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We give a pedagogical discussion of the physics underlying dispersion relation-derived parametrizations of

form factors describingB→p l n̄ andB→Dl n̄ . Moments of the dispersion relations are shown to provide

substantially tighter constraints on thef1(t) form factor describingB̄→p l n̄ than the unweighted dispersion

relation alone. Heavy quark spin symmetry relations between theB→p l n̄ andB*→p l n̄ form factors enable
such constraints to be tightened even further.@S0556-2821~97!01513-0#

PACS number~s!: 13.20.He, 12.39.Hg

INTRODUCTION

Exclusive semileptonic decays of heavy mesons play an
important role in the determination and overconstraining of
the Cabibbo-Kobayashi-Maskawa~CKM! mixing matrix.
The CKM element Vcb has been extracted@1# from

B̄→D* l n̄ and B̄→Dl n̄ using heavy quark symmetry@2#,

while the elementVub has been estimated fromB̄→p l n̄ and

B̄→r l n̄ rates@3# using various models. In both cases, the
normalization and shape of the relevant hadronic form fac-
tors influence the extracted value of the CKM angle. For
Vcb , the normalization of theB→D (* ) matrix element at
zero recoil is provided by heavy quark symmetry. However,
typical extrapolations to this point usead hocparametriza-
tions of form factors that introduce theoretical uncertainties
comparable to the statistical uncertainties@4,5#. This is espe-
cially unfortunate since the uncertainty inVcb feeds into
unitarity-triangle constraints fromCP violation observed in
the kaon system as the fourth power@6#. ForVub neither the
normalization nor the shape is well known. The normaliza-
tion near zero recoil may be obtained from lattice simula-
tions or by combining heavy quark and chiral symmetries
with measurements of related semileptonic decays in the
charmed and bottom sector@7#, but a parametrization away
from zero recoil is necessary to compare to experimental
data.

Some progress in describing the shape of such form fac-
tors has recently been made in the form of model-
independent parametrizations@4,8# based on QCD dispersion
relations and analyticity@9,10#. These dispersion relations
lead to an infinite tower of upper and lower bounds that can
be derived by using the normalizations of the form factor
F(t i) at a fixed number of kinematic pointst i as input@10–
12#. When the normalization is known at several points~say,
five or more forB̄→p l n̄ ), the upper and lower bounds are
typically so tight they look like a single line. A natural ques-

tion then arises: What is the most general form consistent
with the constraints from QCD? The answer to this question
is the parametrization of@4#. For a generic form factor
F(t) describing the exclusive semileptonic decay of aB̄ me-
son to a final state mesonH as a function of momentum-
transfer squaredt5(pB2pH)

2, the parametrization takes the
form

F~ t !5
1

P~ t !f~ t !(k50

`

akz~ t;t0!
k, ~1!

wheref(t) is a computable function arising from perturba-
tive QCD. The functionP(t) depends only on the masses of
mesons below theB̄H̄ pair production threshold that contrib-
ute toB̄H̄ pair-production as virtual intermediate states. The
variablez(t;t0) is a kinematic function oft defined by

11z~ t;t0!

12z~ t;t0!
5A t12t

t12t0
, ~2!

wheret15(MB1MH)
2 is the pair-production threshold and

t0 is a free parameter that is often@4,9–12# taken to be
t25(MB2MH)

2, the maximum momentum-transfer
squared allowed in the semileptonic decayB̄→Hl n̄ . The
coefficientsak are unknown constants constrained to obey

(
k50

`

~ak!
2<1. ~3!

The kinematic functionz(t;t0) takes its minimal physical
valuezmin at t5t2 , vanishes att5t0, and reaches its maxi-
mumzmax at t50. Thus the sum(akz

k is a series expansion
about the kinematic pointt5t0. For B̄→D* l n̄ with
t05t2 , the maximum value ofz is zmax50.06, and the series
in Eq. ~1! can be truncated while introducing only a small
error@4#. The valuezmax can be made even smaller by choos-
ing an optimized value 0<t0<t2 @8#. In that case, most
form factors describingB̄→Dl n̄ and B̄→D* l n̄ can be pa-
rametrized with only one unknown constant to an accuracy
of a few percent~assuming the normalization at zero recoil
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given by heavy quark symmetry!. Thus the continuous func-
tion F(t) has been reduced to a single constant, for example,
the value of the form factorF(t50) at maximum recoil. For
B̄→p l n̄ , the maximum value ofz is zmax50.52, but even in
this case Eqs.~1! and~3! severely constrain the relevant form
factor @11,12#.

