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The formation of neutrino spectra in a supernova depends crucially on the strength and inelasticity of weak
interactions in hot nuclear matter. Neutrino interactions with nonrelativistic nucleons are mainly governed by
the dynamical structure function for the nucleon spin-density which describes its fluctuations. These fluctua-
tions give rise to inelastic weak processes such as neutrino pair emission and absorption as well as energy
transfers in neutrino-nucleon scattering that can be comparable or greater than that from ordinary recoil. We
calculate numerically the spin-density structure function in the limit of a dilute, nondegenerate medium from
exact two-nucleon wave functions for some representative nuclear interaction potentials. We show that spec-
trum and magnitude of the energy transfer between neutrinos and nucleons can deviate significantly from those
based on the Born approximation. They are, however, rather insensitive to the particular nuclear potential as
long as it reproduces experimental nucleon scattering phase shifts at corresponding energies. We also compare
with calculations based on a one-pion exchange potential in Born approximation and discuss their applicability
in the context of supernovae. Our study is relevant for numerical simulations of the neutrino spectra emerging
from type-II supernovae.@S0556-2821~97!03918-0#

PACS number~s!: 97.60.Bw, 13.15.1g, 14.60.Lm, 95.30.Cq

I. INTRODUCTION

The detection of roughly a dozen neutrinos from SN
1987A is in good qualitative agreement with the neutrino
signal expected from the early cooling phase of a hot neutron
star born in the center of the collapsed core of a massive star
@1#. It is therefore generally believed that type-II supernovae
such as SN 1987A are the optical counterparts of such cata-
strophic events.

The formation of the spectra of neutrinos emitted from a
type-II supernova takes place around the ‘‘neutrinosphere’’
where weak neutral-current scattering and pair processes in-
volving electron, muon, andt neutrinos, and charged current
creation and absorption of electron neutrinos on nucleons,
nuclei and electrons cease to be efficient in keeping the neu-
trinos in thermodynamical equilibrium with the medium. The
interplay between~roughly! energy conserving scattering
and processes changing neutrino numbers and energies plays
a crucial role in that respect@2#. In previous studies of neu-
trino transport, the lowest order neutrino opacities in vacuum
have been used. Neutral-current scattering processes on
nucleons and nuclei have been approximated to be elastic
@3#. As a result, whereas the energy fluxes predicted for the
three neutrino flavors turn out to be very similar@2#, the
effective temperatures are significantly higher for muon and
t neutrinos compared to electron neutrinos which because of
their more efficient energy exchange with the medium de-
couple from it further out.

However, weak interaction rates in a medium differ sig-
nificantly from those taking place in vacuum. On the one
hand, the spin-dependent strong force between nucleons es-
tablishes spatial correlations of the density and the spin-

density in the medium that can either enhance or reduce av-
erage interaction rates. Many papers on weak interactions in
neutron stars investigated these effects. However, they either
applied the Landau theory of quasiparticles assuming a
‘‘cold’’ nuclear medium @4,5# or the authors focused on
quasielastic scattering@4,6,7# for which the energy transfer to
the nucleons is smaller than the momentum transfer.

On the other hand, a weak interaction transferring an en-
ergyv to the medium is sensitive to the fluctuation power in
density and spin-density at that frequency. For example, at
finite density, the spin-dependent nucleon-nucleon interac-
tion also causes the nucleon spins to fluctuate. This leads to
a reduction of the average total axial-vector current neutrino
scattering cross section compared to its vacuum value@8,9#.
This effect is most important at the high temperatures per-
taining in the first few seconds after formation of the hot
neutron star. The nucleon spin fluctuations also lead to
bremsstrahlung emission and absorption of neutrino pairs
which can play an important role in the creation of thermal
neutrinos inside the neutrinospheres. In addition, the fluctu-
ating nucleon spins can, apart from recoil, imply an en-
hanced energy transfer in neutrino-nucleon scattering@10#. It
is these inelastic neutral-current processes which we are
mostly concerned with in the present work because they play
a dominant role in the formation of neutrino spectra. Inelas-
tic neutrino-nucleon scattering, for example, tends to de-
crease predicted effective temperatures of muon andt neu-
trinos @2#. This is of some importance in view of new
neutrino detectors such as Super-Kamiokande and the Sud-
bury Neutrino Observatory, which have the capability of
measuring the neutrino spectra from nearby supernova
events with much better statistics than is available with the
data from SN 1987A.
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Near the neutrinosphere the neutrino opacities are gov-
erned mainly by the local nucleon spin-density. Within linear
response theory, weak neutral-current interactions are then
determined by the dynamical structure function for the
nucleon spin-density which describes its spatial and temporal
correlations and is a function of energy and momentum
transfer. For energy transfers that are larger than the typical
spin fluctuation rate multiple nucleon-nucleon scattering is
negligible, and, to lowest order in the nucleon-nucleon inter-
action, the spin-density structure function can be calculated
from the matrix element for nucleon bremsstrahlung. This
matrix element has been discussed in some detail in the lit-
erature@11–13# for a one-pion exchange~OPE! potential to
lowest order in the pion-nucleon coupling, i.e., in Born ap-
proximation.

However, the Born approximation is only applicable if at
least one of the following conditions is satisfied@14#:

uVu!
1

mNa2
, uVu!

p

mNa
, ~1!

whereuVu;100 MeV is the typical magnitude of the nuclear
interaction potential,a;1 fm is its range,p is the nucleon
momentum in the center of mass system, andmN is the free
nucleon mass. The first condition is always violated if the
potential leads to bound states as for the proton-neutron in-
teraction which gives rise to the deuteron bound state. The
second condition translates intop*mN and is therefore also
violated for the nonrelativistic nucleon momenta occurring in
a supernova. We can therefore not expect that the Born ap-
proximation is a reliable approximation to the dynamical
nucleon spin-density structure function in a supernova. Nei-
ther is it obvious that any weak interaction rates calculated
from it are reliable at the relatively low energies involved.

The goal of this paper is therefore to compute the dynami-
cal nucleon spin-density structure function and resulting
weak interaction rates beyond the Born approximation by
using exact two-nucleon wave functions. To keep things nu-
merically simple, we will restrict ourselves to spherically
symmetric but spin-dependent two-nucleon potentials. Since
a central potential conserves the total nucleon spin, the only
contribution to inelastic weak processes~i.e., inelastic in the
center-of-mass frame of the nucleons! will then arise from
interactions of protons and neutrons due to their different
weak coupling constants. We therefore have to deal with two
nucleon species. Our approach takes into account in a con-
sistent, unified way the free-free transitions

n1n1p↔n1n1p ~2!

as well as the free-bound and bound-free processes involving
the deuteron

n1d↔n1p1n. ~3!

