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We formulate and prove a QCD factorization theorem for hard exclusive electroproduction of mesons in
QCD. The proof is valid for the leading power inQ and all logarithms. This generalizes previous work on
vector meson production in the diffractive region of smallx. The amplitude is expressed in terms of off-
diagonal generalizations of the usual parton densities. The full theorem applies to all kinds of mesons and not
just to vector mesons. The parton densities used include not only the ordinary parton density, but also the
helicity density~g1 or Dq! and the transversity density~h1 or dq!, and these can be probed by measuring the
polarization of the produced mesons with unpolarized protons.@S0556-2821~97!01317-9#

PACS number~s!: 13.60.Fz, 12.38.Bx, 12.38.Qk, 12.40.Nn

I. INTRODUCTION

In two recent papers@1,2# it was shown how the cross
section for diffractive electroproduction of vector mesons
can be predicted in perturbative QCD.1 This process provides
a novel probe of the dynamics of diffractive scattering in
QCD. One notable prediction is that the cross section is pro-
portional to the square of the gluon density in the hadron.
Experimental data@4–6# appear to be in accord with the
predictions, including an enhancement due to the rapid rise
of the gluon density at smallx.

In this paper we extend the factorization theorem to the
general case of electroproduction of any meson, and we pro-
vide a general proof of the theorem. The theorem expresses
the amplitude for the process in terms of off-diagonal gener-
alizations of the usual parton densities. Our demonstration is
valid for the whole leading power for the process, in contrast
with the calculations in@1,2#, which were in a leading-
logarithm approximation.2 Our results will enable the pro-
cess to be treated with the inclusion of nonleading loga-
rithms. Apart from establishing the factorization theorem for
the process, one aim of this paper is to attempt a pedagogical
exposition of the methods by which the theorem is derived,
since many of the concepts are unfamiliar.

Most importantly, the process of constructing a proof led
us to new results. First, the theorem applies to the general
case of two-body final states at low transverse momentum in
electroproduction at largeQ. The diffractive case simply
corresponds to the small-x region, with vacuum quantum
number exchange. So we have extended the theorem to the
full range ofx and to all mesons, pions in particular, not just
vector mesons. In addition we find that we need not only the
usual unpolarized parton densities~generalized to be off di-
agonal!, but also the helicity densities~g1 or Dq! and the
transversity densities~h1 or dq!. Since the cross section is
proportional to the square of the densities, it is sensitive to
the polarized parton densities without needing a polarized
proton beam and without needing a measurement of the po-
larization of the final-state proton. Indeed we can choose
which kind of density is probed merely by choosing the
final-state meson. The amplitude for longitudinally polarized
vector mesons depends only on the unpolarized parton den-
sities. The amplitude for transversely polarized vector me-
sons depends only on the transversity densities (h1). The
amplitude for pseudoscalar mesons depends only on the he-
licity densities.

This result clearly adds to the meager list of processes
where the transversity of valence quarks can be probed with-
out the need of some other unknown quantity~such as an
antiquark density or a polarized fragmentation function!.

All the above statements apply when the incoming virtual
photon is longitudinally polarized. We also prove that the
cross section is suppressed by a power ofQ when the photon
is transversely polarized.

We give a fairly detailed account of the proof of the fac-
torization theorem. The style of proof is based on that of
Refs.@8–11#, which treat inclusive hard scattering. There are
some differences. First, our derivation of the power-counting
formula shows some useful improvements. Second, and
rather importantly, we have to examine more closely ex-

*On leave of absence from St. Petersburg Nuclear Physics Insti-
tute, Gatchina, Russia.

1Ryskin @3# considered the case ofJ/c production, i.e., that the
vector meson is composed of a heavy quark and antiquark. This
work used a charmonium model for the meson, rather than treating
the meson more generally in terms of the light-cone wave function
that the factorization theorem requires.

2Ryskinet al. @7# treat some of the nonleading-logarithm approxi-
mation ~NLLA ! corrections in the case ofJ/c production. In this
paper we treat very generally corrections to all orders.
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changes of relatively soft quarks, since, in contrast to the
case of inclusive scattering, there can be leading contribu-
tions from soft quark exchange~otherwise known as the end
point contributions!. Thus we have to examine the power-
counting arguments in more detail.

After this work was substantially complete, Radyushkin
@12# published a preprint treating some of the same processes
that we consider. His work appears to be completely com-
patible with ours; he takes the same point of view as we do
concerning a generalized operator product expansion, al-
though the details of his notation are a little different. How-
ever, he considered only the diffractive limit of smallx for
vector meson production, and hence, just as in@1#, he did not
include the quark contribution.~The quark operator is pre-
sumably unimportant at smallx.! He does not present a com-
plete proof of factorization. Ji@13# and Radyushkin@14# also
showed how the same operators appear in an expansion for
deeply virtual Compton scattering.

In a future paper we hope to explore further consequences
of our results, including detailed calculations.

II. DEFINITION OF PROCESS

The process we treat is the diffractive exclusive produc-
tion of mesons in deep-inelastic electroproduction. We can
express the lepto-production cross section in terms of the
cross section for the scattering of virtual photons:

g* ~q!1p→V~q1D!1p8~p2D!. ~1!

The target, of momentumpm, can be a proton or nucleus~or
any other hadron!, and the diffracted hadronp8, of momen-
tum p2D, may or may not have the same flavor quantum
numbers as the incoming hadronp. The other final-state par-
ticle, V, can be any possible meson, e.g.,r0, v, J/c, Y, or
p. When we treat charge exchange scattering within our
framework, the direct connection to the parton densities in
the proton@1–3,7# is lost. We will assume that the meson has
quantum numbers such that it cannot decay to a gluon pair.
This choice will eliminate certain subprocesses, and covers
the mesons of interest.

The process depends on three kinematic variables: the vir-
tual photon’s virtuality,Q2[2q2, the square of the center-
of-mass energy,s ~for the photon-proton system!, and the
momentum transfer squared,t5D2<0. The region we con-
sider is whereQ2@LQCD

2 , while uD2u is small, of order
LQCD

2 . We also assume that the meson mass obeysmV
2!s.

We are thus treating the asymptotics asQ gets large. The
Bjorken variable isx5Q2/2p•q'Q2/(s1Q2) ~where the
target mass is neglected!. In Refs.@1,2# the diffractive case
x!1 was treated. Our considerations will apply to largex as
well.

We will mostly restrict our attention to the case that the
virtual photon is longitudinally polarized. The cross section
with transversely polarized photons is somewhat smaller—
this was a prediction of Refs.@1,2#, and is confirmed

experimentally,3 although the suppression is not as much as
one might expect. Indeed, we find we can derive a simple
factorization theorem only for longitudinally polarized pho-
tons, since then the contributions from the end pointsz→0
andz→1 of the meson wave function are power suppressed,
given that the meson wave function at its end points behaves
approximately asz(12z). For transverse polarization, this
suppression does not happen, and a more complicated theo-
rem is needed—see Sec. X. At high enoughQ, there is a
Sudakov suppression, but the physics of this goes beyond the
simple factorization theorem, just as in the analogous case of
the electromagnetic form factor of the proton@16#.

It is convenient to use light-front coordinates defined with
respect to the collision axis:vm5(v1,v2,v'), with
v65(v06v3)/&. Then we can write

pm5S p1,
m2

2p1 ,0'D ,

qm'S 2xp1,
Q2

2xp1 ,0'D ,

Dm'S xp1,2
D'

2 1m2x

2~12x!p1 ,D'D ,

Vm'S D'
2 1mV

2

Q2 xp1,
Q2

2xp1 ,D'D . ~2!

Here,Vm is the momentum of the meson. In these equations,
we have neglected small terms in the longitudinal compo-
nents, of relative sizeLQCD

2 /Q2. These coordinates agree
with the ones used in Refs.@8,11#, but differ from those in
Refs.@1, 2# by a factor of&, and by a change of the use of
the 1 and 2 labels:v this paper

1 5v2Ref. @1# /&, and similarly
for v2.

III. STATEMENT OF THEOREM

A. Theorem

The theorem we will prove is that the amplitude for the
process Eq.~1! is @1#

M5(
i , j

E
0

1

dzE dx1f i /p~x1 ,x12x,t,m!

3Hi j ~Q2x1 /x,Q2,z,m!f j
V~z,m!

1power-suppressed corrections. ~3!

Here, f i /p is just like the distribution function for partons of
type i in hadronp, except that it is a nonforward matrix

3Dominance of production of longitudinally polarized mesons has
been predicted also by Donnachie and Landshoff@15# within a non-
perturbative model of the pomeron. This is presumably because
their diagrams have to obey the same power-counting rules as we
derive.
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element.4 We will give the definition later. The factorf j
V is

the light-cone wave function for the meson, andHi j is the
hard scattering function. The sums are over the parton types
i and j that connect the hard scattering to the distribution
function and to the meson. Since the meson has nonzero
flavor, the partonj is restricted to be a quark. The factoriza-
tion theorem Eq.~3! is illustrated in Fig. 1.

The above formula is correct for the production of longi-
tudinally polarized vector mesons. For the production of
transversely polarized vector mesons or of pseudoscalar me-
sons, we have a formula of exactly the same structure, but in
which the unpolarized parton density is replaced by a polar-
ized parton density~the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-
sons!. Similar changes will need to be made to the definition
of the meson wave function.

The parameterm in Eq. ~3! is the usual renormalization-
factorization scale. It should be of orderQ, in order that the
hard scattering functionHi j be calculable by the use of
finite-order perturbation theory. Them dependence of the
distribution f i /p and of the light-cone wave functionf j

V are
given by equations of the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi ~DGLAP! kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs forH are shown in Fig. 2.
Consider Fig. 2~a!, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-
rem, and have constructed definitions of the distributionf i /p
and of the light-cone wave functionfV, we will be able to
see that the definition ofH is the sum of graphs such as Fig.
2~a! contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case
of longitudinal vector meson production, the factors are
1
2 p1g2 for the lower two lines and1

2 V2g1 for the lines
connected to the outgoing meson. These factors are related to
spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2~b!, the
external fermion lines ofH are to be contracted with the

same factors as before, but the two gluon lines are to be
contracted withdab/2, wherea andb are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-
ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:
Longitudinal vector meson

1. Quark distribution

The distribution functionf i /p and meson amplitudef j
V

are defined, as usual, as matrix elements of gauge-invariant
bilocal operators on the light cone. In the case of a quark of
flavor i , we define

f i /p~x1 ,x2 ,t,m!

5E
2`

` dy2

4p
e2 ix2p1y2

^p8uTc̄~0,y2,0T!g1Pc~0!up&,

~4!

where P is a path-ordered exponential of the gluon field
along the lightlike line joining the two operators for a quark
of flavor i . We have definedx1 to be the fractional momen-
tum given by the quark to the hard scattering and2x2 to be
the momentum given by the antiquark; in the factorization
theorem they obeyx12x25x, with x being the usual
Bjorken variable. At first sight the right-hand-side of Eq.~4!
appears to depend only onx2 and not onx1 nor on t. The
dependence on the other two variables comes from the fact
that the matrix element is nonforward. The difference in mo-
mentum between the statesup& and up8& together with the
use of a light-cone operator brings in dependence onx1 and
on t. It is necessary to take only the connected part of the
matrix element.

The same definition has recently been given and discussed
by Ji and Radyushkin@12–14#. As Ji points out, whentÞ0
there are in fact two separate parton densities, with different
dependence on the nucleon spin. For the purposes of our
proof, it will be unnecessary to take this into account explic-
itly; we can simply suppose that this and the other parton
densities have dependence on the spin state of the hadron
statesup& and up8&.

The usual quark densityf i /p(x,m) is obtained by setting
t50 andx15x25x in Eq. ~4!. In addition, it would appear
that one has to remove the time-ordering operation from the
operator operators in Eq.~4! to obtain the operator used for
the parton densities associated with inclusive scattering@17#.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The
final-state proton in Eq.~1! may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to
have vacuum quantum numbers. The indexi in the factorization
theorem is then to be replaced by a pair of indices for the flavors of
the two quark lines joining the parton densityf i /p to the hard scat-
tering. Similarly, the two quark lines entering the meson may be
different, and the indexj is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs forH.

FIG. 1. Factorization theorem.
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we are discussing amplitudes rather than cut amplitudes.
Thus if one setst50 andx15x25x in our parton distribu-
tions, one would naturally suppose that the conventional in-
clusive parton densities are the discontinuities of ours.5 Re-
lating the new parton densities to the standard ones, even in
the forward limit would therefore appear to need dispersion
relations.

In fact, the two kinds of parton density are equal, at least
in the forward limit. A proof of this not very obvious fact
was given many years ago by Jaffe@18#. However, his proof
applies only to two-particle-irreducible graphs for the parton
densities, a restriction we suspect to be unnecessary. We
hope to return to this issue in a later paper, particularly be-
cause there are some additional complications in the nonfor-
ward parton densities that particularly appear when one treats
dispersion relations for the amplitude for our process.

It is also worth noting that there is a limit ont:

2t.tmin5
m2~x12x2!2

12x11x2
, ~5!

which comes from the kinematics of the scattering proton.
Note that the same limit is obtained from the kinematics of
the scattering process we consider, Eq.~1!, in the limit
Q@m. We deduce that the limitt→0 cannot be accessed
directly in exclusive meson production. Indeed, since
x12x25xbj , the analytic continuation fromtÞ0 to t50 is
hard to perform in practice, except at smallxbj .

