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Using dimensional reduction we construct an effective 3D theory of the minimal supersymmetric standard
model in the sin2uW50 limit at finite temperature. The final effective theory is obtained after three successive
stages of integration out of massive particles. We obtain the full one-loop relation between the couplings of the
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I. INTRODUCTION

A crucial problem in particle physics is the understanding
of the observed baryon asymmetry of the universe. A pos-
sible scenario which has been explored involves physics at
the electroweak scale. For electroweak baryogenesis to occur
via a sufficiently strong first order phase transition, such that
baryon number violation is suppressed after the phase tran-
sition, the sphaleron transition rate in the low temperature
phase must be less than the universe expansion rate@1#. This
requires that the ratio of the vacuum expectation value in the
broken phase to the phase transition temperature (Tc) must
be @2#

v~Tc!

Tc
*1, ~1!

which in turn places constraints on the Higgs structure of the
low temperature theory. In fact, these requirements may not
be fulfilled in the standard model at least for experimentally
allowed values of the Higgs boson mass@2,3#.

In order to study the properties of the phase transition,
standard perturbation techniques~with resummation! were
initially utilized. However, there are two intrinsic problems
with perturbation theory. First of all, the loop expansion pa-
rameter (g2T/MW; l/g2) is proportional to the zero tem-
perature ratio of Higgs boson mass to theW boson mass.
This implies that unless the Higgs boson is sufficiently light
the perturbative approximations will break down when
higher order corrections are included@4#. Second, high tem-
perature gauge theories are subject to infrared divergences
arising from massless gauge boson modes in the theory@5#.
In the broken phase these divergences are absent because the
gauge bosons of the broken symmetry have nonzero
f-dependent masses. Consequently, even when the afore-
mentioned perturbative effects are under control, nonpertur-
bative physics in the unbroken phase, for values off;0, can
limit the reliability of the perturbative calculations of the
phase transition. In other words, knowledge of the effective
potential for small values of the scalar field is required to

study the properties of the phase transition, and the assump-
tions underlying perturbative calculations must be verified by
calculations which include nonperturbative effects.

Using the fact that in the symmetric phase at finite tem-
perature the long distance theory is described by a three-
dimensional~3D! bosonic gauge theory, Kajantie and co-
workers @6–8# devised a procedure which separates the
perturbative and nonperturbative aspects of the study of the
electroweak phase transition. As explained in Sec. II A, due
to antiperiodicity of the boundary condition at finite tempera-
ture, fermions in the theory acquire thermal masses propor-
tional to the temperature;pT. The bosonic field decompo-
sition into thermal modes contains a static mode which does
not have a thermal mass, as well as modes with masses on
the order of;pT. The construction of the effective theory
for the static modes amounts to perturbatively integrating out
the effects of all the massive modes. As a consequence of the
interaction with the heavy modes, the masses of some of the
static scalar fields are modified enough that they become
heavy (;gT) and one can further construct a second effec-
tive 3D theory describing only the light fields. This reduced
three-dimensional gauge theory for the light scalars can then
be analyzed by numerical~lattice! calculations so that all
nonperturbative effects are handled correctly.

Kajantieet al. reduced the standard model to a 3D gauge
theory with a single light scalar, which they studied on the
lattice. They concluded that many, but not all, features of the
phase transition were similar to results of perturbation
theory. The results showed that there is no value of the Higgs
boson mass in the minimal supersymmetric standard model
which is compatible with correct electroweak symmetry
breaking in the low temperature theory, given the measured
large top mass@7#.

Consequently, it is of interest to analyze extensions of the
standard model to see whether there are any cases in which
there is a sufficiently strong first order phase transition. Us-
ing the numerical results of Kajantieet al. we can include
nonperturbative effects for any 4D theory which reduces to
an effective three-dimensional theory containing a single
light scalar coupled to SU~2! gauge fields. This is the generic
situation at the phase transition, except when the theory is
fine-tuned, even when the theory has multiple scalar fields as
in supersymmetry, general two-Higgs-doublet models, etc.
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A feature of multiscalar models is the inclusion of tree-
level masses for all scalars. Additionally, some of the scalar
fields may carry color charge. This implies that in the unbro-
ken phase the static modes of the scalars can acquire masses
betweenpT andgT. In particular, the masses of the squarks
static modes receive corrections proportional to;gsT. Con-
sequently, unlike the standard model case, we encounter an
additional intermediate effective theory in which the static
modes with masses in this range are integrated out before the
final reduction procedure of modes with masses;gT is per-
formed. For supersymmetric theories the static squark~slep-
ton! modes are integrated out at this second stage.

To summarize, the construction of the effective theories
in supersymmetric models proceeds in three stages. First, we
integrate out the nonstatic modes with masses on the order of
;pT. We are then left with a 3D theory of the bosonic
sector of the 4D theory. The resulting theory contains mas-
sive static modes: see below. We next integrate out the
squarks and sleptons obtaining a general two-Higgs-doublet
model. Generically, at the phase transition only one of the
Higgs fields is heavy, with a mass on the order of;gT, and
it can be integrated out in the third stage.

For the generic case, the reduction procedure leaves us
with the same effective theory as in@7#, defined by the ef-
fective couplingsl̄3 and g3

2 with a different relationship
which defines these quantities in terms of the masses and
couplings of the 4D theory. As explained by Kajantieet al.
@8#, the dynamics of the electroweak phase transition is gov-
erned by the quantity

xc5
l̄3

g3
2 ~2!

at the critical temperature, and the constraint given by Eq.
~1! translates into@7#

xc,0.04. ~3!

In this paper we present the relations between the masses
and couplings of the reduced theory and the parameters of
the underlying four-dimensional theory for three models: the
minimal supersymmetric standard model~MSSM!, a general
two-Higgs-doublet model~2HDM!, and the next to minimal
supersymmetric standard model~NMSSM! in the sin2uW50
limit. The analysis of the electroweak phase transition for the
MSSM will be the subject of a second paper@9#. In Sec. II A
we review the finite temperature formalism which is the ba-
sis for the construction of the three-dimensional theory. Sec-
tions II B, II C, and II D discuss the three effective theories
for the MSSM as we integrate out in successive stages:~1!
the nonstatic modes,~2! the heavy squarks and sleptons, and
~3! the heavy Higgs and the temporal component of the
SU~2! gauge fieldA0 . Section II E discusses the nongeneric
case in which there are two light scalar fields in the final
effective theory. We present a short discussion of other mul-
tiscalar models in Sec. III. Our conclusions are given in Sec.
IV. Appendix A introduces the MSSM 4D Lagrangian,
which is the model discussed in the text. Appendixes B 1 and
B 2 give the explicit expressions for our results of the first
and second stages. In Appendix B 3 we give the results for
the case in which there are two light scalar Higgs fields in the

final effective theory. The results of the application of the
procedure to the two-Higgs-doublet model and the NMSSM
is given in Appendixes C 1 and C 2. Finally, we present
some useful high temperature formulas in Appendix D.

