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We study the effective energy-momentum tendeMT) for cosmological perturbations and formulate the
gravitational back-reaction problem in a gauge-invariant manner. We analyze the explicit expressions for the
EMT in the cases of scalar metric fluctuations and of gravitational waves and derive the resulting equations of
state. The formalism is applied to investigate the back-reaction effects in chaotic inflation. We find that for long
wavelength scalar and tensor perturbations, the effective energy density is negative and thus counteracts any
preexisting cosmological constant. For scalar perturbations during an epoch of inflation, the equation of state
is de Sitter-like[S0556-282(197)02118-§

PACS numbsgs): 98.80.Cq, 04.30.Nk

I. INTRODUCTION transformations(gauge transformationsHowever, the an-
swer to the question “how important are perturbations for
It is well known [1—3] that gravitational waves propagat- the evolution of a background” must be independent of the
ing in some background space-time have an effect on thehoice of gauge, and hence the back-reaction problem must
dynamics of this background. A convenient way to describd?e formulated in a gauge-invariant way.
the back reaction of the fluctuations on the background is in [N @ recent Lette{6], we demonstrated how the back-
terms of an effective energy-momentum ten¢BMT). In  '€action problem can be set up in a gauge-invariant manner.

the short wave limit, when the typical wavelength of gravi- W€ applied the result to estimate the magnitude of back-
deaction effects in the chaotic inflationary Universe scenario.

background space-time, they act as a radiative fluid with a|J1n this paper, we study n more deta|_l the effective I.EMT of
cosmological perturbations. In particular, we derive the

equation of statp=3p (wherep andp denote pressure and gquation of state satisfied by this EMT. As we show, the
energy density, respectivelyrhe presence of a large amount pack-reaction effects of gravity waves and of scalar fluctua-
of gravity waves in the early Universe can lead to importantions decouple. In the short-wavelength limit, we recover the

consequences for cosmology. For example, it can speed yagyjtp= 1 for gravity waves. In the long-wavelength limit,

nucleosynthesis and lead to a higher fraction of helium, régqqar flyctuations about a de Sitter background have an

sulting in cor?str.aints on models producing qtoo large amp"‘equation of stat@~ —p with p<0.
tude of gravitational waves in the early Universee, e.g., The study of back-reaction effects for gravitational waves
Ref.[4] and references quoted thergin goes back a long way. Following pioneering work of Brill

In most models of the early Universe, scalar-type metricand Hartle[7], Isaacsor{8] defined an effective EMT for
perturbations are more important than gravity waves. Oryravitational waves which was shown to be gauge invariant
length scales smaller than the Hubble radius, the amplitudgor high-frequency waves after averaging over both space
of scalar fluctuations increases in time, and, in most modelsand time. This prescription only makes sense, however,
scalar perturbations are responsible for seeding structure iwhen considering fluctuations on scales much smaller than
the Universe. In this paper, we study the back-reaction probthose characterizing the background. In applications to phys-
lem for both scalar and tensor perturbatidieesmological ics of the very early Universe the fluctuations of interest have
perturbations and gravitational waves, respectivalye de-  wavelengths larger than the Hubble radius and a frequency
rive the effective EMT which describes the back reaction andgmaller than the expansion rate. Hence, Isaacson’s procedure
apply the result to calculate EMT for both long- and short-for defining an effective EMT is inapplicable.
wavelength fluctuations in particular models for the evolu- Back-reaction effects for density inhomogeneities have
tion of the Universe. been considered only recently, and even then without ad-

One of the main puzzles to be solved is the problem ofdressing questions of gauge dependence. The focus of the
gauge invariance of the effective EMT. As is well known early work of Futamase and co-workégg and of Seljak and
(see, e.g., Ref5] for a comprehensive revigwcosmologi-  Hui [10] was on effects of inhomogeneities on local observ-
cal perturbations transform nontrivially under coordinateables such as the expansion rate of the Universe. For a recent

study of this issue in the context of Newtonian cosmology,
the reader is referred to the work of Buchert and EHl&13.

*Electronic address: abramo@bhet.brown.edu The focus of our work, on the other hand, is to formulate the
TElectronic address: rhb@het.brown.edu back-reaction problem in general relativity in a gauge-
*Electronic address: mukhanov@itp.phys.ethz.ch invariant manner.
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The outline of this paper is as follows. In the following  The variables which describe physics on the manifid

section we formulate some useful properties of diffeomor-gre tensor field€). Under coordinate transformatioms- X

phism transformations. The back-reaction problem is set Ughe value ofQ at thegiven point P of the manifoltrans-
in Sec. Il and then in the next section we recast the backforms according to the well-known law

