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Quantum fluctuations during inflation may be responsible for temperature anisotropies in the cosmic micro-
wave background~CMB!. Observations of CMB anisotropies can be used to falsify many currently popular
models. In this paper we discuss the prospectus for observations of CMB anisotropies at the accuracy of
planned satellite missions to reject currently popular inflation models and to provide some direction for model
building. @S0556-2821~97!01618-4#

PACS number~s!: 98.70.Vc, 98.80.Cq, 98.80.Es

I. INTRODUCTION

The field of observational cosmology has developed to the
degree that it is now possible to test models of the early
universe. The next few years should see a dramatic increase
in the variety and accuracy of cosmological observations. In
this paper, we discuss how measurements of the temperature
anisotropies in the cosmic microwave background~CMB! at
the accuracy expected to result from two planned satellite
missions, the microwave anisotropy probe~MAP! @1# and
PLANCK ~formerly COBRAS/SAMBA! @2#, will allow us
to discriminate among inflation models.

The basic idea of inflation is that there was an epoch early
in the history of the universe when potential, or vacuum,
energy dominated other forms of energy density such as mat-
ter or radiation. During the vacuum-dominated era the scale
factor grew quasiexponentially while the Hubble radius re-
mained roughly constant. Since in cosmic expansion length
scales increase with the scale factor, scales that were once
smaller than the Hubble radius grew during inflation to be-
come larger than the Hubble radius. Once a length scale
becomes larger than the Hubble radius, any perturbation on
that scale becomes frozen. Once inflation ends and the uni-
verse is radiation or matter dominated, the Hubble radius
increases faster than the scale factor and the length scale
reenters the Hubble radius with the signature of events dur-
ing inflation imprinted upon it.

By observing fluctuations in the CMB or fluctuations in
the distribution of matter, we can observe the signature of
quantum fluctuations during inflation. Since different poten-
tials lead to different signatures, we can see which inflation

models are consistent with CMB fluctuations.1 A problem
with this effort @7,8# of trying to extract information about
the inflaton potential from the CMB is that the anisotropies
depend not only on the inflationary parameters, but also on a
variety of other unknown cosmological parameters@9–11#.
Among these are the baryon densityVB , the Hubble con-
stantH0, and the cosmological constantL. Here, we fix the
cosmological constant to zero. AllowingL and/or other pa-
rameters to vary would loosen the constraints on inflationary
models. On the other hand, we have not included information
that will be gained from measurements of CMB polarization
or from ongoing ground-based and balloon measurements of
temperature anisotropies. So we expect our final constraints
to be realistic indicators of what we will know in ten years.

II. INFLATION DYNAMICS AND CMB FLUCTUATIONS

In this paper we consider only inflation models with
‘‘normal’’ gravity ~i.e., general relativity! and a single scalar
field ~the inflaton!. Although this might seem like a small
region in the space of possible inflation models, it does in-
clude some of the most studied models, including scalar field
models with polynomial potentials (fn), pseudo Nambu-
Goldstone potentials~natural inflation!, exponential poten-
tials ~dilatonlike models!, or Coleman-Weinberg potentials
~‘‘new’’ inflation !. In Sec. IV we will describe the individual
models we test.

In addition to the models we study, many other types of
inflation models can be studied by considering an equivalent
one-field, slow-roll model. Two familiar examples are the
StarobinskiR2 model and versions of extended inflation.
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1We are assuming that inflation is responsible for the anisotropies.
There has recently been a large amount of work@3–6# trying to
understand how easy it will be to distinguish anisotropies produced
by inflation from those produced by other mechanisms. We do not
enter into this debate here.
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Both these models have nonminimal gravitational sectors,
with anR2 term in the action of the Starobinski model, and a
Brans-Dicke coupling ofR to a scalar field in extended in-
flation. Although at first sight these do not appear to be in-
cluded in the class of models we study, after a suitable con-
formal transformation both models can be expressed as
single-field, slow-roll inflation models. It would be interest-
ing to see if models with more than one inflaton field can be
similarly rewritten in terms of a single effective field. How-
ever, we do not pursue this possibility here.