This remarkable constraining power can be traced to the
existence of a naturally small parameterzmax that arises al-
gebraically from a conformal map. In this paper we attempt
to trace the physical origin ofzmax in the hope of developing
some intuition about the physics underlying the analyticity
constraints of Eqs.~1! and ~3!. Further, we will incorporate
two generalizations that lead to a significantly stronger con-
straint on the observableB̄→p l n̄ form factor.

PHYSICAL BASIS FOR A SMALL PARAMETER

To understand heuristically why there is a small param-
eter associated with semileptonic heavy meson decays, con-
sider for the moment a form factorF(t) in the decay
B̄→Dl n̄ , and taket05t2 . Crossing symmetry tells us the
analytic continuation of the form factorF(t) that describes
semileptonic decay for 0<t<t2 also describesB̄D̄ pair pro-
duction for t>t1 . Figure 1 shows the general features one
expects forF(t) in the region 0<t<`. The form factor has
a cut due to pair production beginning att5t1 , as well as a
series of poles from boundBc-type states in the vicinity of
t1 . It varies rapidly near these poles, then falls smoothly
from its peak values neart;t1 to its minimum values near
t;0. It is not essential to our argument that the form factor
decreases monotonically ast approaches zero, only that the
variation in F(t) over the semileptonic region 0<t<t2 is
determined by the distance to the branch cutt5t1 and the
magnitude of the form factor near the branch point,F(t1).
For fixedF(t1), F(t) varies more slowly over the semilep-
tonic region ast2 /t1 decreases, while for fixedt2 /t1 ,
F(t) also varies more slowly in the semileptonic region as
F(t1) decreases. Both observation and QCD perturbation
theory imply that the rate ofB̄D̄ pair production cannot be
arbitrarily large fort.t1 , and combined with the fact that
t1@t2 for B̄→Dl n̄ , we expect the variation ofF(t) over
the semileptonic region to be small. We wish to associate the
small parameterzmax with this variation.

Suppose the form factor can be roughly described in the
physical semileptonic region by

F~ t !;
F0

~ t12t !p
, ~4!

whereF0 is a constant. A reasonable measure of the varia-
tion of F(t) over the physical region for the semileptonic
decay is

dF5
F~ t2!2F~0!

F~ t2!1F~0!
5
t1
p 2~ t12t2!p

t1
p 1~ t12t2!p

. ~5!

This measure depends only on the kinematic thresholds
t1 ,t2 and the powerp. For p51 the form factor is pole
dominated anddF is similar to the Shifman-Voloshin param-
eter @13#, (MB2MD)

2/(MB1MD)
2;1/4. However, com-

parison with Eq.~2! reveals thatdF can be identified with
zmax only if p51/2 giving

dF5S AMB2AMH

AMB1AMH
D 25zmax. ~6!

This value ofp leads to the small value ofzmax for B→D.
Other decays such asB̄→r l n̄ , D→K* l n̄ , etc., have larger
values ofzmax, with the largest occurring forB̄→p l n̄ . Even
for this extreme case,zmax'1/2 is small enough to provide a
useful expansion parameter.

On the face of it, this value ofp seems rather surprising.
After all, we know bound states exist and will contribute to
form factors like poles. On the other hand, the dispersion
relation relies on quark-hadron duality and perturbative
QCD. In perturbative QCD the fundamental degrees of free-
dom are quarks and gluons, there are no bound states at any
finite order in perturbation theory to couple to the pair-
produced fermions, and the form factor has no poles. Indeed,
at leading order in the parton model, theB̄→D* l n̄ form
factors have the form@14# of Eq. ~4!,

F~ t !5
F0

At12t
, ~7!

with p51/2. Given that there are bound states in nature, how
can the perturbative QCD results be trustworthy? Certainly
perturbative QCD cannot be used directly in the semileptonic
region. However, the perturbative calculation of pair produc-
tion should be reliable as long as a large region of momen-
tum transfer is smeared over@15#, or integrated over with
smooth weighting functions. By constraining the magnitude
of the form factor in the pair-production region, the pertur-
bative analysis indirectly constrains the shape of the form
factor in the semileptonic region.

For B̄→p l n̄ , the kinematically allowed regiont2 is
much larger, and the heuristic discussion above applies less
clearly. An explicit derivation is required to see that, even in
this case, pair-production constraints allowF(t) in the semi-
leptonic region to be expanded in powers ofz<zmax.

