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The orderas corrections to the Wilson coefficients of the dipole operators (O7 ,O8) at the matching scale
m5mW are a crucial ingredient for a complete next-to-leading logarithmic calculation of the branching ratio
for b→sg. Given the phenomenological relevance and the fact that this two-loop calculation has been done so
far only by Adel and Yao, we present a detailed recalculation using a different method. Our results are in
complete agreement with those of Adel and Yao.@S0556-2821~97!04417-2#
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I. INTRODUCTION

By definition, rareB meson decays only arise at the one-
loop level in the standard model~SM!. Therefore these de-
cays are particularly sensitive to effects from new physics.
Among these decays, the inclusive modes such asB→Xsg
are particulary interesting, because no specific model is
needed to describe the final hadronic state in contrast with
the exclusive decay modes. Indeed, heavy quark effective
theory tells us that the decay widthG(B→Xsg) is well ap-
proximated by the partonic decay rateG(b→Xsg) which can
be analyzed in renormalization-group-improved perturbation
theory. The class of nonperturbative effects which scales like
1/mb

2 is expected to be well below 10%@2#. This numerical
statement is supposed to hold also for the recently discovered
nonperturbative contributions which scale like 1/mc

2 @3#.
Up to recently, only the leading logarithmic~LL ! pertur-

bative QCD corrections were calculatedsystematically@4#.
The error of these calculations is dominated by a large renor-
malization scale dependence at the625% level. The mea-
sured branching ratioB(B→Xsg)5(2.3260.67)31024 re-
ported in 1995 by the CLEO Collaboration@5# overlaps with
the estimates based on leading logarithmic calculations~or
with some next-to-leading effects partially included! and the
experimental and theoretical errors are comparable@6–11#.
However, in view of the expected increase in experimental
precision in the near future, it became clear that a systematic
inclusion of the next-to-leading logarithmic~NLL ! correc-
tions becomes necessary@8#. This ambitious NLL enterprise
was recently completed; combining the results of different
groups@1,6,10,12–14#, the first complete theoretical predic-
tion to NLL pecision for theb→Xs1g branching ratio was
presented in@14#: B(B→Xsg)5(3.2860.33)31024. This
prediction is still in agreement with the CLEO measurement
at the 2s level. The theoretical error is twice smaller than in
the leading logarithmic prediction. So the inclusive
B→Xs1g mode will provide an interesting test of the SM
and its extensions when also more precise experimental data
will be available.

Before discussing in some more detail the principal steps
leading to a next-to-leading result forb→Xsg, we briefly

have to recall the formalism. We use the framework of an
effective low-energy theory with five quarks, obtained by
integrating out the top quark and theW boson. The effective
Hamiltonian relevant forb→sg andb→sg reads

Heff~b→sg!52
4GF

A2
l t(

i 51

8

Ci~m!Oi~m!, ~1.1!

whereOi(m) are the relevant operators,Ci(m) are the cor-
responding Wilson coefficients, which contain the complete
top-quark andW mass dependence, andl t5VtbVts* with
Vi j being the Cabibbo-Kobayashi-Maskawa~CKM! matrix
elements.1 Neglecting operators with dimension.6 which
are suppressed by higher powers of 1/mW/t factors and using
the equations of motion for the operators, one arrives at the
following basis2 of dimension-6 operators@15#:

O15~ c̄ LbgmbLa!~ s̄ LagmcLb!,

O25~ c̄ LagmbLa!~ s̄ LbgmcLb!,

O35~ s̄ LagmbLa!@~ ū LbgmuLb!1•••1~ b̄ LbgmbLb!#,

O45~ s̄ LagmbLb!@~ ū LbgmuLa!1•••1~ b̄ LbgmbLa!#,

O55~ s̄ LagmbLa!@~ ūRbgmuRb!1•••1~ b̄RbgmbRb!#,

O65~ s̄ LagmbLb!@~ ūRbgmuRa!1•••1~ b̄RbgmbRa!#,

O75~e/16p2! s̄asmn~mb~m!R1ms~m!L !baFmn ,

O85~gs/16p2! s̄asmn@mb~m!R1ms~m!L#~lab
A /2!bbGmn

A .

~1.2!

1The CKM dependence globally factorizes, because we work in
the approximationlu50.

2In @14# another basis was used. We comment on this in the sum-
mary.
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In the dipole-type operatorsO7 andO8, e andFmn (gs and
Gmn

A ) denote the electromagnetic~strong! coupling constant
and field strength tensor, respectively.

It is well known that the QCD corrections enhance the
b→sg decay rate by more than a factor of 2; these QCD
effects can be attributed to logarithms of the form
as

n(mb) logm(mb /M), where M5mt or M5mW and m<n
~with n50,1,2, . . . ). Working to NLL precision means that
one is resumming all the terms of the form
as

n(mb)lnn(mb /M), as well asas(mb)@as
n(mb)lnn(mb /M)#.

This is achieved by performing the following three steps.
Step 1. One has to match the full standard model theory

with the effective theory at the scalem5mWt , wheremWt

denotes a scale of ordermW or mt . At this scale, the matrix
elements of the operators in the effective theory lead to the
same logarithms as the full theory calculation. Consequently,
the Wilson coefficientsCi(mWt) only pick up small QCD
corrections, which can be calculated in fixed order perturba-
tion theory. In the NLL program, the matching has to be
worked out at theO(as) level.

Step 2. Then one performs the evolution of these Wilson
coefficients fromm5mWt down to m5mb , wheremb is of
the order ofmb . As the matrix elements of the operators
evaluated at the low scalemb are free of large logarithms, the
latter are contained in resummed form in the Wilson coeffi-
cients. For a NLL calculation, this renormalization group
equation~RGE! step has to be performed using the anoma-
lous dimension matrix up to orderas

2 .
Step 3. The corrections to the matrix elements of the op-

erators^sguOi(m)ub& at the scalem5mb have to be calcu-
lated to orderas precision.

The most difficult part in step 1 is the two-loop~or order
as) matching of the dipole operators, which was worked out
by Adel and Yao@1# some time ago. Step 3 basically consists
of bremsstrahlung corrections and virtual corrections. The
bremsstrahlung corrections, together with some virtual cor-
rections needed to cancel infrared singularities, have been
worked out by Ali and Greub@6,10#; later, this part was
confirmed and extended by@12#. Recently, a complete analy-
sis of the virtual corrections~up to the contributions of the
four-Fermion operators with very small coefficients! were
presented by Greub, Hurth, and Wyler@13#. The main result
of the latter analysis consists in a drastic reduction of the
renormalization scale uncertainty from about625% to about
66%. Moreover, the central value was shifted outside the
1s bound of the CLEO measurement. However, at that time,
the essential coefficientC7(mb) was only known to leading
logarithmic precision. It was therefore unclear how much the
overall normalization will be changed when using the NLL
value for C7(mb). Very recently, the orderas

2 anomalous
matrix ~step 2! has been completely worked out by Chetyr-
kin, Misiak, and Münz @14#. Using the matching result of
Adel and Yao, these authors got the next-to-leading result for
C7(mb).

