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Topological defects can naturally be formed soon after bubble nucleation in the open inflation scenario. The
defects are not completely diluted away by the subsequent period of inflation in the bubble interior and can
produce observable large-scale microwave background anisotropies. Superheavy strings and monopoles at-
tached to the strings can act as gravitational lenses with angular separation between the images of up to an
arcminute.@S0556-2821~97!00118-5#

PACS number~s!: 98.80.Cq, 11.27.1d

I. INTRODUCTION

Until recently, a flat universe withV51 was regarded as
a firm prediction of inflationary models. However, the obser-
vational evidence for a flat universe is far from clear, and a
new class of models called ‘‘open inflation’’ has recently
become a subject of active investigation@1–3#. In these mod-
els, the visible universe is contained within a single bubble
which nucleated in an inflating false vacuum. The observed
homogeneity of the universe is ensured by a high symmetry
of the bubble, rather than by a large expansion factor, as in
the more familiar inflation models@4#. After nucleation, in-
flation continues for some time in the bubble interior, and the
corresponding number ofe-foldings can be adjusted to give
any value of the density parameterV betweenV50 and
V51.

The first models of open inflation@1,2# gave a fixed value
of V, and obtaining a value not too close to 0 or 1 required a
substantial amount of fine-tuning. A significant improvement
was made by Linde and Mezhlumian@3# who suggested a
number of models whereV is a continuous parameter taking
different values in different bubbles. The probability distri-
bution forV in such models was discussed in Ref.@5#, where
it was argued that, with the anthropic factor properly taken
into account, this distribution can naturally be peaked at an
intermediate value ofV. Open inflation may thus require no
more fine-tuning than ‘‘ordinary’’ inflation.

The purpose of this paper is to make a simple observation
that, in models of open inflation, topological defects are
likely to be formed soon after the bubble nucleation. The
defects will not be completely diluted away by the short
period of inflation in the bubble interior, and we may still be
able to observe them on very large scales comparable to the
curvature scale of the universe.

II. DEFECT FORMATION AND EVOLUTION

The models suggested by Linde and Mezhlumian involve
two scalar fields,f1 responsible for bubble nucleation and
f2 responsible for the slow-roll inflation inside the bubble.
For a specific example consider the model with a potential
@3#

U~f1 ,f2!5V~f1!1lf1
2f2

2 , ~1!

whereV(f1) has a metastable minimum atf150 and the
true minimum atf15h1 . The stage for open inflation is set
by the inflating false vacuum atf150. The corresponding
energy density isr15V(0), and thespacetime is nearly de
Sitter with an expansion rateH15(8pr1/3mP

2 )1/2, wheremP

is the Planck mass. Bubble nucleation can occur to a wide
range of values of the fieldf2 . The second stage of inflation
takes place whilef2 rolls towards its minimum atf250,
and the resulting density parameterV is determined by the
initial value of f2 at the time of bubble nucleation.

The metric in the bubble interior is well approximated by
the Robertson-Walker~RW! metric

ds25dt22a2~ t !@dz21sinh2z~du21sin2udf2!# ~2!

with a(t) satisfying

ȧ2215~8p/3mP
2 !ra2. ~3!

Here, r is the energy density measured by comoving RW
observers. The hypersurfacet50, wherea50, is the future
light cone of the bubble center at the moment of nucleation.
The coordinate system~2! has a singularity on this surface,
but the four-geometry is of course nonsingular.

For a generic shape of the potentialV(f1), the initial
radius of the bubbleR is comparable to the thickness of the
bubble wall. At t;R, whena(R);R and r;r1 , the field
f1 begins to oscillate aboutf15h1 , and at later times its
energy density scales such as that of nonrelativistic matter.
The initial bubble radius cannot exceed the horizon,
R&H1

21, and it is easily seen from Eq.~3! that the density
term is either negligible from the very beginning or becomes
negligible in a few Hubble times after the nucleation. Hence,
the bubble-universe is curvature-dominated, witha(t)'t
andr;r1(R/t)3.

