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Based on a dispersive approach, we apply the inverse amplitude method to unitarize one<@ppralU
SU(3) chiral perturbation theory. Numerically, we find that this unitarization technique yields the correct
complex analytic structure in terms of cuts and poles. Indeed, using the chiral parameter estimates obtained
from low-energy experiments we obtain the poles associated with(fFig0) andK* (982) resonances. Just by
fixing their actual masses we obtain a parametrization of7the and 7K phase shifts in eight different
channels. With this fit we have then calculated several low-energy phenomenological parameters estimating
their errors. Among others, we have obtained the chiral parameters and scattering lengths, which can be
relevant for future experimentsS0556-282(197)00217-9
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[. INTRODUCTION [5] have appeared in the literature which will be needed in
order to analyze new data to come from DANE and
Even though QCD yields a remarkably good descriptionBrookhaven. For a general review of the available experi-
of strong interactions, low-energy hadron physics has to benental data on pion physics and future prospects, we refer
modeled phenomenologically. This is due to the fact that théhe reader td6].
usual perturbative approach in the coupling constant cannot Nevertheless, there are some intrinsic limitations when
be applied to QCD below energies of the order of 1 GeV.applying ChPT, namely, the fact that the amplitudes calcu-
Most of the phenomenological results were based on partidated within the chiral approach are only unitary in the per-
conservation of the axial vector current and current algebraurbative sense, that is, up to the next order in the external
However, in 1979, Weinber§l] showed how to reobtain momenta. Such a breakdown of unitarity is most severe at
many of these predictions by means of an effective Lagranghigh energies, where the external momenta are no longer a
ian. good expansion parameter, although it can also occur at
The fields in that Lagrangian are the light mes@pisns, = moderate energid§]. As a result, it is not possible to repro-
kaons, and#n’s) which are understood as the Goldstoneduce resonant states, which are one of the most characteristic
bosons(GB’s) arising from the spontaneous breaking of chi-features of the strongly interacting regime. Many different
ral symmetry. The Lagrangian is built as an expansion inrmethods have been proposed in order to improve this behav-
derivatives that respects the symmetry-breaking pattern dbr and thus to extend the applicability of ChPT to higher
QCD. Indeed, the first term in the expansion is fixed by theenergies; among them, the use of Pagproximant$8], the
symmetry requirements and accounts for the current algebrexplicit introduction of resonanc¢9,10], theK matrix [11],
results. The next terms in the expansion produce further coand the largeN limit [12] (N being the number of GB)sor
rections, which depend on several phenomenological paranthe inverse amplitude methagtAM) [7,8,13,14.
eters but are always consistent with the QCD symmetry con- This work is devoted precisely to the last method, which
straints. These techniques were later developed to one loamn be justified within a dispersive approach and can easily
in a set of papers by Gasser and Leutwy@r3]. They reproduce the two lightest resonances: g{&70) in 7w
showed how to obtain amplitudes involving light mesons, ascattering[8] and theK* (892) in wK scattering[13]. But
functions of their momenta, their masses, and those few phetot only that, the IAM also improves considerably the fit to
nomenological parameters. data even in nonresonant channels, almost up to the first two
By fitting these parameters from a few low-energy experi-particle inelastic thresholdgThe many particle inelastic
ments it is then possible to obtain successful predictions fothresholds can be neglected since they are suppressed by
other processes. The whole approach is known as chiral pephase space factoysThis fit provides a remarkably good
turbation theory(ChPT). parametrization that can be used for other processes. Indeed,
Very recently, some partial higher order calculati¢d$ in a previous wor15], the authors showed how it can be
as well as a complete two loop calculation®fr scattering used together with a simple unitarization prescription to ob-
tain successful results opy— 7°7° up to 700 MeV.
Of course, it is also possible to obtain very good param-

*Electronic address: dobado@eucmax.sim.ucm.es etrizations[9,10] of =& or wK elastic scattering by includ-
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TABLE I. Lightest resonances withr7 or 7K dominant decay modes. Data taken frpho)].

Name 1,J Mass Width Dominant decays
p(770) 1,1 768.8 1.0 150.3-1.0 7, 100%

7, (78.1+2.49%
f,(980) 0,0 98a-10 40-400 KK, (21.9+2.9%
f,(1270) 0,2 12785 185+ 20 7, (84.7+2.60%
K*(892)* 1/2,1 891.590.24 49.8-0.8
K*(892)° 1/2,1 896.16:0.28 50.5:0.6 7K, = 100%

ian. In this way, even though their masses and widths willvation from dispersion theory and then by studying the con-

not be obtained with great accuracy, resonances can be rstraints to its applicability. Sections IV and V are organized

garded as real predictions. That is one of the relevant fean the same way, although they refer to @Jand SU3)

tures of the IAM since other very popular unitarization meth-ChPT, respectively: First we apply the IAM to ChPT with

ods are not able to reproduce resonances unless they atee chiral parameters obtained from low-energy experiments

explicitly introduced in the calculation. That is, for instance, in order to study the IAM predictive power. Next, we present

the case with thé& matrix. an IAM fit to the data. For the best $8) fit we present the
The purpose of this work is, first, to study how high in unitarized results for the scattering lengths and some other

energies the 1AM yields good results and what are its limi-phenomenological parameters. Then, in Sec. VI, we study

tations. We would also like to know whether it is possible tothe analytic structure on the complex plane of the IAM am-

reproduce further resonance states. It is clear that the beglitudes. In Sec. VII we present the conclusions. There is

candidates are the lightest resonances whose dominant decago an Appendix where we give the elastic scattering for-

modes arerw or wK. We have listed them in Table I. In mulas used in this work, as well as a discussion on pertur-

case these resonances were not accommodated after our ubtive unitarity.

tarization, it would be interesting to understand why. Second,

once we have a good fit to these resonances, we want tq. pARTIAL WAVES, PHASE SHIFTS, AND UNITARITY

make a complete numerical analysis of several low-energy

quantities of interest, such as the chiral parameters or the When dealing with strong interactions, it is usual to

scattering lengths, including estimations for their errors. AsProject the amplitudes in partial waves with definite angular

we will see below, we expect that the IAM somehow will momentumJ and isospin as

include effects that cannot be obtained from the ppfe

expansion. t(8) = —— f " d(cosd)Py(cod) T (s.t), (D)
Finally, we would like to comment on another motivation WA 32K ) g J =50

of the present work, which at first may not seem very related

to the main topic. The philosophy of the chiral approach hasvhereK=2 or 1 depending on whether the particles in the

also reached the description of the strongly interactingorocess are identical or not. The acceptable isospin values

symmetry-breaking secto{SISBS of the standard model also depend on the process, namely0,1,2 for 7w elastic

[17]. The scalar sector of such a model displays the samscattering andl=1/2,3/2 forwK. For both reactions the defi-

symmetry-breaking pattern as two flavor massless QCDnite isospin amplituded, are obtained from a single func-

Hence, it is possible to build an effective Lagrangian, muchtion. In the first case,

as it is done for ChPT18]. Although the electroweak GB’s

are not physical, using this Lagrangian it is possible to obtain To(s,t,u)=3A(s,t,u) +A(t,s,u) + A(u,t,s),
predictions for the scattering of longitudinal gauge bosons

