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Cosmic microwave background measurements can discriminate among inflation models
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Quantum fluctuations during inflation may be responsible for temperature anisotropies in the cosmic micro-
wave backgroundCMB). Observations of CMB anisotropies can be used to falsify many currently popular
models. In this paper we discuss the prospectus for observations of CMB anisotropies at the accuracy of
planned satellite missions to reject currently popular inflation models and to provide some direction for model
building. [S0556-282(97)01618-4

PACS numbdss): 98.70.Vc, 98.80.Cq, 98.80.Es

[. INTRODUCTION models are consistent with CMB fluctuatioh#\ problem
with this effort[7,8] of trying to extract information about
) . the inflaton potential from the CMB is that the anisotropies
The field of observational cosmology has developed t0 theyeneng not only on the inflationary parameters, but also on a
degree that it is now possible to test models of .thg ear'X/ariety of other unknown cosmological parametf9s-11].
.unlverse..The next few years should see a dramatic increasgnong these are the baryon densfdy, the Hubble con-
|n.the variety an_d accuracy of cosmological observations. ”!stantHO, and the cosmological constaht Here, we fix the
this paper, we discuss how measurements of the temperatusgsmological constant to zero. Allowiny and/or other pa-
anisotropies in the cosmic microwave backgrod@#1B) at  rameters to vary would loosen the constraints on inflationary
the accuracy expected to result from two planned satellitgnodels. On the other hand, we have not included information
missions, the microwave anisotropy proddAP) [1] and  that will be gained from measurements of CMB polarization
PLANCK (formerly COBRAS/SAMBA [2], will allow us  or from ongoing ground-based and balloon measurements of
to discriminate among inflation models. temperature anisotropies. So we expect our final constraints
The basic idea of inflation is that there was an epoch earlyo be realistic indicators of what we will know in ten years.
in the history of the universe when potential, or vacuum,
energy dominated other forms of energy density such as mat-
ter or radiation. During the vacuum-dominated era the scale
factor grew quasiexponentially while the Hubble radius re- In this paper we consider only inflation models with
mained roughly constant. Since in cosmic expansion lengtinormal” gravity (i.e., general relativityand a single scalar
scales increase with the scale factor, scales that were onéield (the inflaton). Although this might seem like a small
smaller than the Hubble radius grew during inflation to be-region in the space of possible inflation models, it does in-
come larger than the Hubble radius. Once a length scalélude some of the most studied models, including scalar field
becomes larger than the Hubble radius, any perturbation offodels with polynomial potentials4("), pseudo Nambu-
that scale becomes frozen. Once inflation ends and the urf2oldstone potentialgnatural inflation, exponential poten-
verse is radiation or matter dominated, the Hubble radiudials (dilatonlike models or Coleman-Weinberg potentials
increases faster than the scale factor and the length scald€W” inflation). In Sec. IV we will describe the individual

reenters the Hubble radius with the signature of events duf-nolddsdé‘{? testt. " del wd her ¢ f
ing inflation imprinted upon it n addition to the models we study, many other types o

By observing fluctuations in the CMB or fluctuations in |nflat|_on models can be studied by cqn&dermg an equivalent
L . ne-field, slow-roll model. Two familiar examples are the
the distribution of matter, we can observe the signature o LT o . . :
. o . . . tarobinskiR* model and versions of extended inflation.
guantum fluctuations during inflation. Since different poten-
tials lead to different signatures, we can see which inflation

II. INFLATION DYNAMICS AND CMB FLUCTUATIONS

We are assuming that inflation is responsible for the anisotropies.
There has recently been a large amount of wW@k®6] trying to

*Electronic address: dodelson@hermes.fnal.gov understand how easy it will be to distinguish anisotropies produced
"Electronic address: kinneyw@fnal.gov by inflation from those produced by other mechanisms. We do not
*Electronic address: rocky@rigoletto.fnal.gov enter into this debate here.
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Both these models have nonminimal gravitational sectors, mgl(H/(¢))2 . m2 H"(¢) 21

