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Using dimensional reduction we construct an effective 3D theory of the minimal supersymmetric standard
model in the siRg,,=0 limit at finite temperature. The final effective theory is obtained after three successive
stages of integration out of massive particles. We obtain the full one-loop relation between the couplings of the
reduced theory and the underlying 4D couplings and masses. The procedure is also applied to a general two
Higgs doublet model and the next to minimal supersymmetric standard ni88&56-282(97)04615-§

PACS numbgs): 12.60.Jv, 12.15.Ji, 98.80.Cq

I. INTRODUCTION study the properties of the phase transition, and the assump-
tions underlying perturbative calculations must be verified by
A crucial problem in particle physics is the understandingcalculations which include nonperturbative effects.
of the observed baryon asymmetry of the universe. A pos- Using the fact that in the symmetric phase at finite tem-
sible scenario which has been explored involves physics gierature the long distance theory is described by a three-
the electroweak scale. For electroweak baryogenesis to occHimensional(3D) bosonic gauge theory, Kajantie and co-
via a sufficiently strong first order phase transition, such thafygrkers [6-8] devised a procedure which separates the
baryon number violation is suppressed after the phase tramserturbative and nonperturbative aspects of the study of the
sition, the sphaleron transition rate in the low temperaturgectroweak phase transition. As explained in Sec. Il A, due
phase must be less than the universe expansio¥ht&his 1 antiperiodicity of the boundary condition at finite tempera-

requires that the ratio of the vacuum expectation value in th'?ure, fermions in the theory acquire thermal masses propor-
broken phase to the phase transition temperatligy fnust tional to the temperature 7 T. The bosonic field decompo-

be [2] sition into thermal modes contains a static mode which does
v(Te) not have a thermal mass, as well as modes with masses on
=L (1) the order of~#T. The construction of the effective theory
C

for the static modes amounts to perturbatively integrating out
which in turn places constraints on the Higgs structure of théhe effects of all the massive modes. As a consequence of the
low temperature theory. In fact, these requirements may ndtteraction with the heavy modes, the masses of some of the
be fulfilled in the standard model at least for experimentallystatic scalar fields are modified enough that they become
allowed values of the Higgs boson md&s3]. heavy (~gT) and one can further construct a second effec-
In order to study the properties of the phase transitiontive 3D theory describing only the light fields. This reduced
standard perturbation techniquésith resummation were  three-dimensional gauge theory for the light scalars can then
initially utilized. However, there are two intrinsic problems pe analyzed by numericdlattice) calculations so that all
with perturbation theory. First of all, the loop expansion pa-nonperturbative effects are handled correctly.
rameter §>T/M,y~ \/g?) is proportional to the zero tem- Kajantieet al. reduced the standard model to a 3D gauge
perature ratio of Higgs boson mass to eboson mass. theory with a single light scalar, which they studied on the
This implies that unless the Higgs boson is sufficiently lightlattice. They concluded that many, but not all, features of the
the perturbative approximations will break down whenphase transition were similar to results of perturbation
higher order corrections are includp]. Second, high tem- theory. The results showed that there is no value of the Higgs
perature gauge theories are subject to infrared divergencémson mass in the minimal supersymmetric standard model
arising from massless gauge boson modes in the thH&jry which is compatible with correct electroweak symmetry
In the broken phase these divergences are absent because lipgaking in the low temperature theory, given the measured
gauge bosons of the broken symmetry have nonzertarge top mas§7].
¢-dependent masses. Consequently, even when the afore- Consequently, it is of interest to analyze extensions of the
mentioned perturbative effects are under control, nonperturstandard model to see whether there are any cases in which
bative physics in the unbroken phase, for valuegof0, can  there is a sufficiently strong first order phase transition. Us-
limit the reliability of the perturbative calculations of the ing the numerical results of Kajantiet al. we can include
phase transition. In other words, knowledge of the effectivenonperturbative effects for any 4D theory which reduces to
potential for small values of the scalar field is required toan effective three-dimensional theory containing a single
light scalar coupled to S(2) gauge fields. This is the generic
situation at the phase transition, except when the theory is
*On leave of absence from Centro Internacional deickiand fine-tuned, even when the theory has multiple scalar fields as
Universidad Antonio Naria, Sante Fe de Boggt&olombia. in supersymmetry, general two-Higgs-doublet models, etc.
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A feature of multiscalar models is the inclusion of tree-final effective theory. The results of the application of the
level masses for all scalars. Additionally, some of the scalaprocedure to the two-Higgs-doublet model and the NMSSM
fields may carry color charge. This implies that in the unbro-is given in Appendixes C1 and C 2. Finally, we present
ken phase the static modes of the scalars can acquire massesne useful high temperature formulas in Appendix D.
betweenzT andgT. In particular, the masses of the squarks
static modes receive corrections proportionattgsT. Con- Il. THREE-DIMENSIONAL THEORY
sequently, unlike the standard model case, we encounter an
additional intermediate effective theory in which the static
modes with masses in this range are integrated out before the A given theory in four dimensions at finite temperature
final reduction procedure of modes with massegT is per-  reduces, in the high temperature limit, to an effective 3D
formed. For supersymmetric theories the static sqisiép-  theory describing the static degrees of freedom. This is the
ton) modes are integrated out at this second stage. statement of dimensional reductip®,10—-13.

To summarize, the construction of the effective theories The action at finite temperature is given by
in supersymmetric models proceeds in three stages. First, we
integrate out the nonstatic modes with masses on the order of o= fﬁde &*xL @
~aT. We are then left with a 3D theory of the bosonic o '
sector of the 4D theory. The resulting theory contains mas-
sive static modes: see below. We next integrate out thevhere 8= 1/T, such that the theory is characterized by
squarks and sleptons obtaining a general two-Higgs-doubléfosonic (fermionic) fields obeying periodic(antiperiodig
model. Generically, at the phase transition only one of thébhoundary conditions in Euclidean tinj@3]. The finite tem-
Higgs fields is heavy, with a mass on the ordera§ T, and  perature expansion of the fields in our theory is given by
it can be integrated out in the third stage.

A. Effective theory

For the generic case, the reduction procedure leaves us ionT
with the sa?ne effective theory as fi], dgfined by the ef- S(x,7)=TH SO(X)JF,;O Sh(x)e'er, ®)
fective couplingsh; and g5 with a different relationship
which defines these quantities in terms of the masses and L -
couplings of the 4D theory. As explained by Kajangeal. V(x,7)=T En: Y€, ©)
[8], the dynamics of the electroweak phase transition is gov-
erned by the quantity where S and ¥ represent bosonic and fermionic fields, re-
— spectively.S; is the static component of the bosonic field,
X :)\3 2 for which wg=0. The resulting propagators are of the form
¢ g2 (K*+ g+ m?) L, where wg=27nT, wp=m(2n+1)T

for bosons and fermions, respectively. That is, nonstatic
at the critical temperature, and the constraint given by Edmodes have masses 7T and thus all of the fermionic
(1) translates intg7] modes may be integrated out at lar§ie Our calculations
will be carried out in Landau gauge. By integrating ower
Xc<0.04. (3 and using the orthonormality of the modes we can obtain the
, ) terms in the Lagrangian describing the static modes, the non-
In this paper we present the relations between the masseg,ic modes, and finally the interaction terms between the
and couplings of the reduced theory and the parameters @faayy and light modes. Our expressions are valid only when
the underlying four-dimensional theory for three models: thgpe high temperature expansion is adequate. That is, the
minimal supersymmetric standard modeISSM), a general  a5ses of the particles must fulfill the condition
two-Higgs-doublet model2HDM), and the next to minimal

supersymmetric standard mod&MSSM) in the sirfé,=0 ms2xT. (7
limit. The analysis of the electroweak phase transition for the
MSSM will be the subject of a second pap8r. In Sec. Il A

we review the finite temperature formalism which is the ba-
sis for the construction of the three-dimensional theory. Sec- We are interested in studying the MSSM with
tions 11 B, 11 C, and Il D discuss the three effective theoriessin’6,=0. As discussed in Ref7], the effects arising from

for the MSSM as we integrate out in successive stagésr  the U(1) subgroup for the standard model are small. For the
the nonstatic mode$2) the heavy squarks and sleptons, andMSSM, the relevant coupling constants for the construction
(3) the heavy Higgs and the temporal component of theof the effective theories are the strong gauge coupling and
SU(2) gauge fieldA,. Section Il E discusses the nongenericthe top Yukawa coupling. Additionally, we mention that up
case in which there are two light scalar fields in the finalto the moment no Monte Carlo simulations have been per-
effective theory. We present a short discussion of other mulformed to include the nonperturbative physics of interest for
tiscalar models in Sec. Ill. Our conclusions are given in Seca SU2)xU(1) dimensionally reduced theory. Consequently,
IV. Appendix A introduces the MSSM 4D Lagrangian, we work in the sif@,=0 limit, ignoring the hypercharge
which is the model discussed in the text. Appendixes B 1 andJ(1) gauge boson and gaugino contributions. In this section
B 2 give the explicit expressions for our results of the firstwe describe in detail the dimensional reduction of the
and second stages. In Appendix B 3 we give the results foMSSM. In the appendixes we treat a general 2HDM model
the case in which there are two light scalar Higgs fields in theand supersymmetric models with an additional gauge singlet