reaction problem in terms of gauge-invariant variables. In
Sec. V we first demonstrate that the contributions of scalar o (a')z) X
and tensor fluctuations to the effective EMT do not interfere Q(Xp)— QA(xp)=|—] -- (—,,) Q(Xp). (6)
in the leading approximation. We then study in detail the 28 X/ p
effective EMT for scalar perturbations, focusing on the equa-
tions of state obtained in the long- and short-wavelength limNote that both sides in this expression refer to the same point
its. In Sec. VI we derive the effective EMT for gravitational of manifold which has different coordinate values in differ-
waves. As an application, we consider the back reaction oént coordinate frames, that i&>=xp. The question about
cosmological perturbations in the chaotic inflationary Uni-the transformation law for the tensor fie@ can be formu-
verse scenario. We summarize our results in Sec. VIII. lated in a different way. Name|y, given two different points
P andP, which have the same coordinate values in different
Il. GAUGE TRANSFORMATIONS coordinate frames, that is{3=xp, we could ask how to
The gauge group of general relativity is the group of dif- EXPress the components of thitensor in the coordinate frame
feomorphisms. A diffeomorphism corresponds to a differen-x at the pointP (denoted byQz) in terms of Q and its
tiable coordinate transformation. The coordinate transformaderivatives given in the franveat the pointP. The answer to
tion on the manifoldM can be considered as generated by athis question is found with the help of Lie derivatives with
smooth vector field®. Let us take some coordinate systemrespect to the vector field which generates the appropriate
x* on M in which, for instance, some arbitrary poiRtof  coordinate transformatiorn— X according to Eq(5). Its in-
that manifold has coordinates . The solution of the differ-  finitesimal form is given in some books on general relativity

ential equation (see, e.g., Ref.14)):
W:g[“p;)\)], (1) é(’;ﬁzxo):[Q_ﬁgQ‘F0(52)](XP:X0)1 (7)
where L, denotes the Lie derivative with respect to the vec-
with initial conditions tor field &. Transformation(7) is the infinitesimal form of the
" gauge transformations of the diffeomorphism group. The fi-
X“(P;A=0)=Xp, (2 nite form of it is obtained by exponentiating E@):
defines the parametrized integral curx&(\)=x“(P;\) X)— I(x) = (e~ L0)(x) = O(X)— (L X
with the tangent vecto€“(xp) at P. Therefore, given the Q)= Q00 = Q=R = (L))
vector fieldé* on M we can define an associated coordinate + %(Lfch)(x)+O(§3). (8
transformation on M as, for instance,

¢ Equations(7) and (8) are tensor equations, where for nota-
X&—X&=x*(P;\x=1) for any givenP. Assuming that® is  tional convenience, tensor indices have been omitted. Note
small one can use the perturbative expansion for the solutiothat, despite the fact that the transformation Iy is the
of Eqg. (1) to obtain[12] consequence of transformation 148), they are different in
the following respect: transformation lai§) is well defined
’;g:Xa(p;)\zl):Xng g“(xp)+%§“ﬁ§5+ 0(&), (38) for any tensor given only at the poimt, while Eq. (8) is
defined only for tensofields.

which we can write in short-hand notation as In the derivations which follow below we make substan-
tial use of some properties of the Lie derivatives and ele-
Xg(p;)\zl):(eéﬁﬂlﬁxﬁxa)P_ (4) ments of functional calculus. Therefore, for the convenience

of the reader we would like to recall some basic useful facts
£ from functional analysis and from the theory of Lie deriva-
Thus the general coordinate transformation x on M gen-  tives. Readers not interested in these formal considerations

erated by the vector fielg*(x) can be written as may skip to the next section.
Let us consider a tensor field(x) (e.g., Riemann tensor
x4 Y@= gtfilaxPya (5) or Einstein tensgrwhich is formed from the metric tensor
g(x) and its derivativegig/dx, .. ., that is,

Conversely, given any two coordinate systexfiand X on
M which are not too distant, we can find the vector field

£%(x) which generates the coordinate transformatioasx Applving the operator expfL.) to G(x). we obtain the
in the sensé5). Of course, in such a way we cannot cover all ppying P PLLe) (),

possible coordinate transformatioris3]. However, the class value_of th|s_, tensor, denote@(x) at the~p0|nt7?, whose
of transformations described above is wide enough for oufoordinates in the new coordinate frame a(a) =x. On the
purposes. other handG(x) in the framex can also be calculated from

G(xX)=G[d/x,g(x)]. 9
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the metric tensoa(x)=[exp(—£§)g](x) and its derivatives
ag(x)/dx, . . . ,according to the prescriptiof®). The results
should coincide and, therefore, one can concl(ske Ref. 17
[15] for an explicit proof of this nontrivial fagtthat