) 2 ) . . . _ _PITT Y _ P
\éwth anR termin the action of the Star_obln_skl model, ar_1d a ()= 47\ H(9) ~ 47 H(o)
rans-Dicke coupling oR to a scalar field in extended in-
flation. Although at first sight these do not appear to be in-The second approximation we make involves the assumption
cluded in the class of models we study, after a suitable conthat the slow-roll parameters are small in comparison to
formal transformation both models can be expressed agnity. Note thate is a direct measure of the equation of state
single-field, slow-roll inflation models. It would be interest- of the scalar field mattep= —p(1—2¢€/3), wherep is the
ing to see if models with more than one inflaton field can bepressure ang is the energy density. Since inflation can be
similarly rewritten in terms of a single effective field. How- defined to be a period of accelerated expansion, where

ever, we do not pursue this possibility here. .
a
5) =H?(1—¢€)>0, (2.2

A. Perturbation amplitudes and spectral indices from inflation

Our goal is to start with a scalar field potential and calcu-the end of mfla_ltlon_ can be e_xpressed _exactl;easl. .
In the Hamiltonian-Jacobi formulation of the dynamics,

late the scalar and tensor perturbation amplitudes and spe% ) ] is the fund tal logical
tral indices. We make three basic approximations. The first® expansion ra (¢) is the fundamental cosmological

approximation is a dual expansion of the metric about eparameter. However, in comparison with particle physics
Friedmann-Robertson-Walker  background.g,,,(x.t) = models, the inflaton potenti&l(¢) is fundamental. Thus, we
e have to express the slow-roll parameters in terms of the in-

gZFEW(tHhW(X’t)’ and an expansion of _the inflaton field flaton potential. This was done in R¢i.8], with the result
about a homogeneous, isotropic background, '
d(X,1) = po(t) + 5p(x,t). Since we know that the density mél V' ()2
perturbations are of order 18, this is presumably a very e(p)= —(—) ,
good approximation. 167\ V(¢)

The metric perturbations produced by inflation can be de- 2 > 2
scribed in terms of two functions, which we c#k(k) and n(h)=— E(V (¢)) + @(V (d’)). 2.3
A+(K). The first function Ag(k), describescalar metric per- 167\ V(o) 8w\ V(¢)

turbations. These are the perturbations that couple,jcand i _

are associated with structure formation. The second function, '€ value of the scalar field can be used to specify a
A+(k), describegensor perturbations. The tensor perturba- !ength scale.crossmg thg Hubble radlu_s dqnng inflation. This
tions do not couple & ,, and are not associated with struc- 'S MOSt easily accomplished by considering the number of
ture formation. The tensor perturbations can be visualized a&f0ldings of the scale factor in the evolution from a value of
gravity waves. The distribution of cosmic radiation depends? until the end of inflation:

on the full structure of the metric, so bo#fy(k) and At(k)

contribute to CMB anisotropies. N( b, b d)EJ’tendH(t)dtZ i4—7T denaH () dé
The perturbation amplitudess(k) andA+(k) are the val- rren t mzJe H(p)
ues the quantities have when the wave nuntber equal to (2.9

the Hubble radius after inflation. The scalar amplitude is re-

lated to the density perturbatiod/p), and the power spec- Where the subscript “end” signifies that the quantity is to be
trum, ps(k)ock*3(5p/p)ﬁ, through a transfer functiofi(k) evaluated at thg end of inflation. The choice of sign depends
[12]. We note that the normalization @5 and A is some-  upon the sign ofp, i.e., whethetf ¢, is greater or less than
what arbitrary, although the choice of normalization will af- |¢|. It can be fixed by requiring the right-hand side of the
fect how we relate the parameters to directly observabl@quation to be positive.

guantities; we follow the convention of Refl13]. There The comoving scal& crosses the Hubble radius during
Ag(k) is normalized to be equal to the density perturbation ainflation N(k) e-foldings from the end of inflation, where
Hubble radius crossingig(k=aH) = (8p/p)x—an . The nor-  N(K) is given by[13]

malization of At(k) was chosen such that to lowest order

A2= A2, wheree is defined below. NI = 62| k . 10'6 Gev+| ﬂ“_ 1 V4
The favored formalism for the calculation of perturbations  N(K)= MagHy Vi e~ 3 ua-
uses the Hamilton-Jacobi formulation of scalar field dynam- © RH(2.5)

ics during inflation[15—-17, where the expansion ratéf,

parametrized by the value of the scalar field,is viewed as  The subscript “0” indicates the present value of the quantity

the fundamental dynamical variable. The most accurate cabndpgy is the energy density after reheating. For instance, a

culations of the perturbation spectra are in termblaind its  length scale corresponding to 200 Mpc (i.e.,

derivatives. The derivatives ¢1 can be expressed in terms k= 2/200h~ ! Mpc) roughly corresponds thl( ¢, ¢.) =50.

of dimensionlesslow-roll parametersthe first two of which  Therefore the value of the inflaton field when a comoving

are defined &s scale of 208! Mpc crosses the Hubble radius during infla-
tion is found by finding¢e,q and solving Eqg.(2.4) with
N(¢, dend = 50.

