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We examine certain issues related to the universality of the SU~2! lattice gauge theory at nonzero tempera-
tures. Using Monte Carlo simulations and strong coupling expansions, we study the behavior of the decon-
finement transition in an extended coupling plane (b,bA) around the tricritical point where the deconfinement
transition changes from second to first order. Our numerical results onNt52,4,6,8 lattices show that the
tricritical point first moves down towards the Wilson axis and then moves slowly upwards, if at all, as the
lattice spacing is reduced. Lattices with very largeNt seem to be, therefore, necessary for the mixed action to
exhibit the critical exponents of the three-dimensional Ising model for positive values of the adjoint coupling.
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I. INTRODUCTION

Confinement of the non-Abelian color degrees of freedom
has been a challenging problem ever since gauge theories
were formulated for quark-gluon interactions. In the begin-
ning, our understanding of such gauge theories followed
mainly from perturbation theory. Because of the property of
asymptotic freedom, the perturbative approximations are
valid for short distance phenomena but they are inadequate
to explore long distance physics such as confinement of
quarks. Strong evidence for, and much better insight into, the
color confinement mechanism in non-Abelian gauge theories
have been provided by analytical computations and Monte
Carlo simulations of quantum field theories with a nonper-
turbative lattice regularization. The simplest of such theories
is described by the SU~2! Wilson action@1#. It was expected
that non-Abelian gauge theories in general do not have any
phase transitions separating strong and weak coupling re-
gimes. Therefore, confinement, explicitly shown on the lat-
tice in the strong coupling region, should persist also in the
continuum limit. However, it was later found@2# that certain
non-Abelian lattice gauge theories@e.g., SO~3!, SU~4!,
SU~5!#, with Wilson form of action, undergo bulk transitions
separating strong confining region from the weak coupling
region where the continuum limit of the theory exists. Bha-
not and Creutz@3#, extending the form of the action proposed
by Wilson, showed that this apparent loss of confinement can
be attributed to lattice artifacts associated with the choice of
action, namely, the so-called bulk phase transitions.

Subsequent to the work of Bhanot and Creutz to charac-
terize the bulk transitions in the extended coupling plane,
important reasons for further exploration of this action in the
past have been to study the basic mechanism of confinement

itself @4# and to find out the origin of these bulk transitions
@5–7#. It has been a common folklore that the abrupt change
from the strong coupling region to the scaling region for the
Wilson action is because of the proximity of the critical point
at the end of the first order line CD in Fig. 1, where the phase
diagram obtained in Ref.@3# is shown, and that a
‘‘smoother’’ continuum limit may be obtained by going to
negativebA , the additional coupling for this action. Because
of the theoretical expectations of the role of SO~3!
@SU(N)/ZN] monopoles in SU~2! @SU(N)] confinement@8#,
the above model is tailor made to study the interplay of these
topological degrees of freedom and their role in confinement
between SU~2! @SU(N)] and SO~3! @SU(N)/ZN] lattice
gauge theories. In fact, the plaquette susceptibility peak in
the crossover region in SU~2! lattice gauge theory and the
bulk transition line BCD of Fig. 1 have been attributed to the
underlying SO~3! theory and its first order transition@9,10#.
These issues can be also analyzed and tested by exploring
the mixed action at nonzero temperatures and will be further
discussed after presentation of our results.

The rich phase diagram associated with the mixed action,
shown in Fig. 1 by solid and dashed lines, was established
mainly by Monte Carlo simulations on relatively small lat-
tices @3# (44–54) with periodic boundary conditions. Since
these small lattices were also at finite temperature, the phase
diagram is incomplete in the absence of the deconfinement
transition line. Along thebA50.0 axis, several finite tem-
perature investigations have shown the presence of a second
order deconfinement phase transition. Its critical temperature
has been shown@11# to exhibit asymptotic scaling and its
critical exponents have been shown@12# to be in very good
agreement with those of the three-dimensional Ising model.
Effective field theory arguments for the order parameter were
used by Svetitsky and Yaffe@13# to conjecture the finite
temperature SU~2! gauge theory and the three-dimensional
Ising model to be in the same universality class. The verifi-
cation of this universality conjecture thus strengthened our
analytical understanding of the deconfinement phase transi-
tion. Our work @14,15# on the extended action at nonzero
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temperatures began with the motivation to locate the line of
deconfinement transition in the couplings plane (b,bA). Our
simulations yielded the following surprising results.

~a! The transition remained second order in agreement
with the universality conjectured exponents up tobA'1.0
but it became definitely first order for large enough
bA(>1.4).

~b! There was no evidence of a second separate transition
at largerbA , as would be suggested by the claim of Ref.@3#
of a bulk transition there. ForNt54 lattices the line of de-
confinement transition was coincident with the line of bulk
transitions of Ref.@3#, but for Nt52 there wereno symp-
toms of any transition at those locations. The line of decon-
finement phase transition, on the other hand, did move to
smallerb for all bA , asNt changed from 4 to 2.