AR =AXIB = J A%(x,1)B,(x,t)dxdt

We shall write functional derivatives using the following

9 short-hand notation:
(e75G)(x) =G| ——.(e"“g)(x) |, (10)
X 5G, G
= 7 EG’a/. (18)
that is, the Lie derivative can be taken through the deriva- sg(x’) 892

tives d/ 9x without “changing” them in expressions where )
these derivatives are used to build the tengers., Riemann  For instance, the useful formula
tensoj out of the other tensor&.g., metric tensor
We will be interpreting functionsG(x) = G[ d/dx,g(x) ] r G(x)=f dix’ 5G(x)£ a(x’) (19
defined on the manifold\t as the parametrized set of func- ¢ sg(x') © ’
tionalsG, defined on the space of functiogéx’) according
to the formula which follows from Eq.(10), in condensed notation, takes
the form

GXEG[a/ax,g(x)]=f Glalox’,g(x")]8(x—x")dx’, L£:G=G 4(L:9)?, (20)
11

where in addition we omitted all “irrelevant” indices.

where §(x—x") is the Diracé function. Then the functional

derivative 6G,/5g(x’') can be defined in the standard way: l1l. BACK-REACTION PROBLEM
FOR COSMOLOGICAL PERTURBATIONS

5GX:J [ 6G,/89(x")]16g(x")dx’, (12 We consider a homogeneous, isotropic Universe with
small perturbations. This means we can find a coordinate

system {,x') in which the metric ¢,,) and matter ¢)

fields, denoted for brevity by the collective varialjg, can

be written as

where 6G, is the change of the function&®, under an in-
finitesimal variation ofg(x'): g(x')—g(x’)+ &g(x’).
If, for instance,G,=g(x), then
9?=q5+ 692, (21
0Gx= 6g(x)—f A(x=x")6g(x’)dx’, (13 where the background fielgf is defined as a homogeneous
part ofg? on the hypersurfaces of constant titand, there-
and comparing this formula with E412), we deduce that  fore, g3 depends only on the time variabigwe recall that
the variables andx' are included in the inde&). The per-
6Gy . turbationség? depend on both time and spatial coordinates,
59(x) = 8(x=x"). (14 and by assumption they are small:

a| <z a
As another example, consid&,= d%g(x)/dx?. Using the | 607 <dg. (22

definitions(11) and(12), one gets From our definition of the background componetit fol-

lows that the spatial average 6§ vanishes:

5G, 92
- =—,25(x—x’). (15
Sg(x")  ax 5q2d3x
. Y
In the following, the functional derivativeF,, (69%)= lim ———=0. (23)
=6G,/6g(x") will be treated as an operator which acts on Voo fvd?’x

the functionf(x’) according to the rule:

Spatial averaging is defined with respect to the background
FXX,*f(X’):f Foo F(x))dX . (16) metric, not with respect to the perturbed metric as was done
in Ref.[10]. Our definition is the appropriate one when es-
. - . tablishing what “perturbations” are and when constructing
We will also use Dewitt's condensed notatift6] and as- e general back-reaction framework. The averaging of Ref.
sume that continuous varilables>(') are included in the in- [10] is appropriate when discussing the “expected” values
dices, e.g. A*(X' ,t)=Al**D=A2 wherea is used as the of physical quantities for real observers in systems with fluc-
collective variable to denoten(x',t). In addition, we adopt tuations on scales smaller than the Hubble radius.
as a natural extension of the Einstein summation rule that The Einstein equations
“summation” over repeated indices also includes integration

over appropriate continuous variables: e.g., G,,—8nGT,,:=1I1,,=0 (24
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can be expande;d ina functional power serleﬁaﬁ about T(qo)=— %(H,ab5qa5qb>@ﬂ(ao)= _ %<H'ab5a‘a5’ab>
the backgroundy, if we treatG,,, andT ,, as functionals of (32)
9%,
(to second order in perturbation variableMaking use of
I1(q§) +11 ol q280%+ 311 4p|qad9®6q°+ O(89%) =0. Egs.(30) and(31), we obtain
(25) ~
T1(qo) =TI(do) —IT a{£6%) + 311 o( Ld5) (33
To lowest order the backgrourgf should obey the Ein-

stein equations and
T(g3)=0 (26) = 3(I1ap30°6G°) = — (I apdq°50°)  (34)
and the fluctuation$g® satisfy the linearized Einstein equa- +(I1 4pL055q°)
tons - %<H,ab£§q3£§q8>'
IT 4(00) 59°=0. (27)

In order to show that the extra terms on the right-hand sides
of Egs.(33) and(34) cancel out in Eq(32), we make use of

By definition, the spatial average of the linear termsagf in Eq. (19) in the equation