A. Perturbation amplitudes and spectral indices from inflation

Our goal is to start with a scalar field potential and calcu-
late the scalar and tensor perturbation amplitudes and spec-
tral indices. We make three basic approximations. The first
approximation is a dual expansion of the metric about a
Friedmann-Robertson-Walker background,gmn(x,t)5
gmn

FRW(t)1hmn(x,t), and an expansion of the inflaton field
about a homogeneous, isotropic background,
f(x,t)5f0(t)1df(x,t). Since we know that the density
perturbations are of order 1025, this is presumably a very
good approximation.

The metric perturbations produced by inflation can be de-
scribed in terms of two functions, which we callAS(k) and
AT(k). The first function,AS(k), describesscalarmetric per-
turbations. These are the perturbations that couple toTmn and
are associated with structure formation. The second function,
AT(k), describestensorperturbations. The tensor perturba-
tions do not couple toTmn and are not associated with struc-
ture formation. The tensor perturbations can be visualized as
gravity waves. The distribution of cosmic radiation depends
on the full structure of the metric, so bothAS(k) andAT(k)
contribute to CMB anisotropies.

The perturbation amplitudesAS(k) andAT(k) are the val-
ues the quantities have when the wave numberk is equal to
the Hubble radius after inflation. The scalar amplitude is re-
lated to the density perturbation (dr/r)k and the power spec-
trum, PS(k)}k23(dr/r)k

2 , through a transfer functionT(k)
@12#. We note that the normalization ofAS andAT is some-
what arbitrary, although the choice of normalization will af-
fect how we relate the parameters to directly observable
quantities; we follow the convention of Ref.@13#. There
AS(k) is normalized to be equal to the density perturbation at
Hubble radius crossing:AS(k5aH)5(dr/r)k5aH . The nor-
malization of AT(k) was chosen such that to lowest order
AT

25eAS
2 , wheree is defined below.

The favored formalism for the calculation of perturbations
uses the Hamilton-Jacobi formulation of scalar field dynam-
ics during inflation@15–17#, where the expansion rate,H,
parametrized by the value of the scalar field,f, is viewed as
the fundamental dynamical variable. The most accurate cal-
culations of the perturbation spectra are in terms ofH and its
derivatives. The derivatives ofH can be expressed in terms
of dimensionlessslow-roll parameters, the first two of which
are defined as2

e~f![
mPl

2

4p S H8~f!

H~f! D 2

, h~f![
mPl

2

4p

H9~f!

H~f!
. ~2.1!

The second approximation we make involves the assumption
that the slow-roll parameters are small in comparison to
unity. Note thate is a direct measure of the equation of state
of the scalar field matter,p52r(122e/3), wherep is the
pressure andr is the energy density. Since inflation can be
defined to be a period of accelerated expansion, where

S ä

a
D 5H2~12e!.0, ~2.2!

the end of inflation can be expressed exactly ase51.
In the Hamiltonian-Jacobi formulation of the dynamics,

the expansion rateH(f) is the fundamental cosmological
parameter. However, in comparison with particle physics
models, the inflaton potentialV(f) is fundamental. Thus, we
have to express the slow-roll parameters in terms of the in-
flaton potential. This was done in Ref.@18#, with the result

e~f!5
mPl

2

16pS V8~f!

V~f! D 2

,

h~f!52
mPl

2

16pS V8~f!

V~f! D 2

1
mPl

2

8p S V9~f!

V~f! D . ~2.3!

The value of the scalar field can be used to specify a
length scale crossing the Hubble radius during inflation. This
is most easily accomplished by considering the number of
e-foldings of the scale factor in the evolution from a value of
f until the end of inflation:

N~f,fend![E
t

tend
H~ t !dt56

4p

mPl
2 Ef

fendH~f!

H8~f!
df,

~2.4!

where the subscript ‘‘end’’ signifies that the quantity is to be
evaluated at the end of inflation. The choice of sign depends
upon the sign ofḟ, i.e., whetherufendu is greater or less than
ufu. It can be fixed by requiring the right-hand side of the
equation to be positive.

The comoving scalek crosses the Hubble radius during
inflation N(k) e-foldings from the end of inflation, where
N(k) is given by@13#

N~k!5622 ln
k

a0H0
2 ln

1016 GeV

Vk
1/4

1 ln
Vk

1/4

Ve
1/4

2
1

3
ln

Ve
1/4

rRH
1/4

.