2. Gluon distribution

An exactly similar definition applies for the gluon distri-
bution:

f g/p~x1 ,x2 ,t,m!52E
2`

` dy2

2p

1

x1x2p1 e2 ix2p1y2
^p8uTGn

1~0,y2,0T!PGn1~0!up&. ~6!

The 1/x1x2 factor cancels a inverse factor that appears in the derivative part of the fieldsGn
1(0,y2,0T)Gn1(0). Thenormal-

ization is now a little different from that of the diagonal distribution:

f g diag~x!5x fg nondiag~x,x!, ~7!

i.e., one setsx15x25x, and puts in a factorx. To avoid this complication while preserving symmetry between the two gluon
lines would involve square root factors, or changing the hard scattering formula, Eq.~3!, when the partons are gluons. The
square roots are undesirable, because they change the analyticity properties of the formula in the neighborhood ofx150 and
x250.

3. Wave function

The light-cone wave function for a longitudinally polarized vector meson is@19#

f j
V~z,m2!5

1

A2Nc
E

2`

` dy1

4p
e2 izV2y1

^0uc̄~y1,0,0T!g2Pc~0!uV&, ~8!

where the factor of 1/A2Nc is the convention established by
Brodsky and Lepage@20#—see their Eq.~64!. This conven-
tion results in a elegant normalization condition for light-
cone wave functions, Eq.~26! of Ref. @20#.

Our definition appears to disagree with theirs, but this is
fact not so. We have an extra overall factor 2 which merely
results from the 1/& ’s in our definition of light-cone coor-
dinates. We are missing ag5 that they have, because our
meson is a vector instead of a pseudoscalar, and we therefore

need a different operator to pick out the nonzero component.
In addition, we have exchanged the use of the1 and 2
components of vectors. This simply corresponds to the fact
that we wish to apply the definition to a meson that travels in
the 2z direction in our coordinate system. The factor ofPp

1

in Brodsky and Lepage’s definition is an error, and should be
omitted@21#: their definition is not invariant under boosts in
the z direction.

All of the above definitions have ultraviolet divergences.
So they are defined@17# to be renormalized by some suitable
prescription, of which minimal subtraction is the standard
one. We do not explicitly indicate the renormalization, which
is done by a factor convoluted with the right-hand sides of
these definitions. The scale associated with the renormaliza-
tion is m, and the DGLAP evolution equations are the

5Equivalently one would say the conventional parton densities are
given by the imaginary part of our distributions. To be precise, with
our definitions, which do not possess an overall factor ofi , the
discontinuity is twice the real part.
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renormalization-group equations for them dependence.
As stated in footnote 4, there is a more general theorem,

in which the final-state hadron in the distribution, Eq.~4!,
has quantum numbers different from the proton. Then it
would be necessary to modify this definition, so that the
quark and antiquark fields have different flavors.~The gluon
distribution would also be zero.! Similar modifications
would be needed to the meson amplitude Eq.~8!.

C. Definitions of light-cone distributions and amplitudes:
Pseudoscalar meson and transverse vector meson

When we write the factorization formula for a pseudosca-
lar meson, different components of Dirac matrices dominate
in the amplitudes. We will see that the following changes are
needed in the definitions, Eqs.~4!, ~6!, and~8!:

Object original replacement~pseudoscalar meson!

Meson wave function g2 g2g5

Quark density g1 g1g5

Gluon density 2Gn
1Gn1 Not used

Coupling ofH to quarks from meson q2g1/2 q2g5g1/2 ~9!
Coupling ofH to quarks from proton p1g2/2 p1g5g2/2
Coupling ofH to

gluons from proton d i j /2 Not used

The parton densities in the diagonal limit then correspond to the helicity densities@22# D f that are used in the treatment of the
polarized structure functiong1 . However, the gluon density is not used: charge conjugation invariance implies that the hard
scattering coefficient is zero when it couples a virtual photon and a pseudoscalar meson to a pair of gluons.

For a transversely polarized vector meson, we use the following replacements:

Object original replacement~transverse vector meson!

Meson wave function g2 g2g ig5

Quark density g1 g1g jg5

Gluon density 2Gn
1Gn1 Not used

Coupling ofH to quarks from meson q2g1/2 q2g5g ig1/2 ~10!
Coupling ofH to quarks from proton p1g2/2 p1g5g jg2/2
Coupling ofH to

gluons from proton d i j /2 Zero

Note that the gluon density does not appear in this case, for
reasons of helicity conservation in the hard scattering. In the
diagonal limit, the quark density we use with transversely
polarized vector mesons becomes the transversity density
@22# d f q , also calledh1 .

The combinations of Dirac matrices in the wave functions
for longitudinal vector mesons and pseudoscalar mesons pick
out pairs quark and antiquarks that have opposite helicity and
hence of the chirality; this is correct for making a meson of
zero helicity. In contrast for a transverse vector meson, the
quark and antiquark have the same helicities and the opposite
chiralities.

D. Real and imaginary parts of amplitude

In the factorization theorem, Eq.~3!, the amplitude for our
process at the hadronic level is expressed in terms of a hard
scattering amplitude together with a generalized parton den-
sity in the proton and a light-cone wave function of the me-
son. Now both the hadronic amplitude and the hard scatter-
ing amplitude satisfy dispersion relations that relate their real
and imaginary parts, and it is not entirely obvious that the
dispersion relations for the two amplitudes are consistent
with the factorization theorem. Moreover, one might suppose
that complications arise because the cut of the amplitude
needed to obtain the discontinuity of the hadronic amplitude
must cut both the hard scattering amplitude and the parton
density in Fig. 1.

We now demonstrate that the two dispersion relations are
in fact consistent. The proof will be to demonstrate that the
dispersion relation for the hadronic amplitude follows from
the corresponding dispersion relation for the hard scattering
amplitude. This is important because one of the approaches
to calculations has been to calculate the imaginary part of the
amplitude first and then to use dispersion relations to com-
pute the full amplitude. A consequence is that the real and
imaginary parts of the hadronic amplitude are separately ex-
pressed in terms of the real and imaginary parts of the hard
scattering amplitude with the same parton densities.

We will find it convenient to write the amplitude as a
function ofn[2p•q5Q2/x rather thans5n2Q2. We have
M5M(Q2/x,t,Q2) andH5H(Q2x1 /x,Q2,z), wherex1 is
the same variable as in Eq.~3!. The important fact that lets
our derivation work is thatH depends on the ratiox1 /x but
not onx1 andx separately. This is proved by observing that
H is invariant under Lorentz boosts in thez direction and
that a change ofx1 andx by a common ratio is equivalent to
a boost.

The dispersion relation for the hard scattering amplitude
is

H~n,Q2,z!5E dn8

2p i

1

n82n
discH~n8,Q2,z!. ~11!

By choosing the contour to run along the real axis, we have
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made the right-hand side of this equation involve only the
discontinuity~or imaginary part! of the amplitude. Any sub-
tractions needed in the dispersion relation will not affect the
principles of the derivation.

We now substitute Eq.~11! in the factorization theorem.
Then writingn85x1n̂ gives the dispersion relation forM:

M~n,Q2,t !5E dx1dz
dn8

2p i

1

n82nx1

3H~n8,Q2,z!f~z! f ~x1 ,x8!.

5E dx1dz
dn̂

2p i

1

n̂2n

3H~x1n̂,Q2,z!f~z! f ~x1 ,x8!.

5E dn̂

2p i

1

n̂2n
discM~ n̂,Q2,z!,

~12!

where in the last line, we have used the factorization theorem
again. This equation is just the expected dispersion relation
for the hadronic amplitude.

The discontinuity of an amplitude is obtained by making a
cut that puts some intermediate states on shell. The only
possible cut ofM in its factorized form, Fig. 1, is one that
cuts both the hard scattering amplitudeH and the parton
density f . The statement that the parton densities are the
same whether the operators are unordered or are time or-
dered is equivalent to saying that the cut amplitude equals
the uncut amplitude. This is consistent with our derivation of
the dispersion relation forM.

IV. REGIONS

We wish to calculate the asymptotics in a double limit:
Q/m→` and x→0, but it is theQ→` limit that we will
concentrate on, since that will result in the perturbatively
calculable factors in our theorem. It will also give us a more
general theorem, that is applicable at largex. In this and the
next section we follow the treatment of Libby and Sterman
@10,23,24# adapted to our process.

Graphs for the process have integrals over all their loop
momenta, and we wish to classify the regions of loop mo-
menta in a suitable way for extracting the asymptotics as
Q→`. To expose the powers ofQ, we choose to work in
the Breit frame where the virtual photon has zero rapidity,
xp15Q2/2xp15Q/&.6 In such a frame the mesonV is
moving very fast in one direction, and the incoming and
outgoing protons are moving very fast in the opposite direc-
tion. The steps in the proof are as follows.

~1! Scale all momenta by a factorQ/m, so that we are in
effect attempting to take a massless on-shell limit of the am-
plitude.

~2! Use the Coleman-Norton theorem to locate all pinch-

singular surfaces in the space of loop integration momenta,
in the zero-mass limit.

~3! Identify the relevant regions of integration as neigh-
borhoods of these pinch singular surfaces.

~4! The scattering amplitude is a sum of contributions,
one for each pinch singular surface, plus a term where all
lines have virtuality of at least of orderQ2. Appropriate
subtractions are made to prevent double counting.

~5! Perform power counting to determine which regions
give the largest power ofQ.

~6! Finally, show that the contributions for the leading
power ofQ give the factorization formula Eq.~3!.

Any terms that do not contribute to the leading power are
dropped. The factorization formula is intended to include all
logarithmic corrections to the leading power, whether they
are leading or nonleading logarithms.

A. Scaling of momenta

Following Libby and Sterman@23# we write a general
momentumkm and a general massm in units of the large
momentum scaleQ:

km5Qk̃m, m5Qm̃. ~13!

Since we work in the rest frame of the virtual photon, i.e., in
the Breit frame, both of the light-cone components of its
momentum are of orderQ. When everything is expressed in
terms of the scaled variables,k̃ and m̃, simple dimensional
analysis shows that the large-Q limit is equivalent to a zero-
mass limit,m̃→0. Since the amplitudeM is dimensionless,
we have

M~Q2;p,pV ,D,m;m!5M~1;p̃,p̃V ,D̃,m̃;m/Q!, ~14!

by ordinary dimensional analysis. Notice that, in the limit
Q→`,

p̃m→~p1/Q,0,0'!,

q̃m→„2xp1/Q,Q/~2xp1!,0'…,

D̃m→0,

Ṽm→„0,Q/~2xp1!,0'…, ~15!

so thatp̃ and Ṽ become lightlike vectors, cf. Eq.~2!.
We consider the most basic region to be where all internal

lines obeyk2*Q2, and thus the scaled momentak̃ have
virtualities of order unity, or bigger. In such a region, we can
legitimately set the mass parameters to zero, and make the
external hadrons lightlike. Most importantly, we will be en-
titled to choose the renormalization scalem of orderQ with-
out obtaining any large logarithms. Consequently, in this re-
gion an expansion to low order in powers of the small
couplingas(Q) is useful.

However, this basic region is not the only one. Indeed, it
does not even provide a leading contribution for the ampli-
tude for our particular process. But now one observes@23#
that all other relevant regions correspond to singularities of

6None of our arguments would change if we made a finite boost.
Then we would havexp1;Q2/xp1;Q.
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massless Feynman graphs. They are neighborhoods of sur-
faces where the loop momenta are trapped at singularities,
i.e., of pinch-singular surfaces of the massless graphs. The
conditions for a pinch singularity are exactly the Landau
conditions for a singularity of a graph.7 Only pinch singu-
larities are relevant, since at a nonpinched singularity, we
may deform the~multidimensional! integration contour such
that at least one of the singular propagators is no longer near
its pole.

If there is a pinch singularity caused by certain propagator
poles in the massless limit, then in the real graph, with non-
zero masses but largeQ, the contour of integration is forced
to pass near the propagator poles. Consequently it is not
possible to neglect the masses in this region. Conversely, if
the contour is not trapped by the poles, then the contour may
be deformed away from the poles, and masses may be ne-
glected in evaluating the corresponding propagators.

B. Coleman-Norton theorem

We now review the theorem of Coleman and Norton@25#,
and show how@24# to apply it. The theorem shows in a
physically appealing fashion how to determine the configu-
rations of loop momenta that give pinch singularities; it
states that they correspond to classically allowed scattering
processes, treated in coordinate space.

More precisely, the theorem states that each point on a
pinch-singular surface~in loop momentum space! corre-
sponds to a space-time diagram obtained as follows. First we
obtain a reduced graph by contracting to points all of the
lines whose denominators are not pinched. Then we assign
space-time points to each vertex of the reduced graph in such
a way that the pinched lines correspond to classical particles.
That is, to each line we assign a particle propagating between
the space-time points corresponding to the vertices at its
ends. The momentum of the particle is exactly the momen-
tum carried by the line, correctly oriented to have positive
energy. If for some set of momenta, it is not possible to
construct such a reduced graph, then we are free to deform
the contour of integration.

A reduced diagram corresponds to a classically allowed
space-time scattering process. The construction of the most
general reduced graph becomes extremely simple in the zero-
mass limit, since then all pinched lines must carry either a
lightlike momentum or zero momentum. Moreover, as was
explained by Libby and Sterman, each lightlike momentum
must be parallel to one of the~lightlike! external lines.