Numerically, the LL and NLL values forC7(mb) are
rather similar; the NLL corrections to the Wilson coefficient
C7(mb) lead to a change of theb→Xsg decay rate which
does not exceed 6%@14#: The new contributions can be split
into a part which is due to the orderas corrections to the
matching ~step 1! and into a part stemming from the im-

proved anomalous dimension matrix~step 2!. While indi-
vidually these two parts are not so small@in the naive dimen-
sional reduction~NDR! scheme, which was used in@14##,
they almost cancel when combined, as illustrated in@14#.
This shows that all the different pieces are numerically
equally important. However, strictly speaking the relative
importance of different NLO corrections at the scale
m5mb , namely, the orderas corrections to the matrix ele-
ments of the operators~step 3! and the improved Wilson
coefficients Ci ~step 112!, is a renormalization-scheme-
dependent issue; so we stress that the discussion above was
done within the NDR scheme.

Each of the three steps implies rather involved computa-
tions: The calculation of the matrix elements~step 3! in-
volves two-loop diagrams where the full charm mass depen-
dence has to be taken into account. Also the matching
calculation~step 1! involves two-loop diagrams both in the
full and in the effective theory. Finally, the extraction of
some of the elements in theO(as

2) anomalous dimension
matrix involves three-loop diagrams. Given the fact that it
took a rather long time until the leading logarithmic calcula-
tions performed by different groups converged to a common
answer, it is certainly desirable that all three steps mentioned
above should be repeated by other independent groups and
maybe using other methods.

Making a step in this direction, we present in this paper a
recalculation of the two-loop matching of the dipole opera-
torsO7 andO8. We extracted theO(as) contributions of the
corresponding Wilson coefficentsC7 andC8 by calculating
the on-shell processesb→sg andb→sg in both versions of
the theory up to orderas . We worked out the two-loop
integrals by using the heavy mass expansion method@16#,
which we describe in some detail in Sec. II D.

The rest of the paper is organized as follows. In Sec. II we
make some preparations for the two-loop calculations. We
first explain how to extract the orderas corrections to the
Wilson coefficientsC7(mWt) and C8(mWt) in principle.
Then, in various subsections we discuss and illustrate the
technical methods used. Sections III–V are devoted to the
computation ofC71(mWt): In Sec. III we calculate QCD cor-
rections tob→sg in the full theory together with the corre-
sponding counterterm contributions, while in Sec. IV the
same is done in the effective theory. Comparing the results
from Secs. III and IV, we extractC71(mWt) in Sec. V. Simi-
larly, Secs. VI–VIII are devoted to the computation of
C81(mWt): In Sec. VI we calculate QCD corrections to
b→sg in the full theory together with the corresponding
counterterm contributions, while in Sec. VII the same is done
in the effective theory. Comparing the results from Secs. VI
and VII, we extractC81(mWt) in Sec. VIII. Finally, we give
a brief summary in Sec. IX.

II. PREPARATIONS FOR THE TWO-LOOP
CALCULATIONS

A. Strategy for extracting C71 and C81

Let M̂ denote the~on-shell! b→sg matrix element calcu-
lated in the effective theory.M̂ can be written in the form
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M̂5(
i

Ci~m!^Oi~m!&, ^Oi~m!&[^sguOi~m!ub&.

~2.1!

To keep the notation simpler, we denote the matching scale
by m instead ofmWt . Making use of theas expansion for
Ci(m) andOi(m),

Ci~m!5Ci0~m!1
as

4p
Ci1~m!1•••,

^Oi~m!&5^Oi~m!&01
as

4p
^Oi~m!&11•••, ~2.2!

we get the corresponding expansion forM̂ in the form

M̂5Ci0~m!^Oi~m!&01
as

4p
@Ci0~m!^Oi~m!&1

1Ci1~m!^Oi~m!&0#1•••. ~2.3!

On the other hand, letM denote theb→sg matrix element
evaluated in the full theory after discarding power-supressed
terms of order 1/mW/t

3 ; M has the expansion

M5M01
as

4p
M11•••. ~2.4!

Requiring M5M̂ and taking the coefficient ofas
1 , we get

the O(as) matching condition

M15Ci0~m!^Oi~m!&11Ci1~m!^Oi~m!&0 . ~2.5!

All coefficients in Eq.~2.5! are known@17,18#, except3 C71
andC81. As C81 comes together witĥsguO8(m)ub&0, which
is zero, Eq.~2.5! has only one unknown, viz.,C71, i.e., just
what we want to extract.

The discussion for the extraction ofC81 goes exactly
along the same lines, using the processb→sg instead of
b→sg.

A general remark is in order here. One could also match
off-shell Greens functions instead of on-shell matrix ele-
ments. However, in this case one is not allowed to work in
the operator basis given in Eq.~1.2!, because one has used
the equations of motion for the operators to get this eight-
dimensional basis. This Hamiltonian therefore only repro-
duces on-shell matrix elements correctly@19#. As we would
have to work in the off-shell basis when matching Greens
functions, we preferred to do on-shell matching. There is of
course a price to pay: The on-shell processesb→sg and
b→sg are plagued with infrared singularities, which have to
be treated carefully. However, as we will see later, this is not
a real problem.

B. Technical details

We work in d5422e dimensions; in the full theory we
use anticommutingg5, which should not be a problem, be-

cause there are no closed fermion loops involved. We also
use this naive dimensional regularization scheme~NDR! in
the effective theory. The calculations are done in the
’t Hooft–Feynman gauge~electroweak sector! and the gluon
propagator is taken in the Feynman gauge. To avoid Euler
gE terms and ln(4p) factors in our expressions, we introduce
the renormalization scale in the formm2exp(gE)/(4p) @the
modified minimal subtraction scheme (MS̄) then corre-
sponds to subtracting the poles ine#. In addition to the ul-
traviolet singularities also the infrared singularitites are di-
mensionally regularized. As we could clearly separate
infrared and ultraviolet singularities, we labeled the infrared
poles by the index ‘‘ir’’~e.g., 1/e ir). We putms50, except in
situations where mass singularities appear; i.e., we treatms
as a regulator of these singularities. We work in the approxi-
mationlu50. To keep the formulas more compact, we put
immediatelyQu52/3 (Qd521/3) for up-type~down-type!
quark charges. For the same reason we also immediately
insert the numerical values for the color factors in the
b→sg case.

C. Reducing the number of diagrams

For reasons of gauge invariance, we know that the final
result for theb→sg matrix element can be written in the
form

M ~b→sg!5F~masses, couplings! ^sguO7ub& tree.
~2.6!

For ms50, the quantitŷ sguO7ub& tree is given by

16p2

e
^sguO7ub& tree52mbū~p8!«”q”Ru~p!

5 ū~p8!@2mb
2«”L24mb~p«!R#u~p!,

~2.7!

whereu(p8) andu(p) are the Dirac spinors for thes and the
b quarks, respectively, andq («) the momentum~polariza-
tion vector! of the photon. In the last step we used
q5(p2p8) andq«50, wherep (p8) is the momentum of
theb (s) quark. When calculating a given Feynman diagram,
it is sufficient to work out only the term proportional to
(p«)R. After adding all the diagrams, the full answer can be
reconstructed by means of Eq.~2.7!. This reduces the num-
ber of diagrams; e.g., when calculating theO(as) correc-
tions forb→sg in the full theory, ‘‘only’’ the graphs in Fig.
2 have a nonzero projection on the term (p«)R.

A similar projection for the processb→sg ~with obvious
changes! can also be obtained.