II. THREE-DIMENSIONAL THEORY

A. Effective theory

A given theory in four dimensions at finite temperature
reduces, in the high temperature limit, to an effective 3D
theory describing the static degrees of freedom. This is the
statement of dimensional reduction@8,10–12#.

The action at finite temperature is given by

S5E
o

b

dtE d3xL, ~4!

where b5 1/T, such that the theory is characterized by
bosonic ~fermionic! fields obeying periodic~antiperiodic!
boundary conditions in Euclidean time@13#. The finite tem-
perature expansion of the fields in our theory is given by

S~x,t!5T1/2FS0~x!1 (
nÞ0
Sn~x!eivBtG , ~5!

C~x,t!5T1/2(
n

cneivFt, ~6!

whereS and C represent bosonic and fermionic fields, re-
spectively.S0 is the static component of the bosonic field,
for which vB50. The resulting propagators are of the form
(k21vB(F)

2 1m2)21, where vB52pnT, vF5p(2n11)T
for bosons and fermions, respectively. That is, nonstatic
modes have masses;pT and thus all of the fermionic
modes may be integrated out at largeT. Our calculations
will be carried out in Landau gauge. By integrating overt
and using the orthonormality of the modes we can obtain the
terms in the Lagrangian describing the static modes, the non-
static modes, and finally the interaction terms between the
heavy and light modes. Our expressions are valid only when
the high temperature expansion is adequate. That is, the
masses of the particles must fulfill the condition

m&2pT. ~7!

B. First stage

We are interested in studying the MSSM with
sin2uW50. As discussed in Ref.@7#, the effects arising from
the U~1! subgroup for the standard model are small. For the
MSSM, the relevant coupling constants for the construction
of the effective theories are the strong gauge coupling and
the top Yukawa coupling. Additionally, we mention that up
to the moment no Monte Carlo simulations have been per-
formed to include the nonperturbative physics of interest for
a SU~2!3U~1! dimensionally reduced theory. Consequently,
we work in the sin2uW50 limit, ignoring the hypercharge
U~1! gauge boson and gaugino contributions. In this section
we describe in detail the dimensional reduction of the
MSSM. In the appendixes we treat a general 2HDM model
and supersymmetric models with an additional gauge singlet
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superfield. The Lagrangian for the MSSM is given in Appen-
dix A, where we introduce our notation. Most of the discus-
sions in the paper will be general enough to include all three
models. We leave the notation and particular results corre-
sponding to the 2HDM and NMSSM to Appendix C.

Starting with the 4D theory we generalize the procedure
delineated by Kajantieet al. to obtain a 3D effective theory.
The first stage corresponds to the integration of the massive
~nonstatic! modes. As a result, all fermions are integrated out
and we are left with a three-dimensional bosonic theory. We
can systematically construct the dimensionally reduced
theory and relate its parameters to those of the more funda-
mental four-dimensional theory by computing the effective
interactions among the static modes generated by integrating
out the nÞ0 modes. This procedure is perturbative in the
coupling constants of the theory and we will calculate con-
sistently throughout to orderg4. As explained in@7,8#, for
our purposes it is sufficient to perform a one-loop calculation
as it provides the specified accuracy and the determination of
the critical temperature is precise enough as the temperature
dependence in the ratio in Eq.~2! enters only through loga-
rithmic terms.

As a result of the first stage of integration then50
bosonic modes in the theory acquire a thermal mass to lead-
ing order~excluding logarithmic corrections! of the generic
form

m2~T!5m21nT2, ~8!

where m2 is the tree-level mass squared, which for gauge
bosons is identically zero. As explained above the quantityn
is determined from the one-loop integration and in particular
it remains zero for the spatial components of the vector field
Ai . This reflects the fact that theAi fields are precisely the
gauge fields of the 3D theory. For the temporal component of
the SU~2! gauge fieldA0 , which is a gauge-triplet of scalars
in the effective theory,nÞ0. This implies that the temporal
mode acquires a mass, the so-called Debye mass,1 which will
be on the order of;gT. Scalar particles, on the other hand,
have a tree-level mass as well as a nonzero value ofn. In the
high temperature approximation, their masses are of order
(m21gs

2T2)1/2 for squarks. For top squarks the contribution
proportional to the top Yukawa coupling squared can also be
significant. The rest of the scalars in the theory will have
masses on the order of (m21g2T2)1/2. Higher order effects
are suppressed by powers ofm2/T2.

The exact value of the tree-level mass is important as it
may lead to the existence of a very light scalar particle. This
may have several different consequences, but specifically, if
the tree-level mass nearly cancels the term proportional to
T2, one could be close to a phase transition. We will discuss
the nongeneric case in which there are two light scalar par-
ticles in the final effective theory in Sec. II E.

In order to establish our notation we write the 3D scalar
potential after the first stage:

V~A0 ,f1 ,f2 ,Qi ,Ui ,Di !5
1

2
MD

2 A0A01H~A0A0!S f1
†f11f2

†f21(
i

Qi
†Qi D 1M1

2f1
†f11M2

2f2
†f2

1M3
2~f1

†f21f2
†f1!1L1~f1

†f1!21L2~f2
†f2!21L3~f1

†f1!~f2
†f2!

1L4~f1
†f2!~f2

†f1!1(
i

L3
Qi1~f1

†f1!~Qi
†Qi !1L3

Qi2~f2
†f2!~Qi

†Qi !

1~L4
Qi11 f̄ di

L2
!~f1

†Qi !~Qi
†f1!1~L4

Qi21 f̄ ui

L2
!ueabf2

aQi
bu21MQ

i Qi
†Qi

1Mu
i Ui

†Ui1Md
i Di

†Di1 f̄ di

R2
~f1

†f1!~Di
†Di !1 f̄ ui

R2
~f2

†f2!~Ui
†Ui !1Āf di

f1
†QiDi

2eabĀf ui
f2

aQi
bUi1m̄ f di

f2
†QiDi* 2eabm̄ f ui

f1
aQi

b* Ui* 1H.c., ~9!

wherea, b are SU~2! indices. Note that the fields in Eq.~9!
are the static components of the scalar fields, properly renor-
malized, and having dimension@GeV#1/2. Quartic couplings
have dimensions of@GeV# and trilinear couplings involving
Ā or m̄ have dimension of@GeV#3/2. We have omitted the
terms corresponding to the scalar leptons and the quartic
A0 term.