C. Reduced graphs

In the zero-mass limit, our process, represented in Fig. 3,
has one lightlike incoming proton line of moment-
um pA

m5(p1,0,0'), one lightlike outgoing proton line of a
slightly different, but parallel, momentum
pA8

m5„(12x)p1,0,0'…, one lightlike outgoing meson line of
momentumpB

m5(0,Q2/2xp1,0'), and one incoming virtual

photon of momentumqm5~2xp1,Q2/2xp1,0'). We have
chosen the symbols for the lightlike momenta,pA , pA8 , and
pB , to be different from the symbols for the corresponding
physical momenta,p, p8, andV, precisely to emphasize that
they are distinct~if related! momenta.

As we will prove in Sec. IV F, the most general reduced
graph is depicted in Fig. 4. One vertex of the reduced graph
is the hard subgraphH, to which is attached the virtual pho-
ton. The incoming and outgoing protons go into the collinear
subgraphA; at the corresponding pinched momentum con-
figuration, lines inA have only a1 component. Similarly,
the outgoing meson is attached to another collinear subgraph
B where there are momenta with only a2 component. Each
of the collinear subgraphs is attached to the hard subgraph by
at least one line, and these three subgraphs are all connected;
these restrictions are needed so that momentum conservation
works out. Finally there may be a soft subgraph,S, com-
posed of zero-momentum lines at the pinch-singular surface.
It connects to any of the other subgraphs, and it may have
more than one connected component.

Within any ofA, B, andS, there may be subgraphs com-
posed of hard lines; these form reduced vertices that couple
the different lines within the subgraphs. In the leading re-
gions, these are of the form of the possible ultraviolet diver-
gent subgraphs.

D. Space-time interpretation

The corresponding space-time diagram is Fig. 5. There,
each solid line corresponds to a lightlike line of the reduced
graph, with a 45° orientation to correspond to their lightlike
lines of propagation. The dashed lines correspond to the soft
lines, in the subgraphS. From the point of view of the
Coleman-Norton theorem, they are rather degenerate lines.

7The relevant singularities are on the physical sheet of the space
of complex angular momenta, or on its boundary. Thus it is indeed
the Landau conditions that are correct.

FIG. 3. Quasielastic scattering of a virtual photon on a proton.

FIG. 4. General reduced graph for Fig. 3. The dots represent the
possibility of an arbitrary number of lines connecting the collinear
subgraphs~A andB! to the hard subgraphH. Any number of lines
connect the soft subgraphS to the other subgraphs.
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Indeed, the fact that they are carrying zero momentum~at the
singular point! implies that they have no specific orientation.
Thus we indicate them by curved lines of no particular ori-
entation. The locations of the end points of the soft lines,
where they attach to the collinear subgraphs, can be any-
where along the world lines of the collinear lines. The hard
vertexH occurs at the intersection of the collinear lines.

Since there can, in general, be more than one collinear
line moving in each of the1 and2 directions, the solid lines
in Fig. 5 must each be thought of as a group of lines which
undergo interactions as they propagate.

When the space-time representation of a Feynman graph
is used, there is normally an exponential suppression when
there are large space-time separations between the vertices.
One obtains a singularity when the exponential suppression
fails, and the Coleman-Norton construction gives exactly the
relevant configurations of the vertices. A common scaling
can be applied to all the world lines in the reduced graph
without affecting its properties, and the singularity is gener-
ated by the possibility of integrating over arbitrarily large
scalings in coordinate space without obtaining an exponen-
tial suppression.

The whole of the discussion above relies on the use of a
covariant gauge.Although the use of the axial gauge and in
particular of the light-cone gauge is very convenient, for ex-
ample, for a physical interpretation of the light-cone wave
function, the propagators in such a gauge have unphysical
singularities. The unphysical singularities do not give the
normal rules of causal relativistic propagation of particles,
and, beyond the leading-logarithm approximation, they make
the derivation of the factorization theorem very difficult—
see@8,26#.

E. Examples

To understand what Fig. 5 means, let us look at a few
examples of regions of momentum space that correspond to
reduced graphs obtained from the Feynman graph of Fig.
6~a!. There the couplings between the quarks and the had-
rons may be considered as Bethe-Salpeter wave functions.
We will not give an exhaustive list of all possible reduced
graphs, but will only give some typical examples that corre-
spond to leading power contributions to the amplitude.

1. First example

We first consider a region defined as follows: The upper
two loops have momenta

k;„x1p1,O~m2/xp1!,O~m!…,

l;„O~m2/Q!,zQ2/2xp1,O~m!…, ~16!

wherem represents a typical hadronic scale. We continue to
use a coordinate system like the Breit frame wherexp1;Q,
and we label the components in the order~1,2,'!. The pa-
rameterz, for the 2 component ofl lies between 0 and 1,
and is not close to its end points. The parameterx1 , for the
1 component ofk is chosen such that bothx1 andx2x1 are
of orderx and are both positive. Finally, the region is such
that all the lower three lines have momentum components of
size „O(p1),O(m2/p1),O(m)….

Another way of defining the region is to say that the quark
lines l andV2 l are collinear toV, the quark linesq2 l and
V2 l 2k are hard, and all the remaining lines are collinear to
p.

This region forms a neighborhood of the configuration
defined by the reduced diagram in Fig. 6~b!. In this configu-
ration, the lines of momentaq2 l andV2 l 2k form the hard
vertex, since they have virtuality of orderQ2. The lower 3
quark lines, and the two gluons have momenta proportional
to (p1,0,0'), while the linesl andV2 l have momenta pro-
portional to (0,Q2/p1,0'). In the reduced diagram, the light-
like momenta are represented by lines in approximately the
45° directions that represent their world lines. Since both of
k and D2k have positive1 momenta, they are forward
moving lines.

It is important to make a pedantically exact distinction
between the momentum configuration represented by the re-
duced graph and the region of integration that we attach to it.
Confusion between the two concepts results in misunder-
standing of the content of parton-model concepts. The con-
figuration contains a collection of lightlike momenta derived
by certain rules, while the region is a neighborhood of this
configuration. The graph, Fig. 6~a!, is not singular when the
momenta become lightlike in the way labeled by the reduced
graph. Apart from anything else, the external hadrons have

FIG. 5. Space-time diagram for Fig. 4.

FIG. 6. A low-order graph for diffractive meson production,
together with three of its reduced graphs. The solid lines are meant
to be at a 45° angle to represent lightlike propagation, but have been
separated to permit the structure to be seen.
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fixed nonzero mass. The singularity arises when the masses
are set to zero. What the use of the reduced diagram termi-
nology does is to usefully identify a certain region of mo-
mentum space.

As we explained earlier, a singularity is obtained in the
massless case when one integrates over arbitrary scalings of
the coordinates of the vertices of a reduced graph. So when
we actually need to integrate over a small neighborhood of
the momentum configuration, that corresponds in coordinate
space to integrating over scalings of the positions of the ver-
tices, but up to a large instead of an infinite limit; larger
scalings are exponentially suppressed. The space-time dia-
gram obtained from a reduced graph then gives a region for
the positions of the vertices of the Feynman graph where
~some of! the vertices are separated by much more than order
1/Q in the Breit frame.

2. Second example

Our second reduced graph, Fig. 6~c!, is the same as the
first, except that the parameterx1 , defining the longitudinal
momentum fraction ofk, has the opposite sign. The space-
time direction of the linek is therefore reversed. Previously,
in Fig. 6~b!, we had a two-gluon state emitted from the pro-
ton and then entering the hard scattering; this corresponds to
the idea of the Pomeron as a particlelike object. But now that
we have reversed the direction ofk, we have a situation in
which one gluon out of the proton generates a hard scatter-
ing, by scattering off the virtual photon, and then continues
into final state where it coherently recombines with the rem-
nants of the target, to form the diffracted proton.

3. Third example

Our final example is where the gluonk has soft momen-
tum: all its momentum components in the Breit frame are
much less thanQ in size. This gives Fig. 6~d! for a reduced
graph. Note that the quark of momentumV2 l 2k is now
collinear toV rather than being hard. Physically we have a
situation in which most of the Pomeron momentum is carried
by one gluon, and the hard scattering is photon-gluon fusion.
The second, soft gluon just transfers color. This is the kine-
matic situation of the superhard or coherent Pomeron@27#.

As we will see later, although such configurations do give
leading contributions to the amplitude from individual
graphs, there is a cancellation after summing over different
graphs. The remaining leading configurations correspond
only to the first two reduced graphs~and a third similar graph
with x1.0 and x2x1,0!. Other configurations give sub-
leading contributions for the case of a longitudinally polar-
ized photon.

F. General construction of reduced graphs

The simplicity of Figs. 4 and 5, which represent the most
general situation for our process, follows simply from mo-
mentum conservation applied to classical processes, as we
will now show. Since we have taken a massless limit, all the
explicitly displayed lines are lightlike or have zero momen-
tum. The diagram must lie entirely in a plane spanned by the
1 and2 axes. If not, there is a reduced vertex with a maxi-
mum transverse position relative to the main hard vertex.
Transverse momentum conservation cannot be satisfied at

such a vertex since we have no external lines with nonzero
transverse momentum, in the massless limit we are taking.

If one starts from some line with momentum in the2
direction and follows it backward on a connected series of
lines with2 momenta, one arrives at an earliest vertex. This
must be the hard vertexH, where the virtual photon attaches,
since this is the only place where large2 momentum is
injected into the graph. Then if we go forward again, we get
to a latest vertex, necessarily later than the hard scattering.
This is where the outgoing meson attaches. The fact that all
theB lines are later than the hard scattering will be important
later when we analyze soft gluon attachments to theB sub-
graph.

Similarly on theA lines, if one goes back one arrives at
either H or the incoming proton. If one goes forward one
arrives at eitherH on the outgoing proton.

There are in fact three distinct topologies, as shown in
Fig. 7, where, to enable the topologies to be visualized, we
have slightly deformed theA lines. In the first class, the hard
scattering has incomingA lines, but no outgoingA lines. The
partons that construct the outgoing proton are all emitted
before the hard scattering in this class of graphs.

In the second class, the hard scattering has one or more
outgoingA lines, so that the hard scattering directly influ-
ences the outgoing proton. But there are alsoA lines that
bypass the hard scattering.

Finally, in the third class of graphs, no collinear lines
bypass the hard scattering. In fact, such graphs have too
many partons entering the hard scattering to be leading; this
will follow from the power-counting arguments in the next
section.

In all cases the number of lines entering and leaving the
hard subgraph is completely arbitrary. It is the power-
counting properties explained in Sec. V that will restrict the
situation for the leading power inQ; these are results that
follow from the specific dynamics of the theory.

Note that there will be quantum mechanical interference
between the different classes of graph, when one adds all the
different contributions to make the complete amplitude.
Moreover in each reduced graph, the positions of the vertices
along the lines must be integrated over. Thus the different
space-time positions for the vertices do not represent inde-
pendent happenings.

We have constructed the reduced graphs and the space-
time diagrams with the ansatz of exactly massless external
lines. To avoid any confusion, let us reiterate that the actual
process has external hadron lines that are massive, even
though these masses are much less thanQ. The quarks also
have nonzero masses. The space-time method has enabled us
to identify in complete and simple generality the locations of
the pinch-singular surfaces of corresponding massless Feyn-

FIG. 7. Examples of the three classes of space-time diagram.
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man graphs for our process. The significance of these sur-
faces is that we will classify contributions to the actual am-
plitude by neighborhoods of these surfaces in loop-
momentum space~with all the masses preserved!. Most
importantly, the construction of the factorization theorem
will rely on identifying all significant contributions to the
amplitude with particular singular surfaces.

V. POWER COUNTING

We now wish to identify the power ofQ associated with
each of the pinch-singular surfaces catalogued in the previ-
ous section, and hence to identify those surfaces that give
contributions to the leading power. Again, the basic results
are those of Libby and Sterman. Their results were mostly
obtained in an axial gauge, such asA050 or A350. How-
ever, the unphysical singularities in the gluon propagator for
a ‘‘physical gauge’’ prevent us from using certain contour
deformation arguments, so we prefer to work in a covariant
gauge—compare Ref.@8#. The method for obtaining the
powers that we present here is rather different to that given
by Sterman@10#, and relies more on general properties of
dimensional analysis and Lorentz transformations than on a
more detailed analysis of the numbers of loops, lines and
vertices of graphs and subgraphs.

A complication to working in a covariant gauge is that
graphs with collinear gluons attached to the hard part are
enhanced by a power of up toQ2 compared to the power
obtained in axial gauge. The enhancement occurs when the
gluons have scalar polarization. As Labastida and Sterman
@28# showed, Slavnov-Taylor identities can be used to show
a cancellation of the enhanced contributions, so that the final
result for the power counting is the same as in axial gauge.
We will use a somewhat different, but equivalent, method of
obtaining this result, in Sec. VII D.

The result we will prove in the remainder of the present
section is that,before these cancellations, the power ofQ
associated with a pinch singular surfacep is Qp(p), with

p~p!532n~H !2No.~quarks from soft to collinear!

23No.~quarks from soft to hard!

22No.~gluons from soft to hard!. ~17!

Here n(H) is the number of external collinear quark and
transversely polarized gluon lines of the hard subgraph. The
other two terms involve the number of quark lines that attach
the soft subgraph to either of the collinear subgraphs and the
number of lines going from the soft subgraph to the hard
subgraph.

