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Two-loop matching of the dipole operators forb—sy and b—sg
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The orderag corrections to the Wilson coefficients of the dipole operat@s,Dg) at the matching scale
m=my, are a crucial ingredient for a complete next-to-leading logarithmic calculation of the branching ratio
for b—sy. Given the phenomenological relevance and the fact that this two-loop calculation has been done so
far only by Adel and Yao, we present a detailed recalculation using a different method. Our results are in
complete agreement with those of Adel and YE®0556-282097)04417-2

PACS numbgs): 13.20.He, 11.10.Hi, 12.38.Bx

[. INTRODUCTION have to recall the formalism. We use the framework of an
effective low-energy theory with five quarks, obtained by
By definition, rareB meson decays only arise at the one-integrating out the top quark and thé boson. The effective
loop level in the standard modéBM). Therefore these de- Hamiltonian relevant fob—sy andb—sg reads
cays are particularly sensitive to effects from new physics.
Among these decays, the inclusive modes sucB-asXyy
are particulary interesting, because no specific model is
needed to describe the final hadronic state in contrast with
the exclusive decay modes. Indeed, heavy quark effectivethereO;(u) are the relevant operator§;(u) are the cor-
theory tells us that the decay widih(B— Xgy) is well ap-  responding Wilson coefficients, which contain the complete
proximated by the partonic decay rdtéb— X.y) which can  top-quark andW mass dependence, and=VV}; with
be analyzed in renormalization-group-improved perturbatiorV;; being the Cabibbo-Kobayashi-Maskaw@KM) matrix
theory. The class of nonperturbative effects which scales likelements. Neglecting operators with dimension6 which
1/m? is expected to be well below 1092]. This numerical ~are suppressed by higher powers afj; factors and using
statement is supposed to hold also for the recently discoverdf€ equations of motion for the operators, one arrives at the
nonperturbative contributions which scale likenf/[3]. following basi¢ of dimension-6 operator.5]:

Up to recently, only the leading logarithmitL) pertur-

4G 2
Hef«basw:—ﬁxt;ciw)oi(m, (1.2

bative QCD corrections were calculatsgistematically{4]. O1=(CLgY*PrLa)(SLaVuCLp),
The error of these calculations is dominated by a large renor- — —
malization scale dependence at th€5% level. The mea- O2=(CLa¥*DLa)(SLEYuCLE)

sured branching rati®(B— Xgy) =(2.32+0.67)x 10" * re- _ - _
ported in 1995 by the CLEO Collaborati] overlaps with Osz=(SLa?7*bLo)(U gy )+ +(bgy.bigls
the estimates based on leading logarithmic calculations
with some next—to-leadlng_ effects partially includexdhd the O4=(SLa¥*bLa)[(ULgYULe)+ -+ (b gy,bLa)l,
experimental and theoretical errors are compargbiel 1].
However, in view of the expected increase in experimental
precision in the near future, it became clear that a systematic
inclusion of the next-to-leading logarithmidLL) correc- — — —
tions becomes necessd®B]. This ambitious NLL enterprise Op=(SLa¥*bLp)[(UrgYulURa) - - - +(brgyuibRra),
was recently completed; combining the results of different _
groups[1,6,10,12—1% the first complete theoretical predic- 0= (e/167°) s ,a*"(Mp(u)R+Mg(u)L)b,F ,, ,
tion to NLL pecision for theb— X4+ y branching ratio was .
presented inM14]: B(B— Xsy)=(3.28+0.33)x 10 4. This Og=(94/167?) s ,0*"[my( )R+ mS(M)L]()\QﬁIZ)bﬁGﬁv.
prediction is still in agreement with the CLEO measurement
at the 2r level. The theoretical error is twice smaller than in (1.2
the leading logarithmic prediction. So the inclusive
B— X+ y mode will provide an interesting test of the SM
and its extensions when also more precise experimental datdThe CKM dependence globally factorizes, because we work in
will be available. the approximatior\ ,=0.

Before discussing in some more detail the principal steps 2in [14] another basis was used. We comment on this in the sum-
leading to a next-to-leading result far— Xy y, we briefly  mary.

O5=(S_o¥*bLa)[(UrgYuUrp) - -+ (DrgY.bre) ],
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In the dipole-type operatol®; andOg, € andF,, (gs and  proved anomalous dimension matrigtep 2. While indi-
Gﬁy) denote the electromagnetistrong coupling constant vidually these two parts are not so sniat the naive dimen-
and field strength tensor, respectively. sional reduction(NDR) scheme, which was used [d4]],

It is well known that the QCD corrections enhance thethey almost cancel when combined, as illustrated 1id].
b—sy decay rate by more than a factor of 2; these QCDThis shows that all the different pieces are numerically
effects can be attributed to logarithms of the formequally important. However, strictly speaking the relative
a?(my) logM(my,/M), whereM=m, or M=m,, and m=<n importance of different NLO corrections at the scale
(with n=0,1,2 . . .). Working to NLL precision means that &=, hamely, the ordet corrections to the matrix ele-
one is resumming all the terms of the form ments of the operatoréstep 3 and the improved Wilson
al(mp)IN"(my/M), as well as ag(mp)[ a(mp)In"(Mm,/M)]. coefficients'Ci (step H2), is a renormglizatiop—scheme-
This is achieved by performing the following three steps. depend_en_t issue; so we stress that the discussion above was

Step 1 One has to match the full standard model theorydone within the NDR scheme. _
with the effective theory at the scaje= uy;, where wy; _ Each of the thre_e steps implies _rather involved co_mputa-
denotes a scale of order, or m,. At this scale, the matrix tions: The calculation of the matrix elementstep 3 in-
elements of the operators in the effective theory lead to th¥0Ives two-loop diagrams where the full charm mass depen-
same logarithms as the full theory calculation. Consequentlyd€nce has to be taken into account. Also the matching
the Wilson coefficientsC;(uw,) only pick up small QCD calculathn(step ] mvplves two—loo_p diagrams both in the
corrections, which can be calculated in fixed order perturbafull @and in the effective theory. Finally, the extraction of
tion theory. In the NLL program, the matching has to besome of the elements in th®(a3) anomalous dimension
worked out at theD(ay) level. matrix involves three-loop diagrams. Given the fact that it

Step 2 Then one performs the evolution of these Wilsontook a rather long time until the leading logarithmic calcula-
coefficients fromu = uy down to uw=u,, whereu, is of  tions performed by different groups converged to a common
the order ofm,. As the matrix elements of the operators answer, it is certainly desirable that all three steps mentioned
evaluated at the low sca}e, are free of large logarithms, the above should be repeated by other independent groups and
latter are contained in resummed form in the Wilson coeffi-maybe using other methods.
cients. For a NLL calculation, this renormalization group Making a step in this direction, we present in this paper a
equation(RGE) step has to be performed using the anomarecalculation of the two-loop matching of the dipole opera-
lous dimension matrix up to order; . tors O, andOg. We extracted th@(a.) contributions of the

Step 3 The corrections to the matrix elements of the op-corresponding Wilson coefficent; and Cq by calculating
erators(sy|O;(u)|b) at the scaleu=u;, have to be calcu-  the on-shell processés—sy andb—sg in both versions of
lated to orderas precision. the theory up to orders. We worked out the two-loop

