terminates a~M,/2. ,
account taken of the change of the frequency of oscillations When making numerical estimates one should take into
of the inflaton field due to its interaction with theparticles ~ account that at the last stages of inflation the friction term is
produced during preheating. In Sec. X we discuss the proce&'” non-negllg|ble, an_d therefore during the first oscillation
of rescattering ofy particles and the production af par- the amplitude of the field rapidly drops down.

ticles in this process. We also consider some modifications For the quadratic potential(¢)=3m¢? the amplitude

of the picture of the second stage of reheating with an acafter the first oscillation becomes only 0N}, i.e., it drops
count taken of rescattering. We calculate the number of pamy a factor of ten during the first oscillation; see Fig. 1. Later

, @
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on the solution for the scalar fiel¢ asymptotically ap- p¢=%¢2+%m2¢2. If we ignore for a moment the effects
proaches the regime associated with particle creation, the fieldafter inflation
_ ; oscillates near the poing=0 with the frequencyko=m.
t)=d(t)sin mt, . . 0

PO=D(1) The amplitude of oscillation decreases @s>? due to the
M expansion of the universe, and the energy of the figld
d(t)= P P 4 decreases in the same way as the density of nonrelativistic

() - (4) :

Vv3mmt  2my37N particles of massn: p,=3$>+sm?$>*~a . A homoge-
neous scalar field oscillating with frequenoy can be con-

Herecp(t)_ IS th? amplitude of 95‘:'”?‘“0“9" |s_the number sidered as a coherent wave@fparticles with zero momenta
of oscillations since the end of inflation. For simple estimates

which we will make later one may use and with particle density,=p,,/m. In other wordsn,, os-
cillators of the same frequenay, oscillating coherently with

M M the same phase, can be described as a single homogeneous
(I)(t)%—p~—p. (5)  wave ¢(t). Note that if we consider time intervals larger
3mt 20N . R .
than the typical oscillation timen™ ", the energy density of

The scale factor averaged over several oscillations grows 48€ oscillating field, and the number density of the particles
a(t)~ay(t/ty)?®. Oscillations of ¢ in this theory are N¢ will be related to its amplitude@ in a simple way:

M

sinusoidal, with the decreasing amplitude®(t) =1 mld2 @)

=(M,/3)(ag/a(t))¥%. The energy density of the field Py=2 ’

decreases in the same way as the density of nonrelativistic n.=1mo2 )
b= 2 .

particles of massn: p,,= 3 ¢?+ sm2¢p?~a 3. Hence the co-
herent oscillations of the homogeneous scalar field corre- Now we will consider effects related to the expansion of
spond to the matter dominated effective equation of statéhe universe and to particle production. For a homogeneous
with vanishing pressure. scalar field in a universe with a Hubble constehtthe equa-
Reheating occurs when the amplitude of oscillations oftion of motion with nongravitational quantum corrections is
the inflaton field¢ decreases much faster than in &), and ) i
its energy density is transferred to the energy density of other $+3H(t)p+[m?+11(w)]$=0. 9
particles and fields.
Herell(w) is the flat space polarization operator for the field
lll. OSCILLATIONS AND DECAY ¢ with four-momentunk; =(w,0,0,0), o=m.
OF THE SCALAR FIELD The real part of[I(w) gives only a small correction to
m?, but whenw=min(2m,,2m,), the polarization operator
In the present section, we will discuss the elementarfI(w) acquires an imaginary part i (). We will assume
theory of reheating developed [6,6]; see alsd2]. A more  that m?>H?2, m?> Im II. The first condition is automati-

detailed discussion of this theory will be contained[8].  cally satisfied after the end of inflation; the second is
We will consider a basic model describing the inflaton scalasually also true. We have ®(t)=dqa ¥qt)

field ¢ interacting with a scalar fielgy and a spinor fields: = gexp(— 2 [dtH(t)). Neglecting for simplicity the time-

L=1d b —V(d)+1v vi—2m2(0)v2+ LéRy2 dependence oH and ImII due to the expansion of the
26,47~ V(E)F XX~ 2aMUO)x"+26Rx universe, we obtain a solution of Eq9) that describes
+ ¥ ai—my(0))y— 192622 —hyrgpb. (6)  damped oscillations of the field near the poift=0:

Hereg, h, andé¢ are small coupling constan,is the space- ¢=(1) expimt)~ po explimt)

time curvature, and/(¢) is the effective potential of the 1 Im TI(m)

field ¢. We will suppose here, for generality, that the effec- xex;{ ——<3H + ) } (10)
tive potential has a minimum ap= o, and near the mini-

mum it is quadratic with respect to the field):

V(¢)~im?(p— 0)?. Herem? is the effective mass squared

of the field ¢. After the shift¢p — o— ¢, the effective poten- Im IT=ml", (11

tial acquires the familiar fornfm?¢?, and the Lagrangian

acquires an interaction term which is linear with respect tovhereI’=I'(¢— xx) +I'(¢— ) is the total decay rate of

the field : AL=—g2c¢x2 This term vanishes in the ¢ particles.(In a more general case one should calculate not

case without Spontaneous Symmetry breaking, wioverd . only the imaginary part of the polarization operator, but the

The masses of thg particles andy after the shift become imaginary part of the effective actiofs].) Thus Eqg.(10)

m, = W and m,=m,(0)+ha. In this section implies that the amplitude of oscillations of the fiefdde-

we will consider the case>m, , m,,. We will assume that creases as ekp 3(3H+1I)t] due to particle production which

after inflationH<m. This condition is always satisfied dur- occurs during the decay of the inflaton field.

ing the last, most important stages of reheating. Note that under the conditiom>H, the polarization op-
We will study now the oscillation of the scalar field near eratorIl and the decay ratds do not depend on the curva-

the minimum of its effective potential. The energy density ofture of the univers€and thus on timeand coincide with

the oscillating field (after the shift ¢—oc—¢) is  their flat-space limits. In particular, the probability of decay

From unitarity it follows tha{32]
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of a ¢ particle into a pair of scalay particles or spinoty  sity p is t= Np/\/Bwp [2]. This, together with the condi-

particles form>m, ,m, is given by the expressiong] tion t,~ 2" "1, gives the energy density at time:
40.2 h2m FZMZ
M0 =g T(—gh)=5—. (12 plt) =2, it

For a phenomenological description of the damping of |f thermodynamic equilibrium sets in quickly after the
oscillations of the scalar fielgp (10) one may add an extra decay of the inflaton field, then the matter acquires a tem-
friction term I" ¢ to the classical equation of motion of the peratureT,, which is defined by the equation
field ¢, instead of adding the term proportional to the imagi-

nary part of the polarization operator: 3rm; _ m*N(T,)

p(t)=—5— 0 (18)

d+3H(t)p+T p+mlep=0. (13

HereN(T) is the number of relativistic degrees of freedom at
This phenomenological equation together with relatiph)  the temperatur&; one should take 1 for each scalar, two for
for ' reproduces the damped oscillator solutid@) of Eq.  each massless vector particle, ¢&]. In realistic models one
(9). The idea that one can describe effects of reheating bynay expectN(T,)~ 10?—10°, which gives the following es-
adding friction terms to the equation of motion goes back tdimate of the reheating temperature:
one of the first papers on reheatipdj. At first the physical
origin of such terms as well as their value remained obscure. T;=0.2y'M,. (19

Some authors added various auxiliary friction terms to the o }
equations of the inflaton field in order to slow down its mo- NOte thatT, does not depend on the initial value of the field

tion and make inflation longer; see, e.f4,33. From the ¢; it is completely determined by the parameters of the un-
derivation of expressiofiL1) for T it follows, however, that ~ derlying elementary particle theory.

the simple phenomenological equatitiB) is valid only at Here we should make an important comment. In the ab-
the stage of rapid oscillations of the fieltl near the mini- S€nce of fermions, the4ogly contribution to t_he decay_ rate
mum of V(¢). This equation cannot be used to investigateWould beT'(¢— xx)=g"c*/87m. Note that this term dis-

the stage of slow rolling of the fieleh during inflation. appears in the theories without spontaneous symmetry break-

According to Eq(10), the field amplitudeb(t) obeys the ing, whereo=0. This does not necessarily mean that there is
equation no reheating at all in such theories. Indeed, decay is possible

not only in the presence of a constant fieildbut in the
presence of a large oscillating fielgl(t) as well. In what
(a30%)=—-T P2 (14  follows we will study parametric resonance and reheating in
models witho=0, or c<®, where®d is the amplitude of
the oscillations. However, when reheating proceeds @nd
becomes small one may expect perturbation theory to work
well. To get an estimate for the decay rate &t0 let
us simply write ® instead of ¢ in Eq. (12:
d I'(¢pdp— xx)~g*®2/8mwm. The problem with this term is
a(a3n¢) =-Ta®n,. (15  that®? decreases as 2 in the expanding universe, whereas
the Hubble constant decreases onlytas. Therefore the

This equation has a simple interpretation. It shows that théjecay rate never catches up with the expansion of the uni-

; . . 3 verse, and reheating never completes. Reheating can be com-
total comoving number density of particlesa®n, exponen-

. — 1 .
tially decreases with the decay rdte Similarly, one obtains Fr:?sfereowézFei?hiiriazifa?eogsssfv%g:?nb're;ﬂ%a(g))/
the following equation for the total energy of the oscillating q b y y

or coupling of the inflaton field to fermions with,<m/2. If

1d
a® dt
If one multiplies it bym, one obtains the following equation

for the number density8) of the coherently oscillatingp
particles:

field ¢: both of these conditions are violated, the inflaton field
d never decays completely. Such fields may be responsible for
—(a’py)=—-Ta%,. (16)  the dark matter of the universe, but it requires certain fine-
dt tuning of the parameters. Normally, an incomplete decay of

i ) the inflaton field implies that the universe at the age of 10
The decay products of the scalar fieldare ultrarelativ-  yyjion years is cold, empty, and unsuitable for life. We

istic (for m>m, ,m,), and their energy density decreasesgy, |4 emphasize that this may happen even if the coupling
due to the expansion of the universe much faster than thgynsiang? is very large. Thus the requirement that reheating

energy of the oscillating fieldb. Therefore, reheating in our s complete imposes important constraints on the structure of
model ends only when the Hubble constdt-2/3t be- 4 theory.

comes smaller thah, be_cause.otherwise the main portion of e elementary theory of reheating described above is
energy remains stored in the fiefd Therefore the age of the simple and intuitively appealing. It proves to be very suc-
universe when reheating completes is givert by2I' 1. At cessful in describing reheating after inflation in many realis-
that stage the main part of the matter in the universe becomeég inflationary models. That is why we are going to develop
ultrarelativistic. The age of the universe with the energy denthis theory even further if8]. However, in some cases
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where the amplitude of the oscillating field is sufficiently metric resonance for modes with certain valueskofThe
large, reheating occurs in a different way, in the regime ofsimplest way to describe this important effect is to make a
parametric resonance. change of variablest=2z— 7/2, which reduces Eq22) to

the well-known Mathieu equatiof84]:

IV. PARAMETRIC RESONANCE AND LIMITS
OF APPLICABILITY OF PERTURBATION THEORY

A. Perturbation theory versus narrow resonance HereA =4[ (k*+g®0?)/m?], q=4g’c®/m?, z=mt/2, and
rime denotes differentiation with respectazoThe proper-

es of the solutions of the Mathieu equation are well repre-
ented by its stability/instability chart which can be found,
.g., iIn[34]. An important feature of solutions of E(R3) is

the existence of an exponential instabilifyexp(ui’z)
ithin the set of resonance bands of frequendidd” la-
eled by an integer index. This instability corresponds to

x«' + (Ag—2qcos) x,=0. (23

In the investigation performed above we made a naturatrfi)
assumption that the decay probabilltyof the scalar fieldp
can be calculated by ordinary methods of quantum fiel
theory describing the decagp— yyx. However, if manyy
particles have already been produceg;1, then the prob-
ability of decay becomes greatly enhanced due to effect

related to Bose statistics. This may lead to explosive particl 2xponential growth of occupation numbers of quantum fluc-

production. . () th be i q
For simplicity, we consider here the interaction betweenfUationsnk(t)=exp(2"2) that may be interpreted as par-

L . A ticle production. In a state with a large number of Bose par-
the classicalinflaton field ¢ and thequantumscalar fieldy P g P

ith the Lagrangian(6). The Heisenberg representation of ticles the estimates fdr obtained in the previous subsection
Wi grang ' ! g rep : do not apply, and one should use much more elaborate meth-

the quantum scalar fielg is ods of investigation based on the theory of parametric reso-
S((I,x)=—13,§f d3k(a(t)e X+ al xi (t)e'k ™), narl]:(:ﬁe case under consideratianp <go<<m, the theory
(2m) of parametric resonance is well knoy85]. Indeed, in this

(20) case one hag<1, and the resonance occurs only in some

. - o _ narrow bands neaf,=1?, 1=1,2,... .Each band in mo-
wherea, anda, are annihilation and creation operators. For mantum space has width of ordak~q', so forq<1 the

a flat Friedmann background with scale facagt) the tem-  \yigest and most important instability band is the first one,
poral part of the eigenfunction with comoving momentkm A, —1+q=1+4g20d/m2.

obeys the equation The factor u, which describes the rate of exponential
growth for the first instability band fan?>g20? is given by

? [34]

k 2
— +m(0)— ER+9%¢% | x,=0. (21
a

X +3a' +
Xk an

= (a/2)%— (2kim—1)2. (24)
[The physical momentunp=k/a(t) coincides withk for
Minkowski space, whera=1.] Equation(21) describes an

oscillator with a variable frequencw due to the time- . . - valuew, = q/2=2g2o®/m? atk=m/2. The corre-

dependence dd(t) and the background fielg(t). Until the . : :
last section of this paper we will suppose that the effectives'm)ndmg modesy grow at a maximal rate exg’2), which

. : o i in our case is given by exgmt4)=exp@Zodt/m).
mass of the fieldy vanishes fokp=0: m,(0)=0. In Sec. XI The growth of the modegy leads to the growth of the
we will investigate the opposite casa, (0)>m.

. X ! , . ._occupation numbers of the created particigét). Indeed,
AS mlthze prev'ogs SeCt.IOI’.l, CO”S'F"” t.he swplest potenti he number density, of particles with momenturk can be
V(¢)~35sm*(¢— o) (to mimic the situation with spontane-

. . luated as th f that Y2+ L w2 x| di-
ous symmetry breakingand make the shif$y— o— ¢, after \e,i\(/jaegab?, thaesen:rge;)erg?‘/eoach ?);,;2%1%' 2oilxid” di
which the effective potential becomés?¢?, and the inter- k '

Thus resonance occurs for=(m/2)(1+qg/2). Theindex w
vanishes at the edges of the resonance band and takes its

action term —3g2¢2x? transforms to —3g2¢?x? ol 1xul? )1
—g%0¢dx?— 39%0°x%. We shall analyze the general equa- =7 2 +xud T2 (25
tion (21) in different regimes.

Suppose first that the amplitude of oscillatiohss much When the modeg, grow as expz2), the number ofy

smaller thano, and neglect for a moment the expansion ofparticles grows as exgf), which in our case is equal to
the universe, taking=1 in Eq.(21). Then one can write the exp(quZ):exp(nga(I)t/m).

equation for mode&uantum fluctuationsof the field y with The fact that the resonance occurs nkarm/2 has a
physical momentunk in the form simple interpretation: In the limigo<m the effective mass
B of the x particles is much smaller tham. Therefore one
X+ (K24 9?02+ 2g%0® sinmt) x, =0, (220 decaying¢ particle creates twg particles with momentum

k~m/2. This picture is very similar to the process of decay
wherek= k2, and® stands for the amplitude of oscillations ¢— x x discussed in the previous section, but the results are
of the inflaton field. This equation describes an oscillatorabsolutely different. Indeed, in perturbation theory the
with a periodically changing frequencywﬁ(t)zk2 amount of produced particles did not depend on the number
+g%0%+2g%0® sinmt This periodicity may lead to para- of particles produced earlier, and the rate of production for
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our model was given by (¢— xx) =g*c?/8mm. Thus the reheating even neglecting parametric resonance. Therefore to
decay ratd’ ~ ! was suppressed by the factgf, which made check whether parametric resonance appears at the time
the decay very slow in the weak coupling limit. By contrast,when perturbative decay is inefficient, i.e., in the chseH,

in the regime of parametric resonance the rate of productioft is enough to consider the conditigm=3H.

of x particles is proportional to the amount of particles pro- Another important mechanism which can prevent para-
duced earliewhich is why we have exponential growth Metric resonance from being efficient is the redshift of mo-
and the rate of the process is given by an absolutely differeril€ntak away from the resonance band. The total width of
expressionuwm~g2od/m, which is greater tharl for the first band is given pq m; the width of the part where the
d>(g?/8m) 0. resonance is efficient is somewhat smaller; one can estimate

Thus, before going any further we should understand hovf 'as'qm/_2. The timeAt during which a g_iven mode remains
thin this band depends on the equation of state of matter,

these two processes are related to each other, and why we did
y . . -1 . . .
not find the effect of parametric resonance in the mvestlga?nd typically can t_)e estu_’nated Ioj_l - During th_|s time the
. . . . “ number of particles in growing modes increases as
tion performed in the previous section. Is the perturbation > . .y : .
theorv discussed there a limiting case of the narrow resoexp(q m/2H). This leads to efficient decay of inflatons only if
y dis L g g°m=H. In the narrow resonance limit<1 this is a stron-
nance regime or is it something else?