D. Method for calculating of the two-loop diagrams

To extractC71 and C81 various one- and two-loop dia-
grams have to be calculated in both versions~full and effec-
tive! of the theory. As the one-loop diagrams are straightfor-
wardly obtained by conventional techniques, we directly
move to the two-loop diagrams. When working outb→sg
and b→sg in the effective theory at the matching scale
mWt , the only two-loop contributions leading to terms of
orderas are those associated with the operatorO2. For the

3Of courseC71 andC81 are also known from Adel and Yao@1#,
but this is what we want to check.

2936 56CHRISTOPH GREUB AND TOBIAS HURTH



b→sg case, these terms have been obtained in@13#. We
anticipate that in the corresponding full theory calculation a
term appears which can be identified with theO2 contribu-
tion in the effective theory. Consequently, theO2 contribu-
tion is not needed explicitly for extractingC71 andC81.

Therefore, we directly discuss the calculation of the two-
loop contributions in the full theory. In order to match
dimension-6 operators, it is sufficient to extract the terms of
order mbmb

2/M2 (M5mW ,mt) from the full theory matrix
elements forb→sg and b→sg ~term supressed by addi-
tional powers ofmb /M correspond to higher dimensional
operators in the effective theory!. A systematic expansion of
the matrix elements in inverse powers ofM can naturally be
obtained by using the well-known heavy mass expansion
~HME!. In our context we use this HME only as a method
for working out the dimensionally regularized two-loop
Feynman graphs~and not to get directly renormalized quan-
tities!. The theory of asymptotic expansions of Feynman dia-
grams is already a textbook matter4 @20#. Therefore, we only

recall those properties of the HME which are of practical
importance for our calculation~for the mathematical founda-
tions of this method we refer to the literature@16#!.

Suppose that all the masses of a given Feynman diagram
G can be divided into a set of largeM5$M1 ,M2 , . . . % and
smallm5$m1 ,m2 , . . . % masses and assume that all external
momentaq5$q1 ,q2 , . . . % are small compared to the scale
of the large massesM ; then the statement is that the dimen-
sionally regularized~unrenormalized! Feynman integralFG

associated with the Feynman diagramG can be written as

FG ;
M→`

(
g

FG/g+Tqg,mgFg~qg,mg,M !, ~2.8!

where the sum is performed over all subgraphsg of G which
fulfill the following two conditions simultaneously:g con-
tains all lines with heavy masses (M ) and g consists of
connectivity components that are one-particle irreducible
with respect to lines with small masses (m).

Here some clarifying remarks are in order. The operator
T performs a Taylor expansion in the variablesqg and mg,
wheremg denotes the set of light masses ing andqg denotes
the set of all external momenta with respect to the subgraph
g; to be more specific, an external momentum with respect to
the subgraphg can be an internal momentum with respect to
the full graphG. FG/g denotes the Feynman integral corre-
sponding to the reduced graphG/g. Note that the operator
T is understood to act directly on the integrand of the sub-
graphg. The decomposition of the original, say,l -loop dia-
gram G into the subdiagramg and the diagramG/g is

4The idea of deriving operator product expansions using subtrac-
tions of leading asymptotics goes back to Zimmermann@21#. Later
this idea was further developed in@22,23# and also in@24#. The
simple explicit formulas for asymptotic expansion within dimen-
sional regularization like Eq.~2.8! which we use in our calculation
have been derived in@16#. In @24# an explicit method is presented
on how the Wilson coefficients can be directly calculated from
Feynman diagrams using the Zimmermann rearrangement. Actu-
ally, the calculation in@1# is based on the latter method.

FIG. 1. Lowest order diagram forb→sg in the full theory. A
cross denotes a possible location where the photon can be emitted.
The wavy line stands for aW or unphysical Higgs boson (F). In
theb→sg case the cross at theW/F has to be ignored.~b! Typical
two-loop graph forb→sg. ~c!–~e! Subdiagrams of~b! which con-
tribute in the heavy mass expansion. See text.

FIG. 2. Complete list of two-loop diagrams forb→sg in the full
theory. A cross corresponds to a possible location for the photon
emission. For theb→sg process, this figure is a complete list of
diagrams not involving the gluon triple coupling.@In the b→sg
case the crosses at the wavy (W/F) lines should be ignored.#
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achieved in the corresponding Feynman integral by factoriz-
ing the product of scalar propagators asPG5PG/gPg such
that

FG/g+Tqg,mgFg5E dk1•••dklPG/gTqg,mgPg . ~2.9!

The full graphG is always a subgraph contributing in the
sum(g .

It is instructive to look at the special case where all
masses are large compared to the external momenta in a
given diagramG. In this case only the full graphG contrib-
utes to the sum(g in Eq. ~2.8!. The complete HME expan-
sion reduces to a naive Taylor expansion in the external mo-
menta of the integrand of the Feynman integral:

FG +
M→`

TqGFG~qG,M !. ~2.10!

The Taylor operatorT introduces additional spurious IR or
UV divergences in the various terms of the sum(g , as we
will see in an explicit example below. It is a nontrivial prop-
erty of the HME that all these artificial divergences cancel
after making a summation over all possible subgraphsg. For
our calculations this property provides a nontrivial check for
the individual diagrams, as this cancellation has to happen
diagram by diagram.

Now we illustrate this rather formal description for the
diagram in Fig. 1~b!, for an internal top quark, and denote it
D top. It belongs to the set 1 in Fig. 2. TheW- and
F-exchange contributions are understood to be added. The
corresponding Feynman integral has the form@the Dirac
spinorsū (p8) andu(p) are amputated#

D top5X exp~2gEe!m4e~4p!22eE ddr

~2p!dE ddl

~2p!d

3
XDirac1t

~p2q1r !22ms
2

1

r 2

XDirac2t

@~ l 1r !22mt
2#~ l 22mt

2!@~ l 1q!22mt
2#

1

~ l 1p2q!22mW
2

. ~2.11!

In Eq. ~2.11! the functionsXDirac1t
and XDirac2t

are the respective Dirac structures, whose explicit form is not important for

explaining the principle steps of the expansion. The constantX collects all the remaining constant factors like coupling
constants and CKM factors.

We find two subdiagramsg of D top which fulfill the two conditions given below Eq.~2.8!: The first contribution of the
HME corresponding to the subdiagramg1 shown in Fig. 1~c! is given by

D top
1 5X exp~2gEe!m4e~4p!22eE ddr

~2p!dE ddl

~2p!d

3
XDirac1t

~p2q1r !22ms
2

1

r 2
Tr ,p,qS XDirac2t

@~ l 1r !22mt
2#~ l 22mt

2!@~ l 1q!22mt
2#

1

~ l 1p2q!22mW
2 D . ~2.12!

The second contribution is the naive one,g25D top @see Fig. 1~d!#:

D top
2 5X exp~2gEe!m4e~4p!22eE ddr

~2p!dE ddl

~2p!d

3Tp,qS XDirac1t

~p2q1r !22ms
2

1

r 2

XDirac2t

@~ l 1r !22mt
2#~ l 22mt

2!@~ l 1q!22mt
2#

1

~ l 1p2q!22mW
2 D . ~2.13!

So we end up with

D top +
M→`

D top
1 1D top

2 . ~2.14!