The most difficult part in step 1 is the two-lodpr order integrals by using the heavy mass expansion mefi6
a@s) matching of the dipole operators, which was worked out, hich we describe in some detail in Sec. 11 D.

by Adel and Yad 1] some time ago. Step 3 basically COnsists g rest of the paper is organized as follows. In Sec. Il we

of bremsstrahlung corrections and virtual corrections. Thev e some preparations for the two-loop calculations. We
bremsstrahlung corrections, together with some virtual cor:

. . . - first explain how to extract the orders corrections to the
rections needed to cancel infrared singularities, have be iison coefficients C(uy) and Ce(mw) in principle
worked out by Ali and Greuli6,10]; later, this part was 7\Hw 8\ Hw principle.

confimed and exended 2], Réceny, a competeanay- (17 1) arous, subsectons e dsovss and lusvate e
sis of the virtual correctiongup to the contributions of the :

four-Fermion operators with very small coefficientsere computation olC7y(uwy): In Sec. Il we calculate QCD cor-

presented by Greub, Hurth, and Wy[d3]. The main result rectior_ls tob—sy in the full theor_y togethgr V\.'ith the corre-
of the latter analysis consists in a drastic reduction of thespondl_ng counterterm con_trlbutlons, while In Sec. IV the
renormalization scale uncertainty from abadt®25% to about same is done in the effective theory. Cqmparlng thg rgsults
+6%. Moreover, the central value was shifted outside the o1 Secs. lll and IV, we extrac@z(pwy) in Sec. V. Simi-

1o bound of the CLEO measurement. However, at that time arly, Se.cs. VI-Vill are devoted to the computgtlon of
the essential coefficier@,(u,) was only known to leading Corswd: In Sec. VI we calculate QCD corrections to

logarithmic precision. It was therefore unclear how much theb—>Sg in the full theory together with the corresponding

overall normalization will be changed when using the NLL counterterm contributions, while in Sec. VIl the same is done

value for C-(uy). Very recently, the ordea§ anomalous " the effective theory. Comparing the resglts from Seps. Vi
. ’ and VII, we extractCg(uwy) in Sec. VIII. Finally, we give

matrix (step 2 has been completely worked out by Chetyr- a brief summary in Sec. 1X

kin, Misiak, and Munz [14]. Using the matching result of Y o

Adel and Yao, these authors got the next-to-leading result for

Ca(mp)-

Numerically, the LL and NLL values folC;(u,) are Il. PREPARATIONS FOR THE TWO-LOOP

rather similar; the NLL corrections to the Wilson coefficient CALCULATIONS

C(up) lead to a change of the— Xy decay rate which A. Strategy for extracting C;; and Cg;

does not exceed 6%44]: The new contributions can be split N )

into a part which is due to the order, corrections to the Let M denote thgon-shel) b— sy matrix element calcu-

matching(step 1 and into a part stemming from the im- lated in the effective theorM can be written in the form
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. cause there are no closed fermion loops involved. We also
M= Ci(u){Oi(n), (Oi(u))=(sy|Oi(n)|b). use this naive dimensional regularization scheBR) in
' @2.1) the effective theory. The calculations are done in the
' 't Hooft—Feynman gaugéelectroweak sectprand the gluon

To keep the notation simpler, we denote the matching scaleropagator is taken in the Feynman gauge. To avoid Euler
by u instead ofuy,. Making use of thex, expansion for ye terms and In(4) factors in our expressions, we introduce

Ci(un) andO;(u), the renormalization scale in the form?exp(yg)/(4m) [the
modified minimal subtraction scheme (MS3hen corre-
_ s sponds to subtracting the poles i In addition to the ul-

Ci(u)=C; +—C; +e, . _ . . : o .

(1) =Ciolu) 47 () traviolet singularities also the infrared singularitites are di-

mensionally regularized. As we could clearly separate
infrared and ultraviolet singularities, we labeled the infrared
poles by the index “ir”(e.g., 1£;). We putmg=0, except in
situations where mass singularities appear; i.e., we trgat
we get the corresponding expansion Krin the form as a regulator of these singularities. We work in the approxi-
mation\,=0. To keep the formulas more compact, we put
immediatelyQ,=2/3 (Qq= —1/3) for up-type(down-type
quark charges. For the same reason we also immediately
insert the numerical values for the color factors in the

(OUm)=(O(m)o+ 7 =(O(m)at -+, (2.2

M = Cio( (O )o+ 7 [ Ciol1)(Oi()s

+Cir(w)(Oi(m))ol+ - - . 2.3 b—sg case.
On the other hand, le¥l denote théb— sy matrix element ] ]
evaluated in the full theory after discarding power-supressed C. Reducing the number of diagrams
terms of order Ih3,,; M has the expansion For reasons of gauge invariance, we know that the final
result for theb— sy matrix element can be written in the
M=Mg+ =M+ . (2.4 form
4

M (b—sy)=F(masses, couplings (sy|O7|b)yee-
RequiringM =M and taking the coefficient ofl, we get
the O(a;) matching condition For mg=0, the quantitysy|O7|b)yeeis given by
M1=Cio(1){Oi(x))1+ Cir()(Oi(1))o. (2.9 1672

All coefficients in Eq.(2.5) are known[17,18, except C4; e
andCg;. As Cg; comes together withsy|Og(u)|b)o, which —
is zero, Eq.(2.5) has only one unkn?)swn, vizC;71,> i.e., just = u(p")[2mz£L —4mp(pe)RIu(p),

what we want to extract. 2.7

The discussion for the extraction @g; goes exactly
along the same lines, using the procésssg instead of Wwhereu(p’) andu(p) are the Dirac spinors for theand the
b—sy. b quarks, respectively, ang (¢) the momentumpolariza-

A general remark is in order here. One could also matchion vecto) of the photon. In the last step we used
off-shell Greens functions instead of on-shell matrix ele-q=(p—p’) andge=0, wherep (p’) is the momentum of
ments. However, in this case one is not allowed to work intheb (s) quark. When calculating a given Feynman diagram,
the operator basis given in E(L.2), because one has used it is sufficient to work out only the term proportional to
the equations of motion for the operators to get this eight{ps)R. After adding all the diagrams, the full answer can be
dimensional basis. This Hamiltonian therefore only repro-econstructed by means of E@.7). This reduces the num-
duces on-shell matrix elements corredtg]. As we would  ber of diagrams; e.g., when calculating t@¢«s) correc-
have to work in the off-shell basis when matching Greengions forb— sy in the full theory, “only” the graphs in Fig.
functions, we preferred to do on-shell matching. There is o have a nonzero projection on the terpe}R.
course a price to pay: The on-shell procesbessy and A similar projection for the proceds— sg (with obvious
b—sg are plagued with infrared singularities, which have tochangescan also be obtained.
be treated carefully. However, as we will see later, this is not

a real problem. D. Method for calculating of the two-loop diagrams

(57/07]b)yee=2myu(p’) 4R U(P)