~2.5!

The subscript ‘‘0’’ indicates the present value of the quantity
andrRH is the energy density after reheating. For instance, a
length scale corresponding to 200h21 Mpc ~i.e.,
k52p/200h21 Mpc! roughly corresponds toN(f,fe).50.
Therefore the value of the inflaton field when a comoving
scale of 200h21 Mpc crosses the Hubble radius during infla-
tion is found by findingfend and solving Eq.~2.4! with
N(f,fend)550.

To lowest order in the slow-roll parameters, the scalar and
tensor perturbation spectra are

2The definition of the slow-roll parameters vary; we follow the
conventions of Ref.@13#.
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AS~k!.
2

5Ap

1

Ae~f!

H~f!

mPl
, AT~k!.

2

5Ap

H~f!

mPl
.

~2.6!

Note that the left-hand side is expressed in terms of wave
numberk. The relationship betweenf andk was discussed
above.

It is useful to describe the spectra in terms of spectral
indices n[dlnAS

2(k)/dlnk and nT[dlnAT
2(k)/dlnk. Again to

lowest order in the slow-roll parameters,

n~k!21.24e~f!12h~f!, nT~k!.22e~f!,
~2.7!

where once again it is necessary to use the relationship be-
tweenk andf. A third approximation we make is that over
the range of length scales probed by CMB we can take the
spectral indices asconstant. In other words we assume that
although the slow-roll parameters change in inflation, they
are roughly constant during the epoch where scales of inter-
est for the CMB cross the Hubble radius. This implies that
the scalar and tensor spectra can be written as

AS~k!5AS~k0!S k

k0
D 12n

, AT~k!5AT~k0!S k

k0
D nT

,

~2.8!

where n and nT are constantand k0 is the wave number
corresponding to some length scale probed by CMB experi-
ments. This allows the twofunctions, AS(k) andAT(k), to be
parametrized in terms of fourconstants, $AS(k0), AT(k0), n,
nT%.

If the perturbations arise from slow-roll inflation, then not
all of the four parameters are independent, but there is a
relation, known as theconsistency relation, which reduces
the number to three. To lowest order in slow-roll parameters,
the consistency relation can be found from Eqs.~2.6! and
~2.7!: nT522AT(k0)2/AS(k0)2. So within the framework of
the approximations discussed above, the scalar and tensor
perturbation spectra can be characterized by three param-
eters,$AS(k0), AT(k0), n%. ~In the case of inflation involving
multiple degress of freedom, the consistency relation gener-
alizes to an inequality@14#. Here we consider only single-
field models.!

B. Parametrization of the CMB perturbation spectrum

To calculate CMB spectra, one must solve the perturbed
Einstein-Boltzmann equations which describe how the dif-
ferent components of the universe~photons, neutrinos, elec-
trons, protons, hydrogen, and dark matter! couple to each
other and to gravity. The perturbation spectra produced by
inflation are taken as initial conditions for these equations.
The final output is the full spectrum of CMB perturbations.
In Gaussian theories, such as inflation, these are completely
characterized by the two-point correlation function. If the
temperature pattern on the sky is expanded in spherical har-
monics,

dT~u,f!

T0
5(

l 50

`

(
m52 l

l

almYlm~u,f!, ~2.9!

where T052.726 is the average temperature of the CMB
today, then inflation predicts that eachalm will be Gaussian
distributed with mean zero and variance

Cl[^ualmu2&. ~2.10!

TheCl ’s can be both measured experimentally and predicted
theoretically.

For a given set of inflationary parameters and cosmologi-
cal parameters, one can determine the full spectrum ofCl ’s
by solving the Einstein-Boltzmann equations. Therefore, in-
stead of specifying thousands ofCl ’s, it is more convenient
to characterize a given spectrum by the parameters which
determine it. These are the three parameters of the initial
perturbation spectra,$AS(k0),AT(k0),n% plus the unknown
cosmological parameters, which we take to beVB andH0. It
has become conventional to reexpress the amplitudesAS(k0)
andAT(k0) in terms of two more physical quantities related
to C2. Specifically, we introduce two parameters

QrmsPS[T0A5C2

4p
and r[

C2
tensor

C2
scalar

. ~2.11!

