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Based on a dispersive approach, we apply the inverse amplitude method to unitarize one-loop SU~2! and
SU~3! chiral perturbation theory. Numerically, we find that this unitarization technique yields the correct
complex analytic structure in terms of cuts and poles. Indeed, using the chiral parameter estimates obtained
from low-energy experiments we obtain the poles associated with ther(770) andK* (982) resonances. Just by
fixing their actual masses we obtain a parametrization of thepp and pK phase shifts in eight different
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I. INTRODUCTION

Even though QCD yields a remarkably good description
of strong interactions, low-energy hadron physics has to be
modeled phenomenologically. This is due to the fact that the
usual perturbative approach in the coupling constant cannot
be applied to QCD below energies of the order of 1 GeV.
Most of the phenomenological results were based on partial
conservation of the axial vector current and current algebra.
However, in 1979, Weinberg@1# showed how to reobtain
many of these predictions by means of an effective Lagrang-
ian.

The fields in that Lagrangian are the light mesons~pions,
kaons, andh ’s! which are understood as the Goldstone
bosons~GB’s! arising from the spontaneous breaking of chi-
ral symmetry. The Lagrangian is built as an expansion in
derivatives that respects the symmetry-breaking pattern of
QCD. Indeed, the first term in the expansion is fixed by the
symmetry requirements and accounts for the current algebra
results. The next terms in the expansion produce further cor-
rections, which depend on several phenomenological param-
eters but are always consistent with the QCD symmetry con-
straints. These techniques were later developed to one loop
in a set of papers by Gasser and Leutwyler@2,3#. They
showed how to obtain amplitudes involving light mesons, as
functions of their momenta, their masses, and those few phe-
nomenological parameters.

By fitting these parameters from a few low-energy experi-
ments it is then possible to obtain successful predictions for
other processes. The whole approach is known as chiral per-
turbation theory~ChPT!.

Very recently, some partial higher order calculations@4#
as well as a complete two loop calculation ofpp scattering

@5# have appeared in the literature which will be needed in
order to analyze new data to come from DAFNE and
Brookhaven. For a general review of the available experi-
mental data on pion physics and future prospects, we refer
the reader to@6#.

Nevertheless, there are some intrinsic limitations when
applying ChPT, namely, the fact that the amplitudes calcu-
lated within the chiral approach are only unitary in the per-
turbative sense, that is, up to the next order in the external
momenta. Such a breakdown of unitarity is most severe at
high energies, where the external momenta are no longer a
good expansion parameter, although it can also occur at
moderate energies@7#. As a result, it is not possible to repro-
duce resonant states, which are one of the most characteristic
features of the strongly interacting regime. Many different
methods have been proposed in order to improve this behav-
ior and thus to extend the applicability of ChPT to higher
energies; among them, the use of Pade´ approximants@8#, the
explicit introduction of resonances@9,10#, theK matrix @11#,
and the largeN limit @12# (N being the number of GB’s! or
the inverse amplitude method~IAM ! @7,8,13,14#.

This work is devoted precisely to the last method, which
can be justified within a dispersive approach and can easily
reproduce the two lightest resonances: ther(770) in pp
scattering@8# and theK* (892) in pK scattering@13#. But
not only that, the IAM also improves considerably the fit to
data even in nonresonant channels, almost up to the first two
particle inelastic thresholds.~The many particle inelastic
thresholds can be neglected since they are suppressed by
phase space factors.! This fit provides a remarkably good
parametrization that can be used for other processes. Indeed,
in a previous work@15#, the authors showed how it can be
used together with a simple unitarization prescription to ob-
tain successful results ongg→p0p0 up to 700 MeV.

Of course, it is also possible to obtain very good param-
etrizations@9,10# of pp or pK elastic scattering by includ-
ing all resonant states explicitly. However, our aim choosing
the IAM is to reproduce these phenomena just with the few
phenomenological parameters present in the ChPT Lagrang-
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ian. In this way, even though their masses and widths will
not be obtained with great accuracy, resonances can be re-
garded as real predictions. That is one of the relevant fea-
tures of the IAM since other very popular unitarization meth-
ods are not able to reproduce resonances unless they are
explicitly introduced in the calculation. That is, for instance,
the case with theK matrix.

The purpose of this work is, first, to study how high in
energies the IAM yields good results and what are its limi-
tations. We would also like to know whether it is possible to
reproduce further resonance states. It is clear that the best
candidates are the lightest resonances whose dominant decay
modes arepp or pK. We have listed them in Table I. In
case these resonances were not accommodated after our uni-
tarization, it would be interesting to understand why. Second,
once we have a good fit to these resonances, we want to
make a complete numerical analysis of several low-energy
quantities of interest, such as the chiral parameters or the
scattering lengths, including estimations for their errors. As
we will see below, we expect that the IAM somehow will
include effects that cannot be obtained from the purep2

expansion.
Finally, we would like to comment on another motivation

of the present work, which at first may not seem very related
to the main topic. The philosophy of the chiral approach has
also reached the description of the strongly interacting
symmetry-breaking sector~SISBS! of the standard model
@17#. The scalar sector of such a model displays the same
symmetry-breaking pattern as two flavor massless QCD.
Hence, it is possible to build an effective Lagrangian, much
as it is done for ChPT@18#. Although the electroweak GB’s
are not physical, using this Lagrangian it is possible to obtain
predictions for the scattering of longitudinal gauge bosons
@19# at future colliders, such as the CERN Large Hadron
Collider. Indeed, there are already experimental proposals to
measure the electroweak chiral parameters at the Compact
Muon Solenoid~CMS! @20#. Most of the works on the SISBS
make use of the equivalence theorem@17#, which allows us
to read the observable amplitudes, in terms of longitudinal
gauge bosons, directly from those with GB’s. This theorem
has been recently proved in the chiral Lagrangian formalism
@21# and seems to be severely constrained by the lack of
unitarity. At this point the unitarization procedures come into
play and it is crucial to know whether they are reliable, since
what we are now looking for are real predictions and not
elaborated fits to still unavailable data.

In Sec. II we review some basic aspects of exact and
perturbative unitarity and define the partial waves in elastic
scattering. Section III introduces the IAM, first with a deri-

vation from dispersion theory and then by studying the con-
straints to its applicability. Sections IV and V are organized
in the same way, although they refer to SU~2! and SU~3!
ChPT, respectively: First we apply the IAM to ChPT with
the chiral parameters obtained from low-energy experiments
in order to study the IAM predictive power. Next, we present
an IAM fit to the data. For the best SU~3! fit we present the
unitarized results for the scattering lengths and some other
phenomenological parameters. Then, in Sec. VI, we study
the analytic structure on the complex plane of the IAM am-
plitudes. In Sec. VII we present the conclusions. There is
also an Appendix where we give the elastic scattering for-
mulas used in this work, as well as a discussion on pertur-
bative unitarity.

II. PARTIAL WAVES, PHASE SHIFTS, AND UNITARITY

When dealing with strong interactions, it is usual to
project the amplitudes in partial waves with definite angular
momentumJ and isospinI as

t IJ~s!5
1

32KpE21

1

d~cosu!PJ~cosu!TI~s,t !, ~1!

whereK52 or 1 depending on whether the particles in the
process are identical or not. The acceptable isospin values
also depend on the process, namely,I 50,1,2 forpp elastic
scattering andI 51/2,3/2 forpK. For both reactions the defi-
nite isospin amplitudesTI are obtained from a single func-
tion. In the first case,

T0~s,t,u!53A~s,t,u!1A~ t,s,u!1A~u,t,s!,

T1~s,t,u!5A~ t,s,u!2A~u,t,s!,

T2~s,t,u!5A~ t,s,u!1A~u,t,s!, ~2!

whereas forpK scattering, we can write

T1/2~s,t,u!5 3
2 T3/2~u,t,s!2 1

2 T3/2~s,t,u!. ~3!

In order to deal with both processes on the same footing,
we will label the particles in the reaction asa andb. Thus,
the Mandelstam variables will satisfys1t1u52(Ma

2

1Mb
2) and the threshold will be atsth5(Ma1Mb)2. As it is

well known, whenevers.sth , and below inelastic thresh-
olds, the unitarity of theS matrix implies

Imt IJ5sabut IJu2, ~4!