[19] at future colliders, such as the CERN Large Hadron T.(s,t,u)=A(t,s,u)—A(u,t,s),

Collider. Indeed, there are already experimental proposals to

measure the electroweak chiral parameters at the Compact To(s,t,u)=A(t,s,u)+A(u,t,s), (2

Muon Solenoid CMS) [20]. Most of the works on the SISBS

make use of the equivalence theorgh], which allows us whereas forrK scattering, we can write

to read the observable amplitudes, in terms of longitudinal

gauge bosons, directly from those with GB’s. This theorem Tya(st,u)=3Tap(U,t,8) — 3 Tap(s,t,u). ()]

has been recently proved in the chiral Lagrangian formalism

[21] and seems to be Severe|y constrained by the lack of In order to deal with both processes on the same footing,

unitarity. At this point the unitarization procedures come intowe Will label the particles in the reaction asand 8. Thus,

play and it is crucial to know whether they are reliable, sincethe Mandelstam variables will satisfis+t+u=2(M?

what we are now looking for are real predictions and not+Mf,) and the threshold will be &,=(M ,+ MB)Z. Asitis

elaborated fits to still unavailable data. well known, wheneves>s,,, and below inelastic thresh-
In Sec. Il we review some basic aspects of exact analds, the unitarity of theS matrix implies

perturbative unitarity and define the partial waves in elastic

scattering. Section Ill introduces the IAM, first with a deri- Imt ;= o 44/t %, (4)
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whereo ;5 is the two particle phase space. Explicitly, where we have not written explicitly the left cut, ¢) con-
tribution. The number of subtractions needed depends on
(M, + Mﬁ)2 (M,— Mﬁ)2 how the amplitude behaves at infinity in order to ensure the
0ap(S)= 1- s |\ s | ©) vanishing of the contributions coming from closing the inte-
gral contour. We have chosen three subtractions since we are
As a consequence of EGf), the partial wave can be param- 90ing to useD(p*) ChPT amplitudes which at highbehave
etrized as ass?. But our arguments remain valid f@(p®) amplitudes
when using four times subtracted dispersion relations, etc.
The ChPT partial waves present both cuts and we can

ta(s)=— e'Nsing)(s) (6)  calculate both the subtraction constaftg,C,,C, and the
p integrand inside Eq(9) perturbatively
and 8);(s) is called thelJ phase shift. t(§)=ao+als,

We have already mentioned that the ChPT amplitudes are

obtained as an expansion in external momenta and masses.

: 3 (e Imt(}'(s’)ds’
That is S

' =bo+b;s+b,s? +— YT

(Mg +Mp)2s"3(s' —s—ie€)

+lc(ty), (10
where, for the cases we are interested({fl,is O(p?), t{3 is
O(p%), etc. In practice, we can only obtain the few first Where we have expanded the subtraction constants in terms

2
terms of the series above and, therefore, the amplitude onl9 /F

ty=t{Y -+t +tP+- (7)

satisfies the unitarity condition perturbatively: The |A|V| is based on the fact that the functiort 3 /dis-
plays the very same analytic structure tpf, apart from
Imt(®'=0 some possible pole contributions. For later convenience, we
' 0)2 ;
will make use ofG(s)—t( /t,;. Notice that we have mul-
Imt(”— t(0)2 tiplied 14 by a real function without singularities; thus we
apTy keep the same analytic structure and we can write a very
Im(t2+ (D)= B(t(°)2+2t(°)Ret(1))~ ﬁ|t(0) (1)| similar dispersion relation:
C) 3 (= ImG(s')ds'
) . G(S)=Go+ G 5+ G,8° +— —
The O(p?) terms were given by Weinberd] and they (Mg +Mp)2s'3(s' —s—ie)

are called the low-energy theorems. The next order contribu-
tions to o scattering were given ifi2,3]. The calculation
for wK scattering can be found {22,23, although we have
found that the formulas in the literature do not satisfy Eq
(8). We will comment on that later. Very recently, a com-
plete calculation of theD(p®) contribution to elasticr
scattering 5] has appeared. Although we will not use it, we
will compare some of its results with those of our method.

t1e(G) +lpc, (11)

wherel p¢ stands for possible pole contributions. The advan-
‘tage of usingG(s) is that, using Eqs(4) and (8), we can
calculate exactly the integral over the right ¢but not on
the left, since those equations only hold on the elastig; et

Imt
ImG=—t{9? |23 —192=—1mt{Y. (12
Ill. THE INVERSE AMPLITUDE METHOD | 'Jl
A. Derivation from dispersion theory Note that we denote by,; the exact amplitude, which is

Let us briefly review the standard derivatifi13) of the unknown, although we kn)ow |ts(1a;nalyt|c properties. In con-
inverse amplitude method, since we will use it later in orderif@st; the expressions fefy’ andt(y, etc., have been calcu-
to understand the applicability of the method. lated explicitly. _

Any partial wave obtained from a relativistic quantum AS we did before, we can "’2"50 expand tBesubtraction
field theory should present a characteristic analytic structur0€fficients in powers oM /Fj;, and then rewrite the dis-
in the complexs plane. Indeed, the reaction threshold be-Persion relation foiG(s), which now reads
comes a cut in the real axis frosy, to +. Because of 0
crossing symmetry, there should be another left cut along the tIJ_
negative axis. If we now apply Cauchy’s theorem to our t;
complex amplitudes we obtain integral equations known as
dispersion relations. For instance, a three times subtracted Imt{7(s')ds’
dispersion relation is __fM My 125'3(s' —s—ie€)

=ag+a;s—by—b;s—b,s?

— et +1pc

Imt,5(s")ds’ =91}, 13

t)3(s)=Cp+ C15+Cys +—f 3”# 5ty (13)
M,+Mg2s’ (s’ i€) _ o

where we have approximated @r=— Imt;;’ on the left cut

+1c(ty), 9 and we have neglected the pole contrlbutlon. In other words,
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£(0)2 consequence, if we try to make a low-energy fit to the data,
t;= ﬁ. (14  the parameters that we would obtain with the IAM would not
tiy —t; lie very far from those of ChPT, but they will not be the

game. That is the reason why, in the following sections, we

This is the 1AM result that we are going o use in the PreSENYill denote with a hat the parameters obtained from any IAM

work. Incidentally, Eq(14) can be understood as the formal

[1,1] Padeapproximant of the ChPT amplitude. fit.*
It is important to remark that if we expand again Etg)
at low energies, we find 2. Resonances and the pole contribution
102 In Eqg. (13), we have neglected the contributions coming
t)y= L:tggqtﬁqo(pq (15)  from zeros in the amplitude, that will appear as poles of the
tfg’)—tfjl) inverse function. There is no way to knoavpriori whether

