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We formulate and prove a QCD factorization theorem for hard exclusive electroproduction of mesons in
QCD. The proof is valid for the leading power @ and all logarithms. This generalizes previous work on
vector meson production in the diffractive region of smallThe amplitude is expressed in terms of off-
diagonal generalizations of the usual parton densities. The full theorem applies to all kinds of mesons and not
just to vector mesons. The parton densities used include not only the ordinary parton density, but also the
helicity density(g, or Aq) and the transversity densith; or §q), and these can be probed by measuring the
polarization of the produced mesons with unpolarized prot®8556-282(97)01317-9

PACS numbgs): 13.60.Fz, 12.38.Bx, 12.38.Qk, 12.40.Nn

[. INTRODUCTION Most importantly, the process of constructing a proof led
us to new results. First, the theorem applies to the general
In two recent paper$l,2] it was shown how the cross case of two-body final states at low transverse momentum in
section for diffractive electroproduction of vector mesonselectroproduction at larg€. The diffractive case simply
can be predicted in perturbative QCGThis process provides corresponds to the small-region, with vacuum quantum
a novel probe of the dynamics of diffractive scattering innumber exchange. So we have extended the theorem to the
QCD. One notable prediction is that the cross section is profull range ofx and to all mesons, pions in particular, not just
portional to the square of the gluon density in the hadronvector mesons. In addition we find that we need not only the
Experimental datd4—6] appear to be in accord with the usual unpolarized parton densitiégeneralized to be off di-
predictions, including an enhancement due to the rapid risegonal, but also the helicity densitieqy; or Aq) and the
of the gluon density at smaX. transversity densitiegh; or 6q). Since the cross section is
In this paper we extend the factorization theorem to theProportional to the square of the densities, it is sensitive to
general case of electroproduction of any meson, and we préP€ polarized parton densities without needing a polarized
vide a general proof of the theorem. The theorem expressd¥0ton beam and without needing a measurement of the po-
the amplitude for the process in terms of off-diagonal generlafization of the final-state proton. Indeed we can choose
alizations of the usual parton densities. Our demonstration i hich kind of density is probed merely by choosing the

valid for the whole leading power for the process, in contras inal-state meson. The amplitude for Iong|tud!nally polarized
i . : . . . vector mesons depends only on the unpolarized parton den-
with the calculations in[1,2], which were in a leading-

. . . ) sities. The amplitude for transversely polarized vector me-
logarithm approximatioR. Our results will enable the pro- P y P

sons depends only on the transversity densitieg.(The

cess to be treated with the inclusion of nonleading Ioga'amplitude for pseudoscalar mesons depends only on the he-

rithms. Apart from establishing the factorization theorem for; ity densities.
the process, one aim of this paper is to attempt a pedagogical tjs yesylt clearly adds to the meager list of processes
exposition of ]Ehﬁ methods by Wh'crf‘ th(_alltheorem Is derivedyhere the transversity of valence quarks can be probed with-
since many of the concepts are unfamiliar. out the need of some other unknown quantigych as an
antiquark density or a polarized fragmentation funckion
. . _All the above statements apply when the incoming virtual
On leave of absence from St. Petersburg Nuclear Physics '”Stbhoton is longitudinally polarized. We also prove that the

tute, Gatchina, Russia. PR

'Ryskin [3] considered the case dfy production, i.e., that the gct,rssn?;gtrlggl;lsps;gﬁzzsed by a poweRa#hen the photon

vector meson is composed of a heavy quark and antiquark. This . ) -
work used a charmonium model for the meson, rather than treatin We give a fairly detailed account of the proof of the fac-

the meson more generally in terms of the light-cone wave functiorjfgorlzatlon theorgm. The.Style .Of proof is bas.ed on that of
that the factorization theorem requires. Refs.[8—11], which treat inclusive hard scattering. There are

2Ryskinet al.[7] treat some of the nonleading-logarithm approxi- Some differences. First, our derivation of the power-counting
mation (NLLA) corrections in the case dff production. In this formula shows some useful improvements. Second, and
paper we treat very generally corrections to all orders. rather importantly, we have to examine more closely ex-
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changes of relatively soft quarks, since, in contrast to thexperimentally® although the suppression is not as much as
case of inclusive scattering, there can be leading contribusne might expect. Indeed, we find we can derive a simple
tions from soft quark exchangetherwise known as the end factorization theorem only for longitudinally polarized pho-
point contributions Thus we have to examine the power- tons, since then the contributions from the end poztsO
counting arguments in more detail. andz—1 of the meson wave function are power suppressed,
After this work was substantially complete, Radyushkingiven that the meson wave function at its end points behaves
[12] published a preprint treating some of the same processé@PpProximately as(1—z). For transverse polarization, this
that we consider. His work appears to be completely comSuppression does not happen, and a more complicated theo-
patible with ours; he takes the same point of view as we d¢eMm is needed—see Sec. X. At high enough there is a
concerning a generalized operator product expansion, afudakov suppression, but the physics of this goes beyond the
though the details of his notation are a little different. How- Simple factorization theorem, just as in the analogous case of
ever, he considered only the diffractive limit of smalfor ~ the electromagnetic form factor of the protf6]. _
vector meson production, and hence, just ddinhe did not Itis convenient to use light-front coordinates defined with
include the quark contributior(The quark operator is pre- fespect to_the - collision axisv=(v",v",v,), with
sumably unimportant at smail) He does not present a com- v~ = (v"*v7)/v2. Then we can write
plete proof of factorization. Ji13] and Radyushkifl4] also 5
showed how the same operators appear in an expansion for p| ot m 0
deeply virtual Compton scattering. P P 2pT )
In a future paper we hope to explore further consequences
of our results, including detailed calculations. Q?
qﬂm( _Xp+, —+10L) ’
2xp

A2 +m?x )

Il. DEFINITION OF PROCESS A“%(Xp* . A
: . . . 2(1-x)pt Tt
The process we treat is the diffractive exclusive produc-
tion of mesons in deep-inelastic electroproduction. We can 2 5
express the lepto-production cross section in terms of the N AT+my xp* Q A ) )
cross section for the scattering of virtual photons: Q? T2xpt )

Here,V* is the momentum of the meson. In these equations,
we have neglected small terms in the longitudinal compo-
nents, of relative sizeAzQCD/Qz. These coordinates agree
with the ones used in Reff3,11], but differ from those in
Refs.[1, 2] by a factor ofv2, and by a change of the use of
The target, of momentump®, can be a proton or nucledsr  the + and — labels: v s paper= U —Ref. [1/V2, and similarly
any other hadron and the diffracted hadrop’, of momen-  for v ™.

tum p—A, may or may not have the same flavor quantum

Y () +p—V(g+A)+p'(p=A). oY)

r}umbers as the mcommglhadrpnThe other final-state par- Il STATEMENT OF THEOREM
ticle, V, can be any possible meson, egf, o, J/¢, Y, or
7. When we treat charge exchange scattering within our A. Theorem

framework, the d_irect connecftion to the parton densities in Tha theorem we will prove is that the amplitude for the
the proton{1-3,7] is lost. We will assume that the meson has_process Eq(1) is [1]

guantum numbers such that it cannot decay to a gluon pair.
This choice will eliminate certain subprocesses, and covers

the mesons of interest. 1
The process depends on three kinematic variables: the vir- M=2, dzf dXa fiyp(X1, X=Xt w)
tual photon’s virtuality, Q2= — g2, the square of the center- oo
of-mass energys (for the photozn—proton syst_er,nand the ><Hij(Q2X1/X,Q2,Z,M)¢}/(Z,M)
momentum transfer squareids A“<0. The region we con- )
sider is whereQ?>A%.p, while |[A? is small, of order + power-suppressed corrections. ©)

Adcp. We also assume that the meson mass obeyss. o S _

We are thus treating the asymptotics @sgets large. The Here,f;;, is just like the distribution function for partons of

Bjorken variable isx=Q?%/2p-q~Q?(s+Q? (where the type i in hadronp, except that it is a nonforward matrix

target mass is neglectedn Refs.[1,2] the diffractive case

x<<1 was treated. Our considerations will apply to laxgas

well. 3Dominance of production of longitudinally polarized mesons has
We will mOStly restrict our attention to the case that thebeen predicted also by Donnachie and LandsFiBf within a non-

virtual photon is longitudinally polarized. The cross sectionperturbative model of the pomeron. This is presumably because

with transversely polarized photons is somewhat smaller—their diagrams have to obey the same power-counting rules as we

this was a prediction of Refs[1,2], and is confirmed derive.
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same factors as before, but the two gluon lines are to be
contracted with5*#/2, wherea and 8 are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-
ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:
Longitudinal vector meson

1. Quark distribution

The distribution functionf;,, and meson amplitudeﬁ}’
FIG. 1. Factorization theorem. are defined, as usual, as matrix elements of gauge-invariant

o o v bilocal operators on the light cone. In the case of a quark of
element! We will give the definition later. The factap/ is  flavori, we define

the light-cone wave function for the meson, arg is the

hard scattering function. The sums are over the parton typeﬁ/p(xl,xz,t,,u)
i andj that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero = dy” _
f!avor, the partor] is_ re_stricted to.be a quark. The factoriza- =f An e 2P Y (p'|Ty(0y~,0r)y" Pys(0)|p),
tion theorem Eq(3) is illustrated in Fig. 1. -

The above formula is correct for the production of longi- (4)
tudinally polarized vector mesons. For the production of . . .
transversely polarized vector mesons or of pseudoscalar m&v_hereP IS a path_-ord_ere_d exponential of the gluon field
sons, we have a formula of exactly the same structure, but iﬁlong th(’.“ lightlike line joning the two operat'ors for a quark
which the unpolarized parton density is replaced by a poIarfE)f fIav_or ! gNethhave dﬁf'tnetﬁl tr? bg thetIra_ctlonaI mtorr;)en—
ized parton densitythe transversity density for transverse ﬁm given by the quar bo he ar SC?(_ ‘?“”%a";ﬂz o be.
vector mesons, and the helicity density for pseudoscalar méhe momeﬂtum gblven y t_e anthﬁar ,b|n.t € r?ctonzat;on
song. Similar changes will need to be made to the definitiont ieorem t €Y ODEYX1— X=X, W't. X emg_t € usua
of the meson wave function. Bjorken variable. At first sight the right-hand-side of E4)

The parameteg in Eq. (3) is the usual renormalization- 3ppea&s to deper;ld onrl1y o and noglonxl nor O?t' Thhe f
factorization scale. It should be of ord@r, in order that the ependence on the ot er two variables comes from t e fact
hard scattering functiorH;; be calculable by the use of that the matrix element is nonforward. The difference in mo-

finite-order perturbation theory. The dependence of the mentl:cm Ibert]\iveen the St"’f[tﬁsi) gnd |P/> dtogetger with tf:je
distributionf;,, and of the light-cone wave functioquy are  US€ 0! alight-cone operator brings in dependence dan
given by equations of the Dokshitzer-Gribov-Lipatov- " t. It is necessary to take only the connected part of the

: o . . . matrix element.
Cﬁ?re"' Parisi (DGLAP) kind, as we will discuss in Sec. The same definition has recently been given and discussed

by Ji and Radyushkifl2—14. As Ji points out, when#0
there are in fact two separate parton densities, with different
dependence on the nucleon spin. For the purposes of our
proof, it will be unnecessary to take this into account explic-
itly; we can simply suppose that this and the other parton

and of the light-cone wave functio#¥, we will be able to s ;
see that the definition dfl is the sum of graphs such as Fig. SE;Z:"S;‘ ;r?c\i/fp%ependence on the spin state of the hadron

2(a) contracted with suitable external line factors that corre- The usual quark densitf,(x, ) is obtained by settin
spond to the Dirac wave functions of the partons. In the Case_ ' ndx. — q Y inE 4I-/p| ’Mdd't' it Ig 9
of longitudinal vector meson production, the factors are andx, =x,=x in Eq. ( )'. h adaition, 1t would appear
1n*y~ for the lower two lines andV~y" for the lines that one has to remove the time-ordering operation from the

connected to the outgoing meson. These factors are related t8eer§{r(')t<r)r?%eerr?;)tirgslgslzs(?)?i;?egbvﬁﬁ iwguz?féegggttje{sﬁe;bfor
spin averages of Dirac wave functions for the quarks. We Fr)leed time-ordered operators in our present work because
In the case of the gluon-induced subprocess, Rig), 2he P P

external fermion lines oH are to be contracted with the
U A,

Typical lowest order graphs fdd are shown in Fig. 2.
Consider Fig. a), all of whose external lines are quarks.
After we go through the derivation of the factorization theo-
rem, and have constructed definitions of the distribufign

“4In fact, our whole paper applies to a more general case. The
final-state proton in Eq.l) may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to
have vacuum quantum numbers. The index the factorization
theorem is then to be replaced by a pair of indices for the flavors of (a) (b)
the two quark lines joining the parton densfty, to the hard scat-
tering. Similarly, the two quark lines entering the meson may be
different, and the index is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs féf.