TABLE I. Lightest resonances withpp or pK dominant decay modes. Data taken from@16#.

Name I ,J Mass Width Dominant decays

r(770) 1,1 768.861.0 150.361.0 pp, 100%
pp, ~78.162.4!%

f 0(980) 0,0 980610 40–400 KK̄, ~21.962.4!%
f 2(1270) 0,2 127565 185620 pp, ~84.762.6!%

K* (892)6 1/2,1 891.5960.24 49.860.8
K* (892)0 1/2,1 896.1060.28 50.560.6 pK, . 100%
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wheresab is the two particle phase space. Explicitly,

sab~s!5AS 12
~Ma1Mb!2

s D S 12
~Ma2Mb!2

s D . ~5!

As a consequence of Eq.~4!, the partial wave can be param-
etrized as

t IJ~s!5
1

sab~s!
eid IJ~s!sind IJ~s! ~6!

andd IJ(s) is called theIJ phase shift.
We have already mentioned that the ChPT amplitudes are

obtained as an expansion in external momenta and masses.
That is,

t IJ.t IJ
~0!1t IJ

~1!1t IJ
~2!1•••, ~7!

where, for the cases we are interested in,t IJ
(0) is O(p2), t IJ

(1) is
O(p4), etc. In practice, we can only obtain the few first
terms of the series above and, therefore, the amplitude only
satisfies the unitarity condition perturbatively:

Imt IJ
~0!50,

Imt IJ
~1!5sabt IJ

~0!2 ,

Im~ t IJ
~2!1t IJ

~1!!5sab~ t IJ
~0!212t IJ

~0!Ret IJ
~1!!.sabut IJ

~0!1t IJ
~1!u2.

~8!

The O(p2) terms were given by Weinberg@1# and they
are called the low-energy theorems. The next order contribu-
tions to pp scattering were given in@2,3#. The calculation
for pK scattering can be found in@22,23#, although we have
found that the formulas in the literature do not satisfy Eq.
~8!. We will comment on that later. Very recently, a com-
plete calculation of theO(p6) contribution to elasticpp
scattering@5# has appeared. Although we will not use it, we
will compare some of its results with those of our method.

III. THE INVERSE AMPLITUDE METHOD

A. Derivation from dispersion theory

Let us briefly review the standard derivation@7,13# of the
inverse amplitude method, since we will use it later in order
to understand the applicability of the method.

Any partial wave obtained from a relativistic quantum
field theory should present a characteristic analytic structure
in the complexs plane. Indeed, the reaction threshold be-
comes a cut in the real axis fromsth to 1`. Because of
crossing symmetry, there should be another left cut along the
negative axis. If we now apply Cauchy’s theorem to our
complex amplitudes we obtain integral equations known as
dispersion relations. For instance, a three times subtracted
dispersion relation is

t IJ~s!5C01C1s1C2s21
s3

p E
~Ma1Mb!2

` Imt IJ~s8!ds8

s83~s82s2 i e!

1I LC~ t IJ!, ~9!

where we have not written explicitly the left cut (I LC) con-
tribution. The number of subtractions needed depends on
how the amplitude behaves at infinity in order to ensure the
vanishing of the contributions coming from closing the inte-
gral contour. We have chosen three subtractions since we are
going to useO(p4) ChPT amplitudes which at highs behave
ass2. But our arguments remain valid forO(p6) amplitudes
when using four times subtracted dispersion relations, etc.

The ChPT partial waves present both cuts and we can
calculate both the subtraction constantsC0 ,C1 ,C2 and the
integrand inside Eq.~9! perturbatively:

t IJ
~0!5a01a1s,

t IJ
~1!5b01b1s1b2s21

s3

p E
~Ma1Mb!2

` Imt IJ
~1!~s8!ds8

s83~s82s2 i e!

1I LC~ t IJ
~1!!, ~10!

where we have expanded the subtraction constants in terms
of Ma

2/Fb
2 .

The IAM is based on the fact that the function 1/t IJ dis-
plays the very same analytic structure oft IJ , apart from
some possible pole contributions. For later convenience, we
will make use ofG(s)5t IJ

(0)2/t IJ . Notice that we have mul-
tiplied 1/t by a real function without singularities; thus we
keep the same analytic structure and we can write a very
similar dispersion relation:

G~s!5G01G1s1G2s21
s3

p E
~Ma1Mb!2

` ImG~s8!ds8

s83~s82s2 i e!

1I LC~G!1I PC, ~11!

whereI PC stands for possible pole contributions. The advan-
tage of usingG(s) is that, using Eqs.~4! and ~8!, we can
calculate exactly the integral over the right cut~but not on
the left, since those equations only hold on the elastic cut!, as

ImG52t IJ
~0!2 Imt IJ

ut IJu2
52t IJ

~0!2s52 Imt IJ
~1! . ~12!

Note that we denote byt IJ the exact amplitude, which is
unknown, although we know its analytic properties. In con-
trast, the expressions fort IJ

(0) and t IJ
(1) , etc., have been calcu-

lated explicitly.
As we did before, we can also expand theGi subtraction

coefficients in powers ofMa
2/Fb

2 , and then rewrite the dis-
persion relation forG(s), which now reads

t IJ
~0!2

t IJ
.a01a1s2b02b1s2b2s2

2
s3

p E
~Ma1Mb!2

` Imt IJ
~1!~s8!ds8

s83~s82s2 i e!
2I LC~ t IJ

~1!!1I PC

.t IJ
~0!2t IJ

~1! , ~13!

where we have approximated ImG.2 Imt IJ
(1) on the left cut

and we have neglected the pole contribution. In other words,
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t IJ.
t IJ
~0!2

t IJ
~0!2t IJ

~1!
. ~14!

This is the IAM result that we are going to use in the present
work. Incidentally, Eq.~14! can be understood as the formal
@1,1# Padéapproximant of the ChPT amplitude.

It is important to remark that if we expand again Eq.~14!
at low energies, we find

t IJ.
t IJ
~0!2

t IJ
~0!2t IJ

~1!
.t IJ

~0!1t IJ
~1!1O~p6!. ~15!

That is, we recover the ChPT expansion. Hence, up toO(p6)
our method and ChPT yield the same low-energy results if
the same chiral Lagrangian parameters are used.

B. The applicability of the inverse amplitude method

Let us review all the approximations made in the previous
section, in order to comment how they will constrain the
IAM applicability.

1. The left cut

In Eq. ~13! we have replaced theG(s) left cut integral by
that of 2t IJ

(1)(s). As we have remarked in the preceding dis-
cussion, Eqs.~4! and ~8! are only exact on the right cut. On
the left cut we cannot write the chain of equalities that lead
to Eq. ~12!. Nevertheless, if we use the ChPT result as an
approximation,

ImG52t IJ
~0!2 Imt IJ

ut IJu2
.2 Imt IJ

~1!1O~p6!, ~16!

we get

I LC~G!5E
2`

0 ImGIJ~s8!ds8

s83~s82s2 i e!
.2E

2`

0 Imt IJ
~1!~s8!ds8

s83~s82s2 i e!