B. First stage
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superfield. The Lagrangian for the MSSM is given in Appen-where m? is the tree-level mass squared, which for gauge
dix A, where we introduce our notation. Most of the discus-bosons is identically zero. As explained above the quantity
sions in the paper will be general enough to include all threés determined from the one-loop integration and in particular
models. We leave the notation and particular results correit remains zero for the spatial components of the vector field
sponding to the 2HDM and NMSSM to Appendix C. A, . This reflects the fact that the; fields are precisely the
Starting with the 4D theory we generalize the procedureyauge fields of the 3D theory. For the temporal component of
delineated by Kajantiet al. to obtain a 3D effective theory. e SU2) gauge fieldA,, which is a gauge-triplet of scalars
The first stage corresponds to the integration of the massivg, ihe effective theoryp#0. This implies that the temporal
(nonstatig modes._ As a result,'all fer'mions are ir_ltegrated out e acquires a mass, the so-called Debye thassich wil
and we are left with a three-dimensional bosonic theory. Wi e on the order of-gT. Scalar particles, on the other hand,

can systematically construct the dimensionally reduce ave a tree-level mass as well as a nonzero value bf the
theory and relate its parameters to those of the more funda-.

mental four-dimensional theory by computing the effective '92h teygelrgture approximation, their masses are ,Of Qrder
interactions among the static modes generated by integratidg™ +9sT°) ™ for squarks. For top squarks the contribution
out then#0 modes. This procedure is perturbative in theProportional to the top Yukawa coupling squared can also be
Coup”ng constants Of the theory and we W|" Ca|cu|ate Con_s|gn|f|cant. The rest Of the ScalarS n the theory W|” ha.Ve
sistently throughout to ordeg®. As explained in[7,8], for ~ masses on the order ofné+g>T?)"2 Higher order effects
our purposes it is sufficient to perform a one-loop calculatiorare suppressed by powersf/T2.
as it provides the specified accuracy and the determination of The exact value of the tree-level mass is important as it
the critical temperature is precise enough as the temperatureay lead to the existence of a very light scalar particle. This
dependence in the ratio in E(R) enters only through loga- may have several different consequences, but specifically, if
rithmic terms. the tree-level mass nearly cancels the term proportional to
As a result of the first stage of integration tine=0 T2 one could be close to a phase transition. We will discuss
bosonic modes in the theory acquire a thermal mass to leaghe nongeneric case in which there are two light scalar par-
ing order (excluding logarithmic correctionf the generic ticles in the final effective theory in Sec. Il E.
form In order to establish our notation we write the 3D scalar
m2(T) = m2+ T2, ) potential after the first stage:

V<Ao,¢1,¢z,Qi.u_Di>=%M%Avo+H<AoA0> 161+ bidot 2 QQi |+ MIgIg1+MES e,
+M3(Bldhot phbs) + Ar(b1b1) 2+ Ao bhb2) >+ A 1b1)(b)ebo)
+ Aa(162)($360)+ 2 AT (B1h1)(QQ0)+ AT (6542)(QIQ)
AP (BIQ(Q b1+ (AX+15) s b3QF 12+ MGQIQ,
+MLUTU -+ MDD+ 15 (8] 60)(DID) + 15 (8362)(UTU)) +Afq 1QD,

— €apAfy 35QPU; + ufy $IQIDE — epmfy 45QF UF +H.C., ©)

wherea, B are SU2) indices. Note that the fields in E¢Q) The expressions for the 3D parameters contain
are the static components of the scalar fields, properly renotemperature-dependent logarithmic corrections dendted
malized, and having dimensidiGeV]*2 Quartic couplings andL;. In general the coefficients of these quantities are the
have dimensions dfGeV] and trilinear couplings involving  corresponding bosonic and fermionic contributions to ghe

A or u have dimension of GeV]¥2. We have omitted the functions for the masses and couplings in the underlying
terms corresponding to the scalar leptons and the quartiheory [6]. In the 4D theory the quartic scalar couplings
Ay term. (Higgs boson self-couplings and part of the interactions be-

The full expressions for the effective masses and coutween Higgs bosons and squarks and sleptas fixed
plings are given in Appendix B 1 where we also show the

diagrams contributing to the calculations for each one of the

parameters. We would like to point out some of the features

of the calculations, though most technical details are dis- !Similarly the longitudinal S(B) gauge field acquires a mass
cussed in Appendix B. ~gsT.
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above the supersymmetrySUSY- breaking scale in terms the case in which we study a purely &Jgauge theory with

of the gauge couplings. In the zero temperature theory, anultiple scalars, if we ignore all of the contributions which
energy scales above the SUSY-breaking scale, or if there isicludeg. For the MSSM the resultant theory after the sec-
no particle decoupling, thg function coefficients are related ond stage is described by a 2HDM with complicated expres-
by the same algebraic relation as the couplings themselvesons, in terms of the 4D couplings and masses, for the
[14]. This is no longer true if one considers particles decouinasses and strengths of interactions. The 3D potential for the
pling in the 4D theory below the SUSY scale. Similarly, in scalar fieldsA,, ¢,, and ¢, is

the finite temperature theory the relation between(ttale- . .

dependent part of theSD expressions of the couplings dif- V(Ag,d1,¢,)= %MZDAOAO+H1(AOAO)¢I¢1

fers, upon one-loop integration of heavy modes, from the

expression relating th@ functions of the zero temperature +H2(AoAg) 3o+ MEb] b1 + M3Jba
theory. As a by-product our 3D expressions for the couplings — 4 T — i, w2
and masses, yield the full one-logfunction coefficients in TM3(P1d2+ dop1) + Ai(Prb1)

the zero temperature theory, including particle decoupling, ot N2 A st t
for the three models we have considered. T A2 b2h2)"+ As(b1b1)(b26h2)

The static modes squgl(k;lepto_rj masses are nonde_gen-_ +A_4(¢I¢2)(¢;¢1)1 (10)
erate as a result of the integration procedure even if their
masses are taken to be degenerate in the 4D theory. Not onlyhere we have labeled the couplings and masses after the
do right- and left-handed-type squarks acquire different valsecond stage with overbars and for simplicity we maintain
ues for their masses, so do up- and down-type right handettie same notation for the fields. The explicit expressions for
squarks. This occurs because right-handed squarks do nifite parameters are given in Appendix B 2.
couple to SW2) gauge fields, their quartic coupling to Higgs

bosons is proportional to their corresponding Yukawa cou- D. Third stage
pling, and the trilinear coupling to Higgs bosons differs for  after the second stage the scalar fields we are left with are
up- and down-type right-handed squarks. the two Higgs doublets and ti#g, triplet. Our objective is to

As in the case of the standard model, the gauge couplinge aple to use the nonperturbative results for a theory with
between the spatial magnetic field and scalars in the thregs,)y one light scalar at the phase transition. This corresponds
dimensional theory is not equal to the quartic coupling beyq the generic case; we find that only with fine-tuning can
tween theA, field and scalars. In addition, at the next stagegne have two light Higgs fields in addition to the spatial
of integration-out, this latter quartic scalar coupling will be yage fields. The critical temperature for a first order phase
different for each type of scalar field to which thg couples  transition lies between the temperature of phase coexistence
to as a consequence of the soft SUSY-breaking trilinear cousng the temperature at which the curvature of the potential is
plings. zero in some direction of field space at the origin. The two
latter values are generally close but not identical for a theory
with a single light scalar field at the phase transiti@h We
take the value of the critical temperature to be that at which

The aim of the second and third stages is twofold. First, aghere is a direction in field space at the origin of the Higgs
explained qualitatively above, after the first stage of integrapotential for which the transition to the minimum of the po-
tion we are still left with several different mass scales, whiletential in the broken phase can occur classically. This implies
the purpose of an effective theory is to have only one charthat at the phase transition at least one of the thermal masses
acteristic mass scale. Second, if we can construct an effectivef the Higgs bosons must become zero and then negative as
theory in which we are left with only one light scalar par- the temperature decreases. At this temperature we can deter-
ticle, then we have arrived at exactly the same theory whichmine the mass of the other Higgs doublet; if it is heavy
has already been analyzed on the lattice by Kajaatial. ~gT, it can be integrated out in a third stage, together with
[7]. the A, field. The mixing angle which determines which com-