Eq. (25) vanishes. The term quadratic &ig®, however, does
not. Therefore, the spatial averaging of E&5) leads to ~Le DII(An+ 8a)) =0 35
higher order corrections in the equations describing the be- {(e Mo+ 6))=0. 39
havior of the homogeneous background mode. Thus the:ypanding this equation to second order in perturbations, we
“corrected” equations which take into account the back re-gptain the identity

action of small perturbations on the evolution of the back-

ground are LI oL203) + 3(TT ap L 05L,05) — (1T 4L,5G%)
I1(g) = — 3(I1 4p6g?5q°). (28) — (1T 4pLq559°) =0, (36)

At first sight, it seems natural to identify the quantity on Which completes the proof that the extra terms mentioned
the right-hand side of Eq28) as the effective EMT of per- above cancel out.
turbations which describes the back reaction of fluctuations
on the homogeneous background. However, it is not a gauge- IV. GAUGE-INVARIANT FORM
invariant expression and, for instance, does not vanish for OF THE BACK-REACTION EQUATIONS

“metric perturbations” induced by a coordinate transforma- ) , i
tion in Minkowski space-time. Although we have shown in the previous section that the

In the next section we will rewrite the back-reaction equa-Physical content of Eq(28) should be the same in all coor-
tions in a manifestly gauge-invariant form. First, however,dinate systems, it is useful for many purposes to recast this
we want to show that the physical content of E8) is equation in an explicitly gauge-invariant way. In particular,

independent of the gauge chosen to do the calculation ifhis Will allow us to define a gauge-invariant EMT for cos-

provided that we take into account that the background varifological perturbations. ,
We start by writing down the metric for a perturbed spa-

ables change to second order under a gauge transformation. : . _
The coordinate transformatiai@) induces(to second or- tally flat Friedmann-Robertson-WalkéFRW) universe:
der in perturbation variablgshe following diffeomorphism

_ 2_ __ i
transformation of a variablg: ds’=(1+2¢)dt*—2a(t)(B;— §)dxdt (37)

0= 0o+ 3q— e~ C4(do+ 80) = Go-+ 80— Lello— L0 ~aNOL(A=2) 8+ 2B+ Fi+Fy iy

igxi
n %EEQO- 29 xXdx'dx,
) ) wherea(t) is the scale factor, and where the three-scalars
Hence, to linear order, the changedq is ¢, ¥, B, andE characterize scalar metric perturbations. The
_ symbolsS; andF; are transverse three-vectdgsving vector
69— 69=060q— Lo, (30 fluctuations, and h;; is a traceless transverse three-tensor

(gravity waves.
while, to second order, the background variable transforms We will now attempt to construct gauge-invariant vari-

nontrivially as ablesQ from the gauge-dependent quantitgsTo do that
let us take the set of four quantitieg€* (not necessarily a

qo—>ao=qo—(£§5q>+%<£§qo>, (31)  four-vectoy and form a Lie operator wittX* (denoted by
Ly), treatingX* formally as a four-vector. Later on, after we

where(¢)=0 has been assumed. specify the properties whickK* should satisfy if we want it

In order to prove that Eq28) is independent of gauge, to help build gauge-invariant variables, we will then con-
we must show that structX* explicitly out of the metric perturbation variables.
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However, let us leaveX* unspecified for a moment. Using can be interpreted as the gauge-invariant effective EMT for
Ly we define the new variabl@ according to the prescrip- cosmological perturbations.
tion At this point, however, we must return to the question of
whatX* is. It is a question of linear algebra to find the linear
Q=e"xq. (38 combinations of the perturbation variables of Eg7) that

. , have(to linear ordey the required transformation properties:
If we attempt the same construction after performing a gaug&ammay

transformation(with parametert), then taking into account

that as a result of this transformatidti-X and XH— X#+ g, (49
q—q=e “aq, (399  The solution we will use is
we obtain X#=[a(B-aE),—E;~F], (50
Q(x) =e%e Leq(x) (40) where an overdot denotes a derivative with respect to the

time variablet. But this choice is not unique. There is a
If we demand thaQ is gauge invariant, that i€)=Q, then four-paramet_er family of possible ch0|cesolff1beled by real pa-
comparing Eqs(38) and(40), we arrive at the condition rametersa, @, y, ando. The componenX® is
efx=efxelt, (41) o : a
X°=qa(B—aE)+(1-a)| —¢|, (51)
which imposes strong restrictions on the transformation law a