52I LC~ t IJ
~1!!. ~17!

Notice that, in order to obtain theIJ phase shifts, we are
going to calculatet IJ(s) for real s.4Mp . That means that
the denominator (s82s2 i e) inside the integrals is never
going to be very small, which somehow will wash out the
error on the left cut. But note also that treating differently the
right and left cuts violates crossing symmetry.

Indeed, in@24# it has already been pointed out that the
Padéapproximants do not reproduce correctly the subleading
logarithms that would appear atnext orderin the chiral ex-
pansion@O(p6) in this case#. Of course, they would be ob-
tained if we applied the IAM to the chiral amplitudes at
O(p6), but still the method would not yield the correct loga-
rithms at O(p8) and so on. At high energies chiral loga-
rithms are not so relevant, but at low energies they are a very
important feature of ChPT and indeed they can give the
dominant contribution in some channels.

Nevertheless, from Eq.~15! we see that at low energies
the IAM yields the very sameO(p4) ChPT expansion,in-
cluding the dominant chiral logarithms. The contribution
from the left cut and subleading logarithms isO(p6). As a

consequence, if we try to make a low-energy fit to the data,
the parameters that we would obtain with the IAM would not
lie very far from those of ChPT, but they will not be the
same. That is the reason why, in the following sections, we
will denote with a hat the parameters obtained from any IAM
fit.1

2. Resonances and the pole contribution

In Eq. ~13!, we have neglected the contributions coming
from zeros in the amplitude, that will appear as poles of the
inverse function. There is no way to knowa priori whether
or not a partial wave will vanish for a given value ofs,
although it is known that chiral amplitudes have zeros below
threshold, which are known as Adler zeros. Their position is
not known except for theI 51, J51 channel, where the
pole is located at threshold. In our derivation it is compen-
sated by the same zero in thet11

(0) channel. That is not the
case for theJ50 amplitudes and, therefore, we are neglect-
ing the contribution of their residue. Consequently, our am-
plitudes are not valid to obtain Adler zeros and that will
affect our results at low energy@but no more thanO(p6)#.
That is another reason to differentiate the parameters ob-
tained from our fit from those of the pure chiral expansion
~see footnote 1!.

3. Multiplying by tIJ
(0)

This is apparently a harmless assumption in the above
reasoning, although it dramatically affects the results of the
IAM. In fact, it can happen that t IJ

(0)50. In the
(I ,J)5(0,0),(1,1),(2,0) channels ofpp scattering or in the
(3/2,0),(1/2,0),(1/2,1) in pK, this only occurs for isolated
values ofs, at or below threshold. In particular, that means
that the IAM amplitudes will have the same zeros as the
lowest order chiral amplitudes. However, every other partial
wave vanishes atO(p2), for any s. As a consequence, the
formula in Eq.~14! is no longer valid.

Nevertheless, we can generalize our previous derivation,
in order to include those channels whose leading order is
O(p4). We only have to go through the very same steps,
although now we would write a dispersion relation fort IJ

(2) .
But let us remember that the main improvement of the ap-
proach is that we are calculating exactly the integral of
ImG(s) over the right cut. However, for that purpose we
need an imaginary part, and by looking at Eq.~8! we can see
that t IJ

(0)50 implies that Imt IJ
(1)5 Imt IJ

(2)50. Therefore, un-
less we have a calculation up toO(p8), the corresponding
imaginary part will vanish. Hence, when following the deri-
vation of the IAM if t IJ

(0)50 the best we can get is plain
ChPT again. At present, onlyO(p6) calculations are avail-
able and we can only expect to obtain a real improvement
with our approach in the six channels listed above. Thus, we
will not be able to reproduce thef 2(1200) resonance.

1While we were revising this paper a work by M. Boglione and
M. R. Pennington@48# appeared in which they propose other
schemes with better approximations to the left cut and also include
possible contributions from Adler zeros.

3060 56A. DOBADO AND J. R. PELÁEZ



4. Elastic unitarity

In order to obtain ImG on the right cut, Eq.~12!, we have
just made use of the elastic unitarity condition of Eq.~4!.
However, the right cut is composed of many superimposed
cuts, each one corresponding to a different inelastic interme-
diate channel. Actually, Eq.~4! is only true below the first
inelastic threshold, and the real unitarity condition reads

Imtab→ab5(
A

sAutab→Au2Q~s2sA!. ~18!

The sum is over all the physically accessible intermediate
statesA, whose phase space issab .

As far as we are neglecting electromagnetic interactions,
the first inelastic channel inpp is the four pion intermediate
state, at 550 MeV. Similarly, forpK is pKpp, whose
threshold is. 910 MeV. Strictly speaking, the elastic ap-
proximation is exact only for lower energies. Nevertheless,
the contribution of these intermediate states is strongly sup-
pressed by the four particle phase space and we expect the
IAM to provide a good approximation.

Unfortunately, within the range of energies we are inter-
ested in, there are intermediate channels which are not sup-

pressed by phase space. Indeed, at approximately 985 MeV
the inelasticKK̄ threshold opens up. Its phase space factor is
the sab in Eq. ~5!, with Ma5Mb5MK . Therefore, above
the two kaon threshold we have to reconsider the derivation
of the IAM. Let us illustrate withpp scattering how inelas-
tic effects modify our result.

As the starting point, fors.sKK̄ , we have a new unitarity
relation:

Imt5spputu21sKK̄utKu2, ~19!

where we have denoted byt the generict IJ pion elastic scat-
tering amplitude and bytK the IJ partial wave of the process
pp→KK̄. Thus we now have, fors.sKK̄ , that

ImG52t IJ
~0!2 Imt IJ

ut IJu2
52t IJ

~0!2S spp1sKK̄

utKu2

utu2 D , ~20!

which differs from Eq.~12! in the term coming from two
kaon intermediate production. If we follow the very same
steps of our previous derivation, we arrive at

~21!

Notice that, using ChPT,D(s8).01O(p6). But at these
high energies that is not negligible. In addition, we are inter-
ested in the above integral for physical values ofs and,
therefore, the denominator will be almost divergent for some
s8. For these reasons we cannot neglect this integral and then
we should not trust the IAM since it could miss some rel-
evant physical features.

That is indeed the case in pion scattering since, as it can
be seen in Table I, there is one resonance,f 0(980), whose
nature is closely related to theKK̄ threshold. Nowadays, the
interpretation of that resonance is still controversial: different
authors propose different poles~not always just one! in the
vicinity of the KK̄ inelastic cut@26,27#. As we will see later,
our approach is not able to reproduce any of these poles,
which is consistent with the fact that the IAM makes use just
of elastic unitarity.

At this point, we want to remark on the importance of
understanding why and when the method no longer yields
the right results. Let us remember that we are also thinking
of possible applications of this unitarization procedures to
the electroweak chiral effective Lagrangian, whose reference
model is the standard model with a heavy Higgs boson. In
such a case, one would expect to see a broad resonance in the
scalar channel and we want to have a unitarization procedure
whose predictions we can trust.

5. O(p4) approximation

Throughout the derivation of the IAM, we have been us-
ing the chiral amplitudes up toO(p4). Nevertheless, it is
possible to extend the argument to include higher order
terms, as, for instance, theO(p6) contributions. In that case
we would have started from a four times subtracted disper-
sion relation for the two-loop calculation. Once more, the
integral over the right cut would be related to the one for
G(s)5t IJ

(0)2/t IJ . Working out the expansion of the subtrac-
tion constants, we would then arrive at

t IJ.
t IJ
~0!2

t IJ
~0!2t IJ

~1!1t IJ
~1!2/t IJ

~0!2t IJ
~2!

. ~22!