Notice that the power decreases as the number of external
lines of the hard scattering increases; this is the essential
rationale for the parton model, where the minimum number
of partons is used in the hard scattering. For the gluons we
must, as we will see, split their polarizations into what we
will call ‘‘scalar’’ and ‘‘transverse’’ components. There is
only a suppression for extra transverse gluons entering the
hard scattering; any number of collinear gluons with ‘‘scalar
polarization’’ can attach to the hard subgraph, without a pen-
alty in powers ofQ.

Our arguments will use rather general properties of di-
mensional analysis and Lorentz boosts. When we examine
the dependence on the polarization of the virtual photon, in
Sec. X, we will find that the power given in Eq.~17! is
normally obtained only for one photon polarization, longitu-
dinal or transverse, depending on the region.

A. Proof of power-counting formula, Eq. „17…

The strategy of our proof is first to prove it for certain
particularly simple cases, and then to extend it.

1. Case of collinear and hard subgraphs only

First consider a case of Fig. 4 when we only have collin-
ear and hard subgraphs, but no soft subgraph. Let the hard
subgraphH haveNq external quark~and antiquark! lines and
Ng external gluons, as well as a single photon line.

By definition, all components of loop momenta in the
hard subgraph have sizeQ, in the Breit frame, and all the
lines in the subgraph have virtuality of orderQ2. Since the

hard subgraph has dimensiondH532 3
2 Nq2Ng and all the

couplings are dimensionless, it contributes a power

QdH5Q32~3/2!Nq2Ng ~18!

to the amplitude.
For the momenta collinear to the meson we assign orders

of magnitude

typical V momentum;S xp1
m2

Q2 ,
Q2

xp1 ,mD
;S m2

Q
,Q,mD , ~19!

in ~1,2,'! coordinates, withm being a typical hadronic
mass. Similarly we assign momenta collinear to the proton a
magnitude

typical A momentum;S Q,
m2

Q
,mD . ~20!

Since the Bjorken variablex is small, there are also collinear
momenta with1 components much larger thanQ. We will
deal with this complication later; for the moment let us treat
the case thatx is not small.

The collinear configurations can be obtained by boosts
from a frame in which all components of all momenta are of
order m. Since virtualities and the sizes of regions of mo-
mentum integration are boost invariant, we start by assigning
the collinear subgraphs an order of magnitudemdimension,
which contributes exactly unity to the power ofQ. This also
enables us to see that nonperturbative effects, as coded in a
Bethe-Salpeter wave function, for example, do not change
the power ofQ. Note that we define the collinear factors to
include the integrals over the momenta of the loops that
couple the collinear subgraphs and the hard subgraph.

Next we must allow for the fact that the collinear sub-
graphs are coupled to the hard subgraph by Dirac and Lor-
entz indices. Now, the effect of boosting a Dirac spinor from
rest to a large energyQ is to make its largest component of
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order (Q/m)1/2 bigger than the rest frame value, and the
effect on a Lorentz vector is to give similar factor (Q/m)1.
The exponents 1/2 and 1 are just the spins of the fields. The
resulting powers multiply Eq.~18! to give

Q32Nq. ~21!

This agrees with Eq.~17! in the case that all the external
lines of the hard subgraph are quarks, but is a factorQNg

larger whenever there are external gluons.
Later, in Sec. VII D, we will show how cancellations be-

tween different graphs cause a suppression of the highest
powers associated with collinear gluons attaching to the hard
subgraph. As we have already stated, these are contributions
from gluons of scalar polarization. For the moment we just
need to define the concepts of scalar and transverse polariza-
tion in the sense that we will use, and to show how this
affects the power counting.

Consider the attachment of one gluon, of momentumkm,
from theA subgraph to the hard subgraph. We have a factor
Am(k)gmnHn(k), whereAm andHn denote theA and H
subgraphs, andgmn is the numerator of the gluon propagator
in Feynman gauge.8 We decompose this factor into compo-
nents:

A•H5A1H21A2H12A'•H' , ~22!

and we observe that after the boost from the proton rest
frame, the largest component ofAm is the1 component. The
largest term is thereforeA1H2, and this is the term that
gives the power stated above, in Eq.~21!. The other two
terms are suppressed by one or two powers ofQ.

So we now define the following decomposition:

Am5km
A1

k1 1SAm2km
A1

k1 D . ~23!

The first term we call the scalar component of the gluon: it
gives a polarization vector proportional to the momentum of
the gluon. The second term, the transverse part of the gluon,
has a zero1 component: it therefore gives a contribution to
A•H that is one power ofQ smaller than the contribution of
the scalar component. Thekm factor in the scalar term mul-
tiplies the hard subgraph, and this gives a quantity that can
be simplified by the use of Ward identities, as we will find in
Sec. VII D.

We now apply this decomposition to every gluon joining
the subgraphsA andH, and the analogous decomposition for
gluons joiningB and H. The contribution of our region to
the amplitude is now a sum of terms in which each of these
gluons is either scalar or transverse. Each term has a power

Q32Nq2NgQNs5Q32Nq2NT, ~24!

whereNs is the number of scalar gluons, andNT5Ng2Ns is
the number of transverse gluons that enter the hard scatter-
ing. This is the exact power that we wrote in Eq.~17!, given
that we have no soft subgraph.

In should be noted that in Sec. VII D we will slightly
modify the definitions of ‘‘scalar’’ and ‘‘transverse’’
polarizations—see Eq.~42! below. This will be to take ac-
count of the Taylor expansion we will apply to the hard
subgraph, and also to apply an exactly analogous argument
to the couplings of soft gluons to a collinear subgraph.

We also will need to to pick out the largest component of
the Dirac structure of the collinear subgraphs, but do not
need to make the operation explicit here, since we do not
have a cancellation of the highest power. We just note that
the projection of the largest Dirac component is directly re-
flected in the factors ofg1 andg2 in the definitions of the
quark distribution and wave function, Eqs.~4! and ~8!.

2. Small x

The derivation of the power Eq.~24! assumed thatx was
not small. Now ifx is made small, we must boost some parts
of the collinear-to-A subgraph to get1 momenta of orderp1

instead ofxp1, so that groups of lines have very different
rapidities. It is known that in Feynman graphs the effect is
simply to give a factor 1/x ~times logarithms!, but only pro-
vided that all the lines exchanged between the regions of
different rapidity are gluons. For example, see Ref.@29#. If
any quarks are exchanged, there is a suppression by a factor
of x. None of this affects the power ofQ.

3. Soft lines

We now add in a soft subgraphS. A problem is to choose
an appropriate scaling of the momenta, a problem that
has not entirely been solved satisfactorily in the literature.
One possibility is to assign all components of soft momenta
a sizem. This has the advantage of being immune to non-
perturbative effects in the soft subgraph, and the disadvan-
tage of sending at least some lines in the collinear subgraphs
off shell, by orderQm.9 A second possibility is to assign all
the soft momenta a sizem2/Q. This avoids sending collinear
lines far off shell, but forces us to treat a region where the
momenta are unphysically soft in a confining theory, and
where the power counting is sensitive to mass effects.

In fact we will choose the second scaling. All other pos-
sibilities will be covered by the arguments in Sec. V A 4.

A more general treatment@10# would assign a sizek;lQ
to the components of a soft momentum. Herel is an inte-
gration variable that is much less than one. To determine the
power ofQ, one has to determine how smalll can be made:
there are significant changes whenl5O(m/Q) and when
l5O(m2/Q2), from mass effects in the soft propagators and
the collinear propagators respectively.

Given that we assign all momenta inS a magnitudem2/Q
for all their components in the Breit frame, the basic power
for the soft subgraph ism2/Q to a power which is the di-
mension of the soft subgraph. This power includes the inte-
gration over the soft loop momenta that circulate betweenS
and the rest of the graph, and it assumes that we can neglect
masses in the propagators. The numerical value of the power
is

8A change to another covariant gauge merely results in notational
complication.

9‘‘Disadvantage’’ here means a disadvantage from the point of
view of a simple construction of a power-counting formula.
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2NgS2
3

2
NqS, ~25!

whereNgS andNqS are the numbers of external gluons and
quarks of the soft subgraphS.

These external lines go into either the hard subgraph or
one of the collinear subgraphs. The dimension of the hard
subgraph is reduced by 3/2 for each extra soft gluon that
enters it and 1 for each quark. The dimensions of the collin-
ear subgraphs are changed, but this does not affect the power
of Q. But there are spinor and vector indices joining the soft
and collinear subgraphs, and just as with the collinear-to-
hard connections we get a factor ofQ1/2 for each quark and
a factorQ for each gluon.

Putting all the factors together gives Eq.~17! for the
power ofQ for the contribution of our region to the ampli-
tude. The qualitative features to note are that extra external
lines for the hard subgraph always reduce the power ofQ
except in the case of scalar gluons, that there is no suppres-
sion for soft gluons attaching to the collinear subgraphs, as is
well known, and that there is a penalty for soft quarks attach-
ing to the collinear subgraphs, as is also well known.

But observe that there is no penalty for having quark
loops inside the soft subgraph. This is a fact that is some-
times forgotten, because in the corresponding infrared-
divergence problem in QED, no loops of massive fermions
need to be considered. When we allow a general scalinglQ
for soft momenta there is no necessary suppression of quark
loops inside the soft subgraph.

4. Other scalings

Any other scalings of the momenta can be considered as
intermediate between those we have listed. The one excep-
tion we will discuss in a moment. We have catalogued all
pinch-singular surfaces of massless graphs for our process
and have defined the regions as neighborhoods of these sur-
faces. The scalings of momenta defined above may be called
canonical scalings for each of the regions.

When the asymptotics of graphs are treated, all other scal-
ings can be treated as a way of interpolating between the
canonical scalings for different regions. The methods we use
will treat the intermediate regions correctly once the canoni-
cal scalings are taken into account, and intermediate scalings
between two or more different leading regions will be re-
sponsible for the omnipresent logarithms in the asymptotics
of Feynman graphs.

The one exception to the above rule are the truly infrared
regions, where some momenta go to zero. In a theory of
confined quarks and gluons these regions are not genuinely
physical, but they do appear in Feynman graphs. They are
treated by a sufficiently careful treatment of the soft region
as we have defined it.

B. Catalog of leading regions

When all cancellations have been taken into account, we
will find that the amplitude behaves like 1/Q ~times loga-
rithms!, for largeQ. In addition, for thex→0 asymptotics,
there is a power 1/x that corresponds to spin-1 exchange in
the t channel~from the simplest models of the Pomeron!.
Thus the overall power iss/Q3, so that the cross section

ds/dt;1/Q6, in agreement with the results of@1#. Our ac-
tual proof of the factorization theorem will be rather indirect,
to take account of the cancellations caused by gauge
invariance.10 But it is useful to identify the regions that give
the 1/Q behavior or larger; no other regions can give a con-
tribution to the leading power.

Compared to the usual factorization theorem for inclusive
scattering, the discussion is more involved, since we need to
treat cases where the hard scattering amplitude has four ex-
ternal lines, instead of just two. So, to simplify the discus-
sion, we will restrict our attention to the case that the collin-
ear gluons attaching to the hard subgraph have transverse
polarization. The other cases will be taken care of by gauge
invariance. The resulting list of regions is shown in Fig. 8.

First we observe that, by Eq.~17!, we need to consider
only hard subgraphs with at most four external quark and
transverse gluon lines.

Two cases with four external lines forH are Figs. 8~a!
and 8~b!, which have a quark-antiquark pair going from the
hard scattering to the meson, and with either a gluon pair or
a quark-antiquark pair joining the hard part to the proton.
There is a possible soft part joined to the collinear subgraphs
by arbitrarily many gluons. These terms correspond to the
final factorization theorem, after a cancellation of the effects
of the soft gluons. A third possibility is where all the
collinear-B lines of the hard subgraph are transverse gluons,
as in Fig. 8~c!. In this case we can make a cut of the graph
such that the meson couples to gluons; such graphs we will
call ‘‘glue-ball’’ graphs. We will find that they all cancel at
the leading power 1/Q. A fourth possibility is in Fig. 8~d!,
where one collinear gluon comes from the proton, and three
collinear partons go to the meson. In the final factorization
theorem, this would need a color octet operator in the proton

10Note that before the cancellations, the highest power possible,
according to Eq.~17!, is Q3, when all the external lines of the hard
and soft subgraphs are gluons of scalar polarization. This situation
is actually prohibited by our choice of quantum numbers for the
meson, and the actual highest power isQ1, from the region in Fig.
8~a!. Cancellations are needed to get a final power of 1/Q.

FIG. 8. Leading regions for our process, when gluons entering
the hard subgraph are transversely polarized, and when we do not
explicitly indicate terms where the meson couples to a set of gluons.
Each soft subgraph may have any number of external gluons, in-
cluding zero.
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factor, and such an operator has a zero matrix element be-
tween proton states.

Next we can have graphs with two or three external lines
for the hard scattering, Figs. 8~e! and 8~f!. These are harder
to treat, as we will see in Sec. VII E. In fact, Fig. 8~f! will
make a leading contribution in the case of a transversely
polarized photon and will not make a factorization theorem
of the form Eq.~3!. Figure 8~e! will combine with those of
Fig. 8~a!, with two collinear gluons entering the hard part,
when we construct the appropriate operator product expan-
sion.