Thus, any given set ofCl ’s that we consider is a function of
five parameters, which we take to beQrmsPS, r , n, VB , and
H0.

C. Connecting slow-roll parameters and CMB parameters

The natural parameters in ‘‘model space’’ areH, e, and
h, which correspond to the expansion rate during inflation,
and the first and second derivative of the expansion rate.
Since most inflation models have an arbitrary adjustable pa-
rameter corresponding to the normalization, information on
the magnitude ofH is not as valuable as information about
the way H changes.~Equivalently, no theory predicts the
value ofQrmsPS.) So we find that information aboute andh
gleaned from the harvest of information expected from the
next generation of CMB satellites will be the best discrimi-
nant of inflation models. Here we relatee andh to the ob-
servationally relevant parametersn and r .

Equation~2.7! can be used to relaten to e and h. The
only ambiguity is the value off at which to evaluatee and
h. The most reasonable value off is the one which corre-
sponds to scales probed by the CMB. Thus, we definefCMB
to be the value off associated withN(fCMB ,fend)550.
~This is sometimes calledf50 or f* .) By using Eq.~2.4!,
fCMB is found from

N~fCMB ,fend!5505A4p

mPl
2 EfCMB

fend 1

Ae~f8!
df8.

~2.12!

Thenn is given by

n5124eCMB12hCMB , ~2.13!

whereeCMB[e(fCMB) and similarly forh.
While the tensor to scalar ratior depends on

AT(k0)/AS(k0), it also depends onn somewhat, sinceC2
coming from both tensors and scalars is actually an integral
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over the primordial spectra. Using fits to these integrals pro-
vided in Ref.@19#, it is straightforward to show that, to low-
est order in slow roll,

r 513.7eCMB . ~2.14!

We now have all the ingredients for a recipe to compare
inflation model predictions to CMB information. The steps
are~1! from V(f), calculatee(f) andh(f) using Eq.~2.3!,
~2! calculatefend by e(fend)51, ~3! find fCMB using Eq.
~2.12!, and ~4! from eCMB and hCMB calculaten from Eq.
~2.13! andr from Eq.~2.14!, which can be compared directly
to CMB temperature anisotropy data.

III. SOME ONE-FIELD, SLOW-ROLL INFLATION
MODELS

In this section, we look at several generic inflationary
models. The models we consider can be grouped into three
general classes, ‘‘large field,’’ ‘‘small field,’’ and ‘‘hybrid.’’
Large-field models are characterized by so-calledchaoticini-
tial conditions, in which the inflaton field is displaced far
from its minimum, typically to valuesf;mPl , and rolls
toward a minimum at the origin. ExamplesA and E below
are large-field models. Small-field models are of the form
that would be expected as a result of spontaneous symmetry
breaking, with a field initially near the origin and rolling
toward a minimum at̂ f&Þ0. In this case, inflation occurs
when the field is small relative to its expectation value,
f!^f&. ExamplesB andC below are small-field models.

In order to avoid cumbersome notation we will assume
thatf is positive. Clearly if the potential is an even function
of f then the sign off is irrelevant, while if the potential is
an odd function off, then2V(2f) is equivalent toV(f).

The large-field and small-field cases occupy very different
regions in the space of observable parameters, and can be
formally distinguished by the curvature of the potential in the
region where inflation is taking place: for the large field
models, V9(f).0, and for the small field models,
V9(f),0. In addition, we consider a fifth model (D) that
sits on the boundary between the small field and large field
cases, which is the case of a linear potentialV9(f)50.

A third general class of models, occupying a distinct re-
gion of parameter space, is ‘‘hybrid’’ inflation@20–22#,
which is characterized by a field evolving toward a minimum
of the potential with a nonzero vacuum energy. Hybrid mod-
els generally involve more than one scalar field, but can be
treated during the inflationary epoch as single-field inflation,
with f small andV9(f).0. Hybrid inflation is the only
class of models which predicts a ‘‘blue’’ spectrum,n.1.
CaseF below is a generic hybrid model.

