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We study the effective energy-momentum tensor~EMT! for cosmological perturbations and formulate the
gravitational back-reaction problem in a gauge-invariant manner. We analyze the explicit expressions for the
EMT in the cases of scalar metric fluctuations and of gravitational waves and derive the resulting equations of
state. The formalism is applied to investigate the back-reaction effects in chaotic inflation. We find that for long
wavelength scalar and tensor perturbations, the effective energy density is negative and thus counteracts any
preexisting cosmological constant. For scalar perturbations during an epoch of inflation, the equation of state
is de Sitter-like.@S0556-2821~97!02118-8#
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I. INTRODUCTION

It is well known @1–3# that gravitational waves propagat-
ing in some background space-time have an effect on the
dynamics of this background. A convenient way to describe
the back reaction of the fluctuations on the background is in
terms of an effective energy-momentum tensor~EMT!. In
the short wave limit, when the typical wavelength of gravi-
tational waves is small compared with the curvature of the
background space-time, they act as a radiative fluid with an

equation of statep5 1
3 r ~wherep andr denote pressure and

energy density, respectively!. The presence of a large amount
of gravity waves in the early Universe can lead to important
consequences for cosmology. For example, it can speed up
nucleosynthesis and lead to a higher fraction of helium, re-
sulting in constraints on models producing a too large ampli-
tude of gravitational waves in the early Universe~see, e.g.,
Ref. @4# and references quoted therein!.

In most models of the early Universe, scalar-type metric
perturbations are more important than gravity waves. On
length scales smaller than the Hubble radius, the amplitude
of scalar fluctuations increases in time, and, in most models,
scalar perturbations are responsible for seeding structure in
the Universe. In this paper, we study the back-reaction prob-
lem for both scalar and tensor perturbations~cosmological
perturbations and gravitational waves, respectively!. We de-
rive the effective EMT which describes the back reaction and
apply the result to calculate EMT for both long- and short-
wavelength fluctuations in particular models for the evolu-
tion of the Universe.

One of the main puzzles to be solved is the problem of
gauge invariance of the effective EMT. As is well known
~see, e.g., Ref.@5# for a comprehensive review!, cosmologi-
cal perturbations transform nontrivially under coordinate

transformations~gauge transformations!. However, the an-
swer to the question ‘‘how important are perturbations for
the evolution of a background’’ must be independent of the
choice of gauge, and hence the back-reaction problem must
be formulated in a gauge-invariant way.

In a recent Letter@6#, we demonstrated how the back-
reaction problem can be set up in a gauge-invariant manner.
We applied the result to estimate the magnitude of back-
reaction effects in the chaotic inflationary Universe scenario.
In this paper, we study in more detail the effective EMT of
cosmological perturbations. In particular, we derive the
equation of state satisfied by this EMT. As we show, the
back-reaction effects of gravity waves and of scalar fluctua-
tions decouple. In the short-wavelength limit, we recover the

resultp5 1
3 r for gravity waves. In the long-wavelength limit,

scalar fluctuations about a de Sitter background have an
equation of statep'2r with r,0.

The study of back-reaction effects for gravitational waves
goes back a long way. Following pioneering work of Brill
and Hartle@7#, Isaacson@8# defined an effective EMT for
gravitational waves which was shown to be gauge invariant
for high-frequency waves after averaging over both space
and time. This prescription only makes sense, however,
when considering fluctuations on scales much smaller than
those characterizing the background. In applications to phys-
ics of the very early Universe the fluctuations of interest have
wavelengths larger than the Hubble radius and a frequency
smaller than the expansion rate. Hence, Isaacson’s procedure
for defining an effective EMT is inapplicable.

Back-reaction effects for density inhomogeneities have
been considered only recently, and even then without ad-
dressing questions of gauge dependence. The focus of the
early work of Futamase and co-workers@9# and of Seljak and
Hui @10# was on effects of inhomogeneities on local observ-
ables such as the expansion rate of the Universe. For a recent
study of this issue in the context of Newtonian cosmology,
the reader is referred to the work of Buchert and Ehlers@11#.
The focus of our work, on the other hand, is to formulate the
back-reaction problem in general relativity in a gauge-
invariant manner.
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The outline of this paper is as follows. In the following
section we formulate some useful properties of diffeomor-
phism transformations. The back-reaction problem is set up
in Sec. III and then in the next section we recast the back-
reaction problem in terms of gauge-invariant variables. In
Sec. V we first demonstrate that the contributions of scalar
and tensor fluctuations to the effective EMT do not interfere
in the leading approximation. We then study in detail the
effective EMT for scalar perturbations, focusing on the equa-
tions of state obtained in the long- and short-wavelength lim-
its. In Sec. VI we derive the effective EMT for gravitational
waves. As an application, we consider the back reaction of
cosmological perturbations in the chaotic inflationary Uni-
verse scenario. We summarize our results in Sec. VIII.