The full expressions for the effective masses and cou-
plings are given in Appendix B 1 where we also show the
diagrams contributing to the calculations for each one of the
parameters. We would like to point out some of the features
of the calculations, though most technical details are dis-
cussed in Appendix B.

The expressions for the 3D parameters contain
temperature-dependent logarithmic corrections denotedLb

andL f . In general the coefficients of these quantities are the
corresponding bosonic and fermionic contributions to theb
functions for the masses and couplings in the underlying
theory @6#. In the 4D theory the quartic scalar couplings
~Higgs boson self-couplings and part of the interactions be-
tween Higgs bosons and squarks and sleptons! are fixed

1Similarly the longitudinal SU~3! gauge field acquires a mass
;gsT.
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above the supersymmetry-~SUSY-! breaking scale in terms
of the gauge couplings. In the zero temperature theory, at
energy scales above the SUSY-breaking scale, or if there is
no particle decoupling, theb function coefficients are related
by the same algebraic relation as the couplings themselves
@14#. This is no longer true if one considers particles decou-
pling in the 4D theory below the SUSY scale. Similarly, in
the finite temperature theory the relation between the~scale-
dependent part of the! 3D expressions of the couplings dif-
fers, upon one-loop integration of heavy modes, from the
expression relating theb functions of the zero temperature
theory. As a by-product our 3D expressions for the couplings
and masses, yield the full one-loopb function coefficients in
the zero temperature theory, including particle decoupling,
for the three models we have considered.

The static modes squark~slepton! masses are nondegen-
erate as a result of the integration procedure even if their
masses are taken to be degenerate in the 4D theory. Not only
do right- and left-handed-type squarks acquire different val-
ues for their masses, so do up- and down-type right handed
squarks. This occurs because right-handed squarks do not
couple to SU~2! gauge fields, their quartic coupling to Higgs
bosons is proportional to their corresponding Yukawa cou-
pling, and the trilinear coupling to Higgs bosons differs for
up- and down-type right-handed squarks.

As in the case of the standard model, the gauge coupling
between the spatial magnetic field and scalars in the three-
dimensional theory is not equal to the quartic coupling be-
tween theA0 field and scalars. In addition, at the next stage
of integration-out, this latter quartic scalar coupling will be
different for each type of scalar field to which theA0 couples
to as a consequence of the soft SUSY-breaking trilinear cou-
plings.

C. Second stage

The aim of the second and third stages is twofold. First, as
explained qualitatively above, after the first stage of integra-
tion we are still left with several different mass scales, while
the purpose of an effective theory is to have only one char-
acteristic mass scale. Second, if we can construct an effective
theory in which we are left with only one light scalar par-
ticle, then we have arrived at exactly the same theory which
has already been analyzed on the lattice by Kajantieet al.
@7#.

What we define as second stage is necessary only when
the mass of the squarks and sleptons is such that the high
temperature expansion is valid. If the squarks and sleptons
were extremely massive, they would have decoupled in the
four-dimensional theory, or alternatively a low temperature
expansion might be applicable@15#. After obtaining our re-
duced theory we must verify that the nonrenormalizable
terms of the effective theory are indeed suppressed. That is,
we must check that higher order corrections to the scalar
potential at the critical temperature do not change qualita-
tively our results.

For the MSSM and NMSSM the second stage corre-
sponds to the integration of heavy squarks and sleptons. We
include the sleptons even though their masses do not have
contributions;gsT, since their tree-level mass at some high
scale is presumably*gT. The results are also applicable to

the case in which we study a purely SU~2! gauge theory with
multiple scalars, if we ignore all of the contributions which
includegs . For the MSSM the resultant theory after the sec-
ond stage is described by a 2HDM with complicated expres-
sions, in terms of the 4D couplings and masses, for the
masses and strengths of interactions. The 3D potential for the
scalar fieldsA0 , f1 , andf2 is

V~A0 ,f1 ,f2!5 1
2 M̄D

2 A0A01H̄1~A0A0!f1
†f1

1H̄2~A0A0!f2
†f21M̄1

2f1
†f11M̄2

2f2
†f2

1M̄3
2~f1

†f21f2
†f1!1L̄1~f1

†f1!2

1L̄2~f2
†f2!21L̄3~f1

†f1!~f2
†f2!

1L̄4~f1
†f2!~f2

†f1!, ~10!

where we have labeled the couplings and masses after the
second stage with overbars and for simplicity we maintain
the same notation for the fields. The explicit expressions for
the parameters are given in Appendix B 2.

D. Third stage

After the second stage the scalar fields we are left with are
the two Higgs doublets and theA0 triplet. Our objective is to
be able to use the nonperturbative results for a theory with
only one light scalar at the phase transition. This corresponds
to the generic case; we find that only with fine-tuning can
one have two light Higgs fields in addition to the spatial
gauge fields. The critical temperature for a first order phase
transition lies between the temperature of phase coexistence
and the temperature at which the curvature of the potential is
zero in some direction of field space at the origin. The two
latter values are generally close but not identical for a theory
with a single light scalar field at the phase transition@3#. We
take the value of the critical temperature to be that at which
there is a direction in field space at the origin of the Higgs
potential for which the transition to the minimum of the po-
tential in the broken phase can occur classically. This implies
that at the phase transition at least one of the thermal masses
of the Higgs bosons must become zero and then negative as
the temperature decreases. At this temperature we can deter-
mine the mass of the other Higgs doublet; if it is heavy
;gT, it can be integrated out in a third stage, together with
theA0 field. The mixing angle which determines which com-
bination of the Higgs doublets can be integrated out depends
on the temperature. We stress that as long as the variation of
the mixing angle with temperature is negligible for tempera-
tures close to the critical temperature, the strength of the
phase transition, determined by the ratiol3 /g3

2, has a weak
temperature dependence@9#. That is to say, with the estimate
for the critical temperature as described above we can deter-
mine to a very good accuracy the strength of the phase tran-
sition.

To determine which is the correct scalar Higgs field
which is heavy at the critical temperature one can analyze the
eigenvalues of the mass matrix as a function of the tempera-
ture.

The critical temperatureTc , for which only one of the
eigenvalues of the mass matrix is zero, is determined from
the equation
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M̄1
2~Tc!M̄2

2~Tc!5~M̄3
2!2~Tc!. ~11!