X—X. From Eq.(41) and by using the Baker-Campbell- the X' components have a traceless piece
Hausdorff formula for the products of exponentials of opera-

tors, one can easily find that the condition for gauge invari- i vt 1
ance ofQ implies that under a diffeomorphism generated by Xy=—oFi+(1-0) J’Odt 2 3(t) (52
3
- and a trace
XU XP= XM+ EH+ S X, E]4+ - - -, (42) _
X=X, (53

where the ellipsis denotes terms of cubic and higher order. _ _
Note thatQ is a gauge-invariant variable characterizingwith the functionX, defined as
both the background

t 111 _
Q3= a8+ (Lx00%) + (L38) 43 R K E[EXO(““ )= )}'

o : (54)
and the linearized perturbations

Finally,
Q%= 502+ L. (44) o
X'=X5+X] . (55
Making use of the gauge-invariant varialilewe can re-
cast the back-reaction proble(@8) in a manifestly gauge- Demanding regularity in the limit where the expansion rate

invariant form. Ifq satisfies the Einstein equations, it follows vanishes forces:= a=1. In this case, the dependence pn

from our basic identity(10) that drops out of Eq(54) and we are left with a one-parameter
degeneracy oK* labeled byo.
e511(q) =T1(exq)=T1(Q) =0, (a5 CoIeneray Yo
Expanding the above equation to second ordep@ and V. ENERGY-MOMENTUM TENSOR
taking the spatial average of the result yields FOR SCALAR PERTURBATIONS

1 1 In this and the following section, we calculate the effec-
I1(Qo) = — (I ap8Q"0Q") = ~ 3(G 2p0Q3Q") tive EMT for scalar and '?ensor perturbations, respectively.
+47TG<T,ab5Qa5Qb>v (46) Since vector modes decay in an expanding Universe, we
shall in the following take them to be absent.
which is the desired gauge-invariant form of the back- In models such as the inflationary Universe scenario, sca-
reaction equation. Reinserting tensor indices, the abovkar and tensor modes are statistically independent Gaussian

equation can be rewritten as random fields. In this case, the effective ENIB) separates
into two independent pieces, the first due to the scalar per-
GL(Qo)=87G[T,,(Qo)+ 7,,(5Q)], (47 turbations, the second due to the tensor modes,
where T, 8Q) = T2 8Q) + 750 6Q). (56)
=_ asAb ote that if we neglect vector perturbations then it is
Tu 0Q)= 167G (M10,209Q%6Q%) (“48) enough to consider only scalar modes<it. Hence, the con-
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tribution to the effective EMT, Eq(48), coming from the respect to the background metric. Expanding the energy-
term Lxq§ appearing insQ? is a contribution tcrsca'aralone. momentum tensor for a scalar field,

It is easy to verify that for our choice of*, namely,
. Tu=0,u0=9ul2¢ 00— V(¢)] (64)
X*=[a(B—aE),—E,;], (57
to second order ibe and 6g and combining it with the

. a . .
the variablessQ?® of Eq. (44) for the metric perturbations result forGEf,} we obtain, from Eq/(48),

correspond to Bardeen’s gauge-invariant variapled. In
fact, the application of Eq(44) yields the gauge-invariant

. 1 . .
metric tensor T0=g gL+ 12H(pp)—3(($)?)+9a %((V¢)?)]
89'9)=069,.,+ Lxg\;) (58)

+3(80)?)+3a %((V3e)?) + 3V (¢0)(5¢7)

and from the time-time and diagonal spatial components, re- ,

spectively, we immediately obtain the two gauge-invariant T2V (go){bd¢). (65)

variables: and
¢ 9=b=g¢+[a(B-ab)],

1 . . .
| o a5, g (2 16H) () +24H () +(( )
Y O=¥=y—a(B—akE). (59

AN 42 2 20 42\ Ly e’\2
For the remaining components of the metric tensor, the THbd) =32 (V) +400((dT)+2((99)7)

gauge-invariant co_mb|nat|ons vanish. _ _ _ _ %a72<(v5¢)2>_4¢0< 5¢¢>_ V(o) (5¢2)
Hence, calculating the general gauge-invariant effective

EMT, Eq. (48), reduces to calculating 66)

+2V'(@o){¢oe) (,

1
=— ——(I1,,, ap99?5q" 60
Tur 167TG< u.ab00"007) (€0 whereH is the Hubble expansion rate, and where we have

, o ) . used the fact thap = ¢ for theories in whichsT;; is diagonal
in longitudinal gauge B=E=0), in which at linear order.

Before discussing the long- and short-wavelength limits
of the equation of state satisfied by the cosmological pertur-
bations, let us briefly recall a few crucial points from the
theory of linear fluctuationgsee Ref[5] for a comprehen-
sive overview.