While the details of our analysis and results can be found
in the works cited above, the key findings which lead us to
these conclusions were the following~a! The deconfinement
order parameter̂L& ~see next section for definition!, ac-
quired a large nonzero value at the only transition found on
all lattices studied~i.e.,Nt52,4,6,8! and showed clear coex-
istence of both phases at the transition point for largerbA ;
~b! the same critical exponent which established the transi-
tion to be in the Ising model universality class for
0.0<bA<1.0 became equal to the space dimensionality, as a
first order deconfinement phase transition would have, for
largerbA ; ~c! the plaquette susceptibility showed a decrease
at bA51.1 when the lattice four-volume was increased by a
factor of 16; it should diverge, i.e., increase 16-fold, if there
were a first order bulk phase transition atbA51.1.

The plaquette susceptibility results above are very similar
to those of Ref.@17# who too found a decrease in it while
increasing the lattice volume by a factor of 16. On increasing
the lattice size further, no further finite-size dependence was
found, leading to a conclusion that the finite-size effects on

smaller lattices are because of finite temperature effects.
While larger lattices will be needed in our case too to see if
a similar conclusion is reached, it has to be emphasized that
conclusions based on finite-size scaling usually do assume
that the lattices are large enough for the scaling to set in.
Thus, a distinguishing feature between the bulk and decon-
finement phase transitions, i.e., the finite-size scaling behav-
ior of the coupling at which the transition takes place with
the temporal size of the lattice which leads one to expect the
bulk transitions to move much less compared to the decon-
finement transitions, is not necessarily useful here since it is
not clear how big lattices are needed for this behavior to set
in at various values ofbA . We have therefore relied heavily
on the order parameter^L& to label a transition as a decon-
finement phase transition, as mentioned in~a! above.

Recently, the above surprising results showing the change
in the order of the deconfinement transition and the absence
of the bulk transition were confirmed@16# for another variant
of the SU~2! action with a Villain form for the adjoint SO~3!
part. We will later comment more on the above action.
Taken together, these results pose many questions about the
continuum limit of the deconfinement phase transition and
about the existence of separate bulk phase transitions. The
foremost amongst them is about an apparentqualitativevio-
lation of the universality,1 since an apparently irrelevant cou-
pling seems to change the order of the deconfinement phase
transition. The early simulations of the SU~2! lattice gauge
theory are known to have yieldedquantitativeviolations of
universality @18#. However, attributing them to the ignored
higher orders ingu

2 , it has been shown@19–21# that dimen-

1Note that this universality, which results from the freedom of
choice of the lattice type and action, is different from the finite-
temperature universality of critical exponents discussed earlier.

FIG. 1. The phase diagram of
the extended SU~2! lattice gauge
theory. The solid lines are from
simulations done on a 54 lattice
by Bhanot and Creutz@3#. The
light dashed line indicates the ab-
sence of first order bulk transition
@22# below bA51.25. The dotted
~thick dashed! lines with hollow
~filled! symbols are the second
~first! order deconfinement phase
transition lines onNt 52 ~circles!
and 4~squares! lattices.
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sionless ratios of physical quantities have much weaker such
violations. Indeed, one can hope that these violations will
smoothly disappear under the error bars of the simulations as
the cutoff becomes smaller. This will obviously not be the
case for any qualitative violations of universality. Of course,
the region of couplings where universal results are obtained
may have such an irregular shape that still larger lattices are
needed to obtain universal results. It is not clear in that case,
however, what the universal result would be. Clearly, if a
universal result exists in thea→0 limit, then the tricritical
point T, where the deconfinement phase transition changes
order, must not appear on any renormalization group flow
lines to thegu50.0 critical point and must thus be invisible
in the continuum limit. If the pointT moves up to large
positivebA with increasingNt ~and decreasing lattice spac-
ing a), then the SU~2! deconfinement phase transition could
still be of second order in continuum limit with Ising model
exponents. This would be so, irrespective ofbA used for
simulations. If, on the other hand, the pointT moves to large
negativebA , the universality with Ising model will be lost
and the transition will be first order, again irrespective of
bA used in simulations.

It may be argued that the presence of a line of bulk phase
transitions and its end point will strongly modify the ap-
proach to continuum limit and thus large lattices are manda-
tory for seeing the universal physics at largebA . It needs to
be noted, therefore, that the bulk line in question was estab-
lishedonly in numerical simulations on small, 44–54 lattices.
A recent simulation@22# at bA 5 1.25 on largerN4 lattices,
with N 5 6, 8, 10, 12, and 16, found~1! a linear decrease in
the average discontinuity in plaquetteDP with N and ~2! a
plaquette susceptibility exponent of 2.096 0.31 in contrast
with the expected value of 4 for a first order bulk phase
transition. This suggests that the end point of the bulk line is
at bA.1.25. This is explicitly shown in Fig. 1 by drawing
solid and dashed bulk lines above and belowbA51.25, re-
spectively. While the result of Ref.@22# does explain the
above-mentioned results on plaquette susceptibility, the mys-
tery of the apparent coincidence of the two different transi-
tion lines still remains for largerbA . As we will show be-
low, the deconfinement phase transition forNt 5 4 lattices,
as identified by the order parameter^uLu&, turns first order
already atbA51.25, suggesting that the bulk line or its end
point are unlikely sources of this change.