2The definition of the slow-roll parameters vary; we follow the  To lowest order in the slow-roll parameters, the scalar and
conventions of Ref[13]. tensor perturbation spectra are



56 COSMIC MICROWAVE BACKGROUND MEASUREMENTS . .. 3209

H( ) 2 H(e) where T;=2.726 is the average temperature of the CMB

, Ark)=——= . today, then inflation predicts that eaah, will be Gaussian
5\ Ve(¢) M 5\m My p distributed with mean zero and variance

o . Ci=(lam|?). (2.10
Note that the left-hand side is expressed in terms of wave
numberk. The relationship betwee# andk was discussed TheC,’s can be both measured experimentally and predicted
above. theoretically.
It is useful to describe the spectra in terms of spectral For a given set of inflationary parameters and cosmologi-
indices n=dInAZk)/dink and ny=dInA#(K)/dink. Again to  cal parameters, one can determine the full spectrui@, sf

Ag(k)=

lowest order in the slow-roll parameters, by solving the Einstein-Boltzmann equations. Therefore, in-
stead of specifying thousands Gf’s, it is more convenient
n(k)—1=—4e(¢)+2n(¢), nr(k)=-2e(¢), to characterize a given spectrum by the parameters which

(2.7 determine it. These are the three parameters of the initial

where once again it is necessary to use the relationship b erturbation spectraAs(ko) Ar(ko)nj plus the unknown

. N . osmological parameters, which we take ta(bgandH,. It
tweenk and ¢. A third approximation we make is that over L .
the range of length scales probed by CMB we can take thhas become conventional to reexpress the amplithggi)

spectral indices asonstant In other words we assume that gndAT(kO) in terms of two more physical quantities related

although the slow-roll parameters change in inflation, the;}o Cz. Specifically, we introduce two parameters

are roughly constant during the epoch where scales of inter- ctensor
est for the CMB cross the Hubble radius. This implies that Qunep=To /5C andr=—>— (2.11
the scalar and tensor spectra can be written as msPST 0N 4 cyeaar

1=n k\"T Thus, any given set dE,’s that we consider is a function of
AS(k)ZAS(kO)(fO) ' AT(k)ZAT(kO)(fO) ' five parameters, which we take to Rgsps I, N, Qg, and
(2.8 Ho.

wheren anq nr are constantand kg is the wave number _ C. Connecting slow-roll parameters and CMB parameters
corresponding to some length scale probed by CMB experi- i Y
ments. This allows the twhunctions Ag(k) andA(k), to be The natural parameters in “model space” ate ¢, and

arametrized in terms of fouwonstants{A<(ko), A+(Ko), n, 7, which porrespond to the e>_<par'15ion rate during i_nflation,
ﬁT}_ S{Asko), Ar(ko) and the first and second derivative of the expansion rate.

If the perturbations arise from slow-roll inflation, then not Since most inflation models have an arbitrary adjustable pa-

all of the four parameters are independent, but there is E2Meter corresponding to the normalization, information on
relation, known as theonsistency relationwhich reduces the magnitude of is not as valuable as information about

the number to three. To lowest order in slow-roll parameterst’® Way H changes.(Equivalently, no theory predicts the

the consistency relation can be found from E@&6) and  Value 0fQmsps) So we find that information abowtand 7
(2.7): ny=— 2A1(ko) 2/ Ag(Ko)2. So within the framework of gleaned fron_1 the harvest of |r_1forma_\t|0n expected f_rom_ the
the approximations discussed above, the scalar and tensgfXt generation of CMB satellites will be the best discrimi-
perturbation spectra can be characterized by three pararf@nt of inflation models. Here we relateand 7 to the ob-
eters{Ag(ko), Ar(ko), n}. (In the case of inflation involving  Servationally relevant parametersandr.

multiple degress of freedom, the consistency relation gener- Eguation(2.7) can be used to relate to € and 7. The

alizes to an inequality14]. Here we consider only single- ©nly ambiguity is the value of at which to evaluate and
field models) 7. The most reasonable value ¢fis the one which corre-

sponds to scales probed by the CMB. Thus, we defipgg

to be the value of¢ associated WithN(&cmg, Pend = 50.