The analogous processes involving neutrino pairs or axions
instead of neutrino scattering are described by the same dy-
namical structure function and can therefore also be treated
by our formalism.

The rest of the paper is organized as follows. In Sec. II we
define the nucleon spin-density structure function in a form
suitable for the case of proton-neutron interactions. The main

formalism for computing this structure function from two-
nucleon wave functions is presented in Sec. III. In Sec. IV
the Born approximation is derived as a limiting case. Section
V introduces a central potential which reproduces experi-
mental data on proton-neutron scattering at energies below a
few tens of MeV. The corresponding spin-density structure
function and resulting weak interaction rates are calculated
numerically for conditions near the neutrinosphere and com-
pared with the Born approximation and calculations for an
OPE potential. Finally, we summarize and conclude in Sec.
VI. We use natural units, i.e.,c5\51, throughout this pa-
per.

II. THE NUCLEON SPIN-DENSITY
STRUCTURE FUNCTION

A. Definition and general properties

The main process of interest here, neutral-current
neutrino-nucleon interaction, is given by the Hamiltonian

Hint5
GF

2A2
(

i 5n,p
c̄ igm@CV,i2CA,ig5#c i c̄ ngm~12g5!cn ,

~4!

whereGF is the Fermi constant,c i ( i 5n,p), andcn are the
Dirac field operators for the neutrons, protons, and neutrinos,
andCV,i andCA,i are the dimensionless weak neutral-current
vector and axial-vector coupling constants for protons and
neutrons, respectively.

Another possible type of weak process is the emission of
axions @15#. The corresponding interaction Hamiltonian
reads

Hint5
1

2 f a
(

i 5n,p
Ca,i c̄ igmg5c i]

ma, ~5!

wherea is the axion field,f a the Peccei-Quinn scale, and the
dimensionless coupling constants to neutrons and protons
Ca,i ( i 5n,p) are of order unity and depend on the specific
axion model.

In the limit of nonrelativistic nucleons, only the axial-
vector coupling contributes to inelastic weak processes.
Within linear response theory these processes are then de-
scribed exclusively by the dynamical structure function for
the nucleon spin-density. In the following, we will drop the
index A or a in the nucleon coupling constants to neutrinos
and axions, respectively, for notational simplicity whenever
the result applies to both cases. To ensure a suitable normal-
ization which will become clear below in Eq.~8!, we define
the structure function as the autocorrelation function of the
weighted nucleon spin-density:

sw~x![ (
i 5n,p

Ci

C
f i

†~x!
t

2
f i~x!. ~6!

Here,f i(x) ( i 5n,p) is the nonrelativistic field operator for
protons and neutrons which is a Pauli two-spinor,t is the
vector of Pauli matrices, andC2[Cn

2Yn1Cp
2Yp is an aver-

age neutral-current axial-vector weak coupling constant to
the nucleons, weighted by the fractional neutron and proton
abundances Yn and Yp . Defining the Fourier
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transform in a normalization volumeV as sw(t,k)
5V21/2*d3re2 ik–rsw(t,r ), one can then define the nucleon
spin-density structure function@13,10,16#:

Ss~v,k!5
4

3nb
E

2`

1`

dteivt^sw~ t,k!•sw~0,2k!&. ~7!

Here, (v,k) is the four-momentum transfer to the medium,
nb is the baryon number density, and the expectation value
^•••& is taken over a thermal ensemble at the medium tem-
peratureT of medium states normalized to unity.

Relativistic neutrinos and possibly axions will have typi-
cal energies of order 3T but are in general not in chemical
equilibrium with the medium. Weak interactions such as
neutral-current neutrino scattering and pair processes and ax-
ion emission thus probe the spin-density function typically at
thermal energy-momentum transfers. Since the momenta in-
volved in the nucleon-nucleon interactions are much larger
than the thermal momenta of relativistic particles, we
will often employ the long wavelength limitSs(v)
[ limk→0Ss(v,k) for which we define the dimensionless
quantity S̃s(x)[TSs(xT). In this limit, integration of Eq.
~7! over v yields the sum rule

E
2`

1`dv

2p
Ss~v!215Ns[

4

3nbVK (
iÞ j

si ,w•sj ,wL , ~8!

where we wrote the spatial integral*d3rsw(t,r )5( isi ,w .
Here,si ,w[sidiag(Cp ,Cn)/C, wheresi are the spin opera-
tors of the individual nucleons, and the matrix diag(Cp ,Cn)
acts in isospin space. In Eq.~8! Ns describes correlations
among different nucleon spins. In the absence of such corre-
lations*2`

1`(dv/2p)Ss(v) reduces to 1 which motivated the
introduction of the weighted spin operator Eq.~6!.

We formally introduce the complete set of eigenfunctions
un& of the total HamiltonianH of the nuclear medium
Hun&5vnun&, wherevn are the corresponding energy eigen-
values. By inserting the identity operatorI 5un&^nu between
the spin operators, Eq.~7! can be rewritten into

Ss~v,k!5
8p

3nb

1

Z (
n,m

e2vn /T u^nusw~0,k!um&u2

3d~v1vn2vm!, ~9!

whereZ5(ne2vn /T is the partition function. This form will
be useful later and it shows that the structure function satis-
fies detailed balance:

Ss~v,k!5Ss~2v,2k!ev/T. ~10!

It is therefore sufficient to know the function, e.g., for posi-
tive energy transfer to the medium,v>0.

Up to now no approximations have been made with re-
gard to the nucleon-nucleon interactions which determine the
nonperturbative though unknown structure function
Ss(v,k). From now on we will make the assumption that
only two-nucleon forces are present. The Hamiltonian then
has the form

H5(
i

pi
2

2mN
1

1

2 (
iÞ j

V~r i j ,si ,sj !, ~11!

wherer i j is the radius vector between nucleoni and j , pi is
the nucleon momentum,V(r i j ,si ,sj ) is the spin-dependent
two-nucleon interaction potential, and the sums run over all
nucleons. The most general two-nucleon potential in the non-
relativistic limit can be written as@17#

V~r ,s1 ,s2!5U~r !1Us~r !s1•s21UT~r !T12

1Pt@Ut~r !1Us
t ~r !s1•s21UT

t ~r !T12#,

~12!

wherer5r12, r 5ur u, r̂5r /r , Pt is the isospin exchange op-
erator, and the tensor operator is given by

T1253s1• r̂s2• r̂2s1•s2 . ~13!