J
q
ﬁa
TGO
f@&#
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we are discussing amplitudes rather than cut amplitudes. It is also worth noting that there is a limit dn

Thus if one sets=0 andx;=X,=Xx in our parton distribu- ) )

tions, one would naturally suppose that the conventional in- >t _m (X1—X2)

clusive parton densities are the discontinuities of GUR®- mh1—x X%,

lating the new parton densities to the standard ones, even in ) ) _

the forward limit would therefore appear to need dispersiorvhich comes from the kinematics of the scattering proton.

relations. Note that the same limit is obtained from the kinematics of
In fact, the two kinds of parton density are equal, at leasthe scattering process we consider, Efj), in the limit

in the forward limit. A proof of this not very obvious fact Q>m. We deduce that the limit—0 cannot be accessed

was given many years ago by Jafts]. However, his proof directly in exclusive meson production. Indeed, since

applies only to two-particle-irreducible graphs for the partonX1—X2=Xyj, the analytic continuation frort#0 to t=0 is

densities, a restriction we suspect to be unnecessary. Weard to perform in practice, except at smajj.

hope to return to this issue in a later paper, particularly be-

cause there are some additional complications in the nonfor-

ward parton densities that particularly appear when one treats An exactly similar definition applies for the gluon distri-

dispersion relations for the amplitude for our process. bution:

®

2. Gluon distribution

= dy” 1 I B
fg/p(leXZ;tyﬂ):_f Sy T e X2P Yy <p,|TGv+(Oiy !OT)PGV+(0)|p> (6)

—® 21 X1X2p

The 1k,x, factor cancels a inverse factor that appears in the derivative part of the@gld®,y ,0;)G"*(0). Thenormal-
ization is now a little different from that of the diagonal distribution:

fg diag(x) = ng nondiaggx1x)- (7

i.e., one setx;=Xx,=X, and puts in a factox. To avoid this complication while preserving symmetry between the two gluon
lines would involve square root factors, or changing the hard scattering formul@3)Eevhen the partons are gluons. The
square roots are undesirable, because they change the analyticity properties of the formula in the neighbriro@doé
X2: 0

3. Wave function

The light-cone wave function for a longitudinally polarized vector mesdi %

1 » d + cov—yt -
e |7 S e oluty 000y PuOIV), ®)

where the factor of 3/2N, is the convention established by need a different operator to pick out the nonzero component.

Brodsky and LepagfE20]—see their Eq(64). This conven- In addition, we have exchanged the use of theand —

tion results in a elegant normalization condition for light- components of vectors. This simply corresponds to the fact

cone wave functions, E¢26) of Ref.[20]. that we wish to apply the definition to a meson that travels in
Our definition appears to disagree with theirs, but this isthe — z direction in our coordinate system. The factorrof

fact not so. We have an extra overall factor 2 which merelyj, Brodsky and Lepage’s definition is an error, and should be

results from the 3/2’s in our definition of light-cone coor-  omjtted[21]: their definition is not invariant under boosts in
dinates. We are missing @5 that they have, because our e 7 direction.

meson is a vector instead of a pseudoscalar, and we therefore o)) of the above definitions have ultraviolet divergences.

So they are defingdL7] to be renormalized by some suitable
prescription, of which minimal subtraction is the standard
SEquivalently one would say the conventional parton densities ar&ne. We do not explicitly indicate the renormalization, which
given by the imaginary part of our distributions. To be precise, withis done by a factor convoluted with the right-hand sides of
our definitions, which do not possess an overall factoi,ofhe  these definitions. The scale associated with the renormaliza-
discontinuity is twice the real part. tion is u, and the DGLAP evolution equations are the
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renormalization-group equations for tjwedependence. C. Definitions of light-cone distributions and amplitudes:

As stated in footnote 4, there is a more general theorem, Pseudoscalar meson and transverse vector meson
in which the final-state hadron in the distribution, E4),
has quantum numbers different from the proton. Then it When we write the factorization formula for a pseudosca-
would be necessary to modify this definition, so that thelar meson, different components of Dirac matrices dominate
quark and antiquark fields have different flavdiBhe gluon in the amplitudes. We will see that the following changes are
distribution would also be zerp.Similar modifications needed in the definitions, Eqgt), (6), and(8):
would be needed to the meson amplitude &).

Object original replacemeripseudoscalar mespn
Meson wave function v v vs
Quark density vt Y vs
Gluon density -G, 'G"* Not used
Coupling ofH to quarks from meson gy /2 q ysy'2 9)
Coupling ofH to quarks from proton pty /12 prysy /2
Coupling ofH to
gluons from proton 8112 Not used

The parton densities in the diagonal limit then correspond to the helicity derf@#EAf that are used in the treatment of the
polarized structure functiog,. However, the gluon density is not used: charge conjugation invariance implies that the hard
scattering coefficient is zero when it couples a virtual photon and a pseudoscalar meson to a pair of gluons.

For a transversely polarized vector meson, we use the following replacements:

Object original replacemerftransverse vector mespn
Meson wave function vy~ Y Y ys
Quark density y* Y Y s
Gluon density -G, 'G"* Not used
Coupling ofH to quarks from meson q y /2 a ysy'y' /2 (10)
Coupling ofH to quarks from proton pry /2 ptysyly 12
Coupling ofH to
gluons from proton 8112 Zero

Note that the gluon density does not appear in this case, for We now demonstrate that the two dispersion relations are
reasons of helicity conservation in the hard scattering. In thén fact consistent. The proof will be to demonstrate that the
diagonal limit, the quark density we use with transverselydispersion relation for the hadronic amplitude follows from
polarized vector mesons becomes the transversity densithe corresponding dispersion relation for the hard scattering
[22] 6f, also calledh, . amplitude. This is important because one of the approaches
The combinations of Dirac matrices in the wave functionsto calculations has been to calculate the imaginary part of the
for longitudinal vector mesons and pseudoscalar mesons pickmplitude first and then to use dispersion relations to com-
out pairs quark and antiquarks that have opposite helicity angute the full amplitude. A consequence is that the real and
hence of the chirality; this is correct for making a meson ofimaginary parts of the hadronic amplitude are separately ex-
zero helicity. In contrast for a transverse vector meson, th@ressed in terms of the real and imaginary parts of the hard
guark and antiquark have the same helicities and the oppositeattering amplitude with the same parton densities.
chiralities. We will find it convenient to write the amplitude as a
function of v=2p-q=Q?/x rather thars= r—Q?. We have
D. Real and imaginary parts of amplitude M= M(Q?%x,t,Q%) andH=H(Q?x,/x,Q?,z), wherex, is
In the factorization theorem, E¢B), the amplitude for our the same variable as in E{B). The important fact that lets

process at the hadronic level is expressed in terms of a ha@/l derivation work is thati depends on the ratie, /x but
scattering amplitude together with a generalized parton der10t ONX1 andx separately. This is proved by observing that
sity in the proton and a light-cone wave function of the me-H is invariant under Lorentz boosts in tlfze.dlrectllon and
son. Now both the hadronic amplitude and the hard scattet@t & change af; andx by a common ratio is equivalent to
ing amplitude satisfy dispersion relations that relate their reaft POOSt. _ _ , ,

and imaginary parts, and it is not entirely obvious that the The dispersion relation for the hard scattering amplitude
dispersion relations for the two amplitudes are consistent

with the factorization theorem. Moreover, one might suppose dv' 1

that complications arise because the cut of the amplitude H(V,QZ,Z):J — ——disH(v',Q%2). (11
needed to obtain the discontinuity of the hadronic amplitude 2mi v —v

must cut both the hard scattering amplitude and the parton

density in Fig. 1. By choosing the contour to run along the real axis, we have
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made the right-hand side of this equation involve only thesingular surfaces in the space of loop integration momenta,
discontinuity(or imaginary paitof the amplitude. Any sub- in the zero-mass limit.
tractions needed in the dispersion relation will not affect the (3) Identify the relevant regions of integration as neigh-

principles of the derivation. borhoods of these pinch singular surfaces.
We now substitute Eq11) in the factorization theorem. (4) The scattering amplitude is a sum of contributions,
Then writing v’ =x, 7 gives the dispersion relation fov1: one for each pinch singular surface, plus a term where all
lines have virtuality of at least of ordeD?. Appropriate
dv’ 1 subtractions are made to prevent double counting.
M(V,Qz,t)zf dx,dz 5— 57—~ (5) Perform power counting to determine which regions
! give the largest power dD.
XH(v',Q%,2)d(2)f(xq,X"). (6) Finally, show that the contributions for the leading
power of Q give the factorization formula Ed3).
dar 1 Any terms that do not contribute to the leading power are
= [ dxydz =— = dropped. The factorization formula is intended to include all
2m v=v logarithmic corrections to the leading power, whether they
XH(xX,7,Q%2) (2) F(xq,X'). are leading or nonleading logarithms.
dy 1 A. Scaling of momenta
= | 5= disaM(7.Q%.2), Following Libby and Stermari23] we write a general

(12 momentumk® and a general mags in units of the large
momentum scal€):

where in the last line, we have used the factorization theorem
again. This equation is just the expected dispersion relation
for the hadronic amplitude.

The discontinuity of an amplitude is obtained by making a
cut that puts some intermediate states on shell. The onl
possible cut ofM in its factorized form, Fig. 1, is one that
cuts both the hard scattering amplitute and the parton

k*=Qk“, m=Qfmn. (13

Since we work in the rest frame of the virtual photon, i.e., in
the Breit frame, both of the light-cone components of its
omentum are of orde®. When everything is expressed in

terms of the scaled variablels,andm, simple dimensional

density f. The statement that the parton densities are thgnalys!s TQ'hQWS thaF the Iarg@hm[t IS equ.lvallent to.a Z€ro-
same whether the operators are unordered or are time ofaass limit,m—0. Since the amplitudg is dimensionless,
dered is equivalent to saying that the cut amplitude equalgle have

the uncut amplitude. This is consistent with our derivation of

the dispersion relation fam. —— =~
P M(QZp,py.A,m; ) = ML, By 5 4/Q), (14)

IV. REGIONS

. . .. by ordinary dimensional analysis. Notice that, in the limit
We wish to calculate the asymptotics in a double limit: Qo

Q/m—o and x—0, but it is theQ—oo limit that we will

concentrate on, since that will result in the perturbatively P*—(p*/Q,00,),
calculable factors in our theorem. It will also give us a more
general theorem, that is applicable at laxgdn this and the q“—(—xp*/Q,Q/(2xp™),0,),
next section we follow the treatment of Libby and Sterman
[10,23,24 adapted to our process. A*—0,
Graphs for the process have integrals over all their loop
momenta, and we wish to classify the regions of loop mo- ’\7"—>(O,Ql(2xp+),oi), (15)

menta in a suitable way for extracting the asymptotics as

Q—. To expose the powers @, we choose to work in  sg thafp andV become lightlike vectors, cf. Eq2).
the Breit frame where the virtual photon has zero rapidity, e consider the most basic region to be where all internal
xp*=Q?/2xp" =QIv2.° In such a frame the mesovt is  ineg obeyk?=Q2, and thus the scaled momerkahave
moving very fast in one direction, and the incoming and,;;ryalities of order unity, or bigger. In such a region, we can
outgoing protons are moving very fast in the opposite direCiggitimately set the mass parameters to zero, and make the
tion. The steps in the proof are as follows. _ external hadrons lightlike. Most importantly, we will be en-
(1) Scale all momenta by a fact@/m, so that we are in iyjeq 1o choose the renormalization scalef orderQ with-
ef_fect attempting to take a massless on-shell limit of the amg, ;¢ obtaining any large logarithms. Consequently, in this re-
plitude. _gion an expansion to low order in powers of the small
(2) Use the Coleman-Norton theorem to locate all p'”Ch'coupIing ay(Q) is useful.
However, this basic region is not the only one. Indeed, it
does not even provide a leading contribution for the ampli-
5None of our arguments would change if we made a finite boosttude for our particular process. But now one obself&3
Then we would havep™ ~Q%/xp™ ~Q. that all other relevant regions correspond to singularities of
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massless Feynman graphs. They are neighborhoods of sur-

faces where the loop momenta are trapped at singularities, Vv

i.e., of pinch-singular surfaces of the massless graphs. The q

conditions for a pinch singularity are exactly the Landau

conditions for a singularity of a graghOnly pinch singu-

larities are relevant, since at a nonpinched singularity, we P p’

may deform th€multidimensional integration contour such

that at least one of the singular propagators is no longer near

its pole. FIG. 3. Quasielastic scattering of a virtual photon on a proton.