Again, that is the formal@1,2# Padéapproximant, and it sat-
isfies the elastic unitarity condition.

As we have already mentioned, two recent papers have
appeared withO(p6) calculations ofpp scattering within
SU~2! ChPT@4,5#. We have not used these results, since, as
we have just seen, they will not help us to overcome any of
the preceding objections to the IAM. However, it is quite
likely that, had we used them, the parameters of the fits that
we will present in the next sections would have been slightly
modified.
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IV. pp SCATTERING IN SU „2… ChPT

The inverse amplitude method was first applied@8,15# to
pp scattering without the strange quark. In that case, the
massless limit displays spontaneous symmetry breaking from
SU(2)L3SU(2)R to SU(2)L1R , which is nothing but the
usual isospin. TheO(p4) expression forpp scattering was
obtained in@2,28#, and it is written in terms of four phenom-
enological parametersl̄ 1 , l̄ 2 , l̄ 3 , l̄ 4, as well as the mass
and pion decay constants,Mp and Fp . In this section we
will review how the method is able to reproduce ther reso-
nance. We will show some results for recently proposed new
parameters in order to test the IAM predictive power, but we
will also present a unitarized fit to the data. We will use not
only theJ50 phase shifts, but also those withJ52, in order
to obtain the best fit with the IAM. In this calculation, we
have also estimated the error bars of the unitarized param-
eters.

A. Results using low-energy parameters

Let us now illustrate what happens if we apply the IAM
on the ChPT amplitudes using the chiral parameters obtained
from low-energy experiments. We want to see quantitatively
to what extent the main physical features are reproduced.

In order to simplify the comparison with previous works,
we have chosenMp5139.57 MeV andFp593.1 MeV. The
values of the chiral parameters are not so clear, since they
have considerable error bars. In Table II we have listed the
different sets of parameters that we have taken from the lit-
erature to obtain Fig. 1.

Let us remark at this point that for the ChPT phase shifts
we are using the definitiond.s(t (0)1Ret (1)) suggested in
@24#. Of course, ChPT is just a low-energy approach, but
incidentally, these phase shifts coincide with those obtained
from theK-matrix unitarization defined as

tK5
t ~0!1Ret ~1!

12 is~ t ~0!1Ret ~1!!
. ~23!

It can be easily verified thattK satisfies elastic unitarity, Eq.
~4!, exactly. Consequently, the dotted lines in Fig. 1 not only
give the ChPT predictions, but also the results of the
K-matrix unitarization. We will thus confirm that such a
method is not able to reproduce resonances by itself. They
have to be added by hand.

In Fig. 1 it can be clearly seen, in theI 51, J51 channel,
that the IAM yields ar-like resonance. The value of its mass
is obtained from the point whered590° and it lies 10% to
15% away from its real value. In this way, theexistenceof
the r resonance can be regarded as a prediction of the IAM
with ChPT and the parameters obtained from some low-
energy data.

It is also evident that the fit of theI 52, J50 channel is
correct up to much higher energies. In Table II we have also
included the values ofM r corresponding to each choice of
parameters. For all the cases we have setl̄ 352.9 and
l̄ 454.3 following Ref.@2#.

The only feature ofpp scattering that is evidently miss-
ing from the unitarized results is thef 0(980) resonance in

FIG. 1. Phase shifts forpp→pp. The dotted curve is plain ChPT with thel̄ i in the first column of Table II. The other two curves are
both the result of the IAM: the dashed one has been calculated again with the same parameters whereas the continuous one corresponds to

the l̄ i in the third column of Table II. The data come from@31# (n), @32# (L,h), @33# (3), @34# (s), @35# (v), @36# (!), and@37# (d).
The results with SU~3! ChPT would have been exactly superimposed on these curves. The straight line stands atd590°.

TABLE II. Sets of parameters and methods used in the text.
Those in the first two columns come fromKl4 decays@29#. Those in
the third, from data onKl4 andpp together with some unitarization
procedure~Ref. @30#!. M r is calculated with the central values.

Method l̄ 1 l̄ 2
M r

ChPT 20.6260.94 6.2860.48 No resonances

Inverse 20.6260.94 6.2860.48 715 MeV
amplitude 21.761.0 6.160.5 675 MeV

3062 56A. DOBADO AND J. R. PELÁEZ



the I 50, J50 channel. In the previous section we saw that
this fact is connected with the failure of the whole approach
to reproduce the kaon inelastic cut. But let us first obtain a
better fit to the data.

B. Unitarized fit

Now that we have an amplitude that describes the right
cut, while keeping at the same time the correct polynomial
form from ChPT, it seems natural to useM r @8,15# to fit the
data. Note that fixing the correct mass does not imply a good
fit. For instance, we could get a wrong width. In order to
differentiate the parameters thus obtained from those coming
from plain ChPT we will call theml̂ 1 , l̂ 2.

The ~1,1! channel is almost only sensible tol̄ 12 l̄ 2.
With l̂ 12 l̂ 2525.9560.02 we get theM r listed in Table I

and in Fig. 2 it can be seen that the results are remarkably
successful. Later, we will show that we also get the right
width.

Once that difference is fixed, we just have to determine

one parameter, sayl̂ 2. In previous studies@8,15#, the unita-
rized fit to the other phase shifts was used in order to esti-
mate the values ofl̂ 1 and l̂ 2. But, as we commented above,
the data in the~0,0! channel are not as good as that of~1,1!.
The same happens for the~2,0! channel, where the curves are
not very sensible to small variations in thel̂ i parameters.
Therefore, in the present work, we have also used theJ52
channels~mainly that withI 50) to further constrain the pa-
rameter range. Let us remember now that in these channels
t I2
(0)50 and, as we have already discussed in Sec. II, the IAM

leads again to plain ChPT. That is why we will only use for

FIG. 2. Pion elastic scattering phase shiftsd IJ obtained from the IAM fit to the correctM r . The shaded areas cover the error bars of the

fitted parameters with the constraintl̂ 12 l̂ 2525.9560.02. The dotted straight lines stand atd590°. Remember that theJ52 partial waves
have to be calculated as in plain ChPT. Indeed, the dashed lines in those channels correspond to plain ChPT data with the parameters in the
first row of Table II. The symbols for the experimental data are the same as in Fig. 1. The corresponding curves within SU~3! ChPT would
almost superimpose.
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them data up to.600 MeV, although in other channels we
are using data at higher energies.

Thus, the values given in Table III are just a conservative
estimate of the range where we obtain a reasonable fit in the
(I ,J)5(0,0),(2,0),(0,2), and (2,2) channels, whenM r fixed
to its actual value. The results are shown in Fig. 2, where the
continuous line corresponds to the centrall̂ i values and the
shaded area to their uncertainties. Notice that the shaded area
has always been obtained by varyingl̂ 2 within its estimated
error.

In Fig. 2 it can be seen how it is not possible to fit the
f 0(980) resonance with SU~2! ChPT and the IAM. It is clear
that, even though the actual value of thed00 phase shift may
not lie very far from the unitarized prediction, the qualitative
behavior of the curves in this channel is not correct above
800 MeV.

With the l̂ i fit we can obtain the total Breit-Wigner width
of the r resonance from

Gr5
M r

22s

M r
tand11~s!. ~24!

Indeed we have computed it for different values ofs around
M r

2 . The result is given in Table III and it is quite close to
the experimental result~see Table I!, although slightly
higher. We will see that it is possible to obtain the right value
when using SU~3! ChPT.

As we have already commented, this result is not at all
trivial, since fitting the right mass does not ensure a correct
description of the resonance. Therefore, even though we are
now using theM r experimental value, theGr width is again
a prediction of the IAM. In contrast, in a unitarization
scheme where one introduces the resonances by hand, one
has to give both the masses and the widths.