Useful information about structure functions is contained
in their moments of which Eq.~8! is an example for the
lowest one. The next higher moment is given by the so-
called f -sum rule which is often discussed in the literature in
the context of the density structure function and for spin-
conserving interactions@18#. In Ref. @16# we derived a gen-
eralizedf -sum rule for the spin-density structure function for
one species of nucleons interacting via spin-dependent forces
of the form Eq.~12! in a nondegenerate medium:

E
2`

1`dv

2p
vSs~v!52

4

nbV
^HT&. ~14!

Here,HT is the part of the total Hamiltonian involving the
tensor operatorTi j . In the present paper we will consider
both neutrons and protons but assume a central two-nucleon
potential, i.e., absence of tensor contributions. Thef -sum
rule is then modified to

E
2`

1`dv

2p
vSs~v!52

4

3nbVS Cp2Cn

C D 2

^Hs
np&, ~15!

where Hs
np is the spin-dependent central part of the total

Hamiltonian which contributes to neutron-proton interac-
tions. Note from Eqs.~10! and~14! that for only one nucleon
species a tensor interaction is required to give a nontrivial
spin-density structure function. This is because the central
part of the interaction conserves the total nucleon spin and
thus does not contribute to its fluctuations. In contrast, for
two nucleon species, a central spin-dependent proton-neutron
interaction is sufficient for a nontrivial structure function as
long as the neutral-current axial-vector weak coupling con-
stants for protons and neutrons are different@see Eq.~15!#.
We stress, however, that the actual~positive! value of thef
sum depends on all interaction terms via the states entering
the thermal average.

B. Relevance for weak interactions

The differential axial-vector-current neutrino-nucleon
cross section is determined by the dynamical nucleon spin-
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density structure functionSs(v,k), taken at the difference of
initial and final neutrino four-momentum («1 ,k1) and
(«2 ,k2) via @13,16#

dsA5GF
2CA

2 32cosu

4
Ss~«12«2 ,k12k2!

d3k2

~2p!3
, ~16!

whereu is the angle betweenk1 andk2. In our convention,
the neutral-current axial-vector contribution to neutrino scat-
tering rates on the ensemble of all nucleons isnbdsA .

The volume emissivity of energy in axions,Qa , is gov-
erned by a structure functionSs,a which is obtained from
Eqs.~6!, ~7! by substitutingCi→Ca,i ( i 5n,p):

Qa5
Ca

2nb

~4p!2f a
2E

0

`

dvv4Ss,a~2v,v!, ~17!

whereCa
2[Ca,n

2 Yn1Ca,p
2 Yp . We have assumed an isotropic

medium such thatSs(v,k) only depends onk5uku.
Various quantities relevant for neutrino interactions are

determined by the spin-density structure function. For the
remainder of this section, we assume a Maxwell-Boltzmann
distribution at temperatureTn for the neutrinos. Furthermore,
we make use of the normalization given by Eq.~8!. Contri-
butions from spin-spin correlations represented byNs are
mainly induced by the presence of nucleon bound states and
by the Pauli exclusion principle which becomes important in
a degenerate medium@19#. Both effects are small in the hot
post-collapse phase of a supernova in which we are inter-
ested. Two-nucleon correlations, for example, can be evalu-
ated within our numerical model, see Eq.~38! and Fig. 3
below, and typically result inNs&0.1. To lowest order, we
can therefore neglectNs in Eq. ~8! when calculating the
average energy transfer per collision in a dilute medium. It
can then be written as@10,9#

^D«&
T

5E
0

` dx

2p
S̃s~x!S x1

bx2

2
1

b2x3

12 D ~e2bx2e2x!,

~18!

with b[T/Tn . This should be compared to the average en-
ergy transfer by nucleon recoils@20#:

^D«& recoil5
30~12b!

b2

T2

mN
. ~19!

Another interesting quantity is the reduction of the aver-
age total axial-vector current scattering cross section^sA&
@see Eq.~16!# in the nuclear medium@8,9#. First we note that
a term of the formAd(v) in Ss(v) corresponds to a total
elastic scattering cross section

sel~«1!5
3A

8p2
GF

2CA
2«1

2 . ~20!

For nb→0 there are no spin fluctuations and correlations,
and Eq. ~8! implies Ss(v)52pd(v) and thus s0

[(9/p)CA
2GF

2T2 for the thermally averaged cross section. In
Ref. @9# we obtained the expression

d^sA&
s0

[
^sA&2s0

s0
5Ns2E

0

` dx

2p
S̃s~x!

3F12S 11x1
x2

6 De2xG , ~21!

which again holds in the dilute medium.
Finally, we are interested in the rates of emission and

absorption of neutrino pairs. The rate of emission per density
of final neutrino states is given byGF

2CA
2nb(3

1cosu)Ss(2«12«2,2k12k2)/4 which leads to the volume
emissivity of energy in neutrino pairs

Qn n̄ 5
GF

2CA
2nb

160p4 E
0

`

dvv6Ss~2v!, ~22!

where we have adopted the long wavelength approximation.
The physical quantities discussed here will be calculated for
the supernova environment in Sec. V.

III. BEYOND THE BORN APPROXIMATION

A. Classical versus general quantum result

In the limit uvu!T the nucleon spin can be treated as a
classical spins being changed abruptly by some random
amount Ds in a typical nucleon-nucleon collision event
which takes place on a time scale.1/T and thus appears to
be ‘‘hard.’’ In this case we expect@21#

Ss~v!.
Gs

v21Gs
2/4

, ~23!

where the spin fluctuation rateGs is related to the collision
rateGcoll by

Gs5
^~Ds!2&

^s2&
Gcoll . ~24!

Note that the spin fluctuation rate suppresses thev22 brems-
strahlung spectrum which otherwise would violate the exis-
tence of the normalization Eq.~8!. This is known as the
Landau-Pomeranchuk-Migdal~LPM! effect @22,23#. In pre-
vious work @24,25,10,16# it has been discussed how the
Lorentzian shape Eq.~23! might influence weak interaction
rates at high densities whereGs*T. The high-density behav-
ior of the spin-density structure function can also influence
limits on the axion mass@26#.