To extractC,; and Cg,; various one- and two-loop dia-

grams have to be calculated in both versi¢iodl and effec-

We work ind=4—-2¢ dimensions; in the full theory we tive) of the theory. As the one-loop diagrams are straightfor-

use anticommutingys, which should not be a problem, be- wardly obtained by conventional techniques, we directly
move to the two-loop diagrams. When working dut sy

and b—sg in the effective theory at the matching scale

30f courseC,; and Cg; are also known from Adel and Yadl], MLwi, the only two-loop contributions leading to terms of
but this is what we want to check. order a4 are those associated with the operador For the

B. Technical details
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FIG. 1. Lowest order diagram fdr—svy in the full theory. A FIG. 2. Complete list of two-loop diagrams fbr-sy in the full

cross denotes a possible location where the photon can be emittdf€ory. A cross corresponds to a possible location for the photon
The wavy line stands for 8 or unphysical Higgs bosond). In emission. For thdd—sg process, this figure is a complete list of
theb— sg case the cross at th/® has to be ignoredb) Typical ~ diagrams not involving the gluon triple couplingn the b—sg
two-loop graph folb—sy. (c)—(e) Subdiagrams ofb) which con- ~ case the crosses at the wawy/®) lines should be ignorefi.

tribute in the heavy mass expansion. See text.

recall those properties of the HME which are of practical

b—sy case, these terms have been obtained1®. We  importance for our calculatiotfor the mathematical founda-
anticipate that in the corresponding full theory calculation ations of this method we refer to the literatUreg]).

term appears which can be identified with ¢ contribu- Suppose that all the masses of a given Feynman diagram
tion in the effective theory. Consequently, tBg contribu- I' can be divided into a set of largd ={M,M,, ...} and
tion is not needed explicitly for extracting,, andCg; . smallm={my,m,, ...} masses and assume that all external

Therefore, we directly discuss the calculation of the two-momentaq={d;,0d,, ...} are small compared to the scale
loop contributions in the full theory. In order to match of the large massed; then the statement is that the dimen-
dimension-6 operators, it is sufficient to extract the terms ofionally regularizedunrenormalized Feynman integraFr
order mymZ/M? (M =m,,,m,) from the full theory matrix ~associated with the Feynman diagrdihtan be written as
elements forb—sy and b—sg (term supressed by addi- Moo
tional powers ofmb/M correspond to higher dimen_sional ,:F*~ E Fr/,oTqnmF,(Q%,m7,M), 2.9
operators in the effective thegnA systematic expansion of Y AT S =
the matrix elements in inverse powershfcan naturally be
obtained by using the well-known heavy mass expansion
(HME). In our context we use this HME only as a method Where the sum is performed over all subgraptef I' which
for working out the dimensionally regularized two-loop fulfill the following two conditions simultaneouslyy con-
Feynman graph&nd not to get directly renormalized quan- tains all lines with heavy masse#M) and y consists of
tities). The theory of asymptotic expansions of Feynman diaconnectivity components that are one-particle irreducible
grams is already a textbook maft§20]. Therefore, we only  with respect to lines with small masses)

Here some clarifying remarks are in order. The operator
7 performs a Taylor expansion in the variablgandm?,
“The idea of deriving operator product expansions using subtrac¥herem” denotes the set of light massesyimndq” denotes
tions of leading asymptotics goes back to Zimmermgat]. Later  the set of all external momenta with respect to the subgraph
this idea was further developed [22,23 and also in[24]. The v, to be more specific, an external momentum with respect to
simple explicit formulas for asymptotic expansion within dimen- the subgraphy can be an internal momentum with respect to
sional regularization like Eq2.8) which we use in our calculation the full graphI'. Fr,, denotes the Feynman integral corre-
have been derived ifiL6]. In [24] an explicit method is presented sponding to the reduced graghy. Note that the operator
on how the Wilson coefficients can be directly calculated from7 is understood to act directly on the integrand of the sub-
Feynman diagrams using the Zimmermann rearrangement. Actigraphy. The decomposition of the original, séyloop dia-
ally, the calculation if1] is based on the latter method. gram I' into the subdiagramy and the diagranl’/y is
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achieved in the corresponding Feynman integral by factoriz- M- .
ing the product of scalar propagatorslds= Iy, I1., such Fr o TqgrFr(q,M). (2.10

that The Taylor operatofl introduces additional spurious IR or

UV divergences in the various terms of the stip, as we
will see in an explicit example below. It is a nontrivial prop-
Friy g%m?':y:f dky- - 'deHF/yTQV,mVHy- (2.9 erty of the HMEpthat all thrc)ese artificial divergences (F:)angel
after making a summation over all possible subgraphSor
. o our calculations this property provides a nontrivial check for
The full graphI' is always a subgraph contributing in the {he individual diagrams, as this cancellation has to happen
sumx, . diagram by diagram.

It is instructive to look at the special case where all Now we illustrate this rather formal description for the
masses are large compared to the external momenta indiagram in Fig. 1b), for an internal top quark, and denote it
given diagraml’. In this case only the full graph contrib-  D,,,. It belongs to the set 1 in Fig. 2. Th&- and
utes to the sunk , in Eq. (2.8). The complete HME expan- ®-exchange contributions are understood to be added. The
sion reduces to a naive Taylor expansion in the external meeorresponding Feynman integral has the fofthe Dirac

menta of the integrand of the Feynman integral: spinorsu(p’) andu(p) are amputated

dd dd|
Diop=X eXF(Z‘}’EG)M4€(47T)_26f (Zﬂ)df —(27T)d

XDira(‘,lt 1 XDira(‘?t 1
(p—q+1)2=m2 r2 [(1+1)2=mZ] (12— m)[(1+q)>—m?] (I+p—q)>—m3,

X

(2.11

In Eq. (2.11) the functionsXpirac,, @nd Xpirac,, are the respective Dirac structures, whose explicit form is not important for
explaining the principle steps of the expansion. The constacbllects all the remaining constant factors like coupling
constants and CKM factors.

We find two subdiagramy of D4, which fulfill the two conditions given below Eq2.8): The first contribution of the
HME corresponding to the subdiagrapm shown in Fig. 1c) is given by

1 4e —2e ddr ddl
DtOpZXeX[XZ’yEf),u, (4) f f

(2m®J) (2m)¢
xDira 1 XDira 1
C;t 2 2°r.p.g 2 21,12 022t 2 2 2 2" (212
(p—qg+r)—mgr [+ =m7](15=mO)[(I+ ) =m{] (I+p—aq)°—my
The second contribution is the naive ong,= D, [see Fig. 1d)].
D2 — X exp(2yee ui“(4 )72J ddrf ddl
=Xex ey (4m)
top YE€) ML (27T)d (277)d
XDbira 1 Xpira 1
X pq( ";r 2.2 2 21012 %2‘ 2 2 2 2 | (213
(p—q+r)*=mg re [(1+r)*=m{](1"=mO)[(1+q)*=mg] (I+p—0)°—my
So we end up with
M—oo
Diop © Doy Dinp- (2.14

The integrals are considerably simplified after the Taylor operafiand can be solved analytically after introducing
Feynman parametrization. We mention that the Dirac algebra has been done with the algebraic peograni25] and the
integrals have been done with the symbolic prograsrLE [26].