If there is a pinch singularity caused by certain propagator

poles in the massless limit, then in the real graph, with nonphoton of momentung*=(—-xp*,Q?%2xp*,0,). We have

zero masses but larg®, the contour of integration is forced chosen the symbols for the lightlike momengg,, p4, and

to pass near the propagator poles. Consequently it is ngtg, to be different from the symbols for the corresponding

possible to neglect the masses in this region. Conversely, jfhysical momentap, p’, andV, precisely to emphasize that

the contour is not trapped by the poles, then the contour mathey are distinctif related momenta.

be deformed away from the poles, and masses may be ne- As we will prove in Sec. IV F, the most general reduced

glected in evaluating the corresponding propagators. graph is depicted in Fig. 4. One vertex of the reduced graph
is the hard subgrapH, to which is attached the virtual pho-
ton. The incoming and outgoing protons go into the collinear

B. Coleman-Norton theorem subgraphA; at the corresponding pinched momentum con-

We now review the theorem of Coleman and Norf2], figuration,. lines inA have only a+ component: Similarly,
and show how{24] to apply it. The theorem shows in a the outgoing meson is attached to another collinear subgraph

physically appealing fashion how to determine the configu-B where there are momenta with only-acomponent. Each
rations of loop momenta that give pinch singularities; it of the colllnegr subgraphs is attached to the hard subgraph by
states that they correspond to classically allowed scatteringt l€ast one line, and these three subgraphs are all connected;
processes, treated in coordinate space. these restrictions are needed so that momentum conservation
More precisely, the theorem states that each point on ¥Orks out. Finally there may be a soft subgragh,com-
pinch-singular surfacdin loop momentum spagecorre- posed of zero-momentum lines at the plnch-smgl_JIar surface.
sponds to a space-time diagram obtained as follows. First wi COnnects to any of the other subgraphs, and it may have
obtain a reduced graph by contracting to points all of thgMore than one connected component.
lines whose denominators are not pinched. Then we assign Within any ofA, B, andS, there may be subgraphs com-
space-time points to each vertex of the reduced graph in sudpSed of hard lines; these form reduced vertices that couple
a way that the pinched lines correspond to classical particled® different lines within the subgraphs. In the leading re-
That is, to each line we assign a particle propagating betwee#ons, these are of the form of the possible ultraviolet diver-
the space-time points corresponding to the vertices at it§€nt subgraphs.
ends. The momentum of the particle is exactly the momen-
tum carried by the line, correctly oriented to have positive D. Space-time interpretation

energy. If for some set of momenta, it is not possible t0 The corresponding space-time diagram is Fig. 5. There,
construct such a reduced graph, then we are free to deforghcy solid line corresponds to a lightlike line of the reduced
the contour of Integration. , raph, with a 45° orientation to correspond to their lightlike
A reduced diagram corresponds to a classically allowegines of propagation. The dashed lines correspond to the soft
space-time scattering process. The construction of the Mofhes. in the subgrap!$. From the point of view of the

general reduced graph becomes extremely simple in the zerg-gjeman-Norton theorem, they are rather degenerate lines.
mass limit, since then all pinched lines must carry either a

lightlike momentum or zero momentum. Moreover, as was
explained by Libby and Sterman, each lightlike momentum
must be parallel to one of thdightlike) external lines.

C. Reduced graphs

In the zero-mass limit, our process, represented in Fig. 3,
has one lightlike incoming proton line of moment-
um pAi=(p*,0,0,), one lightlike outgoing proton line of a
slightly different, but parallel, momentum
pAt=((1—x)p*,0,0,), one lightlike outgoing meson line of
momentumps = (0,Q%2xp*,0,), and one incoming virtual

FIG. 4. General reduced graph for Fig. 3. The dots represent the
"The relevant singularities are on the physical sheet of the spageossibility of an arbitrary number of lines connecting the collinear
of complex angular momenta, or on its boundary. Thus it is indeedubgraphgA andB) to the hard subgrapH. Any number of lines
the Landau conditions that are correct. connect the soft subgraghto the other subgraphs.
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FIG. 5. Space-time diagram for Fig. 4.

Indeed, the fact that they are carrying zero momengainthe (c) (d)
singular point implies that they have no specific orientation.
Thus'we indicate them by curved I|ne§ of no partlcular_ oM F1G. 6. A low-order graph for diffractive meson production,
er;]tatlonh The IOCﬁtlonshof thﬁ. end poglts OL the SOfL IIr‘es’together with three of its reduced graphs. The solid lines are meant
Where they attach to t.e collinéar subgraphs, can be anyg o o 5 45 angle to represent lightlike propagation, but have been
where along the worId_Imes of _the collinear I!nes. The hardseparated to permit the structure to be seen.
vertexH occurs at the intersection of the collinear lines.
Since there can, in general, be more than one collinear
line moving in each of the- and — directions, the solid lines
in Fig. 5 must each be thought of as a group of lines which
undegrgo interactions as the;? propagatefJ P I~ (O(m*/Q),zQ%2xp™,0(m)), (16)
When the space-time representation of a Feynman graphh ts a tvpical hadroni le. W i ¢
is used, there is normally an exponential suppression whely1€T€M represents a typical hadronic scale. We continue to
there are large space-time separations between the verticéSe€ & coordinate system like th_e Breit frame whepe ~Q,
One obtains a singularity when the exponential suppressiofi’d We label the components in the order—,L). The pa-
fails, and the Coleman-Norton construction gives exactly thé@meterz, for the — component of lies between 0 and 1,
relevant configurations of the vertices. A common scalinggnd is not close to its end points. The parametgrfor the
can be applied to all the world lines in the reduced grapht component ok is chosen such that boty andx—x, are
without affecting its properties, and the singularity is gener-of orderx and are both positive. Finally, the region is such
ated by the possibility of integrating over arbitrarily large that all the lower three lines have momentum components of
scalings in coordinate space without obtaining an exponersize (O(p™),0(m?/p*),0(m)).
tial suppression. Another way of defining the region is to say that the quark
The whole of the discussion above relies on the use of ines| andV—I are collinear tdv, the quark linegj—! and
covariant gaugeAlthough the use of the axial gauge and in V—| —k are hard, and all the remaining lines are collinear to
particular of the light-cone gauge is very convenient, for ex-p,
ample, for a physical interpretation of the light-cone wave Thjs region forms a neighborhood of the configuration
function, the propagators in such a gauge have unphysic@efined by the reduced diagram in Figb In this configu-
singularities. The unphyS|ca_I _smgularltles QO not give theration, the lines of momentg—I| andV—I—k form the hard
normal rules of causal relativistic propagation of part'des’vertex, since they have virtuality of ord€?2. The lower 3

and, beyond the leading-logarithm approximation, they mak%uark lines, and the two gluons have momenta proportional

;heee[%eznéatlon of the factorization theorem very difficult— t0 (p*,0,0,), while the linesl andV—| have momenta pro-

portional to (0Q?%/p™,0,). In the reduced diagram, the light-
like momenta are represented by lines in approximately the
45° directions that represent their world lines. Since both of
To understand what Fig. 5 means, let us look at a fewk and A—k have positive+ momenta, they are forward
examples of regions of momentum space that correspond @oving lines.
reduced graphs obtained from the Feynman graph of Fig. |t is important to make a pedantically exact distinction
6(a). There the couplings between the quarks and the hadsetween the momentum configuration represented by the re-
rons may be considered as Bethe-Salpeter wave functiongyced graph and the region of integration that we attach to it.
We will not give an exhaustive list of all possible reduced confusion between the two concepts results in misunder-
graphs, but will only give some typical examples that corre-gianging of the content of parton-model concepts. The con-
spond to leading power contributions to the amplitude.  figyration contains a collection of lightlike momenta derived
by certain rules, while the region is a neighborhood of this
configuration. The graph, Fig(®, is not singular when the
We first consider a region defined as follows: The uppermomenta become lightlike in the way labeled by the reduced
two loops have momenta graph. Apart from anything else, the external hadrons have

k~(x;p*,0(m?xp™),0(m)),

E. Examples

1. First example
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fixed nonzero mass. The singularity arises when the masses
are set to zero. What the use of the reduced diagram termi-
nology does is to usefully identify a certain region of mo-
mentum space.
As we explained earlier, a singularity is obtained in the
massless case when one integrates over arbitrary scalings of
the coordinates of the vertices of a reduced graph. So when (2) (b) (©)
we actually need to integrate over a small neighborhood of
the momentum configuration, that corresponds in coordinate FIG. 7. Examples of the three classes of space-time diagram.
space to integrating over scalings of the positions of the ver-
tices, but up to a large instead of an infinite limit; larger sych a vertex since we have no external lines with nonzero
scalings are exponentially suppressed. The space-time digansverse momentum, in the massless limit we are taking.
gram obtained from a reduced graph then gives a region for |f gne starts from some line with momentum in the
the positions of the vertices of the Feynman graph whergjirection and follows it backward on a connected series of
(some of the vertices are separated by much more than ordg[nes with — momenta, one arrives at an earliest vertex. This

1/Q in the Breit frame. must be the hard verteit, where the virtual photon attaches,
since this is the only place where large momentum is
2. Second example injected into the graph. Then if we go forward again, we get

Our second reduced graph, Figckh is the same as the to a latest vertex, necessarily later than the hard scattering.
first, except that the parametey, defining the longitudinal ~ This is where the outgoing meson attaches. The fact that all
momentum fraction ok, has the opposite sign. The space-theB lines are later than the hard scattering will be important
time direction of the linek is therefore reversed. Previously, later when we analyze soft gluon attachments toBhsub-
in Fig. 6(b), we had a two-gluon state emitted from the pro-graph.
ton and then entering the hard scattering; this corresponds to Similarly on theA lines, if one goes back one arrives at
the idea of the Pomeron as a particlelike object. But now thaeither H or the incoming proton. If one goes forward one
we have reversed the direction kf we have a situation in arrives at eitheH on the outgoing proton.
which one gluon out of the proton generates a hard scatter- There are in fact three distinct topologies, as shown in
ing, by scattering off the virtual photon, and then continuesFig. 7, where, to enable the topologies to be visualized, we
into final state where it coherently recombines with the rem-have slightly deformed thA lines. In the first class, the hard

nants of the target, to form the diffracted proton. scattering has incoming lines, but no outgoind lines. The
partons that construct the outgoing proton are all emitted
3. Third example before the hard scattering in this class of graphs.

In the second class, the hard scattering has one or more

Our final example is where the gludnhas soft momen- X . ; X :
tum: all its momentum components in the Breit frame areQUtgoing A lines, so that the hard scattering directly influ-

much less tham in size. This gives Fig. @) for a reduced ences the outgoing proton. But there are afsdines that
graph. Note that the quark of momentwi-1—k is now bypgss the.hard sce}ttermg. . .
collinear toV rather than being hard. Physically we have a Finally, in the third c[ass of graphs, no collinear lines
situation in which most of the Pomeron momentum is carrie(lbypass the hard scattering. In fact, such graphs have too

by one gluon, and the hard scattering is photon-gluon fusionmany partons entering the hard scattering to be leading; this

The second, soft gluon just transfers color. This is the kine!!ll follow from the power-counting arguments in the next

matic situation of the superhard or coherent Pomég. sect|on”. h b . . .

As we will see later, although such configurations do giveh 'g a gasesht € num ?r 0]; lines entering ‘f.’md leaving the
leading contributions to the amplitude from individual &M@ subgrapn Is completely arbitrary. It IS the power-
graphs, there is a cancellation after summing over differen‘l:.oum.Ing properties explalned n Sec. V that wil restrict the
graphs. The remaining leading configurations correspon ituation for the leading power i; these are results that

only to the first two reduced grapkand a third similar graph ollow from the spec[fic dynamics of the thepry. .
with x;>0 andx—x,;<0). Other configurations give sub- Note that there will be quantum mechanical interference

leading contributions for the case of a longitudinally polar- b_etvveen the d|ffer_ent classes of graph, when one adds_ all the
ized photon. different contributions to make the complete amplitude.

Moreover in each reduced graph, the positions of the vertices
along the lines must be integrated over. Thus the different
space-time positions for the vertices do not represent inde-
The simplicity of Figs. 4 and 5, which represent the mostpendent happenings.
general situation for our process, follows simply from mo- We have constructed the reduced graphs and the space-
mentum conservation applied to classical processes, as wime diagrams with the ansatz of exactly massless external
will now show. Since we have taken a massless limit, all thdines. To avoid any confusion, let us reiterate that the actual
explicitly displayed lines are lightlike or have zero momen-process has external hadron lines that are massive, even
tum. The diagram must lie entirely in a plane spanned by th¢hough these masses are much less fQahe quarks also
+ and — axes. If not, there is a reduced vertex with a maxi-have nonzero masses. The space-time method has enabled us
mum transverse position relative to the main hard vertexto identify in complete and simple generality the locations of
Transverse momentum conservation cannot be satisfied tite pinch-singular surfaces of corresponding massless Feyn-

F. General construction of reduced graphs
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man graphs for our process. The significance of these sur- Our arguments will use rather general properties of di-
faces is that we will classify contributions to the actual am-mensional analysis and Lorentz boosts. When we examine
plitude by neighborhoods of these surfaces in loop-the dependence on the polarization of the virtual photon, in
momentum spacdwith all the masses preseryedMost  Sec. X, we will find that the power given in Eq@l7) is
importantly, the construction of the factorization theoremnormally obtained only for one photon polarization, longitu-
will rely on identifying all significant contributions to the dinal or transverse, depending on the region.

amplitude with particular singular surfaces.