For uvu@Gs multiple scattering effects can be ignored
and the spin-density structure function can be computed by a
quantum-mechanical treatment of two-nucleon scattering.
From the genericv22 divergence of all bremsstrahlung pro-
cesses forv→0 one expects the general form@9#

Ss~v!5
Gs

v2
s~v/T!H ev/T for v,0,

1 for v.0,
~25!

wheres(x) is a nonsingular even function withs(0)51. The
specific shape ofs(x) for x*1 depends on the nucleon-
nucleon interaction potential Eq.~12!, and its calculation for
realistic interaction potentials is the main goal of this paper.
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Comparing Eqs.~23! and ~25! in their common range of
validity, Gs!uvu!T, shows that the coefficientGs of the
bremsstrahlung divergence in Eq.~25! can be interpreted as a
nucleon spin fluctuation rate and that the classical limit of
hard collisions corresponds tos(x)51. The existence of the
f -sum Eqs.~14!, ~15! shows thats(x) has to decrease for
largex due to quantum corrections.

B. Exact treatment in the limit of large energy transfers

For v*Gs where scattering involving more than two
nucleons is negligible, we can numerically compute two-
nucleon wave functions from a given nucleon-nucleon inter-
action potential and use them in the general expression Eq.
~9!. For a central potential the eigenfunctions for the relative
motion in the proton-neutron center-of-mass system

uP&[up,l ,m,S&5RplS~r !Ylm~V!uS& ~26!

are characterized by the quantum numbers for the radial mo-
mentump, the orbital angular momentuml andm, and the
total spinS, whereRplS(r ) is the radial wave function and
Ylm(V) are the spherical harmonics. The corresponding en-
ergy eigenvaluesvP have a (2l 11)(2S11)-fold degen-
eracy. The Pauli exclusion principle then also determines the

isospin toI 5 1
2 1(21)l( 1

2 2S). Assuming an isotropic me-
dium and usingsw(0,k)5V21/2( isie

2 ik•r idiag(Cp ,Cn)/C
with a normalization volumeV51/nb , after some algebraic
manipulations we obtain

Ss~v,k!5
16p1/2

3C2

1

kS mN

T D 1/2

YpYn

1

ZCM

3(
P,Q

e2vP /T2mN[v1vP2vQ2k2/~4mN!] 2/~Tk2!

3u^PuCpspe2 i ~k•r /2!1Cnsne1 i ~k•r /2!uQ&u2,

~27!

where ZCM5(Pe2vP /T. For k→0 this expression trans-
forms into

Ss~v!54pYpYnS Cp2Cn

C D 2 1

ZCM

3(
p,q

(
l

~2l 11! (
S50

1

e2vP /T

3U E
0

r max
drr 2RplS* ~r !Rql~12S!~r !U2

d~v1vP2vQ!,

~28!

where we have made use of the orthogonality of the system
of eigenfunctions which are supposed to be normalized to
unity. In practice one constructs bound and scattering states
of the stationary radial Schro¨dinger equation within a finite
spherical volume of radiusr max and computes the matrix
elements appearing in Eq.~28!. For a nucleon interaction
potential that is not radially symmetric, the eigenstates
uP&[upJP& are characterized by the total angular momen-
tum J and parityP and are superpositions of orbital angular

momentum eigenstates. With this modification, Eq.~27! still
holds but we will not pursue this more complicated case here
which would lead to coupled radial equations for the corre-
sponding radial functionsRpJP .

Since we neglect interactions among more than two
nucleons, our formalism does only account for neutrons, pro-
tons, and deuterons. Higher nuclei such as helium are not
included. In this sense, strictly,nb , Yp , andYn have to be
interpreted within the ensemble of neutrons, protons, and
deuterons only. Nuclear statistical equilibrium~NSE! shows
that in practice this does not make a big difference around
and inside the neutrinosphere, as long asYp&0.3 holds in
addition, which is realistic after the first few hundred milli-
seconds after supernova core bounce. Keeping this in mind
we can now calculateZCM analytically. Around the neutri-
nosphere the nucleons are at best mildly degenerate. We
therefore assume a Maxwell-Boltzmann distributionf (p)
5e2p2/(2mT) for the unbound proton-neutron states. Here,
p5s1/2/2 is the nucleon momentum in the center-of-mass
system, expressed in terms of the squared center-of-mass en-
ergys ~excluding the nucleon rest mass!, andm5mN/2 is the
reduced nucleon mass. Taking into account the spin degrees
of freedom we then have

ZCM53e«d /T1
4

nb
S mT

2p D 3/2

, ~29!

where«d.2.2 MeV is the deuteron binding energy~the deu-
teron hasS51). The degree of dissociation, i.e., the frac-
tional abundance of unbound states is then

f u5F11
3

4
nbS 2p

mTD 3/2

e«d /TG21

. ~30!

As a consequence,Ss(v) from Eqs.~27! and ~28! does not
exhibit a simple linear scaling with the nucleon densitynb ,
except for the dilute limitnb→0, f u→1. It can be seen that
the numerator in Eqs.~27! and~28! is independent ofnb and
the density dependence ofSs thus exclusively stems from
ZCM .

In the limit of zero temperature,f u→0 and only the deu-
teron bound state will be populated in thermal equilibrium.
In this limit, Eq.~16! describes the cross section for the weak
neutral-current deuteron break-up process, Eq.~3!. Integra-
tion over the phase space for the outgoing neutrino yields the
total cross section

snd
NC~«1!5

3GF
2

16p2

~Cp2Cn!2

Y E
«d

«1
dv~«12v!2@ lim

T→0
Ss~v!#

~31!

for incident neutrino energy«1.
Another instructive limiting case is the absence of spin-

flip interactions. Scattering on protons and neutrons then has
to be added incoherently with the statesuP& now being plane
waves. Equation~27! then reduces to the ordinary recoil ex-
pression

Ss~v,k!5
1

kS 2pmN

T D 1/2

e2mN[v2k2/~2mN!] 2/~2Tk2!. ~32!
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Let us now get back to the general case. In agreement
with Eq. ~15! and Ref.@11# only proton-neutron scattering
contributes to Eq.~28!, and only if the neutral-current axial-
vector weak coupling constants for protons and neutrons are
different. Since the total spin is conserved by a central po-
tential, the spin-density structure function is governed by the
fluctuations of the difference of the proton and neutron spin
sp2sn . To compare with the general results Eqs.~23! and
~25!, we study the corresponding spin-flip cross section
which is defined as

ssf~s!5
^@D~sp2sn!#2&

^~sp2sn!2&
snp~s!. ~33!