(This is sometimes callegs, or ¢, .) By using Eq.(2.4),
To calculate CMB spectra, one must solve the perturbe@,g is found from

Einstein-Boltzmann equations which describe how the dif-

B. Parametrization of the CMB perturbation spectrum

ferent components of the univergehotons, neutrinos, elec- A1 (denda 1

trons, protons, hydrogen, and dark matteouple to each N(pcms  Pend =50= \/—ZJ ——=d¢’.
other and to gravity. The perturbation spectra produced by Mpy doweVe($')

inflation are taken as initial conditions for these equations. (2.12

The final .output is the full spec.trum. of CMB perturbations. Thenn is given by
In Gaussian theories, such as inflation, these are completely
characterized by the two-point correlation function. If the n=1-4ecus+27cus (2.13
temperature pattern on the sky is expanded in spherical har-

monics, where ecps= €(bcpmp) and similarly for 7.
o | While the tensor to scalar ratior depends on
6T(0,9) :2 2 Ym0, b) (2.9 Ar(kg)/Ag(ko), it also depends om somewhat, sinceC,
To =0 meey m e coming from both tensors and scalars is actually an integral
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over the primordial spectra. Using fits to these integrals proenough adjustable parameters that it is possible to generate

vided in Ref.[19], it is straightforward to show that, to low- observables covering broad regions on thg) plane, and

est order in slow roll, model-dependent physical arguments must be invoked to
limit the predictions. Nonetheless, even with very weak as-

r=13.7ecus - (2.19 sumptions, there is no overlap in parameter space between
hybrid inflation and the other cases considered.
We now have all the ingredients for a recipe to compare

inflation model predictions to CMB information. The steps A, “Large-field” polynomial potentials: A*(/p)P,p>1

are(1) from V(¢), calculatee(¢) and 5(¢) using Eq.(2.3),

(2) calculate¢eng by €(dend =1, (3) find ¢pcyg using Eqg.

(2.12, and (4) from ecyg and ncyp calculaten from Eq.

(2.13 andr from Eq.(2.14), which can be compared directly

to CMB temperature anisotropy data.

The simplest example of the type of inflation model we
study is a ‘“large-field” polynomial potential,
V() =A%/ )P with p>1. HereA andu are parameters
of mass dimension one; neither one enters in our results. This
potential is often used in “chaotic” inflationary models
where some region of the universe starts with the scalar field
ll. SOME ONE-FIELD, SLOW-ROLL INFLATION displaced from the minimum of the potentiap€0) by a

MODELS large amount, typically several times,, and evolves to the
minimum. In these modelgp> ¢nq, SO inflation occurs

In this section, we look at several generic inflationary S . L
X ; when the scalar field is larger than its eventual minimum.
models. The models we consider can be grouped into three . 7 . .
Following the steps outlined in Sec. Il, we find the fol-

general classes, “large field,” “small field,” and “hybrid.” lowing.

Large-field models are characterized by so-catleaoticini- .
tial conditions, in which the inflaton field is displaced far (1) The slow-roll parameters(4) and(¢) are given by

from its minimum, typically to valuesp~mp,, and rolls 2 2 (p—2) M2
toward a minimum at the origin. Examplésand E below ()= p__P', ()= L_P'_
are large-field models. Small-field models are of the form 167 @2 167 @2

that would be expected as a result of spontaneous symmetry

breaking, with a field initially near the origin and rolling ~ (2) The end of inflation occurs whe#= ¢¢,4, given by
toward a minimum at¢)# 0. In this case, inflation occurs

when the field is small relative to its expectation value, d2q P
$<(¢). ExamplesB andC below are small-field models. F: 167"

In order to avoid cumbersome notation we will assume P
that ¢ is positive. Clearly if the potential is an even function
of ¢ then the sign ofp is irrelevant, while if the potential is fro
an odd function ofp, then—V(— ¢) is equivalent tov(¢).