II. GAUGE TRANSFORMATIONS

The gauge group of general relativity is the group of dif-
feomorphisms. A diffeomorphism corresponds to a differen-
tiable coordinate transformation. The coordinate transforma-
tion on the manifoldM can be considered as generated by a
smooth vector fieldja. Let us take some coordinate system
xa onM in which, for instance, some arbitrary pointP of
that manifold has coordinatesxP

a . The solution of the differ-
ential equation

dxa~P;l!

dl
5ja@x~P;l!#, ~1!

with initial conditions

xa~P;l50!5xP
a , ~2!

defines the parametrized integral curvexa(l)5xa(P;l)
with the tangent vectorja(xP) at P. Therefore, given the
vector fieldja onM we can define an associated coordinate
transformation on M as, for instance,

xP
a→

j

x̃ P
a5xa(P;l51) for any givenP. Assuming thatja is

small one can use the perturbative expansion for the solution
of Eq. ~1! to obtain@12#

x̃ P
a5xa~P;l51!5xP

a1ja~xP!1 1
2 j ,b

a jb1O~j3!, ~3!

which we can write in short-hand notation as

xP
a~P;l51!5~ejb]/]xb

xa!P . ~4!

Thus the general coordinate transformationx→
j

x̃ onM gen-
erated by the vector fieldja(x) can be written as

xa→ x̃a5ejb]/]xb
xa. ~5!

Conversely, given any two coordinate systemsxa and x̃a on
M which are not too distant, we can find the vector field
ja(x) which generates the coordinate transformationsx→ x̃
in the sense~5!. Of course, in such a way we cannot cover all
possible coordinate transformations@13#. However, the class
of transformations described above is wide enough for our
purposes.

The variables which describe physics on the manifoldM
are tensor fieldsQ. Under coordinate transformationsx→ x̃
the value ofQ at thegiven point P of the manifoldtrans-
forms according to the well-known law

Q~xP!→Q̃~ x̃ P!5S ] x̃

]x
D

P

•••S ]x

] x̃
D

P

Q~xP!. ~6!

Note that both sides in this expression refer to the same point
of manifold which has different coordinate values in differ-
ent coordinate frames, that is,x̃ P5xP . The question about
the transformation law for the tensor fieldQ can be formu-
lated in a different way. Namely, given two different points
P andP̃, which have the same coordinate values in different
coordinate frames, that is,x̃ P̃5xP , we could ask how to
express the components of the tensor in the coordinate frame
x̃ at the pointP̃ ~denoted byQ̃P̃) in terms of Q and its
derivatives given in the framex at the pointP. The answer to
this question is found with the help of Lie derivatives with
respect to the vector fieldj which generates the appropriate
coordinate transformationx→ x̃ according to Eq.~5!. Its in-
finitesimal form is given in some books on general relativity
~see, e.g., Ref.@14#!:

Q̃~ x̃ P̃5x0!5@Q2LjQ1O~j2!#~xP5x0!, ~7!

whereLj denotes the Lie derivative with respect to the vec-
tor field j. Transformation~7! is the infinitesimal form of the
gauge transformations of the diffeomorphism group. The fi-
nite form of it is obtained by exponentiating Eq.~7!:

Q~x!→Q̃~x!5~e2LjQ!~x!5Q~x!2~LjQ!~x!

1 1
2 ~LjLjQ!~x!1O~j3!. ~8!

Equations~7! and ~8! are tensor equations, where for nota-
tional convenience, tensor indices have been omitted. Note
that, despite the fact that the transformation law~8! is the
consequence of transformation law~6!, they are different in
the following respect: transformation law~6! is well defined
for any tensor given only at the pointP, while Eq. ~8! is
defined only for tensorfields.

In the derivations which follow below we make substan-
tial use of some properties of the Lie derivatives and ele-
ments of functional calculus. Therefore, for the convenience
of the reader we would like to recall some basic useful facts
from functional analysis and from the theory of Lie deriva-
tives. Readers not interested in these formal considerations
may skip to the next section.

Let us consider a tensor fieldG(x) ~e.g., Riemann tensor
or Einstein tensor! which is formed from the metric tensor
g(x) and its derivatives]g/]x, . . . , that is,

G~x![G@]/]x,g~x!#. ~9!

Applying the operator exp(2Lj) to G(x), we obtain the
value of this tensor, denotedG̃(x) at the pointP̃, whose
coordinates in the new coordinate frame arex̃ (x)5x. On the
other hand,G̃(x) in the framex̃ can also be calculated from
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the metric tensorg̃(x)5@exp(2Lj)g#(x) and its derivatives
] g̃(x)/]x, . . . , according to the prescription~9!. The results
should coincide and, therefore, one can conclude~see Ref.
@15# for an explicit proof of this nontrivial fact! that

~e2LjG!~x!5GF ]

]x
,~e2Ljg!~x!G , ~10!

that is, the Lie derivative can be taken through the deriva-
tives ]/]x without ‘‘changing’’ them in expressions where
these derivatives are used to build the tensors~e.g., Riemann
tensor! out of the other tensors~e.g., metric tensor!.

We will be interpreting functionsG(x)5G@]/]x,g(x)#
defined on the manifoldM as the parametrized set of func-
tionalsGx defined on the space of functionsg(x8) according
to the formula

Gx[G@]/]x,g~x!#5E G@]/]x8,g~x8!#d~x2x8!dx8,

~11!

whered(x2x8) is the Diracd function. Then the functional
derivativedGx /dg(x8) can be defined in the standard way:

dGx5E @dGx /dg~x8!#dg~x8!dx8, ~12!

wheredGx is the change of the functionalGx under an in-
finitesimal variation ofg(x8): g(x8)→g(x8)1dg(x8).