Here, snp(s)[( lsnp( l ,s), where the average total proton-
neutron scattering cross section in angular momentum statel
is given by

snp~ l ,s!5
4p

s
~2l 11!@3sin2d l ,1~s!1sin2d l ,0~s!# ~34!

in terms of the phase shiftsd lS(s). The latter are defined by
the asymptotic behavior

RplS~r !}sin@~2mvP!1/2r 2 lp/21d lS~8mvP!#, ~35!

of the scattering statesvP.0 for (2mvP)1/2r @ l . The
nucleon spin-flip rate is now just defined as

Gsf5YpYnnb

E
0

1`

dpp2f ~p!~p/m!ssf~4p2!

E
0

1`

dpp2f ~p!

, ~36!

wherep/m is the relative velocity of proton and neutron.
As can be seen from phase shift analysis, the spin-flip

cross section Eq.~33! is

ssf~s!5
16p

3s (
l

~2l 11!@sind l ,1~s!2sind l ,0~s!#2. ~37!

Note that this vanishes if the phase shifts forS50 andS51
are equal, as expected. Givenssf , one can computeGsf from
Eq. ~36! and compare it with the Born approximation to be
discussed below and with Eq.~25!. This will be done in the
following two sections.

Finally, one can calculate the spin-correlation term Eq.~8!
that appears in the average cross-section reduction Eq.~21!:

Ns5YpYn

CA,pCA,n

CA
2

1

ZCM
(

p
(

l
~2l 11!

3 (
S50

1

~21!S~S11!21e2vP /T, ~38!

which, together with Eq.~28!, determines Eq.~21! in the
phase shift treatment.

IV. THE BORN APPROXIMATION

By expanding the unbound statesuP& into plane waves
within first order perturbation theory and inserting the result
into Eq. ~27!, one obtains the spin-density structure function
in Born approximation. Forv.0, the result in the long
wavelength limit is

Ss
Born~v!5

1

v2

m

2p
YpYnnbS Cp2Cn

C D 2

3

E
0

1`

dpp f~p!E
kmin

kmax
dkkuUs

np~k!u2

E
0

1`

dpp2f ~p!

, ~39!

wherekmax,min5(p212mv)1/26p, andUs
np(k) is the Fourier

transform of the coefficient ofsp•sn in the proton-neutron
interaction (sp andsn being the proton and neutron spins!.
Only the relative motion between proton and neutron influ-
ences Eq.~39! because neither energy nor momentum can be
transferred to the center-of-mass motion in the long wave-
length limit. In contrast to Eq.~28!, Ss

Born(v) scales linearly
with nb .

In Ref. @9# we considered one species of nucleons cou-
pling to a classical, external scattering center via an interac-
tion of the form Eq.~12! where one of the spins was replaced
by a classical spins associated with the external scatterer.
The result for the spin-density structure function in the long
wavelength limit in Born approximation is very similar to
Eq. ~39! for the case of a central two-nucleon potential and a
medium of protons and neutrons with different neutral-
current axial-vector weak coupling constants.

In Born approximation, the spin-flip cross section Eq.~33!
evaluates to

ssf
Born~s!5

20

27p

m2

s E
0

s1/2

dkkuUs
np~k!u2, ~40!

where ^(sp2sn)2&53/2 was used. Comparing Eqs.~25!,
~39!, and~36! yields

Gs
Born5

27

10S Cp2Cn

C D 2

Gsf
Born, ~41!

i.e., the spin fluctuation rate inSs(v) and the average spin-
flip rate indeed agree within a factor of order unity, apart
from the factor@(Cp2Cn)/C#2 involving the weak coupling
constants which results from our specific definition ofSs .

As an example, we consider the usually adopted OPE
potential which is a good approximation to the nucleon-
nucleon interaction for distances greater than the inverse
pion massmp . With f .1 being the pion-nucleon coupling
constant, its Fourier transform is

VOPE~k,s1 ,s2!52S 2 f

mp
D 2~s1•k!~s2•k!

k21mp
2 ~2Pt21!

~42!

and it clearly has a tensor contribution. The spin-density
structure function corresponding to this potential has been
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calculated in Born approximation@13#. Translated into our
notation, the contribution from proton-neutron scattering
takes the form of Eq.~25! with s(x)[ s̃(x)/ s̃(0) given by
the function

s̃~x!5E
0

`

dv@v~v1x!#1/2e2v

3@~5C1
2 13C2

2 !s1~v,x!12~C1
2 1C2

2 !s2~v,x!

2~6C1
2 12C2

2 !s3~v,x!#, ~43!

whereC65(Cp6Cn)/2 and

si~v,x!5E
21

11

dz5
S 2v1x22z@v~v1x!#1/2

2v1x22z@v~v1x!#1/21y
D 2

i 51,

~2v1x!224v~v1x!z2

~2v1x1y!224v~v1x!z2
i 52,

x2

~2v1x1y!224v~v1x!z2
i 53,

~44!

with y[mp
2 /(mNT). Furthermore, the contribution to the

nucleon spin fluctuation rateGs is

Gs,OPE
Born 5

2

3
YpYn

s̃~0!

C2
GA , ~45!

with

GA54Apap
2 nbT1/2

mN
5/2

58.6 MeV r13T10
1/2. ~46!

Here, ap[( f 2mN /mp)2/4p'15, r13[r/1013 g cm23 with
r the density, andT10[T/10 MeV. Note thatSs,OPE

Born (v)
}v23/2 for v→` and thus violatesf -sum integrability. As
was explained in Ref.@16#, this is caused by the unphysical
behavior of the OPE potential forr→0 that leads to a
uVOPE(k)u which for k→` is asymptotically constant@see
Eq. ~42!#.

More generally, as can be seen from Eq.~39!, one has
Ss

Born(v)}v23/22r for v→` if uUs(k)u}k2r for k→`, cor-
responding to existence and square integrability of the
(r 22)th derivative of the interaction potential. It is not ob-
vious whether this applies to the highv behavior of the
expression Eq.~28! as well.