. ) 6 or not a partial wave will vanish for a given value ef
That is, we recover the ChPT expansion. Hence, Up(°)  4though it is known that chiral amplitudes have zeros below

our method gnd ChPT yleld the same low-energy results i hreshold, which are known as Adler zeros. Their position is
the same chiral Lagrangian parameters are used. not known except for thé=1, J=1 channel, where the
pole is located at threshold. In our derivation it is compen-
sated by the same zero in th§) channel. That is not the
Let us review all the approximations made in the previouscase for thel=0 amplitudes and, therefore, we are neglect-
section, in order to comment how they will constrain theing the contribution of their residue. Consequently, our am-
IAM applicability. plitudes are not valid to obtain Adler zeros and that will
affect our results at low enerdyput no more tharO(p®)].
That is another reason to differentiate the parameters ob-
In Eq. (13) we have replaced th@(s) left cut integral by  tained from our fit from those of the pure chiral expansion
that of—t,(})(s). As we have remarked in the preceding dis- (see footnote 11
cussion, Egs(4) and(8) are only exact on the right cut. On
the left cut we cannot write the chain of equalities that lead

to Eq. (12). Nevertheless, if we use the ChPT result as an
approximation, This is apparently a harmless assumption in the above

reasoning, although it dramatically affects the results of the
(02 1Mty " 6 IAM. In fact, it can happen thatt{’=0. In the
ImG=—1; W:_ Imt;;"+0O(p°), (18 (1,3)=(0,0),(1,1),(2,0) channels of scattering or in the
1 (3/20),(1/20),(1/2,1) in 7K, this only occurs for isolated
we get values ofs, at or below threshold. In particular, that means
that the 1AM amplitudes will have the same zeros as the
0 ImG,,(s")ds’ 0 Imtf})(s’)ds’ lowest order chiral amplitudes. However, every other partial
ILC(G)zf :—f o wave vanishes aD(p?), for anys. As a consequence, the
- ~=8'¥(s'—s—ie) formula in Eq.(14) is no longer valid.
(17) Nevertheless, we can generalize our previous derivation,
in order to include those channels whose leading order is
Notice that, in order to obtain the) phase shifts, we are O(p®). We only have to go through the very same )steps,
going to calculatd, ;(s) for reals>4M . That means that although now we would write a d!sp9r3|on relation f{f{ .
the denominator { —s—ie€) inside the integrals is never But let us remember that the main improvement of the ap-
going to be very small, which somehow will wash out the proach is that we are calculating exactly the integral of
error on the left cut. But note also that treating differently the IMG(s) over the right cut. However, for that purpose we
right and left cuts violates crossing symmetry. need an imaginary part, and by looking at E8). we can see

Indeed, in[24] it has already been pointed out that the thatt{3’=0 implies that Int{y)= Imt{?=0. Therefore, un-
Padeapproximants do not reproduce correctly the subleadindess we have a calculation up @(p®), the corresponding
logarithms that would appear aext orderin the chiral ex- imaginary part will vanish. Hence, when following the deri-
pansion[O(p®) in this casé Of course, they would be ob- vation of the 1AM if t{3’=0 the best we can get is plain
tained if we applied the IAM to the chiral amplitudes at ChPT again. At present, onl@(p®) calculations are avail-
O(p®), but still the method would not yield the correct loga- able and we can only expect to obtain a real improvement
rithms atO(p®) and so on. At high energies chiral loga- with our approach in the six channels listed above. Thus, we
rithms are not so relevant, but at low energies they are a veryill not be able to reproduce thie,(1200) resonance.
important feature of ChPT and indeed they can give the
dominant contribution in some channels.

Nevertheless, from Eq15) we see that at low energies While we were revising this paper a work by M. Boglione and
the 1AM yields the very sam®©(p*) ChPT expansionin- M. R. Pennington[48] appeared in which they propose other
cluding the dominant chiral logarithms. The contribution schemes with better approximations to the left cut and also include
from the left cut and subleading logarithms@p®). As a  possible contributions from Adler zeros.

B. The applicability of the inverse amplitude method

1. The left cut

3. Multiplying by t9

»s'3(s' —s—ie)

=—1c(t}).
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4. Elastic unitarity pressed by phase space. Indeed, at approximately 985 MeV

In order to obtain In® on the right cut, Eq(12), we have  the inelastickK threshold opens up. Its phase space factor is
just made use of the elastic unitarity condition of E4).  the o,z in Eq. (5), with M ,=Mz=My . Therefore, above
However, the right cut is composed of many superimposedhe two kaon threshold we have to reconsider the derivation
cuts, each one corresponding to a different inelastic intermeof the IAM. Let us illustrate withmor scattering how inelas-
diate channel. Actually, Eq4) is only true below the first tic effects modify our result.
inelastic threshold, and the real unitarity condition reads As the starting point, fos> sy, we have a new unitarity

relation:

|mta —aB— g ta — 2® S—Sp)- 18
p—ap ; Altap-a"O(s=5) (19 Imt= 0. /t|?+ oty (19

The sum is over all the physically accessible intermediate . . .
statesA, whose phase sp:cgd%lg y where we have denoted Ibythe generid,; pion elastic scat-

As far as we are neglecting electromagnetic interactions©"1"d @mplitude and by thelJ partial wave of the process

the first inelastic channel inrr is the four pion intermediate 77— KK. Thus we now have, fos> s, that
state, at 550 MeV. Similarly, forrK is wK#, whose

threshold is= 910 MeV. Strictly speaking, the elastic ap- Imt, ; It|?
proximation is exact only for lower energies. Nevertheless, ImG=—t{9? > = 92 gt ok | (20
the contribution of these intermediate states is strongly sup- [ty 1t

pressed by the four particle phase space and we expect the

IAM to provide a good approximation. which differs from Eq.(12) in the term coming from two

Unfortunately, within the range of energies we are inter-kaon intermediate production. If we follow the very same
ested in, there are intermediate channels which are not supteps of our previous derivation, we arrive at

0)2 ) _
a(s)
(21)
|
Notice that, using ChPTA(s')=0+ O(p°®). But at these 5. O(p*) approximation

high er)ergies that is not negligible. In addition, we are inter- Throughout the derivation of the IAM, we have been us-
ested in the above integral for physical valuessoand, ing the chiral amplitudes up t®(p%). Nevertheless, it is

tr)erefore, the denominator will be almost d_|v¢rgent for som ossible to extend the argument to include higher order
s’. For these reasons we cannot neglect this integral and then

we should not trust the IAM since it could miss some rel- > 8S, for instance, t@(p°) contrjbutions. In that case

evant physical features we would have started from a four times subtracted disper-
That is indeed the case in pion scattering since, as it cafio" relation for the two-loop calculation. Once more, the

be seen in Table I, there is one resonarfg€980), whose integral over the right cut would be related to the one for

1 = 1 _ O 2 . .

nature is closely related to theK threshold. Nowadays, the G(S)_tl(J) ;. Working out the expansion of the subtrac-

interpretation of that resonance is still controversial: differenfion constants, we would then arrive at

authors propose different polésot always just onein the

— 0)2
vicinity of the KK inelastic cuf26,27]. As we will see later, t,= tEJ) _ (22)
our approach is not able to reproduce any of these poles, =tV + 1Py - P
which is consistent with the fact that the IAM makes use just
of elastic unitarity. Again, that is the forma]1,2] Padeapproximant, and it sat-