V. SU„3… CHIRAL PERTURBATION THEORY

The extension of the ChPT approach to include the
strange quark was done, once more, by Gasser and Leut-
wyler @3#. In this case there are eight Goldstone bosons,
which are identified with the three pions, the four kaons, and
the h. In principle, it is possible to calculate the amplitudes
of any process involving any combination of these particles.
But the thresholds for these reactions are much higher than
in pion scattering, which in practice restricts severely the
effectiveness of the approach.

Nevertheless, the lowest two particle threshold apart from
pp scattering is that ofpK elastic scattering at 630 MeV,
which is still within the applicability range of ChPT. The
calculation of this amplitude toO(p4) was performed by
Bernard, Kaiser, and Meissner@22,23# who also gave the
O(p4) result for pp within SU~3! ChPT. In the literature,

these formulas have sometimes appeared with some minor
errata which have been corrected in the DAFNE physics
handbook@25#. However, even those formulas do not satisfy
perturbative unitarity~see the Appendix!. Following the
work in @22#, we have rederived an expression which does
satisfy that requirement, and we have included it in the Ap-
pendix, together with a discussion on how it is obtained and
its unitarity properties.

In the SU~3! case there are more phenomenological pa-
rameters that we have set to

MK5493.65 MeV, Mh5548.8 MeV,

FK51.22Fp , Fh51.3Fp . ~25!

There are also 12 one-loop parameters, denoted byLi
r(m).

However, onlyL1
r ,L2

r ,L3 ,L4
r ,L5

r ,L6
r , andL8

r appear inpK
scattering, whereas in pion scattering only the following
combinations are present:

2L1
r 1L3 , L2

r , ~26!

2L4
r 1L5

r , 2L6
r 1L8

r . ~27!

Again, and in order to simplify the comparison with previous
works, we have fixed the values@3#

L4
r ~Mh!50, L5

r ~Mh!50.0022, L6
r ~Mh!50,

L8
r ~Mh!50.0011. ~28!

A precise value of these parameters is not very important
since they are related to the different masses and decay con-
stants that we had already fixed. Hence, in practice, the only
relevant parameters forpp andpK scattering in SU~3! are
L1

r , L2
r , andL3.

The IAM was first applied to SU~3! ChPT in@13#, where
we showed that it reproduces not only ther(770) resonance
but also theK* (892). Our aim in this section is first to study
the predictive power of the method, whether it can accom-
modate further resonant states, or why it cannot. Then, we
will present a simultaneous fit topp and pK scattering to
ther andK* masses. The new feature of this analysis is that
it uses the corrected ChPT expressions forpK scattering
which now satisfy perturbative unitarity~see the Appendix!
and the fact that we also use the data on theJ52 in pp
scattering channels. We will also estimate the error bars on
the best fit that will be used to obtain numerical values for
some interesting phenomenological quantities. This fit will
also allow us, in Sec. VI, to perform a numerical study of the
analytic structure of the IAM amplitudes in the complexs
plane.

A. Results using low-energy parameters

Let us then start with the IAM using parameters obtained
from low-energy data. In Table IV we list different choices
of parameters and methods together with their results for the
r andK* masses. As in the case of SU~2! ChPT, the IAM is
able to predict from low-energy data the existence of both
resonant states. Remarkably, the masses thus obtained lie
again 10% to 15% away from their actual values.

TABLE III. Parameters and results of the one-loop IAM when
M r is fixed to its actual value.

Method l̂ 1 l̂ 2
M r ~input! Gr

Inverse
amplitude 20.560.6 5.460.6 768.861.1 MeV 155.661.8 MeV
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In Fig. 3 we show the result of applying the IAM topK
scattering, with the parameters given in Table IV. In contrast
with plain O(p4) ChPT ~or the K-matrix unitarization
method, since they yield the same phase shifts!, it is evident
that the IAM not only accommodates theK* resonance, but
it also reproduces the (3/2,0) channel.

We do not display the results forpp scattering in SU~3!
because they will almost superimpose with those in Fig. 1.
Indeed, thel̄ i parameters in rows 2 and 4 of Table II were
obtained, respectively, from theL1

r ,L2
r ,L3 in rows 2 and 4 of

Table IV @29,30#, by means of

l̄ 1596p2S 4L1
r ~Mh!12L32

nK

24
2

np

3 D ,

l̄ 2548p2S 4L2
r ~Mh!2

nK

12
2

2np

3 D ,

na5
1

32p2
lnS Ma

2

Mh
2 D , a5p,K. ~29!

As a matter of fact, we have calculated independently the
pp elastic scattering in SU~2! and SU~3!. Using the above
equations to relate the parameters in both cases, and below

kaon threshold, we have obtained the same results up to nu-
merical differences (.1%!, which would be unobservable in
the figures. That is a nice check of our programs. Therefore,
Fig. 1 is also the result forpp scattering in the SU~3! for-
malism, but now with the parameters in Table IV.

B. Unitarized fit

Again, we have an expression for the amplitude that be-
haves correctly with respect to unitarity and that presents the
right form in the low-energy limit. Therefore, we can try to
use the actualr(770) andK* (892) masses in order to fit the
pp andpK phase shifts. We remark once more that nothing
ensures that fitting the right masses will give us the right
description, since, among other things, the widths of the
resonances could be wrong.

When dealing with the SU~3! chiral Lagrangian we have
more parameters, and the way they appear in the amplitudes
is more complicated. Let us first start with thepp scattering
partial waves in SU~3!. As we have commented in Sec.
III B 1, in order to avoid confusions with the ChPT low-
energy parameters, we will denote the parameters of our fit
by L̂ i

r .
The ~1,1! channel only depends on 2L1

r 1L32L2
r , and

will be fixed with M r . In so doing we get

FIG. 3. Phase shifts for elasticpK scattering. The dotted curve is plain ChPT with theLi parameters in the first column of Table IV. The
other two curves are both obtained from the IAM: the dashed one again with the same parameters and the continuous one with those in the
third column of Table 4. The experimental data come from@38# (d), @39# (!), @40# (s), @41# (L), @42# (h), and@43# (n). The straight
dotted line stands atd590°.

TABLE IV. Different sets of parameters and methods used in the text. Those of the first two columns
come fromKl4 decays@29#. Those of the third come from data onKl4 andpp together with some unitari-
zation procedure~for details see Ref.@30#!. The quoted values ofM r andMK* are calculated with the central
values.

Method L1
r (Mh)3103 L2

r (Mh)3103 L33103 M r MK*

ChPT 0.6560.28 1.8960.26 23.0660.92

Inverse 0.6560.28 1.8960.26 23.0660.92 717 MeV 847 MeV
amplitude 0.660.3 1.7560.3 23.561.1 680 MeV 804 MeV
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2L̂1
r 1L̂32L̂2

r 5~23.1160.01!31023. ~30!

As a consistency check we see that it is within a 1% of
23.1431023 which is obtained from thel̂ i parameters of
the SU~2! case, with the help of Eq.~29!.

Once again, we use the channels (I ,J)5~0,0!, ~2,0!, ~0,2!,
and (2,2) to determine the bestL̂2

r value, which indeed is the

same that we would have obtained from thel̂ 2 SU~2! param-
eter by means of Eq.~29!. It can be found in Table V. Hence,
the best SU~3! fit of the pp phase shifts yields almost the
same results as those obtained with SU~2! and the very same
Fig. 2 remains valid forSU(3). Nevertheless, when comput-
ing the Gr within the SU(3) formalism, we obtain a much
better value than in SU~2!, which was about 5 MeV too high.
It is also listed in Table V.