A. Proof of power-counting formula, Eq. (17)

V. POWER COUNTING The strategy of our proof is first to prove it for certain

We now wish to identify the power dp associated with ~particularly simple cases, and then to extend it.
each of the pinch-singular surfaces catalogued in the previ-
ous section, and hence to identify those surfaces that give 1. Case of collinear and hard subgraphs only
contributions to the |eading power. Again, the basic results First consider a case of F|g 4 when we on|y have collin-
are those of Libby and Sterman. Their results were mostlyear and hard subgraphs, but no soft subgraph. Let the hard
obtained in an axial gauge, such A8=0 or A*=0. How-  subgraptH haveN, external quarkand antiquarklines and
ever, the unphysical singularities in the gluon propagator fol, external gluons, as well as a single photon line.
a “physical gauge” prevent us from using certain contour "By definition, all components of loop momenta in the
deformation arguments, so we prefer to work in a covarianhard subgraph have siz@, in the Breit frame, and all the
gauge—compare Re{8]. The method for obtaining the |ines in the subgraph have virtuality of ord®?. Since the
powers that we present here is rather different to that given . 4 subgraph has dimensidp=3— %Nq— N, and all the

by Sterman[10], and relies more on general properties of lin re dimensionl it tribut
dimensional analysis and Lorentz transformations than on gouplings are ensioniess, 1t contributes a power

more detailed analysis of the numbers of loops, lines and
vertices of graphs and subgraphs.

A com_plicatio_n to working in a covariant gauge is that ;5 e amplitude.
graphs with collinear gluons attached to the hard part aré rqr the momenta collinear to the meson we assign orders
enhanced by a power of up ©2? compared to the power of magnitude
obtained in axial gauge. The enhancement occurs when the

QdH:Q?)*(?)/Z)Nq*Ng (18)

gluons have scalar polarization. As Labastida and Sterman m? Q2

[28] showed, Slavnov-Taylor identities can be used to show typical V momentun%(xp+ -, —+,m)

a cancellation of the enhanced contributions, so that the final Q™ xp

result for the power counting is the same as in axial gauge. m?

We will use a somewhat different, but equivalent, method of N(E,Q,m . (19

obtaining this result, in Sec. VII D.

The result we will prove in the remainder of the present;, (+,—,1) coordinates, withm being a typical hadronic

section is thatpefore these cancellationthe power ofQ 555 Similarly we assign momenta collinear to the proton a
associated with a pinch singular surfaggs QP(™, with magnitude

p(7)=3—n(H)—No.(quarks from soft to collinear 0, %2m) (20)

17) Since the Bjorken variable is small, there are also collinear

momenta with+ components much larger th&h We will

deal with this complication later; for the moment let us treat
Here n(H) is the number of external collinear quark and the case thax is not small.
transversely polarized gluon lines of the hard subgraph. The The collinear configurations can be obtained by boosts
other two terms involve the number of quark lines that attacfrom a frame in which all components of all momenta are of
the soft subgraph to either of the collinear subgraphs and therder m. Since virtualities and the sizes of regions of mo-
number of lines going from the soft subgraph to the hardmentum integration are boost invariant, we start by assigning
subgraph. the collinear subgraphs an order of magnitunémension

Notice that the power decreases as the number of externalhich contributes exactly unity to the power @t This also

lines of the hard scattering increases; this is the essentighnables us to see that nonperturbative effects, as coded in a
rationale for the parton model, where the minimum numbeBethe-Salpeter wave function, for example, do not change
of partons is used in the hard scattering. For the gluons wée power ofQ. Note that we define the collinear factors to
must, as we will see, split their polarizations into what weinclude the integrals over the momenta of the loops that
will call “scalar” and “transverse” components. There is couple the collinear subgraphs and the hard subgraph.
only a suppression for extra transverse gluons entering the Next we must allow for the fact that the collinear sub-
hard scattering; any number of collinear gluons with “scalargraphs are coupled to the hard subgraph by Dirac and Lor-
polarization” can attach to the hard subgraph, without a penentz indices. Now, the effect of boosting a Dirac spinor from
alty in powers ofQ. rest to a large energ® is to make its largest component of

typical A momentum-
—3NoJquarks from soft to hand

—2NoJ(gluons from soft to hand
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order (Q/m)Y?2 bigger than the rest frame value, and the In should be noted that in Sec. VII D we will slightly

effect on a Lorentz vector is to give similar facta@{m)?. modify the definitions of ‘“scalar” and “transverse”
The exponents 1/2 and 1 are just the spins of the fields. Theolarizations—see Eq42) below. This will be to take ac-
resulting powers multiply Eq(18) to give count of the Taylor expansion we will apply to the hard
subgraph, and also to apply an exactly analogous argument
Q3 N, (21)  to the couplings of soft gluons to a collinear subgraph.

. . . We also will need to to pick out the largest component of
This agrees with Eq(17) in the case that all the external o pjrac structure of the collinear subgraphs, but do not
lines of the hard subgraph are quarks, but is a faQbs  eeq to make the operation explicit here, since we do not
larger whenever there are external gluons. have a cancellation of the highest power. We just note that

Later, in Sec. VII D, we will show how cancellations be- e projection of the largest Dirac component is directly re-
tween different graphs cause a suppression of the highefbcteq in the factors of* andy~ in the definitions of the

powers associated with collinear gluons attaching to the harauark distribution and wave function, Eqg) and (8).
subgraph. As we have already stated, these are contributions '

from gluons of scalar polarization. For the moment we just 2 Small x

need to define the concepts of scalar and transverse polariza- o

tion in the sense that we will use, and to show how this The derivation of the power E¢24) assumed that was

affects the power counting. not small. Now ifx is made small, we must boost some parts
Consider the attachment of one gluon, of momentum  Of the collinear-toA subgraph to get momenta of ordep

from the A subgraph to the hard subgraph. We have a factoinstead ofxp™, so that groups of lines have very different

A(K)g,,,H"(k), where A* and H” denote theA and H rapidities. It is known that in Feynman graphs the effect is

subgraphs, angd,,, is the numerator of the gluon propagator SIMPly to give a factor ¥ (times logarithms but only pro-

in Feynman gaug®We decompose this factor into compo- vided that all the lines exchanged between the regions of

nents: different rapidity are gluons. For example, see R2af). If
any quarks are exchanged, there is a suppression by a factor
AH=ATH + A" H"—A -H,, (220  of x. None of this affects the power @.
and we observe that after the boost from the proton rest 3. Soft lines

frame, the largest componentdf* is the+ component. The
largest term is thereforel™#~, and this is the term that
gives the power stated above, in E1). The other two
terms are suppressed by one or two power® of

So we now define the following decomposition:

We now add in a soft subgragh A problem is to choose
an appropriate scaling of the momenta, a problem that
has not entirely been solved satisfactorily in the literature.
One possibility is to assign all components of soft momenta
a sizem. This has the advantage of being immune to non-
A+ perturbative effects in the soft subgraph, and the disadvan-
AF—KkH k_+) . (23)  tage of sending at least some lines in the collinear subgraphs
off shell, by orderQm.® A second possibility is to assign all

. 2 . . . .
The first term we call the scalar component of the gluon: jthe soft momenta a size”/Q. This avoids sending collinear

gives a polarization vector proportional to the momentum ofines far off shell, but forces us to treat a region where the
the gluon. The second term, the transverse part of the quoﬁT,1omenta are unphyspally_ soft In a confining theory, and
has a zerot+ component: it therefore gives a contribution to where the power counting Is sensitive to mass effects.
A-H that is one power o smaller than the contribution of . In .fact we will choose the second scallng. Al other pos-
the scalar component. The* factor in the scalar term mul- SiPilities will be covered by the arguments in Sec. V A 4.
tiplies the hard subgraph, and this gives a quantity that can A more general treatmefit0] would assign a size~A\Q

be simplified by the use of Ward identities, as we will find in to the components qf a soft momentum. Hares an int.e-
Sec. VII D. gration variable that is much less than one. To determine the

power ofQ, one has to determine how smaltan be made:

the subgraphA andH, and the analogous decomposition forthfre are sizgnificant changes wher-O(m/Q) and when
gluons joiningB andH. The contribution of our region to 7*—0(”,‘ /Q%), from mass effects In the soft propagators and
the amplitude is now a sum of terms in which each of thesdN® collinear propagators respectively.

. . . 2
gluons is either scalar or transverse. Each term has a power Given that we assign all momenta¥a magnituden”/Q
or all their components in the Breit frame, the basic power

Q3 Ng=NgQNs= Q3 Ng=Nr, (24)  for the soft subgraph isn?/Q to a power which is the di-
mension of the soft subgraph. This power includes the inte-
whereNg is the number of scalar gluons, aNg=Ny—Ngis  gration over the soft loop momenta that circulate betwgen
the number of transverse gluons that enter the hard scatteand the rest of the graph, and it assumes that we can neglect
ing. This is the exact power that we wrote in Efj7), given  masses in the propagators. The numerical value of the power
that we have no soft subgraph. is

A+
A¥=KH k—++

We now apply this decomposition to every gluon joining

8A change to another covariant gauge merely results in notational *Disadvantage” here means a disadvantage from the point of
complication. view of a simple construction of a power-counting formula.
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3
~Ngs— 5 Nes, (25) e
S S

whereNgs andNys are the numbers of external gluons and SE¢
quarks of the soft subgrafh

These external lines go into either the hard subgraph or
one of the collinear subgraphs. The dimension of the hard
subgraph is reduced by 3/2 for each extra soft gluon that
enters it and 1 for each quark. The dimensions of the collin-
ear subgraphs are changed, but this does not affect the power
of Q. But there are spinor and vector indices joining the soft
and collinear subgraphs, and just as with the collinear-to-
hard connections we get a factor @2 for each quark and

FIG. 8. Leading regions for our process, when gluons enterin
a factorQ for each gluon. g reg P g g

. Il the f h . f h the hard subgraph are transversely polarized, and when we do not

Putting all the actor_s t‘?get er glves_ E@L7) for the . explicitly indicate terms where the meson couples to a set of gluons.
power of Q for the contribution of our region to the ampli- £40 soft subgraph may have any number of external gluons, in-
tude. The qualitative features to note are that extra externgy,ging zero.

lines for the hard subgraph always reduce the powe® of

except in the case of scalar gluons, that there is no suppres- 6 - .

sion for soft gluons attaching to the collinear subgraphs, as ide/dt~1/Q®, in agreement with the results pf]. Our ac-

well known, and that there is a penalty for soft quarks attachtual proof of the factorization theorem will be rather indirect,

ing to the collinear subgraphs, as is also well known. to take account of the cancellations caused by gauge
But observe that there is no pena|ty for having quarkinvariancel.o But it is useful to identify the regions that give

loops inside the soft subgraph. This is a fact that is some-the 1Q behavior or larger; no other regions can give a con-

times forgotten, because in the corresponding infraredtribution to the leading power.

divergence problem in QED, no loops of massive fermions Compared to the usual factorization theorem for inclusive

need to be considered. When we allow a general scalipg scattering, the discussion is more involved, since we need to

for soft momenta there is no necessary suppression of quatkeat cases where the hard scattering amplitude has four ex-

loops inside the soft subgraph. ternal lines, instead of just two. So, to simplify the discus-
) sion, we will restrict our attention to the case that the collin-
4. Other scalings ear gluons attaching to the hard subgraph have transverse

Any other scalings of the momenta can be considered apolarization. The other cases will be taken care of by gauge
intermediate between those we have listed. The one excefrvariance. The resulting list of regions is shown in Fig. 8.
tion we will discuss in a moment. We have catalogued all First we observe that, by E¢17), we need to consider
pinch-singular surfaces of massless graphs for our procesmly hard subgraphs with at most four external quark and
and have defined the regions as neighborhoods of these suransverse gluon lines.
faces. The scalings of momenta defined above may be called Two cases with four external lines fét are Figs. &)

canonical scalings for each of the regions. and 8b), which have a quark-antiquark pair going from the
~ When the asymptotics of graphs are treated, all other scahard scattering to the meson, and with either a gluon pair or
ings can be treated as a way of interpolating between thg quark-antiquark pair joining the hard part to the proton.

canonical scalings for different regions. The methods we Usgnere is a possible soft part joined to the collinear subgraphs
will treat the intermediate regions correctly once the canoniy,

I i Ken | di di ' % arbitrarily many gluons. These terms correspond to the
cal scalings are taken into account, and intermediate scalingg, ) factorization theorem, after a cancellation of the effects
between two or more different leading regions will be re-

of the soft gluons. A third possibility is where all the

sponsible for the omnipresent logarithms in the asymptOt'C%ollinearB lines of the hard subgraph are transverse gluons,
of Feynman graphs.

The one exception to the above rule are the truly infrared> " Fig. &). In this case we can makfe a cut of the graph_
. uch that the meson couples to gluons; such graphs we will
regions, where some momenta go to zero. In a theory o

. . > —call “glue-ball” graphs. We will find that they all cancel at
confined quarks and gluons these regions are not genuine Ve leading power . A fourth possibility is in Fig. &)
physical, but they do appear in Feynman graphs. They are 9 pou ' P Y 9- &,

S . Where one collinear gluon comes from the proton, and three
treated by a sufficiently careful treatment of the soft region__ - . N
as we have defined it collinear partons go to the meson. In the final factorization

theorem, this would need a color octet operator in the proton

B. Catalog of leading regions

When all cancellations have been taken into account, We 1o\qte that before the cancellations, the highest power possible,
will find that the amplitude behaves like@/(times loga- according to Eq(17), is Q%, when all the external lines of the hard
rithms), for large Q. In addition, for thex— 0 asymptotics, and soft subgraphs are gluons of scalar polarization. This situation
there is a power %/that corresponds to spin-1 exchange inis actually prohibited by our choice of quantum numbers for the
the t channel(from the simplest models of the Pomeyon meson, and the actual highest powe€)Xs from the region in Fig.
Thus the overall power is/Q3, so that the cross section 8(a). Cancellations are needed to get a final power Qf.1/
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factor, and such an operator has a zero matrix element be-

tween proton states. -e*
Next we can have graphs with two or three external lines

for the hard scattering, Figs(63 and &f). These are harder

to treat, as we will see in Sec. VII E. In fact, FigfBwill & & E

make a leading contribution in the case of a transversely &g % E

polarized photon and will not make a factorization theorem S e 8

of the form Eq.(3). Figure &e) will combine with those of %—@—k

Fig. 8@a), with two collinear gluons entering the hard part,

when we construct the appropriate operator product expan-

sion. FIG. 9. Example of region with extra gluons joining collinear

According to Eq.(17), we have a leading @ contribu-  subgraphs to hard subgraph. All lines are supposed to be collinear
tion from Fig. 8f), where the hard part has two external to the meson or the proton, as appropriate, except for the two thick
quark lines, and the quark loop is completed in the soft partlines, which have virtuality of orde®?.