According to Eq.~17!, we have a leading 1/Q contribu-
tion from Fig. 8~f!, where the hard part has two external
quark lines, and the quark loop is completed in the soft part.
But now observe that the hard part, to the leading power of
Q, is the on-shell electromagnetic form factor of a massless
quark.~Subtractions to prevent the double counting of differ-
ent regions will remove the infrared divergences of the form
factor.! This form factor is proportional to

eg*
m ūBgmuA , ~26!

whereuA and uB are Dirac wave functions for the external
quarks of the hard scattering, andeg* is the polarization
vector of the virtual photon. By the rules for computing a
hard scattering amplitude, the momenta of the quarks are
massless and are in the1 and2 directions. Since we have
chosen the photon to be longitudinally polarized,eg*

m is a
linear combination of the momenta of the two quarks. Hence
the Dirac equation for massless spinors gives us zero for Eq.
~26!.

Notice that this argument does not apply when the photon
is transverse; Fig. 8~f! exactly corresponds to the endpoint
contribution discussed in Ref.@1#. We will discuss this issue
in more detail in Sec. X.

C. Other gluons joining the collinear subgraphs
to the hard part

We have now seen that all the leading regions, that give
the power 1/xQ for the amplitude have the form of Figs.
8~a!, 8~b!, and 8~e!, given that the photon is longitudinally
polarized. For clarity, the figures are not drawn quite cor-
rectly since we have not yet treated the cancellation of glu-
ons with scalar polarization. In the graphs, any number of
extra gluons may join each collinear subgraph to the hard
subgraph. An example is shown in Fig. 9. As shown in Sec.
V A, the addition of extra scalar gluons does not change the
power ofQ.

The fact that scalar gluons have a polarization propor-
tional to their momentum suggests that they can be elimi-
nated by a gauge transformation. In fact, we will use gauge
invariance, in Sec. VII D, to show that only matrix elements
of gauge-invariant operators are needed in the definitions of
the parton-density and the wave-function factors in the fac-
torization theorem, Eq.~3!. The result will be that the con-
tributions of scalar gluons will give the path-ordered expo-
nentials in the gauge-invariant operators that define the
distribution and density functions in Eqs.~4! and ~8!.

In an appropriate axial gauge, the contributions of the
scalar gluons are power suppressed, and correspondingly the

path-ordered exponentials in the operators are unimportant.
This fact would render the use of an axial gauge very attrac-
tive in proving factorization, were it not for the complica-
tions in treating soft gluons that result from the unphysical
poles of the gluon propagator in these ‘‘physical gauges.’’
Compare the work in Refs.@8, 26# on proofs of factorization
theorems for inclusive processes.

VI. SUBTRACTIONS

For each graphG, there may be several different regions
of loop-momentum space that contribute to the leading
power. Each region is associated with a pinch-singular sur-
facep of the corresponding massless graph, and we write the
graph as a sum of contributions each associated with one
surface:

Asy G5(
p

Gp , ~27!

where ‘‘Asy’’ denotes the asymptotic behavior of the graph.
In this section we will summarize the construction of the
terms on the right-hand side of this equation.

Roughly speaking, the termGp is obtained by Taylor ex-
panding the hard and collinear subgraphs in powers of the
small variables, an operation we denote byTp . Since there
may be more than one region contributing for a given graph,
we must make subtractions which will avoid double count-
ing; the operation of applying the subtractions we will denote
by R, since it is a kind of renormalization. Thus we will
write

Asy G5(
p

RTp~G!. ~28!

This structure is completely analogous to that of the Bo-
goliubov R operation for renormalization. The most conve-
nient way we have found for formulating the procedure is
due to Tkachov and collaborators@30#. Although the detailed
exposition of the method given in@30# is tied to Euclidean
problems, the general principles are not.11 In this method, the
integrand of each graphG as a distribution. Thus we define

11The problems explained by Collins and Tkachov@31# concern
the question of the use of dimensional regularization to define cer-
tain integrals and most certainly do not impinge on the general
principles.

FIG. 9. Example of region with extra gluons joining collinear
subgraphs to hard subgraph. All lines are supposed to be collinear
to the meson or the proton, as appropriate, except for the two thick
lines, which have virtuality of orderQ2.
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^G, f &5E dkG~k,p! f ~k!, ~29!

wherek denotes the collection of loop momenta,p the ex-
ternal momenta, andf (k) is a test function. The contribution
of the graph to the scattering amplitude is given by replacing
the test function by unity.

The advantages of using these distributional techniques
@30# stem from the fine control they give by enabling us to
treat different regions of momentum space separately with-
out having to make sharp boundaries between the different
regions. This last point is particularly important in problems
like ours, where it is important to be able to deform contours
of integration away from nonpinch singularities; the use of
sharp boundaries between regions prevents the use of con-
tour deformation.

In this language, the contributionGp to AsyG from the
neighborhood of a pinch-singular surfacep is localized on
the surface; that is, it is proportional to ad function ~with
possible derivatives! that restricts the integration to the sur-
face. To obtain a convenient form forGp , we observe that
the graph is a product of a factor that is singular onp and a
factor that is nonsingular there. Thus we write

Asy G~k!5(
p

Cp~k;p,m!Ep~m!, ~30!

whereCp(k) is a distribution that is localized on the surface
p and is obtained by expanding the hard subgraphH in Fig.
4 in powers of its small external variables~with appropriate
subtractions!. The quantityEp corresponds to the product of
the singular factors,A, B, andS in the reduced graph. Es-
sentially,Cp corresponds to the short distance factor on the
surfacep, andEp to the long-distance factor.

We will only present a summary of proof that this all
works. An important observation is that the issues are iden-
tical to those for other kinds of factorization. We first define
a hierarchy of regions, by simple set-theoretic inclusion: i.e.,
we definep1.p2 to mean that the pinch singular surfacep1
contains the pinch singular surfacep2 . For any given pinch-
singular surfacep, we construct its corresponding term in
Eq. ~30! on the assumption that the terms for all bigger re-
gions have already been constructed. Thus the construction
of Eq. ~30! is recursive, starting from the largest region.

Suppose, then, that we have constructed the termsGp8 for
all regions bigger thanp. Let us decompose AsyG as

Asy G5 (
p8.p

Gp81Gp1other terms. ~31!

The ‘‘other terms’’ correspond to the three classes of surface
that are illustrated in Fig. 10: those that are smaller thanp ;
those that intersectp in a subset~necessarily a manifold of
lower dimension!; those that do not intersectp at all. We
assume as an inductive hypothesis that the sum ofGp8 over
p8.p gives a good approximation to the originalG except
in neighborhoods of thesmaller surfaces for whichGp has
not yet been constructed. The integrals defining theGp8’s
cover the whole of the space of integration variables, but
they are only required to give good approximations when
one excludes neighborhoods of smaller surfaces; more pre-
cisely we will require them only to give good approxima-

tions when the test function in Eq.~29! has a zero of an
appropriate strength on these smaller surfaces.

We now constructGp . When combined with theGp8 for
larger surfaces it must give a good approximation toG on a
neighborhood ofp. It is sufficient for our purposes to require
only that we have a good approximation when the test func-
tion has an appropriate zero on the smaller surfaces. It is not
necessary to have constructedGp8 for the smaller surfaces,
since they will give zero with such a test function. This is
sufficient to prove the inductive hypothesis for the next use
of the recursion.

SinceGp is localized on the surfacep, it is necessary only
to consider a neighborhood ofp. This combined with our
remarks in the previous paragraph ensures that we do not
need the unconstructed ‘‘other terms’’ in Eq.~31! in order to
constructGp .

Therefore we define

Gp5TpS G2 (
p8.p

RGp8D , ~32!

whereTp represents the Taylor expansion in powers of the
small variables onp. The first term is the Taylor expansion
of the original graph, and the remaining terms can be thought
of as subtractions that prevent double counting of contribu-
tions to the integral over a neighborhood ofp.

The result is that a sum overGp and the terms for larger
regions,

Gp1 (
p8.p

RGp8 , ~33!

correctly gives the contribution to the asymptotics ofG that
comes from a neighborhood ofp and of all larger regions,
but with neighborhoods ofsmaller regions being excluded.

Now, in general,Gp gives a divergence when we integrate
it with a test function over a neighborhood of any of these
smaller regions. So it is defined only when integrated with a
test function that is zero on these smaller regions. We now
extend it to a distribution defined on all test functions by
adding infrared counterterms to cancel the divergences.@We
will not specify the details, but just observe that the construc-
tion is exactly analogous to the construction of the well-
known distribution (1/x)1 .# We call the resultRGp . The
counterterms are local in momentum space. Since we have

FIG. 10. Illustrating the three classes for the ‘‘other terms’’ in
Eq. ~31!.
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not yet considered how to approximateG in regions smaller
thanp, it is perfectly satisfactory that we canchoosea defi-
nition of Gp on the smaller surfaces. We only require that the
result,RGp , be finite, and that the counterterms be localized
on smaller surfaces thanp, so that we do not affect the good
approximation we have already obtained forp and larger
surfaces.

In the later stages of the recursion, we obtain the appro-
priate approximations for these smaller regions. The subtrac-
tion terms, as defined in Eq.~32!, ensure that changes in the
choice of counterterms localized on any particular surfacep
are cancelled by corresponding changes in the subtraction
terms when we defineGp . Hence the overall result for the
asymptotic expansion ofG is independent of these choices.

This completes the summary of the construction of the
Asy G.

VII. COMPLETION OF PROOF

A. Summary of previous results

The results so far can be summarized in Eq.~28!. In the
asymptotic largeQ limit, each graph is written as a sum of
contributions from a set of regions. We have identified the
regions and computed the power ofQ associated with each
region.

Any particular region can be conveniently summarized by
a diagram of the form of Fig. 4. It is specified by a decom-
position of a graphG into two collinear subgraphs,A andB,
a soft subgraph,S, and a hard subgraph,H. When we sum
Eq. ~28! over all graphsG, we can represent the result by
independent summations over the possibilities for the sub-
graphsA, B, S, andH:

AsyM5(
G

Asy G5A3B3S3H. ~34!

Here,A, for example, represents the sum over all possibili-
ties for a collinear-to-A subgraph. Implicit in Eq.~34! are
appropriate Taylor expansions in small variables, together
with suitable subtractions to avoid double counting, etc. The
symbol3 represents integrations over the momenta of loops
that circulate between the different factors and also a sum-
mation over the flavors of the parton lines joining the differ-
ent subgraphs.

Each subgraph comes with a specification of its external
lines, and the summation is restricted to compatible sub-
graphs. For example, in Fig. 8~a! we require thatH have as
its external lines two collinear-to-A gluons, a collinear-to-B
quark, a collinear-to-B antiquark, and the virtual photon. To
be compatible with this, the subgraphA must have as its
external lines two collinear gluons, as well as the hadronsp,
p8 and the soft gluons. Such restrictions can be enforced by
a suitable definition of the3 operation in Eq.~34!.

As always for a hard subgraph, it is required thatH be
one-particle-irreducible~1PI! in the A lines and theB lines.
Thus, Fig. 11~a! is allowed as a hard subgraph. However,
Fig. 11~b! is not allowed, since it has an internal line~the
vertical gluon! that is forced to be collinear~by the two ex-
ternal gluons!.

B. Taylor expansion: Collinear case

We now Taylor expand the factors in Eq.~34! in powers
of small variables. To understand the general principles by
which this operation gives the factorization theorem, with its
operator definitions of the collinear factors, let us first treat
the case that there is no soft factor and that exactly two lines
connect each collinear graph to the hard part—Fig. 12. We
then have

A3B3H5E d4kAd4kBA~kA ,D2kA!B~kB ,V2kB!H~q,kA ,D2kA ,kB ,V2kB!

.E d4kAd4kBA~kA ,D2kA!B~kB ,V2kB!H„q,~kA
1,0,0'!,~D12kA

1,0,0'!,~0,kB
2,0'!,~0,V22kB

2,0'!….

~35!
The notation is unfortunately cumbersome, but it makes precise the operations we have applied to the hard part: We have
replaced the momenta collinear toA by their 1 components, and the momenta collinear toB by their 2 components. This
represents the first term in the expansion ofH in powers of the other components of these momenta.

FIG. 11. ~a! An allowed graph, and~b! a disallowed graph for a
hard part whose external lines are two collinear-to-A gluons, a
collinear-to-B quark, a collinear-to-B antiquark, and a photon.

FIG. 12. Simple region: collinear and hard subgraphs only, with
two lines joining each collinear graph to the hard subgraph.
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Only thekA
1 andkB

2 integrals now couple the different factors. This gives

A3B3H.E dkA
1dkB

2E dkA
2d2kA'A~kA ,D2kA!E dkB

1d2kB'B~kB ,V2kB!

3H„q,~kA
1,0,0'!,~D12kA

1,0,0'!,~0,kB
2,0'!,~0,V22kB

2,0'!…, ~36!

which has the general structure of the factorization formula,
Eq. ~3!. To see this more explicitly, we observe the follow-
ing:

~1! ScalingkA
1 andkB

2 by factors ofp1 andV2, respec-
tively, gives the integration variablesx1 andz in Eq. ~3!.

~2! The factorA is a matrix element of a time-ordered
product of two fields. Integrating over allkA

2 and kA' puts
the difference of coordinates of the two fields on the lightlike
line (0,y2,0'). This is a matrix element of an operator like
those in the definition of the parton density Eq.~4!.

~3! Similarly, theB factor becomes like the meson wave
function Eq.~8!.

At this point we have matrix elements of light-cone op-
erators that consist of two operators that are integrated along
a lightlike line.