Upon diagonalization of the scalar mass matrix the expres-
sion for the mass of the heavy Higgs field at the critical
temperature is

n2~Tc!5M̄1
2~Tc!1M̄2

2~Tc!. ~12!

We denote bya i the quartic Higgs coupling interactions
in the second stage after diagonalization to the mass eigen-
state basis requiring one light Higgs boson, wherea1 is the
quartic self-coupling of the massless Higgs field anda3 , a4
are quartic couplings between the light and heavy Higgs sca-
lar fields:

a15L̄1cos4u1L̄2sin4u1~L̄31L̄4!cos2usin2u, ~13!

a35~2L̄112L̄2!cos2u sin2u1L̄3~cos4u1sin4u!

22L̄4cos2u sin2u, ~14!

a45~2L̄112L̄2!cos2u sin2u22L̄3cos2sin2u

1L̄4~cos4u1sin4u!, ~15!

and

tan2u5
2M̄3

2

~M̄1
22M̄2

2!
. ~16!

We now proceed to the third stage in which we integrate
out the massive scalars which are left in the theory.2 We are
then left with an expression for the strengths of the interac-
tions of the static magnetic fields and the light Higgs field, in
terms of the quantities of the previous stage.3 In particular,
we obtain the expression for the effective 3D gauge cou-
pling,

g3
25Ḡ2F12

Ḡ2

24p
S 1

2n~Tc!
1

1

M̄D
D G , ~17!

and the effective Higgs self-coupling,

l̄35a12S a3
21

a4
2

2
1a3a4D 1

8pn~Tc!

2
3~H̄1cos2u1H̄2sin2u!2

8pM̄D

, ~18!

in terms of the original 4D parameters and the temperature.
We point out that there is no wave function renormalization
at the third stage as there is no trilinear coupling between the
light Higgs and the heavy scalars.

If any of the squark~slepton! thermal masses were of the
order ofM̄D rather than@M̄D they would be integrated out
at this point instead of previously. If, for example, we sup-
pose the sleptons to be light, the modifications to the second
stage equations would be such that the sums in the equations
of Appendix B 2 would not run over the sleptons. Further-
more, at the third stage after the rotation to the mass eigen-
state basis the sleptons could be integrated out together with
the heavy Higgs boson and theA0 . The results of the third
stage, Eqs.~17! and ~18!, would contain additional terms of
the same form as the contributions in the second stage. How-
ever, it is clear that the expressions for thea i , Ḡ2, M̄D , H̄1

2,
H̄2

2, andn(Tc) would in general be different. We point out
that the trilinear slepton–Higgs-boson coupling would vary
after the rotation to the mass eigenstate basis and the light
Higgs field would suffer a wave function renormalization. In
addition, if the slepton~s! is nearly massless, then we cannot
integrate it out; if we had, some nonrenormalizable terms
would not be suppressed.

E. Nongeneric case

In this section we present a short discussion of the non-
generic case in which there are two light Higgs fields in the
final 3D theory. If the parameters are fine-tuned, we could
have a theory with two or more light scalar particles whose
interactions are described by some potential.4 In this case the
infrared behavior must be studied with new numerical simu-
lations.

This fine-tuned scenario can be realized in several differ-
ent ways: two light Higgs bosons~two doublets, a doublet
and a singlet, etc.!; a Higgs boson and a slepton; a Higgs
boson and a squark~top squark!. In this last case the main
features are a screened SU~3! A0 field, and spatialAi gluonic
fields which are not decoupled from the squark in the 3D
theory. Numerical calculations must also take this into ac-
count and the scalar octet should be integrated out.5 For pa-
rameters of the MSSM such that two scalars remain light, at
the third stage onlyA0 is integrated out. The expression of
the two-Higgs-doublet potential for the case with two light
Higgs bosons is given in Appendix B 3.

III. OTHER MODELS

In Appendix C we give the full results of for the param-
eters of the effective 3D theory for the 2HDM and the

2We have explicitly checked that the precise order of integration
out of theA0 field, before or after diagonalization, is not relevant up
to terms;g6.

3There is a mass term for the lighest scalar field resulting from the
final stage on integration. Its expression is not included as it is not
necessary for the analysis of the phase transition. In fact, one may
argue that this quantity is the appropiate one to evaluate the critical
temperature. However, we have checked that the difference inTc

from Eq. ~11! and by requiring the lighest scalar mass to be zero is
irrelevant.

4The authors of Ref.@16# have suggested a scenario in which the
right-handed top squark and one Higgs boson are light. For this case
as they have pointed out one must be careful with color-~and
charge-! breaking minima of the scalar potential, or in the slepton
case lepton number violation.

5In the generic case for the MSSM with one light Higgs, we did
not have to worry about the SU~3! fields once the squarks have been
integrated out as they decouple from the rest of the particles in the
theory, even though there is a Debye mass for the longitudinal
gluonic field, etc.
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NMSSM. Here we summarize salient characteristics of these
models.

The reduction of a general 2HDM to a three-dimensional
effective theory is realized in only two stages and and the
main differences with the MSSM are that the Higgs cou-
plings are not fixed in terms of the gauge couplings, there are
additional scalar interaction terms, there are no superpartner
contributions to the theory, the SU~3! gauge bosons com-
pletely decouple once the fermions are integrated out, and
the off-diagonal Higgs boson mass term acquires a dominant
contribution on the order of;T2. All of the above can in
principle change considerably the dependence of the critical
temperature on the parameters in the theory.

The reduction procedure with the addition of a singlet
superfield to the MSSM has the following features: It in-
troduces additional couplings in the scalar and Higgsino sec-
tor which are not determined in terms ofgs or g; the first
stage 3D parametersG, H, MD , MQi

, Mui
, andMdi

do not

receive additional contributions; there are additional contri-
butions to the wave function renormalizations off1 and
f2 ; and for values of the parameters for which the mass of
the scalar singlet is on the order of the SU~2! Debye mass,
after the second stage in which squarks and sleptons are in-
tegrated out, we are left with three scalar Higgs fields.

IV. CONCLUSIONS

We have constructed, in the high temperature limit, effec-
tive three-dimensional theories for the MSSM, a general
2HDM, and the NMSSM which contain a single light scalar
field. We obtained the full one-loop relation between the
couplings of the effective theory and the underlying 4D cou-
plings and masses. For the case that two Higgs scalars are
light at the phase transition, we have also given the expres-
sion for the two-Higgs-doublet potential whose infrared be-
havior must be studied with numerical methods.