As mentioned above we can discard terms of ordsr*LSimple dimensional arguments tell us that we have to perform the
Taylor operation7 up to second order in the external moment, q in Dtlop and also up to second order |n g in thop.

Restoring all the factors which we symbolized Xy and projecting on the ternpg)R, we get
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D _4IGF)\I CYS
N ) 4n F o2

The quantitiesly,, anddf,, are given by z=(m,/my)?]

(—4my) (ps) R diyt dinp]. (2.19

97°—8z+2
36(z—1)*
. 117%— 1473+ 23472 — 18 + 24 229734 1572+ 7447 — 538

S
digp=— —[1-2 In(my/my,) €= 2 In(ms/mp) e+ 4 In(u/my) €]~ n’z

Inz— , (2.19
108z—1)* 648z—1)°
2oy s[1+4| el —108& Inz+60z* — 258°+ 468° — 2942+ 24/ p
= n(u/my,) e —
top™ HTw 1087— 1) | my,
97°+10z+2 ., 142%"-538&°+75%°—218&+26
——  In“z— Inz
12(z—1)* 108z—1)*
24— 4023+ 2722 10z-2 1\ 6725+234%?—276&+230
- i|1—= , (2.17
18z—1)* z 648z—1)°3
where the functiors is
_(= 5472+ 48z—12) Inz+ 11z*— 1423+ 27— 382+ 14 2.18
108z—1)* '
|
The 1k poles in dtop correspond to spurious ultraviolet ~ To summarizePD ¢,,miS given by
singularities produced in the integration after expanding Moo
the subdiagramy,. The 1€, poles |ndtOID on the other hand Denarm ~ D™ DZnarmit D oharm: (2.19

arise due to the worsened infrared behavior induced when
expanding thes-quark propagator. As we explicitly see,
these artifical singularites cancel when addutig) and dtop ) ) ) _
We now discuss the corresponding diagrBig,, where To establish some lowest order matching functions which
the internal top quark is replaced by tHight) charm quark. &€ frequently used in the following sections and in order to
The quantitiesDZ, .. and D2, corresponding to the sub- explain an important subtelty in the NLL matching calcula-
diagramsy and;/har[n;ee Fig;ha&;n) and 1d)] are given by the tion, we recall the results of the LL matching: In the full
analogous formula2.12) and (2.13, wherem, is replaced theory the lowest order matrix elemen, for b—sy and

; ; b—sg are obtained by expanding the diagrams shown in
by mg and the Taylor_operatoTr’p’q in Eq. (2.1 is replaced Fig. 1(a) up to second order in the external momenta. The
by ﬁ,p,q,mc and %,q in Eq. (2.13 by %qumc' As we are

results read, id=4-2¢ dimensions,
discarding terms of order W3, it turns out that only the
zeroth order term in then, expansion has to be retained; this iGN
amounts to puttingn,=0 in D2 ,,,and D - Mo(b—sy)= V2 K7 s7/0-|b),
Moreover, in the charm case there is a third contribution
to the HME which corresponds to the subdiagragnin Fig. 4iGeN
1(e). The latter consists of tha/d line only. As we neglect Mo(b—sg)= ——=— Kgi(Sg|Og|b), (2.20
terms of order M3, the Taylor expansion of the correspond- V2
ing Feynman integral just amounts to replacing fend ®

propagator byi/mé, and—i/mé,, respectively. As the Feyn-

E. Matching to leading logarithmic precision

where the function&,y andKg, have an expansion ia of

man integral of thed diagram has an additional factor of the form

order (mcmb)/m\%\, from the Yukawa couplings, only the K70= K700t €K 701+ €Kggpt - - -,
four-Fermion version of th&V-exchange diagram effectively

contributes toD3,,,, Stated differently,D3, ., is directly K go=KgooT €Kgort €Kggpt - - - (2.21)

related to theO, contribution in the effective theory. Of
course, this is not suprising when keeping in mind how theOn the other hand, the lowest order resulf in the effective
effective Hamiltonian is constructed. theory readgalso ind=4-—2e dimensiong
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Mo(b—sy)=Co«(Sy|0|b), VZ, factors which are the same for both versions of the
theory. In the full theory, this leads to finite terms propor-
Mo(b—sg) = Cgq(Sg Og|b). (2.22  tional to Ko, (and Kgoy); the corresponding terms in the

effective theory are not generated.
As the matching is understood to be done in four dimensions, When working out the two-loop integrals corresponding
we get the connections to the diagrams in Figs. 2 and 3 in the full theory for
b—sy (or b—sg), there are contributions in which the di-
mensionally regularized lowest order result, taken up to first
or second order ire, factorizes. As we will see later, the

Therefore, ind dimensionsM, and |\7|0 differ by terms of infrared sinqularity stucture is preciselv of this form. As w
ordere. This detail becomes an important subtlety when go-" . ared singuiarity SWcture 1S precisely ot this form. AS we
ill use the explicit expressions for the Inami-L{®7] func-

ing to higher loop orders; we best explain this by means otV d ol i
an example: One type of order, corrections is given by 10NS K700, Koo, 5701' an K2801 at several places, we list
multiplying the lowest order result by ultraviolet singular theém here. Using=(m./my)?, they read

C7:0=K700, Cgo=Kgno- (2.23

~ 2[62(3z—2)Inz—(z— 1)(822+5z-7)]

K700=C70= , 2.2
700~ 70 24(z— 1) (2.24
7[6z Inz+(z—1)(z>— 52— 2)]
K goo= Cgo= — , (2.29
800 80 8(z— 1)4
K 2[182(3z—2)In?z+ (442°— 3142% + 324z— 96)Inz+ 562° — 3522 — 562+ 35]+2K In(alm) 2.28
=_ n( w/myy), .
701 1447— 1) 70010 AL/ Ty
z[ — 18z In’z+ (1023 — 2822+ 10& — 48)Inz+ 2523 — 1182+ 11%— 26]
Kgo1= — 2 + 2K godn( e/ my). (2.27
48(z—1)
[
ll. b—sy IN THE FULL THEORY (see Sec. Il Dof the dimensionally regularize@dinrenormal-

. . . . 3 .

In Sec. Ill A we present the results for the dimensionalIy;f]zq)th':iﬁjyrérgri?i&fgﬁlﬁ Iﬁ(raIrllflf/lrlr:_]alvsﬁ?chharrgsq?oalg(é%olr?si 4-
regularized matrix elemem¥l for b—sy in the full theory. o ’ >

In Sec. Il B we discuss the various counterterm contribu-eer qnly for the light internal quarks, W.h'Ch In our present
tions. case is the charm quark (=0). According to the HME,
Rg is obtained by working out the charm loops using the
four-Fermion approximation of thé/ propagator. Stated dif-
ferently, Rg is directly related to the orderg contribution of
As in Eq.(2.4), we write theb— sy matrix elemenM in  matrix element of the operatdd,, provided the latter is

the formM =M+ (ag/4m)M,. When using the “reduction evaluated in the NDR scheme; more precisely,
technique” described in Sec. Il C, the complete list of two-

loop diagrams contributing t¥ is given in Fig. 2, where R3 S 3.3
the cross stands for the possible locations where the photon ¢ '
can be emitted. Note that diagram 5b in Fig. 2 does not . . ) )
contribute in the limitm,=0. We write the result foM, in ~ WhereR; is the quantity defined through the equation
the form

A. Two-loop Feynman diagrams

ag A
a (sy7|0,|b)= ——Cg(sy|O7|b)yedRz. (3.9
ﬁMl:V[RFZ—Rg”—Rg], (3.1) Am

_ . _ . As the same contribution is also present in the effective
whereV is an abbreviation for the often occurring quantity theory, we will not need to knovR® explicitly® in order to
' C

4iGe) 4 extract the ordereg corrections in the Wilson coefficient
FAt & . . . . .
= 2 ﬁCF(SY|O7|b>tree, Ce=5. (32 Co1(wy). Making use of the variou& functions given in

In Eq. (3.1), R**2 (RL*?) denotes the sum of the first and  SThe reader who wishes to see the explicit form Rgris referred
second contributions in the heavy mass expansiNE) to Eq.(2.39 in Ref.[13].