C. Taylor expansion with soft factor; Glauber region

To complete the proof, we now have to deal with the soft
factor in an analogous fashion and to show that the only
operators we need are the precise ones in the definitions, Eqs.
~4!–~8!. It is convenient to start by consideringA3S and
H3B as units. Then we write

A3B3S3H5S)
i

d4ki DH3B~q,V,k!A3S~p,p8,k!

5S)
i

d4ki DH~q,V,k!A~p,p8,k!, ~37!

where theki ’s are the loop momenta coupling the two fac-
tors. Notice thatH[H3B is 1PI in the lines entering it from
A[A3S, because any linear combination of momenta that
are each collinear toA or soft is itself collinear toA or soft.
On the other hand,A5A3S includes all graphs with the
appropriate number of external lines.

Clearly we may neglect the componentski
2 of the soft

momenta withinH5H3B, since by definition the momenta
in both B and H have2 components of orderQ. We may
also neglectki' within H. But to derive the factorization
theorem, we will also need to neglectki' within the B sub-
graph. In a general situation this is not necessarily true, since
the broadest definitions of soft momenta and collinear-to-B
momenta only insist that their' components be small with-
out specifying their relative sizes. Hence one cannot always
neglect a soft transverse momentum with respect to a collin-
ear transverse momentum.

We use a version of the argument devised by Collins and
Sterman @26# for proving factorization for inclusive pro-
cesses ine1e2 annihilation. The graph of Fig. 13 illustrates
the problem and its solution. We choose the gluon momen-
tum k to be soft, and the quark momentuml to be collinear
to the meson. The momenta in theA, B, andH subgraphs
are, of course, chosen to be collinear-to-A, collinear-to-B,
and hard, respectively. Consider the integral overk1, whose
size is much less thanQ, sincek is soft. For this reason, we
neglectk1 in the subgraphsA andH, and the onlyk1 de-
pendence is from theS andB subgraphs

E
soft k

dk1
1

@~ l 2k!22m21 i e#~k21 i e!
5E

soft k
dk1

1

@2~ l 12k1!~ l 22k2!2~ l'2k'!22m21 i e#~2k1k22k'
2 1 i e!

.E dk1
1

@2~ l 12k1!l 22~ l'2k'!22m21 i e#~2k1k22k'
2 1 i e!

, ~38!

where we have omitted inessential numerator factors. In the
second line of this equation, we have neglectedk2 with re-
spect to the large variablel 2. Except forl 2, all the momen-
tum components used in this equation are small compared
with Q.

We distinguish two cases.
~1! k1k2*k'

2 . In this case, we can indeed neglectk' in
the first denominator. Becausek is soft, while l is collinear
to B, the terms involvingk' are small compared with the
k1l 2 term.

~2! k1k2!k'
2 . This is called the Glauber region in the

terminology of@32#. In this regionk1l 2 may be comparable

to k'
2 , so that we apparently cannot neglectk' in the collin-

ear subgraphB. However, in this region the only dependence
on k1 is in the collinear propagator, and so we may deform
the k1 contour into the complex plane until we recover the
first case.

So in fact we can neglectk' as well ask2 in the collinear
propagator.

In general, we will have several soft momentaki entering
the B subgraph, and to use the above proof, we must ensure
that none of the collinear propagators give obstructions to the
contour deformations for eachki

1 . In other words, all the
poles must be on one side of the real axis for eachki

1 . To
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prove this@26#, we note that all the collinear-to-B lines go
forward from the hard scattering, but not backward—
compare the reduced graphs in Fig. 7. Thus we can route all
theki

1’s back along collinear lines to the hard scattering, and
thus all the poles that collinear propagators give are in the
upper half-plane, just as in Eq.~38!.

It should be observed that we cannot apply the same ar-
gument to thek2 dependence of theA subgraph, since we
have collinear-to-A lines both before and after the hard scat-
tering. This fact alone resulted in enormous complications in
the proof of factorization in the Drell-Yan process@8,9#.

D. Gauge invariance

Now that we have proved that the1 and' components of
soft momenta may be neglected in bothB and H, we can
write12

A3B3S3H.E )
i

dki
1H~q,V,k1!

3S E )
i

dki
2d2ki'A~p,p8,k! D . ~39!

This gets us much closer to the desired factorization. It is
exactly a kind of operator product expansion, since theA
factor is a matrix element of a light-cone operator, apart from
the consequences of subtractions. In fact, the subtractions
needed to defineA are associated with regions with larger
singular surfaces, and thus in fact to ultraviolet divergences
associated with the operator vertices. That is, the subtrac-
tions are just an implementation of the ultra-violet counter-
terms needed to define renormalized operators. We therefore
write Eq. ~39! as

A3B3S3H.(
i
E dk1Ci~q,V,k1!Oi~p,p8,k1!,

~40!

where theOi are the matrix elements of renormalized light-
cone operators, and we will call theCi ’s coefficient func-
tions. We usei to label the different possible operators.

But there are many possible operators, even when we re-
strict ourselves to the leading power. Each case of the graphs
of Fig. 8 with a different set of external lines for theA3S
graph corresponds to a different operator. But now we can

appeal to the new results by Collins@33#. These show that
we can restrict the sum to gauge-invariant operators. Such
operators consist of gauge-covariant operators~like Gmn , c!
joined by path-ordered exponentials~often called ‘‘string op-
erators’’!.

We must now determine which of these operators is
needed to give a leading power. First, we construct a modi-
fied version of the decomposition of gluons into scalar and
transverse polarizations. Consider one particular external
gluon, of momentumk, that attachesA to H. We have a
factor

Am~k!gmnHn~k1!, ~41!

wheregmn is the numerator of the gluon propagator. Recall,
from Sec. V, that the largest term in the sum over the vector
indices is the one withm51 andn52, i.e.,A1H2. This
happens because the collinear subgraphs are highly boosted
in the Breit frame and after the boosts theA1H2 term is the
one with the largest components. The arguments apply both
to the connection of collinear-to-A lines to the hard subgraph
H and of soft lines to the collinear-to-B subgraphB, i.e., to
all the gluons connectingA to H.

From the point of view of theH factor, the gluonk is an
on-shell massless gluon with a polarization vector propor-
tional to Am, and a momentum in the1 direction:
k8[(k1,0,0'). The big term inA•H therefore corresponds
to a polarization exactly proportional to the momentum of
the gluon. This we call a scalar gluon, and we therefore make
the following decomposition:13

Am5pA
m A•pB

pA•pB
1SAm2pA

m A•pB

pA•pB
D . ~42!

To make a covariant formula, we used the previous defini-
tions that pA and pB are vectors purely in the1 and 2
directions. The first term on the right-hand side of this equa-
tion we label as corresponding to scalar polarization, and the
second term as corresponding to transverse polarization.
Since the scalar polarization is exactly proportional to the
approximated momentumk8 used inH, it gives a factor
k8•H(k8). This is precisely the kind of situation in which
Ward identities simplify the sum over all graphs. The indi-
rect methods of Ref.@33# give a very efficient implementa-
tion of the relevant identities.

With the modified definitions, it is still true that there is
no penalty for attaching a scalar gluon toH, but that there is
a penalty for every transverse gluon line and every quark
line. Now, the factors for the external lines ofA correspond
to the Feynman rules for light-cone operators. So scalar glu-
ons are associated with factors ofA1 in an operator, where
A1 is the1 component of the gluon field. The gauge invari-
ant gluon operator with the lowest number of transverse glu-
ons is of the form

Gi 1~0,y2,0'!PGj 1, ~43!

12In this and the subsequent equations, the symbol ‘‘.’’ means
‘‘equal up to power corrections.’’

13Notice that this definition has changed from the one we used
earlier, Eq.~23!, in order to take account of the approximations we
have made in theH subgraph.

FIG. 13. Whenk is soft, this graph illustrates the need for con-
tour deformation ofk1.
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whereP is a path-ordered exponential of the gluon field. The
indicesi and j label transverse components. Notice that the
operator associated with the scalar gluons,A1, is exactly the
one that appears, exponentiated, inP.

The operator, Eq.~43!, is a 232 matrix on transverse
coordinates. We now find the restrictions due to angular mo-
mentum conservation that restrict those components of this
matrix that have a nonzero coupling to the hard scattering.
Consider the hard part times the meson wave function as a
scattering process for collinear gluons plus the virtual photon
to make the meson. Angular momentum conservation plus
the fact that the photon is longitudinally polarized implies
that the angular momentum of the gluons around the colli-
sion axis equals the helicity of the meson.

The matrix has components of helicities 0,12 and22.
So if the meson is a transversely polarized vector, then we
have a zero hard part, as indicated on the fourth line of Eq.
~10!.

If the meson is a longitudinally vector or a pseudoscalar
meson, then either of the two matrices of zero helicity con-
tribute:

S 1 0

0 1D ,S 0 i

2 i 0D . ~44!

Parity conservation implies that the first matrix is the only
one to which the hard scattering couples for the case of a
longitudinal vector meson. For the factorization theorem for
longitudinal vector mesons, we therefore find that the gluon
density needed is the one defined in Eq.~6!; it defines theA
factor, with the normalization factor being a matter of con-
vention.

For the case of pseudoscalar mesons, the second matrix in
Eq. ~44! is the one that satisfies parity invariance. However,
charge-conjugation invariance, as indicated below Eq.~9!,
implies that the hard-scattering coefficient is zero.

Similar arguments give Eq.~4! as the definition contain-
ing the smallest relevant gauge-invariant operator with
quarks, when we are treating production of longitudinally
polarized vector mesons, with Eq.~8! being the definition of
the meson wave function. Theg1 factor in Eq.~4! picks out
the largest components of the quark and antiquark fields.

Next we apply the same arguments about angular momen-
tum conservation to the production of pseudoscalar mesons
and of transversely polarized vector mesons. We find that the
changes needed in the definitions of the parton densities and
the wave functions are those indicated in Eqs.~9! and ~10!.

In our expansion of the form of Eq.~40!, the operators
can be expanded in powers of the fields in the path-ordered
exponentials. Thus we may regard Eq.~40! in two equivalent
ways. One way is to restrict the operators to exactly the
gauge-invariant operators. The number of terms is then
2Nf11: one operator for each flavor of quark and antiquark
and one for the gluon. Another way to look at the formula is
to sum over terms for each of the operators obtained in the
expansion of the gauge-invariant operators. This gives an
infinity of terms, but in 2Nf11 groups, with identical Wil-
son coefficients within each group.

The second point of view is useful because it shows that,
to obtain the coefficientCi for each gauge-invariant operator,
it is sufficient to examine graphs for theH3B factor that

have the minimum number of external lines, viz., two trans-
verse gluons or two quarks~in addition to the photon and the
meson!.

E. End point contributions

We have now shown that the leading power for our am-
plitude is given by a convolution of operator matrix elements
for the proton, times coefficients that are obtained from hard
subgraphs times collinear subgraphs associated with the me-
son. The coefficients are obtained from graphs forH5H3B
with exactly the two external lines that correspond to the two
parton fields in Eqs.~4! and~6! that we have when the path-
ordered exponentials are omitted in the operators.

Only if both external lines connect to the hard part can we
proceed to the next step of factoringH3B into the hard
factor in the factorization formula times the wave-function
factor Eq.~8!. Unfortunately, the external lines ofH3B can
connect either to the hard subgraph or to the collinear sub-
graph, a situation summarized in the equation

~45!

The first term corresponds to the region of Fig. 8~b!, and the
second to Fig. 8~f!, in the case that there are no extra gluons
attachingS to B. The dots between theH andB subgraphs
indicate an arbitrary number of lines being exchanged.

A similar equation applies with external gluons, and cor-
responds to the regions of Figs. 8~a!, 8~d!, and 8~e!. Note that
the gluon attaching toB now has to be transverse, so that we
have lost one power ofQ for Fig. 8~e!, which has only three
partons connecting to the hard subgraph. This brings the
power for all cases down to 1/Q, and hence there are no
further power law cancellations that we will need to take into
account.

In Eq. ~45!, we call the term where one of the lines at-
taches toB an ‘‘end point’’ contribution, for the following
reason. In the factorization equation~3!, the longitudinal mo-
mentum fractions of the two lines relative to the incoming
proton arex1 andx2x1 . When one of the lines attaches to
B, that means that the line is soft, that is, that we are exam-
ining the contribution of a small neighborhood of either
x150 or x2x150. We can equally well think of the contri-
bution as being obtained from a region of the form of Figs.
8~a! or 8~b!, when one of the quarks joining the meson to the
hard part becomes soft. That is, the term can also be thought
of as related to one of the endpointsz50 or z51 of the z
integral.

Suppression of end point contribution for longitudinal
photon: According to our power counting formula, the end
point contribution is leading, being proportional to 1/Q.
There is in fact an additional suppression. Consider Fig. 8~e!.
The hard part is proportional to

eg
i eg

mhim , ~46!

whereeg andeg are the polarizations of the gluon and pho-
ton, and the gluon indexi is purely transverse. The tensor
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him is obtained from the diagrams with a trace withg1. Thus
him is a tensor constructed from vectors in the1 and 2
direction and from the metric tensor. It is therefore zero
wheng51 or m52, and therefore we get a zero when the
photon is longitudinally polarized. The proofs we have made
previously are appropriate for the leading power ofQ, so the
zero corresponds to a suppression by another power ofQ.
Recall that we have already proved that at least one of the
gluons joiningS to B must be transverse, and that results in
a suppression compared with theQ0 given by the power-
counting formula.