The original parameters of these theories can now be re-
lated to physical parameters at the electroweak scale. For the
effective theories containing a single light scalar Higgs bo-
son, this will allow us to evaluate the quantityxc5l̄3 /g3

2 as
a function of the physical parameters. In this way, we can
determine for which regions of parameter space the elec-
troweak phase transition may be sufficiently first order. The
results for the MSSM will be presented elsewhere@9#.
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FIG. 1. Feynman diagrams contributing to the mass of the scalar
Higgs bosons and to wave function renormalization.

FIG. 2. Diagrams contributing to the mass of theA0 field and
wave function renormalization of the gauge fields. We use a wavy
line for both spatial and temporal components of the gauge fields.

FIG. 3. Diagrams contributing to the mass and wave function
renormalization of the squarks and sleptons.

FIG. 4. Diagrams contributing to the quartic Higgs boson cou-
plings.
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APPENDIX A: MSSM IN FOUR DIMENSIONS

Our four-dimensional Lagrangian will be a supersymmet-
ric SU~3!3SU~2! gauge theory with the same particle con-
tent as in the MSSM with the exclusion of U~1! vector par-
ticles and corresponding superpartner@17–19#.

The MSSM chiral superfield content is

L̂5S n̂e

ê D Êc, ~A1!

Q̂5S û

d̂D ÛcD̂c, ~A2!

f̂15S f̂1
0

2f̂1
2D , f̂25S f̂2

1

f̂2
0 D . ~A3!

When we refer to the scalar component of the superfield we
will drop the caret.

Instead of writing out explicitly the full 4D Lagrangian
we will define only the quantities we will need to refer to. In
particular, the Yukawa interactions are derived from the su-
perpotential, which for the MSSM is

W5m~f̂1
0f̂2

01f̂1
1f̂2

2!1 f u~f̂2
0û2d̂f̂2

1!Ûc

1 f d~f̂1
0d̂1ûf̂1

2!D̂c1 f e~f̂1
0ê1 n̂ef̂1

2!Êc. ~A4!

In order to maintain supersymmetry’s virtue of stabilizing
the electroweak scale via the cancellation of quadratic diver-
gences it is standard to introduce SUSY-breaking terms
which do not reintroduce this type of divergence, so-called
soft SUSY-breaking terms. In particular, there are new scalar
interactions proportional to terms in the superpotential as
well as mass terms for scalars, gauginos, and Higgsinos. The
scalar interactions are obtained replacing each chiral super-
field in the superpotential by its corresponding scalar com-
ponent. Without any further assumptions we would have an
extraordinary amount of parameters which make it extremely
difficult to do phenomenology. To simplify our parameter
space we assume above the SUSY-breaking scale:~1! a
unified gaugino massm1/2,mg̃ ; ~2! common mass for
squarks and sleptons,m0

2 ; ~3! a universalA parameter. In the

formulas presented in this paper we have kept all Yukawa
coupling dependence, although with the exception of the top
Yukawa coupling these contributions generally can be
dropped.

The scalar Higgs self-interactions generate, along with the
soft terms for the scalar Higgs fields, a two-Higgs-doublet
potential of the form

V~f1 ,f2!5m1
2f1

†f11m2
2f2

†f21m3
2~f1

†f21f2
†f1!

1l1~f1
†f1!21l2~f2

†f2!21l3~f1
†f1!~f2

†f2!

1l4~f1
†f2!~f2

†f1!, ~A5!

in which the quartic couplings are fixed in terms of the gauge
coupling constants. We comment that in order to express the
scalar potential in this way thef1 field has been SU~2! ro-
tated. All l i are real and fixed by supersymmetry at some
high scale to be

l15
g2

8
, l25

g2

8
, ~A6!

l35
g2

4
, l452

g2

2
, ~A7!

in theg850 limit. As is well known the model contains five
physical Higgs bosons: a charged pair, two neutral
CP-even scalars, and a neutralCP-odd scalar@17–19#.

APPENDIX B: EXPLICIT RELATIONSHIPS
BETWEEN PARAMETERS

1. First stage parameters

The explicit relations between the 3D coupling constants
and masses expressed in terms of underlying 4D couplings
and the temperature, obtained as a result of one-loop integra-
tion, are given below. These results reduce to the partial
results given for the MSSM in the literature@20,21#, as well
as the standard model results@8#, by taking the appropiate
limit. The formulas of Appendix D were used to obtain the
final results.N, Nf , andNs denote the SU~N! gauge group,
number of fermions doublets, and number of scalar doublets,
respectively.Nc is the number of colors and it is taken to be
1 for ~s!leptons but we do not insert an explicit index for
simplicity. Nsq is the number of squark and slepton doublets.
The indexi is a generation index. As the values of theA and
m parameters are not known we have kept the explicit de-
pendence on these quantities throughout the calculation.

FIG. 5. Diagrams contributing to the gauge and quartic
A0-scalar couplings.

FIG. 6. Diagrams contributing to the trilinear scalar couplings.
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The thermal masses for the Higgs scalars are given by the
evaluation of the diagrams in Fig. 1:6
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L f

16p2 , ~B1!
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where

Lb52 ln
m̄4eg

4pT

52 ln4pT21g1 lnm4
2, ~B4!

L f5Lb14 ln2. ~B5!

m4 is the mass scale defined by the modified minimal sub-
traction (MS) scheme. For every 3D parameter, the brackets
multiplying the corresponding 4D parameter contain the
wave function renormalization correction. We mention spe-
cifically that the scalar-gauge boson loop contributes only to
the wave function renormalization of the field, while the fer-
mionic loops contribute to the wave function renormalization
and the mass.

The Debye mass induced for the temporal component of
the SU~2! gauge field has additional contributions from those
of the standard model arising from Higgsino, squark, slepton,
and chargino contributions as shown in Fig. 2:

MD
2 5

g2T2

6
~61Ns1NF/21NH/2!. ~B6!

