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More on the SU(2) deconfinement transition in the mixed action
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We examine certain issues related to the universality of th@)SHittice gauge theory at nonzero tempera-
tures. Using Monte Carlo simulations and strong coupling expansions, we study the behavior of the decon-
finement transition in an extended coupling plageg,) around the tricritical point where the deconfinement
transition changes from second to first order. Our numerical resultsl 612,4,6,8 lattices show that the
tricritical point first moves down towards the Wilson axis and then moves slowly upwards, if at all, as the
lattice spacing is reduced. Lattices with very laNjgeseem to be, therefore, necessary for the mixed action to
exhibit the critical exponents of the three-dimensional Ising model for positive values of the adjoint coupling.
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I. INTRODUCTION itself [4] and to find out the origin of these bulk transitions
[5-7]. It has been a common folklore that the abrupt change
Confinement of the non-Abelian color degrees of freedonfrom the strong coupling region to the scaling region for the
has been a challenging problem ever since gauge theori&¥ilson action is because of the proximity of the critical point
were formulated for quark-gluon interactions. In the begin-at the end of the first order line CD in Fig. 1, where the phase
ning, our understanding of such gauge theories followedliagram obtained in Ref[3] is shown, and that a
mainly from perturbation theory. Because of the property of‘smoother” continuum limit may be obtained by going to
asymptotic freedom, the perturbative approximations areegativeB,, the additional coupling for this action. Because
valid for short distance phenomena but they are inadequatef the theoretical expectations of the role of @D
to explore long distance physics such as confinement diSU(N)/Zy] monopoles in SI®) [SU(N)] confinemen{8],
quarks. Strong evidence for, and much better insight into, théhe above model is tailor made to study the interplay of these
color confinement mechanism in non-Abelian gauge theorietopological degrees of freedom and their role in confinement
have been provided by analytical computations and Montbetween SR) [SU(N)] and SQ3) [SU(N)/Z\] lattice
Carlo simulations of quantum field theories with a nonper-gauge theories. In fact, the plaquette susceptibility peak in
turbative lattice regularization. The simplest of such theorieshe crossover region in SP) lattice gauge theory and the
is described by the S@) Wilson action[1]. It was expected bulk transition line BCD of Fig. 1 have been attributed to the
that non-Abelian gauge theories in general do not have anynderlying S@3) theory and its first order transitidi®,10].
phase transitions separating strong and weak coupling réFhese issues can be also analyzed and tested by exploring
gimes. Therefore, confinement, explicitly shown on the latthe mixed action at nonzero temperatures and will be further
tice in the strong coupling region, should persist also in thediscussed after presentation of our results.
continuum limit. However, it was later four@] that certain The rich phase diagram associated with the mixed action,
non-Abelian lattice gauge theorige.g., S@3), SU4), shown in Fig. 1 by solid and dashed lines, was established
SU(5)], with Wilson form of action, undergo bulk transitions mainly by Monte Carlo simulations on relatively small lat-
separating strong confining region from the weak couplingices[3] (4*-5* with periodic boundary conditions. Since
region where the continuum limit of the theory exists. Bha-these small lattices were also at finite temperature, the phase
not and Creutf3], extending the form of the action proposed diagram is incomplete in the absence of the deconfinement
by Wilson, showed that this apparent loss of confinement catransition line. Along theB,=0.0 axis, several finite tem-
be attributed to lattice artifacts associated with the choice operature investigations have shown the presence of a second
action, namely, the so-called bulk phase transitions. order deconfinement phase transition. Its critical temperature
Subsequent to the work of Bhanot and Creutz to charachas been showfll] to exhibit asymptotic scaling and its
terize the bulk transitions in the extended coupling planecritical exponents have been shopt®] to be in very good
important reasons for further exploration of this action in theagreement with those of the three-dimensional Ising model.
past have been to study the basic mechanism of confinemegtfective field theory arguments for the order parameter were
used by Svetitsky and Yaffgl3] to conjecture the finite
temperature S(2) gauge theory and the three-dimensional
*Electronic address: gavai@mayur.tifr.res.in Ising model to be in the same universality class. The verifi-
TPermanent address: S. N. Bose National Centre for Basic Scigation of this universality conjecture thus strengthened our
ences, JD Block, Sector lIl, Salt Lake, Calcutta 700064, India. Elecanalytical understanding of the deconfinement phase transi-
tronic address: manu@hpth.difi.unipi.it tion. Our work[14,15 on the extended action at nonzero
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temperatures began with the motivation to locate the line oémaller lattices are because of finite temperature effects.
deconfinement transition in the couplings plagg£,). Our  While larger lattices will be needed in our case too to see if
simulations yielded the following surprising results. a similar conclusion is reached, it has to be emphasized that

(@ The transition remained second order in agreementonclusions based on finite-size scaling usually do assume
with the universality conjectured exponents up@g~1.0 that the lattices are large enough for the scaling to set in.
but it became definitely first order for large enoughThus, a distinguishing feature between the bulk and decon-
Ba(=1.4). finement phase transitions, i.e., the finite-size scaling behav-

(b) There was no evidence of a second separate transitidor of the coupling at which the transition takes place with
at largerB,, as would be suggested by the claim of R8].  the temporal size of the lattice which leads one to expect the
of a bulk transition there. FdX =4 lattices the line of de- bulk transitions to move much less compared to the decon-
confinement transition was coincident with the line of bulk finement transitions, is not necessarily useful here since it is
transitions of Ref[3], but for N,=2 there wereno symp-  not clear how big lattices are needed for this behavior to set
toms of any transition at those locations. The line of deconin at various values 0B, . We have therefore relied heavily
finement phase transition, on the other hand, did move ton the order parametéL.) to label a transition as a decon-
smallerg for all B, asN, changed from 4 to 2. finement phase transition, as mentionedanabove.