What we define as second stage is necessary only whdnnation of the Higgs doublets can be integrated out depends
the mass of the squarks and sleptons is such that the higin the temperature. We stress that as long as the variation of
temperature expansion is valid. If the squarks and sleptonthe mixing angle with temperature is negligible for tempera-
were extremely massive, they would have decoupled in théures close to the critical temperature, the strength of the
four-dimensional theory, or alternatively a low temperaturephase transition, determined by the ra)tip/g%, has a weak
expansion might be applicabl&5]. After obtaining our re- temperature dependen®. That is to say, with the estimate
duced theory we must verify that the nonrenormalizablefor the critical temperature as described above we can deter-
terms of the effective theory are indeed suppressed. That isjine to a very good accuracy the strength of the phase tran-
we must check that higher order corrections to the scalagition.
potential at the critical temperature do not change qualita- To determine which is the correct scalar Higgs field
tively our results. which is heavy at the critical temperature one can analyze the

For the MSSM and NMSSM the second stage correeigenvalues of the mass matrix as a function of the tempera-
sponds to the integration of heavy squarks and sleptons. Were.
include the sleptons even though their masses do not have The critical temperaturd, for which only one of the
contributions~gsT, since their tree-level mass at some higheigenvalues of the mass matrix is zero, is determined from
scale is presumablgT. The results are also applicable to the equation

C. Second stage



56 HIGH TEMPERATURE DIMENSIONAL REDUCTION @ . ..

MZ(TOME(Te) =(M2)3(T,). (11)
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in terms of the original 4D parameters and the temperature.
We point out that there is no wave function renormalization

Upon diagonalization of the scalar mass matrix the expresat the third stage as there is no trilinear coupling between the
sion for the mass of the heavy Higgs field at the criticallight Higgs and the heavy scalars.

temperature is

(T =M%(To)+M3(T,). (12)

If any of the squarkslepton thermal masses were of the
order of My rather thar>Mp they would be integrated out
at this point instead of previously. If, for example, we sup-
pose the sleptons to be light, the modifications to the second

_ We denote by; the quar_tic Higgs c_oupling interactior_ls stage equations would be such that the sums in the equations
in the second stage after diagonalization to the mass eigenf Appendix B 2 would not run over the sleptons. Further-

state basis requiring one light Higgs boson, whejeis the

quartic self-coupling of the massless Higgs field and a4

more, at the third stage after the rotation to the mass eigen-
state basis the sleptons could be integrated out together with

are quartic couplings between the light and heavy Higgs scahe heavy Higgs boson and tidg . The results of the third

lar fields:
ay=A1CO 0+ ALsint 6+ (Ag+ A,)coasirtd, (13

as=(2A;+27,)C0L0 Sir?0+ A(cod o+ sin'6)
—2A,c020 sirPo, (14

aa=(2A;+2A,)c020 SirP9—2A5coLsir? o

+ Ag(cod 6+ sinta), (15)
and
2Mm3
tan2p= ——- (16)
(M 1 Mz)

We now proceed to the third stage in which we integraté
out the massive scalars which are left in the théowe are
then left with an expression for the strengths of the interac
tions of the static magnetic fields and the light Higgs field, in
terms of the quantities of the previous stdde. particular,
we obtain the expression for the effective 3D gauge cou

pling,
[ e 1 1
05=G? 1~ —— |,
247 \ 2v(T,) Mp
and the effective Higgs self-coupling,
2
— ay 1
Ns=aqi—| @2+ —+azay| ———
o ( S 2 F 4) 87 w(Te)
3(H,co26+ H,sir?)2
_ 3(Hico9+ Hosirf)? 8
87TMD

stage, Eqs(17) and (18), would contain additional terms of
the same form as the contributions in the second stage. How-
ever, it is clear that the expressions for the G2, M, H2,

H%, and v(T;) would in general be different. We point out
that the trilinear slepton—Higgs-boson coupling would vary
after the rotation to the mass eigenstate basis and the light
Higgs field would suffer a wave function renormalization. In
addition, if the sleptofs) is nearly massless, then we cannot
integrate it out; if we had, some nonrenormalizable terms
would not be suppressed.

E. Nongeneric case

In this section we present a short discussion of the non-
generic case in which there are two light Higgs fields in the
final 3D theory. If the parameters are fine-tuned, we could
have a theory with two or more light scalar particles whose
nteractions are described by some poterftial this case the
infrared behavior must be studied with new numerical simu-
lations.

This fine-tuned scenario can be realized in several differ-
ent ways: two light Higgs boson$wo doublets, a doublet
and a singlet, ety;. a Higgs boson and a slepton; a Higgs
boson and a squarttop squark In this last case the main
features are a screened WA, field, and spatiak; gluonic
fields which are not decoupled from the squark in the 3D
theory. Numerical calculations must also take this into ac-
count and the scalar octet should be integrated gt pa-
rameters of the MSSM such that two scalars remain light, at
the third stage onhA, is integrated out. The expression of
the two-Higgs-doublet potential for the case with two light
Higgs bosons is given in Appendix B 3.

Ill. OTHER MODELS

In Appendix C we give the full results of for the param-
eters of the effective 3D theory for the 2HDM and the

2We have explicitly checked that the precise order of integration “The authors of Ref.16] have suggested a scenario in which the
out of theA field, before or after diagonalization, is not relevant up right-handed top squark and one Higgs boson are light. For this case

to terms~g°.

as they have pointed out one must be careful with coland

3There is a mass term for the lighest scalar field resulting from theharge) breaking minima of the scalar potential, or in the slepton
final stage on integration. Its expression is not included as it is notase lepton number violation.
necessary for the analysis of the phase transition. In fact, one may®In the generic case for the MSSM with one light Higgs, we did
argue that this quantity is the appropiate one to evaluate the criticalot have to worry about the §B) fields once the squarks have been

temperature. However, we have checked that the differendg in

integrated out as they decouple from the rest of the particles in the

from Eq.(11) and by requiring the lighest scalar mass to be zero istheory, even though there is a Debye mass for the longitudinal

irrelevant.

gluonic field, etc.
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FIG. 1. Feynman diagrams contributing to the mass of the scalar

Higgs bosons and to wave function renormalization. FIG. 3. Diagrams contributing to the mass and wave function

renormalization of the squarks and sleptons.

NMSSM. Here we summarize salient characteristics of these
models.

The reduction of a general 2HDM to a three-dimensional We have constructed, in the high temperature limit, effec-
effective theory is realized in only two stages and and thdive three-dimensional theories for the MSSM, a general
main differences with the MSSM are that the Higgs cou-2HDM, and the NMSSM which contain a single light scalar
plings are not fixed in terms of the gauge couplings, there ari€!d. We obtained the full one-loop relation between the
additional scalar interaction terms, there are no superpartn&PUPlings of the effective theory and the underlying 4D cou-

contributions to the theory, the $8) gauge bosons com- plings and masses. For the case that two Higgs scalars are
pletely decouple once the fermions are integrated out, an

[tht at the phase transition, we have also given the expres-
the off-diagonal Higgs boson mass term acquires a dominanto. for the two-Higgs-doublet potential whose infrared be-
contribution on the order of-T2. All of the above can in

havior must be studied with numerical methods.
o ) . The original parameters of these theories can now be re-
principle change considerably the dependence of the Cr't'c%\t 9 b
temperature on the parameters in the theory.

ed to physical parameters at the electroweak scale. For the
) > " ) effective theories containing a single light scalar Higgs bo-
The reduction procedure with the addition of a singlet o L, D
superfield to the MSSM has the following features: It in- son. thl.s will allow us tp evaluate the quant»ty— Aa/g3 as
P . . . 9 L a function of the physical parameters. In this way, we can
troduc_es additional couplmgs n the scalar and H|ggS|_no S€Cetermine for which regions of parameter space the elec-
tor which are not determined in terms of or g; the first ., yeak phase transition may be sufficiently first order. The
stage 3D parameteS, H, Mp, Mg, My, andei do not
receive additional contributions; there are additional contri-

results for the MSSM will be presented elsewhdg
butions to the wave function renormalizations ¢éf and
¢,; and for values of the parameters for which the mass of ) )
the scalar singlet is on the order of the (@UDebye mass, I would like to especially thank Glennys Farrar for pro-

after the second stage in which squarks and sleptons are iROSING this line of research, as well as many inspiring dis-
tegrated out, we are left with three scalar Higgs fields. Ccussions on thg physics relat.ed to this paper gnd comments
on the manuscript. | am also indebted to Mikhail Shaposhni-

kov whom | thank for many useful discussions. | have ben-
$,4 efited from discussions with P. Arnold and correspondence

AM
; 2 ;"“; with S. Martin. This research was supported in part by Col-
S
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line for both spatial and temporal components of the gauge fieldsplings.
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APPENDIX A: MSSM IN FOUR DIMENSIONS

Our four-dimensional Lagrangian will be a supersymmet-

ric SU(3)XSU(2) gauge theory with the same particle con-
tent as in the MSSM with the exclusion of(1) vector par-
ticles and corresponding superparth&r—19.