Finally, we will useL̂3 to fix the correctK* (892) mass.
However, theK* (892) has an added subtlety, namely, that
the mass splitting between different charge states is of the
order of 5 MeV. This is a small isospin-breaking effect that
we have not included in our approach. Therefore, we have
used an average massM̄K* 5894.062.5 MeV with an error
bar that includes the mass of anyK* (892) state, no matter
what its charge may be. That uncertainty has also been taken
into account in theL̂ i

r error estimates.

Once we haveL̂3, we useL̂2
r and Eq.~30! to obtainL̂1

r .
The parameters of this fit have been collected in Table V,

together withGr andGK* , which can be considered as pre-
dictions of the approach. Notice, however, that in this case
the width of theK* (892) resonance lies 20% away from its
actual value, which, nevertheless, is a reasonably good result
in view of the whole fit in that channel.

Concerning theL̂ i parameters, they are compatible with
those in Table IV, which were obtained from low-energy
data. Even more, they are also consistent with other param-
eters obtained from the IAM applied to the form factors of
the K→pp ln decays@14#, which are very well known ex-
perimentally:

L̂1
r ~Mh!5~0.7460.14!31023,

L̂2
r ~Mh!5~1.0760.18!31023,

L̂3~Mh!5~22.4560.52!31023 ~31!

~notice that in that reference they are usingFK5Fp , so that
the parameters do necessarily differ!.

Nevertheless, it would not make any sense to try to reduce
the error bars of these parameters. We consider that the ap-
proach that we have been following here can only be consis-
tent within a few percent error level. In order to have a better
accuracy it would be necessary to take into account higher
order ChPT corrections, isospin-breaking effects, and the

FIG. 4. pK elastic scattering phase shiftsd IJ obtained from the IAM fit to the correctM r andMK* . The shaded areas cover the error bars

of the fitted parameters with the constraint 2L̂1
r 1L̂32L̂2

r 5(23.1160.01)31023. The dotted straight line stands atd590°. The symbols for
the experimental data are the same as in Fig. 3.

TABLE V. Parameters and results of the SU~3! IAM, when M r5768.861.1 MeV and

M̄K* 5894.0062.5 MeV, are fixed to their actual values. Notice that forK* (892) we have chosen an average
mass between its different charge states.

Method L̂1
r (Mh)3103 L̂2

r (Mh)3103 L̂33103 Gr GK*

Inverse
amplitude 0.4160.20 1.4860.33 22.4460.21 149.961.2 MeV 41.261.9 MeV
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whole approach should be modified following the comments
that we made in previous sections.

In Fig. 4 we show the results of the SU~3! IAM fit to the
resonance masses, in terms of elastic scattering phase shifts,
which we think deserve some comments.

First, notice that we are not showing the curves forpp
scattering because they are exactly those in Fig. 2. The dif-
ferences only appear above the two kaon threshold, since in
the SU~3! formulas we are also considering internal loops of
kaons andh ’s.

In the pK→pK case we can extend the graphs up to
1100 MeV, or even more. The reason is that the first two
body inelastic threshold isKh production at 1040 MeV and,
in contrast with thepp case, there is no nearby resonance.
Indeed, the next resonant state inpK elastic scattering is
K0* (1430), very high to affect dramatically our results at
1100 MeV, but also to be correctly reproduced by the IAM
method. Nevertheless, the existence of theKh threshold can
be noticed in theI 51/2, J50 channel, as a small bump in
the curves at precisely 1040 MeV.

The shaded area in theK* (892) channel is not only due
to the averaged mass forK* (892) with 2.5 MeV error, but
also to the fact that we have to determine several parameters
to get the right mass, in contrast with ther(770) case, when
we only had to fix one.

We have explicitly checked that our ChPT amplitudes sat-
isfy perturbative unitarity. As it is explained in the Appen-
dix, previous calculations@23,13#, including ours, did not
respect this condition, although by a very small amount. That
is why the values of the best parameters for this fit are
slightly different from those of our previous work@13#.

Phenomenological parameters

Once we have a good parametrization ofpp and pK
elastic amplitudes, we can use it to obtain the values of some
relevant phenomenological parameters. First, we can calcu-
late the scattering lengths, which determine the strength of
the interactions at low energy. Despite the fact that our IAM
fit makes use of high-energy data, we expect that it will
reproduce the low-energy behavior since in the low-energy

limit it reduces to the chiral expansion, which atO(p4) al-
ready yields quite good values~see Tables VI and VII!.
However, as the IAM is nonperturbative, we are also taking
into account higher order effects, that will modify the results.
Indeed, some of these lengths have already been calculated
with the IAM and it yields slightly better results than plain
ChPT@14#. We have made again the calculation with our fit,
but as far as we have an estimate of the error bars in theL̂ i
parameters, we will also give the error estimates comingonly

from the uncertainties inL̂ i ~mostly dominated by that of
L̂2).

Before giving the results, it is convenient to recall that the
scattering lengths have two different normalizations.
Namely,

Ret IJ~s!5q2J@aJ
I 1bJ

I q21O~q4!# ~32!

for pp scattering, whereq is the cm momentum
q25s/42Mp

2 , and

Ret IJ~s!5
As

2
q2J@aJ

I 1bJ
I q21O~q4!# ~33!

FIG. 5. d002d11 phase shift difference from the IAM fit~solid
line! and plain ChPT~dashed line!. The shaded area covers the

uncertainty in theL̂ i parameters and the data come from@36#.

TABLE VI. pp scattering lengths. The one-loop ChPT results
are taken from@29#. The experimental data come from@45#. The
errors in the IAM fit come only from the uncertainties in the pa-
rameters. They do not include other theoretical uncertainties.

aJ
I ChPT IAM fit Experiment

a0
0 0.201 0.21660.008 0.2660.05

b0
0 0.26 0.28960.025 0.2560.03

a0
2 20.041 20.041760.0014 20.02860.012

b0
2 20.070 20.07560.003 20.08260.008

a1
1 3.631022 ~3.74460.002)31022 ~3.860.2)31022

b1
1 0.4331022 ~0.51560.001)31022

a2
0 2031024 ~17.163.5)31024 ~1763)31024

a2
2 3.531024 ~2.861.5)31024 ~1.363.1)31024

TABLE VII. pK scattering lengths. Note that the ChPT results
have been obtained using the corrected formulas in the Appendix.
The experimental data come from@22#.

aJ
I ChPT IAM fit Experiment

a0
3/2 20.043 20.04960.004 20.13, . . . ,20.05

b0
3/2 20.02660.003

a0
1/2 0.148 0.15560.012 0.13, . . . ,0.24

b0
1/2 0.08760.016

a1
1/2 0.012 0.014660.0012 0.017, . . . ,0.018
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for pK scattering, where nowq25@s2~MK1Mp)2] @s
2~MK2Mp!2#/4s.

The predictions of our fit for thepp and pK scattering
lengths are given in Tables VI and VII~in Mp units!. Notice
that all the values are compatible with the experimental data,
and in general they only differ very slightly from theO(p4)
ChPT results, usually in the right direction toward the central
value. However, the experimental error bars are still too big
to arrive at any conclusion. Also, the error bars in the IAM

have to be interpreted cautiously, since they are obtained
only from the uncertainties in theL̂ i parameters.

As we have already commented, very recently there has
appeared a two-loop calculation ofpp scattering within
SU~2! ChPT. It estimates a0

0;0.217 or 0.215 and
a0

02a0
2;0.258 or 0.256, which are precisely the values ob-

tained with our IAM fit. This fact gives support to the idea
that the IAM somehow takes into account higher order terms
even at low energies.