But now observe that the hard part, to the leading power of

Q, is the on-shell electromagnetic form factor of a masslespath-ordered exponentials in the operators are unimportant.
quark.(Subtractions to prevent the double counting of differ- This fact would render the use of an axial gauge very attrac-
ent regions will remove the infrared divergences of the formtive in proving factorization, were it not for the complica-

factor) This form factor is proportional to tions in treating soft gluons that result from the unphysical
o poles of the gluon propagator in these “physical gauges.”
EI;,L*UB')’,u,uAa (26) Compare the work in Ref$8, 26] on proofs of factorization

theorems for inclusive processes.

whereu, andug are Dirac wave functions for the external
quarks of the hard scattering, arg« is the polarization VI. SUBTRACTIONS
vector of the virtual photon. By the rules for computing a

hard scattering amplitude, the momenta of the quarks arg

rr;1asslesshandhare in the aTd _,d'r?Ct'l(lms' ISmpe we have power. Each region is associated with a pinch-singular sur-
chosen the photon to be longitudinally po anzetgf* IS @ facer of the corresponding massless graph, and we write the

linear combination of the momenta of the two quarks. HenCraph as a sum of contributions each associated with one
the Dirac equation for massless spinors gives us zero for Eqyrface:

(26).
Notice that this argument does not apply when the photon
is transverse; Fig. (8 exactly corresponds to the endpoint

contribution discussed in Rgfl]. We will discuss this issue ) )
in more detail in Sec. X. where “Asy” denotes the asymptotic behavior of the graph.

In this section we will summarize the construction of the
terms on the right-hand side of this equation.
C. Other gluons joining the collinear subgraphs Roughly speaking, the teri, is obtained by Taylor ex-
to the hard part panding the hard and collinear subgraphs in powers of the

We have now seen that all the leading regions, that givémall variables, an operation we denote®y. Since there
the power I¥Q for the amplitude have the form of Figs. may be more than one region contributing for a given graph,
8(a), 8(b), and se), given that the photon is |ongitudina”y we must make subtractions which will avoid double count-
polarized. For clarity, the figures are not drawn quite cor-ing; the operation of applying the subtractions we will denote
rectly since we have not yet treated the cancellation of gluby R, since it is a kind of renormalization. Thus we will
ons with scalar polarization. In the graphs, any number ofvrite
extra gluons may join each collinear subgraph to the hard

For each grapii’, there may be several different regions
loop-momentum space that contribute to the leading

Asy=> T, (27)

subgraph. An example is shown in Fig. 9. As shown in Sec. Asy FZ; RTA(T). (28)
V A, the addition of extra scalar gluons does not change the _ )
power ofQ. This structure is completely analogous to that of the Bo-

The fact that scalar gluons have a polarization proporg_oliubovR operation for renormalizatio_n. The most conve-
tional to their momentum suggests that they can be elimiliént way we have found for formulating the procedure is
nated by a gauge transformation. In fact, we will use gaug&lue to Tkachov and collaboratdi@0]. Although the detailed
invariance, in Sec. VII D, to show that only matrix elements&XPosition of the method given {f80] is tied to Euclidean
of gauge-invariant operators are needed in the definitions diroblems, the general principles are H‘,’m this method, the
the parton-density and the wave-function factors in the facintegrand of each graphi as a distribution. Thus we define
torization theorem, Eq3). The result will be that the con-
tributions of scalar gluons will give the path-ordered expo-
nentials in the gauge-invariant operators that define thelThe problems explained by Collins and TkachH®1] concern
distribution and density functions in Eqgl) and(8). the question of the use of dimensional regularization to define cer-

In an appropriate axial gauge, the contributions of thetain integrals and most certainly do not impinge on the general
scalar gluons are power suppressed, and correspondingly thenciples.
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(T,f>:J' dkI'(k,p)f(k), (29

wherek denotes the collection of loop momentathe ex-

ternal momenta, anf{ k) is a test function. The contribution
of the graph to the scattering amplitude is given by replacing
the test function by unity. //

The advantages of using these distributional techniques
[30] stem from the fine control they give by enabling us to
treat different regions of momentum space separately with-
out having to make sharp boundaries between the different L T
regions. This last point is particularly important in problems
like ours, where it is important to be able to deform contours
of integration away from nonpinch singularities; the use of
sharp boundaries between regions prevents the use of co
tour deformation.

In this language, the contribution,, to AsyI" from the
neighborhood of a pinch-singular surfageis localized on
the surface; that is, it is proportional to &function (with
possible derivativesthat restricts the integration to the sur-
face. To obtain a convenient form fdr_, we observe that
the graph is a product of a factor that is singularmand a
factor that is nonsingular there. Thus we write

FIG. 10. lllustrating the three classes for the “other terms” in

By, 3.

tions when the test function in Eq29) has a zero of an
appropriate strength on these smaller surfaces.

We now construct” ;. When combined with thé& ., for
larger surfaces it must give a good approximatior'ton a
neighborhood ofr. It is sufficient for our purposes to require
only that we have a good approximation when the test func-
tion has an appropriate zero on the smaller surfaces. It is not
necessary to have constructBd, for the smaller surfaces,

Asy F(k)=§ Calkip, ) Ex(1), (B0 since they will give zero with such a test function. This is
sufficient to prove the inductive hypothesis for the next use
whereC (k) is a distribution that is localized on the surface of the recursion.
m and is obtained by expanding the hard subgripim Fig. Sincel . is localized on the surface, it is necessary only
4 in powers of its small external variablésith appropriate  to consider a neighborhood of. This combined with our
subtractions The quantityE . corresponds to the product of remarks in the previous paragraph ensures that we do not

the singular factorsiA, B, andS in the reduced graph. Es- need the unconstructed “other terms” in E&1) in order to
sentially,C . corresponds to the short distance factor on thezonstructl”, .

surfacew, andE . to the long-distance factor. Therefore we define
We will only present a summary of proof that this all
works. An important observation is that the issues are iden-
tical to those for other kinds of factorization. We first define F7=T7T< I'- 2 RFW’) ' (32)
a hierarchy of regions, by simple set-theoretic inclusion: i.e., T

we de_f|ne771> 7, to mean that the pinch smgulgr SUff_aﬁ@ where T, represents the Taylor expansion in powers of the

contains the pinch singular surfaeg . For any given pinch- - smal| variables onr. The first term is the Taylor expansion

singular surfacer, we construct its corresponding term in o the original graph, and the remaining terms can be thought

Eq. (30) on the assumption that the terms for all bigger re-of a5 subtractions that prevent double counting of contribu-

gions have already been constructed. Thus the constructiGpns to the integral over a neighborhood f

of Eq. (30) is recursive, starting from the largest region. The result is that a sum ovér, and the terms for larger
Suppose, then, that we have constructed the térmdor  regions,

all regions bigger thanr. Let us decompose Ady as

I+ > R[, (33
Asy'= > T _,+I_+other terms. (31) S
' >

correctly gives the contribution to the asymptoticslothat
The “other terms” correspond to the three classes of surfaceomes from a neighborhood of and of all larger regions,
that are illustrated in Fig. 10: those that are smaller than  but with neighborhoods agmallerregions being excluded.
those that intersect in a subse(necessarily a manifold of Now, in generall’ . gives a divergence when we integrate
lower dimensioly those that do not interseet at all. We it with a test function over a neighborhood of any of these
assume as an inductive hypothesis that the suin_ofover  smaller regions. So it is defined only when integrated with a
7' > gives a good approximation to the origirlalexcept test function that is zero on these smaller regions. We now
in neighborhoods of themaller surfaces for whicH . has  extend it to a distribution defined on all test functions by
not yet been constructed. The integrals defining fhe's  adding infrared counterterms to cancel the divergeritd¥s.
cover the whole of the space of integration variables, buwill not specify the details, but just observe that the construc-
they are only required to give good approximations whertion is exactly analogous to the construction of the well-
one excludes neighborhoods of smaller surfaces; more prémnown distribution (1X), .] We call the resultRl" ;. The
cisely we will require them only to give good approxima- counterterms are local in momentum space. Since we have
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FIG. 11. (a) An allowed graph, anb) a disallowed graph for a FIG. 12. Simple region: collinear and hard subgraphs only, with
hard part whose external lines are two collineaAtagluons, a  two lines joining each collinear graph to the hard subgraph.

collinear-toB quark, a collinear-t® antiquark, and a photon.
Asy M=, Asy [=AXBXSXH. (34)
T

not yet considered how to approximdten regions smaller oo A for example, represents the sum over all possibili-

than, it is perfectly satisfactory that we camoosea defi- ties for a collinear-toA subgraph. Implicit in Eq(34) are

nition of I' ; on the smaller surfaces. We only require that theappropriate Taylor expansions in small variables, together

result,RI" ., be finite, and that the counterterms be localized it syitable subtractions to avoid double counting, etc. The
on smaller surfaces tham so that we do not affect the good gympo|x represents integrations over the momenta of loops
approximation we have already obtained forand larger  ha¢ circulate between the different factors and also a sum-
surfaces. mation over the flavors of the parton lines joining the differ-

In the later stages of the recursion, we obtain the approgq; subgraphs.

p_riate approximations f_or these smaller regions. The :_subtrac— Each subgraph comes with a specification of its external
tion terms, as defined in E32), ensure that changes in the |ines and the summation is restricted to compatible sub-
choice of counterterms Iocallged on any partlcular surface' raphs. For example, in Fig(® we require that have as
are cancelled by corresponding changes in the subtractigy eyternal lines two collinear-t- gluons, a collinear-t@
terms when we defin€, . Hence the overall result for the quark, a collinear-td antiquark, and the virtual photon. To

asymptotic expansion df is independent of these choices. be compatible with this, the subgragh must have as its

AS;—?'S completes the summary of the construction of theexternal lines two collinear gluons, as well as the hadmns

p’ and the soft gluons. Such restrictions can be enforced by
a suitable definition of thex operation in Eq(34).

As always for a hard subgraph, it is required thhtbe
one-particle-irreducibl€1Pl) in the A lines and theB lines.
A. Summary of previous results Thus, Fig. 11a) is allowed as a hard subgraph. However,
Fig. 11(b) is not allowed, since it has an internal lifihe
vertical gluon that is forced to be collinegby the two ex-
eternal gluons

VII. COMPLETION OF PROOF

The results so far can be summarized in E28). In the
asymptotic largeQ limit, each graph is written as a sum of
contributions from a set of regions. We have identified th
regions and computed the power @fassociated with each
region.

Any particular region can be conveniently summarized by We now Taylor expand the factors in E@4) in powers
a diagram of the form of Fig. 4. It is specified by a decom-of small variables. To understand the general principles by
position of a grapH” into two collinear subgraph#y, andB, which this operation gives the factorization theorem, with its
a soft subgraph$, and a hard subgrapkhl. When we sum operator definitions of the collinear factors, let us first treat
Eqg. (28) over all graphsl’, we can represent the result by the case that there is no soft factor and that exactly two lines
independent summations over the possibilities for the subeonnect each collinear graph to the hard part—Fig. 12. We
graphsA, B, S, andH: then have

B. Taylor expansion: Collinear case

AX BX H: f d4kAd4kBA(kA,A_kA)B(kB ,V_kB)H(q,kA,A_kA,kB ,V_kB)

= f d*kad*ksA(ka A —ka)B(Kg ,V—kg)H (@, (k5 ,0.0,).(A* —k,0,0,),(0k3,0,).(0NV~ —kg.0,)).

