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We give a pedagogical discussion of the physics underlying dispersion relation-derived parametrizations of
form factors describing3—>7-rlv_and B—DIv. Moments of the dispersion relations are shown to provide
substantially tighter constraints on tle(t) form factor describing3_—> wl v than the unweighted dispersion
relation alone. Heavy quark spin symmetry relations betweeBther| v andB* — arl v form factors enable
such constraints to be tightened even furth®0556-282(197)01513-Q

PACS numbeps): 13.20.He, 12.39.Hg

INTRODUCTION tion then arises: What is the most general form consistent
with the constraints from QCD? The answer to this question
Exclusive semileptonic decays of heavy mesons play ais the parametrization of4]. For a generic form factor
important role in the determination and overconstraining ofF(t) describing the exclusive semileptonic decay & ane-
the Cabibbo-Kobayashi-Maskaw@CKM) mixing matrix.  son to a final state mesdd as a function of momentum-
The CKM elementV,., has been extractedl] from transfer squaret=(pg— py)?, the parametrization takes the

B—D*Iv andB—DIv using heavy quark symmetfz],  form

while the elemenY, has been estimated froBw— 7l v and 1 o

B—pl v rates[3] using various models. In both cases, the F()= 572, aatityk, 1)
e ) P(t) ¢()i=0

normalization and shape of the relevant hadronic form fac-

tors influence the extracted value of the CKM angle. FoRyhere ¢5(t) is a computable function arising from perturba-

Vep, the normalization of the8—D™) matrix element at  tiyve QCD. The functiorP(t) depends only on the masses of
zero recoil is provided by heavy quark symmetry. HOWeVer,,aq0ns helow thBH pair production threshold that contrib-
typical extrapolations to this point usel hocparametriza- - . . . . .

: . : .. ute toBH pair-production as virtual intermediate states. The
tions of form factors that introduce theoretical uncertamtlesvariablez(t't ) is a kinematic function of defined b
comparable to the statistical uncertainfids]. This is espe- 0 y
cially unfortunate since the uncertainty M., feeds into 1+2(t;ty) t,—t
unitarity-triangle constraints fror@ P violation observed in 1=2(tty) “Vi—w

the kaon system as the fourth povwét. ForV,, neither the 0 + 0

normalization nor the shape is well known. The normaliza'wheret+=(MB+ M) is the pair-production threshold and

tion near zero recoil may be obtained from lattice S|mula-,[O is a free parameter that is oftd#,9—17 taken to be

tiqns or by combining heavy quark _and chiral symm(_atriest_:(MB_MH)z, the maximum momentum-transfer
with measurements of related semileptonic decays in th . . . = —
squared allowed in the semileptonic decBy-HIv. The

charmed and bottom sectpr], but a parametrization away o .
from zero recoil is necessary to compare to experimenta‘foeff'c'emsak are unknown constants constrained to obey

2

data. %
Some progress in describing the shape of such form fac- E (a)?<1. 3)
tors has recently been made in the form of model- k=0

independent parametrizatiof% 8] based on QCD dispersion
relations and analyticitf9,10]. These dispersion relations The kinematic functiorz(t;t,) takes its minimal physical
lead to an infinite tower of upper and lower bounds that caryaluezy, att=t_, vanishes at=t,, and reaches its maxi-
be derived by using the normalizations of the form factorMuUmZznmacatt=0. Thus the sunta,z" is a series expansion
F(t;) at a fixed number of kinematic pointsas input{10—  about the kinematic pointt=t,. For B—D*|v with
12]. When the normalization is known at several poifs&y, ty=t_, the maximum value daf is z,,,,=0.06, and the series
five or more forB— =l v), the upper and lower bounds are in Eg. (1) can be truncated while introducing only a small
typically so tight they look like a single line. A natural ques- €rror[4]. The valuez,,, can be made even smaller by choos-
ing an optimized value €ty<t_ [8]. In that case, most
form factors describin®3— DI v andB—D*| v can be pa-
*Electronic address: boyd@fermi.phys.cmu.edu rametrized with only one unknown constant to an accuracy
TElectronic address: savage@phys.washington.edu of a few percen{assuming the normalization at zero recoil
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Fo
IF@ FO~ o (4)

whereF is a constant. A reasonable measure of the varia-
tion of F(t) over the physical region for the semileptonic
decay is