FIG. 6. Imaginary parts of the
pp→pp amplitudes in the com-
plex s plane. The first row is the
(I ,J)5(0,0) channel, the second
is (1,1), and the bottom is (2,0).
The left plots correspond to the
first Riemann sheet, and those on
the right correspond to the second.
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Notice that we do not compare our results with the two-
loop calculation of the scattering lengths and slopes in@4#
because they have used them as aninput in a x2 fit to deter-
mine their additionala and b parameters. Therefore, their
values are almost exactly those of the experimental data.
However, as far as there are no data for theb1

1 pp slope
parameter, their value can be regarded as a prediction. They
give b1

15(0.5460.15)31022, which is consistent with our
result and withb1

15(0.660.4)31022, that was obtained
from sum rules in@44#.

We have also calculated the phase of thee8 parameter,
which measures directCP violation in K→pp decays@46#.
It is related to thes-wave phase shifts as

f~e8!590°2~d0
02d0

2!s5M
K0
2 . ~34!

Our result is

f~e8!5~4215
27!°, ~35!

very close tof(e8)5(4566)° which is obtained in plain
ChPT@47#. In contrast with the case of the scattering lengths,
the value of this angle is not used as an input in@4# and is,
therefore, a prediction of their best fit. The value they quote
is f(e8)5(43.56266)°.

Finally, in Fig. 5 we show the phase differenced002d11,
compared with the available experimental data@36#. The dif-
ference between the IAM and plain ChPT at high energies is
due to the presence of ther resonance. Nevertheless, there
are also some differences at low energies, since the disper-
sive approach is somehow taking into account higher order
contributions.

VI. THE IAM IN THE COMPLEX s PLANE

The main objection to unitarization procedures is the ap-
parent arbitrariness in their predictions, which may differ
from one another. In most cases, these methods are nothing
but a small modification of the amplitudes so that they can
satisfy the unitarity constraint in Eq.~4!, while keeping at the
same time the good low-energy behavior. But that constraint
is not enough to determine the amplitude completely. Thus,
there are as many unitarization techniques as algebraic tricks
to implement such a constraint exactly or to get a better
approximation.

However, we have already seen in Sec. III A that, below
any other inelastic threshold, the inverse amplitude method
can be derived directly from the analytic structure of the
general two body elastic scattering amplitude. Our purpose
in this section is to show that, apart from satisfying elastic
unitarity, it provides the correct analytic structure required
from relativistic quantum field theory. Such a structure is not
trivial at all and cannot be reproduced by other unitarization
procedures. Both the left and right unitarity cuts are already
present in plain ChPT; therefore, we will mainly focus on the
poles in the second Riemann sheet.

In the previous section we used the most naive criteria to
identify resonances, i.e., that the phase crosses thed590°
value. However, that is only true for the simplest cases. The
rigorous characterization of resonances is made in terms of
poles in the second Riemann sheet of the amplitudes in the
s-complex plane. Indeed, when a resonance is produced by
just one of these poles, both its mass and width are related to
the pole position by

Aspole.MR1 i
GR

2
, ~36!

provided the width is small enough.
In this work we have extended to thes-complex plane

both thepp and thepK elastic scattering IAM amplitudes
obtained in the previous section. Notice that the cuts in ChPT
come from logarithmic functions, so that we have infinite
sheets in the complex plane. However, only two of them
correspond to the first and second Riemann sheets. Once we
have identified these sheets we can check whether the reso-
nances that we found in previous sections are produced by a
pole in the second Riemann sheet and thus whether they
have a real basis.

We will first analyze thepp→pp process. In Fig. 6 we
represent the imaginary part of the amplitude in the complex
s plane for the three channels (I ,J)5(0,0),(1,1), and (2,0).
Notice that when we say complexs plane, we mean that we
have parametrizeds as s5(E1 iC)2, whereE is the c.m.
energy and is represented in the real axis whereasC provides
the complex part. On the left column we have displayed the
results in the first Riemann sheet, whereas in the right col-
umn we have continued through the cut to the lower half of
the second Riemann sheet. In all cases the existence of a cut

FIG. 7. Contour plots of the second Riemann sheets for different SU~3! ChPT unitarized amplitudes. From left to right they correspond
to the (1,1) and (0,0)pp scattering channels and the (1/2,1)pK→pK channel.
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on the real axis on the first Riemann sheet can be clearly
noticed. As we had commented before, a right cut is not
anything completely new, since it is already present in one-
loop ChPT, although in that case, the values that the ampli-
tudes take on it are different. In contrast, the most striking
new feature in the IAM amplitudes is the appearance of poles
in the second Riemann sheet and how they determine the
amplitude shape for the physical values ofs.

Indeed, we have found two poles with Ims,0 in the
second Riemann sheet, one in the (0,0) partial wave and
another one in (1,1). Let us start with the second, which
clearly corresponds to ther resonance. The position of this
pole can be obtained from the contour plots in Fig. 7, and it

is found at aroundER;7602 i75. Using Eq.~36! we see that
it is in a good agreement with ther(770) mass and width
parameters given in Table I. Therefore, we can conclude that
this pole is completely consistent with ther(770) resonance.

The other pole that can be seen inpp→pp is on the
(0,0) channel. Using the parameters of the best SU~3! IAM
fit of the previous section, we find that it is located at
ER;4402 i245. It is not responsible for the appearance of
any resonance, since it is very far away from the real axis.
However, from purely phenomenological fits to pion scatter-
ing data, the existence of such a pole aroundER;408
2i342 MeV had already been pointed out@27#. This pole is
responsible for the strong interaction in that it dominates at

FIG. 8. Imaginary parts of the
pK→pK IAM amplitudes in the
complexs plane. The first row is
the (I ,J)5(3/2,0) channel, the
second is (1/2,0), and the bottom
is (1/2,1). Again, the left plots
correspond to the first Riemann
sheet, and those on the right cor-
respond to the second.
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low energy the two pion (0,0) channel. We can now see that
even in the channel where there is not an apparent improve-
ment, the IAM yields the correct analytic structure.

Much as it happened in previous sections, the method is
not able to reproduce thef 0(980) resonance. As we already
commented, the interpretation in terms of poles of this reso-
nance is still controversial. Following the same steps as be-
fore, we have also identified the four Riemann sheets that
now appear due to the superposition of two cuts. Indeed, we
have even implemented the IAM derived with the inelastic
unitarity condition in Sec. III B 4. We have not found any
pole that could hint at the existence of such a resonance.

As we have already explained, we should not expect to
find anything since the approach is not able to reproduce
properly either the two kaon unitarity cut or, consequently,
its associated sheet structure.

Let us now address thepK elastic scattering case. Again,
in Fig. 8 we have displayed the imaginary part of the ampli-
tudes for the (3/2,0),(1/2,0), and (1/2,1). The pictures on
the left represent the first Riemann sheet and those on the
right, the second. Once more, the existence of a unitarity cut
is clear, but there is also the appearance of a pole in the
appropriate channel. In particular, using the third contour
plot of Fig. 7, we have found a pole inER;8902 i20 MeV,
which, using Eq.~36!, yields again the mass and width for
the K* (892) resonance that we gave in Table V.

VII. CONCLUSIONS

In this work we have shown how the IAM provides a
consistent technique to accommodate resonances. Indeed,
based on its derivation from dispersion theory, we have
made a systematic analysis of its applicability, which is
mainly limited by the existence of two body inelastic thresh-
olds and by the fact that the tree-level approximation van-
ishes in some channels.

We have found that it is possible to predict the most rel-
evant features of strong elastic scattering, once the chiral
parameters are determined from low-energy data. Quantita-
tively, the errors are hard to estimate, but we have found that
in all cases the mass of the predicted resonances falls within
approximately 15% of their actual values. We think this fact
gives a sound basis for its application in order to obtain at
least a qualitative description of resonances in the strongly
interacting symmetry-breaking sector.