MOMENTS OF THE DISPERSION RELATION

For a general semileptonic decayB̄→Hl n̄ , the heuristic
discussion of the previous section can be made concrete by

FIG. 1. The magnitude of a generic form factorF(t) as a func-
tion of t. The pair-production thresholdt1 and the semileptonic end
point t2 are shown schematically.
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considering the two-point function for the vector or axial

vector currentsJ5 q̄gmb, q̄gmg5b that arise in the charged
current decay ofb hadrons:

PJ
mn~q!5 i E d4xeiqx^0uTJm~x!J†n~0!u0&

5~qmqn2q2gmn!PJ
T~q2!1gmnPJ

L~q2!. ~8!

The polarization functionsPJ
L,T(q2) do not fall off fast

enough at largeq2 for an unsubtracted dispersion relation to
be finite. However, derivatives of the polarization functions
do fall fast enough at highq2 for finite dispersion relations to
exist. As we wish to constrain hadronic form factors by a
perturbative calculation, it is useful to define the derivatives
of the polarization functions atq250 where the partonic
amplitude is well behaved, far from the physical region for
B̄H̄ pair production. Atq250 thenth derivative of the po-
larization tensor for the currentJm is

xJ
~n![

1

3G~n13!

]n12PJ
ii ~0!

]~q2!n12 5
1

3G~n12!

]n11PJ
T~0!

]~q2!n11

2
1

3G~n13!

]n12PJ
L~0!

]~q2!n12

5
1

pE0
`

dt
~1/3!ImPJ

ii ~ t !

tn13 , ~9!

whereJ5V,A for vector and axial vector currents, respec-
tively. This dispersion relation relates the computation of
xJ
(n) at the unphysical valueq250 to the weighted integral

over the pair-production region of the imaginary part of
PJ

ii (q2). The higher the momentn the more the integral is
weighted near the pair-production threshold, so we expect
the calculation to be most reliable for low moments where
the smearing is largest.

It is straightforward to determine thexJ
(n) in perturbative

QCD. For a ratio of quark massesu5mq /mb , a one-loop
~leading order! calculation of the vector current correlator
gives

xV
~n!~u!5

3@G~n13!#2

2p2mb
2n12G~2n16!

F 1

n11
F~n11,n13;2n16;12u2!

1
12u

4~n12!
„uF~n12,n14;2n17;12u2!2F~n12,n13;2n17;12u2!…G , ~10!

whereF(a,b;c;j) is a hypergeometric function. The same
expression results for the axial current after the substitution
u→2u, i.e., xA

(n)(u)5xV
(n)(2u). For a massless quark

mq50, the expressions simplify to

xV,A
~n! ~0!5

3

4p2mb
2n12

1

~n11!~n12!~n14!
. ~11!

The correlator, Eq.~8!, has also been computed at two loops
@16#, i.e., O(as). The higher order corrections result in a
25% increase@12# in x (0)(0).

Since production ofB̄H̄ hadrons is a subset of total had-
ronic production, the perturbative calculationx (n) serves to
constrain the analytically continued form factors forB̄→H
decay. More precisely, the partonic computation provides an
upper bound to the smeared contributions of poles and cuts
above the pair production threshold. The contribution of
poles below threshold will also influence the variation of a
given form factorF(t) in the semileptonic region, and must
be considered separately. While subthreshold contributions
are not a fundamental aspect of the dispersion relation ap-
proach~for example, form factors inD→p l n̄ are analytic
below theD2p threshold!, they are not accounted for by the
perturbative calculation and must be properly handled when
present@17#.

We now turn to relatingxJ
(n) to F(t). This is accom-

plished by inserting a sum over intermediate states into
ImPJ

ii (q2),

ImPJ
ii ~q2!5

1

2E d3p1d
3p2

~2p!24E1E2
d~4!~q2p12p2!

3(
pol

^0uJ†i uB̄~p1!H̄~p2!&

3^ B̄~p1!H̄~p2!uJi u0&1•••, ~12!

where the sum is over polarizations ofH and the ellipsis
denotes strictly positive contributions from theB* , higher
resonances and multiparticle states. In terms of a calculable
kinematic functionk(t) arising from two-body phase space
and the Lorentz structure associated with the form factor
F(t), we may substitute the inequality

1
3 ImPJ

ii ~ t !>k~ t !uF~ t !u2 ~13!