. . CF(t)=F(0) t2—(ty—t)P
t- te FTEU)+F(0) P +(t,—t )P

®)

FIG. 1. The magnitude of a generic form factft) as a func- This measure depends only on the kinematic thresholds
tion of t. The pair-production threshotd and the semileptonicend t, t_ and the powemp. For p=1 the form factor is pole
pointt_ are shown schematically. dominated and is similar to the Shifman-Voloshin param-

eter [13], (Mg—Mp)%/(Mg+Mp)?~1/4. However, com-
given by heavy quark symmedryThus the continuous func- parison with Eq.(2) reveals thatde can be identified with
tion F(t) has been reduced to a single constant, for example,,,a Only if p=1/2 giving
the value of the form factdf (t=0) at maximum recoil. For

g 2
B— 7l v, the maximum value of is z,,,,=0.52, but even in _[ YMg—vMy _, ®
this case Eqq1) and(3) severely constrain the relevant form F Ma ot Mo - max-

factor[11,12.
This remarkable constraining power can be traced to thehis value ofp leads to the small value df,, for B—D.

existence of a naturally small paramesy,, that arises al- Other decays such g_)phj—’ D—K*| 7, etc., have larger
gebraically from a conformal map. In this paper we attempt

to trace the physical origin . in the hope of developing Y2UeS 0fZmax, With the IaLQESt occurring fd8 — 7l ». Even
some intuition about the physics underlying the analyticitylcor this extreme Cas@mayx~ 1/2 is small enough to provide a
constraints of Egs(1) and(3). Further, we will incorporate useful expansion parameter.

two generalizations that lead to a significantly stronger con-  On the face of it, this value gb seems rather surprising.
. — — After all, we know bound states exist and will contribute to
straint on the observablB— =l v form factor.

form factors like poles. On the other hand, the dispersion
relation relies on quark-hadron duality and perturbative
PHYSICAL BASIS FOR A SMALL PARAMETER QCD. In perturbative QCD the fundamental degrees of free-
dom are quarks and gluons, there are no bound states at any

To understand heuristically why there is a small paramfinite order in perturbation theory to couple to the pair-

eter associated with semileptonic heavy meson decays, coproduced fermions, and the form factor has no poles. Indeed,

sider for the moment a form factoF(t) in the decay gt |eading order in the parton model, tBe—D*1v form

B—Dlv, and taketo=t_. Crossing symmetry tells us the factors have the forrfil4] of Eq. (4),

analytic continuation of the form factdf(t) that describes

semileptonic decay for€t<t_ also describeBD pair pro- _ Fo
duction fort=t, . Figure 1 shows the general features one F(H)= J—t (@)
expects for(t) in the region Bst<. The form factor has "

a cut due to pair production beginningtatt, , as well as &  ith p=1/2. Given that there are bound states in nature, how
series of poles from bounB-type states in the vicinity of can the perturbative QCD results be trustworthy? Certainly
ty. It varies rapidly near these poles, then falls smoothlypertyrbative QCD cannot be used directly in the semileptonic
from its peak values nedr-t, to its minimum values near yegion. However, the perturbative calculation of pair produc-
t~0. It is not essential to our argument that the form faCtortion Shou'd be re”ab'e as |Ong as a |arge region of momen-
decreases monotonically asapproaches zero, only that the tum transfer is smeared ovgt5], or integrated over with
variation in F(t) over the semileptonic region0t<t_ is  smooth weighting functions. By constraining the magnitude
determined by the distance to the branch cat, and the  of the form factor in the pair-production region, the pertur-
magnitude of the form factor near the branch polgf,).  bative analysis indirectly constrains the shape of the form
For fixedF(t,), F(t) varies more slowly over the semilep- factor in the semileptonic region.
tonic region ast_/t, decreases, while for fixed_/t. For Bl v, the kinematically allowed regior_ is
F(t) also varies more slowly in the semileptonic region asych |arger, and the heuristic discussion above applies less
F(t,) decreases. Both observation and QCD perturbatioR|early. An explicit derivation is required to see that, even in
theory imply that the rate oBD pair production cannot be this case, pair-production constraints all&t) in the semi-
arbitrarily large fort>t, , and combined with the fact that leptonic region to be expanded in powerszef z,,,,,.
t,>t_ for B—DIl v, we expect the variation df(t) over
the semileptonic region to be small. We wish to associate the MOMENTS OF THE DISPERSION RELATION
small parameteg,,,, with this variation. _