56 TWO-LOOP MATCHING OF THE DIPOLE OPERATORS ... 2941

Egs.(2.24—(2.27) and denoting = (mg/m,)2, we now give +g,In(my/my,) +gs. (3.5
the dimensionally regularized expression for
R1t2= Rt1+2_R<1:+21 The first term in Eq(3.5) is due to infrared singularities in
the on-shelb— sy amplitude as suggested by the notation
RUF 22— (Koot eK (plmyy)?€ | (p/my)*€ 1/e;, . This term is entirely due to those diagrams in set 3 of
=~ (Koot €K701) e Mo Fig. 2 where the photon is radiated from the internal quark or

the W (or ®) boson. The quantitieg;, g,, andgs in Eq.
(3.5 can be written agz=(m;/my)?, Li(x)=— §dt/

1
+ = Koodn?r + 2K odnr In(mg, /myy) — 2K 7odnr  In(1-1)]

2

 (—3242°—45(0°+ 2702+ 722)Inz+ 1122°+ 244"+ 552° — 9312°+59% — 73 35

, 3.6
(—2162%+1622%— 72z)Inz+ 44z° + 15423 — 393%+ 2742~ 79 7
2=~ 7 7 (3.7
36(z—1)
__ABZeIr Azt ) 1) 2 22 855 et 189547 115022+ 64g)in?
9=~ 6(z—1)" I| 1= — | +3imKeoot oo 7™+ 50e1(— - )In“z
+[3240°+ 16956+ 3763&° — 56586.°+ 2068& — 2496 2167%(z°— %) ]Inz
+(—1442°—55910*+ 10965%%— 6927 12>+ 2099% — 4027)
+(602°— 228"+ 63623 — 92472+ 5522 — 96) w°}/[ 1296 z— 1)°]. (3.9
|
B. Counterterms oM, and 6M,, respectively. WritingdM;=V6R; (f=t,b)
The counterterms relevant for calculating on-shell matrixVith V given in Eq.(3.2), we get
elements are generated by expressing the bare parameters in
the original Lagrangian in terms of the renormalized quan- SR,=1{[(6z—8)Inz— 72>+ 16z—9]
tites. Working up to ordew, the only parameters which
need renormalization in the present situation are the 2
t-quark mass and thb-quark mass(in principle also the X(Z+4 In(/my) +8/3| +(—6z+8)In?z
s-quark mass if we did not work in the limih;=0). Using
on-shell renormalization for the externadlquark mass and 5 5
MS renormalization for the(interna) top-quark mass, the (2027~ 262)Inz— 192"+ 44z - 25
connection between the bare and renormalized masses reads )
m\c oz
om,  « 3 X (_) — (3.10
My bare=My— My, —=—_SCc= Mw/  16(z—1)°

mt - E Ff '
while SR; is given by

smy, as (3 6 , , , ,
My pare= Mp— 0My, ——=—C¢| =+6In(u/my)+4]. OR=1{—[(182°+30z°—24z)Inz— 472°+ 632°— 92— 7]
' m, 4w € €
+18z(—3z2—5z+4)In’z
(3.9 +(2462%+ 1147% — 288& + 96)Inz+ 44z* — 5477°

m 2e z

Note that these mass shifts not only shift the mass terms like +855°—41%+61 (_) - @1)
Mw/  24(z—1)

mett, but also the Yukawa terms like
~gb(m,L—m;R)td ", whered " is the unphysical charged
Higgs field which appears in covariant gauges. These coun-®we could separate ultraviolet and infrared poles in our calcula-

terterms, induced by the shifm, and ém,,, generate cor- tion. In the following, 1£; (1/€) stands for infraredultravioled
rections for theb— sy matrix element, which we denote by poles.
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8 .
A " ~ . AIGEN
M= M', M'=———Ci(sy|0O;|b). 4.1
2 7 Cisrlofb). @
. w@eﬁ” J{) To facilitate later the comparison between the results in the
€ S two versions of the theoryfull vs effective, we write
Mi=M}+ (a/4m)M} and cast the term proportional e,
in the form
i =VR 4.2
471 ’ '
S
995%@ whereV is given in Eq.(3.2).

We first discuss the contributions of the four-Fermi opera-
tors 0;—0g. As the Wilson coefficients 0fD;, O3, Oy,
Os, and Og start at orderai, we only have to take into
account their order (one-loop matrix elements; it is well
known that in the NDR scheme onl@s; and Og have a
nonvanishing one-loop matrix element for»sy. Making

g@@fﬁm use of the Wilson coefficientsee[17])
e a 1
2 CS(M)_L’U“)C [ o E}
my 8
FIG. 3. Complete list of two-loop diagrams involving the triple
gluon vertex(for the b—sg process (M) w3
Colm)= 2 =Cel5 ~In n—+2E|, 4.3
When writing down the expression féR,, we should men- W
tion that we did not inclgdt_e the.ins.ertion omybb in the_ Rs and R are readily obtained:
externalb-quark leg. This is quite in analogy to omitting
self-energy diagrams for the external legs. Such corrections 1 1 p 1 R w3
on the external legs are taken into account by multiplying the Rs=— 3~ Elnm__B , Rg=-— Eln— +8E
amputated diagram with the factgZ,,Z,, whereZ,;, and w Mw
Z, are the residues taken at tfghysica) pole position of (4.4
the regularizedb- and s-quark two-point functions, respec-
tively. Making use of the expressidim Feynman gauge with
2¢| 2 2 2
a m\ L 2 ~ 2 z°(15—16z+4z z(18—11z-z 2
Zz(m)zl_—SCF(_) —+—+4|, @12 E=-3zlnz+ ( )Inz+ ( )__.
a7 "F\lm/| |e ¢ 3 6(1—2) 12(1-2)° 3
(4.5
the countertermsM z, induced by theZ, factors of the ex- _ o
ternal quark fields readsgain writing SM 22:V5Rzz) On the other hand, the Wilson coefficient of the operator

O, starts at orderag. Consequently, we have to take in
principle one- and two-loop matrix elements of this operator.