At this point, we want to remark on the importance of isfies the elastic unitarity condition.
understanding why and when the method no longer yields As we have already mentioned, two recent papers have
the right results. Let us remember that we are also thinkingippeared withO(p®) calculations of7# scattering within
of possible applications of this unitarization procedures toSU(2) ChPT[4,5]. We have not used these results, since, as
the electroweak chiral effective Lagrangian, whose referenceve have just seen, they will not help us to overcome any of
model is the standard model with a heavy Higgs boson. Irthe preceding objections to the IAM. However, it is quite
such a case, one would expect to see a broad resonance in thely that, had we used them, the parameters of the fits that
scalar channel and we want to have a unitarization procedunge will present in the next sections would have been slightly
whose predictions we can trust. modified.
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TABLE II. Sets of parameters and methods used in the text. In order to simplify the comparison with previous works,
Those in the first two columns come frdfy, decay429]. Those in  we have chosei -=139.57 MeV and~,=93.1 MeV. The
the third, from data of,, and 7 together with some unitarization yglues of the chiral parameters are not so clear, since they

procedure(Ref. [30]). M, is calculated with the central values.  have considerable error bars. In Table Il we have listed the
— — different sets of parameters that we have taken from the lit-
Method I 2 M, erature to obtain Fig. 1.

Let us remark at this point that for the ChPT phase shifts

ChPT —0.62£0.94 6.28-0.48 No resonances . o .
we are using the definition= o (t©+ Ret") suggested in
Inverse -0.62£0.94  6.28-0.48 715 MeV [24]. Of course, ChPT is just a low-energy approach, but
amplitude -1.7+1.0 6.1-0.5 675 MeV incidentally, these phase shifts coincide with those obtained
from the K-matrix unitarization defined as
IV. @ SCATTERING IN SU (2) ChPT < tO4+ Rg@
th=—o . (23
The inverse amplitude method was first appligdL5| to 1-io(t 9+ Ra®)

T Scattering without the strange quark. In that case, the
massless limit displays spontaneous symmetry breaking fro

SU(2), X SU(2)s to SU(2) ., which is nothing but the "R can be easily verified that® satisfies elastic unitarity, Eq.

. . . . 4), exactly. Consequently, the dotted lines in Fig. 1 not onl
usual isospin. Th®(p*) expression forrar scattering was (4), exactly quently Ines in Fig y

) ; . : . give the ChPT predictions, but also the results of the
obtained in2,28], and it is written in terms of four phenom- 1 auiv unitarization. We will thus confirm that such a

enological parameters 1, | 5, 13,14, as well as the mass method is not able to reproduce resonances by itself. They
and pion decay constantd] . and F .. In this section we have to be added by hand.
will review how the method is able to reproduce {heeso- In Fig. 1 it can be clearly seen, in the=1, J=1 channel,
nance. We will show some results for recently proposed newhat the 1AM yields g-like resonance. The value of its mass
parameters in order to test the IAM predictive power, but wejs gptained from the point wheré=90° and it lies 10% to
will also present a unitarized fit to the data. We will use notqg5o4 away from its real value. In this way, tlegistenceof
only theJ=0 phase shifts, but also those witk 2, in order  the p resonance can be regarded as a prediction of the IAM
to obtain the best fit with the IAM. In this calculation, we with ChPT and the parameters obtained from some low-
have also estimated the error bars of the unitarized parannergy data.
eters. It is also evident that the fit of the=2, J=0 channel is
correct up to much higher energies. In Table Il we have also
A. Results using low-energy parameters included the values oM, corresponding to each choice of

Let us now illustrate what happens if we apply the IAM Parameters. For all the cases we have bgt=2.9 and
on the ChPT amplitudes using the chiral parameters obtainetl,= 4.3 following Ref.[2].
from low-energy experiments. We want to see quantitatively The only feature ofr7r scattering that is evidently miss-
to what extent the main physical features are reproduced. ing from the unitarized results is thig(980) resonance in
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FIG. 1. Phase shifts fotrm— 7. The dotted curve is plain ChPT with trﬁin the first column of Table Il. The other two curves are

both the result of the IAM: the dashed one has been calculated again with the same parameters whereas the continuous one corresponds t

thel_iin the third column of Table II. The data come frdBi] (A), [32] (¢ ,0), [33] (X), [34] (O), [35] (), [36] (x), and[37] (@®).
The results with S(B) ChPT would have been exactly superimposed on these curves. The straight line stérd@dat
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FIG. 2. Pion elastic scattering phase shifg obtained from the IAM fit to the corredl ,. The shaded areas cover the error bars of the
fitted parameters with the constraint-1,= —5.95+0.02. The dotted straight lines standsat 90°. Remember that thi=2 partial waves
have to be calculated as in plain ChPT. Indeed, the dashed lines in those channels correspond to plain ChPT data with the parameters in the
first row of Table Il. The symbols for the experimental data are the same as in Fig. 1. The corresponding curves \W8)h#hBU would
almost superimpose.

thel =0, J=0 channel. In the previous section we saw thatand in Fig. 2 it can be seen that the results are remarkably
this fact is connected with the failure of the whole approachsuccessful. Later, we will show that we also get the right
to reproduce the kaon inelastic cut. But let us first obtain awidth.

better fit to the data. Once that difference is fixed, we just have to determine

one parameter, sal. In previous studie§8,15], the unita-
rized fit to the other phase shifts was used in order to esti-
Now that we have an amplitude that describes the rightyate the values dfl ande. But, as we commented above,
cut, while keeping at the same time the correct polynomiatne gata in thé0,0) channel are not as good as that(fl).
form from ChPT, it seems natural to ubk, [8,15] to fit the  The same happens for th2,0) channel, where the curves are
data. Note that fixing the correct mass does notimply a gooﬂot very sensible to small variations in tfhe parameters.

f'F' For Instance, we could get a wrong width. In order t.OTherefore, in the present work, we have also usedJth@
differentiate the parameters thus obtained from those coming, - nnelsmainly that withl = 0) to further constrain the pa-

from plain ChPT we Will call them , I,. o rameter range. Let us remember now that in these channels
The (1,1) channel is almost only sensible tb;— 1. {2)=0 and, as we have already discussed in Sec. II, the IAM
With I, —1,=—-5.95+0.02 we get theM , listed in Table |  leads again to plain ChPT. That is why we will only use for

B. Unitarized fit
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TABLE lIl. Parameters and results of the one-loop IAM when these formulas have sometimes appeared with some minor

M, is fixed to its actual value. errata which have been corrected in the ®RE physics
- - : handbooK 25]. However, even those formulas do not satisfy
Method Iy l2 M, (input L, perturbative unitarity(see the Appendjx Following the

work in [22], we have rederived an expression which does
satisfy that requirement, and we have included it in the Ap-
pendix, together with a discussion on how it is obtained and
its unitarity properties.

In the SU3) case there are more phenomenological pa-
rameters that we have set to

Inverse
amplitude —0.5+0.6 5.4-0.6 768.8-1.1 MeV 155.6-1.8 MeV

them data up te=600 MeV, although in other channels we
are using data at higher energies.