The MSSM chiral superfield content is

L—(’;f EC, (A1)
I
Q=(a)U°D°, (A2)
~.0 A+

P Al % _ ?2

1_(—¢1)’ v ((ﬁg)' ")
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FIG. 6. Diagrams contributing to the trilinear scalar couplings.

formulas presented in this paper we have kept all Yukawa
coupling dependence, although with the exception of the top
Yukawa coupling these contributions generally can be
dropped.

The scalar Higgs self-interactions generate, along with the
soft terms for the scalar Higgs fields, a two-Higgs-doublet
potential of the form

V(1,2) =Mipldy+ Mo+ mi(bldo+ s
+N1(PLp1) 2+ Mo Ph o) 2+ Na( Bl 1) (P bo)
+Na( Pl (), (A5)

in which the quartic couplings are fixed in terms of the gauge
coupling constants. We comment that in order to express the
scalar potential in this way the; field has been S(@) ro-
tated. All \; are real and fixed by supersymmetry at some
high scale to be

2 2
g g
)\1:§1 )\2:§1 (A6)
g g
)\321, )\42—7, (A?)

When we refer to the scalar component of the superfield we

will drop the caret.
Instead of writing out explicitly the full 4D Lagrangian
we will define only the quantities we will need to refer to. In

particular, the Yukawa interactions are derived from the su

perpotential, which for the MSSM is
W=pu($25+ b1 7 )+ Fu(h3i—dep;)U°
+fo( @0+ 0y ) D+ fo( B2+ Depy JES. (A4)

In order to maintain supersymmetry’s virtue of stabilizing

in theg’ =0 limit. As is well known the model contains five
physical Higgs bosons: a charged pair, two neutral
CP-even scalars, and a neut@P-odd scalaf17-19.

APPENDIX B: EXPLICIT RELATIONSHIPS
BETWEEN PARAMETERS

1. First stage parameters

The explicit relations between the 3D coupling constants

the electroweak scale via the cancellation of quadratic diverand masses expressed in terms of underlying 4D couplings
gences it is standard to introduce SUSY-breaking termsnd the temperature, obtained as a result of one-loop integra-
which do not reintroduce this type of divergence, so-calledion, are given below. These results reduce to the partial
soft SUSY-breaking terms. In particular, there are new scalaresults given for the MSSM in the literatuf20,21], as well
interactions proportional to terms in the superpotential ass the standard model resul®], by taking the appropiate
well as mass terms for scalars, gauginos, and Higgsinos. THamit. The formulas of Appendix D were used to obtain the
scalar interactions are obtained replacing each chiral supefinal results.N, N¢, andN denote the S(N) gauge group,
field in the superpotential by its corresponding scalar comhumber of fermions doublets, and number of scalar doublets,
ponent. Without any further assumptions we would have amespectivelyN. is the number of colors and it is taken to be
extraordinary amount of parameters which make it extremelyl for (s)leptons but we do not insert an explicit index for
difficult to do phenomenology. To simplify our parameter simplicity. Ngq is the number of squark and slepton doublets.
space we assume above the SUSY-breaking scélg:a  The indexi is a generation index. As the values of thend
unified gaugino massn,,;,mgz; (2) common mass for u parameters are not known we have kept the explicit de-
squarks and sleptonmé; (3) a universalA parameter. Inthe pendence on these quantities throughout the calculation.
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The thermal masses for the Higgs scalars are given by the 9 f2 f2
evaluation of the diagrams in Fig.°1: M§=m3 4 g2 16772 -N 2
M2=m? 1+ ~N E L L
1 o Tor? %1677 2 9 16n7 L 3 . L L
X__ i gz _f = _b
T2 A )\3 A4 1672 2 1672 1672
> 22 2 _
e CTHN 1§ 37T 51 g +12)
, X | (2N4+ Ng)ME+NAwY, (f3+f2)
fa Nl T2 @? L L
NS TN gt o] 4 D e R
~ 6 2/ 6 8 161 3 ugPmyy) L¢ (B3)
KG9 M12) 752
X 6)\1m§+2>\3m§+)\4m§+2Ncm§Ei & where
148
L,=2 In—
+NCEi (F3 AP+ 12 u?)+ NegMb(2N 3+ X\g) cl
—In47wT2+ y+Inu3, (B4)
L
+3(u2g2+m2g?) 16;2, (B1) Li=Lp+4In2. (B5)
) L 3 L k4 is the mass scale defined by the modified minimal sub-
M§=m§ 1+ 7 g2 W_ch fﬁi 62" 3 g2 W) tract_ion _(I\/IS) scheme. For every 3D parameter, the br_ackets
multiplying the corresponding 4D parameter contain the
3 T2 Ao Az Mg wave function renormalization correction. We mention spe-
+ 16 9°T2+ NCZ fﬁ, 1—2+T2 7+ €+ Ip cifically that the scalar-gauge boson loop contributes only to
: ' the wave function renormalization of the field, while the fer-
P mionic loops contribute to the wave function renormalization
N E T2+N A L A and the mass.
9" 2] 6 8 167° The Debye mass induced for the temporal component of
the SU?2) gauge field has additional contributions from those
| BAAM2+ 2N a2+ A am2+ 2N.m2S §2 of the standard model arising from Higgsino, squark, slepton,
2z ot T R T e Ozi Ui and chargino contributions as shown in Fig. 2:
2T2
> 9
+NCZ (fﬁiA2+fczjiﬂz)+qurng(2)\3+)\4) MD_ 6 (6+ NS+ NF/2+ NH/Z) (BG)
L Figure 3 shows the diagrams which contribute to the mass
+3(u2g%+ m?,g2) L (82) terms for a squarkslepton doublet. For the up and down
#OT M) 167 right-handed squarkssleptons we must neglect the dia-
grams with gauge boson and gaugino loops:
|
M =m2 1+ ? —(f24+2) L 3 L a0 8 L 2124
Q= Mo ¢ 01 16,272 9 162 T 62 3 % T6r?) T3 % T 16 9T

T2
+(f5+1) 13

N A3 Ny T2 ¢@? L, (4
+T2(—2 +t3+5 +(fd+f Jetg T2— 62 |3 gemo+ 6N ymg+mg(fE +f5) + 5 mi
16 L
+fﬁim§+(fﬁiA2+fﬁi,uz)+(fﬁiA2+f§iM2)+2)\3(mi+m§)+)\4(m§+m§) + 3mi,292+—3 m%gﬁ 16;2

2

SFigures were drawn using feynmf.mf.

—1)(4N3+2N4) — (Ngg— 1)Mg(2N 5+ )

167 2 ’ (87)
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2 L Lb 8 Lf 2 T2 TZ
M:J:mg(l_ZfZ 167 2+4gs 16’772 3 gg mz + = gST2+f2 3 +f'“21i E
Ly, [4 16 L
= {5 gZmG -+ 15,(2m3+ 20+ 2A+ 2m)) |+ | 4p?fF + m%gg) =t (B8)
Miz_ 2 1_2f2 Lf +4 2 Lb _§ 2 i +E 2T2+f2 T_2+f2 T_2
d = Mo ¢ 1672 95 1677 3 95 T672) 3 95 Tl 3T g
Ly, [4 16 L
" 1o [5 gomg -+ f,(2mi+ 2%+ 2A%+2mg) +(4M2f§i+§ m%gi) =1 (B9)

The expressions for the slepton masses are omitted although they may be readily obtained by excluglingrteetions,
noting that there is no right-handed sneutrino and droppingﬁgdontributions toM g andei. This is because the sleptons
do not have a Yukawa-type coupling to the field.

In Fig. 4 we show the diagrams contributing to the quartic Higgs boson couplings. The full expressions for the scalar
couplings are

ApengT] 142 g7 2° 2N2f A L B B A L B g° +ND f4 Lt
1=M 29 16,2 & 1677 39" 16,2 169 16727 81672 o4 4 1672
xi Ly Lb Ly
—(12>\§+)\§+?+)\3>\4) Te.2 N —()\3+>\4)2| 2 162 Z fg‘l 167
(\3tAp? A3} L, 5 , Ly
Ned =5 "% 6272 9 62 (10
9 Ly L 9 L, 3 g*
— 4
Ao=AoT| 145 & 157 22N 1, 75,2 730% 152 7| 16 9" 15,2 g 162 TNe i 167T2
A3 Ly, Ly
—(12}\%‘?‘7\%4‘7‘?‘)\37\4) 16’7T2+N ()\34‘)\4)2 fu 167 2 2| fﬁi W
o] Qsth? A3\ L L5 4 b 811
sq 2 1672 4 9 1622 (B1D
9 , Ly A , Li 9 , L, 3¢
A3=7\3T 1+§ g W_NC(fui_’_fdi) W_Sg EZ +T —g g W+ZW_(67\17\3+6)\27\3+2)\1)\4
+ 2N A g+ 2N3+2\2) 16772 N E (st Ng)(FR+15)+2 1] 13 )16 5 — N N3+ 2NN 4 +13) oo —
Ly 5 L
22 .t
+2NCZ fuifdi W'ﬁ' 2 g W} (B].Z)
Ag=NgT 1+g gZi—NE(fZH2 L —3g2 — — (2NN + 2N N+ 2N2+HAN5N )
4 4 2 16772 c i U; i 167T2 16772 14 24 4 34 167 2
L L L L
2, 62 242 b 2 _“b f
N2 (Na(FGH10) +27815) 752+ Nk s 5,2~ 2Ne 2 FTG 75,2 29" 15,2 (B13)