Figure 3 shows the diagrams which contribute to the mass
terms for a squark~slepton! doublet. For the up and down
right-handed squarks~sleptons! we must neglect the dia-
grams with gauge boson and gaugino loops:
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6Figures were drawn using feynmf.mf.
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The expressions for the slepton masses are omitted although they may be readily obtained by excluding thegs corrections,
noting that there is no right-handed sneutrino and dropping allf ui

2 contributions toMQ andMdi
. This is because the sleptons

do not have a Yukawa-type coupling to thef2 field.
In Fig. 4 we show the diagrams contributing to the quartic Higgs boson couplings. The full expressions for the scalar

couplings are
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There are similar diagrams to those in Fig. 4 for the the quartic couplings of the Higgs bosons to squarks and sleptons which
have not been shown. They make the following contributions to these couplings:

56 2901HIGH TEMPERATURE DIMENSIONAL REDUCTION OF . . .



f̄ di

L2
5 f di

2 TF11
9

2
g2

Lb

16p2 2S Nc(
i

f di

2 1 f di

2 1 f ui

2 D L f

16p2 23g2
L f

16p2 14gs
2 Lb

16p2 2
8

3
gs

2 L f

16p2G
2

T

2 F S l4
22l4f ui

2 14l4f di

2 12 f di

4 14l3l414l3f di

2 12l2l412l1f di

2 12l1l412l2f di

2 1
4

3
~l41 f di

2 !gs
2D Lb

16p2

2S ~Nsq21!~l4
2!1Ncl4(

i
f di

2 2l4f di

2 D Lb

16p2 1S 2g42
16

3
f di

2 gs
2D L f

16p2G , ~B14!

L3
Qi15l3TF11

9

2
g2

Lb

16p2 2S Nc(
i

f di

2 1 f di

2 1 f ui

2 D L f

16p2 23g2
L f

16p2 14gs
2 Lb

16p2 2
8

3
gs

2 L f

16p2G
1TF2

9

8
g4

Lb

16p2 1
3

4

g4

16p22S 4

3
l3gs

214l3
216l1l312l4

212l4f di

2 12 f di

4 16l2l312l3l41l4f ui

2 1l3f ui

2

12l1l412l2f di

2 12l2l412l1f di

2 D Lb

16p2 2S ~Nsq21!~2l3
212l3l41l4

2!1Nc~l31l4!(
i

f di

2 2~l31l4! f di

2 D
3

Lb

16p2 1S 2 f di

4 1
5g4

2 D L f

16p2G , ~B15!

L4
Qi15l4TF11

9

2
g2

Lb

16p2 2S Nc(
i

f di

2 1 f di

2 1 f ui

2 D L f

16p2 23g2
L f

16p2 14gs
2 Lb

16p2 2
8

3
gs

2 L f

16p2G
2

T

2 F S l4
22l4f ui

2 14l4f di

2 12 f di

4 14l3l414l3f di

2 12l2l412l1f di

2 12l1l412l2f di

2 1
4

3
~l41 f di

2 !gs
2D Lb

16p2

2S ~Nsq21!~l4
2!1Ncl4(

i
f di

2 2l4f di

2 D Lb

16p2 1S 2g42
16

3
f di

2 gs
2D L f

16p2G , ~B16!

f̄ ui

L2
5 f ui

2 TF11
9

2
g2

Lb

16p2 2S Nc(
i

f ui

2 1 f ui

2 1 f di

2 D L f

16p2 23g2
L f

16p2 14gs
2 Lb

16p2 2
8

3
gs

2 L f

16p2G
2

T

2 F S l4
22l4f di

2 14l4f ui

2 12 f ui

4 14l3l414l3f ui

2 12l2l412l1f ui

2 12l1l412l2f ui

2 1
4

3
~l41 f ui

2 !gs
2D Lb

16p2

2S ~Nsq21!~l4
2!1Ncl4(

i
f ui

2 2l4f ui

2 D Lb

16p2 1S 2g42
16

3
f ui

2 gs
2D L f

16p2G , ~B17!

L3
Qi25l3TF11

9

2
g2

Lb

16p2 2S Nc(
i

f ui

2 1 f ui

2 1 f di

2 D L f

16p2 23g2
L f

16p2 14gs
2 Lb

16p2 2
8

3
gs

2 L f

16p2G
1TF2

9

8
g4

Lb

16p2 1
3

4

g4

16p22S 4

3
l3gs

214l3
216l1l312l4

212l4f ui

2 12 f ui

4 16l2l312l3l41l4f di

2 1l3f di

2

12l1l412l2f ui

2 12l2l412l1f ui

2 D Lb

16p2 2S ~Nsq21!~2l3
212l3l41l4

2!Nc~l31l4!(
i

f ui

2 2~l31l4! f ui

2 D
3

Lb

16p2 1S 2 f ui

4 1
5g4

2 D L f

16p2G , ~B18!

2902 56MARTA LOSADA



L4
Qi25l4TF11

9

2
g2

Lb

16p2 2S Nc(
i

f ui

2 1 f ui

2 1 f di

2 D L f

16p2 23g2
L f

16p2 14gs
2 Lb

16p2 2
8

3
gs

2 L f

16p2G
2

T

2 F S l4
22l4f di

2 14l4f ui

2 12 f ui

4 14l3l414l3f ui

2 12l2l412l1f ui

2 12l1l412l2f ui

2 1
4

3
~l41 f ui

2 !gs
2D Lb

16p2

2S ~Nsq21!~l4
2!1Ncl4(

i
f ui

2 2l4f ui

2 D Lb

16p2 1S 2g42
16

3
f ui

2 gs
2D L f

16p2G , ~B19!

f̄ di

R2
5 f di

2 TF11
9

4
g2

Lb

16p2 2S Nc(
i

f di

2 12 f di

2 D L f

16p2 2
3

2
g2

L f

16p2 14gs
2 Lb

16p2 2
8

3
gs

2 L f

16p2G
1TF2

Lb

16p2 S 4

3
f di

2 gs
21~2l31l41 f ui

2 ! f di

2 13 f di

4 16l1f di

2 D1
L f

16p2 S 16

3
f di

2 gs
212 f di

4 13 f di

2 g2D G , ~B20!

f̄ ui

R2
5 f ui

2 TF11
9

4
g2

Lb

16p2 2S Nc(
i

f ui

2 12 f ui

2 D L f

16p2 2
3

2
g2

L f

16p2 14gs
2 Lb

16p2 2
8

3
gs

2 L f

16p2G
1TF2

Lb

16p2 S 4

3
f ui

2 gs
21~2l31l41 f di

2 ! f ui

2 13 f ui

4 16l2f ui

2 D1
L f

16p2 S 16

3
f ui

2 gs
212 f ui

4 13 f ui

2 g2D G . ~B21!