Th ssed the effect of i C%er condition than the conditiopm=3H.
: € reason we missed the elect of parametric resonance |, general, it is possible that exponential growth during
is rather delicate. In our calculations of the imaginary part oft

o ) he timeAt is small, butAt<H ! and therefore resonance
the polarization operator we assumed that gheparticles

duced bv th lati lar fi | still plays some role in reheating. However, this is a rather
produced by the oscillating scalar fieldl are normal par- exceptional situation. Therefore typically the set of condi-

. 2_ 2 . .
ticles on the mass shel; =m; . This is what one would get {jons for the resonance to be efficient can be formulated as
solving Eqg.(22) in any finite order of perturbation theory

with respect to the interaction terng2y o ®sinmt However, gm=T, (26)
if one solves the equation for the fluctuations of the figld
(22) exactly one finds exponentially growing modeg . g’°m=H. (27

This creates a new channel of decay of the scalar #teld _ N _
Note that exponentially growing modes occupy a very In the model considered above these conditions yield

small portion of momentum space in the narrow resonance 5

limit. This means that the fluctuations of the figjdfor al- >3, 29
most allk are normal fluctuations witki=m? . In this case 32w

our calculation of the imaginary part of the polarization op-

erator does apply. If the resulting value Bfappears to be mymH

smaller than Z,m~qm, then the perturbative decay of the ¢= ag%0 (29)

scalar field may coexist with the parametric resonance. One

may consider several different possibilities. In the beginning 1,5 parametric resonance can be efficient at a suffi-
the scglar fieldp can be expected to ospillate with amplitude ciently large®, but reheating never ends in the regime of
®>(g“/8m)o. In this regime parametric resonance leads tg,5rametric resonance. As soon as the amplitude of oscilla-
the exponential growth of modeag, as we dISCUSSEd.abOVG- tions becomes sufficiently small, parametric resonance termi-
However, gradually the field loses its energy, and its am- npates, and reheating can be described by the elementary
plitude ® becomes smaller thargt/8)o. In this regime  theory developed if5,6,8. Typically the reheating tempera-
the amplitude of the field> decays exponentially within @ tyre is determined by these last stages of this process. There-
time T ~* which is smaller than the typical time necessary forfore one should not calculate the reheating temperature sim-
parametric resonance to occur. One may say that the pertusty by finding the endpoint of the stage of parametric
bative decay makes the energy eigensttte massof the  resonance, as many authors do. The role of the stage of pre-
field ¢ “wide,” with width T", and when this width exceeds heating is to prepare a different setup for the last stage of
the width of the resonance bandqnv2, the resonance ter- reheating. It changes the reheating temperature, and it may
minates. Starting from this moment perturbation theory take{ead to interesting effects such as nonthermal Symmetry res-
over, and the description of reheating should be given alongoration and new mechanisms of baryogenesis. However, re-
the line of the elementary theory described in the previouseating never ends in the regime of parametric resonance; it

section. ) ~does not make much sense to calculate the reheating tem-
Thus, the standard effect of scalar field decay describeglerature at the end of the stage of preheating.
by the elementary theory of reheatiff§6,8 and preheating The expansion of the universe and the inflaton decay are

due to parametric resonance are tdifferenteffects. In an ot the only mechanisms which could prevent the develop-
expanding universe there exist other reasons for evolvingnent of resonance. As we will show, back reaction of created
from parametric resonance to perturbative decay. particles may change the parametagsandg. There will be
First of all, during the expansion of the universe the fieldng resonance if they particles decay with decay rate

¢ decreases not only because of its decay, but because of tb@Mkm, or if within the time ~ (wx,m) ! they are taken
“friction term” 3 H¢ in the equation of motion for the field away from the resonance band because of their interactions.
¢. Thus one should compagm with the effective decay Also, there is no explosive reheating if the decay products
rate H+1': Parametric resonance occurs only forinclude fermions since the fermion occupation numbers can-
gm=3H+TI'. Note that forl'>H perturbative decay leads to not be large because of the Pauli principle. This happens, for
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example, in many inflationary models based on supergravitproad resonance regime, and there is a significant production
where inflaton decay is often accompanied by gravitino proof ¢ particles. However, fog<1, i.e., for® <¢/6, the para-
duction[36]. metric resonance in the second band becomes very ineffi-
If reheating neverendsin a state of narrow parametric cient. (One can obtain the same result by a more accurate
resonance, one may wonder whether reheating begynin  investigation of parametric resonance in this situation in
a state of narrow resonance. As we are going to show, iferms of the Lame equation, but this is not our purpose here.
most cases inflation begins in a state of broad parametric Thys we are coming to the following picture of paramet-
resonance; the resonance typically ceases to exist as S0oN @Sresonance in this model. In the beginning of the rolling of
it becomes narrow. But before anajyzing this igsue, we WiIIthe field ¢ down to the minimum of the effective potential,
take one last look at the model which we studied above. the leading source of particle production is associated with
the tachyonic mass of the fielfl. Soon after that, the leading
B. Processes app~ o mechanism is the decay of a coherently oscillating figld
In our investigation of the simple model with spontaneousinto ¢ particles. This mechanism remains dominant until the
symmetry breaking ¢+ 0) we assumed that the amplitude amplitude of the fieldb becomes much smaller thamn after
of oscillations of the scalar fiel@ is very small,®<¢.  which the decay— yxx studied in the previous section be-
Therefore we retained only the quadratic part of the effectivecomes more importantThis process becomes somewhat
potential, V(#)~ (¢— o)?. However, in realistic models of more complicated if the back reaction of the produced par-
spontaneous symmetry breaking this condition is satisfiedcles it taken into accountFinally, when the amplitude of
only at the end of parametric resonance. Indeed, let us conhe oscillations® becomes smaller thang{/32m)o, or
sider a theory with spontaneous symmetry breaking with thgyhen it becomes smaller tham\mH/4g2o, whichever
usual potential X/4)(¢°—c?)?. Then after spontaneous ¢omes first, the parametric resonance ceases to exist, and the

symmetry breaking and the corresponding skfift o—~¢  gecay¢— vy is described by the elementary theory of re-
the theory atp<<o can be represented as a theory of a MaSheating based on perturbation theory.

- . . _ 2 . . .
sive scalar field with a maga“=2\ o interacting with the We should note that the-particle production in this

: ; ; 2_ 2 2 ; ;
field x which acquires masar,=g7c”. In this respect, it model forA>g? was first studied if15]. However, as we

qomudes with the toy model stqdled in the'prewous subsecjrust mentioned, aP ~ o this process is subdominant as com-
tion. However, there are some important differences.

First of all, the processp—yy is possible only if pared to thap-particle production, which was not studied in
m>2m,, . Thisywas one of the conditions which we used in[15]' The process ok -particle production is more efficient
our ianestigation' we assumed that>m. , ie., \>g2 than ¢-particle production only fo <o In this regime our

' o " results differ from those obtained [i5] by the factord/o

. . . . 4 . .
:gtwtz\gr'iéqgh:cggjﬁttgg 'Patfrr?g;org/e @c)odr)newmgrr]ewi?nggrtan}n the exponent. This difference is very significant because it
. : ; . eads to a much less efficient reheating, which shuts down as
than the interactiong?/2)¢?x? which we considered. As a 9

It th ducti ticl b fficient soon asb becomes sufficiently small.
resuft, the production of particles may be more etlicien The models studied in the last two subsections can be
than the production of particles.

. . ) i considered as a good laboratory where one can study differ-
In order to investigate th.|s possibility !et us stut_jy ent features of parametric resonance. However, in our inves-
for a Tomfr;t. a quel W'thz Fhe eﬁectn/_e pote_rmal tigation so far we did not discuss the question of initial con-
(\/4)(b Y ) '2 t2he limit \>g", i.e., neglecting the in- - yiiions for resonance in these models. Indeed, after 15 years
teraction g</2)$“x°. We will assume here that in the be-

S ; ; -~ of investigation we still have not found any simple mecha-
ginning the field¢ was at the top of the effective potential. isy \which will put the inflaton field on the top of the po-
At that time its effective mass squared was negative

i ; tential at¢=0 in the new inflation scenario. Also, the shape
m?(0)= —\¢?. This fact alone, independent of any paramet- ¢ P

. lead h duct ‘ ic|  the fiel f the potential required for new inflatiofextremely flat
ric resonance, leads to the production of particles of the fielq,a 5 the origin is rather artificial. As soon as we consider

¢. The main point here is that all modes wkk: o grow  generic initial conditions for the scalar fielgl in more real-
exponentially, which breaks the homogeneity of the oscillatigiic inflationary models, such as chaotic inflation in the
ing scalar field. This is an interesting effect, which has SOM&heory with a simple potentiah?¢2/2, the theory of para-

nontriv.ial feat_ures, especially if one takes the expansion Ohetric resonance becomes different in many respects from
the universe into account. We will return to its dlscussmnthe simple theory described above.

elsewhere. However, this effect does not last long because
away from the maximum of the effective potential its curva-
ture becomes positive.

When the amplitude of the oscillations of the fietfdnear
¢ =0 becomes smaller thaa, the field begins oscillating In the chaotic inflation scenario one does not impose any
near its minimum with a frequenay~ y2\o. The paramet-  a priori conditions on the initial value of the scalar field. In
ric resonance withp-particle production in this regime can many models of chaotic inflation the initial amplitude of os-
be qualitatively understood if the equation for the fluctua-cillations of the field¢ can be as large ail,, i.e., much
tions 8¢, is approximately represented as a Mathieu equagreater than any other dimensional parameters such.as
tion. The modesp, grow in essentially the same way as the Therefore in the remaining part of the paper we will concen-
modes in the second instability band of the Mathieu equatiotrate on the simplest chaotic inflation model without symme-
with A,=4k?/m?+4, q=6(d/c). Forq=1, we are in the try breaking with the effective potentiad(¢)=(m?/2)¢?,

V. BROAD RESONANCE VERSUS NARROW RESONANCE
IN MINKOWSKI SPACE
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100
Xk FIG. 2. Narrow parametric

resonance for the fielgy in the
theory m?¢?/2 in  Minkowski
space forq~0.1. Time is shown
in units of m/27, which is equal
to the number of oscillations of
the inflaton field¢. For each os-
cillation of the field ¢(t) the
growing modes of the fielgy os-
cillate one time. The upper figure
shows the growth of the modg,
for the momentunk correspond-
ing to the maximal speed of
growth. The lower figure shows
the logarithm of the occupation
number of particlesn, in this
mode; see Eq25). As we see, the
number of particles grows expo-
nentially, and Im, in the narrow
resonance regime looks like a
straight line with a constant slope.
This slope divided by 4 gives
the value of the parameter, . In
this particular caseu,~0.05, ex-
actly as it should be in accordance
with the relationu,~q/2 for this
model.

ll’lnk

and the interaction term g2¢$2y2. In this case instead of Methods of investigation of narrow parametric resonance do

Eq. (22) one has not work here. The difference between these two regimes can
be easily grasped by comparing solutions of E8Q) for
xi+ (K2+g%®? sir(mt))x, =0. (30)  small and for largey; see Figs. 2 and 3.

The time evolution is shown in unit®/27, which corre-

This equation describes an oscillator with a periodicallysponds to the number of oscillatioNsof the inflaton fielde.
changing frequency?(t) =k?+ g?®?2 sirfmt. One can write The oscillating field¢(t)~®sinmt is zero at integer and
it as a Mathieu equatiofiEq. (23)] with A,=k?/m?+2q,  half-integer values of the variablat/2z. This allows us to
q=g2®?%/4m?, z=mt. identify particle production with time intervals whef(t) is

For g <m we have a narrow resonance wigh<1. In  very small.
this regime the resonance is more pronounced in the first During each oscillation of the inflaton field, the fieldy
resonance band, for modes wiki~m?(1—2g=+q). The oscillates many times. Indeed, the effective mass
modesy with momenta corresponding to the center of them, (t) =g¢(t) is much greater than the inflaton massfor
resonance ak~m grow ase%??, which in our case equals the main part of the period of oscillation of the fieldin the
e M~ exp@®d? t/8m), and the number of particles grows broad resonance regime witht’>=g®/2m>1. As a result,
as e?“?~e¥%~exp(@°®? t/4m). This process can be inter- the typical frequency of oscillatiom(t) = VkZ+ gZ¢%(t) of
preted as a resonance with decay of teyoparticles with  the fieldy is much higher than that of the fieltl. Within one
massm to two y particles with momenta~m. We show the  period of oscillation of the fields the field y makesO(q*?)
results of the numerical solution of E(BO) for the fastest oscillations. That is why during the most of this interval it is
growing modey in the narrow resonance regime in Fig. 2. possible to talk about an adiabatically changing effective
Typically, the rate of development of the parametric resomassm,(t). Therefore, in the broad resonance regime the
nance does not differ much from the rate of the growth of theamplitude ofy, is minimal at the points where the frequency
leading modey, ; see a discussion of this issue in the nextis maximal,| x,|<w(t) "*/?, i.e., at¢(t)= P, and it increases
section. substantially near the points at whig(t)=0.

On the other hand, for oscillations with a large amplitude  For very small¢(t) the change in the frequency of oscil-
@ the parameteq=g°®?/4m* can be very large. In this |ations w(t) ceases to be adiabatic. The standard condition
regime the resonance occurs for a broad range of valules of necessary for particle production is the absence of adiabatic-
the parametey, can be rather large, and reheating becomesty in the change ofo(t):
extremely efficient. The resonance occurs for modes with
k?/m?=A-—2q, i.e., above the linéA=2q on the stability- do_

) . ) . —=w". (31
instability chart for the Mathieu equatidi]. The standard dt
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Xk

100+

field x in Minkowski space fog~2x 107 in the

sol FIG. 3. Broad parametric resonance for the
theory m?¢2/2. For each oscillation of the field
- / M ) . ¢ @(t) the field y, oscillates many times. Each

0.5 .5 VVz h u\rs peak in the amplitude of the oscillations of the

field y corresponds to a place wheggt) =0. At
this time the occupation number, is not well
defined, but soon after that time it stabilizes at a
new, higher level, and remains constant until the
next jump. A comparison of the two parts of this
figure demonstrates the importance of using
proper variables for the description of preheating.
Both x, and the integrated dispersid?) be-
have erratically in the process of parametric reso-
nance. Meanwhilen, is an adiabatic invariant.
Therefore, the behavior af, is relatively simple
and predictable everywhere except the short in-
tervals of time whenp(t) is very small and the
particle production occurs. In our particular case,
the average rate of growth af, is close to the
maximal possible rate for our model,~0.3.

-50 |

-100 -

lnnk

One should note that for a narrow resonance this condition is k, = Jgmd = \2mq"4 (34)

not necessary, because even a small variatian(tf may be

exponentially accumulated in the course of time. HoweverThis simple estimate practically coincides with the result of a
for a broad resonance one should expect a considerable gfiore detailed and rigorous investigation which will be per-
fect during each oscillation, which implies that the conditionformed in Sec. VII. This is a very important res[df], which
(31) should be satisfied. To find the time intervit, and we are going to use throughout the papdtis result im-
the typical moment&, when and where it may happen let plies, in particular, that in the broad resonance regime

us remember that for smai one hasp~md. Therefore M<K, <gP.

our condition(31) implies that Each time the field¢ approaches the poin$=0, it
spends time
kZS 2 md 2/3_ 42 2. 32
(g¢m®)**- g4 (32 29 1
Aty ~—~—=~Kk, (35
Let us consider those momenka& which satisfy condition ¢ vgmd

(32 as a function ofé(t). This condition becomes satisfied ) ) .
for small k when the field ¢(t) becomes smaller than in the domain| ¢| < ¢, . During that timek, ~m,=ga, ,

Jm®/g. The maximal range of momenta for which particle SO thatw~k, . This estimate ofAt, tells us that particle
production occurs corresponds ddt) = ¢, , where production in the broad resonance regime occurs within a
* 1

time of order of the period of one oscillation of the fig{d
1 1 At, ~ ™1, in agreement with the uncertainty principle. One
¢, ~=md/g~ -bq Y4 (33)  can easily identify these short intervals in Fig. 3.
2 3 In the semiclassical regime when the frequeagyt) is
changing adiabaticallyy, is a constant which coincides with
The maximal value of momentum for particles produced atan adiabatic invariant. To appreciate the usefulness of the
that epoch can be estimated ky,,= vgm®/2. In the main introduction of the adiabatic invariami , one should com-
part of the intervall ¢| <2¢, the range of momentum re-
mains smaller but the same order of magnitudk.gas. Thus
one may estimate a typical value of momentum of particles lin this paper we will use both physical momenta and comoving
produced at that stage &$/2, where momenta. Our definition ok, refers to physical momentum.
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pare the evolution of the modag with the evolution of the Let us first look at the results of the numerical study of the
occupation numbers corresponding to each of these modeevelopment of broad resonance in an expanding universe,
shown in Figs. 2 and 3. As we see, in the narrow resonancand try to interpret them. Note that at this stage we do not
regime y, vigorously oscillates, whereasnpgrows like a  consider the effects of back reaction and rescattering of par-
straight line. In the broad resonance regime the field ampliticles; we will discuss these effects later. Our main strategy
fication occurs near the points(t) =0 where the process is here is to study a general picture step by step, and then
not adiabatic. The occupation numbrgr, being an adiabatic correct it later, because otherwise the physical interpretation
invariant, changes only during these short time intervalspf the processes which occur during preheating will remain
when the number of particles is not well defined. obscure.

Analytical investigation of the broad resonance regime in  First of all, let us consider Eq21) for the modey, in an
the context of the theory of reheating was first reported inrexpanding universe W|tm =0, £=0 in the asymptotic re-
[1]; see als$20]. Now we are going to perform a much more gime when a= (t/t)%3, and d(t)=M /\/ﬁmt Strictly

detailed investigation of this regime. speaking, the last two conditions are satisfied only for suffi-
ciently larget. However, if we begin counting time from the
VI. STOCHASTIC RESONANCE end of inflation, taking for definitenests= 7/2m (which
IN AN EXPANDING UNIVERSE formally corresponds to the time after a quarter of one oscil-

lation of the field ¢), then we will have an approximation
To understand why the broad resonance regime is so imwhich is sufficiently good for our purposes. With these defi-
portant for the theory of reheating in an expanding universenitions, the initial values of the fiel¢p and the parameter
let us remember that resonance in an expanding universa our calculations are given by
appears only fog?m=H, which in our case reads

2M M gM gM
p p 1/2 p
/ =Pk P P 3
g@zZm(ﬂ)l[l. (36) %o mJ37 5 %o m\3mTm T 10m” @37
m

On the other hand, if one wants to investigate the situation

In the simplest inflationary models including the model "umerically, one can simply solve a combined system of
quations fora(t), ®(t), and x,(t). We will not do it here

which we consider now the value of the Hubble constant aE . ; .
the end of inflation is of the same order as the inflaton mas9€cause our main goal is to develop an analytical approach

m, but somewhat smaller. Indeed, as we already mentioned? the theory of preheating. _ .
during the first oscillation the amplitude of the fiefd is of The investigation of parametric resonance in an expand-

order M,/20, which gives the Hubble constant ing universe can be simplified if instead gf one introduces

the function X, (t)=a%t)x(t), which is given by
~y2m/3 m(I)/M p~0.1Im. Since dependence of the reso- : k :
t/t t . Th f EQRL h
nance condition oH is very weak HY%), one may conclude (/o) xi((1) In our case. Then instead of E@1) we have a

much simpler equation
that the regime of explosive reheating after inflation may P q

occur only if the amplitude of oscillation satisfies the condi- v 2y _
tion & >m/g. Thus explosive decay endsdtsm/g, i.e., at Xt 0ie=0, (38
g=1/4. where
This means that preheating in this model cannot begin for
®<m/g, which would correspond to the narrow resonance o2e k? -
regime. Narrow resonance may be important at the late W= z(t)+9 ®? sirfmt+A, (39

stages of preheatirid ], but at that stage one should take into
account back reaction of the particles produced at the previ- 2 3,1 2 3, . .
ous stage of broad parametricpresonanrée so the theorypof thd A=~z (a/a)"~3(a/a) —¢R. This term is usually
narrow resonance at the end of preheating is much mor¥ery small. Indeed, we will consider here the case of light
complicated than the one contained in the previous subse®'ticles, such tham, <k, , in which case one can simply
tion. neglectm, . Also, soon after the end of inflation one has

In fact, efficient preheating often requires extremely largeH*= (a/a)ZNa/a<m As a result, typically one can ne-
initial values ofq. Indeed, the amplitude of the scalar field glect the termA altogether. Equat|0|(|38) describes an os-
decreases during the expansion of the universe much fastetllator with a variable frequency)k(t) due to the time de-
thanHY4, so for not very large initial values af the condi- pendence of the background fielfi(t) and a(t). As an
tion (36) becomes violated before the resonance has enoughitial condition one should take the positive-frequency solu-
time to transfer the energy of the oscillating fieidinto the  tion X(t)=e "'/ \2w\.
energy of y particles. As we will show in Sec. IX, in the The series of three figures in this section shows different
model under consideration preheating is efficient only if thestages of development of the fastest growing mggdé the
initial value of g at the end of inflation is very large, broad resonance regime in an expanding universe in the
qo=10°. theory m2¢?/2 for an initial value of the parameter

In the models with extremely largethe expansion of the q~3x10%. Note that during the expansion of the universe
universe makes preheating very peculiar: instead of a reguldhe amplitude of scalar field oscillations decreases approxi-
resonance process we encounter a rather unusual effetately ast™!. Therefore in order to illustrate theslative
which we callstochastic resonance growth of the fluctuations of the fielg with respect to the
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wwul\j UWU 2'V VV : 35 o FIG. 4. Early stages of parametric resonance

in the theorym?$?/2 in an expanding universe

with scale factor a~t?® for g=5x10"%,

-40r m= 10’6Mp. According to our convention87),

u u initial value of the parametey in this process is
0o~ 3% 1C°. Note that the number of particleg

-60 |

5t in this process typically increases, but it may oc-

111 nk casionally decrease as well. This is a distinctive
feature of stochastic resonance in an expanding

sl : . universe. A decrease in the number of particles is

a purely quantum mechanical effect which would
be impossible if these particles were in a state of
3 . thermal equilibrium.

amplitude of the oscillating field we show not the growing To understand the rather peculiar behavioKpfindn, in
modey itself, but its rescaled valu¥,= x,(t/ty), wherety  this process, let us check in which resonance band our pro-
corresponds to the beginning of the calculation. One camess develops. The number of the band in the theory of the
construct an adiabatic invariant for E@8), which has an  Mathieu equation is given bg=\A. In our case reheating
interpretation of the comoving occupation number of par-g.curs for A~2q, i.e., n~+2q~g®/\2m. Suppose we
ticles ny in the modek in an expanding universe: have an inflationary theory witim~10"°M,, and let us
take as an examplg~101. Then after the first oscillation

wi[ | Xl 5 of the field, according to Eq4), we haved(t)~M /20,
=512 X% | = 5 (400 which corresponds tg~ 10%/16. This gives the band num-
“k bern~3x 10°. After another oscillation the amplitude of the

field drops by a factor of 2, and the band number decreases
Note that this function does not have any factors inverselypy a factor of 2 as well, down to~1.5x 10°.

proportional to the volume®. These factors will appear In other words, even during a single oscillation the field
when we calculate the number density of particles in physidoes not remain in the same zone of the Mathieu equation.
cal (not comoving coordinates. Instead of that it jumps over $@ifferent instability bands.