2e
M 2 l . _ .
SRz, =— (_) Z (Koot €Krop) +— (K700+ eK00) In practlce_, however, the ordeig (one-loop matrlx glement
My €ir of O, vanishes and therefore only the contribution of the
3 orderai (two-loop) matrix element remains:
+|4—6 In(my/my)— > Inr K7OO}. (3.13 .
R,. (4.6)
IV. b—sy IN THE EFFECTIVE THEORY As this contribution also occurs in the full theory result in

Sec. Il A[see Egs(3.1) and(3.3)], the explicit expression
As in the full theory, we first discuss the matrix elementsfor the right-hand sidéRHS) of Eq. (4.6) is not needed for
for b—sy of the operators in basid.2). In Sec. IVB we list  the extraction ofC-;.
the various counterterm contributions. The orderas contribution of the matrix elements of the
dipole operatoO, [see Figs. &) and 4b)] yields

A. Regularized Feynman diagrams

. (1l my) %€ 70, 5
We write the matrix elemer¥ for b— sy as a sum of the R;= 26 Cro————Inr+—=1In"r

contributions due to the operata®s in the effective Hamil- "
tonian: i.e., +2Cqnr In(my/my,) —2C4dnr. 4.7
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volving evanescent operators needed to renormalizeAs

07 07 the initial conditions for the four-Fermi operatawshich we
partially used in Sec. IV Adepend on the actual choice of
\ the evanescent operators, we have to use the same set when
. ~209099 calculating their effect ob—sy. We consistently take both
b the initial conditions of the four-Fermion operators and the set
of evanescent operators from Rdfs7,28—3Q. The only po-
tentially relevant matrix element of evanescent operators
contributingb—svy is
08 08
1
%aa gg <37 ZEi[O2] b>, (4.12
%5y 660
¢ d where the evanescent operahf O,] is of the form
FIG. 4. Diagrams associated with the operat@rsand Og in El[oz]:[S_alm)’ﬂy,LCaz_aBY")’VV“Lba4_(4+ ae)
the effective theory fob—sy. See text. - o
>< SalyﬂLCazca3yuLba4]Kala2a3a4!

The first term on the RHS of E¢4.7) comes from the tree-
level matrix element in Fig. @), being multiplied with the K
the orderag part(i.e., C4,) of the Wilson coefficienC,. The “1%2%3%
remaining terms are due to the one-loop graph in Fig).4

Note thatC-, is the quantity we ultimately wish to extract. Q%We"efa as t?hese matrix eIeTt_ak?t? are fldentlcall){[ Z(?TO
Finally, the diagrams oDj are depicted in Figs.(4) and imensiong, there are no contributions from counterterms

4(d); its contribution is[13] proportional to evanescent operators.
' Besides the counterterms induced by operator mixing, we

1 _1
-2 5a1a35a2a4 6 5a1a25a3a4 . (413

. Cgsd 12 _ also have to renormalize tHequark mass which explicitly
Rg=— 70[ — — —33+27+ 24In(my / 1) — Bi 77}- appears in the operat@-, and in addition we have to mul-
4.9 tiply the lowest order matrix element by the factor

VvZ,(my)Z,(mg), quite in analogy to the calculation in the
full theory. The counterterm due to thequark mass renor-

_ o malization M, =V R, yields
As the operators mix under renormalization, we have to

B. Counterterms

consider counterterm contributions induced by operators of . 3
the form C;6Z;0;. We denote their contributions to ORp=—| ~ 6 In(u/my)+4/Cro, (4.14
b—sy by
N when using the on-shell definition for the-quark mass,
S = 12F $(s4]C;6Z;;0;|b). (4.9  while the countertermdM, =V SR, is given by
1) \/E I 1) ] 2 2
. _ _ . w22 1
The nonvanishing matrix elements read(using ORz,=— ey —C0+=Cyp
5M|]:V5|§|J) w €ir €
3
R 11 2¢ R 11 2e +|4—6 In(m,/m )——Inr)C ] (4.15
SRy - L L oRye=— - - L ’ b/fMw) ™5 70
36 € mb 4 € mb
291 4 i 4 V. EXTRACTION OF Coy(Hw)
=——, O6R;7=—-Cyy, 6Rg;7=— —Cy, .
2127 € e 877 3¢ %0 To summarize Sec. lll, the ordetg part M of the
(410  renormalized matrix element fds—sy in the full theory
reads
where we made use of the renormalization constgtits
o A~
(0235,6Z26,0Z37,6Z77,0Zg7) ﬁ ME"=V[RY 2+ R,+ Ry + R+ 0Rz ], (5.1)
= 2c L1249 4 41 here th tities in the brackets on the RHS of (&
= 2-CFl T T aea7e e 3¢/ (4.1  where the quantities in the brackets on the of (Bdl)

are given in Egs(3.5), (3.3), (3.10, (3.11, and(3.13, re-

It is well known that the renormalization of the four-Fermi SPectively; the prefactdv’ IS glve'n n Eq.(3..2). ~on -
operators requires the introduction of counterterms propor- The corresponding renormalized matrix elemdtf” in
tional to evanescent operatd@g]. Calculatingb—sy up to  the effective theory can be obtained from the information in
order ag, there are potential counterterm contributions in-Sec. IV; M®" reads
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2e 2€

SUEV[Ry ¢ R Ro Ry Ryt 0Rast ORst 0Ryy fren— cm% inr — 2(:70(’”?—"‘”). 56
+ 0R77+ SRyt SRy + ORy ], (5.20  As the matching has to be done in four dimensions, we

cannot—strictly speaking—use the procéss sy to do the
where the various quantities in the brackets are given in Eqsnatching, because of the infrared singularities. To cancel
(4.6), (4.9, (4.7), (4.9, (4.10, (4.14), and(4.15. these singularities, we have to include the gluon bremstrahl-

Before we are able to correctly extra€t;, a remark ung procesdb—syg in both versions of the theory. In the

concerning the infrared structure is in order. We sMif"  effective theory, the process has been worked out in

into a infrared singular and an infrared finite piece; i.e.,  [6,10,19 (but the explicit result is not important heyehe
result in the full theory is obtained from the effective theory
MT"=MTi+MTL,. (5.3 result by replacingC,o by Koo+ €K-o;. The correct physical

. o . ) o matching condition consists in requiring the infrared finite
As this splitting is not uniquéconcerning the finite terms quantity T =T (b—sy)+ T'(b—syg;E 2Emin) to be equal
] ; YT =y
we define the singular part to be in both versions of the theory. Because of the specific form
(M) . of Egs.(5.3—(5.6) and because of the specific difference in

= — (Koot €K701) the bremsstrahlung contribution, it follows that the physical

Eir matching condition implies
(u/my) > -
—2(K7got EK70DT, (5.9 Lin= Mfin- (5.7

ir
The extraction ofC4 is now straightforward. In summary,

where the first and second terms on the right-hand Sid@vr't'n the Wilson coefficientC ‘m at the
(RHS are due to the two-loop diagrani3.5) and the coun- m;tlcr?ing SC&'QILWt in the fl()ll’m 7w M w))

terterms(3.13), respectively. We do now an analogous split-

ting for the renormalized matrix element in the effective C,(uwi; M uwd) = Crolrewe; M gewo)
theory: i.e.,
ds
. . . +—C 'm , (5.8
N fen= rfi?"'Mrffri]n- (5.5) 4 7(kwe M pwy), (5.8
with we obtain(in the naive dimensional regularization scheme

27°(32°+23%2-14)
In“z
3(z—-1)°

22(823+6122—40z+4) 1
Crlpewe M pwe)) = — i1l

9(z—1)* z

z

2(512°+ 2947*+ 115&°— 1697° + 7422 — 116) izt 15207%+ 1296 17°— 121267+ 3409 — 580
- nz
81(z—1)° 486z—1)*

47°(37°+23z— 14) 2(106z%+ 28723+ 1230?— 12072+ 232

32-1)° Inz In( g/ Myy) + 81z 1) IN( i/ Myy).