While the details of our analysis and results can be found Recently, the above surprising results showing the change
in the works cited above, the key findings which lead us tain the order of the deconfinement transition and the absence
these conclusions were the followiig) The deconfinement of the bulk transition were confirmdgd6] for another variant
order parametefL) (see next section for definitignac-  of the SU2) action with a Villain form for the adjoint S@)
quired a large nonzero value at the only transition found orpart. We will later comment more on the above action.
all lattices studiedi.e.,N,=2,4,6,8 and showed clear coex- Taken together, these results pose many questions about the
istence of both phases at the transition point for lagggr  continuum limit of the deconfinement phase transition and
(b) the same critical exponent which established the transiabout the existence of separate bulk phase transitions. The
tion to be in the Ising model universality class for foremost amongst them is about an apparpralitative vio-
0.0<8,=1.0 became equal to the space dimensionality, as ktion of the universality,since an apparently irrelevant cou-
first order deconfinement phase transition would have, fopling seems to change the order of the deconfinement phase
larger B, ; (c) the plaquette susceptibility showed a decreasdransition. The early simulations of the 8) lattice gauge
at B,=1.1 when the lattice four-volume was increased by atheory are known to have yieldeguantitativeviolations of
factor of 16; it should diverge, i.e., increase 16-fold, if thereuniversality[18]. However, attributing them to the ignored
were a first order bulk phase transition@gt=1.1. higher orders irg?, it has been showfl9—-21 that dimen-

The plaquette susceptibility results above are very similar
to those of Ref[17] who too found a decrease in it while
increasing the lattice volume by a factor of 16. On increasing Note that this universality, which results from the freedom of
the lattice size further, no further finite-size dependence washoice of the lattice type and action, is different from the finite-
found, leading to a conclusion that the finite-size effects onemperature universality of critical exponents discussed earlier.
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FIG. 1. The phase diagram of
7 the extended S(2) lattice gauge
theory. The solid lines are from
] simulations done on a“lattice

. by Bhanot and Creutf3]. The

] light dashed line indicates the ab-
1 sence of first order bulk transition
. [22] below Bo=1.25. The dotted
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sionless ratios of physical quantities have much weaker suamust coincide with the continuum form of the action. Infi-
violations. Indeed, one can hope that these violations wilhitely many different forms satisfying these criteria can be
smoothly disappear under the error bars of the simulations asritten down. Bhanot and Creutz extended the Wilson action
the cutoff becomes smaller. This will obviously not be theto a form described by the action

case for any qualitative violations of universality. Of course,
the region of couplings where universal results are obtained
may have such an irregular shape that still larger lattices are
needed to obtain universal results. It is not clear in that case,
however, what the universal result would be. Clearly, if a Here,Up denotes the directed product of the basic link
universal result exists in thea—0 limit, then the tricritical ~ variables which describe the gauge fieldg(x) around an
point T, where the deconfinement phase transition changeslementary plaquette. F and A denote that the respective
order, must not appear on any renormalization group flowtraces are evaluated in fundamental and adjoint representa-
lines to theg,=0.0 critical point and must thus be invisible tions respectively. Comparing the naive classical continuum
in the continuum limit. If the pointfT moves up to large limit of Eq. (1) with the standard S(2) Yang-Mills action,
positive B, with increasingN,, (and decreasing lattice spac- one obtains

ing a), then the SR) deconfinement phase transition could

S=; [B(1—3TreUp)+ Ba(1—3TraUp)]. (1)

still be of second order in continuum limit with Ising model L_B, 2B ©
exponents. This would be so, irrespective #f used for 52 4 3

simulations. If, on the other hand, the pointnoves to large
negativeB,, the universality with Ising model will be lost Here, g, is the bare coupling constant of the continuum
and the transition will be first order, again irrespective oftheory. Introducing another couplingd, defined by
Ba used in simulations. tand= B,/B, the asymptotic scaling relatiof23] for this

It may be argued that the presence of a line of bulk phaséction is
transitions and its end point will strongly modify the ap-
proach to continuum limit and thus large lattices are manda- 1 __1 [B 2]_/31/2,33 &)