The integrals are considerably simplified after the Taylor operationT and can be solved analytically after introducing
Feynman parametrization. We mention that the Dirac algebra has been done with the algebraic programREDUCE @25# and the
integrals have been done with the symbolic programMAPLE @26#.

As mentioned above we can discard terms of order 1/M3. Simple dimensional arguments tell us that we have to perform the
Taylor operationT up to second order in the external momentar , p, q in D top

1 and also up to second order inp, q in D top
2 .

Restoring all the factors which we symbolized byX, and projecting on the term (p«)R, we get
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D top5
4iGFl t

A2

as

4p
CF

e

16p2
~24mb!~p«!R@dtop

1 1dtop
2 #. ~2.15!

The quantitiesdtop
1 anddtop

2 are given by@z5(mt /mW)2#

dtop
1 52

S

e
@122 ln~mb /mW!e22 ln~ms /mb!e14 ln~m/mW!e#2

9z228z12

36~z21!4
ln2z

1
11z4214z31234z22180z124

108~z21!4
lnz2

229z3115z21744z2538

648~z21!3
, ~2.16!

dtop
2 51

S

e ir
@114 ln~m/mW!e#1

2108z lnz160z42258z31468z22294z124

108~z21!4e
S m

mW
D 4e

1
9z2110z12

12~z21!4
ln2z2

142z42538z31753z22218z126

108~z21!4
lnz

2
z4240z3127z2210z22

18~z21!4
Li S 12

1

zD2
67z312343z222766z1230

648~z21!3
, ~2.17!

where the functionS is

S5
~254z2148z212! lnz111z4214z3127z2238z114

108~z21!4
. ~2.18!

The 1/e poles in dtop
1 correspond to spurious ultraviolet

singularities produced in ther integration after expanding
the subdiagramg1. The 1/e ir poles indtop

2 on the other hand
arise due to the worsened infrared behavior induced when
expanding thes-quark propagator. As we explicitly see,
these artifical singularites cancel when addingdtop

1 anddtop
2 .

We now discuss the corresponding diagramDcharmwhere
the internal top quark is replaced by the~light! charm quark.
The quantitiesDcharm

1 and Dcharm
2 corresponding to the sub-

diagramsg1 andg2 @see Figs. 1~c! and 1~d!# are given by the
analogous formulas~2.12! and ~2.13!, wheremt is replaced
by mc and the Taylor operatorTr ,p,q in Eq. ~2.12! is replaced
by Tr ,p,q,mc

and Tp,q in Eq. ~2.13! by Tp,q,mc
. As we are

discarding terms of order 1/M3, it turns out that only the
zeroth order term in themc expansion has to be retained; this
amounts to puttingmc50 in Dcharm

1 andDcharm
2 .

Moreover, in the charm case there is a third contribution
to the HME which corresponds to the subdiagramg3 in Fig.
1~e!. The latter consists of theW/F line only. As we neglect
terms of order 1/M3, the Taylor expansion of the correspond-
ing Feynman integral just amounts to replacing theW andF
propagator byi /mW

2 and2 i /mW
2 , respectively. As the Feyn-

man integral of theF diagram has an additional factor of
order (mcmb)/mW

2 from the Yukawa couplings, only the
four-Fermion version of theW-exchange diagram effectively
contributes toDcharm

3 . Stated differently,Dcharm
3 is directly

related to theO2 contribution in the effective theory. Of
course, this is not suprising when keeping in mind how the
effective Hamiltonian is constructed.

To summarize,Dcharm is given by

Dcharm ;
M→`

Dcharm
1 1Dcharm

2 1Dcharm
3 . ~2.19!

E. Matching to leading logarithmic precision

To establish some lowest order matching functions which
are frequently used in the following sections and in order to
explain an important subtelty in the NLL matching calcula-
tion, we recall the results of the LL matching: In the full
theory the lowest order matrix elementsM0 for b→sg and
b→sg are obtained by expanding the diagrams shown in
Fig. 1~a! up to second order in the external momenta. The
results read, ind5422e dimensions,

M0~b→sg!5
4iGFl t

A2
K70̂ sguO7ub&,

M0~b→sg!5
4iGFl t

A2
K80̂ sguO8ub&, ~2.20!

where the functionsK70 andK80 have an expansion ine of
the form

K705K7001eK7011e2K7021•••,

K805K8001eK8011e2K8021•••. ~2.21!

On the other hand, the lowest order resultM̂0 in the effective
theory reads~also ind5422e dimensions!
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M̂0~b→sg!5C70̂ sguO7ub&,

M̂0~b→sg!5C80̂ sguO8ub&. ~2.22!

As the matching is understood to be done in four dimensions,
we get the connections

C705K700, C805K800. ~2.23!

Therefore, ind dimensionsM0 and M̂0 differ by terms of
ordere. This detail becomes an important subtlety when go-
ing to higher loop orders; we best explain this by means of
an example: One type of orderas corrections is given by
multiplying the lowest order result by ultraviolet singular

AZ2 factors which are the same for both versions of the
theory. In the full theory, this leads to finite terms propor-
tional to K701 ~and K801); the corresponding terms in the
effective theory are not generated.

When working out the two-loop integrals corresponding
to the diagrams in Figs. 2 and 3 in the full theory for
b→sg ~or b→sg), there are contributions in which the di-
mensionally regularized lowest order result, taken up to first
or second order ine, factorizes. As we will see later, the
infrared singularity stucture is precisely of this form. As we
will use the explicit expressions for the Inami-Lim@27# func-
tions K700, K800, K701, and K801 at several places, we list
them here. Usingz5(mt /mW)2, they read

K7005C705
z@6z~3z22!lnz2~z21!~8z215z27!#

24~z21!4
, ~2.24!

K8005C8052
z@6z lnz1~z21!~z225z22!#

8~z21!4
, ~2.25!

K70152
z@18z~3z22!ln2z1~44z32314z21324z296!lnz156z3235z2256z135#

144~z21!4
12K700ln~m/mW!, ~2.26!

K80152
z@218z ln2z1~10z3228z21108z248!lnz125z32118z21119z226#

48~z21!4
12K800ln~m/mW!. ~2.27!

III. b˜sg IN THE FULL THEORY

In Sec. III A we present the results for the dimensionally
regularized matrix elementM for b→sg in the full theory.
In Sec. III B we discuss the various counterterm contribu-
tions.

A. Two-loop Feynman diagrams

As in Eq. ~2.4!, we write theb→sg matrix elementM in
the formM5M01(as/4p)M1. When using the ‘‘reduction
technique’’ described in Sec. II C, the complete list of two-
loop diagrams contributing toM1 is given in Fig. 2, where
the cross stands for the possible locations where the photon
can be emitted. Note that diagram 5b in Fig. 2 does not
contribute in the limitms50. We write the result forM1 in
the form

as

4p
M15V@Rt

1122Rc
1122Rc

3#, ~3.1!

whereV is an abbreviation for the often occurring quantity

V5
4iGFl t

A2

as

4p
CF^sguO7ub& tree, CF5

4

3
. ~3.2!

In Eq. ~3.1!, Rt
112 (Rc

112) denotes the sum of the first and
second contributions in the heavy mass expansion~HME!