The idea is to be as general as possible, and we calculate
the values of observables as functions of parameters in the
models avoiding prejudices about the ‘‘reasonableness’’ of
those parameters. For example, it is possible that particular
realizations of these cases in more detailed contexts may
require excessive fine-tuning or implausibly large mass
scales. However, a completely different model may achieve
the same behavior in a more natural way, and our goal is
inclusiveness. This results in particularly broad constraints in
the hybrid case. Hybrid inflation models as a class have

enough adjustable parameters that it is possible to generate
observables covering broad regions on the (r ,n) plane, and
model-dependent physical arguments must be invoked to
limit the predictions. Nonetheless, even with very weak as-
sumptions, there is no overlap in parameter space between
hybrid inflation and the other cases considered.

A. ‘‘Large-field’’ polynomial potentials: L4
„f/µ…

p,p>1

The simplest example of the type of inflation model we
study is a ‘‘large-field’’ polynomial potential,
V(f)5L4(f/m)p with p.1. HereL andm are parameters
of mass dimension one; neither one enters in our results. This
potential is often used in ‘‘chaotic’’ inflationary models
where some region of the universe starts with the scalar field
displaced from the minimum of the potential (f50) by a
large amount, typically several timesmPl , and evolves to the
minimum. In these modelsf.fend, so inflation occurs
when the scalar field is larger than its eventual minimum.

Following the steps outlined in Sec. II, we find the fol-
lowing.

~1! The slow-roll parameterse(f) andh(f) are given by

e~f!5
p2

16p

mPl
2

f2
, h~f!5

p~p22!

16p

mPl
2

f2
.

~2! The end of inflation occurs whenf5fend, given by

fend
2

mPl
2

5
p2

16p
.

~3! The value off crossing the Hubble radius 50e-folds
from the end of inflation is

fCMB
2

mPl
2

5
1

16p
p~p1200!.

~4! The values ofeCMB andhCMB are

eCMB5
p

p1200
, hCMB5

p22

p1200
.

Using these values ofeCMB andhCMB , it is easily shown that

n512
2p14

p1200
, r .13.7

p

p1200
.

Note that this is a minimalist model in the sense that inflation
ends naturally, without the necessity of invoking another sec-
tor of the theory. The results are listed in Table I.

B. ‘‘Small-field’’ polynomial potentials:
L4

†12„f/µ…

p
‡,f!µ!mPl and p>2

The small-field polynomial describes what might result if
the potential arises from a phase transition associated with
spontaneous symmetry breaking. In this scenario, the field is
evolving away from an unstable equilibrium at the origin
toward a nonzero vacuum expectation value,^f&Þ0. Near
the origin, the potential can be written as a Taylor expansion,
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V~f!5L4F12S f

m D p

1••• G , ~3.1!

wherep is the lowest nonvanishing derivative at the origin,
and m}^f&. For instance, the Coleman-Weinberg potential
used in the original ‘‘new’’ inflation models@23,24# is of this
form with n54. This ansatz is quite general, applicable even
to potentials which have a logarithmic divergence in the
leading derivative at the origin@25#. In keeping with the
motivation for this model we will assume thatm!mPl , so
we have the hierarchy of scalesf!m!mPl . The analysis
was described in detail in@25#; the relevant results are given
in Table I and illustrated in Fig. 1.~The casep52 is special,
and is discussed separately below.! Like the polynomial
large-field models, the parametersr andn are independent of
the fundamental mass scales in the potential:

r .0, n512
p21

25~p22!
. ~3.2!

Unlike the large-field case, these models have the feature that
eCMB , and hencer , is negligibly small.

C. ‘‘Small-field’’ quadratic potentials: L4
†12„f/µ…

2
‡,f!µ

‘‘Natural’’ inflation models@26#, in which the potential is
usually assumed to have a cosine potential, can be described
by Eq. ~3.1! with p52 near the origin where inflation oc-
curs.

Potentials dominated by a quadratic term have the prop-
erty that the small-field assumptionf!m, while valid at the
time when observable parameters are generated, is not con-
sistent all the way to the end of inflation, since

e~f!5
1

4pS mPl

m D 2 ~f/m!2

@12~f/m!2#2
. ~3.3!