The second period of inflation begins att;H2
21, where

H25(8pr2/3mP
2 )1/2, r25lh1

2f2i
2 andf2i is the initial value

of f2 at nucleation. Between the nucleation and second in-
flation, the bubble universe expands by a factor
f ;(H2R)21*H1 /H2;(r1 /r2)1/2. The value ofr2 is con-
strained to be smaller thanr1 , and since there is no reason
for r2 to be ;r1 , we expect that genericallyr2!r1 and
f @1. The fieldf2 evolves on a time scaleH2 /m2

2@H2
21 and
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remains essentially constant during the period between the
two inflations. Here,m25(2l)1/2h1!H2 is the mass of
f2 .

Defect formation between inflations can be triggered by
the same mechanisms as defect formation during inflation
which has been previously discussed in the literature@6–9#.
Let x be the field responsible for the defects and let us first
consider a model wherex has a nonminimal coupling to the
curvatureR:

Lx5u]mxu21M2uxu22kRuxu22lxuxu4. ~4!

We shall assume for definiteness thatx is a complex scalar
field. The effective mass squared ofx is

mx
252M21kR. ~5!

From Einstein’s equationsR58pr/mP
2 , and thus mx

2

changes sign atrc5M2mP
2 /8pk. This triggers a symmetry-

breaking phase transition resulting in the formation of cos-
mic strings with mass per unit lengthm;M2/lx . The phase
transition occurs between inflations provided that
r1.rc.r2 and M.H2 . These conditions require no fine-
tuning and can be naturally satisfied in a variety of models.

An alternative scenario is that thef2 particles are un-
stable with a lifetimet2,H2

21. Their decay products~call
them s! may then trigger the phase transition by a direct
interaction with x, e.g., Lxs52lxss2uxu2. If the decay
products off2 have enough time to thermalize, then the
corresponding phase transition is the ‘‘usual’’ thermal phase
transition.

Finally, there is one more mechanism which is specific to
open inflation. Suppose now thatx is coupled to the tunnel-
ing field f1 :

Lx5u]mxu22M2uxu21l1f1
2uxu22lxuxu4. ~6!

In the false vacuum,f150 and x50, while in the true
vacuumx has a nonzero expectation value. Now, there are
two possibilities. If a bubble nucleates with a nonzero value
of x, then this value will tend to be homogeneous throughout
the bubble universe, and no defects will be formed. Alterna-
tively, x50 at nucleation and defect formation does occur.
The initial value ofx is determined by the instanton solution
of the Euclidean field equations@10#. The four geometry of
this solution is compact, with a characteristic size;H1

21. If
this size is smaller than the length scales characterizing the
field x, M 21 andl1

21/2h1
21, thenx50 on the instanton. For

H1.M.H2 , the field x initially remains near zero, and
starts evolving att;M 21. This can be regarded as the time
of string formation.

If strings are formed att i;M 21, then the initial string
separation isj i;M 21, which corresponds to a comoving
scalez;1 in the metric~2!. In the course of the following
evolution, j is bounded from above by the horizon,t, and
from below by @a(t)/a(t i)#j i . Since both of these bounds
are;t, we havej;t all the way until the beginning of the
second inflationt&H2

21. To be more precise, the horizon in
metric ~2! with a(t)}t grows ast lnt and Spergel@11# has
argued that the characteristic scale of defects will grow as

j}t~ lnt !1/2. ~7!

This relation has also been obtained by Martins@12# using
the ‘‘one-scale’’ analytic model of string evolution@13#. In
most of the following discussion I disregard the logarithmic
factor in Eq.~7!.

During inflation, the strings are ‘‘frozen,’’ that is, they are
conformally stretched with their comoving scale remaining
at z;1. They start moving again att* ;V/H0 @or redshift
(11z* );V21#, when the curvature scalez;1 comes
within the horizon. Here,H0 is the value of the Hubble pa-
rameterH5ȧ/a at the present time. Att.t* the strings will
evolve in a scaling regime withj(t);t, and thus the comov-
ing scale of strings will remain comparable to the curvature
scale. The growth of density fluctuations in an open universe
ceases att.t* , and since the strings do not generate fluc-
tuations att,t* , they clearly could not be responsible for
structure formation. Yet, the mass scale of the strings can be
quite high and they can produce some observable effects.