Thus, the values given in Table Il are just a conservative My =493.65 MeV, M,=548.8 MeV,
estimate of the range where we obtain a reasonable fit in the K
(1,9)=(0,0),(2,0),(0,2), and (2,2) channels, wHedn fixed Fk=12%,, F,=13_. (25)
to its actual value. The results are shown in Fig. 2, where the
continuous line corresponds to the cenfraValues and the There are also 12 one-loop parameters, denotdd ).

shaded area to their uncertainties. Notice that the shaded arel@wever, onlyL’,L5,L3,L},L5,Lg, andLg appear inmK
has always been obtained by varyihgwithin its estimated ~ Scattering, whereas in pion scattering only the following

error. combinations are present:

In Fig. 2 it can be seen how it is not possible to fit the ; ;
f(980) resonance with SB) ChPT and the IAM. It is clear 2Litls, Ly, (26)
that, even though the actual value of thg phase shift may Co Co
not lie very far from the unitarized prediction, the qualitative 2Lytls, 2lgtlg. (27)
behavior of the curves in this channel is not correct above . . . . . . )
800 MeV. Again, and in order to simplify the comparison with previous

With theT; fit we can obtain the total Breit-Wigner width works, we have fixed the valugs]

of the p resonance from Ly(M,)=0, LEM,)=0.0022, L§(M,)=0,

M2—s
r,= |\‘;| tandy4(s). (24) Lg(M »=0.0011. (28
p

A precise value of these parameters is not very important

Indeed we have computed it for different valuessafround  since they are related to the different masses and decay con-
M?. The result is given in Table Il and it is quite close to stants that we had already fixed. Hence, in practice, the only
the experimental resultsee Table ), although slightly relevant parameters farm and wK scattering in S(B) are
higher. We will see that it is possible to obtain the right vaIueLfly L, andLg.
when using S(B) ChPT. _ . The IAM was first applied to S(3) ChPT in[13], where

As we have already commented, this result is not at allye showed that it reproduces not only #770) resonance
trivial, since fitting the right mass does not ensure a correchyt also thek* (892). Our aim in this section is first to study
description of the resonance. Therefore, even though we affie predictive power of the method, whether it can accom-
now using theM, experimental value, thE, width is again  modate further resonant states, or why it cannot. Then, we
a prediction of the IAM. In contrast, in a unitarization || present a simultaneous fit te and 7K scattering to
scheme where one introduces the resonances by hand, ofia , andK* masses. The new feature of this analysis is that

has to give both the masses and the widths. it uses the corrected ChPT expressions fdf scattering
which now satisfy perturbative unitarityjgee the Appendix
V. SU(3) CHIRAL PERTURBATION THEORY and the fact that we also use the data on ike€2 in 77

. ) scattering channels. We will also estimate the error bars on

The extension of the ChPT approach to include thepe pegt fit that will be used to obtain numerical values for
strange quark was done, once more, by Gasser and Leulyme interesting phenomenological quantities. This fit will
wyler [3]. In this case there are eight Goldstone bosonsygq ajiow us, in Sec. VI, to perform a numerical study of the

which are identified with the three pions, the four kaons, andanalytic structure of the 1AM amplitudes in the complex
the #. In principle, it is possible to calculate the amplitudes plane.

of any process involving any combination of these patrticles.
But the thresholds for these reactions are much higher than
in pion scattering, which in practice restricts severely the
effectiveness of the approach. Let us then start with the IAM using parameters obtained

Nevertheless, the lowest two particle threshold apart fronfrom low-energy data. In Table IV we list different choices
7o scattering is that ofrK elastic scattering at 630 MeV, of parameters and methods together with their results for the
which is still within the applicability range of ChPT. The p andK* masses. As in the case of @ ChPT, the IAM is
calculation of this amplitude t®(p*) was performed by able to predict from low-energy data the existence of both
Bernard, Kaiser, and Meissn¢22,23 who also gave the resonant states. Remarkably, the masses thus obtained lie
O(p* result for w7 within SU(3) ChPT. In the literature, again 10% to 15% away from their actual values.

A. Results using low-energy parameters
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TABLE V. Different sets of parameters and methods used in the text. Those of the first two columns
come fromK,, decayq29]. Those of the third come from data &), and 7= together with some unitari-
zation proceduré¢for details see Ref30]). The quoted values d¥l , andMy» are calculated with the central

values.

Method Li(M,)x 10? L5(M,) X 10° Lyx 10° M, M
ChPT 0.65-0.28 1.89-0.26 —3.06-0.92

Inverse 0.6%0.28 1.89-0.26 —3.06-0.92 717 MeV 847 MeV
amplitude 0.60.3 1.75-0.3 -35+1.1 680 MeV 804 MeV

In Fig. 3 we show the result of applying the IAM teK kaon threshold, we have obtained the same results up to nu-
scattering, with the parameters given in Table IV. In contrasmerical differences= 1%), which would be unobservable in
with plain O(p* ChPT (or the K-matrix unitarization the figures. That is a nice check of our programs. Therefore,
method, since they yield the same phase shiitss evident  Fig. 1 is also the result forr7 scattering in the S(3) for-
that the IAM not only accommodates tK& resonance, but malism, but now with the parameters in Table IV.
it also reproduces the (3/2,0) channel.

We do not display the results form scattering in S(B) B. Unitarized fit

because they will almost superimpose with those in Fig. 1. . ) ,
— Again, we have an expression for the amplitude that be-

Inde_ed, thel ; pargmeters n rowsr2 anq 4 of Table Il were haves correctly with respect to unitarity and that presents the
obtained, respectively, from the; L,L 5 in rows 2 and 4 of right form in the low-energy limit. Therefore, we can try to
Table V29,30, by means of use the actugh(770) andK* (892) masses in order to fit the
v v 7 andwK phase shifts. We remark once more that nothing
———”), ensures that fitting the right masses will give us the right
24 3 description, since, among other things, the widths of the
o e 2 resonances cpuld be wrong. ' .
| 2=48772(4Lr2(M )— _K__”), When dealing with the S@3) chiral Lagrangian we have
712 3 more parameters, and the way they appear in the amplitudes
is more complicated. Let us first start with ther scattering
partial waves in S(B). As we have commented in Sec.
, a=mK. (29 11B1, in order to avoid confusions with the ChPT low-
energy parameters, we will denote the parameters of our fit

I_1=96772(4Lr1(M,])+2L3—

M2
2
M7

1
3272

In

Vo

As a matter of fact, we have calculated independently théy |:ir .
7o elastic scattering in S@2) and SU3). Using the above The (1,1) channel only depends onL2+L;—L5, and
equations to relate the parameters in both cases, and belawill be fixed with M ,. In so doing we get
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FIG. 3. Phase shifts for elastieK scattering. The dotted curve is plain ChPT with thearameters in the first column of Table IV. The
other two curves are both obtained from the IAM: the dashed one again with the same parameters and the continuous one with those in the
third column of Table 4. The experimental data come (@8] (®), [39] (x), [40] (O), [41] (¢ ), [42] (O0), and[43] (A). The straight
dotted line stands ai=90°.
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TABLE V. Parameters and results of the @Y IAM, when M,=768.8-1.1 MeV and

Mg+ =894.00+ 2.5 MeV, are fixed to their actual values. Notice thatfdr(892) we have chosen an average
mass between its different charge states.