If, for instance,Gx5g(x), then

dGx5dg~x!5E d~x2x8!dg~x8!dx8, ~13!

and comparing this formula with Eq.~12!, we deduce that

dGx

dg~x8!
5d~x2x8!. ~14!

As another example, considerGx5]2g(x)/]x2. Using the
definitions~11! and ~12!, one gets

dGx

dg~x8!
5

]2

]x82
d~x2x8!. ~15!

In the following, the functional derivative Fxx8
5dGx /dg(x8) will be treated as an operator which acts on
the functionf (x8) according to the rule:

Fxx8* f ~x8!5E Fxx8 f ~x8!dx8. ~16!

We will also use DeWitt’s condensed notation@16# and as-
sume that continuous variables (t,xi) are included in the in-
dices, e.g.,Aa(xi ,t)5A(a,xi ,t)5Aa, wherea is used as the
collective variable to denote (a,xi ,t). In addition, we adopt
as a natural extension of the Einstein summation rule that
‘‘summation’’ over repeated indices also includes integration
over appropriate continuous variables: e.g.,

AaBa5A~a,x,t !B~a,x,t !5(
a

E Aa~x,t !Ba~x,t !dxdt.

~17!

We shall write functional derivatives using the following
short-hand notation:

dGx

dg~x8!
[

dG

dga8
[G,a8. ~18!

For instance, the useful formula

LjG~x!5E d4x8
dG~x!

dg~x8!
Ljg~x8!, ~19!

which follows from Eq.~10!, in condensed notation, takes
the form

LjG5G,a~Ljg!a, ~20!

where in addition we omitted all ‘‘irrelevant’’ indices.

III. BACK-REACTION PROBLEM
FOR COSMOLOGICAL PERTURBATIONS

We consider a homogeneous, isotropic Universe with
small perturbations. This means we can find a coordinate
system (t,xi) in which the metric (gmn) and matter (w)
fields, denoted for brevity by the collective variableqa, can
be written as

qa5q0
a1dqa, ~21!

where the background fieldq0
a is defined as a homogeneous

part ofqa on the hypersurfaces of constant timet and, there-
fore, q0

a depends only on the time variablet ~we recall that
the variablest andxi are included in the indexa). The per-
turbationsdqa depend on both time and spatial coordinates,
and by assumption they are small:

udqau!q0
a . ~22!

From our definition of the background componentq0
a it fol-

lows that the spatial average ofdqa vanishes:

^dqa&5 lim
V→`

E
V
dqad3x

E
V
d3x

50. ~23!

Spatial averaging is defined with respect to the background
metric, not with respect to the perturbed metric as was done
in Ref. @10#. Our definition is the appropriate one when es-
tablishing what ‘‘perturbations’’ are and when constructing
the general back-reaction framework. The averaging of Ref.
@10# is appropriate when discussing the ‘‘expected’’ values
of physical quantities for real observers in systems with fluc-
tuations on scales smaller than the Hubble radius.

The Einstein equations

Gmn28pGTmn :5Pmn50 ~24!
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can be expanded in a functional power series indqa about
the backgroundq0

a , if we treatGmn andTmn as functionals of
qa,

P~q0
a!1P ,auq

0
adqa1 1

2 P ,abuq
0
adqadqb1O~dq3!50.

~25!

To lowest order the backgroundq0
a should obey the Ein-

stein equations

P~q0
a!50 ~26!

and the fluctuationsdqa satisfy the linearized Einstein equa-
tions

P ,a~q0!dqa50. ~27!

By definition, the spatial average of the linear term indqa in
Eq. ~25! vanishes. The term quadratic indqa, however, does
not. Therefore, the spatial averaging of Eq.~25! leads to
higher order corrections in the equations describing the be-
havior of the homogeneous background mode. Thus the
‘‘corrected’’ equations which take into account the back re-
action of small perturbations on the evolution of the back-
ground are

P~q0
a!52 1

2 ^P ,abdqadqb&. ~28!

At first sight, it seems natural to identify the quantity on
the right-hand side of Eq.~28! as the effective EMT of per-
turbations which describes the back reaction of fluctuations
on the homogeneous background. However, it is not a gauge-
invariant expression and, for instance, does not vanish for
‘‘metric perturbations’’ induced by a coordinate transforma-
tion in Minkowski space-time.

In the next section we will rewrite the back-reaction equa-
tions in a manifestly gauge-invariant form. First, however,
we want to show that the physical content of Eq.~28! is
independent of the gauge chosen to do the calculation in,
provided that we take into account that the background vari-
ables change to second order under a gauge transformation.

The coordinate transformation~7! induces~to second or-
der in perturbation variables! the following diffeomorphism
transformation of a variableq:

q5q01dq→e2Lj~q01dq!5q01dq2Ljq02Ljdq

1 1
2Lj

2q0 . ~29!

Hence, to linear order, the change indq is

dq→d q̃5dq2Ljq0 , ~30!

while, to second order, the background variable transforms
nontrivially as

q0→ q̃05q02^Ljdq&1 1
2 ^Lj

2q0&, ~31!

where^j&50 has been assumed.
In order to prove that Eq.~28! is independent of gauge,

we must show that

P~q0!52 1
2 ^P ,abdqadqb&⇔P~ q̃0!52 1

2 ^P ,abd q̃ad q̃b&
~32!