into Eq. ~9! to get the contribution to the hadronic moment
xJ
(n) ~hadronic! from the form factorF(t) of interest,

xJ
~n!~hadronic!>

nI
p E

t1

`k~ t !uF~ t !u2

tn13 , ~14!
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wherenI is the isospin degeneracy of theB̄H̄ pair. We rely
on perturbative QCD at the unphysical pointq250 ~or
equivalently, on global duality for suitably smeared produc-
tion rates! to assert that hadronic and partonic expressions
for x are equal. Then for eachn,

xJ
~n!~hadronic!5xJ

~n!~u!, ~15!

wherexJ
(n)(u) is thenth moment as computed in perturba-

tive QCD. Therefore we have that

nI
pxJ

~n!~u!
E
t1

`k~ t !uF~ t !u2

tn13 <1, ~16!

and hence

1

pEt1
`

dtuh~n!~ t !F~ t !u2<1, ~17!

where h(n)(t)5AnIk(t)/xJ
(n)(u)t2(31n)/2. The argument of

the square root is positive since the integrand came from a
production rate.

The inequality of Eq.~17! makes clear how the perturba-
tive calculation constrains the magnitude of the form factor
in the pair-production region. To constrain the form factor in
the semileptonic region 0<t<t2 , we would like to find
functionswk(t) that are orthonormal with respect to the in-
tegral Eq.~17!,

1

pEt1
`

dtRe@wk~ t !w j* ~ t !#5dk j , ~18!

and that vanish somewhere in the semileptonic region, say at
0<t0<t2 . We could then expandh(n)(t)F(t) in terms of
these basis functions and use Eq.~17! to bound the expan-
sion coefficients.1 If h(n)(t)F(t) turned out to be analytic in
t outside the pair-production region, its expansion would be
equally valid in the semileptonic region, and we would have
a parametrization ofF(t) in terms of unknown, but bounded,
expansion coefficients. Unfortunately, neitherh(n)(t) nor
F(t) are in general analytic away from the pair-production
cut. The kinematic factorh(n)(t) has explicit poles att50
and the form factorF(t) may also have poles arising from
the contribution of bound states that can interpolate between
the currentJ and theB̄H̄ pair. For example, the experimen-
tally accessible form factorf1(t) in B̄→p l n̄ has a pole at
t5MB*

2 coming from the contribution of theB* resonance.
Fortunately, a simple pole att5tp can be eliminated by

multiplying by z(t;tp). Rewritingz @as defined in Eq.~2!# as

z~ t;tp!5
tp2t

~At12t1At12tp!
2
, ~19!

makes it clear thatz(t;tp) vanishes att5tp and has magni-
tude one in the pair-production region,uz(t;tp)u51 for
t>t1 . We can therefore construct a quantity with no poles
outside the pair-production region by multiplyingh(n)(t) and
F(t) by factors ofz(t;tp) for each pole attp . To make an
analytic function outside the pair-production region, we gen-
erally also need to eliminate square-root branch cuts in
h(n)(t) that arise from factors of theH-meson three-
momentum by dividing byAz(t,t2). The elimination of
poles and cuts fromh(n)(t) by h(n)(t)→ P̃(t)h(n)(t), where
P̃(t) is a product ofz(t;0)’s andAz(t,t2)’s, can be auto-
matically accomplished by replacing

1

t
→

2z~ t;0!

t
5

1

~At12t1At1!2
,

At22t→A t22t

z~ t;t2!
5At12t1At12t2. ~20!

The elimination of poles fromF(t) by F(t)→P(t)F(t) is
accomplished by multiplying by a productP(t)5P j z(t;t j )
for each contributing subthreshold resonance of invariant
mass squaredt j . SinceP̃(t) andP(t) have a unit modulus
along the pair-production cut@the integration region in Eq.
~17!#, the well-behaved quantityP̃(t)h(n)(t)P(t)F(t) obeys
the same relation:

1

pEt1
`

dtuP̃~ t !h~n!~ t !P~ t !F~ t !u2<1. ~21!

Whereas P̃(t) may be viewed as a technical device to
smooth out the kinematic functionh(n)(t), P(t) contains es-
sential information about the resonance structure ofF(t) in
the unphysical regiont2,t,t1 . In Eq. ~17!, the poles in
F(t) above threshold are constrained by the perturbative cal-
culation; in Eq.~21!, the poles below threshold are accom-
modated byP(t). Both sets of poles influence the shape of
F(t) in the semileptonic region. SinceP(t) depends only on
the position of the poles below threshold and not on the
residues, it applies for arbitrarily strong or weak residues.
Therefore, we should not be surprised that the eventual effect
of a nontrivial functionP(t) is to weaken the constraint on
F(t).