Method Li(M,)x10°  Ly(M,)x10° L;x10° r, Py

Inverse

amplitude 0.4%0.20 1.48-0.33 —2.44+0.21 149.91.2 MeV 41.2-1.9 MeV
2|:£+|:3—|:rz:(—3-11i 0.01)x 1072, (30) together withI", andI'x«, which can be considered as pre-

dictions of the approach. Notice, however, that in this case

As a consistency check we see that it is within a 1% ofthe width of theK* (892) resonance lies 20% away from its
—3.14x 103 which is obtained from thé, parameters of actual value, which, nevertheless, is a reasonably good result
. I

the SU?2) case, with the help of Eq29) in view of the whole fit in that channel.
Once again, we use the channdls)j=(0,0), (2,0), (0,2), Concerning thd_; parameters, they are compatible with

and (2,2) to determine the be@g value, which indeed is the those in Table IV, which were obtained from low-energy

- - data. Even more, they are also consistent with other param-
same that we would have obtained from tReSU(2) param-  oters obtained from the 1AM applied to the form factors of
eter by means of Eq29). It can be found in Table V. Hence, ok — mal v decays[14], which are very well known ex-
the best S(B) fit of the 77 phase shifts yields almost the

. . perimentally:
same results as those obtained with(3land the very same
Fig. 2 remains valid foSU(3). Nevertheless, when comput- NS _ . 5
ing the ", within the SU(3) formalism, we obtain a much L1(M;)=(0.740.14 X107,
better value than in S@2), which was about 5 MeV too high.
It is also listed in Table V. |“_f2(|v| ) =(1.07= 0.18 %1073,

Finally, we will useL to fix the correct* (892) mass.
However, theK* (892) has an added subtlety, namely, that
the mass splitting between different charge states is of the
order of 5 MeV. This is a small isospin-breaking effect that ]
we have not included in our approach. Therefore, we havéhotice that in that reference they are usig=F, so that

used an average mabtg =894.0+ 2.5 MeV with an error the parameters d_o necessarily differ
. Nevertheless, it would not make any sense to try to reduce
bar that includes the mass of aKy (892) state, no matter .

. ; the error bars of these parameters. We consider that the ap-
what its charge may be. That uncertainty has also been taken . .
) X <y . proach that we have been following here can only be consis-
into account in the.; error estimates. A tent within a few percent error level. In order to have a better
Once we have 3, we usel’, and Eq.(30) to obtainL}j.  accuracy it would be necessary to take into account higher

The parameters of this fit have been collected in Table Vorder ChPT corrections, isospin-breaking effects, and the

L3(M,)=(—2.45+0.52 X 10 * (32
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of the fitted parameters with the constrairﬁfl} IA_37 I:r2= (—3.110.01)x 10" 3. The dotted straight line stands&# 90°. The symbols for
the experimental data are the same as in Fig. 3.
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TABLE VI. 77 scattering lengths. The one-loop ChPT results TABLE VII. 7K scattering lengths. Note that the ChPT results
are taken fron(29]. The experimental data come fro5]. The have been obtained using the corrected formulas in the Appendix.

errors in the 1AM fit come only from the uncertainties in the pa- The experimental data come frara2].
rameters. They do not include other theoretical uncertainties.

a) ChPT IAM fit Experiment
a) ChPT IAM fit Experiment pvs

ag —0.043 —0.049+0.004 —-0.13...,-0.05
ag 0.201 0.216:0.008 0.26:0.05 bg’Z —0.026+0.003
bg 0.26 0.28%0.025 0.25:0.03

ay? 0.148 0.155:0.012 0.13...,0.24
ag —0.041 —0.0417-0.0014 —0.028£0.012 bé’Z 0.087+0.016
b% —0.070 —0.075-0.003 —0.082£0.008

al? 0.012 0.0146 0.0012 0.017...,0.018

al 3.6xX10°2  (3.744-0.002)x10°2 (3.8+0.2)x10°?

b}  043x10°2 (0.515-0.001)x 102
limit it reduces to the chiral expansion, which @{p*) al-

ad 20X 104 (17.1+3.5)x 104 (17+3)x 10 ready yields quite goiod valuesee 'I_'ables VI and VJI _
However, as the IAM is nonperturbative, we are also taking
a?  3.5x107 (2.8+1.5)x10°* (1.3£3.1)x 1074 into account higher order effects, that will modify the results.

Indeed, some of these lengths have already been calculated
with the 1AM and it yields slightly better results than plain

whole approach should be modified following the comment$ChPT[14]. We have made again the calculation with our fit,
that we made in previous sections. but as far as we have an estimate of the error bars i the

In Fig. 4 we show the results of the ) IAM fit to the parameters, we will also give the error estimates coroinly
resonance masses, in terms of elastic scattering phase shiffsm the uncertainties i; (mostly dominated by that of
which we think deserve some comments. L))

First, notice that we are not showing the curves fot 2
scattering because they are exactly those in Fig. 2. The diféc
ferences only appear above the two kaon threshold, since
the SU3) formulas we are also considering internal loops of
kaons andy’s. —q2dr Al Rl a2 4

In the mK— 7K case we can extend the graphs up to Retiy(s)=a™a,+byq"+0(q)] (32
1100 -MeV, or even more. The reason is that the first Wo,, - scattering, whereq is the cm momentum
body inelastic threshold iK 7 production at 1040 MeV and, q%=s/4—M?2, and
in contrast with ther s case, there is no nearby resonance. m
Indeed, the next resonant state 4K elastic scattering is Js

6(1430), very high to affect dramatically our results at Ra,J(s)=7q23[a'J+ b'Jq2+ 0(g"] (33
1100 MeV, but also to be correctly reproduced by the IAM
method. Nevertheless, the existence ofthg threshold can
be noticed in thd =1/2, J=0 channel, as a small bump in
the curves at precisely 1040 MeV.

The shaded area in tH€* (892) channel is not only due
to the averaged mass f&* (892) with 2.5 MeV error, but
also to the fact that we have to determine several parameters
to get the right mass, in contrast with th€770) case, when
we only had to fix one.

We have explicitly checked that our ChPT amplitudes sat-
isfy perturbative unitarity. As it is explained in the Appen-
dix, previous calculation$23,13, including ours, did not
respect this condition, although by a very small amount. That
is why the values of the best parameters for this fit are I
slightly different from those of our previous wofk3]. w0l

Before giving the results, it is convenient to recall that the
attering lengths have two different normalizations.
Il(]amely,
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Phenomenological parameters

Once we have a good parametrization ofr and 7K or
elastic amplitudes, we can use it to obtain the values of some

. . 300 350 400 450 500 550 600 650 700 750
relevant phenomenological parameters. First, we can calcu- Vs (Mev)

late the scattering lengths, which determine the strength of

the interactions at low energy. Despite the fact that our IAM  FIG. 5. 55— 611 phase shift difference from the 1AM fisolid

fit makes use of high-energy data, we expect that it willline) and plain ChPT(dashed ling The shaded area covers the
reproduce the low-energy behavior since in the low-energyincertainty in thel; parameters and the data come frid6].
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for wK scattering, where nowg?=[s—(Mg+M)?][s
—(Mg—Mm)2])/4s.