The simplest way to derive the equations of motion satis-

b= (62) fied by the gauge-invariant perturbation variables is to go to

longitudinal gaugeB=E=0), in which the gauge-invariant

Thus, in the longitudinal gauge the varialeentirely char- ~ variables® and ¥ coincide with the metric fluctuationg
acterizes the metric perturbations. We shall consider scal@nd . The equations of motio(27),
field matter, in which case the linear matter fluctuations are
described bySe. The motivation for our choice of matter oG, =8mGoTY, (67)
follows since we have applications of our formalism to in-
flationary cosmology in mind. The linearized Einstein equa-derived in this gauge coincide with the equations for
tions also relate’e and ¢. In fact, there is a single gauge- Bardeen’s gauge-invariant variables.
invariant  variable characterizing linearized scalar For scalar field matter, as mentioned abages . In this
fluctuations. case, the 00 and perturbation equations combine into a

We will now calculater?) for scalar perturbatiorfsnetric ~ second order differential equation fd» which on scales
(61)]. The contribution of the gravitational part to the effec- larger than the Hubble radius and for a time-independent
tive EMT can be easily calculated with the help of the for- background equation of state has the solution

mulas[see, e.g., in2], p. 965, Eq.35.59 a and §
’ P | . d(X,t)=c(X) (68)

ds?=(1+2¢)dt?—a?(t)(1-2y¢)5;dxdx.  (61)

For many types of matte(scalar fields included T;; is
diagonal to linear order idq. In this case, it follows from
the linearized Einstein equations that

RZ)=3R,.,,a009%69°= 5[5 691 89/ + 69°P(8Guapiun
pr 2unad o Bl Al (modulo the decaying modeThe G equations give a con-

+ 69 u1jap™ O auvg™ OYav|up) T 5g§ (69aulp straint relating¢ and S¢:
— 89 pula) — (89— 391) (8 auiv+ Y asfu ¢+ Hp=4mGpyde. (69)
= 69,.0a) ], (63)

Our aim is to work outr,,,, in an inflationary Universe. In
if we substitute in these expressions the meféit). In this  most models of inflation, exponential expansion of the Uni-
formula the vertical bar denotes covariant derivatives withverse results becausg is rolling slowly, i.e.,
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VA and
Po=" 3> (70) '
rij=a?8{3((8¢)?) —sa X(Ve)?)—3V"(¢0){ 8¢},
where a prime denotes the derivative with respect to the sca- (79
lar matter field. Thep term in Eq.(69) for the nondecaying which is a familiar result.
mode of perturbations is proportional to a small slow roll
parameter and, therefore, can be neglected. Thus from Egs.

(69) and(70), we obtain VI. ENERGY-MOMENTUM TENSOR

FOR GRAVITATIONAL WAVES

2V In the case of gravitational waves the metric takes the
Sp=—79. D form
\
— A2 2 i k
When considering the contributions of long-wavelength ds’=dt*—a%(t)(J+ hy) dx dx’, (80)

fluctuations tor,,,,, we can neglect all terms in Eq&5) and where h;, is defined as the transverse traceless part of the

(66) containing gradients and factors. Because of the metric perturbations and, therefore, the compondgig=
“slow-rolling” condition (70), the terms proportional t@3 h;; are gauge invariant themselves.
andH are negligible during inflatioribut they become im- In the absence of matter fluctuations, the effective EMT

portant at the end of inflationHence, in this approximation, 7, iS given by the first term in Eq46). Making use of the
second variation oR,,, given by Eq.(63) and the equation

To0=2V"(5¢?) +2V'($5p) (72)  of motion for gravitational waves
and ) o .
hij+3-h;j— = V?h;=0, (81)
3 1 a a2
Tijzazﬁij(EH2<¢2>— EV”(5¢2>+2V’<¢5¢>]_
(73) we obtain
Making use of Eq(71), this yields 8wefooza<hk/hk/>+é (hhy )+ ;(hk/,mhk/,m>
V”VZ o
pPs= 7'82( 2 NE: —4v <¢2> (74 (82
and
and ,
ps=—3m=—p"2. (75 87TG7’iJ':5iJ""‘2| Q<hk/,mhk/,m>_%<hk/hk/>]

Thus, we have shown that the long-wavelength perturba-

+1a2(hy )+ Yhe b N— 2 h.
tions in an inflationary Universe have the same equation of 28 M)+ i i ) = i i )-

stateps=—pg as t'he backgrou'nd. ' (83)
One of the main results which emerges from our analysis_ ) . )
is that The first expression can be interpreted as the effective energy

density of gravitational waves
p<0 (76)
Pow=To- (84)

for the long-wavelength cosmological perturbations in all re-
alistic inflationary models. Thus, the effectivg, counter- The relation betweem;; and the quantity which we could
acts the cosmological constant driving inflation. Note that thenaturally interpret as an effective pressure is not so straight-
same sign op emerges when considering the vacuum statdorward as it looks at first glance. The problem is that the
EMT of a scalar field in a fixed background de Sitter space€nergy-momentum tensor for the gravity wavegg, is not
time (see, e.g., Ref§18,19). conserved itself, that is;fjﬁﬁ 0. This is not surprising since

For short-wavelength fluctuationks$aH), both ¢ and the gravitational perturbations “interact” with the back-
d¢ oscillate with a frequencyk. In this casdsee Eq(69)], ground and only the total EMT must be conserved,