In terms of orthonormal functionswk(t) satisfying Eq.
~18!, the expansion

P̃~ t !h~n!~ t !P~ t !F~ t !5 (
k50

`

ak
~n!wk~ t ! ~22!

combines with Eq.~21! to yield

(
k50

`

~ak
~n!!2<1, ~23!

valid for moderate values ofn>0. As the expression given
in Eq. ~22! is valid everywhere outside the cut in the com-
plex t plane the form factorF(t) in the region of semilep-
tonic decay 0<t<t2 is

1We can choose the expansion coefficientsak to be real so that
only Re@wk(t)w j* (t)# need vanish forkÞ j since it is this expres-
sion that arises inu(akwku2. In a more general case where theak are
complex, our results go through unchanged if the inner product in
Eq. ~18! is redefined aŝ f ,g&[ lime→0(1/2p)* t1

` dt@ f (t1 i e)g* (t
1 i e)1 f (t2 i e)g* (t2 i e)#.
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F~ t !5
1

P̃~ t !h~n!~ t !P~ t !
(
k50

`

ak
~n!wk~ t !. ~24!

The sum is over k>0 because by construction
P̃(t)h(n)(t)P(t)F(t) has no poles fort,t1 . All that re-
mains is to find the orthogonal polynomialswk(t). This a
math problem that can be accomplished by a change of vari-
ables. In the complext plane, the integration contour may be
viewed as a segment from1` to t5t1 just below the cut
and a segment fromt5t1 to 1` just above the cut. Defin-
ing y5At2t1 maps the line segments just above and below
this cut onto the realy axis. The y axis in turn can be
mapped onto the unit circle by the bilinear transformation
z(t;t0)5(y2At02t1)/(y1At02t1). This is precisely the
change of variables in Eq.~2!. Sincezn5einu are orthonor-
mal functions on the unit circle, we can work backwards to
find

wk~ t ![
1

At12t1At12t0
S t12t0
t12t D

1/4S At12t2At12t0

At12t1At12t0
D k.
~25!

The expansion in orthonormal basis functions is simply a
Taylor series inz(t;t0)

k. However, the variablez does little
to aid the development of physical intuition, so we continue
to work with the momentum transfert. Contact with previ-
ous literature@4,8# can be made by identifying

f~n!@z~ t;t0!#5~At12t1At12t0!S t12t

t12t0
D 1/4P̃~ t !h~n!~ t !,

~26!

choosingn50, settingt05t2 @or, in the case and language
of @8#, t05(12N)t11Nt2], and expressing the ‘‘Blaschke
factors’’ @18–20# z(t;tp) composing P(t) in terms of
z(t;t2) andz(tp ;t2). With these identifications Eq.~24! be-
comes Eq.~1! with f(z)5f (0)(z) andak5ak

(0) .

PARAMETRIZATIONS FOR SEMILEPTONIC FORM
FACTORS

We are primarily interested in constraining form factors
that describe the decay ofB mesons, although the formalism

applies equally well toLb baryons, or evenD andK mesons
if P(q2) is evaluated at an appropriate spacelikeq2. Special-
ization to a particular decay and form factor requires an ex-
plicit computation of thef functions. For a pseudoscalar
final mesonH or a vector mesonH* with polarizatione, the
various form factors in semileptonicB decay may be defined
by

^H* ~p8,e!uVmuB̄~p!&5 igemabgea* pb8pg ,

^H* ~p8,e!uAmuB̄~p!&

5 f e* m1~e* •p!@a1~p1p8!m1a2~p2p8!m#,

^H~p8!uVmuB̄~p!&5 f1~p1p8!m1 f2~p2p8!m, ~27!

where it is useful to also define

F15
1

MH
F12 ~ t12t !~ t22t !a12

1

2
~ t2MB

21MH
2 ! f G ,

~28!

with t5(p2p8)2. It is straightforward to determine the
k(t) function associated with each of the form factors:

ki~ t !5
1

3p2sS 1t D
p

@~ t2t1!~ t2t2!#w/2. ~29!

For the form factors whose contribution to the rate is unsup-
pressed by the lepton mass, the indicess, p, andw are given
by

kg~ t !:s55, p51, w53,

kF1~ t !:s54, p52, w51,

kf~ t !:s53, p51, w51,

kf1
~ t !:s54, p52, w53. ~30!

Thef (n)(t) functions defined in Eq.~26! for each form fac-
tor are

f i
~n!~ t;t0!5A nI

2s3pxJ
~n!S t12t

t12t0
D 1/4~At12t1At1!2~31n1p!~At12t1At12t0!~At12t1At12t2!w/2~ t12t !w/4.