V. A NUMERICAL MODEL FOR THE SUPERNOVA
ENVIRONMENT

We first note thatSs(v) from Eqs.~39! and ~27! is pro-
portional to the dimensionless factor

Y[YpYnS Cp2Cn

C D 2

5~Cp2Cn!2
YpYn

Cp
2Yp1Cn

2Yn

, ~47!

which describes its compositional and coupling constant de-
pendence for fixednb and T. For processes involving only

protons or neutrons this factor would be replaced byYp
2 and

Yn
2 , respectively. Since interaction rates are proportional to

nbSs by definition,Y is a rough measure of the contribution
of proton-neutron scattering to weak neutral-current inelastic
interaction rates. For the neutrino-nucleon coupling in a
nuclear medium we will adoptCA,p.1.09 andCA,n.20.91
@13#, so thatY.0.5 for Yp.0.1.

In the following we are interested in the situation given in
the environment of the neutrinosphere in a supernova. In
principle, our expressions for weak interaction rates depend
on both densityr and temperatureT, apart from being pro-
portional toY. In order to reduce the number of independent
parameters to 1 for simplicity, we will assume a specific
profile for the temperature as a function of the density:

T~r!55S r

1013 g cm23D 1/3

MeV. ~48!

This profile is typical for the conditions in the supernova a
few hundred milliseconds after core bounce. Under these cir-
cumstances,f u varies between.0.72 at r51011 g cm23

and.0.16 atr51014 g cm23, corresponding to a fractional
deuterium abundance Yd.(12 f u)Yp /@12(12 f u)Yp#.
NSE involving higher nuclei gives deuterium abundances
that are 20230 % lower than this ifYp&0.2, and 10220 %
lower if Yp&0.1, in the ranger*431011 g cm23 for the
profile Eq.~48!. At densities approaching nulear density, the
bound state spectrum of nuclei is influenced by the overlap
of their wave functions which tends to reduce their abun-
dance below the ones predicted by NSE. This effect cannot
be accounted for in a two-nucleon interaction model which
therefore ceases to be applicable at such densities.

For the proton-neutron interaction potentialVS
np(r ) for to-

tal spinS we chose the following Gaussian potentials@such
thatUs

np5V1
np2V0

np andUnp5(V1
np1V2

np)/2 in the notation
of Eq. ~12!#:

V0
np~r !5233.6e2~r /1.77 fm!2

MeV,

V1
np~r !5284.7e2~r /1.36 fm!2

MeV. ~49!

Its strengths and ranges were fit to reproduce the experimen-
tal values for the scattering lengthsaS and effective ranges
r eff,S which determine the low-energy expansion of the phase
shifts d0,S @17#:

cotd0,S~s54p2!52
1

paS
1

p

2
r eff,S . ~50!

As a result, thes-wave proton-neutron scattering cross sec-
tion predicted by Eq.~49! agrees with the experimental one
to within less than 5% in the laboratory energy range be-
tween 0 and.20 MeV ~see Fig. 1!. In addition, the energy
of the bound state resulting forS51 coincides with the deu-
teron binding energy within 5%. A central potential de-
scribes the deuteron rather well since the contribution of the
D state to the bound state wave function is only about 6%.
Finally, we have compared the numbers for the weak
neutral-current deuteron break-up cross section resulting
from Eq. ~31! with calculations in the literature@27#. In the
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energy range between.5 and 40 MeV we found agreement
to within about 10%. This serves as a further check for the
correct normalization of our calculation.

Also shown in Fig. 1 is the spin-flip cross section as cal-
culated from the potential Eq.~49! both in Born approxima-
tion @Eq. ~40!# and numerically from the phase shifts@Eq.
~37!#. It is clearly seen that the Born approximation under-
estimatesssf by far for energies below a few MeV. In con-
trast, as expected, Born approximation and phase shift analy-
sis for the spin-flip cross section converge at high energies
where the second condition in Eq.~1! is asymptotically sat-
isfied.

To compute the nucleon spin-density structure function in
phase shift analysis, we calculated radial eigenfunctions up
to some maximal orbital angular momentuml max53 above
which they are close enough to the free eigenfunctions to
make a negligible contribution to Eq.~28!. To achieve a
sufficient resolution in the energy range of interest, about
500 eigenfunctions had to be computed. We verified that the
resultingSs(v) satisfies thef -sum rule Eq.~15! to within
10%. An example forr5331012 g cm23, andT57.2 MeV,
values typical for the neutrinosphere, is shown in Fig. 2,
along with the Born approximation Eq.~39! for the same
potential. Clearly, the Born approximation strongly underes-
timatesSs at neutrinosphere temperatures, corresponding to
the underestimation of the spin-flip cross section at low en-
ergies exhibited in Fig. 1. We have verified that in the limit
of weak interaction potentials satisfying the first condition in
Eq. ~1!, the Born approximation agrees well with the phase
shift analysis over the whole energy range as expected.

For comparison, Fig. 2 also shows Eq.~25! with the per-

turbative expressions Eqs.~43!–~46! for the proton-neutron
scattering contribution toSs based on the OPE potential
~thin dashed curve!. After all, this curve reproduces the gen-
eral normalization of the spin-density structure function quite
well, but it cannot reproduce the quite prominent deuteron
resonance. The nonvanishing pion mass is taken into account
in this curve and suppresses it by roughly a factor 2 com-
pared to calculations neglecting the pion mass. Note the
steepening at highv of the curves for the potential Eq.~49!
in contrast toSs,OPE

Born (v) which guarantees or violatesf -sum
integrability, respectively.

The phase space averaged quantities relevant for neutrino
interactions and discussed in Sec. II are shown in Figs. 3–5
for the temperature profile Eq.~48! in the density range be-
tween 1011 g cm23 and 1014 g cm23. Near the lower bound-
ary of this range, the neglect of higher nuclei such as helium
is not a good approximation any more. Near the upper
boundary, multiple nucleon scattering@10,24# and saturation
of nucleon spin fluctuations@16# start to become important as
Gs becomes comparable toT @see Eq.~23!#, as can be seen
from Fig. 6. Furthermore, modifications of nuclear bound
states due to overlap of their wave functions, which is an
additional many-body effect, becomes important at these
densities, as mentioned above.