[T5(Qo)+ 7,(6Q)]},.=0. (89

as a consequence of Bianchi identities for background,
Hence, it follows by inspection that all terms containingn G5 (Qo)|,.=0. In fact, expanding the exact conservation law
Egs. (65 and (66) are suppressed by powerstdh/k com-  T4., =0 in perturbations to second order and averaging the
pared to the terms without dependencedoand, therefore, resulting equation we obtain

ia.
p~47G ?sooﬁcp- (77)

ro0=3((8¢)))+ 2 %(V6)2) + 1V (¢o)(8¢?) (78) Ta(Qolp=—("Tp)Ter (T, (86)
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Deriving Eq. (86) we took into account that in our case where A, is a constan{related to the spectrum of gravity
(when we have only gravity wavesatter perturbations are waves and ¢;; is the polarization tensor. Substituting this
absent. The energy-momentum tensor for the background solution in formula(82) we obtain the following expression
diagonal and isotropic, that i§3=p® andT,=-p(®s,.  for the energy density of the gravity waves to lowest order in

Also, we will consider only isotropic fields of gravitational k:
waves. In such a case the conservation (8%, taking into

account Eq(86), can be written down explicitly in a familiar 1 7K il
form as Pow= " 3G 8 5 —(IAl%e;€) (93
Pgwt 3H(pgu+ Pgw) =0, (87)  and correspondingly from Eq89) we derive that the pres-
sure is

where

Pgw=— %Pgw- (99
- 1 _ _<(2)I‘ﬁ >( ) 4 (0)) (89) - . .
Pow™= 3 7 P P Note that the whole contribution to the pressure in this case

comes from the first term in E¢88) . The energy density of
can be interpreted as the pressure of gravitational waves. long-wavelength gravity waves decays-aa 2.
The second term in Eq88) does not contribute to the In a radiation-dominated Universe the scale factor in-
pressure only in a de Sitter universe in whipf?)=—p©.  creases as

In this case the term-37, itself can be interpreted as a
pressure. A similar but a bit more complicated analysis can a(t)=
be done for the scalar perturbations, for which one-third of
the trace of the spatial part of the EMT can be interpreted ag
a pressure also only in a de Sitter universe.

As for scalar perturbations, we will now study the equa—
tion of state for gravity waves both in the short- and long-
wavelength limits in various models for the evolution of the hij=Agej;
Universe. First, assuming that the field of gravity waves is
isotropic and by averaging the diagonal elements of(B8).
we obtain the contribution of to the pressure

12
o %

nd the solution for long-wavelength gravity wavésgHa)

L k)2+o
~ 6laH

Inserting these results into Eq&2) and (83) yields

3
ikx

aH

87G . 7 5 . . EON———— N P 96
T T ahn)— mihhi). (69 P grg a9

For fluctuations with wavelength smaller than the Hubblean

radius, the first term on the right-hand side of E8R) and png—épgw- (97)

the second term in Eq88) are negligible and the time av-

erage of the temporal and spatial gradient terms are the sanle. this case both of the terms in E(B8) give comparable
Hence, contributions to the pressure, namely, the contribution of the
first term there i, = %pgw and the contribution of the sec-

ond term is negative and equal 3= —%pgw. As in the
previous case the energy density decays a&

1 1
pnggng:% E((hk/,mhk/,m» (90)

where (( )) indicate that in addition to spatial average, a
time average over a periobk<H ! has been taken. As ex-
pected, short-wavelength gravitational waves behave like ra- As an application of the formalism developed in this pa-
diation, independent of the evolution of the background, anger, we will study the effects of back reaction in inflationary
their energy density decays as*(t). cosmology. To be specific, we consider a single field chaotic
In the case of long-wavelength gravitational waves thenflation model[20] and take the inflaton potential to be
calculations are less straightforward. First, we consider a de
Sitter background: V(p)=3m?e?. (98)

VII. BACK REACTION IN INFLATIONARY UNIVERSE

a(t)=eMt-to), (92 Furthermore, we specify an initial state at a tithén which
the homogeneous inflaton field has the vadygt;) and the
wheret, is a reference time. Let us take an isotropic field offluctuations are minimal.