We would like to point out that theT/2 factor in the expressions forL4
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Qi2, and f̄ ui

L2
is due to the fact that the sum

of the first two is the full quartic coupling to thef1 field, and analogously for the second pair.
As explained in@8# we can obtain the gauge and quarticA0-scalar–doublet couplings from the same set of diagrams

depicted in Fig. 5:
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The scalar trilinear couplings are also modified as can be seen in Fig. 6:
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We comment that at zero temperature theb function coeffi-
cients for the four trilinear couplings given above, which are
products of two parameters, can be obtained from the run-
ning of each parameter separately. This is true up to an ar-
bitrary number of loops.

2. Second stage parameters

The gauge coupling is given by the expression
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A clear difference appears now in the coupling ofA0 to f1
andf2 which is not protected by any symmetry. How large
this difference is depends strongly on the values of the soft
breaking parameters. In general, the expressions simplify
considerably if we ignore the trilinear scalar interaction
terms. Additional diagrams, shown in Fig. 7, which were
suppressed by powers ofT22 for the first stage, are included.
We point out that the box diagram with two external scalar
Higgs legs only contributes to the four-point function which
determinesḠ2, as there is no trilinearA0ff interactions in
the three-dimensional theory:
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The elements of the scalar Higgs doublet mass matrix are
now given by

M̄1
25M1

2S 12(
i

Ncf di

2 Ā2

12p~MQ
i 1Md

i !3

2(
i

Ncf ui

2 m̄2

12p~MQ
i 1Mu

i !3D
2(

i
NcS ~ f̄ di

L2
12L3

Qi11L4
Qi1!

MQ
i

4p
1 f̄ di

R2 Md
i

4p

1
f di

2 Ā2
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FIG. 7. Additional diagrams included in the second stage.
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The resulting Debye mass from the second stage of integration is
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We remark that the previous quantity is always positive for values of the parameters for which both perturbation theory and
the high temperature expansion are valid.

The resulting quartic Higgs boson couplings are
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2 Ā2

12p~MQ
i 1Mu

i !3 2(
i

Ncf di

2 m̄2

12p~MQ
i 1Md

i !3D
1(

i
NcS 2~2L3

Qi1L3
Qi21L4

Qi1L4
Qi21L3

Qi1L4
Qi21L3

Qi2L4
Qi1!

1

8pMQ
i

2~ f̄ ui

L2
L4

Qi11 f̄ di

L2
L4

Qi212 f̄ ui

L2
f̄ di

L2
1 f̄ ui

L2
L3

Qi11 f̄ di

L2
L3

Qi2!
1

8pMQ
i 1 f ui

2 ~ f̄ di

L2
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2 Ā2

12p~MQ
i 1Md

i !3 2(
i

Ncf ui

2 m̄2

12p~MQ
i 1Mu

i !32(
i

Ncf ui

2 Ā2
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3. Two light Higgs bosons

As mentioned in Sec. II E for the case in which both
eigenvalues of the mass matrix of the Higgs doublets are
such that we cannot integrate out one of the scalar Higgs
fields, the third stage corresponds to the integration of only
the A0 field. Since there is no trilinearA0ff interaction
term, there is no wave function renormalization at this stage.
Consequently, the two-Higgs-doublet potential is
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2 and l̄45L̄4 .

APPENDIX C: 2HDM AND NMSSM

Our discussion of the 2HDM and NMSSN will be brief as
we have already introduced all of the relevant points in pre-
senting the effective theory for the MSSM. We will limit
ourselves as much as possible to giving our results after each
stage.

1. Two-Higgs-doublet model

In the case of a general two-Higgs-doublet model the sca-
lar potential can contain additional quartic terms of the form

DV5l5~f1
†f2!~f1

†f2!1l6~f1
†f1!~f2

†f1!1l7~f2
†f2!

3~f2
†f1!1H.c. ~C1!

In this case the values of thel i are not expressed in terms of
the weak coupling constant. We take all parameters to be
real.

The reduction procedure differs from that of the MSSM
because the model does not contain superpartners. This im-
plies that we will have only two stages of reduction. The first
one would once again correspond to the integration out of
the heavy nonstatic modes. Consequently, the SU~3! gauge
particles decouple when the fermions are eliminated. The
resulting theory for the static modes is be described by a
scalar potential with scalar masses

MD
2 5

g2T2

6
~41Ns1NF/2!, ~C2!

DM1
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We note that, unlike in the MSSM, theM3
2 term receives a

contribution proportional toT2, which is in fact the domi-
nant correction. The quartic Higgs boson couplings are
modified by the terms
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We have written above only the additional contributions but
we remind the reader that superpartner contributions to the
formulas in Appendix B must be dropped. This is true for the
G andH couplings as well, which do not receive new addi-
tional contributions from the extra interaction terms.

For the second stage there are two possibilities. First, as in
the generic case of the MSSM, after the first stage one Higgs
boson is much heavier than the other and it can be integrated
out with theA0 , field after the mass matrix has been diago-
nalized. This is completely analogous to the procedure in
Sec. IV D, with the parameters changed as indicated above
~ignoring all overbars in the parameters of Sec. II D!. The
expressions for thea i in Eqs. ~13!, ~14!, and ~15! have ad-
ditional contributions from theL5 , L6 , andL7 terms:

Da152L5cos2 usin2u12L6cos4usinu1L7sin3ucosu,
~C13!

Da3524L5cos2usin2u2~2L622L7!~cos3usinu

2sin3ucosu!, ~C14!

Da4524L5cos2usin2u2~2L622L7!

3~cos3usinu2sin3ucosu!. ~C15!

The second possibility is that both Higgs fields are light, in
which case only theA0 field is integrated out at this second
stage. This is identical to the situation described in Appendix
B 3. The quantitiesL5 , L6 , andL7 are not modified by the
A0 field.

2. Next to minimal supersymmetric standard model

If we now turn to the supersymmetric case with an addi-
tional singlet superfieldN̂, we will have additional terms in
the superpotential of the form@17,18#

DW5l~f̂1
0f̂2

01f̂1
1f2

2!N̂2
k

3
N̂32rN̂. ~C16!

Consequently, the extra terms in the scalar potential, includ-
ing additional soft SUSY-breaking terms, are
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The quartic couplings are expressed in terms of the param-
eters in the superpotential at the SUSY scale by

l55l2, l65l2, l95l2, ~C18!

l752lk, l85k2. ~C19!