We stress again that due to the presence of bound states
the spin-density structure function calculated by phase shift

FIG. 1. Thes-wave proton-neutron scattering cross section pre-
dicted by the potential Eq.~49! ~thin solid line! and measured~thin
dotted line! as a function of the laboratory kinetic energy
Elab5s/2mN . Also shown for this potential is the spin-flip cross
section in Born approximation@Eq. ~40!, thick dashed line# and
from phase shift analysis@Eq. ~37!, thick solid line#. The inverted
resonance in the latter curve atElab/2.2.2 MeV stems from the
deuteron bound state.

FIG. 2. The contribution from proton-neutron scattering to the
dynamical nucleon spin-density structure functionSs(v)/Y as a
function of v in the long wavelength limitk→0 for r5331012

g cm23, T57.2 MeV. Shown are the Born approximation@Eq.
~39!, thick dashed line# and the result from phase shift analysis@Eq.
~28!, thick solid line# for the proton-neutron interaction potential
Eq. ~49! and the estimate Eq.~25! with Eqs.~43!–~46! for an OPE
potential in Born approximation~thin dashed line!. The resonance
at v.2.2 MeV from the deuteron binding energy is clearly visible
in the thick solid line. The small wiggles on this curve are caused
by the finite numerical resolution of the energy eigenvalues of the
scattering states. Multiple scattering effects that regularize thev22

behavior at lowv would here become important forv,Gs.1
MeV, see Fig. 6.
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analysis and weak interaction rates computed from it do not
exhibit a simple scaling behavior with density and/or tem-
perature, as discussed below Eq.~29!.

We note from Eqs.~21!, ~38!, and~47! that the scattering
cross section reduction shown in Fig. 3 is proportional toY.
The main contribution toNs comes from theS51 deuteron
bound state

Ns,d5
CA,pCA,n

~CA,p2CA,n!2
~12 f u!

Y

3
.20.083~12 f u!Y

~51!

and is roughly half the size of the second term in Eq.~21!.
The negative contribution tôsA& results from the opposite
sign of CA,p and CA,n and corresponds to the fact that the
cross section for elastic scattering on deuterons is signifi-
cantly smaller than that on free nucleons. The resulting pre-
dicted total cross section reduction is almost constant.10%
over the whole density range shown in Fig. 3. Furthermore,
we note that Eqs.~18! and~19! imply that ^D«&}Tn2T for
uTn2Tu!T which makes it convenient to plot the ratio of
these quantities in Fig. 4.

Clearly, near the low end of the temperature and density
range considered, the Born approximations for both the po-
tential Eq.~49! and OPE tend to predict substantially lower
absolute values for all of the quantities shown in Figs. 3–6.
For the potential Eq.~49! this is related to the fact that the
spin-flip cross sectionssf(s) is strongly underestimated by
the Born approximation below a few MeV~see Fig. 1!. In
turn, this leads to an underestimation of the spin-flip rate Eq.
~36! for temperatures below a few MeV, and the spin fluc-
tuation rate that satisfies Gs /Gsf.Gs

Born/Gsf
Born

527/10(Cp2Cn)2/C2 @see Eq. ~41!# and characterizes
Ss(v) via Eq.~25!. At higher temperatures and densities the
predictions based on phase shift analysis and Born approxi-
mation for the potential Eq.~49! are closer because the ef-
fective potential ‘‘seen’’ by the scattering nuclei becomes
smaller relative to their kinetic energy and the second con-
dition for applicability of perturbation theory in Eq.~1! be-

FIG. 4. The contribution from proton-neutron scattering to the
average energy transfer in axial-vector neutrino-nucleon scattering,
normalized to the difference of neutrino and medium temperatures,
^D«&/Y(Tn2T) @see Eq.~18!#. This is shown as a function ofr for
the profile Eq.~48!. The line key is identical to Fig. 2. In addition,
the thin solid line shows theY independent contribution from re-
coil, Eq. ~19!. The normalization relative to the inelastic contribu-
tions that are proportional toY corresponds toY51.

FIG. 5. The contribution from proton-neutron scattering to the
neutrino pair emissivityQn n̄ /Y @see Eq.~22!#, shown as a function
of r for the profile Eq.~48!. The line key is identical to Fig. 2.

FIG. 3. The contribution from proton-neutron scattering to the
fractional changed^sA&/(s0Y) of the average total axial-vector
current neutrino-nucleon scattering cross section@see Eq.~21!#.
This is shown as a function ofr for the profile Eq.~48!. The line
key is identical to Fig. 2. For the phase shift analysis Eq.~38! was
used forNs , whereasNs50 was used for the Born approxima-
tions.
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comes asymptotically satisfied. They do not converge, how-
ever, because the deuteron abundance increases within our
two-nucleon interaction approximation which eventually be-
comes inapplicable.

Close to the neutrinosphere, at densities of a few
1012 g cm23, predictions by our phase shift analysis for the
potential Eq.~49! and by the Born approximation for the
OPE potential for the integrated quantities shown in Figs.
3–6 agree reasonably well. In particular, our results predict
that for r&1012 g cm23 the average inelastic neutrino-
nucleon energy transfer̂D«& is comparable to the recoil
energy ^D«& recoil ~see Fig. 4!, as first suggested in Refs.
@10,9# for conditions near the neutrinosphere. These energy
transfers are, however, differently distributed with a much
longer tail to large-energy transfers, as shown in Fig. 7, and
their average value has a much weaker temperature and den-
sity dependence than predicted by the calculations for OPE
in Born approximation.

We have furthermore checked that the results forSs cal-
culated from the phase shift analysis Eq.~28! are insensitive
to the detailed shape ofUs

np(r ) as long as it reproduces the
experimental phase shifts in the corresponding energy range.
In particular, properties of the potential at short distancesr
influence Ss(v) only for v5p2/mN*1/(mNr 2). For the
conditions near the neutrinosphere it is therefore sufficient
that the potential reproduces nucleon-nucleon scattering up
to a few tens of MeV.

By comparing with the experimentally measured rates for
the processp1p→p1p1p0, it was argued in Ref.@28# that
the OPE potential in Born approximation should describe the
axion emission processp1p→p1p1a rather well even in
the supernova core. This should hold true for other related
weak interaction rates as well. This argument, however, can-
not be extended to the analogous processes Eqs.~2! and ~3!
involving neutrons and protons that have been the subject of
the present paper: Whereas only the tensor contribution of
the two-nucleon interaction potential is relevant for pro-

cesses involving only one nucleon species, the reaction in-
volving a proton and a neutron also depends on the central
part of the potential and is therefore not related to the former
by simple isospin symmetry. Indeed, the fact mentioned in
Sec. IV that the OPE potential leads to an unphysical short
distance behavior for proton-neutron interactions, but not for
interactions among identical flavors, is related to this. One
can therefore not expect proton-neutron bremsstrahlung cal-
culations adopting the OPE potential in Born approximation
to yield reliable estimates of weak interaction rates at high
temperatures and densities.