(35
The notation is unfortunately cumbersome, but it makes precise the operations we have applied to the hard part: We have
replaced the momenta collinear £goby their + components, and the momenta collineaBtdoy their — components. This
represents the first term in the expansiortofn powers of the other components of these momenta.
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Only thek, andkg integrals now couple the different factors. This gives
A><B><Hzf dk;dkgj dk,;dzkAlA(kA,A—kA)f dkg d?kg, B(kg,V—Kg)

X H(ql(kX’OYOL)!(A+_kX!OYOL%(O!kg!OL)!(O!Vi_kgloL))i (36)

which has the general structure of the factorization formulawhere thek;’s are the loop momenta coupling the two fac-
Eq. (3). To see this more explicitly, we observe the follow- tors. Notice that{=H X B is 1Pl in the lines entering it from

ing: A=AXS, because any linear combination of momenta that
(1) Scalingk, andkg by factors ofp™ andV ™, respec-  are each collinear té or soft is itself collinear toA or soft.

tively, gives the integration variableg andz in Eq. (3). On the other handA=AXS includes all graphs with the
(2) The factorA is a matrix element of a time-ordered appropriate number of external lines.

product of two fields. Integrating over &, andk,, puts Clearly we may neglect the componeis of the soft

the difference of coordinates of the two fields on the lightlike yomenta withir{=H x B, since by definition the momenta

line (Oy~,0,). This is a matrix element of an operator like i, yoth B andH have — components of orde®. We may
those in the definition of the parton density E&4). also neglectk;, within H. But to derive the factorization

f (3)_ Similarly, theB factor becomes like the meson wave theorem, we will also need to negldct within the B sub-
unction Eq.(_8). . . graph. In a general situation this is not necessarily true, since

At this point we have matrix elements of light-cone P ihe broadest definitions of soft momenta and collinead-to-
erators that consist of two operators that are integrated alonrg o ) :

a lightlike line. omenta o_nly insist that. thell_r components be small with-

out specifying their relative sizes. Hence one cannot always
neglect a soft transverse momentum with respect to a collin-
ear transverse momentum.

To complete the proof, we now have to deal with the soft We use a version of the argument devised by Collins and
factor in an analogous fashion and to show that the onl\Sterman[26] for proving factorization for inclusive pro-
operators we need are the precise ones in the definitions, Eqssses ire* e~ annihilation. The graph of Fig. 13 illustrates
(4)—(8). It is convenient to start by considerigxS and  the problem and its solution. We choose the gluon momen-

C. Taylor expansion with soft factor; Glauber region

H X B as units. Then we write tum k to be soft, and the quark momentunto be collinear
to the meson. The momenta in the B, andH subgraphs

AXBXSXH= d*k: |HXB(q.V.K)AX S(p.p’ .k are, of course, chosen to b(_a colllnegnﬂtpcolllnear-toB,
H ' (@ ) (P.p".K) and hard, respectively. Consider the integral dvey whose

size is much less tha@, sincek is soft. For this reason, we

+ i +
- d*k | H(a,V.K) A(p,p’ K, 3 neglectk™ in the subgraph#& andH, and the onlyk™ de-
(H ') (@ JA(R.P"R) S pendence is from th& andB subgraphs

f dk* ! =f dk* !
softk LU—KZ—mZ+iel(K+ie) Jsonk ~ [207 =K ) =K )—(I,—k,)2—mP+ie](2k Kk —K +ie)

e :
207 =Kk —(I,—k ) 2—mP+iel(2k Kk —KZ +ie)’

(38)

where we have omitted inessential numerator factors. In theo k? , so that we apparently cannot neglictin the collin-

second line of this equation, we have negledtedwith re-  ear subgrapB. However, in this region the only dependence
spect to the large variable . Except forl 7, all the momen- onk™ is in the collinear propagator, and so we may deform
tum components used in this equation are small compareghe k* contour into the complex plane until we recover the

with Q. first case.
We distinguish two cases. So in fact we can neglegt, as well ak™ in the collinear
(1) k*k~=k? . In this case, we can indeed negléctin  propagator.
the first denominator. Becaugeis soft, whilel is collinear In general, we will have several soft momek{eentering
to B, the terms involvingk, are small compared with the theB subgraph, and to use the above proof, we must ensure
k*1™ term. that none of the collinear propagators give obstructions to the

(2) k'k~<Kk?. This is called the Glauber region in the contour deformations for eadk" . In other words, all the
terminology of[32]. In this regionk "I~ may be comparable poles must be on one side of the real axis for elath To
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appeal to the new results by Collif33]. These show that

V-1 we can restrict the sum to gauge-invariant operators. Such
R (@=)= operators consist of gauge-covariant operatike G, , )
Ik @ 1 joined by path-ordered exponentidtsten called “string op-
erators”).

We must now determine which of these operators is
needed to give a leading power. First, we construct a modi-
fied version of the decomposition of gluons into scalar and
transverse polarizations. Consider one particular external
gluon, of momentunk, that attaches4d to H. We have a

FIG. 13. Wherk is soft, this graph illustrates the need for con- factor
tour deformation ok ™.

_ , , AX(K) g, HY (KT, (41)
prove this[26], we note that all the collinear-tB-lines go
forward from the hard scattering, but not backward—whereg,, is the numerator of the gluon propagator. Recall,
compare the reduced graphs in Fig. 7. Thus we can route aifom Sec. V, that the largest term in the sum over the vector

thek;"’s back along collinear lines to the hard scattering, andndices is the one witu=+ andv=—, i.e., A*H . This
thus all the poles that collinear propagators give are in thénappens because the collinear subgraphs are highly boosted
upper half-plane, just as in E¢38). in the Breit frame and after the boosts tdé 7~ term is the

It should be observed that we cannot apply the same awne with the largest components. The arguments apply both
gument to thek™ dependence of thé& subgraph, since we to the connection of collinear-tA-lines to the hard subgraph
have collinear-tdA lines both before and after the hard scat-H and of soft lines to the collinear-#®-subgraphB, i.e., to
tering. This fact alone resulted in enormous complications irall the gluons connectingl to .

the proof of factorization in the Drell-Yan procels9]. From the point of view of thé{ factor, the gluork is an
on-shell massless gluon with a polarization vector propor-
D. Gauge invariance tional to A*, and a momentum in the+ direction:

k’=(k",0,0,). The big term inA-H therefore corresponds
to a polarization exactly proportional to the momentum of
the gluon. This we call a scalar gluon, and we therefore make
the following decompositiof®

Now that we have proved that theand components of
soft momenta may be neglected in bd&dhand H, we can
write!?

A><B><S><H~—~f IT dk"H(q,v,k")
[ A-pg
Pa-Ps

armpp P gy AP 42
Pa Pa .
Pa-PB

X f]l] dk d%k;, A(p.p’ k) |. (39

To make a covariant formula, we used the previous defini-

This gets us much closer to the desired factorization. It ii0nS thatpa and pg are vectors purely in ther and —
exactly a kind of operator product expansion, since the directions. The first term on the right-hand side of this equa-
factor is a matrix element of a light-cone operator, apart fronfion we label as corresponding to scalar polarization, and the
the consequences of subtractions. In fact, the subtractiorf$cOnd term as corresponding to transverse polarization.
needed to definel are associated with regions with larger Since the scalar polarization is exactly proportional to the
singular surfaces, and thus in fact to ultraviolet divergence§PProximated momenturk’ used in4, it gives a factor
associated with the operator vertices. That is, the subtrac - 7{(k’). This is precisely the kind of situation in which
tions are just an implementation of the ultra-violet counter-Ward identities simplify the sum over all graphs. The indi-

terms needed to define renormalized operators. We therefof€Ct methods of Ref33] give a very efficient implementa-
write Eq.(39) as tion of the relevant identities.

With the modified definitions, it is still true that there is

no penalty for attaching a scalar gluonf but that there is

a penalty for every transverse gluon line and every quark
(40)  line. Now, the factors for the external lines df correspond

to the Feynman rules for light-cone operators. So scalar glu-
where theO; are the matrix elements of renormalized light- ons are associated with factors &t in an operator, where
cone operators, and we will call thg;’s coefficient func- A" is the+ component of the gluon field. The gauge invari-
tions. We use to label the different possible operators. ant gluon operator with the lowest number of transverse glu-

But there are many possible operators, even when we rens is of the form

strict ourselves to the leading power. Each case of the graphs ‘ .
of Fig. 8 with a different set of external lines for thex S G'*(0y~,0,)PG'", (43
graph corresponds to a different operator. But now we can

AXBXSXH=, f dk*Ci(q,V,kH)Oi(p,p’ k"),
I

Notice that this definition has changed from the one we used
2In this and the subsequent equations, the symbel ‘means  earlier, Eq.(23), in order to take account of the approximations we
“equal up to power corrections.” have made in thé{ subgraph.
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where?P is a path-ordered exponential of the gluon field. Thehave the minimum number of external lines, viz., two trans-
indicesi andj label transverse components. Notice that theverse gluons or two quarks addition to the photon and the
operator associated with the scalar gluoks, is exactly the meson.
one that appears, exponentiatedAin

Th_e operator, Eq(4_3), is a 2><2 r_natrix on transverse E. End point contributions
coordinates. We now find the restrictions due to angular mo- We h h hat the leadi f
mentum conservation that restrict those components of this.. € have now shown t at_t € ‘eading power for our am-
matrix that have a nonzero coupling to the hard scatteringp“tUde is given by a convolution of operator matrix elements

Consider the hard part times the meson wave function as fgr the proton, times coefficients that are obtained from hard
scattering process for collinear gluons plus the virtual photoryUP9raphs times collinear subgraphs associated with the me-

to make the meson. Angular momentum conservation plu§(_)r;]' The cloe;‘]ﬂments are Obﬁ‘_'ned fr:om graphSHG(;F H XhB
the fact that the photon is longitudinally polarized implies WIth exactly the two external lines that correspond to the two

that the angular momentum of the gluons around the colliParton fields in Eqs(4) and(6) _that we have when the path-
sion axis equals the helicity of the meson ordered exponentials are omitted in the operators.

The matrix has components of helicities 62 and — 2. Only if both external lines connec_t to the _hard part can we
So if the meson is a transversely polarized vector, then wi rocee-_d to the next s_tep of factor_mgXB Ll hard_
have a zero hard part, as indicated on the fourth line of quac:tor in the factorization formula times 'ghe wave-function
(10). actor Eq.(_8). Unfortunately, the external lines bf><|_3 can
connect either to the hard subgraph or to the collinear sub-

If the meson is a longitudinally vector or a pseudoscala L . - )
graph, a situation summarized in the equation

meson, then either of the two matrices of zero helicity con

tribute:
o0 N AT D G D
(0 1 =i 0)' @4 (45)

Parity conservation implies that the first matrix is the only
one to which the hard scattering couples for the case of dhe first term corresponds to the region of Figo)8and the
longitudinal vector meson. For the factorization theorem forsecond to Fig. 8), in the case that there are no extra gluons
longitudinal vector mesons, we therefore find that the gluorattachingS to B. The dots between thd andB subgraphs
density needed is the one defined in Eg); it defines the4  indicate an arbitrary number of lines being exchanged.
factor, with the normalization factor being a matter of con- A similar equation applies with external gluons, and cor-
vention. responds to the regions of Figgag 8(d), and &e). Note that
For the case of pseudoscalar mesons, the second matrix he gluon attaching t8 now has to be transverse, so that we
Eq. (44) is the one that satisfies parity invariance. Howeverhave lost one power d for Fig. 8(e), which has only three
charge-conjugation invariance, as indicated below @g. partons connecting to the hard subgraph. This brings the
implies that the hard-scattering coefficient is zero. power for all cases down to @/ and hence there are no
Similar arguments give Eq4) as the definition contain- further power law cancellations that we will need to take into
ing the smallest relevant gauge-invariant operator withaccount.
guarks, when we are treating production of longitudinally In Eg. (45), we call the term where one of the lines at-
polarized vector mesons, with E@) being the definition of taches toB an “end point” contribution, for the following
the meson wave function. The" factor in Eq.(4) picks out  reason. In the factorization equati€®), the longitudinal mo-
the largest components of the quark and antiquark fields. mentum fractions of the two lines relative to the incoming
Next we apply the same arguments about angular momerproton arex; andx—x;. When one of the lines attaches to
tum conservation to the production of pseudoscalar mesor, that means that the line is soft, that is, that we are exam-
and of transversely polarized vector mesons. We find that thaming the contribution of a small neighborhood of either
changes needed in the definitions of the parton densities and=0 or x—x;=0. We can equally well think of the contri-
the wave functions are those indicated in E§.and (10). bution as being obtained from a region of the form of Figs.
In our expansion of the form of Eq40), the operators 8(a) or 8(b), when one of the quarks joining the meson to the
can be expanded in powers of the fields in the path-orderelard part becomes soft. That is, the term can also be thought
exponentials. Thus we may regard E4Q) in two equivalent  of as related to one of the endpoirts 0 or z=1 of thez
ways. One way is to restrict the operators to exactly thentegral.
gauge-invariant operators. The number of terms is then Suppression of end point contribution for longitudinal
2N+ 1: one operator for each flavor of quark and antiquarkphoton: According to our power counting formula, the end
and one for the gluon. Another way to look at the formula ispoint contribution is leading, being proportional toQL/
to sum over terms for each of the operators obtained in th&here is in fact an additional suppression. Consider Fig). 8
expansion of the gauge-invariant operators. This gives aihe hard part is proportional to
infinity of terms, but in N+ 1 groups, with identical Wil- _
son coefficients within each group. e'ge’y‘h
The second point of view is useful because it shows that,
to obtain the coefficient; for each gauge-invariant operator, whereey ande,, are the polarizations of the gluon and pho-
it is sufficient to examine graphs for théx B factor that ton, and the gluon indek is purely transverse. The tensor

(46)

7]
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h;,, is obtained from the diagrams with a trace wjth. Thus ~ when momenta get infinite in a subgraph attached to the
h;, is a tensor constructed from vectors in theand — operator vertex. The relevant regions of loop momentum can
direction and from the metric tensor. It is therefore zerobe labeled by diagrams of the form of Fig. 14, which is to be
wheng=+ or u=—, and therefore we get a zero when theinterpreted in a similar fashion to those for the leading re-
photon is longitudinally polarized. The proofs we have madegions for the scattering amplitude itself.
previously are appropriate for the leading powefXfso the After use of gauge invariance to make a kind of operator
zero corresponds to a suppression by another pow&).of product expansion, the divergences will be of the form of the
Recall that we have already proved that at least one of thparton densities themselves convoluted with ultraviolet
gluons joiningS to B must be transverse, and that results inrenormalization factors. Hence the right-hand side of the
a suppression compared with tg’ given by the power- evolution equation is of the form of a kernel convoluted with
counting formula. the parton densities. The derivation and the result is just the

We therefore conclude that the endpoint contributionsame as for the diagonal densities, except that one must take
from Fig. 8e) is of order 1Q2. Since we have already account of the longitudinal momentum flow in thehannel.
proved—around Eqg(26)—the corresponding result for Fig. For the distributions, we have
8(f), where the hard scattering has two quark lines, we now
know that all end point contributions are suppressed, and Wﬁ
saw above that this is sufficient to obtain the factorization
theorem.