In the beginning we have parametric resonance very simiThe theory of a broad resonance in Minkowski space is
lar to the one studied in the previous section; compare Fig. &uch less explored than the theory of a narrow resonance,
and Fig. 4. As before, one can identify the periods wherbut the theory of a broad resonance in an expanding universe
x-particle production is most efficient with the intervals proves to be even more complicated. The standard method of
when the field¢ becomes small. An important difference is investigation of resonance using the Mathieu equation in a
that because of the gradual decrease in amplitude of the fieklngle resonance band completely fails here.
¢ the effective mass of the field and, correspondingly, the Still not everything is lost. Indeed, as we have found in
frequency of its oscillations decrease in time. As a result, irthe previous section, in the broad resonance regime particle
the beginning within each half of a period of oscillation of production occurs only in a small vicinity ap=0, corre-
the field ¢ the field y, oscillates many times, but then it sponding to integer and half-integii=mt/27r. Nothing de-
oscillates more and more slowly. pends on the exact way the fiejtl behaves at all other mo-
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FIG. 5. The same process as in Fig. 4 during a
-150000 longer period of time. The parameter
q=g?®2/4m? decreases as 2 during this pro-
cess, which gradually makes the broad resonance
more and more narrow. As before, we show time
t in units of 2#/m, which corresponds to the
number of oscillations of the inflaton field.

lnnk

15¢

101

ments. In this sense the description of the process of particlmany times in a row. That is why at some moments the

production at¢=0 is very robust with respect to change in amplitude of the fieldy, decreases; see Fig. 4.

the shape of the potenti®l(¢) and of the equation describ- ~ This could suggest that broad parametric resonance in an
ing the field y, insofar as it does not alter the behavior of expanding universe is simply impossible. Fortunately, this is

either field at the stage whe#(t) approaches zero. There- nof[ thf ca;]se, forﬂ:wo m?ln rf_asons. F|tr§t tha,!lr’] ashwe aref
fore some(but not al) of the results related to the Mathieu going to show in the next section, even though the phases o

equation can be useful for investigation of broad parametriéhef field Xk at the moment yvhem&(t)zo In an ex_pand(!ng
: ) . . universe withg>1 are practically unpredictable, in 75% of
resonance in an expanding universe even though the reginie, . X
. . . . : all events the amplitude of, grows at that time. Moreover,
we are going to investigate is fundamentally different. ven if it were not the case, and the amplitude would grow
One of the most important differences between broal ¥

- . . . X nly in 50% of all events, the total number gf particles
resonance in Minkowski space and in an expanding universg ' 19 still grow exponentially. Indeed, as we will see, dur-

can be upderstood by mspgctmg the behavior ofpihmseqf ing each “creative moment'$(t) =0 in the broad resonance
the functionsy, near the points wherg(t)=0. Indeed, Fig.  regime the number of particles at each mode may either de-
3 shows that near all points whege=0 the phases ofx are  crease by a factor of 10, or grow by a factor of- 10. Thus
equal. The physical meaning of this effect is very simple: Injf we pegin with 10 particles in each of the two modes, after
order to open a swinging door by a small force one shouldhe process we get 1 particle in the first mode and 100 par-
apply it periodically, “in resonance” with the motion of the ticles in the second. Therefore the total number of particles
door. in this example grows by more than a factor of 5. The theory
However, in an expanding universe such a regime is imof this effect is very similar to the theory of self-reproduction
possible, not only because of the redshift of the momentunaf an inflationary universe, where in most points the inflaton
k/a, but mainly because the frequency of oscillations of thefield rolls down, but those parts of the universe where it
field xy is proportional to®, which decreases in time. The jumps up continue growing exponentiallg].
frequency of oscillations of the modgg changes dramati- As a result, parametric resonance does take place. How-
cally with each oscillation of the fielgp. Therefore for large ever, in order to describe it some new methods of investiga-
g the phases of the fielg, at successive moments when tion of parametric resonance should be developed. We will
¢(t)=0 are practically uncorrelated with each other. Usingdo this in the next section.
our analogy, one may say that the door is vibrating with a Stochastic resonance occurs only during the first part of
large and ever changing frequency, so it is very difficult tothe process, when the effective parametés very large and
push it at a proper moment of time, and successfully repeat the resonance is very broad. Gradually the amplitude of the
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Xk
4x10°
2x10°
10 2‘ 5 0 t
-2x10’ FIG. 6. The same process during a longer
time, which is shown in the unitsmt/2, corre-
—ax10° U sponding to the number of oscillatiorié. The
N figures show the growth of the modg, for the

momentum k corresponding to the maximal
ol speed of growth of,. In this particular case
11’1 ny, k~4m. Towards the end of this period, after ap-
proximately 25 oscillations of the inflaton field,
the resonance ceases to exist, and the occupation

ot numbern, becomes constant.

20+

10r

10 20 30 40 50 60 i

field ¢ decreases, which makgssmaller. Expansion of the with the results of our computer calculations shown in Fig. 6.
universe slows down, the field stays in each resonance barfdl small disagreemenabout 10% appears because our cri-
for a longer time, and eventually the standard methods oferion for the end of the resonangg ~m was not quite
investigation based on the Mathieu equation become usefyrecise: the resonance ends somewhat earligrdat 1.1m.
again. As we will show in Sec. VII E, stochastic resonance This more exact result can be deduced from Fig. 7, which
ends and the standard methods become useful after the firshows that the first instability band fér=0 extends from
as/?/\27 oscillations, which may happen even before theq~0.8 to q~1/3. Therefore the growth of all modes with
effective parametey decreases fromy>1 toq~1; see Eq.
(79). One of the manifestations of this effect is a short pla-
teau for Im, which appears in Fig. 5 for ¥t=<15. This
plateau corresponds to the time when the stochastic res: 025 .
nance ends, and the modg appears in the region of stabil-
ity, which divides the second and the first instability band of
the Mathieu equation; see Fig. 7. G oisk i

To get a better understanding of this effect one shoulc
continue our calculations for a longer period of time, see Fig
6. Att>15 the process does not look like a broad resonanc 00 | 1
anymore, but the amplitude still grows exponentially at a
rather high rate until the amplitude of the field becomes i 9 3 4 5 6 7
smaller thanm/g, which corresponds tq~ 1/3—1/4. Soon q
after that the resonance ceases to exist and the amplituae
stabilizes at some constant value.

The timet; and the number of oscillatiorld; at the end FIG. 7. The structure of the resonance bands for the Mathieu
of parametric resonance in an expanding universe can b&juation along the lindA=2q, which correspond to excitations
estimated by finding the moment whg®~gM,/3mtis  with k=0 in our model. The modes with smél are especially
equal tom: interesting because the momenta of the excitations are redshifted
during the expansion of the universe. A small plateau & t915
on Fig. 5 corresponds to the time where stochastic resonance ceases
to exist, all modes are redshifted to smiglland the system spends
some time in the interval with=£q=2, which is outside the insta-

As one can check, this estimate for our case=(lO’GMp, bility zone. The last stage of the resonance shown in Fig. 6 corre-
g=5x10"% gives N;~26.5, which is in good agreement sponds to the resonance in the first instability band \yitht .

0.3 T T T T T T

02 B

01 ' .

_9M, _ M,

Y~3mz Ne“gom:

(41)
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k<m terminates not aj?®?/4m?~1/4, but slightly earlier, coupling constant has initial momentum comparablerto
at g>d?/4m?~1/3. and slightly smaller than the typical initial width of the reso-

At the timet~t;/2 one hasg~1. During the time from nancek,/2, which changes from 12 to about 3n for g
t;/2 tot; the resonance occurs in the first resonance band, thehanging from 10 to 10 3. The reason wh is usually
resonance is not very broad and there are no stochastic jumfhough not always somewhat smaller thak, /2 is very
from one resonance band to another. At the time just beforeimple. The resonance is broad only during the first half of
t;/2 there was no resonance; the field was in the stabilitghe time. Narrow parametric resonance which appears during
band betweem=1 andq=2; see Fig. 7. the second part of preheating typically is more efficient for

An interesting effect which is shown in Fig. 6 is a slow smallerk. We should note that fog=3x10 %, at the last
growth of the amplitudeX, which continues even after the stage of preheating one should take into account back reac-
resonance terminates angbecomes constant. This happenstion of produced particles, which makes the narrow reso-
because the momentum of each mode gradually becomemnce stage very short; see Sec. IXB. In such a case the
smaller due to the expansion of the universe, and this lead®sonance has the wid# /2 in terms of the value of the
to a growth ofy, even thougm, does not change. This is momentumk at the beginning of preheating.
one of the examples which shows that in order to describe Of course, investigation of the leading growing mode is
parametric resonance one should use proper variables suchiasufficient: One should integrate over all modes with all
ny, because otherwise one may get the incorrect idea that thssiblek, which we are going to do later. However, the
resonance continues even for 25. number of particles, is exponentially sensitive th. There-

If one ignores a small island of stability near 12, one  fore the main contribution to the integral will be given by the
may conclude that during the main part of the process thérajectories close to the leading one. It is similar to what
slope of the curve Im. remains almost constant. In our case happens, e.g., in the theory of tunneling, where one first finds
this corresponds to the exponential growth of the occupatiothe optimal trajectory corresponding to the minimum of ac-
numbern, with an effective parametes,~0.13. This fact tion, and calculates™S along this trajectory. Similarly, one
will be very useful for us later, when we will calculate the can calculate the rate of growth of the total numberyof
number of particles produced during the parametric resoparticles by finding the leading trajectory and calculating the
nance. Such a calculation is our main goal. It is also necesaverage value of. along the trajectory.
sary in order to verify whether one should modify our reso- The table clearly demonstrates that the effective values of
nance equations due to the presenceygfarticles. As we u and especially the final number of particleg produced
will see, no modifications are needed for theories withby the resonance are extremely sensitive to even very small
g=3x10 “ However, for greater values of (and in par- modifications ofg, and change in a rather chaotic way even
ticular for the case of ~5x 10~ discussed aboyé¢he reso- wheng changes by only 10%. That is why we call this pro-
nance ends in a somewhat different way; see Sec. IXB. cess “stochastic resonance.” We see from the table that for

In order to illustrate the stochastic nature of the resonancg~10"> the occupation numbers, become incredibly
in this theory, we will present here at sample of results fordarge. It will be shown in Sec. IX that fog~10~* back
the resonance for several different values of the couplingeaction of created particles is not very important, but for
constantg in the interval from 0.X10 * to 10 3. One g=3x10 * back reaction becomes crucial, because it does
might expect the results to change monotonically gas not allow the resonance to produce an indefinitely large num-
changes in this interval. However, this is not the case. Théer of particles. To investigate these issues we should first
table contains the results concerning the initial momeritum develop the theory of stochastic resonance, and then take
(in units of m) corresponding to the fastest growing mode,into account back reaction.
the total increase of the number of particles,lat the end of
the resonance for this mode, the average valuéor this —y; ANALYTIC THEORY OF STOCHASTIC RESONANCE
mode, and the tim& (the number of oscillations of the field
¢) at the end of the resonance: In this section we are going to develop a new method to
g k o) t; Inn,  study the time evolution of the eigenfunctiogg(t) in the
most interesting case of broad resonance. This method is
based on the crucial observation made in the previous sec-

0.9x10°* 1.5 0.1 5 6 tions: In the broad resonance regime the evolution of the
104 2 0.14 5 9 modesy(t) is adiabatic and the number of particles does
1.1x 104 0.5 0.17 55 12 not grow in the intervals whepp(t)|> ¢, . The number of
1.2x10°4 15 0.12 6 9 particles changes only in the short intervals when
1.3x10°* 1 0.13 6.5 11 0=, <P . o
14x10°4 5 0.12 7 11 The quantum field theory of particle creation in a time

varying background is naturally formulated in terms of adia-

1.5 1_04 ) 0.5 0.18 7 17 batic (semiclassicaleigenfunctions. This formalism is intro-
2x10 3.5 0.12 11 16 duced in the next subsection. Then we will find the change of
3x10°4 0.5 0.14 14 27 the particle number density from a single kick, whe(t)
5x10 4 4 0.13 24 40 crosses zero at some tirhe For this purpose it is enough to
1073 6 0.12 48 75 consider the evolution of(t) in the interval whenp?(t) is

very small, so it can be represented by its quadratic part
Thus we see that the leading mode in this interval of thex(t—tj)z. This process looks like wave propagation in a
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time dependent parabolic potential. We can combine the adion is given by the integration near the momept where
tion of the subsequent parabolic potentials to find the ne&(t,)=2k/m. As we already mentioned, this corresponds to
effect of the particle creation. Using our formalism, we con-the creation of a pair of massleggarticles with momentum
sider a toy model of broad resonance in Minkowski spacey— 14(t,)m from an inflaton with massgenergy m at the

and broad resonance in an expanding universe, which UMSgiantt, of the resonance between the mddand the back-
out to have a stochastic nature. ground field. The decay rate of the inflaton field calculated
S _ _ _ with this method can be described by Efj2).
A. Adiabatic representation of the eigenfunctions For the interaction¢p— yx, the process in the regime

The semiclassical, or adiabatic evolution of the eigenfunciB«| <1 can be interpreted as creation of a paigfarticles
tion y.(t) can be represented in a specific mathematicayith momentumk=a(t,)m from a pair of massive inflatons
form. For this we adopt a physically transparent method tdvith energym each. The decay rate of the massive inflaton
treat Eq.(38) for an arbitrary time dependence of the classi-field in this case rapidly decreases with the expansion of the
cal background field which was originally developed by Zel-universe as (&*)(d/dt)(a*p,)xa®. Therefore a complete
dovich and Starobinsk}37] for the problem of particle cre- decay of the massive inflaton field in the theory with the
ation in a varying gravitational field. ¢>x? interaction is impossible. One should have additional

Let us represent solutions of E(B8) as products of its terms such ag?o¢x? or hii¢. This is a very important
solution in the adiabatic approximation, exp(dtw), and  conclusion which we already discussed in Sec. Ill.
some functionsy(t) and B(t):

B. Interpretation of parametric resonance in terms

a3/2)(k(t)EXk(t)= a(t) e_iftwdt+ Bi(t) e+i"-twdt. 42) of successive scattering on parabolic potentials
V2w V2w We suggest a new analytic method to solve approximately

the basic equation&1) and (38) for the eigenfunctiong,
/ ; '} HIE s which correspond to thg particles created by the oscillating
imposed by taking the derivative of E2) as if @ and B inflaton field ¢p(t). This method is rather general; it can be
were time-independent. Then E@2) is a solution of EQ.  gpplied to many models of preheating. One may also apply it
(38) if the functionsey, By satisfy the equations to the idealized case when the universe does not expand and
. : back reaction is not taken into account. In the cases where
C @ oiftedt o _ @ —2iftedt the equation for the modeg, can be reduced to an equation
=54 ° P B=5,8 a. (43 with Seriodic coefficients?l;&cluding the Mathieu equgti()n
. ] our method accurately reproduces the solution of this equa-
In terms of classical waves of the field, quantum effects tjon, and gives us an interesting insight into the physics of
occur due to departure from the initial positive-frequencyparametric resonance. This method is rather powerful; it en-
solution; therefore the initial conditions &0 areax=1,  aples one to investigate some features of the regime of broad

Bx=0. Normalization givegay/*~[B/*=1.  parametric resonance which, to the best of our understand-
The coefficientsy,(t) andB(t) in our case coincide with jng, have not been known before.

the coefficients of the Bogoliubov transformation of the cre- | the realistic situation which we study in this paper,

ation and annihilation operators, which diagonalizes thgyhen the expansion of the universe as well as the back re-
Hamiltonian of the/\/ field at each moment of time The action are taken into account, in some modelg.' noncon-
particle occupation number is=|B,|% see Eq.40). The  formal theory the equation for the modeg, cannot be con-
vacuum expectation value for the particle number density pesidered as an equation with periodic coefficients, and the

An additional condition on the functions and 8 can be

comoving volume is analysis based on standard stability/instability charts is not
1 . applicable. This is the situation where our method will be
n\= dk K B.|2. 44 especially useful.
{ny) 2772&3Jo |8 (44 Let us consider the general equati@®®). As we noticed,

the eigenfunctiorX,(t) has adiabatic evolution between the

In this section we will calculate8,, nc, and(n,) in the  momentst;, j=1,2,3 ..., where the inflaton field is equal
nonperturbative regime of broad resonance, where all ofg zero #(t;)=0 (i.e., twice within a period of inflaton os-
these values can be very large. cillation). The nonadiabatic changes Xf(t) occur only in

Itis instructive to return in the framework of this formal- the vicinity oft; . Therefore we expect that the semiclassical
ism to the simpler perturbative regime which we discussedo|ytion (42) of Eq. (38) is valid everywhere but arount.
earlier in Sec. ll. AssumingBy| <1, from Eqs(43) one can | e the waveX,(t) have the form of the adiabatic solution
obtain an iterative solution: (42) before the scattering at the poifjt

1 t ! (-l) 1 t’ " 4 i ] . t BJ . t
ﬂkzifodt ZGXD(—ZIL dt’w(t ))- (45) Xf((t):\/%exp(—lfowdt +\/7Lw EXF{JF'fO“’dt)'

. . (46)
Using o(t)=/(k/a)?+ g*>d?sirmt, we can evaluate Eq. . .
(45) containing an oscillating integrand by the method ofthe coefficientsy| and 8} are constant for;_;<t<t;. Then
stationary phasg7]. In the case of the massive scalar field after the scatteringX(t), within the intervalt;<t<t;, ,
decaying via the interactiogfo ¢ x?, the dominant contribu- has the form
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dZXk k? 2 212 2
80 L T T L Ez—-}— gz-l—g [6)) m(t—tJ) Xk:O (49)

70

60 - . .. . . .
For simplicity we introduce a new time variable

7=k, (t—t;) and a scaled momentum=k/ak, . Notice

50

lme g0 1 that k%= (Ac—20)/2\/g. In generalk, and« depend ort;
wr B ; iy througha(t;), and should be marked by the indgxwhich
2 ——«I\\N__ [ . we drop for the moment. Then E@9) for eachj is reduced
0 . to the simple equation
% 1 2 s 4 5 6 7 8 5 10 1 12 2
¢ X 24 2\y —
>+ (k“+ 79X, =0. (50
dr