In models where the phase transition is triggered by the
curvature or by the decay products off1 , it is possible to
havej i!t i . The strings will then evolve towards a scaling
regime with j(t);t, and for t i!H2

21 we may still have
j;t by the beginning of second inflation. However, the time
scale on which the string scale grows up tot is very model
dependent. For example, strings may be overdamped due to
their interaction with the decay products off1 . In this case
their evolution will be rather slow, and the comoving scale of
strings during inflation may bez!1. It is conceivable that
this scale can be small enough for strings to play a role in
structure formation.

Suppose now that the defects formed between inflations
are magnetic monopoles. The typical comoving separation of
the monopoles is thenz;1, and the resulting monopole den-
sity is totally negligible. However, the situation is drastically
changed if the monopoles get connected by strings at a sub-
sequent phase transition.

Strings can either be formed during inflation or in the
postinflationary epoch. The characteristic length scale of
string at formation is then much smaller than the monopole
separation; the strings connecting monopoles have Brownian
shapes, and there is a large number of closed loops. The
evolution of strings after inflation is initially identical to that
of topologically stable strings, without monopoles@9#. In the
course of the evolution, the characteristic length of strings
grows ast and becomes comparable to the monopole sepa-
ration at t;t* , so that we are left with monopole-
antimonopole pairs connected by more or less straight strings
of length l ;t* . At t.t* , the pairs oscillate and gradually
lose their energy by gravitational or gauge boson radiation.
The corresponding lifetimes are, respectively@14,15#,
tgr;t* /GgrGm and tb;mt* /am2. Here, Ggr;103 is a
numerical coefficient,a;1022 is the gauge coupling con-
stant, andm is the monopole mass. Since the symmetry-
breaking scale of the monopoles is greater than that of the
strings, we should havem2*m, and it is easily seen that
both lifetimestgr and tb are much greater than the present
age of the universe~provided thatV*0.1). Note that if
monopoles and strings are formed after inflation, then the
lifetime of the pairs is typically very short, and they decay
well before the end of the radiation era.
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III. OBSERVATIONAL EFFECTS

Let us first consider possible effects of ‘‘plain’’ cosmic
strings, without monopoles. Strings can produce double im-
ages of high-redshift galaxies and quasars@16#. The metric of
a straight string in an open universe is given@18# by the
same Eq.~2!, but with a modified range for the angular vari-
ablef, 0,f,2p2D, whereD58pGm is the deficit angle
andm is the mass per unit length of string. LetzO andzG be,
respectively, the coordinate distances from the string to the
observer and to the galaxy, and letu be the angle between
the string and the line of sight. Then it is easily shown that
the angular separation between the images is

d58pGm
sinhzG

sinh~zG1zO!
sinu. ~8!

Here, I have assumed for simplicity that the string is static
and thatGm!1. For zG ,zO!1, Eq. ~8! reduces to the ex-
pression for the angular separation in a spatially flat universe
@16#.

Moving strings induce discontinuous jumps in the micro-
wave background temperature@17,19#,

dT/T;8pbGmv, ~9!

wherev is the string velocity with respect to local comoving
observers andb;0.5 is a trigonometric factor. Att.t* , the
universe becomes curvature dominated and expands asa(t)
}t. This regime is ‘‘on the verge’’ of inflation, in the sense
that an expansion lawa(t)}ta with a.1 corresponds to a
power-law inflation. Since the strings are frozen during in-
flation, one can expect@20# their typical velocity in a
curvature-dominated universe to be well below that in a ra-
diation or matter-dominated universe (v r;vm;0.6).