We therefore conclude that the endpoint contribution
from Fig. 8~e! is of order 1/Q2. Since we have already
proved—around Eq.~26!—the corresponding result for Fig.
8~f!, where the hard scattering has two quark lines, we now
know that all end point contributions are suppressed, and we
saw above that this is sufficient to obtain the factorization
theorem.

But clearly, the situation is different when the photon is
transversely polarized. We will discuss this further in Sec. X.

F. End of proof

We have now proved that the endpoint contributions are
power suppressed, in the case that the photon has longitudi-
nal polarization. So the only term that survives in Eq.~45! is
the one where both partons from the proton attach to the hard
scattering.

We can now apply the operator expansion argument to the
H3B factor, to obtain the product of a coefficient times a
suitable vacuum-to-meson matrix element. The matrix ele-
ment is the one given in Eq.~8!, with no purely gluonic
operator being allowed, because of our choice for the quan-
tum numbers of the meson. This result immediately gives the
factorization theorem, Eq.~3!, provided only that we adjust
the normalization of the hard-scattering factor appropriately.

VIII. EVOLUTION EQUATIONS

The definitions of the off-diagonal parton densities, Eqs.
~4! and ~6!, are just the same as those of the ordinary diag-
onal parton densities. In both cases, there are ultraviolet di-
vergences and corresponding anomalous dimensions. The di-
vergences are properties of the operators themselves. Since
the same operators appear in the light-cone wave function,
Eq. ~8!, this permits us to give a unified treatment for both
the parton densities and the wave functions.

The resulting renormalization-group equations give the
DGLAP evolution that is essential to phenomenology. The
two nonperturbative factors in the factorization theorem de-
pend on a renormalization-factorization scalem. We need to
choose it of orderQ in order to make effective perturbative
calculations of the hard scattering factor. Therefore we need
the evolution equations with respect tom, in order to com-
pute predictions in terms of the nonperturbative factors
evaluated at a fixed scale.

Only minor generalizations in previously existing treat-
ments for the diagonal densities are needed@17#. Balitsky
and Braun@34# have given a more general treatment, and
recently Ji and Radyushkin@12–14# treated exactly the op-
erators we are considering.

The essential point is that the ultraviolet divergences arise

when momenta get infinite in a subgraph attached to the
operator vertex. The relevant regions of loop momentum can
be labeled by diagrams of the form of Fig. 14, which is to be
interpreted in a similar fashion to those for the leading re-
gions for the scattering amplitude itself.

After use of gauge invariance to make a kind of operator
product expansion, the divergences will be of the form of the
parton densities themselves convoluted with ultraviolet
renormalization factors. Hence the right-hand side of the
evolution equation is of the form of a kernel convoluted with
the parton densities. The derivation and the result is just the
same as for the diagonal densities, except that one must take
account of the longitudinal momentum flow in thet channel.
For the distributions, we have

m
d

dm
f i /p~x1 ,x2 ,t,m!

5(
j
E djPi j „x1 ,x2 ,j;as~m!…f j /p~j,x22x11j,t,m!.

~47!

When t50 and x15x25x, the equation reduces to
the standard Altarelli-Parisi equation, with a kernel
jPi j „x,x,j;as(m)…. Since the ultraviolet divergences are in-
dependent of the transverse and2 components of momenta,
the kernelPi j is independent oft.

This implies that when the individual momentum frac-
tions x1 andx2 are much larger thanx[x12x2 , the distri-
butions approach the diagonal ones, and the limitx15x2 can
be taken in the kernel.

The same operator occurs in the meson’s light-cone wave
function, so that its evolution equation contains the same
kernel

m
d

dm
f i

V~z,m!5(
j
E dzPi j „z,z;as~m!…f j

V~z,m!.

~48!

Corresponding Altarelli-Parisi equations apply to the
other parton densities and wave functions needed for treating
the production of pseudoscalar mesons and transversely po-
larized vector mesons.

IX. RULES FOR HARD SCATTERING FUNCTION

The hard scattering functionHi j in Eq. ~3! is obtained
from graphs with the appropriate external parton lines for the
H subgraph, Figs. 8~a! and 8~b!. The graphs are 1PI in the
two lines from the proton and in the two lines from the
meson. Lowest order graphs are given in Fig. 2. Subtractions
are made to cancel the collinear divergences. Minimal sub-
traction can be used for the subtractions just as in inclusive
hard scattering, and in the same fashion. Normal Feynman
rules are applied to the interior of the graphs, so it remains to
construct the normalization factors and the external line fac-
tors.

Consider first graphs in which the proton factor is con-
nected by quark lines to the hard scattering. The leading
power is obtained from a factor of the form

tr~g1 part of H3g2 part of A!, ~49!
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which we can write as

1

2
tr~g2H !

1

2
tr~g1A!. ~50!

The 1/2 and theg1 in the second factor appear directly in the
definition of the parton density, Eq.~4!, with the 1/2 multi-
plying a 1/2p associated with the Fourier transform.

As to the integral over the loop momentumk connecting
A andH, the 1/(2p)4 factor is completely inside the parton
density, as are the integrals over the transverse and2 com-
ponents of the momentum. We rewrite the integral overk1

as

E dk1•••5E dx1p1••• . ~51!

In addition there is a trace over color indices betweenA and
H. SinceA is a unit matrix in color space—the protons are
color singlet—and since the parton density is defined to in-
clude a sum over colors, we need to traceH over color and
divide by the number of quark colors,Nc53.

Hence the external line factor associated with quarks en-
tering the hard scattering from the proton blob is

A2quark factor5
1

2Nc
p1trg2••• , ~52!

with the trace being over both Dirac and color indices, and
where ‘‘•••’’ represent the rest of the hard subgraph, with
ordinary Feynman rules. The factor 1/2Nc is in effect an
average over spin and color, just as we would have in an
inclusive process.

With one exception, exactly similar considerations apply
to the connection of the hard scattering to the meson factor,
apart from a need to exchange the1 and2 coordinates. The
exception is that the definition Eq.~8! of the wave function
contains an extra factor 1/A2Nc. Hence the external line fac-
tor associated with quarks entering the hard scattering from
the meson blob is

V2quark factor5
1

A2Nc

V2trg1••• . ~53!

Finally there is the case of gluons attaching the proton
blob to the hard subgraph. Here we get similarly

A2gluon factor5
1

2~Nc
221!

d i j , ~54!

where we have an average over the two transverse polariza-
tions and theNc

221 colors of a gluon.

X. TRANSVERSELY POLARIZED PHOTONS

Our proof of the factorization theorem Eq.~3! is valid
when the photon is longitudinally polarized, since we were
able to show that the contribution of end point regions was
power suppressed. Order by order in perturbation, an ampli-
tude of order 1/Q times logarithms was obtained, but with an
enhancement due to scaling violations when we apply DG-
LAP evolution.

In this section we will show that the amplitude for trans-
versely polarized photons is suppressed by one power ofQ.
First we will show this for the non-end-point contribution, as
a consequence of Lorentz invariance. Then we will treat the
end-point terms.

A. Power counting: Non-end-point case

Consider first the non-end-point contributions, where the
hard scattering has four external lines, Figs. 8~a! and 8~b!.
For Fig. 8~a!, the hard part has a polarization dependence of
the form

e1
i e2

j eg*
m hi j m , ~55!

wheree1 and e2 are the transverse gluon polarizations, and
hi j m is a tensor constructed out of longitudinal vectors and
out of Lorentz invariants. The tensor is therefore invariant
under rotations in the transverse plane, and hence it can only
be nonzero ifm51 or m52. So we get a nonzero result for
the leading power only for a longitudinally polarized photon.

For the quark graph, Fig. 8~b!, the result is even simpler,
since after the trace over Dirac matrices, the hard part just
gives a vector

eg*
m hm . ~56!

The same argument that we applied to Eq.~55! gives exactly
the same result.

Therefore in the case of the non-end-point contribution
the leading 1/Q power is only obtained when the photon is
longitudinally polarized. There must be at least a 1/Q sup-
pression for transversely polarized photons, which gives a
final power 1/Q2. Now in Sec. VII E, we showed that the
end point terms obey exactly the opposite rule: longitudinal
photons are suppressed, and transverse photons give the 1/Q
contributions.

B. How soft is soft?

However, to get the 1/Q contribution with a transverse
photon, we depend on the soft momenta being treated as
having a magnitude ofm2/Q. This is evidently very small:
the corresponding virtuality is of orderm4/Q2. Clearly, we
must expect nonperturbative confinement effects to restrict
all significant virtualities to beingm2 or larger. We now
show that this results in a power suppression.

FIG. 14. Regions for UV divergences of parton densities. The
momenta in the upper blob have large virtualities, and the momenta
in the lower blob are collinear to the hadron. Removing one exter-
nal hadron gives the regions for UV divergences of light-cone wave
functions.
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To see what is happening, let us examine a particular
graph, Fig. 15. There are many ways in which regions of the
form of Fig. 4 can be constructed. For our purposes it will be
sufficient to restrict our attention to cases where the momen-
tum l that goes through the meson vertex is always collinear
to B and not close to either of its end points. Similarly, we
choose all momenta in subgraphA to be collinear toA.

The region of interest for this purpose is where the loop
momentumk becomes soft. So let us suppose that all com-

ponents ofk are of orderlQ, wherel is a parameter that we
will vary betweenm2/Q2 and unity. The upper limit of this
range is wherek becomes a hard momentum, and the lower
limit is where k6 become comparable to the small compo-
nents of collinear momenta. Thus whenl is outside of these
limits we get a power-law suppression.

All the propagators and loop integrals give factors of or-
der unity except for those in the loopk. So we just need to
focus our attention on the factor

E d4ktrFe” g*
V”1k”

~V1k!2

1

~k1 l !2 gmB” gm

k”

k2 e” 1

A” 11k”

~A11k!2 e” 2

A” 21k”

~A21k!2G . ~57!

HereA1 andA2 represent two collinear momenta associated
with the two lower gluons, whilee1 , e2 , and eg* are the
polarizations of these two gluons and of the photon. We use
Bm to denote a collinear vector associated with the right-
hand loop through the meson. In~1,2,'! coordinates, the
magnitudes of theA andB momenta are

A1
m ,A2

m;S Q,
m2

Q
,mD , ~58!

Bm;S m2

Q
,Q,mD . ~59!

Hard region for k: Whenl;1, so that all components ofk
are of orderQ, we get an overall power 1/Q made up as
follows: Q4 for the integrationd4k, 1/Q10 for five hard
denominators,Q5 for the five numerators, each of which has
at least one term of orderQ. As always, we are working in
the Breit frame. The power 1/Q is exactly what we obtained
from general arguments; the hard subgraph consists of thek
loop and has external line four partons and the photon. Given
the cancellations proved in Sec. VII D, we know that we can
take the gluon polarizations to be transverse; this fact was
used in obtaining the power ofQ for the numerator. Further-
more, the argument in Sec. X A shows that after the integra-
tion over the azimuth ofk' , the power 1/Q is only obtained
when the photon has longitudinal polarization; one power of
Q is lost for transverse polarization.

Soft region for k: Next we consider smaller values ofl.
There are two ranges to consider: 1.l.m/Q and
m/Q.l.m2/Q2. The break pointl5m/Q between the
two ranges occurs where the components ofk are compa-
rable to masses and typical collinear transverse momenta.

In the higher range 1.l.m/Q we obtain a powerl/Q,
as follows:l4Q4 for the integrationd4k; 1/(l4Q8) for the
four denominators of the form (Collinear momentum1k)2;
1/(l2Q2) from the k2 denominator;l3Q5 for the five nu-
merators. The numerator is the product of ak” factor, which
is of orderlQ, and of four factors each with a largest com-
ponent of orderQ. But the large components of collinear
momenta are in a lightlike direction. Since (g1)2

5(g2)250, we cannot be restricted to just the biggest terms
in the momenta, and examination of the surviving terms
shows that the result for the numerator is in factl3Q5.

Note that the two lines of momentaA11k andA21k are
off shell by much more than of orderm2. Thus they are hard
relative to the collinear gluons and the argument that the
gluons are transverse still holds. We do not have to be con-
cerned about a scalar gluon polarization.

The overall result,l/Q, is correct if the photon has lon-
gitudinal polarization. If the photon is transverse, the power
is in fact 1/Q2. This can be seen on an examination of the
trace algebra by noting that the number ofg matrices in the
transverse direction must be even, and that after an azimuthal
average overk' , the number of factors ofk' must be even.
The transversee” g* must be balanced by using the transverse
part of B” , which is of orderl0Q0. This results in replacing
one factor oflQ by unity.

Hence the amplitude for a transverse photon is smaller
than the amplitude for a longitudinal photon until the lower
end of the region we are considering, atl;m/Q. In any
event we always have a power suppression compared to the
dominant part of the amplitude with a longitudinal photon.

Supersoft region for k: The situation changes oncel goes
below m/Q. In the real world, we must suppose that this
region, which we will call the ‘‘supersoft region,’’ is sup-
pressed due to confinement effects. We could model such
effects within perturbation theory by giving the partons non-
zero masses. But as an exercise, it is instructive to obtain the
size of the contribution when the partons have zero masses.