FIG. 8. The change of the comoving particle numbgidue to . . .
scattering at the parabolic potential, calculated from &@). The ~ 1he asymptote of this equation, which corresponds to the

dotted lines show the sequence of the parabolic potentialICOMing wave, matches the fort6). The asymptote cor-
g%¢2(t)~g>®2m*(t—t;) where scattering occurs. Time is given responding to the outgoing wave matches the fd).

in units of 2m/k. The number of particles can either increase or Therefore the reflectioR, and transmissio, amplitudes
decrease at the scattering, depending on the phase of the incomifg scattering at; are essentially the reflection and transmis-
wave. sion amplitudes of scattering at the parabolic potential. Thus
the problem is reduced to the well-known problem of wave
scattering at dnegative parabolic potential38], which we

i+1 i+1
X4t = Y o —i ftwdt +3k ox +iftwdt ~ consider in the next subsection.
V2w 0 V2w 0

(47) C. Patrticle creation by parabolic potentials

_ _ A general analytic solution of Eq50) is the linear com-

and the coefficientsal’! and gL*' are constant for bination of the parabolic cylinder functions[39];

t<t<tj,;. W(—«?/2;+/27). The reflectionR, and transmissiom,
Equationg46) and(47) are essentially the asymptotic ex- amplitudes for scattering on the parabolic potential can be

pressions for the incoming wavé®r t<t;) and for the out-  found from these analytic solutions:

going waveg(for t>t;), scattered at the mometjt. There- iy

fore the outgoing amplitudes)™*, Bl"* can be expressed R—__° “

through the incoming amplitudes), Bl with help of the k [1+em< (5D

reflectionR, and transmissio®, amplitudes of scattering at

t] e_i‘Pk

Dy=—"F7—7—5, (52)
. \/1+e*’”‘2
R R .
( a{(“e""k) B D, D} ale 1% o where the angley, is
j+1e+i‘9{< - R¢e 1 je+i9{< . 1+ik? K2 2
Bx D_k ﬁ Bk o=argl 5 +? 1+|n;2 . (53

Lt _ The anglee depends on the momentuka Notice the fol-

Here 6= [jdt w(t) is the phase accumulated by the mo- lowing properties of these coefficien®= _kae*("lT/Z)Kz;
mentt; . _ . |Ri/?+|Dy|?=1. Substituting Eqs(51) and (52) into Eq.
_ Now we speC|f)2/ t?e scattering at the moment The (48 we can obtain the evolution afl, 8] amplitudes from
interaction term g°¢°(t) in Eq. (38) has a p<’2:ll’azbO|IC a single parabolic scattering in terms of the parameters of the
forrT21 around  all  the points tj:  9°3°(t)  parabolic potential and the phagk only.
~g2®’m?(t—t;)>=k} (t—t;)% where the current amplitude ~ 1,0 mapping ofl, Bl into al*®, AL reads as
of the fluctuationsb is defined in Eq(4), and the character- ke Pk ko Pk
istic momenturk, =/gdm. In the general cade, depends j+1 / — Kk i i A (m/2) K%+ 2i ) j
on time via the time dependence®f:a~ %2 Figure 8 illus- (a',( ) = 1te e k_ '€ ‘ ( a'.()_
trates two possible outcomes of the scattering of the wave \ Bk —je~(M2* =20 \[14 e meien] | B
Xi(t) on the parabolic potential near zeros of the function (59
g°42(t). Depending on the phase of the incoming wave, the
corresponding number of particles may either decrease or Since the number density gfparticles with momenturk
grow. is equal ton,=|B,(t)|?, from Eq.(54) one can calculate the

First, let us consider the mode equation around a singl@umber density of outgoing particleg™'=| 8 "*|? after the
parabolic potential. In the vicinity of; the general equation scattering on the parabolic potential outrgf=| 812 incom-
(38) is transformed to the equation ing particles:
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n{(+1:e—m2+(1+26—m<2)n{< the number of particlesmL created from the time-varying
external field cannot only increase but sometimes decrease,
—2e " (M2x*\[1 o7\ Jnl (1+nl)singl,, i.e., the growth indexu, can be not only positive but some-

times negative. Indeed, it is well known that if tfie)-state

(55 of the quantum fieldy corresponds ta particles, then the
number of particles in théout)-state due to the interaction
with the external field will always be greater thanThis is
Iﬂow to resolve the paradox: the particles created from the

acuum by the time-varying external field are not in the
n-particle|in)-state but are in the squeeZzéd)-state. In this
case the interference of the wave functions can lead to a
decrease of the particle number.
) : , The whole effect of the particle production crucially de-
tj+1. The number of particles is changed exactly at the inpyengs on the interference of the wave functions, i.e., the
stanced; in a steplike manner, in full agreement with the yp,qe correlation/anticorrelation between successive scatter-
exact numerical solution; See Fig. 4. The effect of particléjngg ot the parabolic potentials. The maximal valueuols
creation is significant ifrk“<1, otherwise the exponential reached for positive interference when @jp=—1 and is

term e~ ™ suppresses the effect of particle accumulationequal to u=(1/7)In(1++2)~0.28; see alsd1,20. The
This gives us the important general criterion for the width oftypical value ofu corresponds to sif,,=0 and is equal to

where the phasél,,=26|— ¢, +arg8,—argaf, .

Before we apply the formalisrf¥8) and (55) to specific
models, we shall analyze these generic equations. Althou
we did not specify yet the phagt,,, we already can learn a
lot from the form(55). First of all, the number of created
particles is a steplike function of time. The valuergfis a
constant between two successive scatterings at pimatsd

the resonance barid]: w=(1/27)In 3~0.175. The value of: is negative for nega-
tive interference when s#,= 1. Therefore the behavior of
K2=A_2qsw—1 (56) the resonance essentially depends on the behavior of the
2\/6 ' phasef) as a function ok for different time intervalg; see

A o _ Fig. 8. In the case of a fixed amplitude of the background
where A=k*/a"m“+2q, q=g°®“/4m". Equivalently, one field ®(t)=const anda(t) =const, the phaseg}, do not de-

can write this condition in the form pend on time but only ok. In this case we expect the exis-
2 tence of separate stability and instabilkybands. However,
ggki/wzgm@/m (57) this separation is washed out as soon as the ph@sese

significantly varying with time due to changes in the param-
eters of the background field, for instancednit) anda(t).
Now we estimate the net effect of particle creation after a
number of oscillation of the inflaton field. Equatio@s8) and
(55) are recurrence relations for the, and g} coefficients
and for the number of particles, after successive actions of
the parabolic potentials centeredtatt,, ... . To find the
n{;“w(1+2e‘”“2—25in0{0te‘<”’2)“2m)n{;- number of particles _cre_ated up to the_ momépit one Qas to
(59) repeat the formulag times for the initial valuese,=1,
BL=0,n?=0 and a random initial phase .
The factor in the right-hand side of this equation depends After a number of inflaton oscillations, the occupation
on the coupling constarg through x?g~*. This depen- number ofy particles is
dence has the structure exg/g), which is a nonanalytic

This estimate of the resonance widtke k, //7 practically
coincides with the estimate<k, /2 (34) derived in Sec. V
by elementary methods.

Next, let us consider the large occupation number limit,
n1. From Eq.(55) we derive

function of g at g=0. Therefore the number of particles 1 _ 1 t
generated in the broad resonance regime cannot be derived ny(t)= 5 exp( 2772 Mf() ~5 exr{ 2mj dt,uk(t)),
using a perturbative series with respect to coupling param- !

eterg. Thus formula(58) clearly manifests the nonperturba- (61)
tive nature of the resonance effects. ) )
The growth indexw, is defined by the formula where we convert the sum ovgl to an integral ove_;uk(t).
In some cases the index (t) does not depend on time. In a
nl*'=nlexp2mul). (599 more general case one can replacgt) by an effective
index " defined by the relatiorf'dtu,(t) = uft, which,
Comparing Eqgs(59) and(58) we find for brevity, we will write simply asu,t. Then the total num-
1 ber density of created particles is given by
,u{'(=§|n(1+2e‘”"2—Zsina{'ote‘(”’z)"z\/1+e‘”"z). . .
(60 nX(t)Z (277—8.)3f d3knk(t)=mf dk Ke?Mud,
The first two terms in Eq(58) correspond to the effect of (62

spontaneous particle creation, which always increases the

number of particles. The last term corresponds to inducedhe functionu, has a maximunu,,,=u at somek=Kk,.
particle creation, which can either increase or decrease thEhe integral(62) can be evaluated by the steepest descent
number of particles. At first glance it looks paradoxical thatmethod:



3276 LEV KOFMAN, ANDREI LINDE, AND ALEXEI A. STAROBINSKY 56

1 Kie?m 1 AkkGe?m

4ma’ V27 mt ~ 8rma’ Jrumt
(63)

’ngieiﬂe( Tk =10 (66)

V2

where ¢ is a constant phase. In principle, it is possible to
where uy is the second derivative of the functigm, at  construct not only the asymptotic soluti¢8b), (66), but the
k=k,, which we estimated ag~2u/Ak?, Ak being the general solution which starts wiiBd=0. However, the gen-
width of the resonance band. Thus the effect of particle creeral solution very quickly converges to the simple solution
ation is defined by the leading value of the growth index (65), (66), which contains all the physically relevant infor-
by the leading momenturk,,, and by the width of the reso- mation. From Eq(66) the number of particles created by the
nance band\k. In practice typicallyk,,~Ak~k, /2, so we timet~mj/mis
can use an estimate

n,(t)=

nkzl e277/’“kj = Eezﬂkmt (67)
3 1

€ um - 2 2

2,3 ' .. .
64ma’ymumt where u, from Egs.(65), (66) is indeed the growth index.

] Substituting the solutiori65), (66) into Eq. (54), we get a
In order to calculaten(t) one should find the values of the complex equation for the parameterg and 6, :

parameterg. andk, .

In what follows in this section we will apply the general el TaIcH8) — me—i‘pk“e—(w/znz—iﬁ. (69)
formalism of successive parabolic potentials first to the toy
model without the expansion of the universe, whereajong side the solution(65), (66), there is another

a(t)=const and®(t)=const, in the case of broad reso- asymptotic solution of the matrix equati¢s4):
nanceg>1. We will find the resonance zones and the num-

ny(H)~

ber of particles which would be created in such a model. 1 o
Then we consider a realistic case with the expansion of the al=—e ™t ThFIm] (69)
universe taken into account. It turns out that the resonance in 2
an expanding universe is very different from that without
[ 1 o
expansion. Bf(:_zel 19e(77y,k—|9k—l‘n')], (70)
D. Broad parametric resonance without expansion
of the universe with the condition
Let us apply the general formalism of the previous sub- . 5 2
; X . 00 — [ - = (m2)k2=i9
section to the toy model neglecting the expansion of the —el T = 1+ e" T e e jeT (TR (7)

universe. This is equivalent to takirgft) =1. Thus, we will . )
study the evolution of the eigenfunctions in the case withEXcluding the phasé from the complex equatiori$8) and
fixed values of the background parameters and without back/’D: it i easy to find a sggle equation for the growth index
reaction of created particles. In this case E1) is reduced #k valid for both solutions:

to the standard Mathieu equati¢é®3) with A,=k?/m?+2q, 5

q=g°¢%/4m?, z=mt. e"Hk=|cog O— ¢ )| V1+e "

As we saw in Sec. VI, for the realistic situation with the \/ —
expansion of the universe the Mathieu equation is applicable +V(1+e ™) cos(O— @) — 1. (72)
only at the last stages of the resonance whperl. Forg>1 . . .
this equation has only a heuristic meaning for our problem.In the instability bands, the parameeg in Eq. (72) should

For the Mathieu equation with a large valuegpfwhich is be real. Therefore, the condition for the momentito be in
a constant in this subsectipme have the broad resonance the resonance band is césf ¢)=1/\/(1+e "), or
regime. In this case the parametatfsand ¢, of matrix (54) )
are time-independent, i.e., they are the same for diffefent |tan( 6, — )| <e” (72", (73
The phase is simple: 6= 6,j. Here Hk:fﬁ,ldt"’k is the

phase accumulating between two successive zeras(9f,

To further analyze the constraints on the wid#3) and
! L X - Y strength (72) of the resonance, we should find how the
i.e., within one half of a period of the inflaton oscillations, phasesd, and¢, depend on the momentukn The anglep,

——t : j
m/m, so thatg,= [ "dtwy. To find o and By we have to 54 4 function ok is defined by Eq(53). For the phas#, we
apply the same matrigs4) j times. We are mainly interested paye

in the regime with a large number of created particles,
nk=|BL/?>>1. In this regime|al|~|BL|, so ) and B} are
distinguished by their phases only. In this case there is a2ygice that the number of particles calculated with &) is in

simple solution of the matrix Eq54) for an arbitraryj: agreement with the general formui&8). From the definition of
Oy 1ot and the solutionsr, and B} we haved = ¢x— 9. Therefore
a{(:iem#kﬂ Gk)j, (65) from the complex equation$8) and(71) we have additionally that

\/f COSWEk o) = V1+ €™ sin(B— ).
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In—z +4In2+1

9k=f dtVk?+g2g2(t ~—+
0

2

=4\q+ aq| —| |+4In2+1]. (74)

\/_mz(ln

To obtain these estimates we used the condition that

k?><gd/m for the resonant modes. In E4) we presented
0, in two equivalent forms: first in terms of the physical
parameterg), ®, and x, and second in terms of the param-
etersq andk. Combining Eqs(74) and (53) for the phases
0, and ¢, we can find howé,— ¢, depends ork. The
leading term inf,— ¢, for large values ofg is the term
2g®/m=4./q which does not depend ok. Substituting
0— ¢\ into Eq.(73) we get the equation for the width of the
resonance explicitly in terms & for a given parameteq.
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analytical — _|
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FIG. 9. The characteristic exponenj, of the Mathieu equation
(30) as a function ofc’=k?/kZ, for q=3272. The dotted curve is
obtained from a numerical solution. Two instability bands are

Equation (73) transparently shows the presence of a seshown. The solid curve for these instability bands was derived ana-

guence of stability/instability bands as a functionkofTypi-
cal half-width of a resonance bandké~0.1k2 . Substitut-
ing 6,— ¢, into Eq. (72), we find the strength of the
resonance as a function &f The effect of amplification is
not a monotonic function of. The strongest amplification is
realized for discrete values of the parameter.
q=(nw/4)?, wheren is an integer. For this case, has a
maximum atk=0. We can illustrate our results graphically
for this case, since the function &y 1+i«?)/2] involved
in the expression fop, (53) has a particularly simple form
for k?<1:

~—0.982°.

argl’ 1+ (75)

Then we have
2
8\qm?

The functionu, derived with the formulag72) and (76) is
plotted in Fig. 9 forq=(64w/4)?. We also plotu, derived
numerically from the Mathieu equatiof830). We conclude

b= e~4a+

(Inq+9.474. (76)

lytically with Egs. (72) and (76) where the simple approximation
(75) was used. The numerical and analytical results are in a perfect
agreement for the first band where the approximafits) is accu-
rate. By improving expansiof¥5), one can reach similar agreement
for the higher bands as well.

Surprisingly, the most interesting case when the param-
eterq is large and time-varying can also be treated analyti-
cally by the method of successive parabolic scatterings. In-
deed, the matrix mapping for the} and g} developed in
subsections B and C is also valid in the case of an expanding
universe. Let us consider the phase accumulating between
two successive zeros of the inflaton field:

. t'+
o= f " dtykTat+ g2
t

i

2gd k% gd
~ 2 =+ 4in2+1
m 2 Mk
_gMp 2
~5m] +O(k?), (77)

where we use Ed4) for the amplitude of oscillationsp, as

that the predictions of the analytic theory developed here foa function of the number of oscillationisl~2j. If the initial

the Mathieu equation with largg are rather accurate.

E. Stochastic resonance in an expanding universe

Let us consider the creation of particles by harmonic

oscillations of the inflaton field in an expanding universe.
Because of the expansion of the universe, there are few com-

plications in Eq.(21) for the modesy, in an expanding uni-

value gM,/10m~ /gy is large, then variation of the phase
56} between successive scatterings due tojtdependence

is 56 =gMp/20mj2, or in terms of the number of oscilla-
tions

gM, g

verse in comparison with the Mathieu equation. The effect of

the term Hy can be eliminated by usin¥,=a%*?y,; see
Eq. (38). The redshift of momentk— k/a(t) should be

The crucial observation is the following: for large initial val-
ues ofq, the phase variatio@6, is much larger thanr for

taken into account, especially at the latest stages. The mogfl relevantk. Therefore, all the phase# in Egs.(48) and
|mp02rta£1t change '52 the tllme dependence of the parametgss) in this case can be considered to be random numbers.
q=g*®%4m?: gt~ ?«N~*. For the broad resonance case For givenq, the phases are random for the first

whereqg> 1, this parameter significantly varies within a few

inflaton oscillations; hence, the concept of the static stability-
instability chart of the Mathieu equation cannot be utilized in

this important case.

1/4

q

Nstocr™ (79

y
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oscillations. For example, fay,=10° the phases are random

for the first dozen oscillations, and fop=10°, neglecting

back reaction effects, the phases would be random for the
first hundred oscillations. During this time each mode expe-
riences chaotic behavior in the standard terms of the theon
of chaotic system$40]; a small change in the values of
parameters and/or initial conditions can lead to large change Hi
in the final results.