The large-field and small-field cases occupy very different 2
regions in the space of observable parameters, and can be ¢CMB: ip(er 200).
formally distinguished by the curvature of the potential in the ma, 167
region where inflation is taking place: for the large field
models, V'(¢)>0, and for the small field models, (4) The values ofecyg and ycyg are
V"($)<0. In addition, we consider a fifth modeD{ that
sits on the boundary between the small field and large field p p—2
cases, which is the case of a linear potena{¢)=0. ECMBZM)* ”CMB:m)-

A third general class of models, occupying a distinct re-

gion of parameter space, is “hybrid” inflatiof20-22,  Using these values @z and 7cyg., it is easily shown that
which is characterized by a field evolving toward a minimum

2

(3) The value of¢ crossing the Hubble radius ¥9folds
m the end of inflation is

of the potential with a nonzero vacuum energy. Hybrid mod- 2p+4 p
els generally involve more than one scalar field, but can be n=1- 0+ 200 r:13-7m)-

treated during the inflationary epoch as single-field inflation,

with ¢ small andV"(#)>0. Hybrid inflation is the only  Note that this is a minimalist model in the sense that inflation
class of models which predicts a “blue” spectrum>1.  gnds paturally, without the necessity of invoking another sec-

CaseF below is a generic hybrid model. tor of the theory. The results are listed in Table I.
The idea is to be as general as possible, and we calculate

the values of observables as functions of parameters in the B. “Small-field” polvnomial potentials:
models avoiding prejudices about the “reasonableness” of /'\4 L (b pp L < P p 2'

those parameters. For example, it is possible that particular [1=(b/WF], p<p<mp and p>

realizations of these cases in more detailed contexts may The small-field polynomial describes what might result if
require excessive fine-tuning or implausibly large masghe potential arises from a phase transition associated with
scales. However, a completely different model may achievepontaneous symmetry breaking. In this scenario, the field is
the same behavior in a more natural way, and our goal ievolving away from an unstable equilibrium at the origin
inclusiveness. This results in particularly broad constraints ifoward a nonzero vacuum expectation val(i)# 0. Near

the hybrid case. Hybrid inflation models as a class havéehe origin, the potential can be written as a Taylor expansion,
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TABLE |. Lowest-order results fothgng, dcme, €cme, @nd 7emg in some popular inflation models.
Model Bing Bews €cms Mcwvie
ma) ma)
A P p(p-+200) p p-—2
167 167 p-+200 p+200
B iz ‘/E(i) 2/(p—1) M_z . _2 2l(p—2) <|ncwmsl 3 50p—12
2l P \me 2| Z5p(p—2) | m2 (p=2)
c % bend 50 ( mp)\ <lncuel M
o= - lexg—5—| — T a2
mg’l Mg, 27\ p T
D Undetermined Undetermined mgl mgl
167 u? B 167 u?
E Undetermined Undetermined p~! p!
F Undetermined Undetermined < 7ems >0
$\P p-1
V( )=A4[1—(— +oen, (3.1 r=0, n=1--——. (3.2
¢ " 25p-2)

Unlike the large-field case, these models have the feature that
wherep is the lowest nonvanishing derivative at the origin, ecpyg, and hence, is negligibly small.
and u(¢). For instance, the Coleman-Weinberg potential
used in the original “new” inflation modelg23,24 is of this
form with n=4. This ansatz is quite general, applicable even
to potentials which have a logarithmic divergence in the
leading derivative at the origif25]. In keeping with the
motivation for this model we will assume that<mp;, so
we have the hierarchy of scales<u<<mp. The analysis
was described in detail if25]; the relevant results are given
in Table | and illustrated in Fig. XThe casg=2 is special,
and is discussed separately belpwike the polynomial
large-field models, the parameterandn are independent of
the fundamental mass scales in the potential:

C. “Small-field” quadratic potentials: A*[1—(¢p/p)?],p<p

“Natural” inflation models[26], in which the potential is
usually assumed to have a cosine potential, can be described
by Eq. (3.1 with p=2 near the origin where inflation oc-
curs.

Potentials dominated by a quadratic term have the prop-
erty that the small-field assumptieh< ., while valid at the
time when observable parameters are generated, is not con-
sistent all the way to the end of inflation, since

mei|®  (¢/u)?