The predictions of our fit for therm and 7K scattering
lengths are given in Tables VI and Miin M ;. units). Notice
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first Riemann sheet, and those on
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have to be interpreted cautiously, since they are obtained

only from the uncertainties in the; parameters.

As we have already commented, very recently there has
appeared a two-loop calculation efw scattering within

that all the values are compatible with the experimental dataSU(2) ChPT. It estimates a8~0.217 or 0.215 and

and in general they only differ very slightly from ti@(p*)

ad—aj~0.258 or 0.256, which are precisely the values ob-

ChPT results, usually in the right direction toward the centratained with our 1AM fit. This fact gives support to the idea
value. However, the experimental error bars are still too bighat the IAM somehow takes into account higher order terms
to arrive at any conclusion. Also, the error bars in the IAM even at low energies.
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Notice that we do not compare our results with the two- However, we have already seen in Sec. Il A that, below
loop calculation of the scattering lengths and slope§4in  any other inelastic threshold, the inverse amplitude method
because they have used them asrgutin a x? fit to deter-  can be derived directly from the analytic structure of the
mine their additionale and 8 parameters. Therefore, their general two body elastic scattering amplitude. Our purpose
values are almost exactly those of the experimental datan this section is to show that, apart from satisfying elastic
However, as far as there are no data for Iﬂemr slope unitarity, it provides the correct analytic structure required
parameter, their value can be regarded as a prediction. Thdkom relativistic quantum field theory. Such a structure is not
give b%=(0.54t 0.15)x 102, which is consistent with our trivial at all and cannot be reproduced by other unitarization

result and withb}=(0.6+0.4)x10 2, that was obtained procedures. Both the left and right unitarity cuts are already

from sum rules ir[44]. present in plain ChPT; therefore, we will mainly focus on the
We have also calculated the phase of #ieparameter, Poles in the second Riemann sheet. _ o
which measures dire@ P violation in K — 77 decayg46]. In _the previous section we used the most naive criteria to
It is related to thes-wave phase shifts as identify resonances, i.e., that the phase crossessth@0°
value. However, that is only true for the simplest cases. The
P(e')=90°— (83— 5(2))5:1\/120- (34  rigorous characterization of resonances is made in terms of
K poles in the second Riemann sheet of the amplitudes in the
Our result is s-complex plane. Indeed, when a resonance is produced by
just one of these poles, both its mass and width are related to
¢(e’)=(42§§)°, (35) the pole position by
very close to¢(e’)=(45+6)° which is obtained in plain I'g
ChPT[47]. In contrast with the case of the scattering lengths, VSpole=Mg+i TR (36)
the value of this angle is not used as an inpufd4hand is,
therefore, a prediction of their best fit. The value they quote ) )
is ¢(e')=(43.552+6)°. prowdeq the width is small enough.
Finally, in Fig. 5 we show the phase differenég— 6,7, In this work we have extended to treecomplex plane

compared with the available experimental d@]. The dif-  Poth themm and thewK elastic scattering IAM amplitudes
ference between the IAM and plain ChPT at high energies j@btained in the previous section. Notice that the cuts in ChPT
due to the presence of theresonance. Nevertheless, there €0Me from logarithmic functions, so that we have infinite
are also some differences at low energies, since the dispefh€ets in the complex plane. However, only two of them

sive approach is somehow taking into account higher ordeforrespond to the first and second Riemann sheets. Once we
contributions. have identified these sheets we can check whether the reso-

nances that we found in previous sections are produced by a
pole in the second Riemann sheet and thus whether they
have a real basis.

The main objection to unitarization procedures is the ap- We will first analyze therm— 7 process. In Fig. 6 we
parent arbitrariness in their predictions, which may differrepresent the imaginary part of the amplitude in the complex
from one another. In most cases, these methods are nothisgplane for the three channels,§)=(0,0),(1,1), and (2,0).
but a small modification of the amplitudes so that they carNotice that when we say complexplane, we mean that we
satisfy the unitarity constraint in E¢4), while keeping atthe have parametrized as s=(E+iC)?, whereE is the c.m.
same time the good low-energy behavior. But that constrainenergy and is represented in the real axis whe@psovides
is not enough to determine the amplitude completely. Thusthe complex part. On the left column we have displayed the
there are as many unitarization techniques as algebraic trickesults in the first Riemann sheet, whereas in the right col-
to implement such a constraint exactly or to get a betteumn we have continued through the cut to the lower half of
approximation. the second Riemann sheet. In all cases the existence of a cut

VI. THE IAM IN THE COMPLEX sPLANE
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on the real axis on the first Riemann sheet can be clearlis found at aroundEg~760-i75. Using Eq(36) we see that
noticed. As we had commented before, a right cut is noit is in a good agreement with the(770) mass and width
anything completely new, since it is already present in oneparameters given in Table |. Therefore, we can conclude that
loop ChPT, although in that case, the values that the amplithis pole is completely consistent with tp€770) resonance.
tudes take on it are different. In contrast, the most striking The other pole that can be seennr— 7 is on the
new feature in the IAM amplitudes is the appearance of poleg0,0) channel. Using the parameters of the best35IAM

in the second Riemann sheet and how they determine thigt of the previous section, we find that it is located at

amplitude shape for the physical valuessof

Er~440-i245. It is not responsible for the appearance of

Indeed, we have found two poles with $r10 in the any resonance, since it is very far away from the real axis.
second Riemann sheet, one in the (0,0) partial wave anHowever, from purely phenomenological fits to pion scatter-
another one in (1,1). Let us start with the second, whicting data, the existence of such a pole aroufg~408
clearly corresponds to the resonance. The position of this —i342 MeV had already been pointed ¢@&]. This pole is
pole can be obtained from the contour plots in Fig. 7, and itesponsible for the strong interaction in that it dominates at
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low energy the two pion (0,0) channel. We can now see thatinitarization. However, we expect that they include other
even in the channel where there is not an apparent improvesorrections due to unitarity and resonant effects.
ment, the IAM yields the correct analytic structure. We consider that it would not make any sense to try to

Much as it happened in previous sections, the method igeduce the error bars in the unitarized parameters within this
not able to reproduce thiy(980) resonance. As we already @pproach. One has to keep in mind that we have neglected
commented, the interpretation in terms of poles of this resobigher order ChPT corrections, isospin-breaking contribu-
nance is still controversial. Following the same steps as bdions, and that we have used high-energy data which is very
fore, we have also identified the four Riemann sheets thatensitive in such effects. It is quite likely that, in order to
now appear due to the superposition of two cuts. Indeed, w8Ptain results consistent to a higher degree of accuracy, the
have even implemented the IAM derived with the inelas’[iclt;a"vI in thi simple version that has been used here will not
unitarity condition in Sec. 11l B 4. We have not found any € enougn. .