In this paper, we address the issue of the trajectory of
point T with decreasing lattice spacinga, after defining in
the next section the action we investigate and the observables
we use along with their scaling laws. A simple strong cou-
pling calculation is presented in Sec. III, which suggests that
the pointT moves up in the plane to infinity. However, in
our numerical simulations, described in Sec. IV, we find that
it moves down on going fromNt 52 to 4. On increasing
Nt further to 6 and then to 8, we observe a very small up-
ward movement by comparing the relative shapes of the
Polyakov loop histograms. The last section contains a brief
summary of our results and their discussion.

II. THE MODEL AND THE OBSERVABLES

The lattice action is constrained only by~a! the gauge
invariance and~b! the limit of zero lattice spacing which

must coincide with the continuum form of the action. Infi-
nitely many different forms satisfying these criteria can be
written down. Bhanot and Creutz extended the Wilson action
to a form described by the action

S5(
P

@b~12 1
2 TrFUP!1bA~12 1

3 TrAUP!#. ~1!

Here,UP denotes the directed product of the basic link
variables which describe the gauge fieldsUm(x) around an
elementary plaquetteP. F andA denote that the respective
traces are evaluated in fundamental and adjoint representa-
tions respectively. Comparing the naive classical continuum
limit of Eq. ~1! with the standard SU~2! Yang-Mills action,
one obtains

1

gu
2 5

b

4
1
2bA

3
. ~2!

Here, gu is the bare coupling constant of the continuum
theory. Introducing another couplingu, defined by
tanu5bA /b, the asymptotic scaling relation@23# for this
action is

a5
1

L~u!
expF2

1

2b0gu
2G @b0gu

2#2b1 /2b0
2
, ~3!

where

ln
L~0!

L~u!
5
5p2

11

6tanu

~318tanu!
. ~4!

Here,b0 andb1 are the usual first two universal coefficients
of the b function for the SU~2! gauge theory: they do not
depend onu.

One sees clearly from the equations above that the intro-
duction of a nonzerobA leads merely to a differentgu and a
correspondingly different value for the scaleL(u). How-
ever, each of these theories, including the usual Wilson
theory for bA50.0, flow to the same critical fixed point,
gu
c50, in the continuum limit and has the same scaling be-
havior near the critical point. The different forms of action,
obtained by varyingbA , are simply related by a redefinition
of coupling constant and the intrinsic scaleL and yield the
same universal continuum physics. Numerical investigations
for different bA thus constitute a necessary check of the fi-
nite cutoff effects in the nonperturbative results obtained for
bA50.0, i.e., the Wilson action.

Bhanot and Creutz@3# found that the lattice theory de-
fined by the extended action has a rich phase structure~Fig.
1!. Along theb50 axis it describes the SO~3! model which
has a first order phase transition atbA

crit;2.5. At bA5` it
describes theZ2 lattice gauge theory again with a first order
phase transition atbcrit5 1

2ln(11A2) ' 0.44 @24#. Reference
@3# found that these first order transitions extend into the
(b,bA) plane, ending at an apparent critical point located at
~1.5,0.9!. These transition lines are shown in Fig. 1 by con-
tinuous lines. Using finite-size scaling, Ref.@22# has recently
shown that the critical end point must havebA>1.25. More
simulations on larger lattices will be required to determine
the end point precisely. The qualitative aspects of this phase
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diagram were also reproduced by mean-field theory@5# and
largeN @6# and strong coupling@7# expansions.

Simulations of the mixed action above at finite tempera-
ture are made on asymmetricNs

33Nt lattices, with periodic
boundary conditions in the~shorter! t direction. The parti-
tion function at finite temperature is given by

Z5E )
x,m

dUm~x!exp~2S!. ~5!

The order parameter for the deconfinement transition is the
Polyakov loop@25# defined by

L~nW !5
1

2
Tr)

t51

Nt

U0~nW ,t!. ~6!

Here,U0(nW ,t) is the timelike link at the lattice site (nW ,t).
Because of periodic boundary condition in the timelike di-
rection at finite temperature, the action of Eq.~1! has aZ2
invariance corresponding to the center of the gauge group.
Defining this symmetry to be

U0~nW ,t0!→zU0~nW ,t0!;n,t0 :fixed, and zPZ2 , ~7!

one sees that under its transformation the Polyakov loop
changes by

L→zL, ~8!

while the action in Eq.~1! remains unchanged.
A nonvanishing value for̂L&, with respect to the partition

function in Eq.~5!, signals a spontaneous breakdown of the
global Z2 symmetry.^L& is also an order parameter for the
deconfinement phase transition as it@or equivalently, its av-
erage valueL5(1/Ns

3)(nWL(nW )] can also be shown to be a
measure of the free energy of an isolated free quark@25#. In
order to monitor the critical behavior of the deconfinement
transition, we also define the Polyakov loop susceptibility:

xNs
5Ns

3~^L2&2^L&2!. ~9!

In the thermodynamic limit, a second order transition is
characterized by the following critical exponents:

^L&}uT2Tcub for T→Tc
1 , ~10!

x}uT2Tcu2g for T→Tc , ~11!

j}uT2Tcu2n for T→Tc . ~12!