2
O O3

40 [— | 1 1 —_
[ ] Then ¢¢ng/ u approaches unity for large, and higher order
g 30 ] terms in the potential cannot be neglected. We adopt the
% C ] reasonable assumption thatin some direct sense param-
~ C ] etrizes the expectation value of the field in the physical
L 20 — vacuum, so that ¢..q/ ) is of order unity. The precise
3 F value of ¢4 IS not important, since
\.;'I, L p
OFS C 09 r=07 VY E beyp= ¢ p[ >0 mpﬂ (3.4)
o - n=0.9;r=0.7 v 4 = XA — —| — .
- = ) ] cMB= Penf 47\
10 100 1000
L

is exponentially small regardless, and the parametg(g
and ncygs approach the small-field limits

1 (mg)?
TlcmB = G\ w )

FIG. 1. The spectrum of anisotropies for the two models dis-
cussed in the text. Both are normalized at large scales to COBE.
The model withn=0.9 is a much better fit to large scale structure
data.

(3.5
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ecms=| 7emslexd — 100 7euvsl1=0. of the theory must be invoked, generally a coupling to a
second scalar fielgh, so that¢e,qand ¢cug cannot be fixed
Note that since outside the context of a particular model. A generic charac-
teristic, however, is thatbcye> deng- FOr generality, we
1 [mg)2 will take (¢pcmp/ 1) to be less than unity; in many models it
n=1+27=1- E(?) ’ (3-8 is often very much less than unity. In hybrid inflation, the

parameterncyg IS positive, and can be written in terms of
if N>0.9 as suggested by the cosmic background exploretcysg :
(COBE) measurements, them<<mp, is excluded. The scale-

invariant limit is u—o0, or —0, but it is important to re- 2(n—1 -p _2 P
member that the small-field approximation breaks down in Treme _ (p )( ¢CMB) {1 2p——1( M)
this limit, SiNCe doyp— Bangin EG. (3.4). €ove P M (p=DV w
p—2
D. Linear potentials: A4(¢/p) and A*[1— /] D for deve/n>1,
Linear potentials have the property thaté=-—17 — (3.9

=m3/167u? is independendf ¢. Thus, if inflation starts, I I L. boul p<1
i.e., if e<1, it will never end. More exactly, some other P\ deus CMB L™ =

physics must enter to terminate the inflationary phase. So we
assume that the linear potential is only valid when scales 0{_
interest for the CMB are passing through the Hubble radius
Thus the relevant values @fand » are those given above.

Like the quadratic potential, the scale-invariant limit is

his first expression depends only on the assumption of slow
roll, not on a small-field limit. In the large-field limit,
dcems!/ u=>1, we recover the result for modalfound above,
neve!/ €cme=(P—2)/p.  In  the  small-field limit,

m== dcme!/ w<<1, we obtain the familiar result for hybrid models,
n>1.
. e A4 7
E. Expotential potentials: A"expy16m ¢/pmp;, p>0 This possibility of a “blue” scalar spectrurthere, blue

Exponential potentials lead to an exponential form of theimplies n>1) is the distinctive feature of hybrid models.
Hubble parameter, which in turn leads to a power-law timeRecalling thatn=1—4¢e+2%, we see that although hybrid
dependence of the scale factor. For potentials of the fornmodels can, in principle, result in a red spectrufor
V(¢)=A4eXp\/m§, the expansion rate isH n<2e¢), if n>2¢, hybrid inflation predicts a blue spectrum.
xexp /47T¢2/szp| which givesaxtP. This model is usually The.pred.lctlons for all of the models described here are sum-
called power-law inflation, a term we will not use in order to Marized in Table I.
avoid confusion with models with power-law potentials. Ex-
ponential potentials, yvhile nonrenormalize_lbl_e, arise quite IV. EXTRACTING PERTURBATION SPECTRA
naturally as the effecnve Iqw—energy desgrlpnqn of Qegret_as INFORMATION FROM CMB OBSERVATIONS
of freedom associated with extra spatial dimensions in
Kaluza-Klein models, as well as dilatons and moduli fields in  Now that we know how to extract the observabbeandr
superstring theories. from a given inflationary potential, we turn to the question of