~31!

Our previous discussions allow us to see that each particular form factorFi has the functional form

Fi~ t !5
1

Pi~ t !f i
~n!~ t;t0!

(
k50

`

ak
~n!z~ t;t0!

k, ~32!

for each momentn and expansion pointt0, wherez may be expressed as

z~ t;t0![
At12t2At12t0

At12t1At12t0
, ~33!
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and((ak
(n))2<1.

The Blaschke factorsPi(t) depend on the masses of subthreshold resonances. ForB̄→Dl n̄ and B̄→D* l n̄ from factors,
the masses of the relevantBc-type resonances can be rather accurately estimated from potential models@21,22#. Using the
results of@21# in Eq. ~19!, the Blaschke factors for the form factorsf andF1 are

Pf~ t !5PF1
~ t !5z„t;~6.730 GeV!2…z„t;~6.736 GeV!2…z„t;~7.135 GeV!2…z„t;~7.142 GeV!2…, ~34!

while for the form factorsg and f1 they are

Pg~ t !5z„t;~6.337 GeV!2…z„t;~6.899 GeV!2…z„t;~7.012 GeV!2…z„t;~7.280 GeV!2… ~35!

and

Pf1
~ t !5z„t;~6.337 GeV!2…z„t;~6.899 GeV!2…z„t;~7.012 GeV!2…, ~36!

respectively. For B̄→p l n̄ , there is only one resonance and the form factorf1(t) has the Blaschke factor
P(t)5z„t;(5.325 GeV)2…. ForD→p l n̄ , there are no resonances, andP(t)51.

For the lowest moment (n50) and t05t2 , Eqs. ~31!–~33! reproduce the results of@4#, while for arbitrary t0 they
reproduce the results for mesons given in@8#. For higher moments (n.0) and a given form factorFi , they imply

(
k50

`

ak
~n!z~ t;t0!

k5
f i

~n!~ t !

f i
~0!~ t !(k50

`

ak
~0!z~ t;t0!

k5AxJ
~0!

xJ
~n!F 1

At12t1At1
G n(

k50

`

ak
~0!z~ t;t0!

k[S (
j
cj

~n!z~ t;t0!
j D (

k50

`

ak
~0!z~ t;t0!

k.

~37!

It is a simple matter to compute the coefficientscj
(n) and match powers ofz. The condition((ak

(n))2,1 then implies

~c0
~n!a0

~0!!21~c0
~n!a1

~0!1c1
~n!a0

~0!!21~c0
~n!a2

~0!1c1
~n!a1

~0!1c2
~n!a0

~0!!21•••,1, ~38!

for eachn. For a given set ofcj
(n) one may find that the

higher moments provide tighter constraints on theaj
(0) than

the lowest moment alone. This is the case forB→p, for the
lowest few moments. However, forB→D the higher mo-
ments do not improve the bounds imposed by the lowest
moment.

CONSTRAINTS FOR B̄˜p l n̄

To make use of Eq.~32! in extractingVub from experi-

mental measurements ofB̄→p l n̄ we should keep only a
finite number of parametersak

(0) and compute the maximal
truncation error from the omission of higher order terms in
the series. This truncation error can be minimized by opti-
mizing t0 and thereby decreasingzmax @8#. Applying Eq.
~38! further decreases the truncation error by restricting the
range of higher order parameters~of course, it also restricts
the range of the parameters we keep!. Both effects decrease
the number of parameters required to determinef1(t) at a
given level of accuracy.

Experimental data onB̄→p l n̄ are not yet available to
precisely describe the shape off1(t) and so for now we will
simply illustrate the utility of the higher moments. Imagine
f1(t) is known at some fixed number of kinematic points.
For concreteness we choose the lattice-inspired values
@12,23,24# f1(21 GeV

2)51.7 and f1(0 GeV2)50.5 to fix
a0
(0) and a1

(0) in terms ofa2
(0) . Varying a2

(0) subject to the
zeroth moment constraint((ak

(0))2,1 maps out the enve-

lope of parametrizations2 consistent with then50 dispersion
relation. Varyinga2

(0) subject to the constraint of thenth
moment results in a smaller allowed range fora2

(0) , for the
first few n. Since the allowed range off1(t) is proportional
to the allowed range ofa2

(0) , a relative reduction in the range
of a2

(0) leads to the same relative reduction in the width of
the envelope.