~see Sec. II D! of the dimensionally regularized~unrenormal-
ized! Feynman integrals for internal top~charm! quark;Rc

3 is
the third contribution in the HME, which has to be consid-
ered only for the light internal quarks, which in our present
case is the charm quark (lu50). According to the HME,
Rc

3 is obtained by working out the charm loops using the
four-Fermion approximation of theW propagator. Stated dif-
ferently,Rc

3 is directly related to the orderas contribution of
matrix element of the operatorO2, provided the latter is
evaluated in the NDR scheme; more precisely,

Rc
352R̂2 , ~3.3!

whereR̂2 is the quantity defined through the equation

^sguO2ub&5
as

4p
CF^sguO7ub& treeR̂2 . ~3.4!

As the same contribution is also present in the effective
theory, we will not need to knowRc

3 explicitly5 in order to
extract the orderas corrections in the Wilson coefficient
C71(mWt). Making use of the variousK functions given in

5The reader who wishes to see the explicit form forR̂2 is referred
to Eq. ~2.35! in Ref. @13#.
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Eqs.~2.24!–~2.27! and denotingr 5(ms /mb)2, we now give
the dimensionally regularized expression for
R112[Rt

1122Rc
112 :

R11252~K7001eK701!
~m/mW!2e

e ir
lnr 1g1

~m/mW!4e

e

1
1

2
K700ln

2r 12K700lnr ln~mb /mW!22K700lnr

1g2ln~mb /mW!1g3 . ~3.5!

The first term in Eq.~3.5! is due to infrared singularities in
the on-shellb→sg amplitude as suggested by the notation6

1/e ir . This term is entirely due to those diagrams in set 3 of
Fig. 2 where the photon is radiated from the internal quark or
the W ~or F) boson. The quantitiesg1, g2, and g3 in Eq.
~3.5! can be written as@z5(mt /mW)2, Li( x)52*0

xdt/
t ln(12t)#

g15
~2324z42450z31270z2172z!lnz1112z51244z4155z32931z21593z273

72~z21!5
2

35

216
, ~3.6!

g252
~2216z31162z2272z!lnz144z41154z32393z21274z279

36~z21!4
2

7

4
, ~3.7!

g352
z~8z3161z2240z14!

6~z21!4
Li S 12

1

zD1
2

3
ipK8001

2

27
p21

3155

1296
2$~24860z4218954z3111502z21648z!ln2z

1@3240z5116956z4137638z3256586z2120688z224962216p2~z32z2!# lnz

1~21442z5255910z41109651z3269271z2120999z24027!

1~60z52228z41636z32924z21552z296!p2%/@1296~z21!5#. ~3.8!

B. Counterterms

The counterterms relevant for calculating on-shell matrix
elements are generated by expressing the bare parameters in
the original Lagrangian in terms of the renormalized quan-
tites. Working up to orderas , the only parameters which
need renormalization in the present situation are the
t-quark mass and theb-quark mass~in principle also the
s-quark mass if we did not work in the limitms50). Using
on-shell renormalization for the externalb-quark mass and

MS̄ renormalization for the~internal! top-quark mass, the
connection between the bare and renormalized masses reads

mt,bare5mt2dmt ,
dmt

mt
5

as

4p
CF

3

e
,

mb,bare5mb2dmb ,
dmb

mb
5

as

4p
CFS 3

e
16ln~m/mb!14D .

~3.9!

Note that these mass shifts not only shift the mass terms like

mt t̄ t, but also the Yukawa terms like

;g b̄(mbL2mtR)tF2, whereF2 is the unphysical charged
Higgs field which appears in covariant gauges. These coun-
terterms, induced by the shiftsdmt anddmb , generate cor-
rections for theb→sg matrix element, which we denote by

dMb anddMt , respectively. WritingdM f5VdRf ( f 5t,b)
with V given in Eq.~3.2!, we get

dRb5H @~6z28!lnz27z2116z29#

3S 2

e
14 ln~m/mb!18/3D1~26z18!ln2z

1~20z2226z!lnz219z2144z225J
3S m

mW
D 2e z

16~z21!3
, ~3.10!

while dRt is given by

dRt5H 6

e
@~18z3130z2224z!lnz247z3163z229z27#

118z~23z225z14!ln2z

1~246z31114z22288z196!lnz144z42547z3

1855z22413z161J S m

mW
D 2e z

24~z21!5
. ~3.11!

6We could separate ultraviolet and infrared poles in our calcula-
tion. In the following, 1/e ir (1/e) stands for infrared~ultraviolet!
poles.
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When writing down the expression fordRb , we should men-
tion that we did not include the insertion ofdmbb̄b in the
externalb-quark leg. This is quite in analogy to omitting
self-energy diagrams for the external legs. Such corrections
on the external legs are taken into account by multiplying the
amputated diagram with the factorAZ2,bZ2,s, whereZ2,b and
Z2,s are the residues taken at the~physical! pole position of
the regularizedb- and s-quark two-point functions, respec-
tively. Making use of the expression~in Feynman gauge!

Z2~m!512
as

4p
CFS m

mD 2eF1

e
1

2

e ir
14G , ~3.12!

the countertermdMZ2
induced by theZ2 factors of the ex-

ternal quark fields reads~again writingdMZ2
5VdRZ2

)

dRZ2
52S m

mW
D 2eH 2

e ir
~K7001eK701!1

1

e
~K7001eK701!

1S 426 ln~mb /mW!2
3

2
lnr DK700J . ~3.13!

IV. b˜sg IN THE EFFECTIVE THEORY

As in the full theory, we first discuss the matrix elements
for b→sg of the operators in basis~1.2!. In Sec. IV B we list
the various counterterm contributions.

A. Regularized Feynman diagrams

We write the matrix elementM̂ for b→sg as a sum of the
contributions due to the operatorsOi in the effective Hamil-
tonian: i.e.,

M̂5(
i 51

8

M̂ i , M̂ i5
4iGFl t

A2
Ci^sguOi ub&. ~4.1!

To facilitate later the comparison between the results in the
two versions of the theory~full vs effective!, we write
M̂ i5M̂0

i 1(as/4p)M̂1
i and cast the term proportional toas

in the form

as

4p
M̂1

i 5VR̂i , ~4.2!

whereV is given in Eq.~3.2!.
We first discuss the contributions of the four-Fermi opera-

tors O1–O6. As the Wilson coefficients ofO1, O3, O4,
O5, and O6 start at orderas

1 , we only have to take into
account their orderas

0 ~one-loop! matrix elements; it is well
known that in the NDR scheme onlyO5 and O6 have a
nonvanishing one-loop matrix element forb→sg. Making
use of the Wilson coefficients~see@17#!

C5~m!5
as~m!

4p
CFF2

1

6
ln

m

mW
2

1

8
ẼG ,

C6~m!5
as~m!

4p
CFF1

2
ln

m

mW
1

3

8
ẼG , ~4.3!

R̂5 and R̂6 are readily obtained:

R̂552
1

3F2
1

6
ln

m

mW
2

1

8
ẼG , R̂652F1

2
ln

m

mW
1

3

8
ẼG ,

~4.4!

with

Ẽ52
2

3
lnz1

z2~15216z14z2!

6~12z!4
lnz1

z~18211z2z2!

12~12z!3
2

2

3
.

~4.5!

On the other hand, the Wilson coefficient of the operator
O2 starts at orderas

0 . Consequently, we have to take in
principle one- and two-loop matrix elements of this operator.
In practice, however, the orderas

0 ~one-loop! matrix element
of O2 vanishes and therefore only the contribution of the
orderas

1 ~two-loop! matrix element remains:

R̂2 . ~4.6!