Thenfend/m approaches unity for largem, and higher order
terms in the potential cannot be neglected. We adopt the
reasonable assumption thatm in some direct sense param-
etrizes the expectation value of the field in the physical
vacuum, so that (fend/m) is of order unity. The precise
value offend is not important, since

fCMB5fendexpF2
50

4pS mPl

m D 2G ~3.4!

is exponentially small regardless, and the parameterseCMB
andhCMB approach the small-field limits

hCMB52
1

4pS mPl

m D 2

, ~3.5!

TABLE I. Lowest-order results forfend, fCMB , eCMB , andhCMB in some popular inflation models.

Model fend
2

mPl
2

fCMB
2

mPl
2

eCMB hCMB

A p2

16p

p(p1200)
16p

p

p1200
p22

p1200

B m2

mPl
2 FA16p

p S m

mPl
D G2/~p21! m2

mPl
2 F 4p

25p~p22! S m2

mPl
2 D G 2/~p22! !uhCMBu

2
p21

50(p22)

C
OS m2

mPl
2 D S fend

2

mPl
2 D expF2 50

2p S mPl

m D 2G !uhCMBu
2

mPl
2

4pm2

D Undetermined Undetermined mPl
2

16pm2
2

mPl
2

16pm2

E Undetermined Undetermined p21 p21

F Undetermined Undetermined ,hCMB .0

FIG. 1. The spectrum of anisotropies for the two models dis-
cussed in the text. Both are normalized at large scales to COBE.
The model withn50.9 is a much better fit to large scale structure
data.
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eCMB5uhCMBuexp@2100uhCMBu#.0.

Note that since

n5112h512
1

2pS mPl

m D 2

, ~3.6!

if n.0.9 as suggested by the cosmic background explorer
~COBE! measurements, thenm!mPl is excluded. The scale-
invariant limit is m→`, or h→0, but it is important to re-
member that the small-field approximation breaks down in
this limit, sincefCMB→fend in Eq. ~3.4!.

D. Linear potentials: L4
„f/µ… and L4

†12f/µ‡

Linear potentials have the property thate52h
5mPl

2 /16pm2 is independentof f. Thus, if inflation starts,
i.e., if e,1, it will never end. More exactly, some other
physics must enter to terminate the inflationary phase. So we
assume that the linear potential is only valid when scales of
interest for the CMB are passing through the Hubble radius.
Thus the relevant values ofe andh are those given above.
Like the quadratic potential, the scale-invariant limit is
m→`.

E. Expotential potentials: L4expA16pf2/pmPl
2 , p>0

Exponential potentials lead to an exponential form of the
Hubble parameter, which in turn leads to a power-law time
dependence of the scale factor. For potentials of the form
V(f)5L4expA16pf2/pmPl

2 , the expansion rate isH
}expA4pf2/pmPl

2 which givesa}tp. This model is usually
called power-law inflation, a term we will not use in order to
avoid confusion with models with power-law potentials. Ex-
ponential potentials, while nonrenormalizable, arise quite
naturally as the effective low-energy description of degrees
of freedom associated with extra spatial dimensions in
Kaluza-Klein models, as well as dilatons and moduli fields in
superstring theories.

This model has the useful property that bothe andh are
constant and equal:e5h5p21. Thus, as in the linear poten-
tial case, some other physics must enter in order for inflation
to end. With e5h5p21, we find r 513.7p21 and
n5122p21. The resultn21}r is often incorrectly gener-
alized to all slow-roll models.

F. Hybrid inflation: L4
†11„f/µ…

p
‡, f<µ

The final class of models we consider is ‘‘hybrid’’ infla-
tion @20–22#, in which the field rolls toward a minimum with
a nonzero vacuum energy. We take a potential of the form

V~f!5L4F11S f

m D pG , ~3.7!