Suppose the form factor can be roughly described in the For a general semileptonic dec&y—HI v, the heuristic
physical semileptonic region by discussion of the previous section can be made concrete by
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considering the two-point function for the vector or axial 1 an+2HiJi(o) 1 3n+1H](0)

— o )= _
vector currentsl= g y*b, qy*ysb that arise in the charged XSn “3I(n+3) a(g)™2 3[(n+2) a(g)"*
current decay ob hadrons:

1 9"215(0)
- 3[(n+3) d(gH)n*?

1= (U3ImITY()
—;L dt—mm ©)

Hﬁ“’(q)zif d*xe9(0| TI#(x)JI™(0)|0)

=(9"q"—q’g"")I13(g*) +g*'T5(%). (8
whereJ=V,A for vector and axial vector currents, respec-
tively. This dispersion relation relates the computation of
The polarization functiond1j7(q%) do not fall off fast (" at the unphysical valug?=0 to the weighted integral
enough at large? for an unsubtracted dispersion relation to over the pair-production region of the imaginary part of
be finite. However, derivatives of the polarization functionsI'(g?). The higher the moment the more the integral is
do fall fast enough at high? for finite dispersion relations to weighted near the pair-production threshold, so we expect
exist. As we wish to constrain hadronic form factors by athe calculation to be most reliable for low moments where
perturbative calculation, it is useful to define the derivativeshe smearing is largest.
of the polarization functions ag?=0 where the partonic It is straightforward to determine thel" in perturbative
amplitude is well behaved, far from the physical region forgcp. For a ratio of quark masses= mq/m,, & one-loop
BH pair production. Atg?=0 thenth derivative of the po- (leading order calculation of the vector current correlator
larization tensor for the curredt is gives

_3[r(n+3)* |
~27?m2"’r(2n+6)| n+1

X\ (u) F(n+1n+3:2n+6:1—u?)

1—u
- . A2y . 12
+4(n+2) (uUF(n+2n+4;2n+7;1-u*)—F(n+2n+3;2n+7;1—u"))|, (20

whereF(a,b;c;¢&) is a hypergeometric function. The same  We now turn to relatingxgn) to F(t). This is accom-
expression results for the axial current after the substitutioplished by inserting a sum over intermediate states into
u——u, ie, xPu)=x{(—u). For a massless quark ImIT!(g?),

m,=0, the expressions simplify to

i d°pd®p,
firy2y D(a—p. —
1 ImHJ(q ) 2 (277)24E1E25 (q pl pZ)
(n) —
Xv.A(0)= ——r . (1Y
: 47°m (n+1)(n+2)(n+4) N
i X2, (013" [B(py)H(p2))
The correlator, Eq(8), has also been computed at two loops X (B(py)H(py)|Ji|0)+ - - -, (12)

[16], i.e., O(as). The higher order corrections result in a

25% increas¢12] in x(°(0). where the sum is over polarizations Bf and the ellipsis

Since production oBH hadrons is a subset of total had- denotes strictly positive contributions from ti&, higher
ronic production, the perturbative calculatig” serves to  resonances and multiparticle states. In terms of a calculable
constrain the analytically continued form factors ®+H  kinematic functionk(t) arising from two-body phase space
decay. More precisely, the partonic computation provides a@nd the Lorentz structure associated with the form factor
upper bound to the smeared contributions of poles and cufs(t), we may substitute the inequality
above the pair production threshold. The contribution of
poles below threshold will also influence the variation of a SImITY () =k(t)|F(t)|? (13
given form factorF(t) in the semileptonic region, and must
be considered separately. While subth'reshol'd contriputionmto Eq.(9) to get the contribution to the hadronic moment
are not a fundamental aspect of the dlSpﬂSlon relation ap)zgn) (hadronig from the form factorF () of interest,
proach(for example, form factors ilD— #l v are analytic
below theD — 7 threshold, they are not accounted for by the w 2