2B00> o9y ,

tory for seeing the universal physics at laigg. It needs to a= A(0) ex

be noted, therefore, that the bulk line in question was estab-
lishedonlyin numerical simulations on small#45* lattices. ~ Where
A recent simulatiorf22] at 8, = 1.25 on largeN* lattices, )
with N = 6, 8, 10, 12, and 16, found) a linear decrease in nﬂ: 51 6tary @)
the average discontinuity in plaqueth® with N and (2) a A(6) 11 (3+8tary)’
plaguette susceptibility exponent of 2:090.31 in contrast ) _ o
with the expected value of 4 for a first order bulk phaseHere, 8o andp, are the usual first two universal coefficients
transition. This suggests that the end point of the bulk line i$f the B function for the SW2) gauge theory: they do not
at B,>1.25. This is explicitly shown in Fig. 1 by drawing depend orp. _ _
solid and dashed bulk lines above and belBy= 1.25, re- One sees clearly from the equations above that the intro-
spectively. While the result of Ref22] does explain the duction of a nonzer@, leads merely to a differer, and a
above-mentioned results on plaquette susceptibility, the myg:orrespondingly different value for the scate(6). How-
tery of the apparent coincidence of the two different transi-€ver, each of these theories, including the usual Wilson
tion lines still remains for largeB,. As we will show be- theory for 8,=0.0, flow to the same critical fixed point,
low, the deconfinement phase transition by = 4 lattices, 9;=0, in the continuum limit and has the same scaling be-
as identified by the order parametgL|), turns first order havior near the critical point. The different forms of action,
already atB,=1.25, suggesting that the bulk line or its end obtained by varyings,, are simply related by a redefinition
point are unlikely sources of this change. of coupling constant and the intrinsic scaleand yield the
In this paper, we address the issue of the trajectory ofame universal continuum physics. Numerical investigations
point T with decreasing lattice spaciray after defining in  for different g, thus constitute a necessary check of the fi-
the next section the action we investigate and the observablégte cutoff effects in the nonperturbative results obtained for
we use along with their scaling laws. A simple strong cou-84=0.0, i.e., the Wilson action.
pling calculation is presented in Sec. Ill, which suggests that Bhanot and Creut3] found that the lattice theory de-
the pointT moves up in the plane to infinity. However, in fined by the extended action has a rich phase struckige
our numerical simulations, described in Sec. IV, we find thatl). Along the 3=0 axis it describes the §8) model which
it moves down on going fronN, =2 to 4. On increasing has a first order phase transition 8f"~2.5. At Bo=c° it
N, further to 6 and then to 8, we observe a very small up-describes th&, lattice gauge theory again with a first order
ward movement by comparing the relative shapes of th@hase transition g8°"'= iIn(1++2) ~ 0.44[24]. Reference
Polyakov loop histograms. The last section contains a brief3] found that these first order transitions extend into the
summary of our results and their discussion. (B.Ba) plane, ending at an apparent critical point located at
(1.5,0.9. These transition lines are shown in Fig. 1 by con-
tinuous lines. Using finite-size scaling, RE22] has recently
shown that the critical end point must hagg=1.25. More
The lattice action is constrained only lfg) the gauge simulations on larger lattices will be required to determine
invariance andb) the limit of zero lattice spacing which the end point precisely. The qualitative aspects of this phase

u

Il. THE MODEL AND THE OBSERVABLES
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diagram were also reproduced by mean-field thddlyand where w=y/v=1.97. If the phase transition were to be of
largeN [6] and strong couplingj7] expansions. first order instead, then one expects the expoaenB, cor-
Simulations of the mixed action above at finite tempera+esponding to the dimensionality of the sp42&]. In addi-
ture are made on asymmetmf’,x N, lattices, with periodic tion, of course, the order parameter is expected to exhibit a
boundary conditions in théshortej 7 direction. The parti- sharp, or even discontinuous, jump and the corresponding
tion function at finite temperature is given by probability distribution should show a doublenulti)peak
structure. FoB,=0, the universality prediction was verified
by Monte Carlo simulation by Enge&t al.[12], who found
Z= EL du,(x)exp—S). (5 4=1.93+0.03, whereas we founpll5] w=23.25+0.24 for
Ba=1.4 onN_=2 lattices.
The order parameter for the deconfinement transition is the

Polyakov loop[25] defined by Ill. STRONG COUPLING
o1 N R Before turning to the results of our simulations to deter-
L(n)= §TrH Uo(n,7). (6) mine w and to locate the tricritical point, it may be an in-
7=1

structive exercise to find out what hints the strong coupling
- o ] . expansion can provide. Such expansions for the free energy
Here, Uq(n,7) is the timelike link at the lattice siten(7).  [28 29 and string tensiofi30] have been used in the past to
Because of periodic boundary condition in the timelike di-siydy SUN) deconfinement transition for the Wilson action.
rection at finite temperature, the action of E#)) has aZ,  The pasic strategy is to obtain an effective potential for the
invariance corresponding to the center of the gauge groupyrder parametet., by expanding the partition function in
Defining this symmetry to be powers of the inverse coupling const@htand integrating
- R ] out the spatial links . Because of tl&® symmetry of the
Uo(n,79)—2zUp(N, 79)Vn, 7g:fixed, and ze Z,, (7)  theory, the Landau-Ginzburg effective action is an even