Here, j is the correlation length corresponding to the
Polyakov loop correlations andb'0.325, g'1.24, and
n'0.63 are the Ising model exponents, assuming the univer-
sality conjecture to be true. The best determination of these
exponents for the SU~2! lattice gauge theory was made@12#
by using the finite-size scaling theory@26#, according to
which the peak of theL susceptibility on a lattice of spatial
extentNs is expected to grow like

xNs

max}Ns
v , ~13!

wherev5g/n51.97. If the phase transition were to be of
first order instead, then one expects the exponentv53, cor-
responding to the dimensionality of the space@27#. In addi-
tion, of course, the order parameter is expected to exhibit a
sharp, or even discontinuous, jump and the corresponding
probability distribution should show a double~multi!peak
structure. ForbA50, the universality prediction was verified
by Monte Carlo simulation by Engelset al. @12#, who found
v51.9360.03, whereas we found@15# v53.2560.24 for
bA51.4 onNt52 lattices.

III. STRONG COUPLING

Before turning to the results of our simulations to deter-
mine v and to locate the tricritical point, it may be an in-
structive exercise to find out what hints the strong coupling
expansion can provide. Such expansions for the free energy
@28,29# and string tension@30# have been used in the past to
study SU(N) deconfinement transition for the Wilson action.
The basic strategy is to obtain an effective potential for the
order parameterL, by expanding the partition function in
powers of the inverse coupling constant~s! and integrating
out the spatial links . Because of theZ2 symmetry of the
theory, the Landau-Ginzburg effective action is an even
polynomial in the Polyakov loop for theSU(2) theory. To
lowest order,

Seff52
1

2(nW
ln@12L2~nW !#24S b

4 D Nt

(
nW ,i

L~nW !L~nW 1 i !

2S bA

9 D Nt

(
nW ,i

@4L2~nW !21#@4L2~nW 1 i !21#. ~14!

Here, the first term is independent of the couplings and is
the exact Jacobian because of the change of the temporal link
variables toL(nW ) after all the link integrations. The last two
terms are the leading strong coupling terms in (b/2) and
(bA /3) with the assumption that bothb/2 andbA /3 are
small and treated on the same footing. Only the leading order
terms inb andbA are retained in the effective action here.
Demanding translational invariance for the configuration
which minimizes the action, one can easily obtain the effec-
tive potential for the order parameter. Expanding the log
term for smallL, one has the following results for the coef-
ficients b2, b4, and b6 of the L2, L4 and L6 terms in the
effective potential:

Veff~L !5b2L
21b4L

41b6L
6, ~15!

where

b25
1

2
212S b

4 D Nt

124S bA

9 D Nt

, ~16!

b45
1

4
248S bA

9 D Nt

, ~17!

b65
1

6
. ~18!
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The positivity of theb6 term ~and all other higher terms!
ensures that the effective potential is bounded from below.
Note that for small enoughb andbA , b2 and b4 are also
positive, favoring thus the confined phase ofL50. For small
bA and arbitraryb, b4 remains positive butb2 goes through
a zero, giving rise to a second order phase transition at a
critical b obtained by settingb2 to zero. AsbA increases,
b4 becomes negative above a critical value ofbA . The ef-
fective potential then has two additional minima in addition
to the one atL50. Asb increases, these minima deepen and
become equal to the one atL50, yielding a first order de-
confinement phase transition. The tricritical point, where the
deconfinement phase transition changes to become first or-
der, is given by setting the coefficientsb2 andb4 to zero.

In this leading order strong coupling expansion, the tri-
critical points are (b tricrit,bA

tricrit) 5 ~0.913,0.649!,
~1.91,2.418! for Nt52 and 4 lattices, respectively. This sug-
gests that the tricritical point moves towards the top right
corner (b5`,bA5`) of the phase diagram as the lattice
spacing is reduced. Thus, the tricritical point will not be seen
by the continuum limit. Of course, one needs to improve the
leading order strong coupling result asNt increases and
check that this conclusion remains unchanged. Nevertheless,
these results are encouraging for two reasons. First, they pro-
vide a concrete example of how the SU~2! gauge theory at
finite temperaturecan have a first order phase transition.
Indeed, it should be noted that the bulk phase transition plays
no role above in changing the order of the deconfinement
phase transition at largebA . Second, the qualitative trend
suggested by this simple exercise is in agreement with the
naive idea of independence of physical results with respect to
irrelevant couplings. Of course, the key question of the limit
of the coefficientsbi , as the lattice spacinga→0, can only
be resolved by simulations at present and, in principle, the
trajectory of the tricritical point could go either way in that
limit. In the next section, we describe the results of our simu-
lations which were made in an attempt to answer this issue.