There are similar diagrams to those in Fig. 4 for the the quartic couplings of the Higgs bosons to squarks and sleptons which
have not been shown. They make the following contributions to these couplings:
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2902
9 L L L L 8 L
L2_¢2 Y2 b 2 2, g2 f a2 f 2 b 9 2 f
fo, =1aT| 175 0" 16,2 (NcZ T+ 1) 1672739 16721495 16,273 95 W}
T 2 2 2 4 2 2 2 4 2\ 2 Lb
-3 )\4—)\4fui+4)\4fdi+2fdi+4)\3)\4+4)\3fdi+2)\2)\4+2)\1fdi+2)\1)\4+2)\2fdi+§()\4+fdi)gs 1672
Ly 16 L;
_((qu— 1)(Aﬁ)+NC)\4Z fﬁi—Mfﬁi) a2 t|29- 7 fﬁigi) W} (B14)
9 L L L 8 L
1 b f f b f
AGT=AT| 145 o W‘(NcZ 181 | 167230 16727908 16,2 3 & 1602
9 4 Lb 3 94 4 2 2 2 2 4 2 2
+T —g g W‘FZW— 5 )\3gs+4)\3+6}\1)\3+2)\4+2)\4fdi+2fdi+6)\2)\3+2)\3)\4+)\4fui+)\3fui
+2)\1)\4+27\2f§i+2)\2)\4+2)\1f§i) 16772 ((qu 1)(2)\3+2)\3)\4+)\4)+N()\3+)\4)E 3 - >\3+)\4)fd>
50%\ L
— 4 —
X16772+ 2fdi+ > ) 162 (B15)
9 Ly L¢ L; L 8 L
Qil_ 2 1§24 62 b 2 f
AZT=NGT 14 5 g2 62 (N > f2 ] 15 —3g?2 6.7 +4g? I6.2 3 98 16774
T 2 2 2 4 2 2 2 4 2\ 2 Lb
-3 )\4—)\4fui+4)\4fdi+2fdi+4)\37\4+4)\3fdi+2)\2)\4+2)\1fdi+2}\1)\4+27\2fdi+§(}\4+fdi)gs 16,2
2 2 2 Lb L
- (qu_l)()\4)+Nc}\42 fa,—Nafg, 6.2 29— fd 92 16221 (B16)
9 Lp L¢ L¢ L 8 L
T2 2, f2 g2 b 2 2 f
fo =137 1+ g = (N > 2 TG | 162 —3g2 = L +4g? 6.2~ 3 % 16772}
T 2 2 2 4 2 2 2 4 2\ 2 Lp
=5 | | N NafG H AN T+ 20 FANGN G+ ANGE] +20oN g+ 2N FE F 2NN+ 20080 3 (NaH 1) 02| 15
2 Lb 4 2.2 L
—| (N sq— 1)()\ )+N 7\42 f2 —7\4f W‘f’ 29 —E fi 05 1672’ (B17)
L L L 8 L
Qi2_ 2 2 b 2, ¢2 g2 f a2 _—f 2 b ©® o *f
A3t AT 145 07 16,2 (NCZf Tl la | Tom2 739" 16,2 7495 16,27 3 9 Ton?

9 4, L 3 g 2 2 4 2 2
+T —g g W‘FZW )\393+4)\ +6)\1)\3+2)\ +2)\4fui+2f +6)\2)\3+2)\3)\4+)\4f +)\3f

Lp
+2)\1)\4+2)\2fﬁi+2)\2)\4+2)\1fﬁi) 6.2 ((qu 1)(2M3+ 2N g\ 4+ N2)N, (>\3+>\4)2 f2 (Ng+A\g)f2 )

X +| 2+ —
21y, 2 ] 1672

Sg Ls




HIGH TEMPERATURE DIMENSIONAL REDUCTION @ . .. 2903

56
L L L 8 L
— 2 2 2 f 2 f b © > f
AZP=NT| 145 g2 1677 N E AT 1] 15230 (21402 523 9 —21677}
T 2 2 2 4 2 2 2, 4 2, 2| Lo
-3 )\4—)\4fdi+4)\4fui+2fui+4)\37\4+47\3fui+2)\27\4+2)\1fui+2)\1)\4+27\2fui+§()\4+fui)gs 1672
Ly 16 L,
( qu—l)()\ﬁ)+Nc)\4§i: fﬁi—)\4fﬁi) oo —2 4| 2g* -3 fﬁ_gg) W} (B19)
9 Ly L 3 L L 8 L
TRZ_ 2 2 f_ 2 2 f 2 _—b %9 2 f
M5 =M6T| 1+ 3 0° g2~ Mo 3421 ) 162 29 T6n? 749 16,273 % 1647
L L 16
+T _F;Z ( 3 g2+ (20N g+ g+ 12)13 +3f4 + 61,13 16;2 ( dgs+2f4+3fdgf”, (B20)
9 L 3 L¢ L 8 L
TRZ_ 2 2 fF_- b 2 f
=71t 3 0 g | N fiv2f )16777 5 0 T2 H40E 16,73 O o2
Lo (4 5 5 2442 4 2 L 2 2 4 2.2
+T T 16:2 |3 fuigs+(2)\3+)\4+fdi)fui+3fui+6)\2fui +W f g +2f, +3f g . (B21)

We would like to point out that th&/2 factor in the expressions fox 2, f_cL,l2 Afiz, andf?i is due to the fact that the sum

of the first two is the full quartic coupling to thé, field, and analogously for the second pair.
As explained in[8] we can obtain the gauge and quarfig-scalar—doublet couplings from the same set of diagrams

depicted in Fig. 5:

. g® [44—Ng 1 2
G =g°T 1+W 6 Lb_§ (Nf+NH+4)Lf+§ (B22)
i 9 (MNs | L NN L
T4 1672 | 6 b= g (NeFNu AL+ 7670
3 , Ny , ¢
X E g —? +§ (NF+NH+4)+12A1+2(NS_1)(2)\3+)\4) . (823)
The scalar trilinear couplings are also modified as can be seen in Fig. 6:
L f2 3 L, 3 . L L, 8 ., L
A R —_c 2_2_f__2“_1_2b__2_f
Afy=AT T 1+ 7 0% 162 E Wt M) 1672729 162749 16,2 3 % 162
4 L 16 L
_AfUiTllz )\3+2)\4+3f5i+NC2i fﬁi+f§i_§ gg) W_mmfui-rl/z(Sg m~f Tllz( 3 g) 67
(B24)
2
— 9 |_b f, N L3 Ly 3 Ly L, 8 L
_ 112 e S I Y _ 42 2 _°2 2
A=Al T 145 0" ea-| 5+ 5 2 i+ d) 162 29 T6m2 719 162273 % 162
4 L 16 L
—Afy T )\3+2A4+3f§i+Nc2i fa+fi—3 gg) T6.2 ~Muzfa T43g —mafdiTl’Z(g g§> 162"
(B25)
_ 9 Ly 3 Ly 3 L L, 8 L
_ 1/2 2 c 2,2 g2y 2 _° 2
plo=pty T I+ 7 0% 752~ ( 2 fa f 210 o2 9 Ter2 TA% 16,7 73 % g2

4 Ly Lt
_Mf T1/2 —Ngt NCZ f2 2 f2 _ gs) W_F/qui-rl/z(z fgi_392) W’ (826)
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9 Ly 3 Ly 3 L L, 8 L
_ V242 g2 c 24~ g2, 7 g2 © 2
Mo=pfgTH 1+ 7 & 152~ ( 2 M f t2 1) Tom2 2 9 Ton? H4% 167 3 % Tor?
4 L¢
—pfg TYA Ng=Ag+ N> fi—2f5—= gs) oo 2+/Lde1/2(2f2 3g%) 6.2 (B27)
I
|
We comment that at zero temperature phéunction coeffi- 2°p2 272
NcF2A N f

cients for the four trilinear couplings given above, which areH =H{1-D ————73-> 73
products of two parameters, can be obtained from the run- T 12n(Mg+M,) T 127(Mg+My)

ning of each parameter separately. This is true up to an ar-

bitrary number of loops. —2

_E N,

1
Q2 Qi2
Il N 1 /\ I H [
(27 4 )87TMIQ f“i 87TM'Q

2. Second stage parameters 1 fﬁﬁ fﬁﬁz
L . —H ' + ' B30
The gauge coupling is given by the expression 877M'Q (M'Q+ M) (M'Q+ MT)2 (B30
GZ
G2=G2? 1- Z Ne —=—— 287 M (B28) The elements of the scalar Higgs doublet mass matrix are
Q now given by
i i i _ N.f2 A?
A clear difference appears now in the couplingAgfto ¢, ) 2 c'd;

and ¢, which is not protected by any symmetry. How large
this difference is depends strongly on the values of the soft
breaking parameters. In general, the expressions simplify chﬁiﬁz
considerably if we ignore the trilinear scalar interaction -2
terms. Additional diagrams, shown in Fig. 7, which were !
suppressed by powers ®f 2 for the first stage, are included.