We will have three reduction stages just as in the MSSM.
For the first stage, we see that theG andH couplings and the
weak and strong Debye masses are not modified because the
particles we have introduced are gauge singlets. The 3D
squarks masses are also not modified by the introduction of
the singlets. We mention that there are additional contribu-
tions to the wave function renormalization of thef1 and
f2 fields from the fermionic loops involving the singlet
Higgsino. For the scalar Higgs doublet masses and quartic
couplings we have additional contributions
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The interaction terms between the scalar Higgs doublets and the squarks and sleptons are modified by
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The 3D expressions after the first stage for the mass and interaction terms of the singlet Higgs are
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We denote the 3D coupling of the trilinearf1
†f1N term byJ1 and similarly for thef2

†f2N term byJ2:
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4
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16p2 2Nc(
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f di

2 L f

16p2 2
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2
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i
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J25lmT1/2S 11
9

4
g2

Lb

16p2 2Nc(
i

f ui

2 L f

16p2 2
3

2
g2

L f

16p2 2~k212l2!
L f

16p2D 2T1/2F S 6ll2m12ll3m1ll4m12ll6m

1Nc(
i

l f di

2 m D Lb
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16p2G . ~C47!

The second stage proceeds just like in the MSSM. The inter-
action terms between doublet and singlet Higgs fields are
modified by
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2 Ā2

12p~MQ
i 1Mu

i !3 2(
i

Ncf di

2 m̄2

12p~MQ
i 1Md

i !3D
2(

i

L2f di

2

4p~MQ
i 1Md

i !
, ~C49!
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NcS LĀf di

2

4p~MQ
i 1Md

i !
1
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J̄25J2S 12(
i

Ncf ui

2 Ā2
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There are no triangle and box diagram corrections to the
above second stage quantities.

The scalars in the resulting theory are two Higgs doublets,
a Higgs singlet, and theA0 triplet. Depending on the values
of the parameters which determine the 3D mass of the sin-
glet, if it is heavy (;gT), it can be integrated out at the third
stage after the diagonalization of the scalar doublets mass
matrix. We remind the reader that we have determined the
critical temperature by finding the direction in which the
curvature of the potential vanishes at the origin. Conse-
quently, there are no mixing terms in the mass matrix be-
tween the doublets and the singlet Higgs fields. The addi-
tional contributions tol̄3 from the singlet, including wave
function corrections, are

Dl̄352a1S a5
21a6

2

6p@n~Tc!1MN#3D 2
a7

2

2

1

8pMN

22L7
2cos2usin2u

1

8pMN
1a7~a5

21a6
2!

3
1

8pn~Tc!

1

@n~Tc!1MN#22~a5
21a6

2!2

3
1

8pn~Tc!MN

1

@n~Tc!1MN#3 , ~C53!

where

a55M̄4cos2u2 J̄1sinucosu1 J̄2sinucosu, ~C54!

a652M̄4sin2u2 J̄1sinucosu1 J̄2sinucosu, ~C55!

a75L̄5cos2u1L̄6sin2u. ~C56!

APPENDIX D: FINITE TEMPERATURE FORMULAS

In this appendix we include the basic integrals which ap-
pear in the calculation over the nonstatic modes. These re-
sults can be derived from formulas presented in the literature.
We refer the reader to Refs.@8,22,23# and references within
for more details regarding finite temperature formulas.
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1. m50

Let us consider first the massless case. We can define the
quantities

As5(E 1

p2s 52m2eT
G~2 D/21s!

~4p!D/2G~s!
~2pT!22s1Dz~2s2D !,

~D1!

with p25pW 21vB
2 , vB52pnT, andD5322e. For bosonic

sums,n50 is excluded, where

(E 5m2eT(
p0

E d322ep

~2p!322e . ~D2!

Similarly we have, for fermionic excitations,

Bj5(E 1

p̃2s , ~D3!

with p̃25pW 21vF
2 , and vF52p(n11/2)T. Using the fact

that

As1Bs522s2DAs , ~D4!

we can easily determine the fermionic contributions in terms
of the bosonic integrals. Generalizing, we can write

Bs
a1•••ak5~22s2D2k21!As

a1•••ak, ~D5!

where the superscriptsa1•••ak indicate additional powers of
momenta in the integrals. In particular we have

A15
T2

12
1O~e! ~D6!

and

A25
1

~4p!2 S 1

e
1LbD , ~D7!

where

Lb52 ln
m̄4eg

4pT

52 ln4pT21g1 lnm4
2 . ~D8!

m̄4 is defined by theMS scheme.

2. mÞ0

If we now include the effect of masses, our formulas will
be modified in the following way:

As~m!5(E 1

~p21m2!s 5m2eT
G~2 D/21s!

~4p!D/2G~s!
~2pT!22s1D

3FzS 2s2D;
m

2pTD2S m

2pTD ~22s1D !G , ~D9!

where

z~s;n!5 (
n52`

n5`

~n21n2!2s. ~D10!

It is easy to verify that

As~m!52~s21!21
]

]m2 As21~m!, ~D11!

and for high temperature, dropping theO(e) terms, we can
use the expansion

A1~m!5
T2

12
2

m2

16p2 S 1

e
1LbD1OS m4

T2 D ~D12!

and

A2~m!5
1

~4p!2 S 1

e
1LbD1••• . ~D13!

We can now extend our considerations to express the fermi-
onic integrals in terms of the bosonic ones, obtaining

Bs
a1•••ak~m!522s2D2kAs

a1•••ak~2m!2As
a1•••ak~m!.

~D14!

Let us write the explicit results for

As
i 5(E pi

~p21m2!s 50, ~D15!

As
05(E p0

~p21m2!s 50, ~D16!

As
i j 5(E pipj

~p21m2!s 5A1~s!d i j ,

As
005(E p0p0

~p21m2!s 5A1~s!1A2~s!, ~D17!

where

Ai~s!52~s21!21
]

]m2 Ai~s21!,

A1~1!5
m4

64p2 S 1

e
1LbD1

1

24
m2T2,

A2~1!52
2p2

45
T41

1

32p2 m41
1

12
m2T21••• .

~D18!

We would also like to write the explicit results for the inte-
grals

C~p,m1 ,m2!5(E 1

k21vn
21m1

2

1

~k2p!21vn
21m2

2 5A2 ,

~D19!

Ci~p,m1 ,m2!5(E ki
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2
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Ci j ~p,m1 ,m2!5(E kikj
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We would like to relate the fermionic integrals of this type to
the bosonic ones:

Da1•••am~p!5(E k̃a1
••• k̃am

k̃21vn
2

1

~ k̃2 p̃!21vn
2

, ~D27!

with, once again,p̃25pW 21vF
2 , andvF52p(n11/2)T. We

obtain
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2
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explicitly,

D215B2/3, ~D31!

D2252
T2
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2S m1

21m2
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3 DB2/4, ~D32!
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whereL f5Lb14ln2.
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