Indeed, towards the center of the hot neutron star, at den-
sities approaching nuclear density andT*20 MeV, predic-
tions for the quantities shown in Figs. 3–5 by the OPE po-
tential in Born approximation are at least 10 times higher
than corresponding predictions based on the potential Eq.
~49! for which Born approximation and phase shift analysis
become rather similar. This demonstrates that in this envi-
ronment weak interaction rates indeed become quite sensi-
tive to the short-distance behavior of the two-nucleon inter-
action potential which is different for these two potentials.
This can have important ramifications for neutrino opacities
and axion and neutrino pair emissivities in the supernova
core that are usually based on these OPE calculations
@11,12#. Whereas calculations assuming an OPE potential
should be a reasonable approximation in the context of a
‘‘cold’’ neutron star this is not necessarily the case for the
much higher thermal energies involved in a hot protoneutron
star. Neutrino opacities govern the cooling time scale of the

FIG. 6. The spin fluctuation rateGs /Y as a function ofr for the
profile Eq.~48!. The line key is identical to Fig. 2.

FIG. 7. The contribution from proton-neutron scattering to the
distribution of energy transfersv in axial-vector neutrino-nucleon
scattering per logarithmic interval inv and difference in neutrino
and medium temperature in arbitrary units, forr5331012 g cm23,
and T57.2 MeV. According to Eq.~18!, this is proportional to
@Ss(xT)/Y#x3(11x/21x2/12)e2x, where Ss(v) was shown in
Fig. 2 for the same conditions with identical line key. In addition,
the thin solid line was obtained from theY independent recoil struc-
ture function, Eq.~32!, for a typical thermal momentum transfer
k53T. The normalization relative to the inelastic contributions that
are proportional toY corresponds toY51.

3188 56GÜNTER SIGL



protoneutron star@25# while axion emissivities determine ax-
ion mass bounds based on supernovae@26#. Apart from tak-
ing into account many-body effects such as multiple scatter-
ing @24,10,16#, a more reliable calculation of these quantities
thus requires to use nuclear potentials that fit nucleon-
nucleon scattering data also at energies above a few tens of
MeV to ensure the correct small distance behavior. We leave
that to a separate study.

Finally, to qualitatively compensate for the overestima-
tion of the deuterium abundance by our model at high den-
sities, we checked how our results change when any contri-
butions from bound states are neglected. The curves shown
in Figs. 3–6 for the potential Eq.~49! then have a more
similar shape, with the magnitudes predicted by the phase
shift analysis being larger than the ones based on the Born
approximation by a factor that varies monotonously between
.10 near the low end, and.2 near the high end of the
density range considered.

VI. SUMMARY AND CONCLUSIONS

We have discussed weak axial-vector neutral-current in-
teractions involving nucleons in hot nondegenerate nuclear
matter at temperatures between a few MeV and about 25
MeV, and densities between.1011 and.1014 g cm23, i.e.,
for conditions given in the vicinity of the neutrinosphere in a
type-II supernova. To describe such interactions in the limit
of nonrelativistic nucleons we adopted the structure function
formalism for the nucleon spin-density. We studied the re-
duction of the average total axial-vector current neutrino-
nucleon scattering cross section, the associated average en-
ergy transfer, and the neutrino pair emissivity, all of which
are governed by the nucleon spin fluctuations caused by the
spin-dependent nucleon-nucleon interactions. To lowest or-
der in the nucleon-nucleon interactions, i.e., in Born approxi-
mation, this is represented by nucleon bremsstrahlung. We
have shown, however, that near the low end of the tempera-
ture and density range considered here, the Born approxima-
tion is in general a reliable estimate neither for these quan-
tities nor for the spectral shape of the spin-density structure
function which determines the distribution of the energy ex-
changed with the nuclear matter in scattering and pair pro-
cesses. As an alternative, we have performed computations
using exact two-nucleon wave functions for a spherically
symmetric two-nucleon interaction potential that was fit to
experimental data. In this case, only proton-neutron interac-
tions contribute to inelastic weak neutral-current interactions
with nucleons. We also compared our calculations with re-
sults for the corresponding contribution based on the usually

adopted OPE potential in the Born approximation. In gen-
eral, near the low end of the temperature and density range
considered, the OPE calculations tend to underestimate the
quantities discussed here, whereas near the high end an over-
estimation is indicated. We confirm that for the conditions
near the neutrinosphere the average energy transfer in axial-
vector neutrino-nucleon scattering can be comparable to the
recoil energy, as suggested by the OPE calculations.

The formalism presented here can be extended to two-
nucleon potentials that are not spherically symmetric as well
as to finite momentum transfer@see Eq.~27!#.

Our results might have a significant impact on the forma-
tion of neutrino spectra from type-II supernovae. A quanti-
tative understanding will, however, require detailed numeri-
cal simulations. Qualitatively, the ‘‘energy’’ sphere is
located where the rates of processes that change neutrino
energies and numbers equal the diffusion rate@29,2#. A
rough estimate employing the new rates from our phase shift
analysis indicates no significant change in the location of the
energy spheres ofne , n̄ e , and muon andt neutrinos at
T.4, T.4.6, andT.7.5 MeV, respectively. However, the
additional energy transfer in inelastic neutrino-nucleon scat-
tering and the weaker fall off of bremsstrahlung pair rates at
low temperatures and densities~see Figs. 4 and 5! suggests
an increased efficiency of energy exchange with the medium
between the energy spheres and the surface of last scattering
at T.4 MeV, and thus a softening of the spectra. Since this
applies equally to all neutrino flavors, this could also result
in more similar spectral temperatures for the different flavors
and could be tested by the next generation neutrino observa-
tories once a supernova is detected.

Finally, we demonstrated that weak interaction rates in
the hot supernova core are sensitive to the small distance
behavior of the nucleon-nucleon interaction potential which,
at least for proton-neutron interactions, is not well described
by the usually adopted OPE potential. This, apart from
many-body effects, should be taken into account in future
investigations.
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