. : n Ny [=k(t)|F(D)]

perturbative calculation and must be properly handled when XS )(hadronig= — — (14)
presen{17]. mle, ot
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wheren, is the isospin degeneracy of tiBH pair. We rely ~makes it clear thaz(t;t,) vanishes at=t, and has magni-
on perturbative QCD at the unphysical poigt=0 (or tude one in the pair-production regiofz(t;t,)[=1 for
equivalently, on global duality for suitably smeared produc-t=t. . We can therefore construct a quantity with no poles
tion rate$ to assert that hadronic and partonic expression@utside the pair-production region by multiplying”(t) and

for y are equal. Then for eaah F(t) by factors ofz(t;t,) for each pole at,. To make an
analytic function outside the pair-production region, we gen-
x\V(hadronig = x{"(u), (15  erally also need to eliminate square-root branch cuts in

. _ h("(t) that arise from factors of thed-meson three-
where xj”’(u) is thenth moment as computed in perturba- momentum by dividing byyz(t,t_). The elimination of

tive QCD. Therefore we have that poles and cuts fromh™(t) by h™(t)—B(t)h™(t), where
n =k(t)|F(t)|? P(t) is a product ofz(t;0)’s and \/z(t,t_)’s, can be auto-
wa“)(u)ft+ s =1, (16)  matically accomplished by replacing
and hence 1 —z(t;O)_ 1

-

T (e

1 o
il () 2
th+dt|h (OF(D[2=<1, 17)

t_—t
V—to o= —tht -t @0
where h™(t) = n k(t)/xV(u)t~ "2 The argument of 2(t;t-)

the square root is positive since the integrand came from 2he elimination of poles fronf(t) by F(t)— P(1)F(t) is

production rate. . o B g
The inequality of Eq(17) makes clear how the perturba- accomprl]lshedt bg {pulnplykl)r:rg]] byhalgroduﬁ’[(t)—l'[jzf(t_,tj) ant
tive calculation constrains the magnitude of the form factof©" €ach contributing subthreshold resonance of invarian

in the pair-production region. To constrain the form factor inMass squaretj . SinceP(t) andP(t) have a unit modulus
the semileptonic region €t<t_, we would like to find ~@long the pair-production cythe integration region in Eq.
functions ¢, (t) that are orthonormal with respect to the in- (17)], the well-behaved quantiti?(t)h(™(t) P(t)F(t) obeys

tegral Eq.(17), the same relation:

1 (= 1 (>
;LdtRe[@k(t)@T(t)F Okj» (18 ;ft+dt|P(t)h<”)(t)P(t)F(t)|2s1. (21

and that vanish somewhere in the semileptonic region, say
0<ty,<t_. We could then expant(™(t)F(t) in terms of
these basis functions and use E#j7) to bound the expan-

sion coefficients.If h (t)F(t) turned_out to be analytic in the unphysical region_<t<t, . In Eq. (17), the poles in

t outside the _paw—produpnon région, its expansion would beF(t) above threshold are constrained by the perturbative cal-
equally valid in the semileptonic region, and we would have

a parametrization df (t) in terms of unknown, but bounded culation; in Eq.(21), the poles below threshold are accom-
expansion coefficients. Unfortunately, neithiet™(t) nor modated byP(t). Both sets of poles influence the shape of

. . : ._F(t) in the semileptonic region. Sind®(t) depends only on
F(t) are in general analytic away from the palr'pmducuonth(e)position of th% poles gbelow thd:(szloldpand not {)n the
cut. The kinematic factoh(™(t) has explicit poles at=0

. residues, it applies for arbitrarily strong or weak residues.
and the f.f””? factoF(t) may also have pples arising from Therefore, we should not be surprised that the eventual effect
the contribution of bound states that can interpolate betweegs , ontrivial functionP(t) is to weaken the constraint on
the current) and theBH pair. For example, the experimen- F(t).
tally accessible form factof, (t) in B—#l v has a pole at In terms of orthonormal functiong,(t) satisfying Eq.
t=M2, coming from the contribution of thB* resonance. (18), the expansion

Fortunately, a simple pole at=t, can be eliminated by
multiplying by z(t;t,). Rewritingz [as defined in Eq2)] as

%hereasﬁ(t) may be viewed as a technical device to
smooth out the kinematic functidrf™(t), P(t) contains es-
sential information about the resonance structur& @) in