Moreover, once we force the IAM results to fit the actual
resonance mass values, we get a remarkably good fit which
is able to reproduce the experimental data up to the next
relevant two body inelastic threshold. Following that proce-
dure, we have given the unitarized SU~2! ChPT fit to
pp→pp as well as that of SU~3! to pp and pK elastic
scattering. For the first time we have estimated the values of
the unitarized chiral parameters together with their error
bars. These values do not lie very far from those obtained
without the IAM and, therefore, do not spoil the low-energy
expansion, as can be noticed from the scattering lengths that
we have given.

With this fit, we have calculated several low-energy phe-
nomenological parameters, such as the scattering lengths.
Our values differ from those obtained atO(p4) due to the

unitarization. However, we expect that they include other
corrections due to unitarity and resonant effects.

We consider that it would not make any sense to try to
reduce the error bars in the unitarized parameters within this
approach. One has to keep in mind that we have neglected
higher order ChPT corrections, isospin-breaking contribu-
tions, and that we have used high-energy data which is very
sensitive in such effects. It is quite likely that, in order to
obtain results consistent to a higher degree of accuracy, the
IAM in the simple version that has been used here will not
be enough.

Finally, we have also shown how the IAM yields the
proper analytic structure in the complexs plane, in contrast
with other unitarization techniques. Indeed, we have found
that the apparent resonant behavior that is observed on phase
shifts is produced by the corresponding poles in the second
Riemann sheet, meeting the strict requirements imposed by
general relativistic quantum field theory.

Therefore, we think that the IAM and unitarization by
means of dispersion theory is the most natural and economic
way to extend the applicability of chiral Lagrangians. We
have seen however, that its main limitations come from the
existence of two body inelastic thresholds. Nevertheless,
work is still in progress on the subject, the IAM has been
recently applied to other processes, and higher order ChPT
calculations will be soon available. Since some other physi-
cally relevant features do not lie very far from the present
applicability limits, it seems very likely that they can be
reproduced in the near future.
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APPENDIX: ELASTIC SCATTERING AMPLITUDES
IN SU„3… ChPT AND UNITARITY

The first calculation of elasticpK scattering was per-
formed in @22#. These amplitudes were given in terms of
physical as well aslowest ordermasses and decay constants,
which are usually denoted byM P ,FP and M P

0 ,F0, respec-
tively (P being eitherp, K, or h). Of course, the only
measurable parameters are the first, and when comparing
with experimental observations, one has to eliminate those
from lowest orderin terms of the physical constants.

Indeed, it is possible to find@3# the relation betweenMp
0

andMp as well as that betweenMK
0 andMK . Unfortunately,

at lowest orderthere is only oneF0, which is related both to
Fp andFK . Hence, whenever one findsF0 in an expression
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there are two choices: relate it either toFp or to FK . The
difference between the two choices will be one order higher
in the chiral expansion. For instance, if one has anO(p2)
expression withF0

2, in principle, one can substitute it by
Fp

2 , FK
2 , or Fp•FK . All these choices are equally accept-

able. When one is working only with pions, the natural
choice is the one that leaves all the expressions in terms of
Fp . When one is dealing both with pions and kaons, it is not
so obvious. However, once one choice is made for theO(p2)
term, we have to keep it for theO(p4) contribution, other-
wise one would violate perturbative unitarity, Eq.~4!.

Unfortunately, in the amplitude in the literature@23#,
which is the one we had also followed in our previous work

@13#, the choice for theO(p2) term is different from that of
the O(p4) contribution that yields the imaginary part. In-
deed, theO(p2) term is written just in terms ofFp whereas
TU is written in terms ofFp and FK . As a consequence,
there is aFK

2 /Fp
2 factor of difference between Imt (1) and

spKut (0)u2. Numerically, that amounts to a (1.22)2.1.5 fac-
tor.

Thus, we have rederived from the original work@22# the
amplitudes in terms of physical quantities~also correcting
some small errors!, so that they satisfy perturbative unitarity.
We have chosen to write the formulas symmetrically with
respect toFp and FK . But the other choices are equally
acceptable. The result is

T3/2~s,t,u!5
Mp

2 1MK
2 2s

2FpFK
1T4

T~s,t,u!1T4
P~s,t,u!1T4

U~s,t,u!1O~s3!, ~A1!

T4
T~s,t,u!5

1

16FpFK
~Mp

2 2MK
2 !~3mp22mK1mh!,

T4
P~s,t,u!5

2

Fp
2 FK

2 $4L1
r ~ t22Mp

2 !~ t22MK
2 !12L2

r @~s2Mp
2 2MK

2 !21~u2Mp
2 2MK

2 !2#

1L3
r @~u2Mp

2 2MK
2 !21~ t22Mp

2 !~ t22MK
2 !#14L4

r @ t~Mp
2 1MK

2 !24Mp
2 MK

2 #

12L5
r Mp

2 ~Mp
2 2MK

2 2s!18~2L6
r 1L8

r !Mp
2 MK

2 %,

T4
U~s,t,u!5

1

4Fp
2 FK

2 H 3

2
†~s2t !$LpK~u!1LKh~u!2u@MpK

r ~u!1MKh
r ~u!#%1~MK

2 2Mp
2 !2@MpK

r ~u!1MKh
r ~u!#‡1t~u2s!

3@2Mpp
r ~ t !1MKK

r ~ t !#1
1

2
~MK

2 2Mp
2 !@KpK~u!~5u22MK

2 22Mp
2 !1KKh~u!~3u22MK

2 22Mp
2 !#1

1

8
JpK

r ~u!

3@11u2212u~MK
2 1Mp

2 !14~MK
2 1Mp

2 !2#1JpK
r ~s!~s2MK

2 2Mp
2 !21

3

8
JKh

r ~u!S u2
3

2
~MK

2 1Mp
2 ! D 2

1
1

2
Jpp

r ~ t !t~2t2Mp
2 !1

3

4
JKK

r ~ t !t21
1

2
Jhh

r ~ t !Mp
2 S t2

8

9
MK

2 D J .

The functionsM PQ ,LPQ ,KPQ ,JPQ ,mP , with P,Q5p,K,h, can be found in@3# although they should be written in terms of
physical quantities.

We have verified analytically that this amplitude satisfies the perturbative unitarity constraint. Moreover, we have used that
constraint as a check of our programs.

We want to remark again that this way to write thepK amplitude is one of several possible choices, since we could have
chosen to write everything just in terms ofFp , for example. The important point is to keep the same choiceboth for theO(p2)
and theO(p4).

For completeness, we will also give the SU~3! formulas used in this work forpp scattering, because they have also
appeared with some minor errors in the literature:

A~s,t,u!5
~s2Mp

2 !

Fp
2

1B~s,t,u!1C~s,t,u!1O~s3!, ~A2!

B~s,t,u!5
1

Fp
4 H Mp

4

18
Jhh

r ~s!1
1

2
~s22Mp

4 !Jpp
r ~s!1

1

8
s2JKK

r ~s!

1
1

4
~ t22Mp

2 !2Jpp
r ~ t !1t~s2u!@Mpp

r ~ t !1 1
2 MKK

r ~ t !#1~ t↔u!J ,
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C~s,t,u!5
4

Fp
4 $~2L1

r 1L3!~s22Mp
2 !21L2

r @~ t22Mp
2 !21~u22Mp

2 !2#1~4L4
r 12L5

r !Mp
2 ~s22Mp

2 !1~8L6
r 14L8

r !Mp
4 %.
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