) i polynomial in the Polyakov loop for th8U(2) theory. To
one sees that under its transformation the Polyakov looj,west order

changes by
1 - BN e
L—zL, 8 seﬁz—EZ In[1—L%(n)]—4 7 > L(L(n+i)
n n,i
while the action in Eq(1) remains unchanged. N
A nonvanishing value fofL ), with respect to the partition _ (@ 72 [4L2(ﬁ)— 1][4L2(ﬁ+ H—1]. (14
function in Eq.(5), signals a spontaneous breakdown of the 9 i

global Z, symmetry.(L) is also an order parameter for the
deconfinement phase transition agdt equivalently, its av- Here, the first term is independent of the couplings and is
erage valud_=(1/Ni)E,;L(ﬁ)] can also be shown to be a the exact Jacobian because of the change of the temporal link
measure of the free energy of an isolated free q{ia8k In  variables toL(n) after all the link integrations. The last two
order to monitor the critical behavior of the deconfinementterms are the leading strong coupling terms 'Z) and
transition, we also define the Polyakov loop susceptibility: (8,/3) with the assumption that botB/2 and 8,/3 are
small and treated on the same footing. Only the leading order
xn, = NS(LH)—(L)?). (9 terms inB and B, are retained in the effective action here.
Demanding translational invariance for the configuration
In the thermodynamic limit, a second order transition iswhich minimizes the action, one can easily obtain the effec-

characterized by the following critical exponents: tive potential for the order parameter. Expanding the log
term for smallL, one has the following results for the coef-
(Ly=|T=T# for T-T,, (10)  ficients by, by, andbg of the L2, L* and L® terms in the
effective potential:
X*|T=T ™7 for T-T, (17
Ver(L)=boL2+ b4+ bgl 8, (15)
Ex|T-=T¢™7 for T-T,. (12
where
Here, £ is the correlation length corresponding to the
Polyakov loop correlations an@=~0.325, y=~1.24, and 1 B\ Ba\N7
v~0.63 are the Ising model exponents, assuming the univer- bz=§—12(z +24< ?) : (16)

sality conjecture to be true. The best determination of these
exponents for the S@@) lattice gauge theory was mafi&2] N
by using the finite-size scaling theof6], according to b =——48< ﬁA) ! 17)
which the peak of thé susceptibility on a lattice of spatial 4 ’

extentN, is expected to grow like

1
REENG (13 be=5- 18
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The positivity of thebg term (and all other higher terms TABLE I. The average values of the critical exponantat
ensures that the effective potential is bounded from belowdifferent values of the adjoint couplings. The expected value is 1.97
Note that for small enougi® and 85, b, andb, are also (3.0 if the deconfining phase transition is second or(diest ordej.

positive, favoring thus the confined phase_ef 0. For small ~ The data are taken from Refd.2,14,13.
Ba and arbitraryB, b, remains positive bub, goes through

a zero, giving rise to a second order phase transition at g» N, @
critical B8 obtained by settind, to zero. AsB, increases, g 4 1.9303)
b, becomes negative above a critical value@f. The ef- g 4 1.9229)
fective potential then has two additional minima in addition g 4 1.5832)
to the one at =0. As g increases, these minima deepen and, g 4 2.1022)
become equal to the one Bt=0, yielding a first order de- 4 2.3415)
confinement phase transition. The tricritical point, where th 2 3.246243

deconfinement phase transition changes to become first or-
der, is given by setting the coefficiertts andb, to zero.

In this leading order strong coupling expansion, the tri- . _ .
critical  points  are ﬁtricrit,ﬁtAricrit) = (0.913,0.649 gnknown alth_qugh all earlier S|mqlat|ons do indicate a con-
(1.91,2.418for N, =2 and 4 lattices, respectively. This sug- inuous transition. From our previous wofkS], we know
gests that the tricritical point moves towards the top rightthat the transition foN,=2 and for8,=1.4 is a strong first
corner (3=x,B,=) of the phase diagram as the lattice Order one. Fop,=1.4, the exponend = 3.2524), with a
spacing is reduced. Thus, the tricritical point will not be seerfyPical tunneling time of~30 000—40 000 Monte Carlo
by the continuum limit. Of course, one needs to improve theSWeeps. Thus, the effective ranges for feof the tricritical
leading order strong coupling result &, increases and Points were 1.#g;“" for N.=2, and g3“">0.9 for
check that this conclusion remains unchanged. Neverthelesdl,=4. No firm upper bound was known for the latter case,
these results are encouraging for two reasons. First, they prélthough we had good indications that +B;°", as Ref.
vide a concrete example of how the @Jgauge theory at [14] found a co-existing two state signal in both the Polya-
finite temperaturecan have a first order phase transition. kov loop L and the plaquett® at 8,=1.5.