The one-loop results for the allowed range ofa2
(0) are

shown in the second column of Table I. We have used a pole
quark massmb5MB2L̄ corresponding toL̄50.4 GeV@25#
~varying L̄ by 60.1 GeV results in no more than a 6%
change in the bounds!, and fixed t05t2 . Note that the
n53 bounds are tighter than then50 result by a factor of 3.
In fact, then56 bound~not listed! is better by a factor of 4.
However, x (n) receives known @16# corrections from
two-loop perturbative graphs@O(as)# and nonperturbative
matrix elements. We use values of the condens-
ates ^ ūu&u1 GeV5(20.24 GeV)3 and as/p^GmnG

mn&
50.0260.02 GeV4 from @27#. The third and fourth columns
of Table I show the perturbative and condensate correction
factorsrpert

(n) andrcond
(n) defined by

x~n!~ two loop!5~11rpert
~n! 1rcond

~n! !x~n!~one loop!. ~39!

2This procedure is equivalent to the method of computing upper
and lower bounds by forming determinants of inner products often
used in the literature@9–12,26#. However, Eq.~32! also dictates
the shape of curves allowed inside the envelope.
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Beyond n53 the sum of these corrections approaches
100% of the leading result and the reliability of the calcula-
tion becomes questionable. Even atn53, the corrections are
large enough that one might worry about the convergence of
the operator product expansion. We will usen52 in our
examples. The allowed range ofa2

(0) using the two-loop re-
sult, including condensates, is shown in the fifth column of
Table I. Although weaker than the corresponding one-loop
result, the two-loop bounds forn.0 remain significantly
more constraining than then50 bounds.

The ellipsis in Eq.~12! includes the contribution of inter-
mediateB̄*p states to the hadronic moments. In the heavy
b-quark limit, the form factorg* , defined by

^p~p8!uVmuB̄* ~p,e!&5 ig* emabgeapb8pg , ~40!

is related tof1 by spin symmetry when thep meson is soft
~i.e., neart5t2):

g* ~v•p8!5
2

MB
f1~v•p8!F11OS 1M D G , ~41!

where v5p/MB . Including the contribution of theB̄*p
state~similar contributions were used in@28# for theB→B
elastic form factor! modifies the constraint of Eq.~21! to

1

pEt1
`

dt@ uP~ t !X~ t !f f1

~n! f1~ t !u21uP~ t !X~ t !fg
*

~n!g* ~ t !u2#<1,

~42!

where X(t)5@(t12t0)/(t12t)#1/4/(At12t1At12t0).
One finds thatfg

*
5fg , so expanding

g* ~ t !5
1

P~ t !fg
~n!~ t !(k50

`

bk
~n!z~ t;t0!

k, ~43!

leads to the constraint

(
k50

`

~ak
~n!!21~bk

~n!!2<1. ~44!

We cannot relate all of thebk
(n) to the ak

(n) because the
b-quark spin symmetry is only valid neart5t2 . One ex-
pects that the normalization and first derivative ofg* and
f1 at t2 obey the heavy quark relation to;10% for the
physicalB mass, so

b0
~n!5

2

MB

fg
~n!~ t2!

f f1

~n!~ t2!
a0

~n!5A2S 11AMp

MB
D 2a0~n!,

b1
~n!54A2AMp

MB
a0

~n!1A2S 11AMp

MB
D 2a1~n!, ~45!

to 610%. Taking 90% of the absolute values of the right-
hand sides of Eq.~45! gives lower bounds onub0

(n)u and
ub1

(n)u, that can be inserted into Eq.~44! ~this constraint ap-
plies as well to heavy-heavy systems, where it could be fur-
ther improved by including theB̄*D* intermediate state!.
The improvement on the range ofa2

(0) from the inclusion of
this additional hadronic final state is shown in the last col-
umn of Table I~using two-loop amplitudes!. The effect is
;30% forn50, decreasing to;15% forn53.

The n50 bounds onf1(t) at two loops, without the ap-
plication of spin symmetry~column five of Table I!, are
shown as the outer, dashed, pair of curves in Fig. 2, while the
bounds from then52 improvement, including the contribu-
tion from B̄*p, are given by the inner, solid, pair of curves.
The constraints arising from then>0 moments are a dra-
matic improvement over the lowest ordern50 constraint
alone. Note that even then51 bounds in the last column of
Table I represent an improvement over that ofn50 alone by
nearly a factor of 2.