~to second order in perturbation variables!. Making use of
Eqs.~30! and ~31!, we obtain

P~ q̃0!5P~q0!2P ,a^Ljdqa&1 1
2 P ,a^Lj

2q0
a& ~33!

and

2 1
2 ^P ,abd q̃ad q̃b&52 1

2 ^P ,abdqadqb& ~34!

1^P ,abLjq0
adqb&

2 1
2 ^P ,abLjq0

aLjq0
b&.

In order to show that the extra terms on the right-hand sides
of Eqs.~33! and~34! cancel out in Eq.~32!, we make use of
Eq. ~19! in the equation

^~e2Lj21!P~q01dq!&50. ~35!

Expanding this equation to second order in perturbations, we
obtain the identity

1
2 ^P ,aLj

2q0
a&1 1

2 ^P ,abLjq0
aLjq0

b&2^P ,aLjdqa&

2^P ,abLjq0
adqb&50, ~36!

which completes the proof that the extra terms mentioned
above cancel out.

IV. GAUGE-INVARIANT FORM
OF THE BACK-REACTION EQUATIONS

Although we have shown in the previous section that the
physical content of Eq.~28! should be the same in all coor-
dinate systems, it is useful for many purposes to recast this
equation in an explicitly gauge-invariant way. In particular,
this will allow us to define a gauge-invariant EMT for cos-
mological perturbations.

We start by writing down the metric for a perturbed spa-
tially flat Friedmann-Robertson-Walker~FRW! universe:

ds25~112f!dt222a~ t !~B,i2Si !dxidt ~37!

2a2~ t !@~122c!d i j 12E,i j 1Fi , j1F j ,i1hi j #

3dxidxj ,

wherea(t) is the scale factor, and where the three-scalars
f, c, B, andE characterize scalar metric perturbations. The
symbolsSi andFi are transverse three-vectors~giving vector
fluctuations!, and hi j is a traceless transverse three-tensor
~gravity waves!.

We will now attempt to construct gauge-invariant vari-
ablesQ from the gauge-dependent quantitiesq. To do that
let us take the set of four quantitiesXm ~not necessarily a
four-vector! and form a Lie operator withXm ~denoted by
LX), treatingXm formally as a four-vector. Later on, after we
specify the properties whichXm should satisfy if we want it
to help build gauge-invariant variables, we will then con-
structXm explicitly out of the metric perturbation variables.
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However, let us leaveXm unspecified for a moment. Using
LX we define the new variableQ according to the prescrip-
tion

Q5eLXq. ~38!

If we attempt the same construction after performing a gauge
transformation~with parameterj), then taking into account
that as a result of this transformationX→X̃ and

q→ q̃5e2Ljq, ~39!

we obtain

Q̃~x!5eLX̃e2Ljq~x!. ~40!

If we demand thatQ is gauge invariant, that is,Q̃5Q, then
comparing Eqs.~38! and ~40!, we arrive at the condition

eLX̃5eLXeLj, ~41!

which imposes strong restrictions on the transformation law
X→X̃. From Eq. ~41! and by using the Baker-Campbell-
Hausdorff formula for the products of exponentials of opera-
tors, one can easily find that the condition for gauge invari-
ance ofQ implies that under a diffeomorphism generated by
j,

Xm→X̃m5Xm1jm1 1
2 @X,j#m1•••, ~42!

where the ellipsis denotes terms of cubic and higher order.
Note thatQ is a gauge-invariant variable characterizing

both the background

Q0
a5q0

a1^LXdqa&1 1
2 ^LX

2q0
a& ~43!

and the linearized perturbations

dQa5dqa1LXq0
a . ~44!

Making use of the gauge-invariant variableQ we can re-
cast the back-reaction problem~28! in a manifestly gauge-
invariant form. Ifq satisfies the Einstein equations, it follows
from our basic identity~10! that

eLXP~q!5P~eLXq!5P~Q!50. ~45!

Expanding the above equation to second order indQ and
taking the spatial average of the result yields

P~Q0!52 1
2 ^P ,abdQadQb&52 1

2 ^G,abdQadQb&

14pG^T,abdQadQb&, ~46!

which is the desired gauge-invariant form of the back-
reaction equation. Reinserting tensor indices, the above
equation can be rewritten as

Gmn~Q0!58pG@Tmn~Q0!1tmn~dQ!#, ~47!

where

tmn~dQ![2
1

16pG
^Pmn,abdQadQb& ~48!

can be interpreted as the gauge-invariant effective EMT for
cosmological perturbations.

At this point, however, we must return to the question of
whatXm is. It is a question of linear algebra to find the linear
combinations of the perturbation variables of Eq.~37! that
have~to linear order! the required transformation properties:
namely,

Xm→Xm1jm. ~49!