IV. RESULTS OF THE SIMULATIONS

Our Monte Carlo simulations were done using Metropolis
algorithm onNs

33Nt lattices withNt52, 4, 6, 8 andNs5
8,10,12,16. The many different values ofNs were chosen to
study the finite-size scaling behavior of the theory and to
compute the critical exponentv, while theNt values were
chosen to monitor the movement of the tricritical point with
decreasing lattice spacing. We also usedNs5 16 in one case
to be sure of the critical exponent. The possible ranges for
the tricritical points for differentNt were known from our
earlier work, and the simulations were carried out atb and
bA in these ranges. Histogramming techniques were used to
extrapolate to nearbyb values while estimating the height
and location of the peak of various susceptibilities. The val-
ues of the critical exponents from our earlier simulations
@14,15# onNt52, 4 lattice are summarized in Table I, where
the result of Ref.@12# for bA50.0 is also given. One sees a
good agreement with the Ising model exponent forNt54 for
bA<0.9, suggesting that the tricritical point must lie at
higherbA in this case. On the other hand, no check of the
universality with the three-dimensional Ising model has so
far been made for theNt52 lattices: the correspondingv is

unknown although all earlier simulations do indicate a con-
tinuous transition. From our previous work@15#, we know
that the transition forNt52 and forbA>1.4 is a strong first
order one. ForbA51.4, the exponentv 5 3.25~24!, with a
typical tunneling time of'30 000–40 000 Monte Carlo
sweeps. Thus, the effective ranges for thebA of the tricritical
points were 1.4.bA

tricrit for Nt52, and bA
tricrit.0.9 for

Nt54. No firm upper bound was known for the latter case,
although we had good indications that 1.5.bA

tricrit , as Ref.
@14# found a co-existing two state signal in both the Polya-
kov loopL and the plaquetteP at bA51.5.

In our earlier work, the simulations atbA51.1 on the
Nt52 lattices did not reveal a clear three peak structure in
the histogram of the Polyakov loop on theNs58,10,12 lat-
tices, although the peaks did become a bit sharper on going
to theNs512 lattice. Correspondingly, the determination of
the critical exponent did not fix the order of the transition
uniquely. This is similar to theNt54 results atbA51.1 @14#
where the histograms and the evolution graphs of the Polya-
kov loop gave a very weak two state signal with an
v.2.34, lying between values characteristic of first and sec-
ond order phase transition. Such a behavior of the deconfine-
ment transition can be understood from the point of view of
the effective potential in terms of the Polyakov loop, if these
simulations were indeed close to the tricritical point. As ar-
gued in earlier section, the first two leading coefficients of
L2 andL4 terms of the effective potential are then close to
being zero, leading to a reasonably flat effective potential
aroundL50.0, a fact which we will later exploit to conclude
about the movement of the tricritical point as the lattice spac-
ing is reduced. However, as a consequence, much larger sta-
tistics is required to sample the exact nature of the effective
potential near the tricritical point to separate a weak first
order transition from a second order one. We, therefore, in-
creased the statistics to typically 43106 sweeps to compute
the critical exponents and focused more onbA close to 1.1.
We, however, also made simulations onNt52 lattices at
bA50.0, 0.8, and 0.9 to determine the critical exponentv
and thus the range for the tricritical point more precisely.
The observables were typically recorded after every 20
sweeps to reduce autocorrelation. The errors were estimated
by further binning the data and the typical bin size was
;100.

Figures 2~a!, 2~b!, 2~c!, and 2~d! exhibit the results for
L susceptibility for theNt52 lattices forbA50.0, 0.8, 1.1,
and 1.25, respectively. The results forbA50.9 are similar to

TABLE I. The average values of the critical exponentv at
different values of the adjoint couplings. The expected value is 1.97
~3.0! if the deconfining phase transition is second order~first order!.
The data are taken from Refs.@12,14,15#.

bA Nt v

0.0 4 1.93~03!
0.5 4 1.92~29!
0.75 4 1.53~32!
0.9 4 2.10~22!
1.1 4 2.34~15!
1.4 2 3.246~243!
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those in Fig. 2~c! and are therefore not shown here. In each
of these figures, the range of expected values for the peak
height for theNs510 and 12 lattices is also shown by two
horizontal lines by assuming the validity of Eq.~13!,
v51.97, and by usingxNs58

max for each case. The errors on

the respectivexNs58
max induce the spread between the lines.

We always chose a fresh starting point in an iterative man-
ner, if the initial guess was too far away from the extrapo-
lated estimate for the location of the peak. This reduced the
influence of the unknown systematic errors in the peak
height because of our extrapolation procedure. As seen in
Figs. 2~a!–2~d!, we do hope that this source of errors has
been brought under control by our choice of the simulation
points, and that it does not annul our conclusions about
whether the critical exponent is close to 3 or to 1.97.

The independence ofv for bA50.0 ~and smallbA) for
Nt 52 and 4 and its agreement with three-dimensional~3D!
Ising model value is satisfying since there is only one known
critical point in Z(2) symmetric theories anda priori one
expects the exponents to be universal. Moreover, strong cou-
pling arguments, which predict a second order phase transi-
tion for smallbA , should be more reliable for smallerNt .
Quantitatively, however, one notices the leading order strong

coupling prediction forbcrit(Nt52)5 0.816 forbA50.0 to
be far away from the corresponding Monte Carlo determina-
tion. Furthermore, itsbA dependence seems to be also in the
wrong direction. Thus, one really could have expected sur-
prises in form of a qualitative difference from the strong
coupling prediction as well. On the other hand, it may be
more natural to expect the effect of higher orders in quanti-
tative shifts and not in qualitative features. Since it is unclear
whetherNt54 is in the strong coupling region, the univer-
sality conjecture for the critical exponents needs to be tested
on lattices with largerNt and thus closer to the continuum
limit even for the Wilson action, i.e.,bA50.0.