As this contribution also occurs in the full theory result in
Sec. III A @see Eqs.~3.1! and ~3.3!#, the explicit expression
for the right-hand side~RHS! of Eq. ~4.6! is not needed for
the extraction ofC71.

The orderas contribution of the matrix elements of the
dipole operatorO7 @see Figs. 4~a! and 4~b!# yields

R̂75
3

4
C712C70

~m/mW!2e

e ir
lnr 1

C70

2
ln2r

12C70lnr ln~mb /mW!22C70lnr . ~4.7!

FIG. 3. Complete list of two-loop diagrams involving the triple
gluon vertex~for the b→sg process!.
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The first term on the RHS of Eq.~4.7! comes from the tree-
level matrix element in Fig. 4~a!, being multiplied with the
the orderas part~i.e.,C71) of the Wilson coefficientC7. The
remaining terms are due to the one-loop graph in Fig. 4~b!.
Note thatC71 is the quantity we ultimately wish to extract.
Finally, the diagrams ofO8 are depicted in Figs. 4~c! and
4~d!; its contribution is@13#

R̂852
C80

9 F2
12

e
23312p2124ln~mb /m!26ip G .

~4.8!

B. Counterterms

As the operators mix under renormalization, we have to
consider counterterm contributions induced by operators of
the form CidZi j Oj . We denote their contributions to
b→sg by

dM̂ i j 5
4iGFl t

A2
^sguCidZi j Oj ub&. ~4.9!

The nonvanishing matrix elements read~using
dM̂ i j 5VdR̂i j )

dR̂255
1

36

1

e S m

mb
D 2e

, dR̂2652
1

4

1

e S m

mb
D 2e

,

dR̂275
29

27

1

e
, dR̂775

4

e
C70, dR̂8752

4

3e
C80,

~4.10!

where we made use of the renormalization constants@4#

~dZ25,dZ26,dZ27,dZ77,dZ87!

5
as

4p
CFS 2

1

12e
,

1

4e
,

29

27e
,
4

e
,2

4

3e D . ~4.11!

It is well known that the renormalization of the four-Fermi
operators requires the introduction of counterterms propor-
tional to evanescent operators@28#. Calculatingb→sg up to
order as , there are potential counterterm contributions in-

volving evanescent operators needed to renormalizeO2. As
the initial conditions for the four-Fermi operators~which we
partially used in Sec. IV A! depend on the actual choice of
the evanescent operators, we have to use the same set when
calculating their effect ofb→sg. We consistently take both
the initial conditions of the four-Fermion operators and the set
of evanescent operators from Refs.@17,28–30#. The only po-
tentially relevant matrix element of evanescent operators
contributingb→sg is

K sgU 1

e
E1@O2#UbL , ~4.12!

where the evanescent operatorE1@O2# is of the form

E1@O2#5@ s̄a1
gmgnghLca2

c̄ a3
ghgngmLba4

2~41a1e!

3 s̄a1
gmLca2

c̄ a3
gmLba4

#Ka1a2a3a4
,

Ka1a2a3a4
5 1

2 da1a3
da2a4

2 1
6 da1a2

da3a4
. ~4.13!

However, as these matrix elements are identically zero~in
d dimensions!, there are no contributions from counterterms
proportional to evanescent operators.

Besides the counterterms induced by operator mixing, we
also have to renormalize theb-quark mass which explicitly
appears in the operatorO7 and in addition we have to mul-
tiply the lowest order matrix element by the factor
AZ2(mb)Z2(ms), quite in analogy to the calculation in the
full theory. The counterterm due to theb-quark mass renor-
malizationdM̂b5VdR̂b yields

dR̂b52F3

e
16 ln~m/mb!14GC70, ~4.14!

when using the on-shell definition for theb-quark mass,
while the countertermdM̂Z2

5VdR̂Z2
is given by

dR̂Z2
52S m

mW
D 2eH 2

e ir
C701

1

e
C70

1S 426 ln~mb /mW!2
3

2
lnr DC70J . ~4.15!

V. EXTRACTION OF C71„µWt…

To summarize Sec. III, the orderas part M1
ren of the

renormalized matrix element forb→sg in the full theory
reads

as

4p
M1

ren5V@R1121R̂21dRb1dRt1dRZ2
#, ~5.1!

where the quantities in the brackets on the RHS of Eq.~5.1!
are given in Eqs.~3.5!, ~3.3!, ~3.10!, ~3.11!, and ~3.13!, re-
spectively; the prefactorV is given in Eq.~3.2!.

The corresponding renormalized matrix elementM̂1
ren in

the effective theory can be obtained from the information in
Sec. IV; M̂1

ren reads

FIG. 4. Diagrams associated with the operatorsO7 and O8 in
the effective theory forb→sg. See text.
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as

4p
M̂1

ren5V@R̂21R̂51R̂61R̂71R̂81dR̂251dR̂261dR̂27

1dR̂771dR̂871dR̂b1dR̂Z2
#, ~5.2!

where the various quantities in the brackets are given in Eqs.
~4.6!, ~4.4!, ~4.7!, ~4.8!, ~4.10!, ~4.14!, and~4.15!.

Before we are able to correctly extractC71, a remark
concerning the infrared structure is in order. We splitM1

ren

into a infrared singular and an infrared finite piece; i.e.,

M1
ren5M1,ir

ren1M1,fin
ren . ~5.3!

As this splitting is not unique~concerning the finite terms!,
we define the singular part to be

M1,ir
ren52~K7001eK701!

~m/mW!2e

e ir
lnr

22~K7001eK701!
~m/mW!2e

e ir
, ~5.4!

where the first and second terms on the right-hand side
~RHS! are due to the two-loop diagrams~3.5! and the coun-
terterms~3.13!, respectively. We do now an analogous split-
ting for the renormalized matrix element in the effective
theory: i.e.,

M̂1
ren5M̂1,ir

ren1M̂1,fin
ren , ~5.5!

with

M̂1,ir
ren52C70

~m/mW!2e

e ir
lnr 22C70

~m/mW!2e

e ir
. ~5.6!

As the matching has to be done in four dimensions, we
cannot—strictly speaking—use the processb→sg to do the
matching, because of the infrared singularities. To cancel
these singularities, we have to include the gluon bremstrahl-
ung processb→sgg in both versions of the theory. In the
effective theory, the process has been worked out in
@6,10,12# ~but the explicit result is not important here!; the
result in the full theory is obtained from the effective theory
result by replacingC70 by K7001eK701. The correct physical
matching condition consists in requiring the infrared finite
quantity G5G(b→sg)1G(b→sgg;Eg>Eg

min) to be equal
in both versions of the theory. Because of the specific form
of Eqs.~5.3!–~5.6! and because of the specific difference in
the bremsstrahlung contribution, it follows that the physical
matching condition implies

M1,fin
ren 5M̂1,fin

ren . ~5.7!

The extraction ofC71 is now straightforward. In summary,
writing the Wilson coefficientC7„mWt ;mt(mWt)… at the
matching scalemWt in the form

C7„mWt ;mt~mWt!…5C70„mWt ;mt~mWt!…

1
as

4p
C71„mWt ;mt~mWt!…, ~5.8!

we obtain~in the naive dimensional regularization scheme!