Indeed, it should be noted that the bulk phase transition plays In our earlier work, the simulations g,=1.1 on the
no role above in changing the order of the deconfinemenN,=2 lattices did not reveal a clear three peak structure in
phase transition at larg8,. Second, the qualitative trend the histogram of the Polyakov loop on thi=8,10,12 lat-
suggested by this simple exercise is in agreement with théices, although the peaks did become a bit sharper on going
naive idea of independence of physical results with respect tto theN,=12 lattice. Correspondingly, the determination of
irrelevant couplings. Of course, the key question of the limitthe critical exponent did not fix the order of the transition
of the coefficientd;, as the lattice spacing—0, can only  uniquely. This is similar to th&l .=4 results aj3,=1.1[14]
be resolved by simulations at present and, in principle, thavhere the histograms and the evolution graphs of the Polya-
trajectory of the tricritical point could go either way in that kov loop gave a very weak two state signal with an
limit. In the next section, we describe the results of our simu-w=2.34, lying between values characteristic of first and sec-
lations which were made in an attempt to answer this issueond order phase transition. Such a behavior of the deconfine-
ment transition can be understood from the point of view of
IV. RESULTS OF THE SIMULATIONS the effective potential in terms of the Polyakov loop, if these
simulations were indeed close to the tricritical point. As ar-

Our Monte Carlo simulations were done using Metropolisgued in earlier section, the first two leading coefficients of
algorithm onN3x N, lattices withN,=2, 4, 6, 8 andN,= L2 andL* terms of the effective potential are then close to
8,10,12,16. The many different valuesif were chosen to being zero, leading to a reasonably flat effective potential
study the finite-size scaling behavior of the theory and toaroundL =0.0, a fact which we will later exploit to conclude
compute the critical exponerd, while the N, values were about the movement of the tricritical point as the lattice spac-
chosen to monitor the movement of the tricritical point with ing is reduced. However, as a conseqguence, much larger sta-
decreasing lattice spacing. We also ubkd= 16 in one case tistics is required to sample the exact nature of the effective
to be sure of the critical exponent. The possible ranges fopotential near the tricritical point to separate a weak first
the tricritical points for differentN, were known from our order transition from a second order one. We, therefore, in-
earlier work, and the simulations were carried oupaand  creased the statistics to typically<4.(P sweeps to compute
Ba in these ranges. Histogramming techniques were used tihe critical exponents and focused more @n close to 1.1.
extrapolate to nearby values while estimating the height We, however, also made simulations dh=2 lattices at
and location of the peak of various susceptibilities. The val-8,=0.0, 0.8, and 0.9 to determine the critical exponent
ues of the critical exponents from our earlier simulationsand thus the range for the tricritical point more precisely.
[14,19 onN_=2, 4 lattice are summarized in Table |, where The observables were typically recorded after every 20
the result of Ref[12] for 8,=0.0 is also given. One sees a sweeps to reduce autocorrelation. The errors were estimated
good agreement with the Ising model exponentMo=4 for by further binning the data and the typical bin size was
Ba=<0.9, suggesting that the tricritical point must lie at ~100.
higher 8, in this case. On the other hand, no check of the Figures Za), 2(b), 2(c), and Zd) exhibit the results for
universality with the three-dimensional Ising model has sd_ susceptibility for theN =2 lattices for8,=0.0, 0.8, 1.1,
far been made for thBl =2 lattices: the corresponding is  and 1.25, respectively. The results f®5=0.9 are similar to
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FIG. 2. Polyakov loop susceptibility #8) 8,=0.0, (b) 8,=0.8, (c) Bo=1.1, and(d) Bo=1.25 on §x2, 1% 2, and 18X 2 lattices.
At B,=1.25, result on 18x 2 lattice is also shown. The points with error bars are results of simulations and the curves are extrapolations

by the histogramming technique. The horizontal lines are predictions assuming a second order deconfinement transition, as explained in the
text.

those in Fig. &) and are therefore not shown here. In eachcoupling prediction for3°™(N,=2)= 0.816 for 3,=0.0 to
of these figures, the range of expected values for the peaje far away from the corresponding Monte Carlo determina-
height for theN,=10 and 12 lattices is also shown by two tjon, Furthermore, it8, dependence seems to be also in the
horizontal lines by assuming the validity of EG13), \yrong direction. Thus, one really could have expected sur-
w=1.97, and by usingy*Zg for each case. The errors on prises in form of a qualitative difference from the strong
the respective)(rh‘,’jx:8 induce the spread between the lines.coupling prediction as well. On the other hand, it may be
We always chose a fresh starting point in an iterative manmore natural to expect the effect of higher orders in quanti-
ner, if the initial guess was too far away from the extrapo-tative shifts and not in qualitative features. Since it is unclear
lated estimate for the location of the peak. This reduced th&hetherN =4 is in the strong coupling region, the univer-
influence of the unknown systematic errors in the pealsality conjecture for the critical exponents needs to be tested
height because of our extrapolation procedure. As seen ifn lattices with largeN, and thus closer to the continuum
Figs. 2a)—2(d), we do hope that this source of errors haslimit even for the Wilson action, i.e8,=0.0.
been brought under control by our choice of the simulation The values of the critical coupling®™ and the finite-size
points, and that it does not annul our conclusions abougcaling exponenty, obtained by fitting the peak heights to
whether the critical exponent is close to 3 or to 1.97. Eqg. (13), are given in Table Il for all the8, values we
The independence ab for 8,=0.0 (and smallg,) for  investigated, including8,=0.9. These estimates ab in
N, =2 and 4 and its agreement with three-dimensi¢B8l)  Table I, along with the agreement in Fig. 2 with the predic-
Ising model value is satisfying since there is only one knowrtions based on av=1.97 show the deconfinement phase
critical point in Z(2) symmetric theories and priori one  transition forN_ =2 lattices to be a clear second order with
expects the exponents to be universal. Moreover, strong colsing model exponents for 1.253,=0.0. At 8,=1.25, ad-
pling arguments, which predict a second order phase transilitional simulations were performed d,=16 to confirm
tion for small 85, should be more reliable for smallé¥, . the second order nature of the transition. Note that if the
Quantitatively, however, one notices the leading order strongredictions forw=3, corresponding to a first order phase
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TABLE Il. The values of {3,8,) on N3x 2 lattice at which  values of couplings at which simulations were performed
simulations were performegg®™ and the finite-size scaling expo- along with the critical values and the fitted are given in
nentw. The expected value fop is 1.97(3.0) if the deconfining  Table Ill. The most astonishing result is that the transition at