The solution we will use is

Xm5@a~B2aĖ!,2E,i2Fi #, ~50!

where an overdot denotes a derivative with respect to the
time variablet. But this choice is not unique. There is a
four-parameter family of possible choices labeled by real pa-
rametersa, ā , g, ands. The componentX0 is

X05aa~B2aĖ!1~12a!S a

ȧ
c D , ~51!

the Xi components have a traceless piece

XTr
i 52sFi1~12s!E

0

t

dt8
1

a
Si~ t8! ~52!

and a trace

XL
i 5XL,i , ~53!

with the functionXL defined as

XL52gE1~12g!E
0

t

dt8
1

aF1

a
X0~ ā ;t8!2B~ t8!G .

~54!

Finally,

Xi5XTr
i 1XL

i . ~55!

Demanding regularity in the limit where the expansion rate
vanishes forcesa5 ā51. In this case, the dependence ong
drops out of Eq.~54! and we are left with a one-parameter
degeneracy ofXm labeled bys.

V. ENERGY-MOMENTUM TENSOR
FOR SCALAR PERTURBATIONS

In this and the following section, we calculate the effec-
tive EMT for scalar and tensor perturbations, respectively.
Since vector modes decay in an expanding Universe, we
shall in the following take them to be absent.

In models such as the inflationary Universe scenario, sca-
lar and tensor modes are statistically independent Gaussian
random fields. In this case, the effective EMT~46! separates
into two independent pieces, the first due to the scalar per-
turbations, the second due to the tensor modes,

tmn~dQ!5tmn
scalar~dQ!1tmn

tensor~dQ!. ~56!

Note that if we neglect vector perturbations then it is
enough to consider only scalar modes inXm. Hence, the con-
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tribution to the effective EMT, Eq.~48!, coming from the
termLXq0

a appearing indQa is a contribution totmn
scalaralone.

It is easy to verify that for our choice ofXm, namely,

Xm5@a~B2aĖ!,2E, i #, ~57!

the variablesdQa of Eq. ~44! for the metric perturbations
correspond to Bardeen’s gauge-invariant variables@17#. In
fact, the application of Eq.~44! yields the gauge-invariant
metric tensor

dgmn
~gi !5dgmn1LXgmn

~0! , ~58!

and from the time-time and diagonal spatial components, re-
spectively, we immediately obtain the two gauge-invariant
variables:

f~gi ![F5f1@a~B2aĖ!#•,

c~gi ![C5c2ȧ~B2aĖ!. ~59!

For the remaining components of the metric tensor, the
gauge-invariant combinations vanish.

Hence, calculating the general gauge-invariant effective
EMT, Eq. ~48!, reduces to calculating

tmn52
1

16pG
^Pmn,abdqadqb& ~60!

in longitudinal gauge (B5E50), in which

ds25~112f!dt22a2~ t !~122c!d i j dxidxj . ~61!

For many types of matter~scalar fields included!, Ti j is
diagonal to linear order indq. In this case, it follows from
the linearized Einstein equations that

f5c. ~62!

Thus, in the longitudinal gauge the variablef entirely char-
acterizes the metric perturbations. We shall consider scalar
field matter, in which case the linear matter fluctuations are
described bydw. The motivation for our choice of matter
follows since we have applications of our formalism to in-
flationary cosmology in mind. The linearized Einstein equa-
tions also relatedw andf. In fact, there is a single gauge-
invariant variable characterizing linearized scalar
fluctuations.

We will now calculatetmn
(2) for scalar perturbations@metric

~61!#. The contribution of the gravitational part to the effec-
tive EMT can be easily calculated with the help of the for-
mulas@see, e.g., in@2#, p. 965, Eq.~35.5g! a and b#

Rmn
~2!5 1

2 Rmn,abdgadgb5 1
2 @ 1

2 dgum
abdgabun1dgab~dgabumn

1dgmnuab2dgamunb2dganumb!1dgn
aub~dgamub

2dgbmua!2~dgub
ab2 1

2 dgua!~dgam;n1dganum

2dgmnua!#, ~63!

if we substitute in these expressions the metric~61!. In this
formula the vertical bar denotes covariant derivatives with

respect to the background metric. Expanding the energy-
momentum tensor for a scalar field,

Tmn5w ,mw ,n2gmn@ 1
2 w ,aw ,a2V~w!# ~64!

to second order indw and dg and combining it with the
result forGmn

(2) we obtain, from Eq.~48!,

t005
1

8pG
@112H^fḟ&23^~ḟ !2&19a22^~¹f!2&#

1 1
2 ^~dẇ !2&1 1

2 a22^~¹dw!2&1 1
2 V9~w0!^dw2&

12V8~w0!^fdw&, ~65!

and

t i j 5a2d i j H 1

8pG
@~24H2116Ḣ !^f2&124H^ḟf&1^~ḟ !2&

14^ff̈&2 4
3 a22^~¹f!2&#14ẇ0

2^f2&1 1
2 ^~dẇ !2&

2 1
6 a22^~¹dw!2&24ẇ0^dẇf&2 1

2 V9~w0!^dw2&

12V8~w0!^fdw&J , ~66!

whereH is the Hubble expansion rate, and where we have
used the fact thatf5c for theories in whichdTi j is diagonal
at linear order.

Before discussing the long- and short-wavelength limits
of the equation of state satisfied by the cosmological pertur-
bations, let us briefly recall a few crucial points from the
theory of linear fluctuations~see Ref.@5# for a comprehen-
sive overview!.