C71„mWt ;mt~mWt!…52
2z~8z3161z2240z14!

9~z21!4
Li S 12

1

zD1
2z2~3z2123z214!

3~z21!5
ln2z

2
2~51z51294z411158z321697z21742z2116!

81~z21!5
lnz1

1520z4112961z3212126z213409z2580

486~z21!4

2
4z2~3z2123z214!

3~z21!5
lnz ln~mWt /mW!1

2~106z41287z311230z221207z1232!

81~z21!4
ln~mWt /mW!.

~5.9!

Here, z5(mt(mWt)/mW)2, where mt(mWt) is the MS̄ top
quark mass at the renormalization scalemWt . The lowest
order functionC70„mWt ;mt(mWt)… is given in Eq.~2.24!. A
clarifying remark is in order here: When solving in a subse-
quent step the renormalization group equation in order to get
the Wilson coefficent at the scalem5mb , the top-quark
mass is understood to be held fixed at the matching scale
mWt ; i.e., what we calculate by the renomalization group
equation is the quantityC7„mb ;mt(mWt)…. The correct RGE
equation to achieve this reads

m
d

dm
Ci„m;mt~mWt!…5(

j 51

8

g j i Cj„m;mt~mWt!…,

~5.10!

where the symbolsg i j are the entries of the anomalous di-
mension matrix of the operators in Eq.~1.2!.

Taking into account that the result of Adel and Yao@1# is
given in the so-calledR* renormalization scheme, we get the
same result forC71„mWt ;mt(mWt)….

VI. b˜sg IN THE FULL THEORY

As in the b→sg case we first give the results for the
two-loop diagrams and then move to the counterterm contri-
butions.
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A. Two-loop Feynman diagrams

We again write theb→sg matrix elementM in the form
M5M01(as/4p)M1. Using the ‘‘reduction technique’’ de-
scribed in Sec. II C, the complete set of two-loop Feynman
graphs is given by the Abelian diagrams in Fig. 2 and by the
non-Abelian diagrams in Fig. 3, which involve the triple
gluon coupling. The crosses in Figs. 2 and 3 show the pos-
sible locations from where the gluon can be emitted. Of
course the graphs with a cross at theW line in Fig. 2 have to
be omitted. Working in the limitms50, diagram 5b in Fig. 2
vanishes. It is convenient to writeM1 in the form

as

4p
M15W@Qt

1122Qc
1122Qc

3#, ~6.1!

where the quantityW is defined as

W5
4iGFl t

A2

as

4p
^sguO8ub& tree. ~6.2!

In Eq. ~6.1!, Qf
112 denotes the sum of the first and second

contributions in the heavy mass expansion for an internal

quark of flavorf ( f 5t,c); Qc
3 is the third contribution in this

expansion, which only has to be considered for the light
internal quarks. LikeRc

3 in Eq. ~3.1! of Sec. III A, Qc
3 is just

Qc
352Q̂2 , ~6.3!

whereQ̂2 is the quantity defined through the relation

^sguO2ub&5
as

4p
^sguO8ub& treeQ̂2 . ~6.4!

As exactly the same term also appears in the effective theory,
Qc

3 drops out when extracting theO(as) correction to the
Wilson coefficentC8.

The dimensionally regularized expressions for
Q112[Qt

1122Qc
112 can be written in the form

Q1125
1

6
~K8001eK801!

~m/mW!2e

e ir
lnr 23~K8001eK8011e2K802!

~m/mW!2e

e ir
2

2
3

2
~K8001eK801!

~m/mW!2e

e ir
@21 lnr 24ln~mb /mW!12ip#1h1

~m/mW!4e

e
1h2ln2r 1h3lnr ln~mb /mW!

1h4lnr 1h5ln~mb /mW!1h6ln2~mb /mW!1h7. ~6.5!

The first term on the RHS of Eq.~6.5! is due to infrared singularities coming from the~Abelian! graph in set 3 in Fig. 2, where
the gluon is radiated from the internal quark; the infrared structures appearing in the second and third terms are due to
non-Abelian diagrams in Fig. 3. Equation~6.5! shows that the infrared singularities again just multiply the dimensionally
regularized version of the lowest order matrix element@see Eqs.~2.20! and ~2.21!#.

The functionsK800 andK801 appearing in Eq.~6.5! are given in Eqs.~2.25! and~2.27!. We note that the functionK802 is not
needed explicitly in order to extractC81, as we will see later. The functionshi in Eq. ~6.5! read@z5(mt /mW)2#

h15
z~774z21810z1144!lnz1137z52823z41257z32425z21958z2104

72~z21!5
2

23

27
, ~6.6!

FIG. 5. Abelian diagrams associated with the operatorO8 in the
effective theory forb→sg. See text.

FIG. 6. Non-Abelian diagrams associated with the operatorO8

in the effective theory forb→sg. See text.
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h25
2

3
K800, h35

8

3
CK800, h452

8

3
K800, h6526K800, ~6.7!

h552
z~162z272!lnz111z42110z3157z2182z240

18~z21!4
16ipK80022, ~6.8!

h752
z~4z3240z2241z21!Li ~121/z!

6~z21!4
2

8

3
ipK8002

59

108
p22

185

324
2$~35964z3154756z212592z!ln2z

1@7452z5242660z4292772z3273164z2148984z2336013186p2~z32z2!# lnz1~844z5140012z4190580z3

2148588z2116688z1464!1~2885z513363z429381z3113629z228142z11416!p2%/@2592~z21!5#. ~6.9!

B. Counterterms

As the discussion concerning the counterterms induced by
the shifts in thet- andb-quark masses is exactly the same as
in the b→sg process in Sec. III B, we give immediately the
result. WritingdM f5WdQb ( f 5t,b) with W given in Eq.
~6.2!, we get

dQb5H 2~2 lnz1z224z13!S 2

e
14 ln~m/mb!18/3D

12 ln2z12z~z24! lnz2z218z27J
3S m

mW
D 2e z

2~z21!3
, ~6.10!

dQt5H 6

e
@26z~z11! lnz1z319z229z21#

118z~z11!ln2z1~26z3284z2218z124!

3 lnz15z4210z31126z22158z137J
3S m

mW
D 2e z

3~z21!5
. ~6.11!

Also the counterterms due to theAZ2 factors of the external
quark fields are obtained in the same manner as in Sec. III B,
leading to (dMz2

5WdQZ2
)

dQZ2
52S m

mW
D 2e 4

3H 2

e ir
~K8001eK801!1

1

e
~K8001eK801!

1S 426 ln~mb /mW!2
3

2
lnr DK800J . ~6.12!

For theb→sg case there are additional counterterm con-
tributions due to the strong coupling constant renomalization
and due to theAZ3 factor associated with the external gluon.
Denoting the combined effect bydMg5WdQg , one obtains

dQg5S 2
3

e
1 f D ~K8001eK801!. ~6.13!

As the finite termf will appear also in the corresponding
counterterm in the effective theory, it will drop out when
extractingC81.

VII. b˜sg IN THE EFFECTIVE THEORY

A. Regularized Feynman diagrams

In the effective theory the matrix elementM̂ for b→sg is
of the form

M̂5(
i 51

8

M̂ i , M̂ i5
4iGFl t

A2
Ci^sguOi ub&. ~7.1!