But clearly, the situation is different when the photon is
transversely polarized. We will discuss this further in Sec. X.

@ fi/p(X11X21t1/u‘)

:; f dEP;j (X1, X0, & as(u))fjp(€,X— X+ €L u).
(47)

. o When t=0 and x;=X,=X, the equation reduces to
We have now proved that the endpoint contributions argne standard Altarelli-Parisi equation, with a kernel
power suppressed, in the case that the photon has longitudip, (x,x, £ a4(u)). Since the ultraviolet divergences are in-
nal polarization. So the only term that survives in Ep) is dependent of the transverse anccomponents of momenta,
the one where both partons from the proton attach to the hargh kernelP;; is independent of.
scattering. _ This implies that when the individual momentum frac-
We can now apply the operator expansion argument to thgyns x, andx, are much larger thar=x,—x,, the distri-

HXB factor, to obtain the product of a coefficient times aytions approach the diagonal ones, and the limit x, can
suitable vacuum-to-meson matrix element. The matrix elepq taken in the kernel. ’
ment is the one given in Eq8), with no purely gluonic The same operator occurs in the meson’s light-cone wave

operator being allowed, because of our choice for the quanynction, so that its evolution equation contains the same
tum numbers of the meson. This result immediately gives thgq el

factorization theorem, Eq3), provided only that we adjust
the normalization of the hard-scattering factor appropriately. d

o & (Zp)=2 f APz L as( ) ) (L)
VIIl. EVOLUTION EQUATIONS : (48)

F. End of proof

The definitions of the off-diagonal parton densities, Eqgs. Corresponding Altarelli-Parisi equations apply to the

(4) and (6), are just the same as those of the ordinary diageher parton densities and wave functions needed for treating

onal parton densities. In b(_)th cases, there are ul_traviolet d.he production of pseudoscalar mesons and transversely po-
vergences and corresponding anomalous dimensions. The irized vector mesons

vergences are properties of the operators themselves. Since
the same operators appear in the light-cone wave function,
Eq. (8), this permits us to give a unified treatment for both
the parton densities and the wave functions. The hard scattering functiohl;; in Eq. (3) is obtained
The resulting renormalization-group equations give thefrom graphs with the appropriate external parton lines for the
DGLAP evolution that is essential to phenomenology. TheH subgraph, Figs. @ and 8b). The graphs are 1Pl in the
two nonperturbative factors in the factorization theorem detwo lines from the proton and in the two lines from the
pend on a renormalization-factorization scaleWe need to  meson. Lowest order graphs are given in Fig. 2. Subtractions
choose it of ordeQ in order to make effective perturbative are made to cancel the collinear divergences. Minimal sub-
calculations of the hard scattering factor. Therefore we neegtaction can be used for the subtractions just as in inclusive
the evolution equations with respect g in order to com-  hard scattering, and in the same fashion. Normal Feynman
pute predictions in terms of the nonperturbative factorsules are applied to the interior of the graphs, so it remains to

IX. RULES FOR HARD SCATTERING FUNCTION

evaluated at a fixed scale. construct the normalization factors and the external line fac-
Only minor generalizations in previously existing treat- tors.
ments for the diagonal densities are neefied|. Balitsky Consider first graphs in which the proton factor is con-

and Braun[34] have given a more general treatment, andnected by quark lines to the hard scattering. The leading
recently Ji and Radyushkifi2-14 treated exactly the op- power is obtained from a factor of the form
erators we are considering.

The essential point is that the ultraviolet divergences arise tr(y" partof HXxy~ part of A), (49
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which we can write as
1 1
E tl'( ’}/_H) E tl’(’y+A). (50)

The 1/2 and the/* in the second factor appear directly in the
definition of the parton density, Eg4), with the 1/2 multi-
plying a 1/2r associated with the Fourier transform.

As to the integral over the loop momentuatonnecting
A andH, the 1/(2r)* factor is completely inside the parton  FiG. 14. Regions for UV divergences of parton densities. The
density, as are the integrals over the transverse-amdm-  momenta in the upper blob have large virtualities, and the momenta
ponents of the momentum. We rewrite the integral dver in the lower blob are collinear to the hadron. Removing one exter-
as nal hadron gives the regions for UV divergences of light-cone wave

functions.

+ = + e

f dk _f dx,p ' (52) In this section we will show that the amplitude for trans-
. . Lo versely polarized photons is suppressed by one power. of
In addition there is a trace over color indices betweand  Fjrst we will show this for the non-end-point contribution, as
H. SinceA is a unit matrix in color space—the protons are 4 consequence of Lorentz invariance. Then we will treat the
color singlet—and since the parton density is defined to iNend-point terms.
clude a sum over colors, we need to tratever color and
divide by the number of quark colorbl.=3.

Hence the external line factor associated with quarks en-
tering the hard scattering from the proton blob is Consider first the non-end-point contributions, where the

hard scattering has four external lines, Fig&) &nd 8b).

A. Power counting: Non-end-point case

1 _ For Fig. §a), the hard part has a polarization dependence of
J— + CICIRY !
A—quark factor N, pTtry , (52 the form
with the trace being over both Dirac and color indices, and filszfl;*hijui (55)
where “---” represent the rest of the hard subgraph, with

ordinary Feynman rules. The factor N2 is in effect an wheree; ande, are the transverse gluon polarizations, and
average over spin and color, just as we would have in ai;;, is a tensor constructed out of longitudinal vectors and
inclusive process. out of Lorentz invariants. The tensor is therefore invariant
With one exception, exactly similar considerations applyunder rotations in the transverse plane, and hence it can only
to the connection of the hard scattering to the meson factohe nonzero ifu=+ or u= —. So we get a nonzero result for
apart from a need to exchange theand — coordinates. The the leading power only for a longitudinally polarized photon.
exception is that the definition E¢B) of the wave function For the quark graph, Fig.(8), the result is even simpler,
contains an extra factor {2N.. Hence the external line fac- since after the trace over Dirac matrices, the hard part just
tor associated with quarks entering the hard scattering frorgives a vector
the meson blob is

) e’;* h,. (56)
J— - + DY
V—quark factor /_2Nc Vitry ) (53 The same argument that we applied to Exh) gives exactly

the same result.

Finally there is the case of gluons attaching the proton Therefore in the case of the non-end-point contribution
blob to the hard subgraph. Here we get similarly the leading 1) power is only obtained when the photon is
longitudinally polarized. There must be at least & Kup-
pression for transversely polarized photons, which gives a
final power 1Q%. Now in Sec. VII E, we showed that the
end point terms obey exactly the opposite rule: longitudinal
where we have an average over the two transverse polarizphotons are suppressed, and transverse photons giveQhe 1/

1
A—gluon factor 20N=1) dij » (54)
[

tions and theNZ—1 colors of a gluon. contributions.
X. TRANSVERSELY POLARIZED PHOTONS B. How soft is soft?
Our proof of the factorization theorem E(B) is valid However, to get the @ contribution with a transverse

when the photon is longitudinally polarized, since we werephoton, we depend on the soft momenta being treated as
able to show that the contribution of end point regions wadaving a magnitude af?/Q. This is evidently very small:
power suppressed. Order by order in perturbation, an amplthe corresponding virtuality is of orden*/Q2. Clearly, we
tude of order 1 times logarithms was obtained, but with an must expect nonperturbative confinement effects to restrict
enhancement due to scaling violations when we apply DGall significant virtualities to beingn? or larger. We now
LAP evolution. show that this results in a power suppression.
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To see what is happening, let us examine a particulaponents ok are of ordeinQ, where\ is a parameter that we
graph, Fig. 15. There are many ways in which regions of thewill vary betweenm?/Q? and unity. The upper limit of this
form of Fig. 4 can be constructed. For our purposes it will berange is wheré& becomes a hard momentum, and the lower
sufficient to restrict our attention to cases where the momenimit is where k™ become comparable to the small compo-
tum| that goes through the meson vertex is always collineanents of collinear momenta. Thus wheris outside of these
to B and not close to either of its end points. Similarly, we limits we get a power-law suppression.
choose all momenta in subgraphto be collinear toA. All the propagators and loop integrals give factors of or-

The region of interest for this purpose is where the loopder unity except for those in the lodp So we just need to
momentumk becomes soft. So let us suppose that all comfocus our attention on the factor

fd“k LYk 1k Ak Ak i
e oz G YT a0z e Ay 7 o0

HereA; andA, represent two collinear momenta associated Note that the two lines of moments, +k andA,+k are
with the two lower gluons, whilee;, €,, and e« are the off shell by much more than of orden®. Thus they are hard
polarizations of these two gluons and of the photon. We useelative to the collinear gluons and the argument that the
B#* to denote a collinear vector associated with the right-gluons are transverse still holds. We do not have to be con-
hand loop through the meson. (#,—,L) coordinates, the cerned about a scalar gluon polarization.
magnitudes of thé andB momenta are The overall resulth\/Q, is correct if the photon has lon-
m2 gitudinal polarization. If the photon is transverse, the power
—.m]|, (58 Isin fact 1Q?. This can be seen on an examination of the
Q trace algebra by noting that the numberjofnatrices in the

m2 transverse direction must be even, and that after an azimuthal
B#N(_,Q,m)' (59)  average ovek, , the number of factors df, must be even.

Q The transversé .« must be balanced by using the transverse

Hard region for k When\~1, so that all components &  Part of B, which is of orden\°QP. This results in replacing

are of orderQ, we get an overall power @/ made up as ©ne factor o\ Q by unity. _

follows: Q* for the integrationd*k, 1/Q for five hard Hence the amplitude for a transverse photon is smaller
denominatorsQ® for the five numerators, each of which has than the amphtgde for a Iongnudma] photon until the lower
at least one term of ord€. As always, we are working in €nd of the region we are considering, \at-m/Q. In any

the Breit frame. The power @/ is exactly what we obtained €Vent we always have a power suppression compared to the
from general arguments; the hard subgraph consists d the dominant part of the amplltudg Wlt'h a longitudinal photon.
loop and has external line four partons and the photon. Given SUPersoft region forkThe situation changes onaegoes
the cancellations proved in Sec. VII D, we know that we canP€loOwW m/Q. In the real world, we must suppose that this

take the gluon polarizations to be transverse; this fact wa&9ion, which we will call the “supersoft region,” is sup-
used in obtaining the power @ for the numerator. Further- pressed due to confinement effects. We could model such

more, the argument in Sec. X A shows that after the integra@ffeCtS within perturbation theory by giving the partons non-

tion over the azimuth of, , the power 19 is only obtained Zero masses. But as an exercise, it is instructive to obtain the

when the photon has longitudinal polarization; one power 0F;ize.of the contribution when the partons have Zero masses.
Q is lost for transverse polarization First we observe over the whole of this region,

Soft region for k Next we consider smaller values bf m/Q>\>m?/Q? the power counting for the range of inte-
There are two ranges to consider:>1>m/Q and gratlzon6 and the denomlnato_rs remains true, to give
m/Q>\>m?/Q2. The break point\=m/Q between the 1/(\°Q%); a}ll the changes are in the numerator factor. The
two ranges occurs where the componentk afre compa- numerator is a sum of terms each of which is the product of
rable to masses and typical collinear transverse momenta, V€ individual momentum components. The biggest terms

In the higher range3\>m/Q we obtain a poweh/Q, Vak
as follows:\*Q* for the integrationd*k; 1/(\*Q?®) for the VAVA
four denominators of the form (Collinear momenttirk)?;
1/(\2Q?) from the k? denominator;\3Q?® for the five nu-

,m

A’f,A’2‘~(Q,

merators. The numerator is the product & factor, which % S k
is of orderAQ, and of four factors each with a largest com- e o
ponent of orderQ. But the large components of collinear P——— >

momenta are in a lightlike direction. Sincey')?2

=(y7)2?=0, we cannot be restricted to just the biggest terms

in the momenta, and examination of the surviving terms FIG. 15. Graph to illustrate endpoint contribution with trans-
shows that the result for the numerator is in faég°®. versely polarized photon.
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have two factors ofQ from the large components of the tion, in Sec. X B. The end-point contribution arises whds
collinear momenta, and one factor aQ from k. In the  close to 0 or 1. iz is of orderm/Q a 1/Q? contribution for
remaining two factors, the largest components are of arder the amplitude was obtained with a transverse phgtgnand
instead ofAQ. (Here is one motivation for separating the if z gets unphysically small, of orden?/Q?, we get a 1

two parts of the soft region at~m/Q.) Hence the numera- contribution. There are additional Sudakov suppressions
tor must be treated as being of orde®®m? to give a total whenQ? is large enough.

power 1/0Q%). Note that this term only exists for transverse

photons, as we proved at the end of Sec. V B; it is power X|. PREDICTIONS FOR RELATIONS BETWEEN CROSS

suppressed for longitudinal photons. SECTIONS FOR DIFFERENT MESONS
At the lower end of the region,~m?/Q?, we obtain a _ _ _ o
leading power contribution. As in the case of inclusive processes, the factorization

theorem leads to predictions for the flavor dependence, in
this case for relations between the cross section for produc-
C. Summary of results for transversely polarized photon tions of mesons of different flavors.