phase transition is second ordéirst ordey. Ba =1.25 is a first order transition witb=3.13(01). This
needs to be contrasted with the results folN,=2 and, in
Ba N, B Be @ particular, Fig. 2d) and (ii) the results of Ref[22] where a
8 1.90 1.88 clear absence of a first order bulk phase transitiorBat
0.0 10 1.885 1.878 1.901) =1.25 was shown. o o _
12 1.877 1.877 These simulations thus indicate that the tricritical point

for N,= 4 lies definitelybelow 8,=1.25 whereas the corre-
spondingN =2 point is definitelyaboveB,=1.25. This is

8 1.368 1.368 . . . .
also clearly seen in Fig. 1, where again the first order tran-
0.8 10 1.367 1.3664 2.031) . . .
sition points forN =4 are shown by filled squares, the sec-
12 1.368 1.366 )
ond order points by hollow squares, and the gap between
8 13 131 them is the allowed range for the tricritical point. As one can
: . see, the tricritical point does shift as the temporal lattice size
0.9 10 13 131 1.882) increases from 2 to 4. However, the direction of the shift is
12 1.3092 1.3088 almost orthogonal to the strong coupling prediction of the
previous section and its magnitude is also much smaller. The
8 1.201 1.201 shift, on the other hand, suggests a possible lack of any cor-
11 10 12 12 1.792) relation of the bulk transitions, if any, with the key observa-
12 1.1999 1.1995 tion of the change of the order of the deconfinement phase
transition. This is so since any possible bulk transition for
8 1.12 1.1203 Ba< 1.25 is definitely not a first order phase transitj@z],
1.25 10 1.12 1.1203 making it an unlikely cause of the behavior seen in Figs. 3
12 1.12 1.12 1.901) and 4. A plausible explanation then is indeed the phenom-
16 1.12 1.1196 enon seen in the strong coupling calculations in Sec. Ill, i.e.,