We write M̂ i5M̂0
i 1(as/4p)M̂1

i and put the term propor-
tional to as into the form

as

4p
M̂1

i 5WQ̂i , ~7.2!

whereW is given in Eq.~6.2!. As the discussion as how to
get the quantitiesQ̂i is basically identical as in theb→sg
case in Sec. IV A, we just give the results. Among the four-
Fermion operators, onlyO2 andO5 yield nonvanishing matrix
elements forb→sg. We get

Q̂2 ,Q̂552
2

9
ln

m

mW
2

1

6
Ẽ, ~7.3!

where Ẽ is given in Eq.~4.5!. Again, we do not have to
know Q̂2 explicitly, because this term also appears in the full
theory result; it drops out when extractingC81.

While there is no contribution from the dipole operator
O7, there are various diagrams associated with the operator
O8 ~see Figs. 5 and 6!. The sum of all these contributions is
given by
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Q̂85
1

6
C80

~m/mW!2e

e ir
lnr 23C80

~m/mW!2e

e ir
2

2
3

2
C80

~m/mW!2e

e ir
@21 lnr 24ln~mb /mW!12ip#

1C80S 11

3

~m/mW!2e

e
16ip ln~mb /mW!2

8

3
ip1

2

3
ln2r 26 ln2~mb /mW!

2
8

3
lnr 1

8

3
lnr ln~mb /mW!2

4

3
ln~mb /mW!1

1

3
1

59

36
p2D1C81. ~7.4!

When comparing with the full theory expressionQ112 in Eq.
~6.5!, one immediately realizes the correspondence of the
infrared singularities. To this end it is important that one
carefully disentangle everywhere infrared and ultraviolet
poles. Especially, one should use the formula

E ddr

~2p!d

1

~r 2!2
5

i

16p2S 1

e
2

1

e ir
D

instead of E ddr

~2p!d

1

~r 2!2
50. ~7.5!

An example, where such a situation occurs, is the diagram in
Fig. 6~c!.

B. Counterterms

As the operators mix under renormalization we have to
consider counterterm contributions induced by operators of
the form CidZi j Oj . We denote their contributions to
b→sg by

dM̂ i j 5
4iGFl t

A2
^sguCidZi j Oj ub&. ~7.6!

The nonvanishing matrix elements read~using
dM̂ i j 5WdQ̂i j )

dQ̂2552
1

9

1

e S m

mb
D 2e

, dQ̂285
19

27

1

e
, dQ̂885

14

3

1

e
C80,

~7.7!

where we made use of the renormalization constants@4#

dZ2552
1

9e

as

4p
, dZ285

19

27e

as

4p
, dZ885

14

3e

as

4p
.

~7.8!

We note that there are no contributions toM̂ (b→sg) from
counterterms proportional to evanescent operators.

In analogy to theb→sg case in Sec. IV B, there are the
counterterms from renormalizing theb-quark mass which
explicitly appear in the definition of the operatorO8 and
from the AZ2 factors for the external quarks. The counter-
term due to the b-quark mass renormalization
dM̂b5WdQ̂b yields

dQ̂b52
4

3F3

e
16 ln~m/mb!14GC80, ~7.9!

when using the on-shell definition for theb-quark mass Eq.
~3.9!, while the countertermdM̂Z2

5WdQ̂Z2
is given by

dQ̂Z2
52S m

mW
D 2e 4

3H 2

e ir
C801

1

e
C80

1S 426 ln~mb /mW!2
3

2
lnr DC80J . ~7.10!

Finally, there are counterterms due to the strong coupling
constant renormalization and due to theAZ3 of the external
gluon. As in the full theory, we only give the combined
countertermdM̂g5WQ̂g:

dQ̂g5S 2
3

e
1 f DC80. ~7.11!

As f is the same finite quantity as in the corresponding result
~6.13! obtained in the full theory, we do not need its explicit
form, because it drops out when extractingC81.

VIII. EXTRACTION OF C81„µWt…

To summarize Sec. VI, the orderas part M1
ren of the

renormalized matrix element forb→sg in the full theory is
given by

as

4p
M1

ren5W@Q1121Q̂21dQb1dQt1dQZ2
1dQg#,

~8.1!

where the quantities in the brackets on the RHS of Eq.~8.1!
are given in Eqs.~6.5!, ~6.3!, ~6.10!, ~6.11!, ~6.12!, and
~6.13!, respectively; the prefactorW is given in Eq.~6.2!.

The corresponding renormalized matrix element in the ef-
fective theory can be obtained from the information in Sec.
VII; M̂ 1

ren reads

as

4p
M̂1

ren5W@Q̂21Q̂51Q̂81dQ̂251dQ̂281dQ̂881dQ̂b

1dQ̂Z2
1dQ̂g#, ~8.2!

where the various quantities in the brackets are given in Eqs.
~7.3!, ~7.4!, ~7.7!, ~7.9!, ~7.10!, and~7.11!.
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Before we extractC81, which entersM̂1
ren via Q̂8 @see Eq.

~7.4!#, we should point out that the discussion concerning the
infrared singularities is similar as in theb→sg case in Sec.
V; all the formulas are written in such a way that we simply
can discard the terms proportional to the poles ine ir in both
versions of the theory. The extraction ofC81 is then straight-
forward.

To summarize, writing the Wilson coefficient

C8„mWt ;mt(mWt)… at the matching scalemWt in the form

C8„mWt ;mt~mWt!…5C80„mWt ;mt~mWt!…

1
as

4p
C81„mWt ;mt~mWt!…, ~8.3!

we obtain~in the naive dimensional regularization scheme!

C81„mWt ;mt~mWt!…52
z~4z3240z2241z21!

6~z21!4
Li S 12

1

zD2
z2~17z131!

2~z21!5
ln2z

2
210z521086z424839z323007z212114z2304

216~z21!5
lnz1

611z4213346z3229595z211510z2652

1296~z21!4

1
z2~17z131!

~z21!5
lnz ln

mWt

mW
1

89z42446z321437z22950z1152

54~z21!4
ln

mWt

mW
. ~8.4!

Here, z5@mt(mWt)/mW#2, where mt(mWt) is the MS̄ top-
quark mass at the renormalization scalemWt . The lowest
order functionC80„mWt ;mt(mWt)… is given in Eq.~2.25!.

Taking into account that the result of Adel and Yao@1# is
given in the so-calledR* renormalization scheme, our result
is identical.

IX. SUMMARY

The orderas corrections to the Wilson coefficientsC7
andC8 are a very crucial ingredient for the prediction of the
branching ratio forb→Xsg in next-to-leading logarithmic
precision. As these corrections, which involve many two-
loop diagrams in the full theory, have been calculated so far
by one group@1# only, we presented in this work a detailed
recalculation. We extracted theO(as) corrections toC7 and
C8 by comparing the on-shell processesb→sg and b→sg

in both versions of the theory. We evaluated the two-loop
integrals in the full theory by using the heavy mass expan-
sion method. Ouras corrections (C71 andC81) to the Wilson
coefficientsC7 andC8 completely agree with the findings of
Adel and Yao.

We should point out that our result~as well as that of
Adel and Yao! for C71(mWt) andC81(mWt) is a priori spe-
cific to the basis given in Eq.~1.2!. However, the same an-
swer is obtained for these Wilson coefficients when working
in the basis recently used by Chetyrkin, Misiak, and Mu¨nz.
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