"F?<t>h<“><t>P<t>F<t>=k20 a (1) (22)
t,—t B

RN

(19 combines with Eq(21) to yield

(n)y2
a <1, 23
we can choose the expansion coefficiemfsto be real so that IZO (@) @3

only Re{cpk(t)cpj*(t)] need vanish fok+#j since it is this expres-

sion that arises it ay@y|?. In a more general case where theare  valid for moderate values af=0. As the expression given
complex, our results go through unchanged if the inner product inn Eq. (22) is valid everywhere outside the cut in the com-
Eg. (18) is redefined agf,g)slimﬁo(llzw)mdt[f(wie)g*(t plex t plane the form factoF(t) in the region of semilep-
+ie)+f(t—ie)g*(t—ie)]. tonic decay Gt<t_ is
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1 * applies equally well to\, baryons, or eve® andK mesons
F(t)= ?2 al" oi(t). (24)  if II(g?) is evaluated at an appropriate spacetifeSpecial-
PR (t)P(t)k=0 ization to a particular decay and form factor requires an ex-

The sum is over k=0 because bv construction plicit computation of the¢ functions. For a pseudoscalar
- y final mesorH or a vector mesohl* with polarizatione, the

PhM()P(H)F(t) has no poles fot<t,. All that re-  yarious form factors in semileptoni decay may be defined
mains is to find the orthogonal polynomiaig(t). This a |

math problem that can be accomplished by a change of vari-y

ables. In the complekplane, the integration contour may be ;- LIR(A — iy caBy & 7

viewed as a segment fromo to t=t_ just below the cut (H* (P, e[V IB(p))=ige e, pypy.

and a segment fror=t, to + just above the cut. Defin- . v

ing y=+t—t, maps the line segments just above and beIOV\ﬂH (p",e)|A*[B(p))

this cut onto the reay axis. They axis in turn can be =fe* +(e*-p)as(p+p ) +a_(p—p’)*],
mapped onto the unit circle by the bilinear transformation
z(ttg)=(y— Vto—t)/(y+ Vto—t,). This is precisely the
change of variables in Eq2). Sincez"=e'"? are orthonor-
mal functions on the unit circle, we can work backwards to
find

(H(p")|VHB(p))=Ff(p+p")“+f_(p—p)*, 27)

where it is useful to also define

1 1 ,
St =t —ha, — S (t=MG+MAT],
(28

(1) ! /t+_t0>m( Vi —t=Vt, —1p “ Fl:Mi
¢ = .
=t —to et )\~ E -t H
(25
The expansion in orthonormal basis functions is simply
Taylor series irz(t;ty)¥. However, the variable does little
to aid the development of physical intuition, so we continue

P
to work with the momentum transfér Contact with previ- ki(t)= Ls( E) [(t—t ) (t—t_)]W2 (29)
ous literaturg4,8] can be made by identifying 3m2°\ t

with t=(p—p’)2. It is straightforward to determine the
ak(t) function associated with each of the form factors:

to—t\ V4 For the form factors whose contribution to the rate is unsup-
M2(tito)]= (Nt —t+ Vt+_to)(t+_t0) P(Hh™ (D), pressed by the lepton mass, the indisep, andw are given
(26) by
choosingn=0, settingt,=t_ [or, in the case and language Kg(t):s=5, p=1, w=3,
of [8], to=(1—N)t, +Nt_], and expressing the “Blaschke
factors” [18-2(Q z(t;t,) composing P(t) in terms of ke (1):s=4, p=2, w=1,
z(t;t_) andz(t,;t_). With these identifications E¢24) be- !
comes Eq(1) with ¢(z)=¢(z) anda,=a". ki(t):s=3, p=1, w=1,
PARAMETRIZATIONS FOR SEMILEPTONIC FORM kf+(t):S:4, p=2, w=3. (30)

FACTORS

We are primarily interested in constraining form factors The ¢("(t) functions defined in Eq26) for each form fac-
that describe the decay Bf mesons, although the formalism tor are

_ 4\ 1/4
(f’fn)(t;to):\/%lx(n)(i) (=t E) TP~ VE —to) (VE — Ve )AL, — )™,
J

t+ - tO

(31

Our previous discussions allow us to see that each particular form fiactoas the functional form
Fi(t)= ;2 al"z(t;to)" (32)