This model has the useful property that betland » are  how well experiments will be able to measure these quanti-
constant and equak= »=p 1. Thus, as in the linear poten- ties. The general question of parameter estimation from
tial case, some other physics must enter in order for inflatiocMB experiments will likely occupy cosmologists for a long
to end. With e=»=p % we find r=13.7 ! and time. However, without any simulations at all, one can get a
n=1-—2p L The resultn—1xr is often incorrectly gener- very good idea of how accurately parameters will be deter-

alized to all slow-roll models. mined by using a simplg? technique. A given experiment
will measure eachC, with an error given byAC,. The
F. Hybrid inflation: A*[1+ (p/p)P], d<p “true” set of parameters will be determined by minimizing

The final class of models we consider is “hybrid” infla- .
tion [20—22, in which the field rolls toward a minimum with , < [GdND - Cpreasuref2
a nonzero vacuum energy. We take a potential of the form X ({)‘i})=,22 (AC))2 : 4.1

¢

p

V(d)=A% 1+

' (3.7 Here the set of parametefs,r,Q,msps (25 ,Ho} which we

are allowing to vary is denotefh;}.
with p=2. The large-field limit of this potential is just the ~ Of course, we cannot know in advance w4yl
case of chaotic inflation with a polynomial potential, modelturn out to be. But knowing what we expect thC, , we can
A. Hybrid inflation is the limit ofsmall field, p<<u, where  get an estimate of how large the uncertainties in the param-
the potential is dominated by the constant term,eters will be. To do this, we assume that the measésl
V=A%*=const. In the absence of any other physics, the fieldvill be very close to the tru€,’s. Then, by minimizing the
rolls toward the origin, coming to rest ab=0 after an  x2, we will accurately determine the parameters. Therefore,
infinite period of inflation. For inflation to end, another sector we can expand
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1 9°x? model LSS
XZ({M}):XZ({WUQ})JF—&X (Nj— A9 T e T

20NN | _ e

X(Nj—AYO). (4.2 '

The second derivative matrix carries information about how
quickly the 2 increases as the parameters move away from
their true values. Therefore, under some reasonable assump™g.5
tions[27], the uncertainties in the parameters are determined
by this matrix. We will be interested only in the parameters
andr, so we want to project these uncertainties onto the
two-dimensionah—r plane.(This is equivalent to integrat- o [ ¢* (V{g)<0) 3 2
ing out all the other variableslt is a simple exercise to show i ¢n (n=3-20; V"($)<0)
that these uncertainties are obtained by computing the ele-
ments of the five-by-five second derivative matrix, inverting (a)
it, and then picking out the two-by-two matrix corresponding
to then,r elements. The remaining two-by-two matrix de- model sCDM
fines the error ellipses in ther plane. NN
To complete this program, we need two more pieces of i
information. First, the elements of the derivative matrix must 1 —
be evaluated at the true values of the parameters. We need tc , .
specify what we are assuming for the true values. Here, we ) €0 % .
look separately at two possible sets of values for the param- i
eters. The first corresponds to standard cold dark matter =
(SCDM).

M R S SR N
0.8 0.85 0.9n 0.95 1

0.5 -

{NSCOM ={n,1,Qumsps g Ho} ={1,0,18 1K,0.0125,50,

4.3 ¢ (V(9)<0) 5

] —
whereHy is in units of km sec ! Mpc~!. The second set i ¢" (n=3-20; V"(¢)<0)
corresponds to values of the parameters considered to be oF o o ——r—— =
viable upon consideration of large scale structiwr®S) data ) ) n ’

[28]:

FIG. 2. Predictions for a variety of inflationary models in the
INSS ={n,r,Qmsps g ,Ho} ={0.9,0.7,20 £K,0.02,5Q. r plane superimposed on the expect@8% c.|) region allowed by
(4.4 the two CMB satellites. The two panels correspond to two different
values of the true parameters: the upper figure is the LSS model
The Cy’s for these models are shown in Fig. 1. Since thewhile the lower one is the SCDM model. The line labelgt de-
anisotropies are considerably larger in SCDM, the signal tgineates two classes of models: largsmall) field models lie
noise in a given experiment will also be larger. Therefore weabove(below the line.
expect tighter bounds in SCDM than in our second model.