gravity waves with comoving wave numbeesFor the non- We will focus on the contribution of long-wavelength
decaying mode of long-wavelength gravity wavesa<H), modes to the effective EMT, which by assumption vanishes
the solution of Eq(8Y) is at the initial timet;. Provided thatey(t;) is sufficiently
5 3 large, the slow-rolling conditions are satisfied and exponen-
h =Ae. 1+E S iol 2] ] |eikx (92) tial expansion will commence. At this point, quantum
1 PE 2\aH aH ' vacuum fluctuations begin to generate perturbations on
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scales which “leave” the Hubble radiyse., whose physical ©o(ti)> @pr~m~ MY, (106)

wavelength becomes larger than the Hubble radidis time

proceeds, more modes leave the Hubble radius, and henggen the back reaction will become important before the end
the contribution to the effective EMT builds up. We wish to of inflation and may shorten the period of inflation. It is

estimate the magnitude of the resulting effective EMT. interesting to compare this value with the scale
As discussed in Sec. V, scalar metric perturbations in this
model are characterized by a single functigp (where k @oti)~pg=m~Y2M¥2, (107
stands for the comoving wave numhdfrom the constraint
equation(71) it follows that which emerges in the scenario of stochastic chaotic inflation
[21,22 as the “self-reproduction” scale beyond which quan-
O0Pk=~ ok - (99 tum fluctuations dominate the evolution @f(t). Notice that

@ @pr SiNCemM<Mp . Hence, even in the case when self-
reproduction does not take place, back-reaction effects can
be very important.

Alternatively, we can fixpg(t;) and use the expression
05 to determine at which value af, [denoted bypq(t;)]

back reaction becomes important, which presumably implies

Hence, the dominant terms in the effective energy-
momentum tensor,, [see Eqs(74) and (75)] are propor-
tional to the correlator ¢?). The amplitudes of¢, are
known from the theory of linear cosmological perturbations.(1
Using the results fogp, valid during inflation[5] we obtain

that inflation will end at that point. The result is
(A1) = fk‘dkw, 2= m’M3 fktdk[ H(ta(t)]? P
s kTR 32t oa(t) Ji; K K ' . m20(t;)32 08
(100 Polly —MP
wheret denotes physical time, amdp is the Planck mass. We will conclude this section with an analysis of the back
The integral runs over all modes with scales larger than theeaction of scalar perturbations on the evolution of the ho-
Hubble radus, L.e., mogeneous component of scalar fielg(t). The equation
k<ki(t)=H(t)a(t), (101) for the scalar fieldpy(t) taking into account the back reac-

tion of perturbations can be obtained if we start with the

but smaller than the Hubble radius at the initial titnei.e., ~ €Xact Klein-Gordon equation

k>ki=H(t)a(t)). (102 Ugy+sg( 0ot @) +V'(@o+ 8¢) =0, (109
The infrared cutoffk; is a consequence of our choice of expand it to second order in perturbatiofig, ¢, and take
initial state. the average. The result is
For the potentiaV(¢) considered here, the scale factoris _ )
given by (Po+3Ho)(1+4(p2)+V' +3V"(502) — 2($3)
2 ) ) L. . . 2 5
a(t)=a(t;)ex W[Qoo(ti)_@o(t)] - (103 —4<¢5<P>—6H<¢5<P>+4<Po<¢¢>—§<¢V d¢)=0.
P
The intregral ovek in Eqg. (100 can be calculated explicitly, (119
giving For long-wavelength perturbations in the inflationary Uni-
M2 [ 2702 3 verse, the term containing spatial derivativesdgf is negli-
(1))~ m™Me [ moo(ti) (104  gible. Hence, for potentigb8), Eq. (110 becomedsee[15]
32mied(t)| M2 for a detailed analysjs
Making use of Eq(74), we finally obtain the fractional con- . a. m?
tribution of scalar perturbations, to the total energy density $ot 35%: - m ®o- (111

4
’ (105  We conclude that the back reaction of perturbations on the

evolution of ¢4 becomes very important whefp?)~ 1, at

the same time as they become important for the evolution of
where p, is the background energy density of the homoge-the background geometry of space-time.

neous scalar fielay. In situations in which the rati¢105)
becomes of the order 1, back reaction becomes very impor-
tant.

Several consequences can be derived from(Hzp). First We have defined a gauge-invariant effective energy-
of all, back reaction may lead to a shortening of the period oimnomentum tensoEMT) of cosmological perturbations
inflation. Without back-reaction, inflation would end when which allows us to describe the back reaction of the pertur-
eo(t)~Mp (see, e.g.[20)). Inserting this value into Eg. bations on the evolution of background space-time. Our for-
(105, one can expect that if malism can be applied both to scalar and tensor perturbations

ps(t) 3 m%é(ti)[cpo(to

po 47 ML L eo(D)

VIIl. CONCLUSIONS
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and applies independent of the wavelength of the fluctua- Applied to the chaotic inflationary Universe scenario, we

tions. found that the back reaction of the generated perturbations
In particular, our analysis applies to cosmological pertur-on the evolution of the background can become very impor-

bations produced during a period of inflation in the verytant before the end of the inflation even if we start at an

early Universe. In this case, we have worked out the SpECifi@nergy scale below the “Se|f_reproduction scale.”

form of the effective EMT for both density perturbations and

gravitational waves. The contribution of long-wavelength
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