The simplest way to derive the equations of motion satis-
fied by the gauge-invariant perturbation variables is to go to
longitudinal gauge (B5E50), in which the gauge-invariant
variablesF and C coincide with the metric fluctuationsf
andc. The equations of motion~27!,

dGn
m58pGdTn

m , ~67!

derived in this gauge coincide with the equations for
Bardeen’s gauge-invariant variables.

For scalar field matter, as mentioned above,f5c. In this
case, the 00 andi i perturbation equations combine into a
second order differential equation forF which on scales
larger than the Hubble radius and for a time-independent
background equation of state has the solution

f~x,t !.c~x! ~68!

~modulo the decaying mode!. The 0i equations give a con-
straint relatingf anddw:

ḟ1Hf54pGẇ0dw. ~69!

Our aim is to work outtmn in an inflationary Universe. In
most models of inflation, exponential expansion of the Uni-
verse results becausew0 is rolling slowly, i.e.,
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ẇ0.2
V8

3H
, ~70!

where a prime denotes the derivative with respect to the sca-
lar matter field. Theḟ term in Eq.~69! for the nondecaying
mode of perturbations is proportional to a small slow roll
parameter and, therefore, can be neglected. Thus from Eqs.
~69! and ~70!, we obtain

dw52
2V

V8
f. ~71!

When considering the contributions of long-wavelength
fluctuations totmn , we can neglect all terms in Eqs.~65! and
~66! containing gradients andḟ factors. Because of the
‘‘slow-rolling’’ condition ~70!, the terms proportional toẇ0

2

and Ḣ are negligible during inflation~but they become im-
portant at the end of inflation!. Hence, in this approximation,

t00.
1
2 V9^dw2&12V8^fdw& ~72!

and

t i j .a2d i j H 3

pG
H2^f2&2

1

2
V9^dw2&12V8^fdw&J .

~73!

Making use of Eq.~71!, this yields

rs[t0
0>S 2

V9V2

V82
24VD ^f2& ~74!

and

ps[2 1
3 t i

i>2r~2!. ~75!

Thus, we have shown that the long-wavelength perturba-
tions in an inflationary Universe have the same equation of
stateps52rs as the background.

One of the main results which emerges from our analysis
is that

rs,0 ~76!

for the long-wavelength cosmological perturbations in all re-
alistic inflationary models. Thus, the effectivetmn counter-
acts the cosmological constant driving inflation. Note that the
same sign ofr emerges when considering the vacuum state
EMT of a scalar field in a fixed background de Sitter space-
time ~see, e.g., Refs.@18,19#!.

For short-wavelength fluctuations (k@aH), both f and
dw oscillate with a frequency}k. In this case@see Eq.~69!#,

f;4pG
ia

k
ẇ0dw. ~77!

Hence, it follows by inspection that all terms containingf in
Eqs.~65! and ~66! are suppressed by powers ofHa/k com-
pared to the terms without dependence onf and, therefore,

t00.
1
2 ^~dẇ !2&1 1

2 a22^~¹dw!2&1 1
2 V9~w0!^dw2& ~78!

and

t i j 5a2d i j $
1
2 ^~dẇ !2&2 1

6 a22^~¹dw!2&2 1
2 V9~w0!^dw2&%,

~79!

which is a familiar result.

VI. ENERGY-MOMENTUM TENSOR
FOR GRAVITATIONAL WAVES

In the case of gravitational waves the metric takes the
form

ds25dt22a2~ t !~d ik1hik!dxidxk, ~80!

wherehik is defined as the transverse traceless part of the
metric perturbations and, therefore, the componentsdgik[
hi j are gauge invariant themselves.

In the absence of matter fluctuations, the effective EMT
tmn is given by the first term in Eq.~46!. Making use of the
second variation ofRmn given by Eq.~63! and the equation
of motion for gravitational waves

ḧi j 13
ȧ

a
ḣi j 2

1

a2
¹2hi j 50, ~81!

we obtain

8pGt005
ȧ

a
^ḣkl hkl &1 1

8 S ^ḣkl ḣkl &1
1

a2
^hkl ,mhkl ,m& D

~82!

and

8pGt i j 5d i j a
2H 3

8a2
^hkl ,mhkl ,m&2 3

8 ^ḣkl ḣkl &J
1 1

2 a2^ĥikḣk j&1 1
4^hkl ,ihkl , j&2 1

2 ^hik,l hjk,l &.

~83!

The first expression can be interpreted as the effective energy
density of gravitational waves

rgw5t0
0 . ~84!