The pattern of the microwave temperature fluctuations on
the sky is a superposition of the contributions of strings from
different redshifts betweenz* ;V21 and the present. The
highest density of strings corresponds to the largest redshifts
nearz* , and the typical angular separation of discontinuities
on the sky isumin;V. We expect temperature fluctuations of
magnitude~9! on scalesumin&u&1. To avoid conflict with
observations, we should requiredT/T&1025. With v;0.2
this gives a boundGm&1025. According to Eq.~8!, a string
with Gm;1025 can give double images with angular sepa-
rations of up to an arcminute.

Gravitational waves produced by the strings in this sce-
nario will have too low frequencies to be detected by the
existing methods, and thus the usual bounds onGm from the
millisecond pulsar observations and from nucleosynthesis
considerations do not apply.

Note that if the logarithmic factor in Eq.~7! is indeed
present, then the comoving scale of strings att,t* can be
somewhat larger than the curvature scale. This will have the
effect of movingt* closer to the present time and increasing
the angleumin . In extreme cases, the typical string separation
can even be greater than the present horizon.

Let us now turn to monopoles connected by strings.
Monopoles are pulled by the strings with a forcem and ac-
celerate to ultrarelativistic speeds. The typical energy of a
monopole at timet,t* is E;mt, and att.t* is E;mt* .
The latter corresponds to a mass

mt* ;1016S Gm

1026DVM ( . ~10!

For grand-unification-scale strings withGm;1026, this is
comparable to the mass of a supercluster.

The microwave anisotropy produced by a moving point
mass in Minkowski space has been calculated by Stebbins
@21#:

dT

T
52

4GEv'

ru
cosa. ~11!

Here,r is the distance from the observer to the point mass,
E5M (12v2)21/2 is the total energy of the mass,v is its
velocity, v' is the velocity projected on the sky,u is the
angular distance between the mass (M ) and the point of
observation (P), anda is the angle between the lineM P and
the projected velocity. It is assumed thatu!1. To extend this
equation to the case of an expanding universe, we note that
ru5l ' is the closest-approach distance between the micro-
wave photon and the mass. In a low-density universe, and for
a mass at a redshift in the range 1&z&z* , this relation is
replaced by@22# u5H0l 'F(z), whereF(z)'2. Hence, we
can write

dT/T58GH0Ev'u21cosa. ~12!

With E;mt* andv';1, this gives

dT/T;4GmVu21. ~13!

The density of monopoles withz&z* on the sky is domi-
nated by the monopoles atz;z* , so the typical angular
separation between monopoles isu;V. Monopoles atz.z*
have smaller energies, and the corresponding microwave
anisotropies are proportionally weaker. ForGm;1026 and
V*0.1, the anisotropies produced by moving monopoles
have a detectable magnitudedT/T*1025 up to the angular
distance of a few degrees.

Ultrarelativistic monopoles can also act as gravitational
lenses. If the monopole and the galaxy which is being lensed
are both atz;1, then the typical light deflection angle is
u;GE/l ' . Since l ';uH0

21 and E;mt* , we obtain an
estimate for the typical angular separation between the im-
ages:

df;~GmV!1/2. ~14!

For Gm;1026 this separation is about an arcminute.
Global monopoles and textures produced between infla-

tions will generate microwave background anisotropies, and
global monopoles can also act as gravitational lenses. The
evolution of global defects in an open universe and their
effect on the microwave background have been studied by
Pen and Spergel@20#. A bound on the symmetry-breaking
scale of defects can probably be extracted from their results,
but I was unable to do so.

Finally, I would like to emphasize that, apart from defect
formation between inflations, some topological defects can
be formed during or after inflation. The characteristic length
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scale of such defects is much smaller than the curvature
scale, and they may be suitable as seeds for structure forma-
tion. Defect-seeded structure formation in an open universe
has been discussed in Refs.@20,24#.

I am grateful to David Spergel and Albert Stebbins for
useful correspondence and to Martin Bucher and Andrei
Linde for their comments on the paper. This work was sup-
ported in part by the National Science Foundation.
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