First we observe over the whole of this region,
m/Q.l.m2/Q2, the power counting for the range of inte-
gration and the denominators remains true, to give
1/(l2Q6); all the changes are in the numerator factor. The
numerator is a sum of terms each of which is the product of
five individual momentum components. The biggest terms

FIG. 15. Graph to illustrate endpoint contribution with trans-
versely polarized photon.
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have two factors ofQ from the large components of the
collinear momenta, and one factor oflQ from k” . In the
remaining two factors, the largest components are of orderm
instead oflQ. ~Here is one motivation for separating the
two parts of the soft region atl;m/Q.! Hence the numera-
tor must be treated as being of orderlQ3m2 to give a total
power 1/(lQ3). Note that this term only exists for transverse
photons, as we proved at the end of Sec. V B; it is power
suppressed for longitudinal photons.

At the lower end of the region,l;m2/Q2, we obtain a
leading power contribution.

C. Summary of results for transversely polarized photon

We have shown that for a transversely polarized photon,
there is a suppression of 1/Q in the amplitude relative the the
case of a longitudinal photon. Now we discuss the signifi-
cance of this, and in particular the apparent lack of a simple
factorization theorem, and of a simple parton model interpre-
tation of the results.

For the non-end-point contribution, the suppression re-
sults from the properties of the Dirac traces. For example, in
Eq. ~57! we cannot replace all the factors in the trace by their
largest components without obtaining the trace over an odd
number of transverse Dirac matrices. The 1/Q2 contribution
is obtained by replacing one of the matrices by an orderm
term instead of an orderQ term. This may involve either
circulating transverse momentum in the hard subgraph, or a
replacement ofB” by a transverse part. In either case, the
operators needed to define the collinear factors are no longer
the ones in the definitions of the parton densities and wave
functions, Eqs.~4!–~8!, since we need to project out different
components of Dirac matrices and/or define an operator sen-
sitive to parton transverse momentum. Hence the factoriza-
tion theorem Eq.~3! does not hold, even when we restrict
attention to the the non-end-point contribution; with a trans-
verse photon, we must not only change the hard scattering
factor but we must also put in more general objects for the
nonperturbative factors.

For the end-point contribution, we have to allow for a
nonperturbative soft factor. Just as in the case of the
transverse-momentum distribution for the Drell-Yan and
other processes@35#, we should be able to do this by defining
a suitable phenomenological function to be convoluted with
the other factors in the amplitude. It would be an interesting
result to derive a general result beyond the leading-logarithm
approximation.

In any event the results for transverse photons appear to
be more complicated and difficult than for longitudinal pho-
tons. It is not possible to use anaive generalization of the
factorization theorem we have derived with a longitudinal
photon.

Previous work@1–3# on this process has used the proton
rest frame rather than the photon rest frame. Although that is
a useful frame for deriving leading-logarithm results, and for
gaining intuition about how the process works, it is not so
useful in constructing a complete factorization theorem.
However, it is worth noting the corresponding results. We let
z be the momentum fraction carried by the quark joining the
meson to the hard scattering. Thenz is very similar to the
parameterl we used in investigating the end-point contribu-

tion, in Sec. X B. The end-point contribution arises whenz is
close to 0 or 1. Ifz is of orderm/Q a 1/Q2 contribution for
the amplitude was obtained with a transverse photon@1#, and
if z gets unphysically small, of orderm2/Q2, we get a 1/Q
contribution. There are additional Sudakov suppressions
whenQ2 is large enough.

XI. PREDICTIONS FOR RELATIONS BETWEEN CROSS
SECTIONS FOR DIFFERENT MESONS

As in the case of inclusive processes, the factorization
theorem leads to predictions for the flavor dependence, in
this case for relations between the cross section for produc-
tions of mesons of different flavors.

A. Small x

At small x, the parton densities are dominated by ex-
change of vacuum quantum numbers, since this is just a nor-
mal Regge limit. Thus to a good approximation the factor of
the hard scattering times the parton density will be propor-
tional to the square of the charge of the quark connecting the
hard subgraph to the meson. If we now make the approxima-
tion that the wave functions for the different mesons,r0, v,
f, andJ/c, are the same apart from the obvious flavor de-
pendence, we get the prediction@2# that their production
cross sections are in the ratios

r0:v:f:J/c59:1:2:8. ~60!

We should expect this approximation to be reasonable for the
three light mesons, but not so good for theJ/c. Since the
J/c is smaller than the light mesons, we should expect its
production cross section to be even larger than predicted by
this formula.@The particular prediction, Eq.~60!, for theJ/c
also depends onQ2 being large enough that the charmed
quark mass can be neglected in the hard scattering.#

What the results of this paper give is that the prediction,
Eq. ~60!, is immune to higher order QCD corrections. That
is, its accuracy only depends on the use of smallx and on the
similarity of the meson wave functions.

B. Large x

At large x, the dominant parton flavors in the proton are
the valence quarks. Although we do not know the nondiago-
nal parton densities, it is highly likely that they will be quali-
tatively similar to the diagonal densities. In particular, the
biggest will be those for theu and d quarks, and theu
density in a proton will be rather bigger than density ofd
quarks. So the production of thef andJ/c mesons will be
suppressed compared with the values at smallx. Also the
fact that there are fewer down than up quarks will reduce the
suppression ofv production. We see this as follows. Let the
meson wave function have flavor dependence of the form
aūu1bd̄d, and letR be the ratio of up to down quarks in
the proton. Recall that for ther0, a52b, whereas for the
singletv, we havea51b.

Let us work to lowest order in the hard scattering and
ignore the small gluon contribution. Then the cross section is
proportional to (2Ra2b)2, since the lowest-order hard scat-
tering amplitude depends on quark flavor only through a fac-
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tor of the quark charge. Notice that there is interference in
the amplitude between the terms with different flavors of
quark, and we have destructive interference for the singletv.

The ratio of cross sections is

r0:v5~2R11!2:~2R21!2. ~61!

When R51, this is the 9:1 ratio in Eq.~60!. When R in-
creases above 1, ther0/v ratio gets a lot closer to unity. For
example, whenR52 which is natural forx;0.2 we get a
ratio of 2.8:1.

We also observe that thef/r ratio should decrease with
increasing x, compared with Eq.~60!, which assumed
vacuum quantum number exchange. The decrease results
from the lack of strange quarks in the proton. This may be
relevant for the significantly smallerf/r ratio that is ob-
served at the New Muon Collaboration~NMC! compared to
the DESY collider HERA at similarQ2.

C. Production of transversely polarized vector mesons

The production of transversely polarized vector mesons
involves the quark transversity densitydq ~or h1!. Normally
one would imagine that at smallx, such parton densities are
a power ofx smaller than the regular, unpolarized parton
densities, and in particular than the gluon density. This is
because the transversity density involves a helicity flip. It is
usually expected that this requires exchange of nonvacuum
quantum numbers, whereas smallx physics is dominated by
something like Pomeron exchange.

Thus the ratio of transversely polarized vector mesons to
longitudinally polarized vector mesons should be small at
small x, and go to zero atx50. Thus we are unable to
explain the reported ratio from ZEUS:sL /sT51.520.6

12.5 @4#,
since the ZEUS data are at smallx, around 1022. It is pos-
sible that theQ2 of the data is small enough that there is
significant production by transversely polarizedphotons. The
selection rules in this case are different, and one need not
have the same suppression of transverse polarization for the
meson.

On the other hand, there is no reason for the same sup-
pression at largex, in the domain of fixed target experi-
ments. The ratio of the cross sections for transversely and
longitudinally polarized vector mesons will give a measure
of h1 provided one does not have contamination by the
higher twist process where the photon is transversely polar-
ized. The interesting fact here is that one does not need to
polarize the proton. Nowh1 involves a matrix element off
diagonal in helicity~in the limit t505x12x2!. So in an
inclusive experiment we have to polarize the protons if we
are to measureh1 . But in our process, one of the protons in
the matrix element is in the final-state. To get the cross sec-
tion we square the matrix element and sum over all spin
states for the outgoing proton. Thus the off-diagonal nature
of the matrix element is compatible with an unpolarized
cross section~as regards the proton!.

D. Production of pseudoscalar mesons

Exclusive pion production involves the helicity parton
densities. So it should not be suppressed at largex compared
to vector meson production. But it should be much smaller at
small x.

A number of predictions can be made for ratios of cross
sections of different mesons, if some approximations are
made.14 These are that the meson wave functions are SU~3!
symmetric, that the strange quark helicity densityDs is
small, and that the helicity distribution of the up and down
quarks are approximately equal and opposite:Dd.2Du
~this follows from the observation thatF2 for the deuteron is
small and the assumption that this same property is valid for
the off-diagonal parton densities!.

Using the SU~3! wave functions and these approximations
for the parton densities, it can be verified that

ds~e1p→h1p! / dt

ds~e1p→p01p! / dt
'

1

3 S 2DuV2DdV

2DuV1DdV
D 2

'3,

ds~e1p→h1p! / dt

ds~e1n→h1n! / dt
'S 2DuV2DdV

2DdV2DuV
D 2

'1,

ds~e1p→p01p! / dt

ds~e1n→p01n! / dt
'S 2DuV1DdV

2DdV1DuV
D 2

'1. ~62!

HereDuV5Du2Dū andDdV5Dd2Dd̄.

XII. CONCLUSIONS

We have proved a factorization theorem for exclusive me-
son production in highQ electroproduction. The level of the
proof is comparable to that for the classic inclusive hard
scattering processes, like Drell-Yan. An important conse-
quence is that higher-order corrections can be systematically
calculated in powers ofas(Q).

We have derived new results that the theorem applies to
largex as well as to smallx, and that it applies to the pro-
duction of all mesons, and not just vector mesons. Thus we
are able to treat the process

g* 1p→p11n, ~63!

for example.
In addition, we have shown that the theorem applies sepa-

rately to the case of production of transversely polarized vec-
tor mesons. In that case we probe theh1 or transversity dis-
tribution. Although we expect this case to be suppressed at
small x, we see no reason for a suppression at largex. This
process then provides an interesting new method to measure
h1 , admittedly the off-diagonal version. An important con-
sideration is that it is not necessary to have any polarization
information about the proton, unlike the situation when one
measuresh1 in inclusive scattering.

The proof applies only to the case of that the virtual pho-
ton that induces the scattering has longitudinal polarization.
The treatment of the same process with transversely polar-
ized photons appears to be a much harder problem in QCD,
with a definite power suppression.

An important question that needs further study is to un-
derstand how much predictive power there is in the theorem.
As always with perturbative QCD, the problem is that physi-

14Note that the predictions made in the preprint version of this
paper were based on incorrect reasoning.
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cal quantities are represented in terms of parton densities etc.
which we are unable to calculate perturbatively. If we had
predictions for the nonperturbative quantities, we would
have complete predictions for the cross sections. But at the
present state of the art, we only have models for the nonper-
turbative quantities, and very little that can be regarded as
QCD predictions from first principles. Only for the perturba-
tive quantities, the hard scattering and the evolution kernels,
do we possess a systematic method of calculation within
QCD.

Now, for ordinary inclusive processes, we able to measure
the parton densities from a limited set of processes at one
energy and then predict many other processes at all energies
that allow the hard scattering to be perturbative. The reason
that this is straightforward is that the parton densities are
functions of just one longitudinal variable, and that the deep-
inelastic structure functions depend on a corresponding vari-
able, x. Indeed, with the lowest order hard scattering, the
structure functions are just simple linear combinations of
parton densities. Obvious generalizations of these remarks
apply to other processes, in hadron-hadron scattering, for ex-
ample. An immediate consequence is that it is possible to
make many real predictions from QCD for inclusive hard
scattering.~Of course, practical limitations arise from uncal-
culated higher order corrections and from substantial experi-
mental errors.!

But the situation is totally different for our process of
elastic meson production. The cross section is function of
one momentum-fraction variable, but we have total of three
such variables in the factorization formula. It is not so obvi-
ous that we can measure the nonperturbative quantities, even
in principle.

At small x, the situation is better, since the parton densi-
ties are dominated by exchange of vacuum quantum num-
bers: we have a normal Regge limit. To the extent that there
are universal Regge trajectories, we get a relation between
the power laws for thex dependence in our process and in
ordinary deep-inelastic scattering. Since there is an integral
over a longitudinal momentum fraction there need not be an
exact relation between the off-diagonal parton densities and
the diagonal ones probed in ordinary deep-inelastic scatter-

ing. Thus we may not be able to get precise quantitative
information on the diagonal gluon density, particularly as
regards the normalization. Our hope is that by some kind of
Regge factorization we could say that the two parton densi-
ties differ by some kind of Regge vertex, and that since this
Regge vertex would be probed at large virtuality, we might
be able to calculate it.

In the leading lnx approximation, the leading nondiago-
nal terms are in fact computable in terms of the diagonal
parton densities~in the limit t→0!. Similarly, after evolution
in Q2, the nondiagonal terms come dominantly from the cal-
culated evolution kernel, rather than from the nondiagonal
terms in the initial distribution.

Our proof of the theorem also applies to charge exchange
scattering. Then the generalized parton densities are off di-
agonal in flavor. They are related by an isospin transforma-
tion to nonsinglet parton densities~at nonzero momentum
transfer!. There should therefore be some possibilities to im-
prove the phenomenology of the ordinary nonsinglet quark
densities from an analysis of processes like

g* 1p→r11n. ~64!

Our analysis also has direct implications for scattering off
nuclei implying that color transparency phenomena should
be present for exclusive production of leading mesons. We
leave the discussion of this subject to a separate paper.

Note added in proof.In fact, the ‘‘off-diagonal parton
distributions’’ that we use were actually introduced long ago
in Ref. @36#, where the diffractive production of theZ boson
in DIS was considered. Subsequently there is a long history
@37#, including the previously cited paper by Balitsky and
Braun @34#.
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