a change of sign in the coefficieb}, of the effective poten-
N ) o tial for the order parametdr.
tl’anSItlon, were to be dISplayed N F|g 2 then they would The above downward movement of in the extended
overshoot by a large amount, especially in Figd)2where  coupling plane is puzzling. It calls for a more detailed cross-
they would be too big by a factor of 2 for thé, =16 lattice.  check on the 3D Ising model universality, especially for
Also, interesting to note is the resolution of the ambiguity inpgsitive values of8, but also perhaps for large. at
establishing the order of the phase transitionga=1.1in  3,=0.0. Note that the latter has so far been demonstrated to
these better statistics simulations. The finite-size scaling eXg very good accuracy only on the.= 2,4 lattices. Therefore,
ponent isw= 1.7902) and is thus a lot closer to the Ising e decided to monitor the deconfinement transition further
value. The tricritical poinfl on aN,=2 lattice is thus con-  py simulating the model oN.=6 andN,=8 lattices with
strained to lie in the range 14B8,>1.25, as indicated in N =12 and 16, respectively. On these lattices the simula-
Fig. 1 by the gap between the filled circles for the first ordertjons were performed g8,=1.1 and 1.25 to determine the
transition points and hollow circles for the second order tranygnge in whichT may lie. At 8,=1.25 onN,, =6 lattice we
sition points. Thicker, dashed and dotted lines show the firsfound the transition to be first order. The corresponding his-
order and second order deconfinement phase transition lineggram is plotted in Fig. 5 38=1.2184. The three peaks are
Since the exponenb was found[14] to be 2.3128) for  ¢jearly visible and distinct, though not of equal height. This
N,=4 atB,=1.1 and the histograms of the Polyakov loop figyre suggests the transition point to be at a slightly higher
signaled a very weak first order transition, we chose to reinygjye of 8 than 1.2184. In choosing thj§ we were guided
vestigate the transition first g8,=1.1 and then move t0 py the location of the peak of thie susceptibility to locate
larger values of8,. Figure 3 shows the evolution of both the critical point. We have found that this criterion to deter-
L andP at 3, =1.25 onN,=8, 10, 12 lattices. These figures mine the critical point differed a little from that of the effec-
clearly show the coexistence of two states at the deconfingjye potential picture(i.e., the nature of thé histograms
ment transition, sincel.)=0 for one of the phases while itis ajthough they will coincide in the thermodynamic limit.
nonzero and large for the other. The plaquéttéas a dis-  Ccomparing the shapes of the histogramgat1.1 in Figs.
continuity at the same location, and further the number of(g), 6(b), and Gc) (N,=4,6,8, respectively on the other
tunnelings and duration in each phase do indeed decrease gsgnd, one observes that their profiles at the peak tend to-
the spatial volume increases. Figurég)4and 4b) show the  \yards a Gaussian behavior as one makes the lattice spacing
Polyakov loop susceptibility g8,=1.1 and 1.25 o, = 4 smaller by going fronN,=4 to 6 to 8. This is the expected
lattice fo_r various spatl_al volumes. A_s in Fig. 2, the expecte_o[:,eha\,ior if the tricritical point shifts upwards fro,=1.1
peak heights for the bigger two lattices are shown by horifq, N,=4. Since the effective potentialld) will have
zontal bars. The only difference here is that the solid horibﬁblﬁo at the tricritical point, it will have a reasonably
zontal lines in Fig. &) show the predictedy* 151, BY  flat bottom, causing the very flat top for the =4 histogram.
assuminge = 3.0, while the broken lines in Fig.(d) and In Fig. 6@ we have plotted the histograms fbr.=4 and
the solid lines in Fig. &) are for the Ising value 1.97. The N_,=8,10,12 to confirm the closeness of the tricritical point
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FIG. 3. Evolution of|L| andP at 8x=1.25 on(a) 122X 4 (8=1.2144),(b) 10°x 4 (B=1.214), andc) 83X 4 (8=1.2146) lattices.

with the run point, i.e.,8=1.327 and 1.326 85. Moreover, while AL~ * 0.1 on theN_=6 lattice at3.=1.339, with a
one clearly sees that the flatness is not a fiNfeartifact.  reduction by a factor of 3 in the flatness of the histogram at
The reduction in the above flatness would sigmabecom-  the top. The statistics for the above runs dn =4 and 6
ing nonzero, as in a typical second order transition. Mordattices were roughly X 10° and 7x10°, respectively. In
guantitatively, the fluctuations in the Polyakov loop at principle, this could be taken as a hint that the tricritical
B:.=1.327 on theN, =4 lattice are in the rangaL~=* 0.3, point has moved up. However, one knows thameasures
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are predictions assuming a fiksiecond order deconfinement transition 8§ =1.25 (8,=1.1), as explained in the text. The broken lines in
Fig. 4(@) are predictions for second order.

the free energy of a pointlike test charge and thus hasesponding td\,=8 has no indication of the coexistence of
N ,-dependent corrections. These reduce the value jpist  two phases and, therefore, no evidence of a tricritical point in
above the phase transition &k increases. A perturbative its vicinity. In this figure we have plotted two histograms
estimate of these corrections will presumably still not yieldcorresponding tg3=1.35 and 1.3508 showing the sharp be-
the factor of 2 but, unless it is quantitatively so demon-havior of the transition. This indicates that the qualitative
strated, one is handicapped in drawing a firm conclusiorbehavior of the histogram changes drastically with the cou-
about lack of the finiteN . effects in the flatness of the effec- pling. This again is not expected near the tricritical region.
tive potential. The Polyakov loop histogram in Figcbcor-  The above drastic reduction in the flat region compared to
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TABLE Ill. The values of (3,8) on N3x 4 lattice at which
simulations were performegg™ and the finite-size scaling expo-

0.022 T y r T T T oo
L(10°3xd) ~------
L(12/3xd) +reore 1

0.02 |

nentw.

Ba Ny B B ®
8 1.327 1.327

11 10 1.327 1.3274 2.102 =
12 1.327 15 1.327 15 *
8 1.2146 1.2142

1.25 10 1.214 1.2144 3.3
12 1.2144 1.2143

N, =4 lattice could again be partially because of the same
cause as above. Nevertheless, these qualitative observatic
suggest that the tricritical poinf moves upwards ahl, is
increased from 4 to 6 and then from 6 to 8. Even assumini
that this upward motion of the tricritical point continues, one
will need a lot larger lattices to confirm universality for
Ba>0 since the upward movement is rather small.