We point out that the box diagram with two external scalar _2 N
Higgs legs only contributes to the four-point function which

_Ei 127(MG+M5)®

120(Mg+M})®

= M
4 4

-2 . .
| (fa +2A AN 22+
determinesG?, as there is no trilineahg¢ ¢ interactions in

272 27
the three-dimensional theory: fa,A fuiM

+ + : B31
2m(ML+MY) | 4m(Mo+ M) (B3Y)
T s L NG A
= — _— - — cly;
! i 127T(MIQ+M'd)3 i 127T(M|Q+|\/|lu)3 M§=M§ 1—2 W
u
) ! 1 2—7
—E N H(ZAS'l‘f‘A?'l) M +Hf_(|]i2 W— 2 chdi’u
: - - D N
' o Q Q T 12m(Mg+My)®
1 fgA® o u? i .
—H : + - , (B29 : 2 M M
87Mp | (Mg+Mp? "~ (My+MD)? (829 —2 N (5 +2A 9%+ A %) 4—:+f_52 -
S \L ’ N S fﬁ? fg;z
S ol 3 . + ' + ' , B32
—p’(, ] ---l’ \\\\ —,'(, 47T(MIQ+ M:J) 47T(MIQ+ Mld) ( )
~s~= : : /‘“s,=
\\ ---\\ s \\ —
N N.f3 A2 < Ncf2 u?
MZ=M2| 1— ' - '
. ) 33 ¥ 24m(Mg+MY)° G 24m(Mg+M})°
N 4 -
s NG f5 A% s Nofg n?
. T 24m(Mg+M)°® F 24m(Mg+My)®
s 2 A P2 7A
’ u; M diM

—2 N¢

FIG. 7. Additional diagrams included in the second stage. i

(B33)

+ .
4m(Mo+M)  4m(My+Mh)
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The resulting Debye mass from the second stage of integration is

“I
=

52 N

(B39

UN

We remark that the previous quantity is always positive for values of the parameters for which both perturbation theory and
the high temperature expansion are valid.
The resulting quartic Higgs boson couplings are

_ N2 A2 N,f2 2 (AT AZH2 1 A g
A=A 1= —— e > L SN - -
VOHT A em(Mg+My)® > 6m(Mg+M})° 2N 2 gnMy 2 8wMjy
—4 —54
1 fg 1 fg 1 1

—(AQ+ ALY

+f§i?(A§i1+Afi1+fﬂgi)

' 87My 2 87My 2 8wMj 8mMy (M +Mp)2

L1 1 1 1 1 1
+F2 A" 213 2% o~ i u 5
8mMy (Mg+My) i 8wMY (M+ M) 8TM Mg (Mg+My)
— 1 1
—f4 A B
47 8TMMG (Mg +My)3/” (B35)
A__A . chﬁiAZ 2 N f2_2 +2 N (A§i2+A?i2)2 1 ASZZ 1
2 7 6m(Mg+My)® G 6m(M +|\/|d)3 2 8TMy 2 8wMy
L R
1 u; 1 u; 1 — 1 1
Q2 Qi2y¢L2 i i 2 52/ A Qi2 Qj2
- = —— + +
—(AZTHAL )fl 87Mgy 2 87Mg 2 87M, AT AT AL fu )877|v| (Mg+Mg)?
— o2 1 1 ) 1
+13 uPAd? +f5 AZTT
87M, (Mg+ M'u)2 Y 87M (Mg+M,)?
— 1 1 — 1 1
—fgut —fi A4 : B36
G BaMEMYy, (ML M3 4" 8aMIMG (M+M1)? (B39

N,f5 A2 Nef? u? Ncf2 AZ Ncf3 u?
M=o 123 1277(M'Q+M'd)3_2 12m(Mg+M})° 4 127T(MIQ+MIU)3_2i 12m(MG+M}p)*

+ NC< —(2AFIAZEHAGIAGE L AITAD I ATEATT

SWMb

—(FAQ HEE AP 2L+ AT 15 AT +12 (A2 ?A 2+ AZA D

87Mb

1
87Mg (Mg+My)?

+AJTAY) 1A LA+ AZA QP+ ADPA)

MY (Mo M. )2+fd(f

1 1 1 1 —
2= J¢R? 2¢274_ 22 722
fd,LL fdl 87TM:j (MIQ+ M:j)z 2[(fdifui,lL 2fdifuiA M

+ ¢ R?
f fls My (Mg+M,)?

+13 12 AD (MG MY, My) + 1§ AZuZE (Ml My M) + 5 AZ6E (MG MY, MY)T (B37)
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5 N.f3 A2 Nf2 2 Ncf2 A2 N 2
1_ I 1 I I

A= Ag| 12 1277(M'Q+M'd)3_2 127(Mg+M)° 4 12w(|v|'Q+|v|'u)3_Z 127(Mg+Myp)®

+> Nc(AfilAfiz + (A A2 4 21571
i 1 ] ] ]

i Qi
87TMQ 87TMQ

. 2 . — —s 2 .
G RA(TR2HAQD — (TG + AT A?) +[ERA(TG + AT

87Mg (Mg+M,)?

—[2 Q;2 — 1 1 — —_— J— . . .
—(fg +AS )f?,iAz]%M.Q (M.Q+Mld)z—2[—(fﬁifﬁiu“—ZfﬁifﬁiAzuanfﬁifﬁiA“)f(M'Q,ML,M'd)
+2f‘u‘iA2M2f(M‘Q,|v|{,,ML)+2f3FPf(M5,M‘U,Mg)] , (B38)
|
where APPENDIX C: 2HDM AND NMSSM
1 21+ Mot m Our discussion of the 2HDM and NMSSN will be brief as
f(my,my,mg)= — 21 2 2 _ we have already introduced all of the relevant points in pre-
87 My (Mg +mMg)“(My+ma)“(My+ms) senting the effective theory for the MSSM. We will limit
(B39) ourselves as much as possible to giving our results after each
stage.

3. Two light Higgs bosons

As mentioned in Sec. Il E for the case in which both 1. Two-Higgs-doublet model
eigenvalues of the mass matrix of the Higgs doublets are |, the case of a general two-Higgs-doublet model the sca-

such that we cannot integrate out one of the scalar Higgf, hotential can contain additional quartic terms of the form
fields, the third stage corresponds to the integration of only

the A, field. Since there is no trilineafAy¢¢ interaction AV=N5(dldo) (dlda) +hg(dlp1) (i) +N7( D)
term, there is no wave function renormalization at this stage.

Consequently, the two-Higgs-doublet potential is X(pyp1)+H.c. (CD
T2t 21 2t T
V(Ao 1, ¢2) =Mid1d1+Madodot M3(hrbot daeb) In this case the values of thg are not expressed in terms of
+)\1(¢I¢1)2+)\2(¢Z¢2)2+)\3(¢I¢1) EZZI weak coupling constant. We take all parameters to be
><(¢‘2r¢2)+)\_4(¢’£¢2)(¢5¢1), (B40) The reduction procedure differs _from that of the MSSM
because the model does not contain superpartners. This im-
where plies that we will have only two stages of reduction. The first
one would once again correspond to the integration out of
M- the heavy nonstatic modes. Consequently, thé35dauge
mi=M3—H, 4—D, (B41)  particles decouple when the fermions are eliminated. The
m resulting theory for the static modes is be described by a
_ scalar potential with scalar masses
— — M
—2_ 12 D
my=Mz—Hz 7 (B42) L QT
Mg= 6 (44 Ng+ Ng/2), (C2
H_z
NS 1
)\12./\1—3 -, (B43)
8’7TMD 2 2 Lb
o AMI=—6m3\g 162" (C3
- H3
)\2:A2_3 -, (B44)
8’7TM D 2 2 Lb
o AMS=—6mg\7 =3, (C9
—_ 1 HiHe
A3=A3—6 : (B45) 2
8p

2 T 2 2 2 Lp
AM3:Z ()\6+)\7)_(12)\5m3+3)\6m1+3)\7m2) W
andm2=M2 andx,= A,. (CH)



56 HIGH TEMPERATURE DIMENSIONAL REDUCTION @ . .. 2907

We note that, unlike in the MSSM, tHé3 term receives a Aag=—4A5c0S0sirth—(2Ag—2A;)(coS 6sind
contribution proportional tér'2, which is in fact the domi- i
nant correction. The quartic Higgs boson couplings are —sin*gcosy), (C14

modified by the terms

AA; = —T(202+602) —, (C6)
> T 16w X (coS fsind— sintfcos). (C15
AA,=—T(2N\3+ 6>\7) 167 —, (C7)  The second possibility is that both Higgs fields are light, in

which case only thé\ field is integrated out at this second
stage. This is identical to the situation described in Appendix
(C8) B 3. The quantities\s5, Ag, andA; are not modified by the

AAg=—T(ANG+2NG+BNeh7+2N7) To— o=t A, field
o field.