(5.9

Here, z= (m(uw)/mw)2, Where m(uwy) is the MStop  Where the symbolsy; are the entries of the anomalous di-
quark mass at the renormalization scalg,. The lowest —mension matrix of the operators in Ed..2).

order functionCo(uw:; M (uwd) is given in Eq.(2.24. A Taking into account that the result of Adel and Ydg is
clarifying remark is in order here: When solving in a subse-given in the so-calle®R* renormalization scheme, we get the
quent step the renormalization group equation in order to gefame result foC7 (e M wy))-

the Wilson coefficent at the scale=u,, the top-quark
mass is understood to be held fixed at the matching scale
umwi, i.€., what we calculate by the renomalization group
equation is the quantit€,(uy, ;m;(wwy). The correct RGE
equation to achieve this reads

VI. b—sgIN THE FULL THEORY

8 As in the b—sy case we first give the results for the

d
“ﬁci(ﬂ;mt(MWt)):JZl 75i Cj (s me( o)), two-loop diagrams and then move to the counterterm contri-
(5.10 butions.
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FIG. 5. Abelian diagrams associated with the oper@gin the o
effective theory folh—sg. See text. S
s 08
A. Two-loop Feynman diagrams é@G
S
S

We again write thdo— sg matrix elementM in the form
M=Mg+ (a/4m)M;. Using the “reduction technique” de- e
scribed in Sec. Il C, the complete set of two-loop Feynman
graphs is given by the Abelian diagrams in Fig. 2 and by the FIG. 6. Non-Abelian diagrams associated with the oper@pr
non-Abelian diagrams in Fig. 3, which involve the triple in the effective theory fob—sg. See text.

gluon coupling. The crosses in Figs. 2 and 3 show the pos-

sible locations from where the gluon can be emitted. Oiquark O_f flavorf_(fzt,c); Qg is the third cc_>ntribution in th‘?
course the graphs with a cross at Weline in Fig. 2 have to expansion, which only has to be considered for the light

be omitted. Working in the limitn,=0, diagram 5b in Fig. 2 internal quarks. LikeR? in Eq. (3.1) of Sec. Il A, Q¥ is just
vanishes. It is convenient to wrifd; in the form

Qi=-Q,, 6.3
4—'\/'1 WIQ ?-Q: - Q3] (6.)  whereQ, is the quantity defined through the relation
. . . o A~
where the quantityV is defined as (sg|O,lby= ﬁ(sg|08|b)treeQ2. (6.9
4IG ) Y i i
FAt _s < $7/08/b) yee. 6.2 As exactly the same term also appears in the effective theory,

J2 Qg’ drops out when extracting th®(«;) correction to the
Wilson coefficentCs.

In Eq. (6.1), Qfl+2 denotes the sum of the first and second The dimensionally regularized expressions for

contributions in the heavy mass expansion for an internaQ'*?=Q!"?— Q"2 can be written in the form

(el myy)?€ (1l my,)?¢
QHZ——(Kaoo+ €Kgo) ———— Inr = 3(Kgoo+ eKgort €Kgo)———

Ir ir

)25 )45

3 /m
~ > (Keaot eKsOl)(”e—W[er Inr — 4In(my /my) + 2i 7]+ hl(“TW + h,In2r + hlnrin(my, /my,)
r

+ hglnr + hgIn(m, /my) + hgln?(m, /my) + hs. (6.5

The first term on the RHS of E€6.5) is due to infrared singularities coming from tt&belian graph in set 3 in Fig. 2, where
the gluon is radiated from the internal quark; the infrared structures appearing in the second and third terms are due to
non-Abelian diagrams in Fig. 3. Equati@f.5 shows that the infrared singularities again just multiply the dimensionally
regularized version of the lowest order matrix elemesete Eqs(2.20 and(2.21)].

The functionK gop andK go1 appearing in Eq(6.5) are given in Eqs(2.25 and(2.27). We note that the functiol gy, is not
needed explicitly in order to extra€g;, as we will see later. The functiofs in Eq. (6.5 read[z=(m,/my)?]

2(7742°+ 81Qz+ 144)Inz+ 1372°— 823¢* + 2572 — 4257°+ 95& — 104 23
720z—1)° 27

= (6.6)
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2 8 8
hzngsooa h3:§CKsoov h4:_§Ksoo, he=—6Kgqgp, 6.7
2(1622—72)Inz+ 11z*— 11023+ 5722+ 822— 40
5— — 2 +6|’7TK800_2, (68)
18(z—1)
e 2(428- 40— 41z—-1)Li(1-1/z) 8. K 59 , 185 350645+ 5475621 2592212
7= 6(z—1)° 317Ke00~ 758 ~ 322 )In“z

+[7452°— 42660* — 927723 — 7316422+ 48984 — 3360+ 3186m2(z°— 7%) |Inz+ (844z°+ 4001 2% + 9058C°
— 1485882+ 1668&+ 464) + (— 8852°+ 336%*— 938123+ 1362%%— 8142+ 1416 72}/[ 2592 z— 1)°]. (6.9

B. Counterterms
(K800+ EKSOI)' (613

As the discussion concerning the counterterms induced by 5Q9_( e o
the shifts in the- andb-quark masses is exactly the same as
in theb— sy process in Sec. lll B, we give immediately the As the finite termf will appear also in the corresponding
result. Writing M =W&Qy, (f=t,b) with W given in Eq.  counterterm in the effective theory, it will drop out when
(6.2), we get extractingCg; .

VIl. b—sgIN THE EFFECTIVE THEORY

2
P +4 In(u/my)+8/3

5Qb=+ —(2Inz+2%—4z+3)
A. Regularized Feynman diagrams

+2 In°z+22z(z—4) Inz— 2%+ 82—7] In the effective theory the matrix elemet for b—sg is
of the form
2e
" z
X<_> R (6.10 S . 4IGEA
Mw/  2(z-1)° M=> M, M=——t-"C(sgOi|b). (7.1
=1 J2
6 3 2 ST ~i
6Qi=| -[—62(z+1) Inz+2°+ 92"~ 9z—1] We write M'=M{+ (a/4m)M} and put the term propor-
tional to a into the form
+182(z+1)Inz+ (— 62°— 84z°— 182+ 24)
g A~ . ~
X Inz+ 52— 1023+ 12622 — 158+ 37 TM1=WQ, (7.2
x(i) €z 6.11) whereW is given in Eq.(6.2). As the discussion as how to
My/ 3(z—1)°% ' get the quantitie®); is basically identical as in thb— sy

case in Sec. IV A, we just give the results. Among the four-
Also the counterterms due to tR&, factors of the external Fermion operators, onl9, andOs yield nonvanishing matrix
quark fields are obtained in the same manner as in Sec. Il Bslements fob—sg. We get
leading to M ZZ=W5QZZ)

Ao 2 w1

Q2,Qs5=— g In—— =E, (7.9

K 9 my 6

2€4( 2 1
6Qz,=— mw 3 E_“(K800+€K80])+E(K800+GKSOJ)

3 whereE is given in Eq.(4.5. Again, we do not have to
46 In(my/my) - 2 Inr) K800]' (6.12 know Q2 explicitly, because this term also appears in the full
theory result; it drops out when extracti@y; .