We will show in Sec. IX B that the back reaction of cre-
ated particles leads to an exponentially rapid decreasg of
down to g~1/4 at the last moments of preheating. This
means that the parametgiin this regime remains very large
and phases remain random until the very last stages of pre
heating. _ K

The stochastic character of the phasés, significantly FIG. 10. The characteristic exponen of the mode Eq(38) in
simplifies the analysis of the matrix equatié#8). Indeed,  an expanding universe as a functiorffor the initial value of the
since there is no memory of the phases, each mapping can barameterq=(32m)?~10*, obtained from a numerical solution.
considered as independent of the previous ones. The curve is obtained at the time after the first 5 oscillations, which

As we see in Eq(58), the number of created particles corresponds tquj with j=10. The envelope of the curve is ob-
depends on the phasé= ¢+ 26, +args—arge,. In  tainaed from Eq(81) by taking there sifi=+1. We see that there is
principle, from the matrix equatiof48) one can derive a a complete agreement between the analytical prediction of the am-
series of equations which allow one to express the phasegitude of uy [Eqg. (81)] and the results of the numerical investiga-
arg8,, argy,, and eventuallyd,,; through the random phase tion. Contrary to the static case of Fig. 9, the resonance is much
9{(_ broader, there are no distinguished stability/instability bands, and

For qualitative analysis we simply assume tifg} is a for certain values of momenta the functips, is negative. During
random phase. As a result the number of partia’l«ig%l the stochastic resonance regime, this function changes dramatically
obeys the recu.rsion equation with every half period of the inflaton oscillations. Comparison of

Figs. 9 and 10 shows that it is incorrect to use the structure of the
resonance bands of the static Mathieu equation for investigation of

i+l kil A (w2 ] A the stage of stochastic resonance, unless one is only looking for a
N ~~(1+2e" " —2sind e ivli+e ™i)n i80) very rough estimate of.

space-timg29] cannot be easily generalized to the case of an
where¥ is a random phase in the interval (6:2, and 2 is expanding universe, where the broad resonance is stochastic
' i

slowly changing withj as «?=k*a?gmdoj =13, and much wgier. i< al able:
Equation(80) defines the number of particles at an arbi- Second, the exponepiy is also a random variable:

trary moment as a function of the random phase. Therefore, ) )

n is a random variable which can either increase or decreaseul=-—In(1+2e~ -2 sin§ e (™25 \1+e ™).

depending on the realization of the phase. Qualitatively, each 2m 81)

mapping corresponds to one of the two possibilities depicted

in Fig. 8. Therefore, the whole process of particle creation isrhe functional form ofiy

the superposition of elementary processes whgijamps up

or down. This explains the random behaviomgfin Fig. 5.

for stochastic resonance is differ-
ent from that for broad parametric resonance. It changes with
- - b J- 2 every half period of the inflaton oscillations. An example of
On average the number of particles is amplified with time, | caiculated at intermediate stage of stochastic resonance

i.e., n increases more often than it decreases. (for j=10 with the initial value of the parametgr=10%) is
Stochastic resonance is different in many aspects from thﬁlotted in Fig. 10.

usua_l broad_ parametri_c resonance_of the Mat_hieu e_quation, Equation(81) implies that form«?<1 the value of,u{( is
considered in the previous subsection. Let us investigate the .. . . -
basic features of the stochastic resonance. First, the structp@Stive (|.e_., the number of particlegrows fo_r wl4<0
of Eq. (80) does not imply the existence of separate stabilityS?’WM' This occurs for one quarter of all p9§5'b'e values of
or instability bands. Indeed, the loss of the phase interferencé in the range of- w< <. Therefore, positive and nega-

is related to any within the broad intervak<k, , where tive occurrences of, for k<1/\w appear in the proportion
the coefficients of the mappin(B0) are not exponentially 3:1, so that the probability for the number of particles to
suppressed. Therefore, as one can see by comparison of Figiscrease is three times higher than the probability of its de-
9 and 10, the stochastic resonance is significantly broadereasing; see Sec. VI. Computer simulations of this process
(almost by an order of magnitugdéhan each of the stability confirm this result. However, there will be also a “natural
zones of the Mathieu equationk~k, . It makes stochastic selection effect”: among all modeg, there will be some
resonance much more stable with respect to possible mechaodes for which positive occurrences af appear more
nisms which, in principle, could terminate parametric reso-often than in the proportion 3:1, and these modes will give
nance. For instance, the conclusion thatgRe?y? interac-  the dominant contribution to the total number of produced
tion can terminate broad parametric resonance in Minkowskparticles. The typical mean value of the characteristic expo-
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nent isu~0.13, but theactual number is very sensitive to occurs due to interaction gf particles with the oscillating
even a very small change of parameters; see the table in Sdield ¢(t). One can visualize this process as scattering of
VI. Based on the central limit theorem, we expect that theparticles on the oscillating fielgh(t). In each act of interac-
statistics of the random variabfg obey the log-normal dis- tion, eachy particle takes onep particle away from the
tribution in the regime of the stochastic resonance. homogeneous oscillating field(t). When many¢ particles
From Eq.(81) one could expect that the suppression ofare produced, they may change the effective mass of the field
particle production occurs not ak®>m !, but at k>  y, makingy particles so heavy that they no longer can be
>27~ 1. However, the situation is more complicated. As produced. Also, scattering, when it occurs for a sufficiently
soon as the second term under the logarithm becomes smalhng time, can destroy the oscillating fieit(t) by decom-
the probability for the number of particles to increase be-osing it into separateb particles.
comes equal to the probability of its decreasing, so the pro- In this section we will derive the general set of equations
cess of particle production becomes much less efficient.  which describe the self-consistent dynamics of the classical
The stochastic resonance occurs g, oscillations of  homogeneous inflaton field(t), as well as the fluctuations
the inflaton field defined by Eq79). When the parameter  of the fieldsy and ¢. We will then discuss different feed-
decreases because of the expansion of the universe and limcks of the amplified fluctuations. In particular, we will
comes smaller than order 1, which happens No¥ Ng;och, check the energy balance between the background homoge-
the resonance becomes very similar to the usual parametriteous inflaton fieldg(t), the fluctuationsy(t,x), and the
resonance witlg<1. However, at some stage it may becomefluctuationse(t,x).
necessary to correct this description by taking into account

back reaction of the created particles. A. Self-consistent evolution of¢p and x fields

We can describe all of these effects within a full set of
self-consistent equations. The Friedmann equation for a uni-
verse containing classical field(t) and particlesy and ¢

Until now we have treated the fiejg as a test field in the With densitiesp, andp, is
presence of the background fiel@$t) anda(t) which have 81 1
independent dynamics. We found the effect of the resonant 3H2=—7T Zh24 Zmldlt o + 82
amplification of y,(t), which corresponds to the exponen- MS 2<ZS 2™ PEPxt Py ®2
tially fast creation ofn, particles. As we have seen, the
resonance in an expanding universe in the beginning may %here and o are the enerav densities ofparticles and
very broad, then it becomes narrow, and then eventually dis(—l) partﬁ:)l(es rggpectively o ies gipart
appears. The mode Eq(38) for X,(t)=a>*t)x(t) now should

Because of the exponential instability of thefield, we t ibing th i t
expect its back reaction on the background dynamics t(;‘;lnucc?iii;ns'.arm describing the coupling betwegrand ¢

gradually accumulate until it affects the process of resonance

itself. Therefore the development of resonance is divided

into two stages. At the first stage of the process, the back X, (1) +

reaction of the created particles can be neglected. As we will

see, this stage is in fact rather long, and if the initial value of

q was small enoughoy=<10®) preheating may end before

the back reaction becomes importdsee alsd28]). How- = —f dt" X (t)IT,(t,t";k), (83

ever, if qo is greater than about $0then at some moment

the description of the parametric resonance changes. We en- o ) sy

ter the second stage of preheating where the back reactigfhere the polarization operator for the field=a"""X, is

should be taken into account. In what follows we will treat IT, (t,t'; k)= [d3x&**DIT (t,t’;x—x").

the first and second stages of preheating separately. We will also consider quantum fluctuations of the inflaton
There are several ways in which back reaction can altefield d¢(t,x)= ¢(t,x)— ¢(t) which can exist on top of the

the process. First of all, interaction with particles created byhomogeneous inflaton condensagi¢t). The mode equation

parametric resonance may change the effective masses of &ir on(t)=a%25¢,(t) is

particles and the frequency of oscillation of the inflaton field.

VIIl. RESONANCE, BACK REACTION,
AND RESCATTERING

k2
P +g2d? sirfmt| X,(t)

Also, scattering of the particles off each other and their in- k2
teraction with the oscillating fieleb(t) (we will vaguely call e+ 2+ m? | oy(t)=— f dt’ @ (t")IT4(t,t" k),
both processes ‘“rescattering’imay lead to additional par- (84)

ticle production and to the removal of previously produced
particles from the resonance.

In our model there will be two especially important ef-
fects. First,y particles may change the frequeneyof os-
cillations of the field¢(t). This may increase the value of
in the mode equation, which can make the resonance narrow _
and eventually shut it down. d(t)+3H () + m?p(t) = —Iy(t)= —Hﬁ(t)d:(t).

The second effect is the production ¢fparticles, which (85

where IT 4(t,t";k) is a corresponding polarization operator
for the field 8¢, (t)=a 32, (t). The equation for the homo-
geneous condensaii(t) is
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are several different approximations which can be used to
X X solve these equations in the context of preheating. We will
describe them in this section.

B. Hartree approximation

The simplest way to take into account the back reaction of
the amplified quantum fluctuationg is to use the Hartree
approximation,

4(t) PP

(a) (b) $+3H<.;S+m2¢)+gz<x2>¢:01 (86)

FIG. 11. The one-loop diagrams for the contributionyopar- where the vacuum expectation value fof is

ticles to the effective action of the field (a) and to its derivative 1
I" 4(t) (b). The thick line corresponds to the Green function of the <X2>: s
particles in the external fielgh(t). 27 a

fomdk RIX()]2 (87

HereT ,(t) is the tadpole diagram, representing the deriva-Quantum effects contribute to the effective masg of the

. 2 _ 2 2/,2
tive of the effective action of the fielg (not the decay raje mflat_on f!eld as foIIowsmd,—m +g {x*). The Har.tree ap-
The one-loop diagram representifigt) is shown in Fig. proximation corresponds to the first of the two diagrams of
11. The thick line corresponds to the exact solution of the 19- _1_2'” h f . d
classical equation of motion of the field in the external Initially, we have no fluctuations,(t), an2 We can use
field ¢. Eq. (38) for the modesX,.. One can expregs”) in terms of

To get an expression for the polarization operator of théN€ @x(t) andBi(t) coefficients describing the resonance:
field ¢, one should differentiate the effective action twice

with respect to the scalar fielép. The result can be repre- (X = 12 - w%

sented as a sum of two polarization operators shown in Fig. 2ma’)o o

12. H; can be identified with the contribution of the fluctua- ‘

tions of the fieldy to the mass squared of the field: X |3k|2+ Re| oy B exp( —2iJ wdt) )
Am?=g*(x?). Note that it is directly related tal,: 0

Fy= —I1%¢. The polarization operatdﬁfl, has a more com- (89)
plicated structure; it contains an external scalar fig(d) in

each of its vertices due to the interactighd¢ ¢(t) x2. This formal expression may need to be renormalized. The

The self-consistent dynamics described by E§8—(85)  WKB expansion of the solution of Eq&43) provides a natu-
is rather complicated and not very well investigated. Thereal scheme of regularizatigr87]. However, in our case the
coefficientsa, and By of the Bogoliubov transformation ap-
X pear due to particle productigas opposed to vacuum polar-
ization), so the integral in Eq(88) is finite and does not
require further regularization.
Let us estimatéx?) from Eq.(88) using the results of the
. 56 5o previous section. For the resonant creatiory gfarticles we
Iy > > have |B?’=n=3e?*M  Re[ayBf exp(—2ifwdt)]
() ~| By 2cos(Ffwdt—arga + argdy). For w~go¢(t)
=gdsinmt the phase in this expression is equal to
(2g®/m)cosmt plus a small correctio®(«?). Due to this

> small correction, the term @@P/m)cosmt acquires a nu-
merical factorC<1 after the integratiorf d°k:
2 8¢ 8¢
¢ o) 1+C cog2g®cosnt/m) [=dk K ©9)
X))~ 2.3 N.
T l » l T 2m7a 0
o(t) a(t) In the broad resonance case whgr ¢, (i.e., for most of
) the time, one hak/a<ge, o~g|4(t)|, and, therefore,
. o ! 2gdcoant) n
FIG. 12. Two diagrams for the polarization operator of the field (x®)~| 1+C cos X __ (90)
¢. Thin and thick lines represent the fieldsand y, respectively. 9| ¢(t)|

The first diagram corresponds to the Hartree approximation which . ] ] .
takes into account the contribution 6%). The contributions of This means in particular that in the broad resonance re-

these two diagrams to the effective massdpfparticles can be gime the effective mass squared of the background #¢t)l
comparable to each other. in the Hartree approximation
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) ) 29D an, Herem,, is the value of the effective mass of the fieldat
m;=m +(1+C c05<7005mt)>m, (9D the moment whenp(t)=® (the oscillations of( x?) being
ignored. Therefore to estimate the change of the frequency
oscillates with two frequencies. One is the frequency of 0s®f oscillgtionf of t2he szcalglr fielg one can use the standard
cillation of |¢(t)|, which is equal to £n. In addition, when ~ €XPressiomy=m-+g=(x*) f20r the effective mass squared
#(1)=®, the effective mass squaredf/, oscillates with a  ©f the field ¢, where by(x“) one should understand its

very high frequency-2g®>m. The amplitudes of both os- Smallestvalue per period, which appears f@(t) =®. This
cillations are as large as the maximal valuegd{x2). One implies that the frequency of oscillations of the inflaton field

can easily identify both types of oscillations ¢f2) in the does not change until the number pfparticles grows to

numerical simulations of Khlebnikov and Tkach80]. m2d  2m3
The resulting equation for the field(t) looks as follows: n,= =— q*?. (95)
g g
b+3Hp+ m2¢+an 1+C COSZQLM i:o_ This is a very important criterion which defines the duration
m || of the first stage of preheating where the back reaction of the

created particles can be neglected.

. . . . , For future reference we include here expressions for the
The last term in this equation oscillates with a frequency, P

. . energy density and pressure of the nonrelativigtjgarticles.
~2g®. In the broad resonance regime witfb>m the 9y y P R

high-frequency oscillation of this term does not much affectThe contribution ofy particles to the energy densip(¢)

the evolution of the fieldb(t) because the overall sign of the of the oscillating fields in terms ofay(t) and By(t) is given
term C cos(3dcosnt'm) changes many times during each

oscillation of the field ¢. One may wonder, however, 1 w

whether these high-frequency oscillations may lead to a co- Py (D)= mf dk Kw|By? (96)
pious production ofp particles. A preliminary investigation 0
of this issue shows that the quasiperiodic change of the Ia%herem 2=n,. This expression does not have any high-
term in Eq.(92) does not lead to parametric resonance, butzt\ k cli(-l i ?1 H h tound for th >|/_| tg
nonresonant particle production is possible because the efr_equenzclt)z/ m02 u 2 |<E))ns_w '(;] we have OL;n (?]r e.” arree
fective mass changes in a very nonadiabatic way.I(:j:,r;?1 (gf' |3<X >ﬂf’? ' fi lIJc:mght € main partc;] eac tosfr'] at'?r?
dn/dt~gmd ~ k2 >me. of the field ¢, the field y has mass much greater than the

In the first approximation one may neglect this effect andraigT¢(ct);| ;hned integration ~k, ,  which - means  that
write Eq.(92) as =g '

gl (= B
$+3Hp+ m2¢+an%=o. 93) P d)= mfo dkin=g| In, 97

of particle masses?

In the previous subsection we investigated the change of
frequency of oscillations of the classical background field
¢(1) due to its interaction witly particles; see Eq$93) and
(94). What about the spectra of perturbatiafs? In order to
answer this question one should calculate both diagrams
shown in Fig. 12. The first of these diagrams, Fig(al2
gives the same contributiol 3 =g?(x?) as the one which
we already calculated when we studied oscillations of the
my~m,. (94) field ¢(t). As we have seen, in the situation where fluctua-

tions y(t) are amplified by resonance, even the calculation

o ) . The contribution ofy particles to pressure in terms of
Even in this simplified form the last term of this equation a,(t) and B,(t) is given by
looks rather unusual. It is not proportionald¢ which would
be the case ify particles gave ap-independent contribution 1 o t
to the effective mass of the field. In our case this contri- P,(¢)=— mf dkkCw Re( a B exp( —ZiJ' wdt))
bution is inversely proportional thp|. As a result, the field 0 0
¢ behaves as if it were oscillating in the effective potential 2 2gPcoant
an,|¢|. +W|Bk|2}:_g|¢|nxc cos— ——- (99)

To estimate the change in the frequency of oscillations of
the field ¢ due to th'e terny nX(¢/|¢|) in Eq. (93), one can The last equality holds in the nonrelativistic limit, for
neglect the term B ¢ in the equation for the homogeneous ¢s . . Average pressure in this regime is equal to zero, as
field ¢, becauseH<m at the end of the first stage of pre- it should be for nonrelativistic particles.
heating, when the tergn, (¢/| ¢|) becomes important. Let
us, find Wh?n the frequency increase due t? .the Interactlorb Is the Hartree approximation sufficient for the calculation
with y particles becomes greater than the initial frequency
m. In order to do this one should solve the equation
b= —gn, in the interval 6<¢$<®. The time during which
the field ¢ falls down from® to O is At=y2®/gn,. This
time corresponds to one quarter of a period of an oscillation
This gives the following expression for the frequency of os-
cillations of the field¢ in the regime when it is much greater
than its bare mass squared:

™

w(b:m
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of this simple diagram is rather nontrivial and leads to anHerem, =g¢(t), andk is a physical momentum. The first
unusual resul{92). The calculation of the polarization op- term in this equation is the standard Green function for quan-
eratorII2, Fig. 12b), is much more involved. Similar dia- tum fluctuations in the vacuum. The second term is propor-
grams have been ignored in all previous papers on prehedional to the occupation numbeg=|3,/? of the x particles.
ing. Let us try to understand, however, whetlﬁbi can be The second part of the full Green function containing the
neglected as compared wiIﬂi;. A positive answer to this modulatione'“*t") does not have a simple interpretation in
question would imply that the Hartree approximation is suf-the momentum representation. Omitting this part does not
ficient not only for the investigation of the oscillations of the affect the order-of-magnitude estimate of the polarization op-
field ¢(t), but also for finding the spectrum of perturbations erator. This can be most easily seen for the diagram Fig.
of the field ¢. 12(a), where the calculations are much simpler. Indeed, with
Usually when one calculates similar diagrams at highthe complete Green functiof®9) one can immediately re-
temperature, the polarization operatb; in the high-  produce the resul92) for the diagram in Fig. 1@). Mean-
temperature limit is proportional t82, whereasl1} is less ~ While, if one uses Eq(100), then in the largen, limit one
divergent at large momenta and therefore grows onlif.as 9ets the first, nonoscillating term in the brackets of &4):
Therefore in the high-temperature approximation, the first 5
diagram, which corresponds to the Hartree approximation, 19 gny (101)
gives the leading contribution. In our case this issue should ¢ (2m)* [p(t)]
be reconsidered because the leading contribution to the dia-
grams is given by particles with large occupation numbersThe part of the Green function containing the modulation
and relatively small momenta. el () in this case gives us the secofrepidly oscillating
The back reaction of created particles becomes essentigdrm in Eq.(92).
only at later stages of reheating, when, as we will see shortly, Thys, whereas in the first approximation one can interpret
H<m. Therefore at that stage one can neglect the expansiafie growing modes of the fielg during parametric reso-
of the universe when calculating polarization operators, angance as normal particles on the mass shell with the standard
it is more convenient to perform all calculations in terms of Green function(100), this interpretation in general is not
the usual, physicafrather than comovingmomentak and  quite adequate and may lead to the loss of some terms such
the modesy(t). Therefore throughout the rest of the paperas the oscillating term discussed above. Still we correctly
we will use physical momentg, p, etc. During the last reproduced the most important part of the polarization opera-
stages of reheating they remain almost constant, but in ordeg, 72 .
to relate them to the original physical m.omenta for each | gt ys try to estimate the polarization operafbﬁ using
mode x\ one should remember that physical momenta argy,, simple Green functiofL00) for | (t)|~®. The general

- -1
redshifted as (2t). . structure of the polarization operator is given by
To calculatelly one needs to know the Green function of

the field y in an external fieldp(t), which is given by g*®?

5(k)~ —i Wj d*p G(p)G(p—k=q). (102

f d*p 2w8(p?—mi)n,=

6,00x)= | &K T O, (99
The sign ofg depends on whether the external fiekt)
brings the momenturgy=m,q=0 to the two vertices of the
where T stands for time ordering. The calculation of the polarization operator or takes this momentum away.
diagram forlI1?,, Fig. 12b), using this Green function for the It is not our purpose now to perform a complete calcula-
internal lines of the fieldy is rather tedious. Therefore, we tion oin in this paper because we do not need to know the
will make certain simplifications. Consider the broad reso-exact spectrum of perturbatiodgh. Our main goal here is to
hance regimej>1 at a time whenp(t)> ¢, . Atthis stage  find out whether or notl may contain terms comparable to
there is no particle production, and the adiabatic f¢#®)  the Hartree operatdil’,. And indeed, if one calculates, for
can be used for the eigenfunctiof(t). Consider a time  eyample, the diagram where the external figid) brings a
interval At<m™?! near the time when the inflaton fielt(t) momentumgy=m,q=0 to the first vertex and takes it away
reaches its maximunip. During this short interval, one can from the second vertex, one findignoring factors of order
neglect the expansion of the universe and the change of th§ that this contribution to the real part oﬂi for

field 4(t), i.e., one may take(t)~®. The Green function | _m k=0 in the limit n,>1 has the same structure as
in the space-time representation consists of two parts. Thﬁl : P

first part is similar to the standard Green function in
Minkowski space in the fixed background fiedd The sec-

ond part contains the high frequency modulatgfit"), Rell3~
Both terms are of the same order. One can show that in this
regime the first term in the expression for the Green function

(99) has a simple form in the momentum representation: Herepy=w= Jp?+g?®%~gd for a typical resonant mode
with g?®2>p2~gmd>m?. Thus, for|¢(t)|~d the sec-

i ond polarization operator of Fig. 12 contains terms of the

G(k)=2—+27-rnkb‘(k2—m2). (100  same order of magnitude as the value of the polarization

k“—m X operator in the Hartree approximation. This result indicates

@ .