with p>2. The large-field limit of this potential is just the
case of chaotic inflation with a polynomial potential, model
A. Hybrid inflation is the limit ofsmall field, f,m, where
the potential is dominated by the constant term,
V.L45const. In the absence of any other physics, the field
rolls toward the origin, coming to rest atf50 after an
infinite period of inflation. For inflation to end, another sector

of the theory must be invoked, generally a coupling to a
second scalar fieldc, so thatfend andfCMB cannot be fixed
outside the context of a particular model. A generic charac-
teristic, however, is thatfCMB@fend. For generality, we
will take (fCMB /m) to be less than unity; in many models it
is often very much less than unity. In hybrid inflation, the
parameterhCMB is positive, and can be written in terms of
eCMB :

hCMB

eCMB
5

2~p21!

p S fCMB

m D 2pF11
p22

2~p21!S fCMB

m D pG

→5
p22

p
for fCMB /m@1,

2~p21!

p S m

fCMB
D p

for fCMB /m!1.

~3.8!

This first expression depends only on the assumption of slow
roll, not on a small-field limit. In the large-field limit,
fCMB /m@1, we recover the result for modelA found above,
hCMB /eCMB5(p22)/p. In the small-field limit,
fCMB /m!1, we obtain the familiar result for hybrid models,
n.1.

This possibility of a ‘‘blue’’ scalar spectrum~here, blue
implies n.1) is the distinctive feature of hybrid models.
Recalling thatn5124e12h, we see that although hybrid
models can, in principle, result in a red spectrum~for
h,2e), if h.2e, hybrid inflation predicts a blue spectrum.
The predictions for all of the models described here are sum-
marized in Table I.

IV. EXTRACTING PERTURBATION SPECTRA
INFORMATION FROM CMB OBSERVATIONS

Now that we know how to extract the observablesn andr
from a given inflationary potential, we turn to the question of
how well experiments will be able to measure these quanti-
ties. The general question of parameter estimation from
CMB experiments will likely occupy cosmologists for a long
time. However, without any simulations at all, one can get a
very good idea of how accurately parameters will be deter-
mined by using a simplex2 technique. A given experiment
will measure eachCl with an error given byDCl . The
‘‘true’’ set of parameters will be determined by minimizing

x2~$l i%![(
l 52

`
@Cl~$l i%!2Cl

measured#2

~DCl !
2

. ~4.1!

Here the set of parameters$n,r ,QrmsPS,VB ,H0% which we
are allowing to vary is denoted$l i%.

Of course, we cannot know in advance whatCl
measuredwill

turn out to be. But knowing what we expect forDCl , we can
get an estimate of how large the uncertainties in the param-
eters will be. To do this, we assume that the measuredCl ’s
will be very close to the trueCl ’s. Then, by minimizing the
x2, we will accurately determine the parameters. Therefore,
we can expand
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x2~$l i%!.x2~$l i
true%!1

1

2

]2x2

]l i]l j
U

l5l true

~l i2l i
true!

3~l j2l j
true!. ~4.2!

The second derivative matrix carries information about how
quickly thex2 increases as the parameters move away from
their true values. Therefore, under some reasonable assump-
tions @27#, the uncertainties in the parameters are determined
by this matrix. We will be interested only in the parametersn
and r , so we want to project these uncertainties onto the
two-dimensionaln2r plane.~This is equivalent to integrat-
ing out all the other variables.! It is a simple exercise to show
that these uncertainties are obtained by computing the ele-
ments of the five-by-five second derivative matrix, inverting
it, and then picking out the two-by-two matrix corresponding
to the n,r elements. The remaining two-by-two matrix de-
fines the error ellipses in then-r plane.

To complete this program, we need two more pieces of
information. First, the elements of the derivative matrix must
be evaluated at the true values of the parameters. We need to
specify what we are assuming for the true values. Here, we
look separately at two possible sets of values for the param-
eters. The first corresponds to standard cold dark matter
~SCDM!.

$lSCDM%5$n,r ,QrmsPS,VB ,H0%5$1,0,18 mK,0.0125,50%,
~4.3!

where H0 is in units of km sec21 Mpc21. The second set
corresponds to values of the parameters considered to be
viable upon consideration of large scale structure~LSS! data
@28#:

$lLSS%5$n,r ,QrmsPS,VB ,H0%5$0.9,0.7,20mK,0.02,50%.
~4.4!

The Cl ’s for these models are shown in Fig. 1. Since the
anisotropies are considerably larger in SCDM, the signal to
noise in a given experiment will also be larger. Therefore we
expect tighter bounds in SCDM than in our second model.