AA,= —T(32>\5+ 5)\2 6T 2Neh7+ 5)\7) 16m 2, (C9 2. Next to minimal supersymmetric standard model
If we now turn to the supersymmetric case with an addi-
9 L, L tional singlet superfieldN, we will have additional terms in
As=AsT| 1+ 92 W_NCZ (f5+f3) W} the superpotential of the forfii7,1§
I

_T(4)\1)\5+4}\2)\5+ 8)\3)\5"’ 12}\4)\5

AW= )\(¢1¢2+ ¢1 by ) —rN. (C19

oolx

L
+5X2+ 2\ gh 7+ 512) ﬁz, (C10

Consequently, the extra terms in the scalar potential, includ-

£2 3f2 ing additional soft SUSY-breaking terms, are
A=)\T1+g 2 Lo _Nz ﬂ+_d‘ i
6N 2T 2 9 e Ve |27 2 162

_ * T 1 3. 282 T
CT(120 A+ 3Nshg+ NN g+ 10NN g+ 3Nahy AV=myNTN+Mypy poN+ 5 MsN"+mzN"+As(b161)

X(N*N)+ Ng( bhb2) (N*N)+ N 7( ] ) N*°
(C1)

+ 20Nt 2\s\7) 75 —, +Ng(N*N)Z+ No( b1 o) (A1)

9 A +AuN(Bld1+ phda) + Ny pIQDF N*
A7=MT| 145 07 16 N2 1672 —euphfy $1QF UFN* +H.c. (C17)
—T(12\ A7+ 3N gh 7+ 4N A7+ 10Nsh 7+ 33\
b The quartic couplings are expressed in terms of the param-
+ 2NNt 2h5M6) 752 (C12  eters in the superpotential at the SUSY scale by

We have written above only the additional contributions but
we remind the reader that superpartner contributions to the As=A% Ng=A%  Ng=\?, (C18
formulas in Appendix B must be dropped. This is true for the
G andH couplings as well, which do not receive new addi-
tional contributions from the extra interaction terms. Ao=—\Kk, Ag=k2. (C19

For the second stage there are two possibilities. First, as in
the generic case of the MSSM, after the first stage one Higgs
boson is much heavier than the other and it can be integrateffe will have three reduction stages just as in the MSSM.
out with theA,, field after the mass matrix has been diago-For the first stage, we see that BeandH couplings and the
nalized. This is completely analogous to the procedure iweak and strong Debye masses are not modified because the
Sec. IV D, with the parameters changed as indicated abovgarticles we have introduced are gauge singlets. The 3D
(ignoring all overbars in the parameters of Sec. )l Dhe  squarks masses are also not modified by the introduction of
expressions for they; in Egs.(13), (14), and(15) have ad- the singlets. We mention that there are additional contribu-

ditional contributions from the\s, Ag, andA; terms: tions to the wave function renormalization of tlfg and
¢, fields from the fermionic loops involving the singlet
Aa;=2A5c08 6sirf 6+ 2A gcod fsind+ A,sin cosd, Higgsino. For the scalar Higgs doublet masses and quartic

(C13 couplings we have additional contributions
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2
L Lp Ly
AMZ=(Ng+Ng+\?) ——ml)\z W—(m%)\9+m§,)\5+mi+2)\2,u2) 162 TN 5
2 2 T 2y 2 f 2 2 2 2 2 Lb 2.2 L
AMZZ()\6+)\9+)\ )1_2_m2)\ 16772—(m1)\9+mN)\6+m4+27\ M ) 16772 +2)\ M 167T2,
2 2y 2 f 2 2 Lb
AM3Z=—m3\ 16”2—(2m3)\9+2)\,um4—2)\7m7)W,
Ly )\é NG Ly Ly
— 2 _° _2 _ B \4
AA, T[lex 62t |5 T 5 Tt k| e N 1o
, Li Y Ly , Ls
2 _—f 2, _Lb s L
AA3=—T| 2\3\ W+()\5)\6+2)\1)\9+2)\2)\9+2)\4)\9+)\9)W +2\ 1672
Ag=(Ag+ ) T1+9 L NZ 2.+ f3 B L P
= (At o) 0° To.2 (fo5) 16,2 739" 16,272\ 16,2
—[2N1(Ag+Ng)+ 2N o(N g+ Ng) +2(A g+ Ng)2+4N3(Ag+ Ng) +273] Tor 2
L L L L
2, ¢2 22 b 2 b 22 f a f
+Nc2i ()\4(fdi+fui) +2fuifdi) 5.2+ Nsah —167T2—2NCZ fefe 152 29" 15,2

The interaction terms between the scalar Higgs doublets and the squarks and sleptons are modified by

Ly
—[NFE A No(Ngt Agt )] —+2)\2f2

Qil_ 4| _ 2 f_
AA; T[ A3A 16 1677}’

Lo 2\2f?
62+ d16

AASiZ:T[—ASAZ —[A2F3 +No(Ngt hgt13)]

f
1672 1

L
B N ¢ — }

12 .
A(fg) +A$'1)=T{—(f§i+)\4))\2 i T2

f
To.2 "IN+ he(F+10)] 16772
FL2, A Q2 2 , Li 22 2 Ly \2 L
AMGTHAZD) =T = (T A AN gz HINTG+ Ro(Tg T o) 52~ NF 1672’

Ls Lo L
AfR_ZzT(—fﬁi)\z 7= 2Nf5 5 2N ,

uj 167 i 167 i 1672
AfR2=T| —f2)\2 1 _2)\2f2 TN
di 4™ 1672 4 167 2 4 1672/
AAT, = T2 Ap, AL +Afym Lo
Ui U 2 1672 4 1672
— A2 Ly Ly
AAfdf—T”Z(fdi 2 Tom2 T Mo ﬁ)

2
Lp
_ _ T2 2
A,ufui— T (,u,fui > 16 5+ A fui,u 16772>’

N Ly Ly
A fdiZ—T]'/z(,LLfdi ?W_l—)\zfdi’u W)

(C20

(C2)

(C22

(C23

(C29

(C29

(C26

(C27)

(C28

(C29

(C30

(C3)

(C32

(C33

(C39

(C39

(C36
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The 3D expressions after the first stage for the mass and interaction terms of the singlet Higgs are

9 ., L, , L3 L
143 ¢ oz Ne2 i T2 3 O Tgmz (27H3

Ly
(392)\2+8k2)\2+2)\4) 62| (C37

_T[(6>\1>\5+2>\§+2>\3>\6+>\4>\6+4>\§+4>\5>\8+NCZ 7R ) 6.7

Ag=NgT 1+2 g2 i—N > 2 — e 3 g2 Lt —(2Kk2+ 3\ BAoNg+ 2N2+ 2 N5+ N gh5+4N2
6 6 4 16772 [ i U 167T 2 167 182 26 6 315 415 7
+ANghg+ N, f2N2 Lo —(39°\%+8Kk>\2+ 2\ Lt (C39
678" Tear AT | 1677 16m2|’
9 f2 i) oL o3 L
i f_ 2 2 =t 52
Ar=AT| 147 ¢° 16772 Ne2 | 5+ 5| 15273 & T2~ (2°+3N
Ly .
—T| (286N 7+ 2N 7N g+ 2hgh 7+ 25N 7+ hahe) 755 2KN 6772 , (C39
2 L 2,42 2 4
1/2 2.y2 1/2) Ly 3 Ly
M Tl/2 1 2 fz' Lf 3 k2 2
—T“Z[(4)\)\7,u+)\3m4+2()\4+)\9)m4+)\5m4+)\6m4+2)\7m5+A)\NCE (fa+12)
i 1 I
Ly ) L
16m? ) 16772}’ (¢42
2 2 2,42 T2 Ly
My=mg| 1—2(k“+\ +(k“+ N+ A5+ Ng+2Ng) 5 1672
2,2 2 Lf
X (N2 2+ 2N 2m2 + 2\ 2m3+ 4AN2m3+ AN 2mE + 2m2 + 2m2 — 4m3hg) + 12022 672" (C43
9 Ly 3 Ly 3 L Ly,
P2 _C 42 2
My =AtT/1+7 0" 757 ( AR f“i) 162 2 9 Ton? T49 1672
8 L 3 L Ly 4
-2 g2 W_<E >\2+k2) = _T[W —fouifﬁi—g N RN PR N PV S Vs Nc"fuiEi i,

Lt 2 2
- (—2)\fuifdi+3)\fuig ),

16w (C49
9 L, ([N, 1, 3 L 3, L L
— _ N2 2 = 2 = g2 = g2 T N2 2 _7b
fo=AfaT) 17 0" 16,2 ( 2 2 i3 fits fdi) 162 2 9 Ton? 749 1672
8

Ly (3 Ly Ly 4
—= g 16772_(5 >\2+k2) 16772}_T[W —fodifﬁi—g Afdig§+)\fdi)\3+)\fdi)\6—)\fdi>\4+NC)\fdiZ 3,

L
—ﬁz (—2)\fdifﬁi+3>\fdigz)} (C45
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We denote the 3D coupling of the triIined;r’{qSlN term by J; and similarly for the¢§¢2N term by J,:

L
_ 112 2 22 2 2
= uT¥ 14 7 ¢ 1&# Elf,ﬂhz 5 9 T2 <k+2x>l&#
L
_Tllz[(67\)\1/1«""2)\)\3/~"+)‘7\4M+2)\)\5’M+NCZ )\fﬁi,u o N+ 2N3w) 6772}’ (C46)

9 ) L, 3 L
_ 172 42 _ 2 _2 92
=AuTH 1479 2 NCZ fTen2 29 162

Lp
+N D, A2 —(3g2\pw+2\8 .