The last piece of information we need to compute thedictions from the various models discussed in Sec. lil. By
derivative matrix in Eq(4.2) is the uncertainty expected in inverting Egs.(2.13 and (2.14), we can plot the same el-
the C,’s. The relevant experimental parameters are the beampses in the -e plane. These are shown in Fig. 3. The
width opeam, the expected noise per pixe)i., the area per  superposition of the ellipses on top of the model predictions
pixel e, and the fraction of the sky covered. Once thesemakes clear that CMB observations will be able to discrimi-
are known, it is very useful to employ a formula derived by nate amongst inflationary models.

Knox [7], who showed that for an all-sky map,

ac, \/T/ 02 Qe o V. CONCLUSIONS
c 2I+1\1+ C X Obeant |- (4.5 Different inflationary models make different predictions
for the spectrum of scalar and tensor perturbations. While

The first term here is the inevitable consequence of the fagfery different models might lead to indistinguishable scalar
that we have only B+1 pieces of information at each  spectra, it has been realized for some time that the tensor
(cosmic variance We will consider the MAP and PLANCK  spectrum, used in conjunction with the scalar spectrum, can
satellites. For MAP, we assumepea,=0.425<0.3° and differentiate between model29]. Here we have demon-
ooxeQpixe= (35 wK)?(0.3°)%. For PLANCK, we take strated how the effect of scalar and tensor combinations on

Opean= 0.425x0.17° andagixe|ﬂpixe|=(3 uK)?(0.167°Y. CMB fluctuations can be used as a discriminant in testing
The results are shown in Fig. 2. The ellipses delineaténflation models.
95% confidence limits im andr for the SCDM and LSS Most inflationary models have an adjustable parameter

examples. In the SCDM case, we have imposed(gigsi-  that can be tuned to give the correct normalization of the
cal) restriction thatr >0. Also shown in Fig. 2 are the pre- scalar perturbationsQ;spsin the language used to study
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0.16 — model LS8~
C MAP \T_—_ ]
r PLANCK = 1
0.1 -
0.05F =
g ]
& r ]
1] = -
:2 -
:3! %7 ]
-0.05 - ? (¢)(-0) -
F | 67 (V()<0) ]
-0, 0.9 0.5 1.05
(@) €oun ’
model sCDM FIG. 4. Regions in tha-r plane populated by the three types of
0.15— e models considered in this paper.
0.1:_ PLANCK ] While the type of analysis we propose can never prove
r that any particular model is correct, it might do much more
r than simply eliminate models. It is possible that an analysis
0.051 like the one we present here might be able to give some
g guidance in model building. One way of dividing inflationary
® ob models is to classify them as either “small-field” models,
26 “large-field” models, or “hybrid” models® Different ver-
:3%: (”*3, sions of the three types of models predict qualitatively dif-
—0.051- j (¢)<0) <o; ferent scalar and tensor spectra, so it should be particularly
I easy to tell them apart once the data is available.
_oal . o Ly ) L Although we have only studied simple examples of mod-
(b) 0 5&25 0.1 els, we can speculate that small-field, large-field, and hybrid

models will populate different regions of ther plane as
illustrated in Fig. 4. Certainly a scalar spectral index larger
FIG. 3. Same as Fig. 2, but now the observational constraintghgn unity would suggest some form of hybrid model. A
have been mapped directly onto tee; plane. scalar index smaller than one in combination with negligible
) ) . tensor contribution(small r) would suggest a small-field
CMB fluctuations. A simple example of such a parameter is y,qqe| while scalar index less than unity with considerable
the coupling constant in the chaotic inflation model with  tensor contribution would point toward large-field models.

. _ 4 . . i ) A )
potential V(#)=\¢". However, in this paper we have ap jnteresting question we do not address here is whether
shown that even with the freedom of an adjustable parametgqng|e_ﬁe|d' slow-roll models populate the entirer plane.

it is possible that observations of the cosmic microwave

background can distinguish among different inflation mod-

els. Therefore, we can hope in the next decade to see a real

confrontation between inflation models and CMB observa- We thank Uros Seljak and Matias Zaldariagga for use

tions. of their cMBFAST code [30]. This work was supported in
We note that the analysis presented here cannot prove thpart by the U.S. DOE and NASA Grant No. NAG5-2788 at

a given model is correct, since some more complicatedrermilab.

model could conceivably occupy the same position omthe

r plane. However, it is possible to convincingly rule out

models.(Of course, finding thaf)y+ 1 would serve to rule A more exact division would be according to the second deriva-
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