(2m)?® Po(Po®—m?) - (1039

2
X
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that one may need to go beyond the Hartree approximation k2 ) 9°o(1)
used in many papers on preheating. okt a7+m )@k: - W
This result looks paradoxical. In particular, one could ar-
gue that the Hartree approximation is closely related to the 30, g°
1/N approximation, which is expected to give exact results in Xf 7K X Xier = (2ma)3
the limit N—oo. Indeed, instead of a single field one can
takeN fields x; with the interaction §%/2N) $?x?. The Har- Xf 43Kk’ dBK” @y arr XierXer
tree diagram is proportional ©7, i.e., it survives in the limit
N—o , whereas the expression for the polarization operator (109

Hf/, is proportional tog*/N. That is why usually at larg&l

one can neglect contributions liké;, as compared withl.  The first term in the right-hand side of this equation de-
Indeed, this would be true in our case as well if the figld g¢ripes rescattering of particles on the classical field(t),
had a large¢-independent mass. But in the theory we arewhich leads tog-particle production. The second term de-
discussing now its mass squared g/(N) #°. As we have  scribes scattering ob particles andy particles. Corrections
seen, when one calculatEB‘; this mass squared appears into the effective mass of the modeg appear as a result of
the denominator. As a result, the factf/N in front of the  the iterative solution of the system of equations which we
diagram becomeg?, so that this diagram also survives in the now present.
limit N—o and has the same order of magnitude as the The equation for the oscillating background fiefet)
Hartree diagram in the BV approximation. This means, in l00ks as follows:
particular, that without a complete calculation Hffb one
cannot be sure that theN/approximation gives a correct . ) ) 9’
spectrum of particles in the limX—c when applied to the ¢+3Hp+mM p=— 2
theory of preheating.

To avoid misunderstandings we should reiterate that this 31u2 g
problem appears in the calculations of the effective masses Xf d°k’ X — 513,912

. ; . . (2m)°a

of the ¢ patrticles but not in the calculation of corrections to
the equation of motion of the background fieldt), which
was our main goal in Sec. VIILI.

2

X f dsk, dak”(PkH_k!Xk!XkH .

(106)

D. Classical approximation to the self-consistent dynamics The first term on the right-hand side of this equation is pro-
_ _ portional to the polarization operatﬁitlb, which is shown in
Fluctuations of Bose fields generated from vacuum by arFig. 12a). The second term describes rescattering, which is
external field in the large occupation number limit can bere|ated to the imaginary part of the polarization operﬂén
considered as classical waves with Gaussian statistics; segig. 12b). Neglecting this term, one reproduces E§6)
e.g., [41]. Therefore in the first approximation all fields  with the term containing d®k|X,|? playing the role of the
d¢ can be treated as interacting classical waves. This makdsduced mass. Thus the classical approximation reproduces
it possible to study preheating by investigating a system ofhe Hartree approximation, but it also takes into account ef-
nonlinear classical equations or by lattice numerical simulafects related to rescattering.
tions of the interacting classical scalar fie[dg},28—30Q. In the beginning one can neglegi(t) and the corre-
The Fourier decomposition of the Klein-Gordon equationssponding integral terms in E¢104). Later, the fluctuations
of the interacting fields can be reduced to mode equationXk(t) are amplified by the resonance and give risepf6t)

The mode equation faX,=a%?y, is fluctuations via the integral terms in E¢LO5. When the
amplitude of fluctuationg,(t) grows significantly, they be-
gin to contribute to the integral terms of Eq.04). We will

show (see Sec. X Bthat the amplitudep,(t) grows with

2 2
X+ k_2 +gz¢2(t))xk= _% f[ime ase?+mt, Thgrefore the nuTbr?tr qf particles correspond-
a (2m)°a ing to 8¢ fluctuations grows ae™*™, i.e., much faster than
q9° n,. The interaction terms in Eq$104) and (105 can be
« f A3k Xy o — (27r—a)3 interpreted as scattering gf particles on the inflaton field.

Because of the very fast generation 6& fluctuations,
| 5¢|?xe*, the process of rescattering can be very impor-
X f A3k’ A3K" Xy k7 4k P Pk - tant. However, it is not so easy to evaluate its full signifi-
cance for the efficiency of the resonance. For example, if the
(109 particles ¢ produced during rescattering have small mo-
mentak, they cannot be distinguished from the homoge-
neous oscillating scalar field, and therefore they do not make
The mode equation fobg,(t)=a?p,(t) is any difference to the development of the resonance, see the
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discussion of this issue in Sec. X. Therefore we need tdhis expression decreases as abily/3mt. Therefore, the

know not only how many¢ particles are produced, but also responance width decreases kast™ %2 whereas redshift of

whether they are “hard” particles with large momenta or the momenta of previously produced particles occurs as
“soft” particles with small momenta. We will return to this 3-1—t=23 j e somewnhat fastefin terms of comoving mo-

question in Sec. X. mentak, the resonance width grows as=a(t)\gmd/2
«t®] This means that those modes which have been ampli-
IX. TWO STAGES OF PREHEATING, RESCATTERING fied at the first stages of the process continue to be amplified
BEING NEGLECTED later on. There are modes which were outside of the reso-

) ) ) ) nance band in the very beginning, but entered the resonance
Previously, we were mainly following the evolution of p5nq |ater. However. after a time (2um) ! the fluctua-
each particular modgy . Now we will study their integral  tions which have been amplified from the very beginning
effect in an expanding universe. _ will be exponentially larger than the “newcomers.” There-
As we have found in the previous section, the developfgre the modes which do not enter the resonance band from
ment of broad pgrametnc resoznance can be dl\{lded into tWehe beginning typically give a subdominant contribution to
stages. In the first stage,<m“®/g, back reaction of the the net effect.

particlesy can be neglected, and the frequency of oscilla-  Thys, with reasonably good accuracy, during the first

tions of the field¢ is determined by its mass. (We will  stage of preheating one may consider only those fluctuations
argue later that at this stage their scattering also does not legghich have been amplified from the very beginnirithis is
to any important effects.In the second stage,>m?®/g,  important because it means that in all integrals one should

and the frequency of oscillations of the fiet becomes consider only momenta which initially, whea(ty)=1,
determined not by its bare mass, but by its interaction with ¢ (t)=®,, were in the interval

particles. Now we will study the first and second stage of
broad parametric resonance. k(to) =<K, (to)2=\gmdy2=mat¥y2, (108

We begin with the first stage when the back reaction of
created particles can be neglected. Then we consider the senhereq0=gzd>§/4m2.
ond stage where back reaction is important assuming a cer- The most important element of our calculations is the ex-
tain hierarchy of the feedback effects: effective mass of thgponentially growing occupation number of particles with
inflaton is changed first, and rescattering may become impok<k,,: n(t)=e?*™. Hereu is an effective index which de-
tant afterwards. In this section we will neglect rescatteringscribes an average rate of growth for modes wkithk, ; see
In the next section we will discuss rescattering and the vaSec. VII C. In our modelu depends org, but not very

lidity of the assumption mentioned above. strongly; see the table in Sec. VI. Typically it is in the range
0.1-0.2. For definiteness, in our estimates we will use
A. The first stage of preheating: no back reaction ©=0.13 which we have found numerically for a certain
and no rescattering range of values of the coupling constantsee the table in

Sec. VI. As we will see, in the context of our approach an

In the first stage of preheating one can ignore the back o in our estimate of., say of 10%, does not create an
reaction of created particles on the frequency of Osc'llat'on%xponentially large error in the final resultontrary to the

of the field ¢(t). As we have found in Sec. IX A, this stage  omark of [17)); it only leads to an error of 10% in the

ends at the momert} when calculation of the duration of the first stage of preheating.
m2d(t,) Our final results will be even less sensitive to the value of the
n(ty)= - (1070  subexponential factor in E¢64).
9 Substituting Eq(108) into Eq. (64), we find
In the next section we will show that the effects related to n(t)= (gmd )32 Q2um(t—to) (109
rescattering also do not alter the development of the reso- X 647233 m '

nance during this stage. In this section we will estimate the

duration of the first stage,, the number of inflaton oscilla- wheret, is the beginning of the inflaton oscillation. The

tions N, at the timet=t;, the number of created particles convention we used in Sec. VI is thiat= 7r/2m, which gives
n,(t1), the energy density of these particleg(t;) and the

value of (x?(t;)). We will use symbolspb, g, andk, with-
out any indices for the runningime-dependentvalues of  sthe total duration of the first stage of preheating in our model
the amplitude of the fieldp(t), of the g factor, and of ypically is about 18m=*. If one compares the redshifted value
vgmd(t), whereas, for examplej, will correspond to the i (t,)/a(t) of the physical momentum which was equal to
value ofq at the beginning of preheating, agg will corre- . (t,)~\gmd, at the beginning of preheating, and the running
spond to its value in the end of the first stage of preheatingyajue ofk, (t)~gmd(t), one finds out that in the beginning these
One can use Eq64) to estimaten,. First one should two quantities coincide, whereas at the end of the first stage of
determine which fluctuationg, are amplified during the en- preheating the running value kf is greater than the redshifted one
tire period of the resonance. The fluctuations amplified byby only a factor~2. Therefore at the end of the first stage and at
the broad resonance have physical momentanhe beginning of the second stage of preheating instead of calculat-
k=k, /2~ \gm®/2; see Eq(34). [More precisely, one may ing the redshifted value df, (t,)/2 one may simply use the condi-
expectk=<k, /\/mr, see Eq.(56).] Then the amplitudab in  tion k=<k, (t)/4 for the growing modes.
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® =M /5 andgy=10"?. Our choice is also very close to 487°n,
the convention of Ref[30]. (This particular choice is not nkz—kr- (119
going to be important because the total duration of the pro- *
cess is much greater thag) With this choice ofto we have The occupation numbers gf particlesn,(t;) by the end
a(t)=(2mt/m)?3 Fort>t, one ha$ of that stage can be estimated ggt;)=3x 10°g~2q; /*;
3/ see Egs(61) and(111).
n,(t)= 104% 2umt. (110 Using the results of this section, for different values of the
X (mt)52, 12 coupling constang one can estimate the initial valug of

the parameteq, its valueq, at the end of the first stage of
Now we have to substitute EqL10 and®(t)=M/3mt  preheating, the valué®,, and the number of oscillatiors;
into Eq. (107). The result can be transformed into an equa-which the field¢p makes from the end of inflation to the end

tion for ty: of the first stage. In the table below we give somewhat
rounded numbers:
1 10fm(mty)3 g q q ®,/M N
ti=7—In 5( iy (111) ° ! i !
wm-og°M, 1073 10* 3 3.5x10°2 15
, , . 10?2 1¢° 550 5x10°3 11
An approximate solution of Eq(11l) for w=0.13 is 10-1 108 10° 7%10-3 8

t;=(1/4m)In(10m/g°M ) [1]. As we will see soon, this

is a good estimate not only for the duration of the first stage

of preheating, but for the duration of the whole process, be- 212 o 2 .2 5

cause the second stage of preheating typically is rather short. m (Dl_ Bu"m™My In—2 10"m
For a realistic valuen=10"®M, in chaotic inflation in 2 9 g°M

the theorym?¢2/2, our estimate givef9]

The energy density at the end of the first stage is given by

(116
p

It is worth comparing the frequency of the inflaton oscilla-

5 15 tions m with the Hubble parameter at that time:

ty=——In—. (112
Apm-g 8u _ 10%m

?In g5|\/|

20
H(t1)~m\/w/3M—12m (117
p

For instance, foru=0.13 andg=0.1 one hag;=50m*;
for g=10"2 one hast;=70m %; for g=10"°% one has
t,=90m !, etc. For instance, fop=0.13,g=10"2, m=10 °M,, one has

The value of the fieldb,=®d(t,) at the end of this first
stage is given by

P

H(t;)~10 2m. (118

5 Thus, at the last stages of preheatitigpugh not at the be-
B M, :4MMp|n,1101 m (113 ginning one can, in the first approximation, neglect the ex-
1 3my 3 g°M, pansion of the universe.
P At that time, wheng?( x?)=m?, the total energy density
Another important quantity is the value of the parametefon the right-hand side of E¢82)] becomes approximately

q=g2®d2/4m? at the end of the first stage: equally distributezd 2between the _interaction energy
V,(¢)=gP.n,=m<d] and the potential energy density
o 9P1 Zg,uMpl _,10%m m?®2/2 of the field¢. The kinetic energy of particles can
Tom am Mg A be  estimated  as  (VR=Ki(x)=gPim(x?)
" =] (m/gd,)=m*dig; 2.

To find the typical occupation numbers at the end of the If preheating does not enq wif[h the end of the_ first stage,
first stage of reheating, let us remember that!-€- if q,>1/4, then the kinetic energy remains small:
n = (1/27%) K3k n,, and that integration typicall ((Vx)3)=m?*iq; Y<g?®i(x*)=m*®i. However, if at

¥ ks gration typically goes 141 1 1. Hi _
from O to the physical momenturk, /2. This gives an the end of the first stagg, ~ 1, then at that time a consider-
estimate able fraction of the energy of the inflaton field will have been

transformed into the kinetic energy of the particles:
(V)2)=m?®] gy *=m’®1.

“Equation(110) is a starting point for our further estimates. To  Let us find the range of values of the coupling constant
derive this equation we used the theory of successive paraboli®r Which preheating ends during the first stage and for
scatterings. However, the general structure of @40 can be eas- Which investigation of back reaction is not necessary. With-
ily understood even without any use of this theory. As we alreadyout taking account of the back reaction preheating ends at the
mentioned, the value gf can be obtained by solving the Mathieu time t; when gd(t) drops down tom, which gives
equation numerically in an expanding universe; see Sec. VI. Oné&~gM,/3m? (see Sec. V)l Therefore, preheating ends in
can make a simple estimate pfeven without using a computer. the first stage it;<t,, i.e., if
Indeed, we know that the parametgr along the lineA=2q
changes from 0 to 0.281]. An average of these numbers, 0.14,
provides an excellent approximation to the true valug.of

4m 15
gs N InE. (119
P
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For our values of parameters this gives the conditiong=102 this term becomes greater than the tenf?/2 for

g=3x10"% In our convention, this corresponds to an initial ¢~4M,, when the density perturbations determining the

valuegy<10°. structure of our part of the universe were produced. Thus one
In this regime the total number density pfparticles cre- may argue that in models of the type considered almpve
ated during preheating is given by should be smaller than 16. If g belongs to the narrow
4 interval between %10 * and 103, reheating ends soon
m 29uM; after the end of the first stage, and the effects of back reac-
n,=-—exp———, (120

tion are only marginally important. For the description of

preheating in such theories it is sufficient to use the simple
and they fluctuations at the end of this stage are given by estimates obtained in this section.

However, in supersymmetric theories radiative correc-

()= m® ex 2guM, (121) tions from bosons and fermions have a tendency to cancel
X 7= gM, I 3m each other. In such theories the coupling constanan be

much greater than 1G. Therefore, we will continue to con-
Equation (119 implies that forg~3x10"* this quantity sider all possible values of the coupling constgntithout
should coincide with the value Qﬁf} at the end of the first assuming thag<10 3.
stage of preheatingx?) =m?/g®. Thus, forg~3x 10 * one
has B. The second stage of preheating, neglecting rescattering
V(x?)=3x10" GeV. (122 We defined the second stage of preheatingt,, as the
stage when the frequency of inflaton oscillations due to the
The possibility to obtain enormously large fluctuations offeedback of amplifiedy fluctuations is no longem but is
the field x is one of the most remarkable features of preheateetermined by the back reaction pfparticles. In this section
ing. For comparison, if the fielgt were in a state of thermal we will investigate preheating neglecting rescattering. In the
equilibrium, the dispersion of its fluctuations would be givennext section we will discuss the validity of this assumption.
by V(x?)=T/2/3 [42]. Therefore in order to obtain The frequency of the inflaton oscillations during this stage
V(X?)~3x10'® GeV one would need to hav@=10'"  was derived in Sec. VIII B and given by E(P4). Since this
GeV, which is practically impossible in the context of infla- frequency is much greater than the bare ntasthe second
tionary cosmology. Here such fluctuations can be generategtage is much shorter than the first one. Indeed, at this stage
prior to thermalization due to the resonance at the stage afach oscillation takes a time which is much shorter than
preheating. Fluctuationd22) change the effective masses of 2rm~1, whereas the number of particles, as before, grows
particles interacting with the fielg. The simplest way to ase*™*N, whereN is the number of oscillations. Therefore
study this possibility is to add to our model another scalathe number of particles can grow exponentially within a time
field » with a potential describing symmetry breaking, for which is much shorter thal ~1. This implies that one can
example, V(7,x) =\[ (72— 3)?+ 7°x?]. For sufficiently — neglect expansion of the universe and the corresponding de-
small\ this addition does not affect preheating and does no¢rease of the total energy density of matter during the second
change any of our results concernifyg). It is obvious that ~ stage of preheating.
the generation of perturbatiodg?) leads to symmetry res-  Let us consider the inflaton oscillatior(t) during the
toration in this model forny<{x? on a scale up to Second stage. From E(3) in the limit H<m, we have
7o~ 10 GeV[9,10]. Such effects may have important cos-

mological implicationg43]. p+m?p+gn,sgnp=0, (123
Thus, we can distinguish between different scenarios de-
pending on the coupling constagt where sgi@ is =1 depending on the sign of the valug

Forg<3x 10 “ the broad resonance ends during the firstn,(t) is a function of time, the expansion of the universe is
stage. In this case parametric resonance is not efficienteglected, andn2¢<gznxsgr¢. The solution of this equa-
enough to transfer a significant part of the energy of thdion ¢(t) consists of a sequence of segments of parabolas
inflaton field to the energy of particles. The most important with opposite orientation that are symmetric relative totthe
part of the process of preheating in such theories is describetkis and match a$p=0. The equation for the modeg(t)
by the elementary theory of reheatiff§6,8. will contain the square ofy¢(t) instead ofg?®2sir‘mt

Forg~3x10 4, at the end of the first stagg~1/4, and  Thus the behavior of,(t) for ¢(t) determined by Eq(123)
the energy becomes approximately equally distributed beis somewhat different from the behavior gf as described
tween the energy of the oscillating scalar fiefdand the by the Mathieu equation. Nevertheless, this is not a real
energy ofy particles produced by its oscillations. problem here.

For g>3x10"* the broad resonance continues after the Indeed, if one does not take back reaction into account,
end of the first stage. To investigate the further developmerthen, according to our investigation in Sec. VI, the system
of the resonance one should study quantum effects whichpends half of the time in the broad resonance regime, and
could be produced by the fluctuations interacting with the another half of the time in the regime witlp~1, so this
oscillating field ¢(t). regime is very important. However, let us consider the ef-

Before doing so, let us remember that the presence of thiects of back reaction. The parametgs gZCI>2/4m(2ﬁ at the
interactiong®¢?x? typically leads to radiative corrections to second stage can be estimated using the “effective mass”
the effective potential of the typegf#®/327?)In ¢. For  (or, more exactly, the frequency of oscillations of the field
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) mfl,~an/<I>~gz(X2) (94). This gives q~g<I>3/4nX. In order to calculate the duration of the second stage let us
The end of the resonance, as before, occurg-al/4, see note that n,(t;)~n (t;)e*™N2. One can show that
below. The number ofy particles grows exponentially, so nX(tz)/nX(tl):4q}’4. Therefore, the duration of the second
during the previous oscillation one hapg-e*™#/4~1, and  stage is

during the previous oscillatioq was much greater than 1.