The values of the critical couplingbcrit and the finite-size
scaling exponentv, obtained by fitting the peak heights to
Eq. ~13!, are given in Table II for all thebA values we
investigated, includingbA50.9. These estimates ofv in
Table II, along with the agreement in Fig. 2 with the predic-
tions based on av51.97 show the deconfinement phase
transition forNt52 lattices to be a clear second order with
Ising model exponents for 1.25>bA>0.0. At bA51.25, ad-
ditional simulations were performed onNs516 to confirm
the second order nature of the transition. Note that if the
predictions forv53, corresponding to a first order phase

FIG. 2. Polyakov loop susceptibility at~a! bA50.0, ~b! bA50.8, ~c! bA51.1, and~d! bA51.25 on 8332, 10332, and 12332 lattices.
At bA51.25, result on 16332 lattice is also shown. The points with error bars are results of simulations and the curves are extrapolations
by the histogramming technique. The horizontal lines are predictions assuming a second order deconfinement transition, as explained in the
text.
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transition, were to be displayed in Fig. 2 then they would
overshoot by a large amount, especially in Fig. 2~d! where
they would be too big by a factor of 2 for theNs516 lattice.
Also, interesting to note is the resolution of the ambiguity in
establishing the order of the phase transition forbA51.1 in
these better statistics simulations. The finite-size scaling ex-
ponent isv5 1.79~02! and is thus a lot closer to the Ising
value. The tricritical pointT on aNt52 lattice is thus con-
strained to lie in the range 1.4>bA.1.25, as indicated in
Fig. 1 by the gap between the filled circles for the first order
transition points and hollow circles for the second order tran-
sition points. Thicker, dashed and dotted lines show the first
order and second order deconfinement phase transition lines.

Since the exponentv was found@14# to be 2.31~28! for
Nt54 at bA51.1 and the histograms of the Polyakov loop
signaled a very weak first order transition, we chose to rein-
vestigate the transition first atbA51.1 and then move to
larger values ofbA . Figure 3 shows the evolution of both
L andP atbA 51.25 onNs58, 10, 12 lattices. These figures
clearly show the coexistence of two states at the deconfine-
ment transition, sincêL&.0 for one of the phases while it is
nonzero and large for the other. The plaquetteP has a dis-
continuity at the same location, and further the number of
tunnelings and duration in each phase do indeed decrease as
the spatial volume increases. Figures 4~a! and 4~b! show the
Polyakov loop susceptibility atbA51.1 and 1.25 onNt 5 4
lattice for various spatial volumes. As in Fig. 2, the expected
peak heights for the bigger two lattices are shown by hori-
zontal bars. The only difference here is that the solid hori-
zontal lines in Fig. 4~b! show the predictedxNs510,12

max by

assumingv 5 3.0, while the broken lines in Fig. 4~b! and
the solid lines in Fig. 4~a! are for the Ising value 1.97. The

values of couplings at which simulations were performed
along with the critical values and the fittedv are given in
Table III. The most astonishing result is that the transition at
bA 51.25 is a first order transition withv53.13(01). This
needs to be contrasted with~i! the results forNt52 and, in
particular, Fig. 2~d! and ~ii ! the results of Ref.@22# where a
clear absence of a first order bulk phase transition atbA
51.25 was shown.

These simulations thus indicate that the tricritical point
for Nt5 4 lies definitelybelowbA51.25 whereas the corre-
spondingNt52 point is definitelyabovebA51.25. This is
also clearly seen in Fig. 1, where again the first order tran-
sition points forNt54 are shown by filled squares, the sec-
ond order points by hollow squares, and the gap between
them is the allowed range for the tricritical point. As one can
see, the tricritical point does shift as the temporal lattice size
increases from 2 to 4. However, the direction of the shift is
almost orthogonal to the strong coupling prediction of the
previous section and its magnitude is also much smaller. The
shift, on the other hand, suggests a possible lack of any cor-
relation of the bulk transitions, if any, with the key observa-
tion of the change of the order of the deconfinement phase
transition. This is so since any possible bulk transition for
bA< 1.25 is definitely not a first order phase transition@22#,
making it an unlikely cause of the behavior seen in Figs. 3
and 4. A plausible explanation then is indeed the phenom-
enon seen in the strong coupling calculations in Sec. III, i.e.,
a change of sign in the coefficientb4 of the effective poten-
tial for the order parameterL.