For theb—sg case there are additional counterterm con- While there is no contribution from the dipole operator
tributions due to the strong coupling constant renomalizatiorD-, there are various diagrams associated with the operator
and due to the/Z; factor associated with the external gluon. Og (see Figs. 5 and)6 The sum of all these contributions is
Denoting the combined effect bjM ;=W&Qy, one obtains  given by

+
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. 1 /myy) %€ Imy)%¢ 3 /myy) %€
Oy S Gy M) g MW 3 W e~ din(my myg) + 21 ]
6 ir Eﬁ, 2 €ir
11 (u/myy)2e 8
o 5 W | i In(mg fmyg) — Sim+ 5% =6 In(my /my)
8 8 4 1 59
- §Inr + 3 Inr In(my /my,) — 3 In(my/my,) + §+ 367 +Cagy. (7.4
|
When comparing with the full theory expressign ™2 in Eq. R 4[ 3
(6.5), one immediately realizes the correspondence of the 0Qp=— 3| +6 In(u/my)+4|Cgo, (7.9

infrared singularities. To this end it is important that one

carefully disentangle everywhere infrared and ultraviolet,an using the on-shell definition for tequark mass Eq.

poles. Especially, one should use the formula

I |

instead of f

dir 1 i /1_1

2m)9 (122 16m2\ € &

dd

(277-)d WZO (75)

An example, where such a situation occurs, is the diagram i
Fig. 6(c).

B. Counterterms

As the operators mix under renormalization we have to
consider counterterm contributions induced by operators of

the form C;6Z;O;. We denote their contributions to
b—sg by

. 4iGe),

ij= N (s9/C;6Z;;0;|b). (7.6
The nonvanishing matrix elements read(using
oM =WsQyj)
5O 11) w2 5 191 . _141C
Q25= 9elm Qas=57 2+ 9Qes=73 Ceo:
(7.7)

where we made use of the renormalization constgtits

19 as
= 57e I

14 aq
88 3e 4rm”
(7.9

as
2225~ " g 4

We note that there are no contributionsl\?dbﬂsg) from
counterterms proportional to evanescent operators.

In analogy to theb— sy case in Sec. IV B, there are the
counterterms from renormalizing the-quark mass which
explicitly appear in the definition of the operat@g and
from the \Z, factors for the external quarks. The counter-
term due to the b-quark mass renormalization

SMp=WsQ, yields

(3.9, while the counterterndM,,=WsQy, is given by

o, — [ 24 2C +1c
Qz,=— mw 3| CeoteCeo
3
+|4-6 In(mb/mW)—Elnr Cgof- (7.10

Finally, there are counterterms due to the strong coupling
Bonstant renormalization and due to t{i&; of the external
gluon. As in the full theory, we only give the combined

counterterméM =W Qy:

(7.11

CBO-

( 3
— 4
€

As f is the same finite quantity as in the corresponding result
(6.13 obtained in the full theory, we do not need its explicit
form, because it drops out when extracti@g; .

5Qq

VIIl. EXTRACTION OF Cgy(Hwy)

To summarize Sec. VI, the orders part MP™" of the
renormalized matrix element fdr—sg in the full theory is
given by

T ME=WQY 2+ Qp+ 5Qy+ 8Q+ 6Qz,+ Qg
8.9

where the quantities in the brackets on the RHS of (Bl)
are given in Egs.6.5, (6.3, (6.10, (6.11), (6.12, and
(6.13, respectively; the prefactdd/ is given in Eq.(6.2).

The corresponding renormalized matrix element in the ef-
fective theory can be obtained from the information in Sec.

VII; M reads

a

ﬁl\?l = W[ Q4+ Qs+ Qg+ 8Q a5+ Qg+ 5Qggt Q)

+6Qgz,+ 8Qq], (8.2

where the various quantities in the brackets are given in Egs.
(7.9, (7.9, (7.7, (7.9, (7.10, and(7.11).
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Before we extrac€q;, Which enterdVi®"via Qg [see Eq.  Cs(uwt;Mi(1wy) at the matching scalp in the form
(7.4)], we should point out that the discussion concerning the

infrared singularities is similar as in the—sy case in Sec. Ca(wt; M wt)) = Caolpewe; M pewe))

V; all the formulas are written in such a way that we simply

can discard the terms proportional to the poleg;jrin both +£CSl(MWt;mt(MWt))a (8.3
versions of the theory. The extraction©§; is then straight- Am

forward.

To summarize, writing the Wilson coefficient we obtain(in the naive dimensional regularization scheéme

Car(ewe; M pewy)) = —

2(42°— 40— 41z—1) 1\ Z%(17z+31)
Lil 1 7 ——|n22

6(z—1)* 7] 2(z-1)°

210z°— 10862 — 483%° — 300722+ 2114 — 304 611z*— 13346&°— 295952+ 1510 — 652

Inz+
216z—1)° 1296z—1)*
Z%(17z+31) e 897%—4467°— 1437722 9502+ 152
+ nz in In . (8.9
(z—1)° My 54(z—1)% My
|
Here, z=[ my(wd/my]? where m(uwy) is the MStop-  in both versions of the theory. We evaluated the two-loop
quark mass at the renormalization scalg,. The lowest integrals in the full theory by using the heavy mass expan-
order functionCgo(we; M wy) is given in Eq.(2.25. sion method. Oug corrections C,; andCg,) to the Wilson

Taking into account that the result of Adel and Y[dgis  coefficientsC; andCg completely agree with the findings of
given in the so-calle®* renormalization scheme, our result Adel and Yao.
is identical. We should point out that our resulas well as that of
Adel and Yao for C,(uwy and Cgi(wy) is a priori spe-
IX. SUMMARY cific to the basis given in Eq1.2). However, the same an-
swer is obtained for these Wilson coefficients when working

The orderas corrections to the Wilson coefficientS; iy the basis recently used by Chetyrkin, Misiak, andridu
andCg are a very crucial ingredient for the prediction of the

branching ratio forb— Xgy in next-to-leading logarithmic
precision. As these corrections, which involve many two-
loop diagrams in the full theory, have been calculated so far
by one groud1] only, we presented in this work a detailed  We thank A. Ali, M. Misiak, U. Nierste, S.J. Rey, and J.
recalculation. We extracted th@(«) corrections toaC; and  Smith for helpful discussions. This work was supported in
Cg by comparing the on-shell procesdes>sy andb—sg  part by Schweizerischer Nationalfonds.
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