Therefore during all the time except the last one or two o0s- 1 14

cillations the parametear was very large, the resonance was No= m'”“ql : (129

very broad, and it could be described by the theory of sto-

chastic resonance. This theory is very robust; it depends onl

on the speed of the fielg near$=0. Thus the difference 1 “one can conclude that the second stage may take from 2
between the Mathieu equation and the equation for th%scillations (for g=10"3) to about 10 oscillations(for
modesy in the field ¢(t) satisfying Eq.(123) in this con- g=10"Y)

text becomes unimportant. . . .
. Numerical estimates ob,~ \(x?), show that it can be
On the other_hand, at the time Whepdecre_zases, thev\).n the range of 18 to 101 GeV. As an example, for
structure of the first resonance band becomes important. We

) ; - . ; g=10"2, which corresponds toqy=1C°, one has
investigated this issue by solving equations for the moges T a6 . )
numerically. We found that if the fieleb(t) obeys Eq(123), 5~ (x*)>=10'° GeV. An interesting feature of EqL27)

the structure of the first resonance band grat small mo- is the inverse dependence ¢fx”), on the value of the

menta is very similar to that of the Mathieu equation. There-coUpllng constant.

R Note that in addition to the high-frequency oscillations
fore, the second stage of preheating in this case ends Whe\r/]vith frequency— g discussed in Sec. VIII B, the amplitude

of fluctuations \/<X2> experiences oscillations with a fre-
~1/4 (124) quency 2n. At the end of the second stage these two fre-

Msing the table of values af; given in the previous subsec-

92(D2 92(1)2 g(I)S

4= 4m$, C49%(x%) 4n, quencies coincide. In all our estimates we calculated the
minimal value of \/(x?) which occurs when¢(t)|=®. It
just as before. This happens at some monmegnthen was important for us because this is the time which deter-

mines the frequency of oscillations of the fiede(t). Near
g, #(t)=0 the amplitude of fluctuationg(x?) is greater than
gPr=my(t2), Po=\(x%)2, n(tz)= 7 at |¢(t)|=®, but close to the end of the second stage of
(125 preheating this difference becomes less significant.
The results of numerical calculations gfx?) performed
At this time the total energy density becomes approxi-" [30] are in agreement with our estimates fpe3x 10 !
mately equally distributed between the kinetic energyyof PUt give a few times greater value of(x?) for largerg.
particles~(gm¢<l>/8)<)(2> and the energy-g®n, of their The dl_fference can be interpreted as a result of _rescatterlng of
interaction with the fieldg (which includes the potential X Particles during the second stage of preheating.
energy of the fieldy). This energy should be equal to the
total energy of the system at the timg which is given by X. RESCATTERING
3m?®3/2. The final value of the inflaton field at the end of
resonance is

Theoretical considerations contained [24—27,30Q and
numerical lattice simulations of preheatif@2g,28—3(Q indi-
cate that there is another effect which should be incorporated
into the preheating scenario. In the context of the model
] investigated in this paper, one should consider the generation
Thus, @, is somewhat smaller tha#, for q,>1: of inflaton fluctuationsd¢ due to the interaction of par-
ticles with the oscillating inflaton fielgh(t), and subsequent
interaction betweery and 6¢ fluctuations. We already dis-
(127 cussed in Sec. VIII D the possibility to describe this process
by equations for classical waves. One may also represent the
! ) , __ classical scalar field as a condensatebgdarticles with zero
To find the typical occupation numbers of the m_odes WIthmomentum, and interpret-particle production as a result of
k~k, at the end of tge segond ;tage of reheating, let u?escattering ofy particles and thep particles in the conden-
remember than,=48mn, /k . This corresponds to enor- g516[24,25 29,30 This “particlelike” interpretation of the

®,=d,q; M. (126)

2 \ 12
8um |\/|plnfllo1 m

39 g°M

®,= sz

p

mously large occupation numbejr| interaction allows one to use the concept of cross section of
. the interacting particles, and the Boltzmann equation for the
N(ty)=10°g 2. (128 occupation numbers.

The theory of this process is rather complicated, and its
This result indicates potential problems with the perturba-interpretation in terms of the rescattering of elementary par-
tive investigation of preheating at the end of its second stagdicles is not universally valid; see Sec. X B. Still we can
Adding extra internal lines of the diagrams may introduceformulate the following apparently general results. First,
enormous factors,=10°g~2, which may cancel extra de- there is a significant generation of rapidly growing fluctua-
grees ofg? which appear in the higher order corrections.  tions ¢xe®*™+' due to the interaction between particles
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and the oscillating fields(t). Second, the generation of large tion o, should be multiplied bynf;z48772n)((t)/k;°’c . This
fluctuations ofd¢ can terminate the resonant creationyof gives, for ¢(t)=®, a'~37'rg2nX/ki(I)2,

particles only at the end of the second stage of reheating. In  Using this result, one can estimate the time for egch
this section we will try to justify these statements. particle to experience one scattering withgaparticle be-
longing to the oscillating field ¢(t): 7=1/ongv,
z0.5(<1>2/nx). In particular, at the end of the first stage,

A. Generation of ¢ particles by rescattering > ) _
=mj P, /g, which yields

To evaluate the effects of rescattering we will use here thg X
“particlelike” interpretation of rescattering. First, one e m;lq}’z. (131
should make an estimate of the cross sectioior the scat-
tering of x particles with an effective masg¢(t) and a  Forg~10"2 this time is of the same order as the time of one
typical physical momentum=k,/2=\gm®/2 on ¢ par- oscillation of the fieldp; see the table in Sec. IX. However,
ticles of masam with zero initial momentum which consti- just one oscillation before the end of the first stage the den-
tute the oscillating fieldp(t). The effective mass of the field sity of particles was much smaller and rescattering was inef-
x is time dependent. This makes investigation of their scatficient. Forg=10"? this time is much greater than the time
tering rather complicated. However, in the broad resonancef one oscillation, which means that rescattering occurs only
regime during the main part of the oscillatioffor  during the second stage of preheating.
|p|> ¢, =g~ (33)], the field y changes adiabatically. In the “particlelike” picture the number ofy particles
During this time, the effective mass of the fiejd also ~ d0€S not change in each act of interactiapart from its
changes adiabatically, so one may consigeparticles as growth'due to the resonan¢dut each coll|§|oq rele'ases one
ordinary particles with an effective magg(t). We will also ¢ particle from the homogeneously oscillating fiede(t).
consider the oscillating scalar fiek(t) as a collection of Since the scattering time for eaghparticle rn,(t), one
particles ¢ with an effective massn,, and number density May conclude ghatzthe nuzngetr of frgeparticles grows with
n =m¢<1>2/2. time as_nd,oc5nX/<D My, € “Mgt, However,_the true eren—_

We will suppose now that in such situation one can uséleénce is more complicated because during each interaction
the standard result for the cross section for elementary paft® x particles will slow down. This affects their subsequent

ticles ¢ and y with constant masses: interactions.
dcr) |p | M? (130 B. On the validity of the “particlelike” interpretation
q0 = . of rescatterin
dQ/ | 64m2E 4E (Ey+E ) |v g0, g

In the previous subsection we considered rescattering of
particles during time intervals whef(t) > ¢, . At that stage
x particles are nonrelativistic. In contrast, during the short
time intervalsAt, zk;l, when|¢(t)|< ¢, , x particles are
ultrarelativistic, and their effective magsp is very small
During most of an oscillation one has¢|>d, comparing to their typicgl momentaKk, /2. If one uncriti-
P B X cally repeats the calculation of the rescattering for the case of
=3%Pq ™" andm,=g¢>k, ~gm,®. In this case both rarelativisticy particles in the time intervalt, , one ob-
the ¢ particles andy particles are nonrelativistic. If one goes taing a much higher cross section and a much shorter rescat-
to the c.m. frame one finds that tlgeparticles have a small tering time 7= m<2ﬁ/3wzgznx than that of the nonrelativistic

speedv y~3my/gp>v,. ThusE,=m,, E,~gé. For  case of the previous subsection.
g¢>m,, the absolute value of the momentum of iepar- However, within the very short time interval
ticles does not change after scattering,At*:qfl""m‘;l, one cannot use the standard methods of
|p¢|~(m¢,/2)\/m¢/g¢< my. This gives, after the integra- calculation[32] developed for the investigation of processes
tion of Eq. (130 over d(), a single particle cross section which begin att=—< and end at=+«. The uncertainty
o1~9*116mE;=g%/ 167 ¢, principle tells us that during the tim&t, one cannot specify
Now one should take into account that the actual crosshe energy of particles with an accuracy better thgn
section will be much greater because the scattering occurBherefore during the short intervalt, one cannot tell the
not in a vacuum, but in a state which already contains manylifference between & particle with momentunk=0, be-
bosons¢ andy. There are many particles from the reso- longing to the classical fiele(t), and a freep particle with
nance and many inflaton particlés Naively one would ex- momentumk<k, , i.e., one cannot tell whether scattering
pect that the cross section should be proportional to the prodsccurred or not. This question can be answered only by ob-
uct of the occupation numbenﬁ andn{ in the final state. serving the system for a longer time, comparablmg;l, but
However, the corresponding terms disappear in the collisionluring the main part of such intervals the effective mass of
integral in the Boltzmann equation, which takes into accountach ¢ particle is large, and cross section is much smaller
all the channels of scattering. Therefore in the investigationhan the cross section which one would obtain by naive ap-
of enhancement of the cross section due to the large occupgplication of theS matrix approach during a small interval
tion numbers of particles in the final state, one should conAt, . In other words, we cannot use the standard formalism
sider terms proportional either tgf or nff’, but not tongn’,{. of particle scattering to describe scattering around zeros of
In the beginning of the procesg>n,, and the cross sec- the inflaton field. Another element missing in this formalism

Here all energie€ , ,E, and velocitiesy ,,v,, are given in
the center-of-mas&.m) frame and refer to the initial state,
except forp,, which refers to the final staté1? is the square
of the matrix element, which is given ty* [32].
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is that the fieldy is not in ann -particle quantum state, but It is easy to see that different choices of signs in @83
is in the squeezed stat@le have discussed already one of correspond to different channels of scattering betwéen
the nontrivial consequences of this fact, namely the high, and ¢ waves. The term§133) correspond to the genera-
frequency modulation of(x?).) Thus one may wonder tion of §¢ fluctuations due to the scattering gf and ¢
whether one can trust the results of our calculations for thgyayes. Obviously, one can leave in the inner integikabnly
more safe situation whew> ¢, , and what we can say he segmeny! (wheret<t;+m/m,) from the most recent
about the contribution of the intervals with< ¢, to the net o o i
rescattering effect? f:ycle 'oflthe mﬂaton' oscillation, whef, is the Iargest: Dur—.
Here we will outline a possible way to answer this ques-"9 this intervalB,. is constant. Therefore to further investi-
tion. Let us consider the self-consistent set of equationgate the inner integraﬁj, we shall consider the variation
(104 and (109 for the interacting fields in the classical ap- of the phase of the exponent in Eq.(133
proximation. E_quatlor(105) describes the evolut_|on _of the Hz_ﬂktr+m¢tr_ft’dtuwkik,(tu)+ft'dt/rwk,(trr) within
S¢(t) fluctuation. Let us concentrate on the first integral
term in Eq.(105), assuming for the moment that the second
term is subdominant untild¢,(t) increases sufficiently.
What we obtain is the equation for the forced oscillations of _," ’ ) )
8¢,(). The homogeneous part of this inhomogeneous lineaf At @k (") ~(2g®/my)cosnyt’ +O(«%); see Eq. (77).
differential equation has a simple Green function'n€ crucial observation is that for the process

siny(t—t'), where Qf=k?+mj. Then the solution of Xk $o— S¢kxi —k the large terms (@d/m,)cosmyt in the
Eq. (105 with only the first integral term is expression forfd are cancelled and the phagedoes not

oscillate within each half of the periot-t;<@/m,. As a
9° t _ result, the integraJ dt cannot be reduced to the usual delta-
Oy (t)=— mf dt’sinQ(t—t") p(t") function 8(— Qy+mMy— wy_ o+ wy), as one would expect
k70 in the “particle-like” picture. Instead, in the wave picture
we will have nonvanishing contributions from the bunches of
Xf d*k X () xi(t)+H.c. (132 modesk and k' for which the phased=1r, which corre-
sponds to the interaction of packets pfand §¢ waves.

Here, as beforek is a physical momentum. This solution In_ contrast to the process of rescattering, th_e annihil-
expresses the functiofig,(t) via the known functiongs(t) ~ @tion process yyxw — ¢y ddyik -k and the inverse
describing the inflaton oscillations, see E4), and the func- Process will be suppressed because the corresponding
tions y,(t); see Sec. VII. Equatiofil32) takes into account time |_ntegrals have very rapidly oscillating exponents
all the regimes ofp(t), as well as the resonant amplification €XA *i(4g®/m,)cosnt].

of xi. In particular, from this it follows that the amplitude ~ The analysis of Eq(133 shows the hard componedt)

o (t) grows with time ae2“™#!, because the amplitudg, with k=k, can be generated only during the very short time
grows ase“M#. Therefore the number of particles corre- intervals At, =k * around zeros of the inflaton field. The
sponding to 8¢ fluctuations is proportional ton(t) ~ SOft component with momente<k, is generated all the
xe*Ms, j.e., grows much faster tham,. Another specific time. Soft_partlcles produced at|> ¢, have very small
prediction which follows from Eq(132) is that the random Momenta in the range of<Ok<m. It makes sense to talk
field 5¢(t,x) at the early stages of its generation will have @bout such particles as freg particles removed from the
non-Gaussian statistics in contrast to the random Gaussié??herelnﬂy oscillating fieldg(t) only at time intervals
field x; . ™m,". An estimate of the soft component from E¢33)

Let us further investigate the solutici32). The inner at the beginning of the process ip?)so=g%ns/my,
integral fd3k’ xx—« (t") x«/(t') is time-dependent. It is con- whereas for the hard component one has
venient to change the order of integrationfaft’ andfd3k’. () nare={ #%)son/ Va. Sincede grows very fast, one has to
Then the right-hand side of the soluti¢gh32) will contain  be careful with the range of validity of the soluti@t32).

this time intervak —t;<<m/m,, which describes the interfer-
ence of the four interacting wave#(t), Sé¢, Xk,
Xk—_k - Earlier we estimated the integral

terms such as Indeed, Eq(132) is only the first term in the iterative solu-
tion of Eq.(105. As soon asi¢ grows, we have to consider
g2Dei i ﬂk’ﬁszf the iterative solutions of both Eq6l04) and(105. We have
—3] d3k’f dt’ to take into account the correctionsXq due to theX and ¢
(2m)°Qy 0 Vok—k(t)wk(t) coupling on the right-hand side of E¢L04) as well as the

second bilinear term on the right-hand side of E405).
Because of the exponential growth in the number of par-
ticles, these corrections to the simple solutid@82 very
quickly become important, which makes further investiga-
N " tion rather complicated.
i f At o (t ))’ (133 One should note that in addition to rescattering, there may
exist other mechanisms ap-particle production. For ex-

wherew?(t)=k?+ g2¢?(t). During each half of the oscilla- ample, let us consider fluctuatiorp with effective mass
tion By is constant; see Sec. VII ANote that the coefficients squaredg?(x?). As we already emphasized, this term is
By corresponding to the classical waves will be dimensiontime-dependent. First of all, it experiences quasiperiodic
less if one uses discrete mode$ high-frequency modulation, which, as we already noted in

t/
XeXF{—Ith'-qu;t'—lf dt"a)k,k,(t")
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Sec. VIII B, may serve as an additional sourcefgparticles. the development of parametric resonance, one can introduce
In addition, the termg?(x?) oscillates with periodm/m,. a new notion of an effective mass squared
During each oscillation it changes from its minimal value Ami(k)~gz(¢2>k, where the indeX means that we take
g®n, [for |¢(t)|=P] to a much greater vall.reBgCIDanl"1 into account only the modes with momenta greater than
[for | 4(t)|= ¢, ]. This leads to a significant periodic change If the effective mass squareﬁm)z((k) becomes greater
in the properties of¢ particles, which is especially pro- thank?, the equation of motion for such modgg changes
nounced when¢(t)|<¢, . A preliminary investigation of considerably. This effect kills the resonance for the mggde
this issue indicates the possibility of a parametric resonancg Ami(k) becomes greater than the width of the resonance.
with ¢-particle production. The resonance for the leading modes withk, /4 ends
Our main purpose here was not to give the final a”a|y5i%vhenAmz(k*)~gz<¢2)hard becomes greater thaq, /4.

of this issue but rather to outline different approaches to the Tpe d)i(fference between the total value 6#2) and
problem of rescattering and-particle production, which (¢ nari={¢?) 14 Can be quite significant. The number of
should provide a proper framework for future investigation. . * . L

¢ particles produced in each scattering is equal to the num-

ber of y particles, eachy particle taking away some portion
C. Rescattering and the end of preheating of the momenturk of the corresponding particle. If this

ortion is small,6¢ fluctuations corresponding to these par-

Can rescattering kill the resonance? In Sec. X A we founcﬁdes have momenta much smaller thip/4. Therefore
that rescattering can be rather efficient at the second stage f?fey do not give any contribution to the effective m:ass

preheating. What can we say about the influence of rescalg
tering on the development of parametric resonance?

The simplest idea would be to estimate the effective mas
of the x particles induced by the fluctuationées?):
Am’~g*($?). However, this would not be quite correct.

Indeed, the whole process gf-particle production occurs  1hs one may argue that if rescattering is efficient, the

in the interval |¢[<¢, during the time , nher of “hard” ¢ particles produced byy particles

~1/2_-1. Hati
te~(gmy®@) "=k, *; see Eq.(39). If oscillations of the  ghoyid be similar to the initial number of particles with
modesd¢ occur during a longer time, then from the point of ,omenta~ K, /4, i.e.,n"a%<n

. ) - " 4 <N, whereas the total number
view of the creation ofy particles they cannot be distin- ¢ 4 narticles produced by rescattering may be much greater.
guished from the oscillations of the fielf(t), and therefore

. At the second stage of reheating, w 2y>m?,, one can
they do not harm the development of stochastic resonanc@co 4. estimate 9 9, Wity ) ¢
We called such modes “soft,” and the modes witkk, /4

m)z((k~ k,/4), so they do not hurt the resonance at such
momenta. If in the first collision g particle with momentum
R~ k, /4 gives a significant portion of its energy todapar-
ticle, then it loses its energy, and in subsequent collisions it
will produce only harmles$¢ fluctuations withk<<k, /4.