The last piece of information we need to compute the
derivative matrix in Eq.~4.2! is the uncertainty expected in
theCl ’s. The relevant experimental parameters are the beam
width sbeam, the expected noise per pixelspixel , the area per
pixel Vpixel , and the fraction of the sky covered. Once these
are known, it is very useful to employ a formula derived by
Knox @7#, who showed that for an all-sky map,

DCl

Cl
5A 2

2l 11S 11
spixel

2 Vpixel

Cl
exp$ l 2sbeam

2 % D . ~4.5!

The first term here is the inevitable consequence of the fact
that we have only 2l 11 pieces of information at eachl
~cosmic variance!. We will consider the MAP and PLANCK
satellites. For MAP, we assumesbeam50.42530.3° and
spixel

2 Vpixel5(35 mK) 2(0.3°)2. For PLANCK, we take
sbeam50.42530.17° andspixel

2 Vpixel5(3 mK) 2(0.167°)2.
The results are shown in Fig. 2. The ellipses delineate

95% confidence limits inn and r for the SCDM and LSS
examples. In the SCDM case, we have imposed the~physi-
cal! restriction thatr .0. Also shown in Fig. 2 are the pre-

dictions from the various models discussed in Sec. III. By
inverting Eqs.~2.13! and ~2.14!, we can plot the same el-
lipses in theh-e plane. These are shown in Fig. 3. The
superposition of the ellipses on top of the model predictions
makes clear that CMB observations will be able to discrimi-
nate amongst inflationary models.

V. CONCLUSIONS

Different inflationary models make different predictions
for the spectrum of scalar and tensor perturbations. While
very different models might lead to indistinguishable scalar
spectra, it has been realized for some time that the tensor
spectrum, used in conjunction with the scalar spectrum, can
differentiate between models@29#. Here we have demon-
strated how the effect of scalar and tensor combinations on
CMB fluctuations can be used as a discriminant in testing
inflation models.

Most inflationary models have an adjustable parameter
that can be tuned to give the correct normalization of the
scalar perturbations (QrmsPS in the language used to study

FIG. 2. Predictions for a variety of inflationary models in then-
r plane superimposed on the expected~95% c.l.! region allowed by
the two CMB satellites. The two panels correspond to two different
values of the true parameters: the upper figure is the LSS model
while the lower one is the SCDM model. The line labeledf1 de-
lineates two classes of models: large-~small-! field models lie
above~below! the line.
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CMB fluctuations!. A simple example of such a parameter is
the coupling constantl in the chaotic inflation model with
potential V(f)5lf4. However, in this paper we have
shown that even with the freedom of an adjustable parameter
it is possible that observations of the cosmic microwave
background can distinguish among different inflation mod-
els. Therefore, we can hope in the next decade to see a real
confrontation between inflation models and CMB observa-
tions.

We note that the analysis presented here cannot prove that
a given model is correct, since some more complicated
model could conceivably occupy the same position on then-
r plane. However, it is possible to convincingly rule out
models.~Of course, finding thatV0Þ1 would serve to rule
out all of the models considered here.!

While the type of analysis we propose can never prove
that any particular model is correct, it might do much more
than simply eliminate models. It is possible that an analysis
like the one we present here might be able to give some
guidance in model building. One way of dividing inflationary
models is to classify them as either ‘‘small-field’’ models,
‘‘large-field’’ models, or ‘‘hybrid’’ models.3 Different ver-
sions of the three types of models predict qualitatively dif-
ferent scalar and tensor spectra, so it should be particularly
easy to tell them apart once the data is available.

Although we have only studied simple examples of mod-
els, we can speculate that small-field, large-field, and hybrid
models will populate different regions of then-r plane as
illustrated in Fig. 4. Certainly a scalar spectral index larger
than unity would suggest some form of hybrid model. A
scalar index smaller than one in combination with negligible
tensor contribution~small r ) would suggest a small-field
model, while scalar index less than unity with considerable
tensor contribution would point toward large-field models.
An interesting question we do not address here is whether
single-field, slow-roll models populate the entiren-r plane.
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