Pi(1) " (t;t0)i=0
for each momenh and expansion poirty, wherez may be expressed as
Vi, —t—yt -t

2(ttg) = — 9 (33

Vi =ttt
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and=(a{")?<1.
The Blaschke factorP;(t) depend on the masses of subthreshold resonance&-F&@| v andB—D*| v from factors,

the masses of the relevaBt-type resonances can be rather accurately estimated from potential m@b@g. Using the
results of[21] in Eq. (19), the Blaschke factors for the form factdrsandF, are

Pi(t) =P ()=2(t;(6.730 GeV?)z(t;(6.736 GeV?)z(t;(7.135 GeV?)z(t;(7.142 GeV?), (34)
while for the form factorg andf, they are
Py(t)=2(t;(6.337 GeV?)z(t;(6.899 GeVd)z(t;(7.012 GeV?)z(t;(7.280 GeV?) (35
and
Pi,(1)=2(t;(6.337 GeV?)z(t;(6.899 GeV?)z(t;(7.012 GeV?), (36)

respectively. ForB—mlv, there is only one resonance and the form facfor(t) has the Blaschke factor

P(t)=2z(t;(5.325 GeV¥). For D— ml v, there are no resonances, anet)=1.
For the lowest momentn=0) andty=t_, Egs.(31)—(33) reproduce the results d#], while for arbitraryt, they
reproduce the results for mesons giverj8f For higher momentsn(>0) and a given form factoF;, they imply

o ¢(n)(t) =] XSO) 1 n oo ' 0
(M ogrgep VK T (0)grgep VK AJ () N (N (0) /3.4 \K
2 a,z(titg) =—or—2 &, z(t;ty) = —_— 2 a, 'z(t;ty) = 2 ciz(t;tg) 2 a, 'z(t;tg)".
= RO = X Ve —t+ 0t | S0 ) =
(37)
It is a simple matter to compute the coefficien?@ and match powers of. The conditionE(a(k”))2<l then implies
(cMal®)2+ (cMa®+cMal®)2+ (ciVal® + cMal® + cMal®)2+ . . . <1, (38)

for eachn. For a given set otj(”) one may find that the lope of parametrizatioRgonsistent with the=0 dispersion
higher moments provide tighter constraints on #® than  relation. Varying al® subject to the constraint of theth
the lowest moment alone. This is the caseBor , for the ~ moment results in a smaller allowed range &, for the
lowest few moments. However, f@—D the higher mo- first few n. Since the allowed range &f, (t) is proportional
ments do not improve the bounds imposed by the lowesto the allowed range aif”, a relative reduction in the range
moment. of af”) leads to the same relative reduction in the width of
the envelope.
The one-loop results for the allowed range aff’ are
CONSTRAINTS FOR B mlv shown in the second column of Table I. We have used a pole
quark massn,=Mg— A corresponding ta\ =0.4 GeV[25]

To make use of Eq(32) in extractingV,, from experi-  (varying A by +0.1 GeV results in no more than a 6%
mental measurements &— =l v we should keep only a change in the boungisand fixedto=t_. Note that the
finite number of parametelzs(KO) and compute the maximal n=3 bounds are tighter tha_n tIne=_O result by a factor of 3.
truncation error from the omission of higher order terms in!n fact, then=6 bound(not listed is better by a factor of 4.

: . . S . (n) i i
the series. This truncation error can be minimized by opti7OWever, x'™ receives known[16] corrections from

. : : two-loop perturbative graphgO(«s)] and nonperturbative
mizing t, and thereby decreasing,, [8]. Applying Eg. . S
(38) further decreases the truncation error by restricting thdnatrix _elements. We use values of the cirldens—
range of higher order parametdif course, it also restricts at€S (U1 gev=(—0.24 Gevj and adm(G,,G"")

the range of the parameters we kpeBoth effects decrease — 0-02+0.02 GeV from [27]. The third and fourth columns
the number of parameters required to deternfinét) at a of Table | show the perturbative and condensate correction

given level of accuracy. faCtorSsz]e)rt and p{3),q defined by
Experimental data o8 — =l v are not yet available to
precisely describe the shapefaf(t) and so for now we will X" (two loop) = (1+ paret piond ™ (one loop. (39)

simply illustrate the utility of the higher moments. Imagine

f (1) is known at some fixed number of kinematic points.