. . Finally, we have also shown how the IAM yields the
pole that could hint at the existence of such a resonance. : . .
) roper analytic structure in the complexplane, in contrast
As we have already explained, we should not expect t

find anvthing since the aporoach is not able to reproduc ith other unitarization techniques. Indeed, we have found
ything pproach 1 P fhat the apparent resonant behavior that is observed on phase
properly either the two kaon unitarity cut or, consequently,

its associated sheet structure shifts is produced by the corresponding poles in the second
. . . Riemann sheet, meeting the strict requirements imposed by
Let us now address theK elastic scattering case. Again,

in Fig. 8 we have displayed the imaginary part of the ampli—general relativistic quantum field theory.

. Therefore, we think that the IAM and unitarization by
tudes for the (3/8),(1/2,0), and (1/2,1). The pictures on means of dispersion theory is the most natural and economic

thehtle:‘:] represegt (t)he first Rmmann _s?eet anfd tho_ste _(:n ﬂ{ﬁay to extend the applicability of chiral Lagrangians. We
right, the secona. Unce more, the existence or a uniarity CL11iave seen however, that its main limitations come from the

IS cIear,. but there is also thg appearance of a.pole n th(gxistence of two body inelastic thresholds. Nevertheless,
appropriate channel. In particular, using the third contour

. . work is still in progress on the subject, the IAM has been
plot of Fig. 7, we have found a pole iBz~890-i20 MeV, : ;
which, using Eq(36), yields again the mass and width for recently applied to other processes, and higher order ChPT

. . calculations will be soon available. Since some other physi-
the K*(892) resonance that we gave in Table V. cally relevant features do not lie very far from the present
applicability limits, it seems very likely that they can be

reproduced in the near future.
VII. CONCLUSIONS
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Moreover, once we force the 1AM results to fit the actual APPENDIX: ELASTIC SCATTERING AMPLITUDES
resonance mass values, we get a remarkably good fit which IN SU(3) ChPT AND UNITARITY
is able to reproduce the experimental data up to the next i } ) ]
relevant two body inelastic threshold. Following that proce- The first calculation of elastierK scattering was per-
dure, we have given the unitarized @Y ChPT fit to form_ed in[22]. These amplitudes were given in terms of
mm—ma as well as that of SB) to wm and 7K elastic ph)_/5|cal as well atowest ordemasses and doecay constants,
scattering. For the first time we have estimated the values ofhich are usually denoted bylp,Fp and Mp,F°, respec-
the unitarized chiral parameters together with their errotively (P being eithers, K, or ). Of course, the only
bars. These values do not lie very far from those obtainedneasurable parameters are the first, and when comparing
without the IAM and, therefore, do not spoil the low-energy With experimental observations, one has to eliminate those
expansion, as can be noticed from the scattering lengths them lowest orderin terms of the physical constants.
we have given. Indeed, it is possible to finfB] the relation betweei?

With this fit, we have calculated several low-energy phe-andM . as well as that betweeM ) andM . Unfortunately,
nomenological parameters, such as the scattering lengthatlowest orderthere is only oné=°, which is related both to
Our values differ from those obtained @{(p?) due to the F, andF«. Hence, whenever one finé in an expression
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there are two choices: relate it either Fq or to F. The  [13], the choice for the(p?) term is different from that of
difference between the two choices will be one order highethe O(p*) contribution that yields the imaginary part. In-
in the chiral expansion. For instance, if one hasG(p?) deed, theD(p?) term is written just in terms of , whereas
expression withF2, in principle, one can substitute it by TY is written in terms ofF . and Fx. As a consequence,
F2, F2, or F.-F. All these choices are equally accept- there is aF3/F2 factor of difference between 1) and
able. When one is working only with pions, the natural o-«|t(?|2. Numerically, that amounts to a (1.72) 1.5 fac-
choice is the one that leaves all the expressions in terms abr.
F .. When one is dealing both with pions and kaons, itis not Thus, we have rederived from the original wdé&?] the
so obvious. However, once one choice is made folQtp?) amplitudes in terms of physical quantiti¢also correcting
term, we have to keep it for th@(p*) contribution, other- some small errojs so that they satisfy perturbative unitarity.
wise one would violate perturbative unitarity, E¢). We have chosen to write the formulas symmetrically with
Unfortunately, in the amplitude in the literatuf@3], respect toF . and Fi. But the other choices are equally
which is the one we had also followed in our previous workacceptable. The result is

2 2
+ —
T(s,t,u)= ﬁ FTHS LU+ TE(s,tu) + TY(s,t,u)+O(s3), (A1)
K

T _ 1 2_pp2 -2
T4(Sytru)_l6|: FK(MW MK)(3M77 /"LK+MT7)Y

Th(s,t,u)= ——{4L}(t—2M%)(t—2M) + 2L (s—= M%—MZ)2+ (u— M2 - M})?]

o K
+L (Uu—M2=M2)2+ (t—2M2)(t—2MZ) ]+ ALY t(M2+ M2) —4M2MZ]
+2LEM2Z(M2—M2—s)+8(2LE+LEM2MZ},

To(s,t,u)= SL(s={L pc(U) + Ly (1) —u[ M (u) + M (W) TH (Mg = M2)A My (u) + M, (W) ]]+t(u—s)

2p2|2

r r 1 2 2 2 2 2 2 1 r
X[2MT (1) + Mg (D]+ 5 (M2~ MZ)[K (W) (5u—2MZ = 2M2) + Kic,(u) (Bu—2ME = 2M2) ]+ 237 (W)

2 2 2\2 3 r 3 2 2 2
X[11u2—12u(MZ+M2) + 4(MZ+M2)2]+ 3" (S)(s—MZ—M?2) + gk (W u=5(MZ+M?)

]

The functionsMpq,Lpq,Kpg.Jpq.1p, With P,Q=,K, 7, can be found i3] although they should be written in terms of
physical quantities.

We have verified analytically that this amplitude satisfies the perturbative unitarity constraint. Moreover, we have used that
constraint as a check of our programs.

We want to remark again that this way to write th& amplitude is one of several possible choices, since we could have
chosen to write everything just in termsf., for example. The important point is to keep the same chitifor the O(p?)
and theO(p%).

For completeness, we will also give the @Yformulas used in this work forr scattering, because they have also
appeared with some minor errors in the literature:

1 3 1
+ J' A(DHt(2t—M?2 )+ Ji ()t2+ J (t)M2

(s=M3)
A(s,t,u)=F—2+B(s,t,u)+C(s,t,u)+O(53), (A2)

1|\/|4

1
Tg 9+ (s M%) 37 (8) + 552 3kk(S)

B(s,t,u)—

+%(t—zMiﬁJ;w(t)+t<s—u>[M:m<t)+%MfKK<t>]+<tHu> ,
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4
C(s,t,u)= —{(2L}+L3)(s—2M2)?+ Ly[ (t—2M2)%+ (u—2M2)2]+ (4L + 2L5)MZ(s—2M2) + (8L + 4L M2}
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