“hard.” 1 k’dk n¢
Fluctuations of the scalar fielgg can be harmful to the (6= | ——=. (134
development of the resonance if they can considerably alter 2m°) K2+ 9%(x*)

the motion of the fields in the interval| ¢|< ¢, . The only ~ . _ _ 0 o
fluctuations which can change the direction of their motion!f (9¢ ) is dominated by soft fluctuations witk?<g?(x?),

during the short timet,~k;' are the modes with then at the second stage of the resonance one shzould expect a
k=2k, >k, . This effect does not seem to be very impor- S0N9 anticorrelation between oscillations o) and

tant. At the time when the homogeneous mabl¢) enters (8¢°). This prediction is in agreement with the numerical

. . o Y20 22 results of{ 30].
the interval ¢|> ¢, , it hgs a kinetic gnerg;b /“2 m?'CD /2. Now let us concentrate on the “hard” fluctuations with
In order to alter the motion of the field the “hard” fluc-

. ) typical momenta~k, /4. They can hamper the resonance if
tuat]ons(sqb should(occasionally have comparabléanq op- they make the fieldy massive, with an induced effective
posite speed, and therefore they should have a kinetic en-

mass squared m?~g?%(8¢?)p.q comparable to the square
ergy comparable tmfbdﬂ/z. Thus, the resonance disappearsof the t)(/qpical momegtljm¢0)2(hggrticlegk~k 14: a
only after the kinetic energy o particles with momenta =

k>k, becomes comparable to the total energy of the oscil- 9% 8¢ har= gMy P/16. (135
lating field ¢(t). This could happen only at the very end of
preheating. Suppose that a fraction of all energym;®2/2 is trans-

However, there is another mechanism which may harmjerred to the kinetic energyk/2)( §¢2)parq Of “hard” fluc-
the resonance. Each mogg “probes” space on a length tyations,

scaleAl~27k™ 1. If the field ¢ is homogeneous on this

scale, it acts as a homogeneous background for the mode gmd 5 (2/) 2

On the other hand, i®¢ is inhomogeneous on this scale, @(&5 >hard:')’T- (139
then the fieldy, has an integrated interaction with all inho-

mogeneities of the field¢ on the scaledl ~27k L, ie., it This gives

interacts with the contribution t6¢2) from the modes with

mome:‘nta gr(_aater than This corregponzds tzo the appearance 9% 8% hare=16v9 m,®. (139

of an “effective mass squaredAm; ~g (#°), but only the

modes with momenta greater th&nshould be taken into Comparison of Eq9137) and(135) shows thaty=1/256,
account in this calculation. Thus, from the point of view of i.e., the resonance may slow down and eventually terminate
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only when the oscillating fiel@ transfers at least 1/256 of ~ our rough estimates could be improved. One should remem-
its energy to the “hard” fluctuationg. The total energy of ber also that we are discussing stochastic resonance, which is
all ¢ particles will be somewhat greater than that. Theseextremely sensitive to even minor changes of parameters; see
particles get their kinetic energy from the kinetic energyof the table in Sec. V[44]. From this perspective it is even
particles~(g md,(IJ/8)<X2>, S0 one may expect that the reso- somewhat surprising that one can describe many features of
nance terminates only afterg,®/32)(x% becomes this process by analytical methods with rather good accu-
greater than 1/2561@2(/,(1)2/2). This can only occur close to racy. . - _ _

the end of preheating. Lef(x%), and®, be the values of S_trlctly speaking, the cond_mon which we deflved does
fluctuations and amplitude of the background field at thehot imply that the resonance is completely terminated. The
momentt, when the parametric resonance is terminated byéading modes, which have been amplified from the very
rescattering. Taking into account that at the second stage &€ginning, stop growing when the effective mass of the field

preheatingnézgzo(z) one finds that at the end of preheat- X becom(_as greater thdnlvk*/4. However, the supleading
ing modes still continue their growth until the effective mass

becomes greater thdq /2. This process is very inefficient,
(x?),=®,/16. (138 but (x2) continues slowly growing for a while. Moreover,
(x?) may grow a little even when the resonance is com-
Note also that/(x*),<®,, because this would correspond pletely terminated and new particles are no longer produced.
to the result which we obtained in Sec. IX B neglecting re-Indeed, due to the decay of the fieldt), the effective mass
scattering. In our subsequent calculations we will use thef the y particles becomes smaller, and therefoxé) may
estimatey(x?),~10"1®, . This value is somewhat smaller become greater even if, remains constant. These effects
than \/<X2>2:<I>2 which we obtained in Sec. IX B neglecting are not very significant, but they make it difficult to clearly
rescattering. However, the difference between these two vatecognize the end of parametric resonance by looking at the
ues is in fact not very large becaude>d,. behavior of(x?). That is why throughout this paper, along-
We are going to ﬁnd\/<—X2_r and @, , which should re- side the dispersion of the fluctuations which is studied in
place our previous estimates fgfx?), and®, at the end of Most papers on preheating, we use the number density of
the second stage neglecting rescattering. Again we will usgarticles to investigate the resonance.
energy conservation. At the end of the first stage the energy An estimate of the density of particles at the end of the
density was equal to the potential energy densitgp2/2 of ~ fesonance can be obtained by multiplying®), by
the inflaton field plus the energy of its interaction 9%;~16gV(x<);. Itis given by
gd,n,~ m?®2, wherem is the bare inflaton mass. At the
end of the resonandat the second stagewith an account
taken of rescattering, the kinetic energy of theparticles
remains small, so the whole energy3m(2,,<bf/2 transforms
to the energy density of interaction betwegmparticles and It is useful to compare this number with the numberjof
the field ¢, p,=g®,n,~g*(x*) @7 ~10 ?g°®}. Note that particlesn, in the oscillating fieldg(t) which survive the
p, includes the energy of the oscillating scalar fiest).  rescattering. To distinguish the particlgsin the oscillating
Energy conservation implies that®,~3.5/m®,/g field and the freep particles created by rescattering, we will
~2.5P,q; Y. However, @, obviously cannot be greater denote the number of particles in the classical fieldpsAt
than®,. This means that rescattering can terminate the resahe end of the resonance it is given t%q)f/zy wherem,

nance either ify(x*),>10"'®,, in which case we essen- is the effective massgy(x2),~0.1gd,. Meanwhile
tially recover the previous results of Sec. IX B, ogif= 10%. nXNgq)r<X2>rwlofzgq)§‘ Therefore,

In the last case one hag x),~0.35/m®, /g, which yields
2 n,~10"'n§. (141

(139

10%m
g°M

3/2
n,~0.4g~ "4 umMgIn~* ) . (140

p

2
,umMpI ~,10%m

69 g°M

V<X2>r~

Equation(141) says that at the end of the resonance
particles need to rescatter only 10 times to destroy the coher-
This estimate should replace EG.27) derived without ac- ent oscillations of the classical field, i.e., to decompose it
count taken of rescattering. In particular, fpr10~2, which  into separatep particles. Therefore one may expect that at
corresponds  to go=10°, and @;~550, we get the end of the resonance or very soon aftey jtarticles may

(x%);~2.5x 10" GeV. To compare this result to the result destroy the classical fields(t) completely, in agreement
of [30] one should note that the definition af in [30]  with [30]. This means that the final stage of decay of the
differs slightly from ours, so it is better to compare our re-homogeneously oscillating classical scalar field in our model
sults for a giveng rather than for a givei,. In particular, is determined not by resonance but by rescattering.
one should compare their results fpy=10° with our results The decay of the classical scalar fieldt) is not the end
for g=10"2: (x?),~3x 10" GeV. This result agrees, to of the story, but rather the beginning of a new stage of re-
within a factor of 2, with the results of the lattice simulation heating. As we pointed out ifiL], it does not make much
of [30]. sense to calculate the reheating temperature at this stage of

One should not overemphasize the significance of thishe process. Indeed, from the point of view of the energy
agreement. The theory of the last stages of preheating ®tored in thep particles, it is not very important whether it is
extremely complicated, and there are many points in whichn the form of ¢ fluctuations or in the form of a coherently

p
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oscillating field ¢. According to our estimates, the kinetic very beginning of the process; one should continue to have
energy ofy particles may constitute only about 10of the ~ gmd®=4M?2 until the end of preheating.

total energy at the end of parametric resonance. This estimate During the second stage of preheating batj and ¢

may be too pessimistic, but even if the true energy is muclkthange very rapidly, but their product remains almost con-
higher, the main fraction of energy after the end of the resostant because the energy density of the figldwhich is
nance remains stored in the energy gfparticles, and the proportional taniq)zlz, practically does not change until the
energy of their interaction witly particles. The total energy very end of preheating. Therefore it is sufficient to check that
of y fluctuations at large decreases aa™*, whereas the gmd=4M?2 at the end of the first stage of preheating. One
energy of¢ fluctuations as well as the energy of the oscil- can represent this criterion in a simple form:

lating field ¢(t) at larget decreases @ 3. Even if the total

energy of the oscillating fields(t) and of ¢ particles were m .
very small after preheating, eventually it would again domi- M= ﬁ gy =m
nate the energy density of the universe. Equatictl) gives

us additional information: the number @f particles after g, example, one may takd =2m and g~0.007,which
preheating is at least ten times greater than the nl_megr of corresponds tg,=10° in the normalization of Ref30]. In
particles. If these particles do not decay, they will alwaysiis our condition144) is satisfied, and an investigation with
dominate the energy density of the universe, which is unacap account taken of rescattering shows a relatively insignifi-
ceptable. Therefore Whgn preheating ends_ one should apphgnt suppression df2), approximately by a factor of 3. Our
the elementaryperturbativé theory of reheating5,6] to de- investigation suggests that fge>102 this process should
scribe the decay of the remnants of the classical oscillatings; e suppressed at all. Equatiti®i4) shows that for suf-

field #(t) as well as the decay of the large amount®f ficiently largeg one can produce superheavy particles with
particles created by rescattering. We will return to the theory\ys. .~ For example, production of particles with M

of this process in a subsequent publicatj8h =10m is possible forg=0.065.

In fact, suppression of superheavy particle production
XI. PRODUCTION OF SUPERHEAVY PARTICLES may be even less significant. Indeed, the resonance becomes
DURING PREHEATING strongly suppressed if it occurs only fok2<ki/4

~gm,P/4. As a result, the condition for the efficient pre-

One of the most interesting effects which may becom ; : — op2 -
possible during preheating is the copious production of paﬁ_qeatmg (143 can be slightly relaxedgm,®=2M". This

. . . small modification implies that heavy particle production is

ticles which have a mass greater than the inflaton mass not strongly suppressed for

This question is especially interesting in the context of the

theory of GUT baryogenesis, which may occur in a rather 2guM 1012m)\ 1/2

unusual way if superheavy particles with mdds a few Msmgi""wm Pin—1 5M

times heavier tham can be producefill]. Such processes g Mo

are impossible in perturbation theory and in the theory ofrgr M =10m this leads to a rather mild conditiony

narrow parametric resonance. However, we are going te.g 936,

show that superheavy particles with massi>m can be We conclude that at least in our simple model, the pro-

produced in the regime of a broad parametric resonance. qgyction of superheavy particles is possible. However, with
In order to study this regime let us return to Sec. V, wheréy, increase of the total number of produced particles be-

we made a simple derivation of the width of the resonancgomes smaller; see E6L40). It would be most interesting to

band; see Eq(32). The only modification which should be j,yestigate this issue in realistic models of elementary par-

made to this equation in the case where the figltlas a  ticles and to apply the results to the theory of baryogenesis.
¢-independent masm, (0)=M is to add it tok? on the

left-hand side(LHS) of the equation:

M 10%2m\ M2
gg Pt ) . (144
m g Mp

3m

XIl. DISCUSSION

k?+M?=<(g2pm,P)?°—g2¢>. (142 _ In this paper we discussed the theory of preheating for the
simple model of a massive inflaton fielfl interacting with

As before, the maximal range of momenta for which particleanother scalar fielg. As we have seen, the theory of pre-
production occurs corresponds teb(t)=¢, , where heating is very complicated even in such a simple model.
&, ~1Jm,®7g. The maximal value of momentum for par- Our main purpose was not to answer all questions related to
tiglesz prc;bduced at that epoch can be estimated bthe th.eory _of preheating, put to develop an ade.quate frame-
K2+ M2= /2. Th b Hicient f ork in Whlch these questions shom_JId be |nve§t|gated. .
max gm,®/2. The resonance becomes efficient for 1, 1o heginning particle production occurs in the regime
of a broad parametric resonance, which gradually becomes
gmyP=4M?. (143 narrow and then terminates. If the resonance is narrow from
the very beginning, or even if it is not broad enough, it
Thus, the inflaton oscillations may lead to a copious producremains inefficient. We have found that broad resonance in
tion of superheavy particles withl>m if the amplitude of an expanding universe is actually a stochastic process. The
the field® is large enoughg®=4M?/m. theory of this process, which can be called stochastic reso-
However, in an expanding universe andm, are time-  nance, or stochastic amplification, is dramatically different
dependent. One should not only have a very large field at thtom the theory of parametric resonance in Minkowski
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space. Therefore one cannot simply apply the standard metkribution to the energy density of the universe rapidly de-
ods of investigation of parametric resonance in Minkowskicreases. Therefore, after preheating the main contribution to
space; it was necessary to develop new analytical methodke energy density of the universe is again given by ¢he
for the investigation of stochastic resonance in an expandingarticles. The only difference is that prior to preheating these
universe. We have found the typical width of the resonancearticles constitute the oscillating classical inflaton field
~k, /2 and the typical rate of the exponential growth of the ¢(t), whereas after preheating they acquire various spatial
number of produced particles in this regime. An importantmomenta and become decoherent. Thus, as we already
feature of our formalism of investigation of the broad reso-pointed out in[1], it does not make much sense to calculate
nance regime is its robustness with respect to modification dhe reheating temperature immediately after preheating. One
the form of the effective potential. Our methods should applyshould study the subsequent decay of theparticles. The
not only to theories with the potentiah?$2/2, but to any theory'of this decay is described by the elementary theory of
potentialV( ) when the resonance is broad. re_heatlng[5,6,8]. So W_hy should one_study extremely com-
One should note that the main reason why broad resc,t_)hcated nonperturbative effects which may happen at the

nance has a stochastic nature is the expansion of the urﬁﬁ%ﬁ Oihpga?iﬂ'rcorlssggagﬁégc;? t::ae r(eeﬂgatt?r?y t\grlllwl 2?;_
verse. In the conformally invariant theories such as th y 9 9 P

4 2 2.2 25 . ure?
theory (\/4)¢™+(g /2).¢’ X~ with g*>\ th_e resonance 15 We believe that the investigation of nonperturbative ef-
broad but not stochastic because expansion of the univergg

q interf ih its devel listi cts in the very early universe is worth the trouble. In fact,
oes not interfere with its developmeft9). In realistic o complex nature of this process makes it especially inter-

theories where the inflaton fielfl has massn the conformal  egting . Indeed, a few years ago the standard picture of the
invariance is broken and one could expect that the broadyolytion of the universe included a remarkable stage of ex-
resonance becomes stochastic as soon as the amplitude of #gsive expansiorinflation) in the vacuumlike state, which
oscillations of the field$ becomes smaller tham/\\. In- s responsible for its large-scale structure, and a rather dull
deed, ford<m/\/\ the resonance is described by the modelstage of decay of the inflaton field, which is responsible for
of a massive inflaton field considered in this paper. A morehe matter content of the universe. The processes which
detailed investigation of this question shows that in modelgould happen during the later stage were typically ignored.
with g>\ the resonance becomes stochastic even earlier, at Now we see that the stage of reheating deserves a more
(I)S(g/\/X)(ﬂsz/B)\Mp) [19]. detailed investigation. Explosive processes far away from
In our investigation of preheating we took into accountthermal equilibrium could impact the further evolution of the
the interaction of the oscillating inflaton fielgd with the  universe. As we know, the appearance of baryon asymmetry
particles produced during preheating. We have found, in parequires the absence of thermal equilibrium, so it is only
ticular, that the correction to the effective mass squared ohatural to investigate the possibility of baryogenesis at the
the oscillating field¢ is proportional togn,/|¢|, and the stage of reheating; see, e.[5,21,11.
equation of motion of the field¢ acquires a term Particles produced by the resonance have energies which
~gn,(¢/|#]). This term experiences quasiperiodic oscilla-are determined by the properties of the resonance bands.
tions with a very high frequency 2g®, which do not much  Typically this energy is much smaller than the temperature
affect the motion of the fields(t) but may serve as an ad- which would appear if the particles were instantaneously
ditional source of¢ particles. thermalized. Meanwhile, the total humber of particles pro-
We have found that if the coupling constagt in the  duced by parametric resonance is much greater than the
interaction term ¢%/2)¢%x? is small (@<3x10 %), the number of particles in thermal equilibrium with the same
resonance terminates at the stage when the back reaction @fergy density. Fluctuations associated with these particles
produced particles is unimportant. For larger valueg’athe ~ can be anomalously large. For example, we have found that
resonance terminates due to a combined effect of the growtlor certain values of coupling constants in our modéy?)
of the effective mass of the inflaton field and rescatteringmay become of the order of ¥0GeV, and\{$?) may be-
which in its turn increases the effective massyoparticles, come even greater thaf{ x?). In models describing several
making them heavy and hard to produce. We made an estinteracting scalar fields such anomalously large fluctuations
mate of the number of particles produced during preheat- may lead to specific nonthermal phase transitions in the early
ing and their quantum fluctuatiodg?) with all back reac- universe on the scale of 10GeV [9,10]. As we pointed out
tion effects taken into account. in [9], the investigation of such phase transitions in the
Traditionally, the only purpose of the theory of reheatingtheory of a single self-interacting field is rather involved
was to obtain the value of the reheating temperature. Frorhecause one needs to separate the effects related to the os-
this point of view the theory of preheating for the simple cillations from the effects related to the fluctuations of the
model which we studied in this paper does not change theame field. Therefore an optimal way to study nonthermal
situation. Forg<3x10~* the total energy density of pro- phase transitions is to investigate the models where the fluc-
duced particles is exponentially small. Similarly, it remainstuations produced during preheating restore symmetry for the
extremely small even for largg if x particles have madsl field which does not oscillate during the oscillations of the
much greater than about 10 In the case wheM is small  inflaton field; see Sec. IX. We will return to the discussion of
andg=3x10 4, the y-particle production is very efficient. this effect in a separate publicati¢42].
However, we have found that even in this case after preheat- Unlike fluctuations in thermal equilibrium, the nonther-
ing one has many more particles thany particles. If y mal fluctuations produced by a parametric resonance often
particles are massless, or if they can easily decay, their corexhibit a non-Gaussian nature. In particular, “fluctuations of
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fluctuations” can be very large. This means that in some

In a situation where nonperturbative effects play an im-

regions of the universe one can find fluctuations at a leveportant role, and the number of produced particles grows
much greater than its average value. This effect may play aaxponentially, one could expect that the only reliable tool for
important role in the theory of topological defect production.the investigation of preheating would be numerical simula-
Indeed, even if the average level of fluctuations is smallefions. Fortunately, one can go very far by developing ana-
than the critical level which leads to monopole production,!ytical methods. For sufficiently small values of the coupling

they may be produced in the rare islands where the level gfonstant g=3x10"%) these methods allow us to make a
the fluctuations is anomalously high. Note that in order toVery detailed investigation of preheating. For higher values

avoid cosmological problems and burning of neutron stars b

)()f the coupling constant one can describe preheating analyti-

the monopole catalysis of baryon decay, the density of th_gally during most of the process. At the last stage of preheat-

primordial monopoles should be suppressed by 20 to 30 o

jng the situation becomes too complicated, and numerical

ders of magnitude. It was easy to achieve such suppressicmethOdS become most adequate. Even in these cases analyti-
for the usual thermal fluctuations which appear after reheat@ methods allow us to obtain estimates of the same order of
ing, but for the nonthermal fluctuations produced by reso/magnitude as the results of numerical calculations, and

nance the situation may be quite different.
There is an additional reason which makes the investig

sometimes this agreement is even much better. Taking into
gaccount all of the uncertainties involved in the analytical

tion of preheating so interesting. The theory of particle IOrO_investigation _of stoc_hastic resonance as well as in the com-
duction in the early universe was one of the most challengin@”ter simulations, this agreement looks rather encouraging. It

problems of theoretical cosmology in the early 1970s. Ho

wremains a challenge to develop a complete analytical theory

ever, powerful methods of investigation developed at thaPf Preheating, and to apply it to realistic inflationary models

time produced rather modest results: particle creation coul
be efficient only near the cosmological singularity, at densi-
ties comparable Witmlg. This process could not consider-
ably increase the total number of particles in the universe.

With many interacting fields.
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parameters by 10% can lead to exponentially large changes in
the final results. This is indeed the case for the processes if
g<3x10™4 where back reaction is not important. Mean-
while, for g>3x10"* back reaction makes the process termi-
nate at a time which is somewhat less sensitive to the change
of parameters. That is why it becomes possible to obtain ana-
lytical estimates despite the stochastic nature of the process.