The relation betweent i j and the quantity which we could
naturally interpret as an effective pressure is not so straight-
forward as it looks at first glance. The problem is that the
energy-momentum tensor for the gravity wavestmn is not
conserved itself, that is,tnum

m Þ0. This is not surprising since
the gravitational perturbations ‘‘interact’’ with the back-
ground and only the total EMT must be conserved,

@Tn
m~Q0!1tn

m~dQ!# um50. ~85!

as a consequence of Bianchi identities for background,
Gn

m(Q0) um50. In fact, expanding the exact conservation law
Tn;m

m 50 in perturbations to second order and averaging the
resulting equation we obtain

Ta
b~Q0! ub52^~2!Gbg

b &Ta
g1^~2!Gab

g &Tg
b. ~86!
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Deriving Eq. ~86! we took into account that in our case
~when we have only gravity waves! matter perturbations are
absent. The energy-momentum tensor for the background is
diagonal and isotropic, that is,T0

05r (0) and Tk
i 52p(0)dk

i .
Also, we will consider only isotropic fields of gravitational
waves. In such a case the conservation law~85!, taking into
account Eq.~86!, can be written down explicitly in a familiar
form as

ṙgw13H~rgw1pgw!50, ~87!

where

pgw52
1

3
t i

i2
1

3H
^~2!Gb0

b &~r~0!1p~0!! ~88!

can be interpreted as the pressure of gravitational waves.
The second term in Eq.~88! does not contribute to the

pressure only in a de Sitter universe in whichp(0)52r (0).

In this case the term2 1
3 t i

i itself can be interpreted as a
pressure. A similar but a bit more complicated analysis can
be done for the scalar perturbations, for which one-third of
the trace of the spatial part of the EMT can be interpreted as
a pressure also only in a de Sitter universe.

As for scalar perturbations, we will now study the equa-
tion of state for gravity waves both in the short- and long-
wavelength limits in various models for the evolution of the
Universe. First, assuming that the field of gravity waves is
isotropic and by averaging the diagonal elements of Eq.~83!
we obtain the contribution oft to the pressure

2
8pG

3
t i

i5
7

24a2
^hkl ,mhkl ,m&2

5

24
^ḣkl ḣkl &. ~89!

For fluctuations with wavelength smaller than the Hubble
radius, the first term on the right-hand side of Eq.~82! and
the second term in Eq.~88! are negligible and the time av-
erage of the temporal and spatial gradient terms are the same.
Hence,

pgw5
1

3
rgw5

1

8pG

1

12a2
^^hkl ,mhkl ,m&& ~90!

where ^^ && indicate that in addition to spatial average, a
time average over a periodT!H21 has been taken. As ex-
pected, short-wavelength gravitational waves behave like ra-
diation, independent of the evolution of the background, and
their energy density decays asa24(t).

In the case of long-wavelength gravitational waves the
calculations are less straightforward. First, we consider a de
Sitter background:

a~ t !5eH~ t2t0!, ~91!

wheret0 is a reference time. Let us take an isotropic field of
gravity waves with comoving wave numbersk. For the non-
decaying mode of long-wavelength gravity waves (k/a!H),
the solution of Eq.~81! is

hi j 5Ake i j F11
1

2S k

aHD 2

1OS S k

aHD 3D GeikWxW, ~92!

where Ak is a constant~related to the spectrum of gravity
waves! and e i j is the polarization tensor. Substituting this
solution in formula~82! we obtain the following expression
for the energy density of the gravity waves to lowest order in
k:

rgw.2
1

8pG

7

8

k2

a2
^uAku2e i j e

i j & ~93!

and correspondingly from Eq.~89! we derive that the pres-
sure is

pgw.2 1
3 rgw . ~94!

Note that the whole contribution to the pressure in this case
comes from the first term in Eq.~88! . The energy density of
long-wavelength gravity waves decays as;a22.

In a radiation-dominated Universe the scale factor in-
creases as

a~ t !5S t

t0
D 1/2

, ~95!

and the solution for long-wavelength gravity waves (k!Ha)
is

hi j 5Ake i j F12
1

6S k

aHD 2

1OS S k

aHD 3D GeikWxW.

Inserting these results into Eqs.~82! and ~83! yields

rgw.2
1

8pG

5

24

k2

a2
^uAku2e i j e

i j & ~96!

and

pgw.2 1
3 rgw . ~97!

In this case both of the terms in Eq.~88! give comparable
contributions to the pressure, namely, the contribution of the

first term there isp15 21
5 pgw and the contribution of the sec-

ond term is negative and equal top252 16
5 pgw . As in the

previous case the energy density decays asa22.

VII. BACK REACTION IN INFLATIONARY UNIVERSE

As an application of the formalism developed in this pa-
per, we will study the effects of back reaction in inflationary
cosmology. To be specific, we consider a single field chaotic
inflation model@20# and take the inflaton potential to be

V~w!5 1
2 m2w2. ~98!

Furthermore, we specify an initial state at a timet i in which
the homogeneous inflaton field has the valuew0(t i) and the
fluctuations are minimal.

We will focus on the contribution of long-wavelength
modes to the effective EMT, which by assumption vanishes
at the initial time t i . Provided thatw0(t i) is sufficiently
large, the slow-rolling conditions are satisfied and exponen-
tial expansion will commence. At this point, quantum
vacuum fluctuations begin to generate perturbations on
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scales which ‘‘leave’’ the Hubble radius~i.e., whose physical
wavelength becomes larger than the Hubble radius!. As time
proceeds, more modes leave the Hubble radius, and hence
the contribution to the effective EMT builds up. We wish to
estimate the magnitude of the resulting effective EMT.

As discussed in Sec. V, scalar metric perturbations in this
model are characterized by a single functionfk ~where k
stands for the comoving wave number!. From the constraint
equation~71! it follows that

dwk.2w0fk . ~99!