The above downward movement ofT in the extended
coupling plane is puzzling. It calls for a more detailed cross-
check on the 3D Ising model universality, especially for
positive values ofbA but also perhaps for largerNt at
bA50.0. Note that the latter has so far been demonstrated to
a very good accuracy only on theNt52,4 lattices. Therefore,
we decided to monitor the deconfinement transition further
by simulating the model onNt56 andNt58 lattices with
Ns512 and 16, respectively. On these lattices the simula-
tions were performed atbA51.1 and 1.25 to determine the
range in whichT may lie. AtbA51.25 onNt 56 lattice we
found the transition to be first order. The corresponding his-
togram is plotted in Fig. 5 atb51.2184. The three peaks are
clearly visible and distinct, though not of equal height. This
figure suggests the transition point to be at a slightly higher
value ofb than 1.2184. In choosing thisb we were guided
by the location of the peak of theL susceptibility to locate
the critical point. We have found that this criterion to deter-
mine the critical point differed a little from that of the effec-
tive potential picture~i.e., the nature of theL histograms!,
although they will coincide in the thermodynamic limit.
Comparing the shapes of the histograms atbA51.1 in Figs.
6~a!, 6~b!, and 6~c! (Nt54,6,8, respectively!, on the other
hand, one observes that their profiles at the peak tend to-
wards a Gaussian behavior as one makes the lattice spacing
smaller by going fromNt54 to 6 to 8. This is the expected
behavior if the tricritical point shifts upwards frombA.1.1
for Nt54. Since the effective potential~14! will have
b2'b4'0 at the tricritical point, it will have a reasonably
flat bottom, causing the very flat top for theNt54 histogram.
In Fig. 6~a! we have plotted the histograms forNt54 and
Ns58,10,12 to confirm the closeness of the tricritical point

TABLE II. The values of (b,bA) on Ns
332 lattice at which

simulations were performed,bcrit and the finite-size scaling expo-
nentv. The expected value forv is 1.97 ~3.0! if the deconfining
phase transition is second order~first order!.

bA Ns b bc v

8 1.90 1.88
0.0 10 1.885 1.878 1.92~01!

12 1.877 1.877

8 1.368 1.368
0.8 10 1.367 1.3664 2.03~01!

12 1.368 1.366

8 1.3 1.31
0.9 10 1.3 1.31 1.83~02!

12 1.3092 1.3088

8 1.201 1.201
1.1 10 1.2 1.2 1.79~02!

12 1.1999 1.1995

8 1.12 1.1203
1.25 10 1.12 1.1203

12 1.12 1.12 1.97~01!
16 1.12 1.1196
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with the run point, i.e.,b51.327 and 1.326 85. Moreover,
one clearly sees that the flatness is not a finiteNs artifact.
The reduction in the above flatness would signalb4 becom-
ing nonzero, as in a typical second order transition. More
quantitatively, the fluctuations in the Polyakov loop at
bc51.327 on theNt 54 lattice are in the rangeDL'6 0.3,

while DL'6 0.1 on theNt56 lattice atbc51.339, with a
reduction by a factor of 3 in the flatness of the histogram at
the top. The statistics for the above runs onNt 54 and 6
lattices were roughly 23106 and 73106, respectively. In
principle, this could be taken as a hint that the tricritical
point has moved up. However, one knows thatL measures

FIG. 3. Evolution ofuLu andP at bA51.25 on~a! 12334 (b51.2144),~b! 10334 (b51.214), and~c! 8334 (b51.2146) lattices.
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the free energy of a pointlike test charge and thus has
Nt-dependent corrections. These reduce the value ofL just
above the phase transition asNt increases. A perturbative
estimate of these corrections will presumably still not yield
the factor of 2 but, unless it is quantitatively so demon-
strated, one is handicapped in drawing a firm conclusion
about lack of the finiteNt effects in the flatness of the effec-
tive potential. The Polyakov loop histogram in Fig. 6~c! cor-

responding toNt58 has no indication of the coexistence of
two phases and, therefore, no evidence of a tricritical point in
its vicinity. In this figure we have plotted two histograms
corresponding tob51.35 and 1.3508 showing the sharp be-
havior of the transition. This indicates that the qualitative
behavior of the histogram changes drastically with the cou-
pling. This again is not expected near the tricritical region.
The above drastic reduction in the flat region compared to

FIG. 4. Polyakov loop susceptibility at~a! bA51.1 and~b! bA51.25 on 8334, 10334, and 12334 lattices. The solid horizontal lines
are predictions assuming a first~second! order deconfinement transition atbA51.25 (bA51.1!, as explained in the text. The broken lines in
Fig. 4~a! are predictions for second order.
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Nt 54 lattice could again be partially because of the same
cause as above. Nevertheless, these qualitative observations
suggest that the tricritical pointT moves upwards asNt is
increased from 4 to 6 and then from 6 to 8. Even assuming
that this upward motion of the tricritical point continues, one
will need a lot larger lattices to confirm universality for
bA.0 since the upward movement is rather small.

V. SUMMARY AND DISCUSSION

We simulated the extended action of Eq.~1! onNt52, 4,
6, and 8 lattices with varying spatial sizes and determined the
order of the deconfinement phase transition by obtaining the
critical exponentv using finite-size scaling theory and also
by observing the behavior of the histograms. ForbA50.0
andNt52, we findv51.9260.01 which is in good agree-
ment with the corresponding Ising model value 1.9760.03.
Thus, the deconfinement phase transition for the Wilson ac-
tion for bothNt52 and 4 is of second order and is in the
same universality class as the three-dimensional Ising model.
Our simulations show this universality to persist whenbA is
turned on. For theNt52 lattice, this is true for at least
bA<1.25 while forNt54 the phase transition atbA51.25 is
already of first order, withv53.1360.01. The tricritical
point where the deconfinement phase transition changes its
order is, therefore, definitely abovebA51.25 for Nt52
while it is definitely belowbA51.25 for Nt54 lattices.