T

-

L
(K2+2)\2?) W) Tlf{ ( BAN+ 2MN g+ AN g+ 2NN gt

(C47

The second stage proceeds just like in the MSSM. The interfhere are no triangle and box diagram corrections to the
action terms between doublet and singlet Higgs fields ar@above second stage quantities.

modified by
N3 A2 Ncf2 u?
As=As| 1 Z 120(Mg+Mp® 4 12m(Myg+Mi)3
AP
- — C48
T 4m(Mb+MD) (€49
_ N2 A2 Ncf3 u?
Ae=Ae| 12 o W S ML
A3
_ I B A4
Z 47T(M'Q+M'd)’ (C49
_ N,f2 A2 Nef3 u?
M4=My 1_2 i i 3_2 i i3
¥ 24m(MG+ML)® T 24m(My+MY)
s N,f5 A2 s Nef2 u?
ST 28m(MGEMYS T 24m(MG+ M3
AAf} AAT2
_Ei Ne 4w(|v|'Q+|v|') 47 (M! +|v|u) (€50
. N,f3 A2 Ncf2 u?
=i 1-2 120(Mg+My® 4 12a(Mg+M})*
Apf2
“Ne2) 4m(ML+ M)’ (C5Y)
N 2 A2
% 32(1‘2 oML W
Nof2 2 Aufl
_ — ' _|—-N S —
7 12m(Mg+My)3 CZ 4m(Mg+My)

(C52

The scalars in the resulting theory are two Higgs doublets,
a Higgs singlet, and thA, triplet. Depending on the values
of the parameters which determine the 3D mass of the sin-
glet, ifitis heavy (~gT), it can be integrated out at the third
stage after the diagonalization of the scalar doublets mass
matrix. We remind the reader that we have determined the
critical temperature by finding the direction in which the
curvature of the potential vanishes at the origin. Conse-
quently, there are no mixing terms in the mass matrix be-
tween the doublets and the singlet Higgs fields. The addi-
tional contributions to\; from the singlet, including wave
function corrections, are

AN al+al a? 1
Na= | g T T ME) 2 8aMy
1
—2A2coS0sirt) ——— BaMy + az(ad+ad)
1 1
2, 2.2
“Bau(Tg) [T T Mg (457
ot ! (C53
8mv(To)My [#(Te)+My]*
where
a5=M 4020 J,sindcos+ J,sindcosd,  (C54)
ag=— M_4$in20—J_lsinacosﬁ+J_zsin0cosﬂ, (C5H5
7= AsCOL0+ AgSir?o. (C56)

APPENDIX D: FINITE TEMPERATURE FORMULAS

In this appendix we include the basic integrals which ap-
pear in the calculation over the nonstatic modes. These re-
sults can be derived from formulas presented in the literature.
We refer the reader to Reff8,22,23 and references within
for more details regarding finite temperature formulas.
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1.m=0 n=o
2 2\—o
Let us consider first the massless case. We can define the ¢(ow) ; +v) e (D10)
guantities
1 ver (- D/2+s) s It is easy to verify that
Aszi‘lp_Zszzlu‘ ( )D 21‘*( ) (ZWT) st g(ZS_D), J
(D1) Af(m)=—(s-1)* m2 As-1(m), (D1))
with p?= 52+ wé, wg=2mnT, andD=3—2¢. For bosonic  and for high temperature, dropping thX¢) terms, we can
sums,n=0 is excluded, where use the expansion
43 2ep T2 m? (1 m*
ﬁzﬂzesz f G b (D2) AiM)=15- 752 | Z+Lo| +O| 72| (D12
and

Similarly we have, for fermionic excitations,

1
Sl |+ (D13

1
1
) == (D3) Rl =gz

o ap . 2 . We can now extend our considerations to express the fermi-
with p°=p“+ g, and wg=2m(n+1/2)T. Using the fact onic integrals in terms of the bosonic ones, obtaining
that
B‘S)fl"'“k(m) — 225—D—kA:1“‘ak(2m) _A:r"“k(m).
As+Bg=2%"PA,, (D4) (D14)

we can easily determine the fermionic contributions in termd.et us write the explicit results for
of the bosonic integrals. Generalizing, we can write

A‘=i‘,—=o (D15)
a ag_ —-D—-k a a S 2 2\s ’
Bt k= (2257 PRk AZY K, (D5) (p*+m9)
where the superscripts; - - - « indicate additional powers of o:ﬁ Po _ (D16)
momenta in the integrals. In particular we have (p+m?)° ™
T? PiP;
Ar=13+0(¢) (D6) A”—ﬁ O
and PoPo
A= j: PP S FAAs),  (D17)
1 1
Ae=gmz | e Tl D7) \where
where Al(s)=—(s=1)"1 — Ai(s—1),
—
Ly=21In Z;T m* (1 1
Al(l)—m ;‘l‘L +ﬂmT
—In47T?+ y+Inu3. (D8)
e, 1 m? 1 .0
2, is defined by thaVS scheme. Aol)== 75 T gz M+ 5 mT+
(D18)

2.m#0
We would also like to write the explicit results for the inte-
If we now include the effect of masses, our formulas will gra|s

be modified in the following way:

1
1 (- D/2+s) C(p,ml.mz)=j: T T2 s 22— Ag,
Adm :i—: 2eT 27T) 2s+D k“+ wp+mi; (K—p)“+ow,+m;
S( ) (p2+m2)s M (4 )D]ZF(S) ( ) n n (D19)
x| | 2s—D; 1)—(1)(_2%) (D9) Ci _j: ki 1
" 2aT) \2aT ' (P, My, M) = K2+ w2+ m? (k—p)2+ w2+ m3

where =p;A,/2, (D20)
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o 1 We would like to relate the fermionic integrals of this type to
Cl(p,my,my) = ikz-l-w 2 (K= p)2t w2 the bosonic ones:
=piP;Cz1+0i;Cyo, (D21 (B)= ﬁ 1 027
a am p ,
with K2+ o2 (k D)%+ w?
Ca1=A2f3, (D22)  with, once againp?=p%+ w2, andwg=2m(n+1/2)T. We
2 2 obtain
T 2 2 p
szzﬂ_ ml+m2+§ A2/4, (D23) 1 1
% L D(p’ml’mZ)_‘ﬁ‘ K2+ w2+ m: (k—p)2+ wa+md
00 _
¢p.my,mg) K2+ w2+ m] (k—p)%+ wa+m3 =B, (D28)
roi (1+L +2 i ki 1
o4 a2z | Ztlo i =
24 647" \e D(p.my,m,) j:‘k2+wﬁ+m§(k—p)2+wﬁ+m§
2
X m§+m§+§ (D24) =piB,/2, (D29)
E'(p,m¢,m,) D'l(p,m;,m,) = i .
1 k2+w2+m1(k )%+ w2+ m3
—i‘, ik, ! —pip;Dyr+g;; D D30
= k2+wﬁ+m§(k—p)2+wﬁ+m§ =PiPjP217GijD22, (D30)
1 explicitly,
TV EY S
(k P ) +wn+m3 D21: 82/3, (D31)
P 1+L) (D25) 2 2
=8~ | = +Ly), -
14167 e Do~ 25~ m§+m§+% B,/4, (D32)
E%(p,my,my)
1
k(z) 1 D°%(p,my,m,) = i
_ 1,M; 7 p)
£k2+wﬁ+m§ (k—p)2+ wZ+m3 k?+ on+mi (k=p)?+ ot m;
T 1 (1 2
y 1 =16 an 2( +Li+2 m§+m§+%,
(k—p")*+wi+m3
(D33)
_ 1 1/1 1
B AR (D26) whereL;=L,+4In2.
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