Hence, the dominant terms in the effective energy-
momentum tensortmn @see Eqs.~74! and ~75!# are propor-
tional to the correlator̂ f2&. The amplitudes offk are
known from the theory of linear cosmological perturbations.
Using the results forfk valid during inflation@5# we obtain

^f2~ t !&5E
ki

ktdk

k
ufku25

m2M P
2

32p4w0
4~ t !

E
ki

ktdk

k F ln
H~ t !a~ t !

k G2

,

~100!

wheret denotes physical time, andM P is the Planck mass.
The integral runs over all modes with scales larger than the
Hubble radius, i.e.,

k,kf~ t !5H~ t !a~ t !, ~101!

but smaller than the Hubble radius at the initial timet i , i.e.,

k.ki5H~ t i !a~ t i !. ~102!

The infrared cutoffki is a consequence of our choice of
initial state.

For the potentialV(w) considered here, the scale factor is
given by

a~ t !5a~ t i !expS 2p

M P
2 @w0

2~ t i !2w0
2~ t !# D . ~103!

The intregral overk in Eq. ~100! can be calculated explicitly,
giving

^f2~ t !&;
m2M P

2

32p4w0
4~ t !

F2pw0
2~ t i !

M P
2 G 3

. ~104!

Making use of Eq.~74!, we finally obtain the fractional con-
tribution of scalar perturbationsrs to the total energy density

rs~ t !

r0
.2

3

4p

m2w0
2~ t i !

M P
4 Fw0~ t i !

w0~ t ! G4

, ~105!

wherer0 is the background energy density of the homoge-
neous scalar fieldw0. In situations in which the ratio~105!
becomes of the order 1, back reaction becomes very impor-
tant.

Several consequences can be derived from Eq.~105!. First
of all, back reaction may lead to a shortening of the period of
inflation. Without back-reaction, inflation would end when
w0(t);M P ~see, e.g.,@20#!. Inserting this value into Eq.
~105!, one can expect that if

w0~ t i !.wbr;m21/3M P
4/3, ~106!

then the back reaction will become important before the end
of inflation and may shorten the period of inflation. It is
interesting to compare this value with the scale

w0~ t i !;wsr5m21/2M P
3/2, ~107!

which emerges in the scenario of stochastic chaotic inflation
@21,22# as the ‘‘self-reproduction’’ scale beyond which quan-
tum fluctuations dominate the evolution ofw0(t). Notice that
wsr@wbr sincem!M P . Hence, even in the case when self-
reproduction does not take place, back-reaction effects can
be very important.

Alternatively, we can fixw0(t i) and use the expression
~105! to determine at which value ofw0 @denoted byw0(t f)#
back reaction becomes important, which presumably implies
that inflation will end at that point. The result is

w0~ t f !;
m1/2w0~ t i !

3/2

M P
. ~108!

We will conclude this section with an analysis of the back
reaction of scalar perturbations on the evolution of the ho-
mogeneous component of scalar fieldw0(t). The equation
for the scalar fieldw0(t) taking into account the back reac-
tion of perturbations can be obtained if we start with the
exact Klein-Gordon equation

hg01dg~w01dw!1V8~w01dw!50, ~109!

expand it to second order in perturbationsdg,dw, and take
the average. The result is

~ ẅ013Hẇ0!~114^f2&!1V81 1
2 V-^dw2&22^fdẅ&

24^ḟdẇ&26H^fdẇ&14ẇ0^ḟf&2
2

a2
^f¹2dw&50.

~110!

For long-wavelength perturbations in the inflationary Uni-
verse, the term containing spatial derivatives ofdw is negli-
gible. Hence, for potential~98!, Eq. ~110! becomes~see@15#
for a detailed analysis!

ẅ013
ȧ

a
ẇ052

m2

112^f2&
w0 . ~111!

We conclude that the back reaction of perturbations on the
evolution of w0 becomes very important when̂f2&;1, at
the same time as they become important for the evolution of
the background geometry of space-time.

VIII. CONCLUSIONS

We have defined a gauge-invariant effective energy-
momentum tensor~EMT! of cosmological perturbations
which allows us to describe the back reaction of the pertur-
bations on the evolution of background space-time. Our for-
malism can be applied both to scalar and tensor perturbations
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and applies independent of the wavelength of the fluctua-
tions.

In particular, our analysis applies to cosmological pertur-
bations produced during a period of inflation in the very
early Universe. In this case, we have worked out the specific
form of the effective EMT for both density perturbations and
gravitational waves. The contribution of long-wavelength
scalar fluctuations to the energy density has a negative sign
and thus counteracts the cosmological constant~note that this
effect is a purely classical one, in contrast with the quantum-
mechanical effects counteracting the cosmological constant
discussed in Refs.@18,19,23#!. The equation of state of the
effective EMT is the same as that of the background. The
contribution of long-wavelength gravitational waves to the
energy density also has a negative sign, and in this case the
equation of state isp521/3r. Note that an instability of de
Sitter space to long-wavelength fluctuations was also discov-
ered in Ref.@24#.

Applied to the chaotic inflationary Universe scenario, we
found that the back reaction of the generated perturbations
on the evolution of the background can become very impor-
tant before the end of the inflation even if we start at an
energy scale below the ‘‘self-reproduction scale.’’
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