For concreteness we choose the lattice-inspired values2This procedure is equivalent to the method of computing upper
[12,23,24 f, (21 GeV¥)=1.7 andf, (0 GeV¥)=0.5 to fix  and lower bounds by forming determinants of inner products often
al anda® in terms ofal’. Varying al) subject to the used in the literaturé9—12,26. However, Eq.(32 also dictates
zeroth moment constrairE(a‘kO))2<1 maps out the enve- the shape of curves allowed inside the envelope.
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TABLE I. Values of the zeroth-moment parame#s? consistent with theith moment constraint. From
left to right is the constraint oay) at one loop, the relative two-loop perturbative and condensate contribu-
tions poy, and p{ohs, the constraint oray” at two loops, and the two-loop constraint aff’ including the
B* 7r spin symmetry contribution as described in the text.

n a3 (one loop pion Pl a3 (two loop al® (HQ9

0 —0.77<a,<0.79 0.23 0.01 —0.78<a,<0.79 —0.54<a,<0.58

1 —~0.45<a,<0.47 0.32 0.06 —-0.52<a,<0.53 —-0.40<a,<0.41

2 —-0.33<a,<0.34 0.38 0.14 —0.44<a,<0.45 ~0.36<a,<0.36

3 —0.26<a,<0.28 0.42 0.28 —0.40<a,<0.41 —0.35<a,<0.35
Beyond n=3 the sum of these corrections approaches 2 oM(t.) M _\?2

; iahili n__—_ 749 (n)_ kil (n)

100% of the leading result and the reliability of the calcula- by Mg —m (t ) \/5 1+ VR g,
tion becomes questionable. Evemat 3, the corrections are 1 B
large enough that one might worry about the convergence of 5
the operator product expansion. We will use=2 in our m_ Mz Mz1" )
examples. The allowed range a$®) using the two-loop re- b =412 Mg20 2|1+ Mg 31 (45

sult, including condensates, is shown in the fifth column of

Table I. Although weaker than the corresponding one-loogo +10%. Taking 90% of the absolute values of the right-

result, the two-loop bounds fan>0 remain significantly hand sides of Eq(45) gives lower bounds 0|11b(”)| and

more constraining than the=0 bounds. |b{"|, that can be inserted into E¢44) (this constraint ap-
The ellipsis in Eq(12) includes the contribution of inter- plies as well to heavy-heavy systems, where it could be fur-

mediateB* 7 states to the hadronic moments. In the heavyther improved by including thé*D* intermediate staje

b-quark limit, the form factow, , defined by The improvement on the range af® from the inclusion of
o this additional hadronic final state is shown in the last col-

(w(p')|V“|B*(p,e))zig*ef‘aﬁyeap"gpw (40)  umn of Table I(using two-loop amplitudgs The effect is

~30% forn=0, decreasing te-15% forn=3.

is related tof . by spin symmetry when the meson is soft The n=0 bounds orf , (t) at two loops, without the ap-
(i.e., neart=t_): plication of spin symmetry(column five of Table ), are
shown as the outer, dashed, pair of curves in Fig. 2, while the
, 2 , 1 bounds from then=2 improvement, including the contribu-
9x(v-p")= M_Bf+(v'p |10\ | @ ion from B* o, are given by the inner, solid, pair of curves.

The constraints arising from the=0 moments are a dra-
where v=p/Mg. Including the contribution of theB* 7+  Matic improvement over the lowest order=0 constraint
state(similar contributions were used {28] for the B—B  alone. Note that even the=1 bounds in the last column of
elastic form factor modifies the constraint of E421) to Table | represent an improvement over thahefO alone by

nearly a factor of 2.