We have shown that for a transversely polarized photon,
there is a suppression ofQ/in the amplitude relative the the A. Small x
case of a longitudinal photon. Now we discuss the signifi- At small x, the parton densities are dominated by ex-
cance of this, and in particular the apparent lack of a simplehange of vacuum quantum numbers, since this is just a nor-
factorization theorem, and of a simple parton model interpremal Regge limit. Thus to a good approximation the factor of
tation of the results. the hard scattering times the parton density will be propor-
For the non-end-point contribution, the suppression retional to the square of the charge of the quark connecting the
sults from the properties of the Dirac traces. For example, ihard subgraph to the meson. If we now make the approxima-
Eq. (57) we cannot replace all the factors in the trace by theittjon that the wave functions for the different mesop, o,
largest components without obtaining the trace over an odgs andJ/y, are the same apart from the obvious flavor de-
number of transverse Dirac matrices. Th@3Acontribution pendence, we get the predicti¢@] that their production
is obtained by replacing one of the matrices by an order ¢ross sections are in the ratios
term instead of an orde® term. This may involve either
circulating transverse momentum in the hard subgraph, or a pw:p:dh=9:1:2:8. (60
replacement of8 by a transverse part. In either case, the
operators needed to define the collinear factors are no long&¥e should expect this approximation to be reasonable for the
the ones in the definitions of the parton densities and wavéhree light mesons, but not so good for thikp. Since the
functions, Egs(4)—(8), since we need to project out different J/¢ is smaller than the light mesons, we should expect its
components of Dirac matrices and/or define an operator sefroduction cross section to be even larger than predicted by
sitive to parton transverse momentum. Hence the factorizahis formula.[The particular prediction, Eq460), for theJ/ ¢
tion theorem Eq(3) does not hold, even when we restrict also depends o®? being large enough that the charmed
attention to the the non-end-point contribution; with a trans-quark mass can be neglected in the hard scattéring.
verse photon, we must not only change the hard scattering What the results of this paper give is that the prediction,
factor but we must also put in more general objects for theEq. (60), is immune to higher order QCD corrections. That
nonperturbative factors. is, its accuracy only depends on the use of smalhd on the
For the end-point contribution, we have to allow for a similarity of the meson wave functions.
nonperturbative soft factor. Just as in the case of the
transverse-momentum distribution for the Drell-Yan and
other processd85], we should be able to do this by defining
a suitable phenomenological function to be convoluted with At large x, the dominant parton flavors in the proton are
the other factors in the amplitude. It would be an interestinghe valence quarks. Although we do not know the nondiago-
result to derive a general result beyond the leading-logarithri@l parton densities, it is highly likely that they will be quali-
approximation. tatively similar to the diagonal densities. In particular, the
In any event the results for transverse photons appear t@iggest will be those for ther and d quarks, and theu
be more complicated and difficult than for longitudinal pho- density in a proton will be rather bigger than densitydof
tons. It is not possible to use rmive generalization of the quarks. So the production of thg and J/¢ mesons will be
factorization theorem we have derived with a longitudinalsuppressed compared with the values at smalhiso the
photon. fact that there are fewer down than up quarks will reduce the
Previous work{1—3] on this process has used the protonsuppression oé production. We see this as follows. Let the
rest frame rather than the photon rest frame. Although that i§1eson wave function have flavor dependence of the form
a useful frame for deriving leading-logarithm results, and forauu+bdd, and letR be the ratio of up to down quarks in
gaining intuition about how the process works, it is not sothe proton. Recall that for the®, a=—b, whereas for the
useful in constructing a complete factorization theoremsingletw, we havea= +b.
However, it is worth noting the corresponding results. We let Let us work to lowest order in the hard scattering and
z be the momentum fraction carried by the quark joining theignore the small gluon contribution. Then the cross section is
meson to the hard scattering. Thens very similar to the  proportional to (Ra—b)?, since the lowest-order hard scat-
parametei we used in investigating the end-point contribu- tering amplitude depends on quark flavor only through a fac-

B. Large x
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tor of the quark charge. Notice that there is interference in A number of predictions can be made for ratios of cross
the amplitude between the terms with different flavors ofsections of different mesons, if some approximations are
quark, and we have destructive interference for the singlet made!* These are that the meson wave functions aré3sU

The ratio of cross sections is symmetric, that the strange quark helicity densitg is
0 ) ) small, and that the helicity distribution of the up and down
pio=(2R+1)%:(2R-1)". (61) qguarks are approximately equal and opposii&=—Au

When R=1, this is the 9:1 ratio in Eq(60). WhenR in- (this follows from the observation thé&t, for the deuteron is

creases above 1, th8/ w ratio gets a lot closer to unity. For small and the assumption that this same property is valid for

example, wherR=2 which is natural forx~0.2 we get a the off-diagonal parton densities

ratio of 2.8:1. Using the SW3) wave functions and these approximations
We also observe that th@/p ratio should decrease with for the parton densities, it can be verified that

increasing X, compared with Eq.(60), which assumed

_ 2

vacuum quantum number exchange. The decrease results ~do(é+pP—n+p)/dt 1 (ZAUV Ady ~3
from the lack of strange quarks in the proton. This may be ~ do(e+p—m’+p)/dt 3 |2Auy+Ady '
relevant for the significantly smalleg$/p ratio that is ob-
served at the New Muon CollaboratigNMC) compared to do(e+p—n+p)/dt [2Auy—Ady 2~1
the DESY collider HERA at similafQ?. do(et+tn—yn+n)/dt \2Ady,—Auy o

C. Production of transversely polarized vector mesons do(e+p—mC+p)/dt [2Auy+Ady\?

The production of transversely polarized vector mesons do(e+n—=%+n)/dt (ZAdV+AUV) ~1. (62

involves the quark transversity densifg (or h;). Normally L _

one would imagine that at smadl such parton densities are Here Auy=Au—Au andAdy=Ad—Ad.

a power ofx smaller than the regular, unpolarized parton

densities, and in partif:ular thgn .the gluon depsjty. _This lis XIl. CONCLUSIONS

because the transversity density involves a helicity flip. It is o _

usually expected that this requires exchange of nonvacuum We have proved a factorization theorem for exclusive me-

quantum numbers, whereas smalphysics is dominated by SOn production in higl® electroproduction. The level of the

something like Pomeron exchange. proof is comparable to that for the classic inclusive hard
Thus the ratio of transversely polarized vector mesons tgcattering processes, like Drell-Yan. An important conse-

longitudinally polarized vector mesons should be small aguence is that higher-order corrections can be systematically

small x, and go to zero ak=0. Thus we are unable to Calculated in powers oir(Q). _

explain the reported ratio from ZEUgfL/UTzl_g_rg-g [4], We have derived new results that the theorem applies to

since the ZEUS data are at smajlaround 102. It is pos- Iarggx as well as to smalk, anq that it applies to the pro-
sible that theQ? of the data is small enough that there is duction of all mesons, and not just vector mesons. Thus we
significant production by transversely polarizstiotons The ~ are able to treat the process
selection rules in this case are different, and one need not
have the same suppression of transverse polarization for the
meson.

On the other hand, there is no reason for the same su;;(—)r
pression at large, in the domain of fixed target experi-

ments. The ratio of the cross sections for transversely an{}gtely to the case of production of transversely polarized vec-

S : o r mesons. In that case we probe theor transversity dis-
longitudinally polarized vector mesons will give a measure,_ ., . :
9 yp 9 tribution. Although we expect this case to be suppressed at

of h; provided one does not have contamination by the mallx. we see no reason for a suporession at larahis
higher twist process where the photon is transversely polars- ! X . upp 9
rocess then provides an interesting new method to measure

ized. The interesting fact here is that one does not need tﬁl, admittedly the off-diagonal version. An important con-

larize the proton. Nowvi, involv matrix element off S o o
polarize the proto own, Involves a matrix element o sideration is that it is not necessary to have any polarization

diagonal in helicity(in the limit t=0=x;—X5). S0 in an ; . . L
inclusive experiment we have to polarize the protons if Wemformatlon about the proton, unlike the situation when one

are to measurf;. But in our process, one of the protons in measures, in inclusive scattering.
the matrix elemle.nt is in the fipnal-stat,e To get thep Cross seg. The proof applies only to the case of that the virtual pho-
tion we square the matrix element and sum over all spinl(_)n that induces the scattering has longitudinal polarization.

states for the outgoing proton. Thus the off-diagonal natur(?zztfj trﬁg:gnnesn;of (;Z?SSth)Z gr;c&acshs r\g :zetrrar;z\t/ﬂeé?neli)r/] p()goéa[;-
of the matrix element is compatible with an unpolarized P pp P '

. with a definite power suppression.
cross sectiortas regards the protan An important question that needs further study is to un-

derstand how much predictive power there is in the theorem.
As always with perturbative QCD, the problem is that physi-

Y +p—7mt+n, (63

example.
In addition, we have shown that the theorem applies sepa-

D. Production of pseudoscalar mesons

Exclusive pion production involves the helicity parton
densities. So it should not be suppressed at largempared
to vector meson production. But it should be much smaller at “*Note that the predictions made in the preprint version of this
small x. paper were based on incorrect reasoning.
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cal quantities are represented in terms of parton densities eting. Thus we may not be able to get precise quantitative
which we are unable to calculate perturbatively. If we hadinformation on the diagonal gluon density, particularly as
predictions for the nonperturbative quantities, we wouldregards the normalization. Our hope is that by some kind of
have complete predictions for the cross sections. But at thRegge factorization we could say that the two parton densi-
present state of the art, we only have models for the nonpeties differ by some kind of Regge vertex, and that since this
turbative quantities, and very little that can be regarded aRegge vertex would be probed at large virtuality, we might
QCD predictions from first principles. Only for the perturba- be able to calculate it.
tive quantities, the hard scattering and the evolution kernels, In the leading Irx approximation, the leading nondiago-
do we possess a systematic method of calculation withimal terms are in fact computable in terms of the diagonal
QCD. parton densitiegéin the limitt— 0). Similarly, after evolution
Now, for ordinary inclusive processes, we able to measurén Q?, the nondiagonal terms come dominantly from the cal-
the parton densities from a limited set of processes at oneulated evolution kernel, rather than from the nondiagonal
energy and then predict many other processes at all energiesrms in the initial distribution.
that allow the hard scattering to be perturbative. The reason Our proof of the theorem also applies to charge exchange
that this is straightforward is that the parton densities arecattering. Then the generalized parton densities are off di-
functions of just one longitudinal variable, and that the deepagonal in flavor. They are related by an isospin transforma-
inelastic structure functions depend on a corresponding vartion to nonsinglet parton densiti€at nonzero momentum
able, x. Indeed, with the lowest order hard scattering, thetransfey. There should therefore be some possibilities to im-
structure functions are just simple linear combinations oforove the phenomenology of the ordinary nonsinglet quark
parton densities. Obvious generalizations of these remarkgensities from an analysis of processes like
apply to other processes, in hadron-hadron scattering, for ex-
ample. An immediate consequence is that it is possible to Y +p—p +n. (64
make many real predictions from QCD for inclusive hard
scattering(Of course, practical limitations arise from uncal-  Our analysis also has direct implications for scattering off
culated higher order corrections and from substantial experiauclei implying that color transparency phenomena should
mental errors. be present for exclusive production of leading mesons. We
But the situation is totally different for our process of leave the discussion of this subject to a separate paper.
elastic meson production. The cross section is function of Note added in proofin fact, the “off-diagonal parton
one momentum-fraction variable, but we have total of threedistributions” that we use were actually introduced long ago
such variables in the factorization formula. It is not so obvi-in Ref.[36], where the diffractive production of th& boson
ous that we can measure the nonperturbative quantities, evém DIS was considered. Subsequently there is a long history
in principle. [37], including the previously cited paper by Balitsky and
At small x, the situation is better, since the parton densi-Braun[34].
ties are dominated by exchange of vacuum quantum num-
bers: we have a normal Reggg limit. To the extent that there ACKNOWLEDGMENTS
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