The quickly weakening constraint neart5t2 would be
absent had we included a normalization at zero recoil. Figure
3 shows the spin-improved,n52 constraint assuming an ad-

TABLE I. Values of the zeroth-moment parametera2
(0) consistent with thenth moment constraint. From

left to right is the constraint ona2
(0) at one loop, the relative two-loop perturbative and condensate contribu-

tions rpert
(n) andrcond

(n) , the constraint ona2
(0) at two loops, and the two-loop constraint ona2

(0) including the
B*p spin symmetry contribution as described in the text.

n a2
0 ~one loop! rpert

(n) rcond
(n) a2

0 ~two loop! a2
(0) ~HQS!

0 20.77,a2,0.79 0.23 0.01 20.78,a2,0.79 20.54,a2,0.58
1 20.45,a2,0.47 0.32 0.06 20.52,a2,0.53 20.40,a2,0.41
2 20.33,a2,0.34 0.38 0.14 20.44,a2,0.45 20.36,a2,0.36
3 20.26,a2,0.28 0.42 0.28 20.40,a2,0.41 20.35,a2,0.35

FIG. 2. Upper and lower bounds on theB̄→p l n̄ form factor
f1(t). The dashed lines are the bounds arising from then50 mo-
ment while the solid lines are the bounds arising from then52
moment. The form factor has been fixed at two points by the lattice
inspired valuesf1(21 GeV2)51.7 and f1(0)50.5. The allowed
regions are the interiors of the dashed or solid pairs of curves.
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ditional normalization,f1(t2)56. It gives a feel for how
tightly f1(t) can be constrained given measurements of
f1(t) at only three points. In this case,f1(t) is determined
to better than615% over the entire kinematic region. These
plots are presented only to provide a feel for what is needed
to describef1(t) to a given accuracy. In practice, one should
fit the parametrization Eq.~32! to experimental data and the-
oretical~lattice or heavy quark symmetry! predictions to ex-
tractVub . The work presented here should improve the pre-
cision of such extractions significantly.

CONCLUSIONS

We have discussed constraints on semileptonic form fac-
tors arising from analyticity and dispersion relations, and
identified the physical origin of the naturally small parameter
zmax. The shape and magnitude of an analytically continued
form factor in the pair production region has significant im-
pact upon the size and shape of the form factor in the semi-
leptonic region. Perturbative constraints on pair production
therefore constrain semileptonic decay amplitudes. Such
constraints take the form of parametrizations of form factors
in terms of a small number of unknown, but bounded, con-
stantsak . Only a small number ofak are needed to describe
a given form factor because the parametrizations arise from
truncated expansions in a kinematic variablez(t;t0) that is
surprisingly small, uz(t;t0)u<zmax50.065 for B̄→D* l n̄
and uz(t;t0)u<zmax50.52 for B̄→p l n̄ .

We have traced the smallness ofzmax to the dual nature of
the hadronic and partonic descriptions of QCD. Whereas in
the hadronic description the form factor is a sum of poles and
less singular terms, in the partonic description the form fac-
tor is always less singular than a pole. Duality then implies
that the variation of the form factorF(t) over the physical
region 0,t,t2 for the semileptonic decayB̄→Hl n̄ is char-
acterized by

F(t2)2F(0)

F(t2)1F(0)
;S AMB2A MH

AMB1AMH

D 2

5zmax. ~46!

The small values ofzmax are due to the square-root depen-
dence on meson masses, which is in turn a consequence of
the absence of poles in the partonic description of QCD.

We applied these ideas in a discussion of analyticity con-
straints in terms of the momentum-transfer variablet. We
improved the constraints on thef1(t) form factor by
;15–30 % by including the contribution of theB̄*→p l n̄
form factor usingb-quark spin symmetry to relate it to the
B̄→p l n̄ form factor at zero recoil. We also improved the
analyticity constraints by considering higher moments of the
dispersion relation. As an illustrative example, we fixed the
normalization of theB̄→p l n̄ form factor f1(t) at two ki-
nematic points to lattice-inspired values, and plotted the en-
velope of allowed parametrizations~Fig. 2!. The higher mo-
ment constraints result in upper and lower bounds that are
roughly twice as tight as the traditional, zeroth-moment re-
sult. Given a third normalization at zero recoil, the form
factor is determined over the entire kinematic range to
615%, as shown in Fig. 3. This suggests that a parametri-
zation using one normalization~possibly given by lattice or
heavy quark symmetry predictions! and two free parameters
could eventually be used for a model-independent extraction
of Vub with roughly 30% theoretical errors arising from the
t dependence.
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