Placing it in the middle of the ranges we have narrowed
down, it shifts vertically downwards by about 0.15. There is
a horizontal positive shift inb, of the order of 0.09, as well.

The comparison of the above shift of the tricritical point
on Nt52 and 4 lattices with the leading order strong cou-
pling prediction shows surprises. It is, of course, reassuring
that the change of the order and the existence of tricritical
points for eachNt are as predicted. However, the predictions

TABLE III. The values of (b,bA) on Ns
334 lattice at which

simulations were performed,bcrit and the finite-size scaling expo-
nentv.

bA Ns b bc v

8 1.327 1.327
1.1 10 1.327 1.3274 2.11~02!

12 1.327 15 1.327 15

8 1.2146 1.2142
1.25 10 1.214 1.2144 3.13~01!

12 1.2144 1.2143

FIG. 5. The probability density ofL at bA51.25 on 12336
lattice atb51.2184.

FIG. 6. The probability density ofL at bA51.1 onNs
33Nt

lattice for ~a! Nt54, Ns58,10,12, andb51.327,1.327, and
1.326 85, respectively,~b! Nt56, Ns512, and b51.339, ~c!
Nt58, Ns516, andb51.35 and 1.3508.
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do very poorly on a quantitative level. In particular, the di-
rections of the shift of the phase transition asbA is turned on
and, more importantly, the predicted vertically upward shift
of the critical point are in complete contrast with the simu-
lation results forNt 52 and 4. On the other hand, the leading
order strong coupling equations are known to fail quantita-
tively for the Wilson theory for bothNt52 and 4 as well.
PuttingbA50.0 in Eq. ~18!, we recover@28# the criticality
condition for the Wilson action:bcrit54(1/24)1/Nt. There-
fore, the values of the critical couplings to this order onNt
5 2 and 4 lattices are 0.816 and 1.807, respectively. These
should be compared with the corresponding Monte Carlo
values of this work@bc(Nt52)51.88(01)# and of Ref.@12#
@bc(Nt54)52.30(01)#. It would be interesting to check
whether the inclusion of higher orders in the strong coupling
expansion can yield a better agreement with the simulation
results, especially for the direction of the vertical shift of the
tricritical point.

The above downward movement of the tricritical point on
going fromNt52 to 4 was also observed in Ref.@16# where
the Villain form of Eq. ~1! was simulated. This unexpected
behavior of the tricritical point may, therefore, need to be
taken seriously. If this trend persists even on larger lattices,
then the continuum limit of SU~2! lattice gauge theory could
correspond to a first order deconfinement transition. Hence,
we simulated this model on larger lattices withNt 56 and 8
and found some hints of an upward movement of the tricriti-
cal point by comparing the shapes of the Polyakov loop his-
tograms. While, unfortunately, it is not very conclusive, it is
encouraging that the trajectory of the tricritical point could
potentially be turning up in the coupling plane for these
Nt . The tricritical point for both these lattices was still found
to be belowbA51.25 and abovebA51.1. Much more com-
putational resources on bigger lattices withNt much bigger
than 8 are necessary to confirm this.

It may, therefore, be important to understand and explain
the origin of the change in the order of the deconfinement
transition even away from the continuum, especially since
the results of Ref.@22# suggest a lack of a first order bulk
phase transition atbA51.25 for this action and thus make it
implausible that a bulk transition is responsible for such a
change. To answer this question, we plan to consider the
Villain form for the SO~3! part of the extended action@4#:

Z5 (
sp~n!561

E )
m,n

dUm~n!expF(
p

S b

2
1

bA

3
spD

3TrFUp1lspG . ~19!

Here,sp is a Z2 plaquette field and the summation over it
ensures the invariance of the second term above under
Um(n)→2Um(n). Forl50, this action is again in the same
universality class as that of Eq.~1!. In fact, as already men-
tioned, its simulations@16# onNt52,4 lattices led to exactly
the same behavior of the tricritical point as reported in this
paper. Besides computational advantages@16#, the theoreti-
cal advantage of this action is that unlike Eq.~1!, the SO~3!
monopoles and their dynamics is manifest in the form of the
Z2 plaquette field. The SO~3! monopole charge density is
given by)pPcsp ; here, the product is over the six faces of
a cube@9#. The last term in the above equation is the poten-
tial energy for these topological degrees of freedom. In the
extreme (l→`) case, when all the SO~3! monopoles are
suppressed (;sp511), the above extended action reduces
to Wilson action with redefined coupling and, therefore, has
only a second order deconfining transition on smallNt lat-
tices. Therefore, these topological degrees of freedom may
have a crucial role in changing the order of the transition. In
the extended coupling plane these monopoles cost less and
less energy as the adjoint coupling is increased with decreas-
ing values ofb. Therefore, abovebA

tricrit they might condense
giving rise to a first order transition. This can be checked by
simulating the above model. If true, this phenomenon will be
particularly appealing because precisely the same degrees of
freedom and their condensation have been attributed to the
first order nature of the ‘‘bulk transition’’ which we find to
be first order deconfinement transition. It may thus also en-
able one in resolving the physical nature of the transition.
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