1 (= The quickly weakening constraint nets=t_ would be
;ft dt|P(OX(t) " ()] +] P(t)X(t)qu,Z)g* (D?1<1,  absent had we included a normalization at zero recoil. Figure
* (42) 3 shows the spin-improved,=2 constraint assuming an ad-

where  X(t)=[(t; —to)/(t: —t)JY¥(Vt, —t+ i, —to). 40
One finds thatpy = ¢4, so expanding
w £00)
9 (0= 5o, B 26" (43)

P(t)qsg =

0.5 |
leads to the constraint

2 (aiM)2+ (b{M)2<1. (44)

- - FIG. 2. Upper and lower bounds on tiBe— =l » form factor
We cannot relate all of thé,” to the a” because the ¢ () The dashed lines are the bounds arising fromrtaed mo-

b-quark spin symmetry is only valid near=t_. One eX-  ment while the solid lines are the bounds arising from tie2
pects that the normalization and first derivativegf and  moment. The form factor has been fixed at two points by the lattice
f, att_ obey the heavy quark relation to 10% for the inspired valuest. (21 GeV?)=1.7 andf_(0)=0.5. The allowed
physicalB mass, so regions are the interiors of the dashed or solid pairs of curves.
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We have traced the smallnesszaf,, to the dual nature of
the hadronic and partonic descriptions of QCD. Whereas in
the hadronic description the form factor is a sum of poles and
less singular terms, in the partonic description the form fac-
tor is always less singular than a pole. Duality then implies
that the variation of the form factd¥(t) over the physical

region 0<t<t_ for the semileptonic deC@T*)HlV_iS char-
acterized by

6.0

40

2

0.5

Me— My
Mgt VM

The small values of,,,, are due to the square-root depen-
dence on meson masses, which is in turn a consequence of
the absence of poles in the partonic description of QCD.

We applied these ideas in a discussion of analyticity con-
straints in terms of the momentum-transfer variabléVe

ditional normalization,f,(t_)=6. It gives a feel for how Improved the constraints on thé,(t) form factor by
tightly f,(t) can be constrained given measurements of-15-30 % by including the contribution of tHg* — =l v

f, (t) at only three points. In this casg, (t) is determined form factor usingb-quark spin symmetry to relate it to the
to better than+ 15% over the entire kinematic region. These B— | » form factor at zero recoil. We also improved the
plots are presented only to provide a feel for what is needeg@nalyticity constraints by considering higher moments of the
to describef . (t) to a given accuracy. In practice, one should dispersion relation. As an illustrative example, we fixed the
fit th'e parametrization Eq32) to experimenta_l dgta and the- hormalization of theB— 7l v form factor f, (t) at two ki-
oretical(lattice or heavy quark symmefrpredictions to ex-  nematic points to lattice-inspired values, and plotted the en-
tractVy,. The work presented here should improve the preygope of allowed parametrizatioriBig. 2). The higher mo-
cision of such extractions significantly. ment constraints result in upper and lower bounds that are
roughly twice as tight as the traditional, zeroth-moment re-
sult. Given a third normalization at zero recoil, the form
) ) ) ) factor is determined over the entire kinematic range to
We have discussed constraints on semileptonic form facs 15%, as shown in Fig. 3. This suggests that a parametri-
tors arising from analyticity and dispersion relations, and,ation using one normalizatiofpossibly given by lattice or
identified the physical origin of the naturally small parameterhea\,y quark symmetry predictionand two free parameters

Zmax- The shape and magnitude of an analytically continueqtoy|d eventually be used for a model-independent extraction
form factor in the pair production region has significant im- ¢ V,, With roughly 30% theoretical errors arising from the
pact upon the size and shape of the form factor in the semj- dependence.

leptonic region. Perturbative constraints on pair production
therefore constrain semileptonic decay amplitudes. Such
constraints take the form of parametrizations of form factors
in terms of a small number of unknown, but bounded, con-
stantsa,. Only a small number of, are needed to describe
a given form factor because the parametrizations arise fro
truncated expansions in a kinematic variab(g;ty) that is

surprisingly small,z(t;to)| <Zya—=0.065 for B—D*| v
and|z(t;tg)|<zma=0.52 forB— 1l v.

F(t_)—F(0)
F(t)+F(0)

= Zmax- (46)

0 t(GeV?) t.

FIG. 3. Bounds on th&— =l v form factorf , (t) arising from
three normalization pointst_ (t_)=6.0, (21 GeV)=1.7 and
f,(0)=0.5. The constraints are from moments &2 as dis-
cussed in the text, including th8* = hadronic intermediate state
using bottom-quark spin symmetry att_ .
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