P(L)

V. SUMMARY AND DISCUSSION

We simulated the extended action of Efj). onN,=2, 4,
6, and 8 lattices with varying spatial sizes and determined th
order of the deconfinement phase transition by obtaining th
critical exponentw using finite-size scaling theory and also
by observing the behavior of the histograms. By=0.0
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andN,=2, we findw=1.92+0.01 which is in good agree- 05 04 03 05
ment with the corresponding Ising model value -9¥03.
Thus, the deconfinement phase transition for the Wilson ac 2% .
tion for bothN =2 and 4 is of second order and is in the o0a | |
same universality class as the three-dimensional Ising mode
Our simulations show this universality to persist whgnis 0.035
turned on. For theN_ =2 lattice, this is true for at least 00
Ba=<1.25 while forN_=4 the phase transition @, =1.25 is
already of first order, withw=3.13=0.01. The ftricritical =~ oo}
point where the deconfinement phase transition changes i £
order is, therefore, definitely abovg,=1.25 for N,=2 o r
while it is definitely below 8,=1.25 for N,=4 lattices. oots | §
001 | 4
005 L(120ax6)"
0045 B=12184 : 0005 - “
004 - 1 %3 o2 -0.1 0 0.1 oz 03
0.035 - B
oos L | FIG. 6. The probability density of at 84=1.1 onN3XN,
_ lattice for (8 N,=4, N,=8,10,12, and 8=1.327,1.327, and
g o 1.326 85, respectively(b) N,=6, N,=12, and 8=1.339, (c)
ooz | N,=8,N,=16, and3=1.35 and 1.3508.
oo Placing it in the middle of the ranges we have narrowed
001 - down, it shifts vertically downwards by about 0.15. There is
0005 | - a horizontal positive shift i8, of the order of 0.09, as well.
. . . . . . . . . . The comparison of the above shift of the tricritical point
05 04 03 02 01 0 01 02 o3 o4 o5 onN,=2and 4 lattices with the leading order strong cou-

FIG. 5. The probability density of at 8,=1.25 on 13x6
lattice at3=1.2184.

pling prediction shows surprises. It is, of course, reassuring
that the change of the order and the existence of tricritical
points for eaciN, are as predicted. However, the predictions
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do very poorly on a quantitative level. In particular, the di- Here, o, is a Z, plaquette field and the summation over it
rections of the shift of the phase transition@sis turned on  ensures the invariance of the second term above under
and, more importantly, the predicted vertically upward shiftu ,(n)— —U ,(n). ForA =0, this action is again in the same
of the critical point are in complete contrast with the simu-unjversality class as that of E¢fL). In fact, as already men-
lation results foN . =2 and 4. On the other hand, the leading tioned, its simulation§16] on N,=2,4 lattices led to exactly
order strong coupling equations are known to fail quantitathe same behavior of the tricritical point as reported in this
tively for the Wilson theory for bottN,=2 and 4 as well. = haner, Besides computational advantafies], the theoreti-
Putting 8,=0.0 in Eq.(18), we re(c::rgver[28] th?NC”t'Ca“ty cal advantage of this action is that unlike E), the S@3)
condition for the Wilson actionp®"=4(1/24)""=. There- monopoles and their dynamics is manifest in the form of the
fore, the value_s of the critical couplings to this orderl\;bp 7, plaguette field. The S@) monopole charge density is
= 2 and 4 lattices are Q.816 and 1.807, re_specnvely. Thes iven byll,_.o; here, the product is over the six faces of
should be compared with the corresponding Monte Carl a cubel[9]. The last term in the above equation is the poten-

values of this worK 8.(N,=2)=1.88(01) and of Ref[12] : .
[B.(N.=4)=2.30(01). It would be interesting to check tial energy for these topological degrees of freedom. In the
xtreme {—o) case, when all the S@) monopoles are

whether the inclusion of higher orders in the strong couplinge X

expansion can yield a better agreement with the simulatioguPPressed¥o,=+1), the above extended action reduces
results, especially for the direction of the vertical shift of thet® Wilson action with redefined coupling and, therefore, has
tricritical point. only a second order deconfining transition on snilllat-

The above downward movement of the tricritical point ontices. Therefore, these topological degrees of freedom may
going fromN_=2 to 4 was also observed in R¢L6] where  have a crucial role in changing the order of the transition. In
the Villain form of Eq.(1) was simulated. This unexpected the extended coupling plane these monopoles cost less and
behavior of the tricritical point may, therefore, need to beless energy as the adjoint coupling is increased with decreas-
taken seriously. If this trend persists even on larger latticesing values of3. Therefore, abov@!“™ they might condense
then the continuum limit of S(2) lattice gauge theory could  gjving rise to a first order transition. This can be checked by
correspond to a first order deconfinement transition. Hencesimulating the above model. If true, this phenomenon will be
we simulated this model on larger lattices with =6 and 8  particularly appealing because precisely the same degrees of
and found some hints of an upward movement of the tricriti-freedom and their condensation have been attributed to the
cal point by comparing the shapes of the Polyakov loop hisfjrst order nature of the “bulk transition” which we find to
tograms. While, unfortunately, it is not very conclusive, it i e first order deconfinement transition. It may thus also en-

encouraging that the trajectory of the tricritical point could 6 one in resolving the physical nature of the transition.
potentially be turning up in the coupling plane for these

N, . The tricritical point for both these lattices was still found
to be belowB,=1.25 and abovg,=1.1. Much more com-
putational resources on bigger lattices WiNh much bigger ACKNOWLEDGMENTS
than 8 are necessary to confirm this.
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