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We consider electroweak symmetry breaking in supersymmetric models with an extra nonanomalous U~1!8
gauge symmetry and an extra standard-model singlet scalarS. For appropriate charges the U~1!8 forbids an
elementarym term, but an effectivem is generated by the VEV ofS, leading to a natural solution to them
problem. There are a variety of scenarios leading to acceptably smallZ-Z8 mixing and other phenomenological
consequences, all of which involve some but not excessive fine-tuning. One class, driven by a large trilinear
soft supersymmetry-breaking term, implies small mixing, a lightZ8 ~e.g., 200 GeV!, and an electroweak phase
transition that may be first order at the tree level. In another class, withmS

2,0 ~radiative breaking!, the typical
scale of dimensional parameters, includingMZ8 and the effectivem, is ;1TeV, but the electroweak scale is
smaller due to cancellations. We relate the soft supersymmetry-breaking parameters at the electroweak scale to
those at the string scale, choosing Yukawa couplings as determined within a class of string models. We find
that one does not obtain either scenario for universal soft supersymmetry-breaking mass parameters at the
string scale and no exotic multiplets contributing to the renormalization group equations. However, either
scenario is possible when the assumption of universal soft breaking is relaxed. Radiative breaking can also be
generated by exotics, which are expected in most string models.@S0556-2821~97!02117-6#

PACS number~s!: 12.60.Jv, 11.25.Sq, 12.10.Kt

I. INTRODUCTION

The simplest gauge extension of the standard model in-
volves one or more additional U~1! symmetries and their
associated extraZ bosons. Such U~1!’s often emerge in the
breaking of grand unified theories~GUT’s! or in string com-
pactifications, for example.

There has been much phenomenological work on the im-
plications of such heavyZ’s for precision electroweak ob-
servables and for future hadron ande1e2 colliders. Present
@1# and future@2# limits as well as search and diagnostic
capabilities depend on theZ8 mass, mixing with theZ, gauge
couplings, and chiral charges of the ordinary quarks and lep-
tons, and are thus very model dependent. For many typical
~especially GUT-motivated! models the limits on theZ-Z8
mixing are around a few31023. The lower limits on theZ8
mass are typically around 500 GeV, usually dominated by
direct searches at the Fermilab Tevatron (p p̄→Z8
→l 1l 2) @3#, but with constraints from precision elec-
troweak tests often competitive. Recently, a number of au-
thors @4# have postulated that a possible excess ofZ→b b̄
events at the CERNe1e2 collider LEP could be accounted
for by the mixing between theZ and a leptophobic~hadro-
philic! Z8 which mainly couples to quarks, but the most re-
cent LEP data, especially from ALEPH, have considerably
weakened the case that there is an excess@5#. In the future it
should be possible to discover a heavyZ8 at the CERN
Large Hadron Collider~LHC! for masses up to around 10
TeV. Diagnostics of its couplings at the LHC or Next Linear
Collider ~NLC! ~which have complementary capabilities!
should be possible up to a few TeV@2#.

In addition to being a useful signature of the underlying
theory, an additional U~1!8 would have important theoretical
implications. For example, an extra U~1!8 breaking at the
electroweak scale in a supersymmetric extension of the stan-

dard model could solve them problem@6–9#, by forbidding
an elementarym term but inducing an effectivem at the
electroweak scale by the U(1)8 breaking. This possibility is
one of the major motivations of this paper. There are also
implications for baryogenesis. One popular scenario is that a
lepton asymmetry@10# ~or an asymmetry in some other
quantum number! was created by the out of equilibrium de-
cay of a superheavy particle~e.g., a heavy Majorana neu-
trino! long before the electroweak transition, and then con-
verted to a baryon asymmetry by sphaleron effects. Such a
mechanism would not be consistent with an additional
U(1)8 at the TeV or electroweak scale unless the Majorana
neutrino were neutral under the U(1)8. On the other hand, an
extra U(1)8 might be useful for electroweak baryogenesis,
with cosmic strings providing the needed ‘‘out of equilib-
rium’’ ingredient @11#.

Much of the phenomenological work on extraZ8s has
been of the lamp-post variety, i.e., there was no strong mo-
tivation to think that an extraZ8 would actually be light
enough to observe. Certainly, in ordinary GUT’s there is no
robust prediction for the mass scale of the U(1)8 breaking.
In supersymmetric models there are constraints on the break-
ing scale, which are usually of order a TeV, because the U
(1)8 D term may induce masses of order of the breaking for
all scalars which carry the U(1)8 charge@12#. However, that
is more a phenomenological constraint than a theoretical pre-
diction, and it can be evaded if the breaking occurs along a
D-flat direction.

However, it was recently argued@8# that for a large class
of string models with extra U(1)’s, the breaking should be at
the electroweak scale and certainly not larger than a TeV.
The string models considered in@8# are based onN51 su-
persymmetric string models with the standard model~SM!
gauge group SU(2)L3U(1)Y3SU(3)C , three families, and
at least two standard model doublets, i.e., models with at
least the particle content of the minimal supersymmetric
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standard model~MSSM!. A number of such models are
based on fermionic (Z23Z2) orbifold constructions@13–16#
at a particular point in moduli space.

Such models suffer from a number of phenomenological
problems~see Sec. II in@8# for a detailed discussion!, and
many such models are already excluded experimentally.
Nevertheless, there is a strong motivation to search for such
Z8 bosons and also for the exotic@vector under SU~2!# su-
permultiplets with which they are usually associated. In ad-
dition, they provide a useful testing ground to address the
issues of U(1)8 breaking within a large class of string mod-
els.

The relevant models are those in which~a! there is a
nonanomalous U(1)8 which does not acquire a large mass
from string or shadow sector dynamics, so that its mass must
come from symmetry breaking in the observable sector, and
~b! the soft supersymmetry breaking is such that all scalar
mass-squared terms are positive and of the same order of
magnitude at the string scale, which is the case for most
gravity mediated hidden sector models~but not necessarily
for the gauge mediated supersymmetry-breaking models that
have been of recent interest!.

Under these assumptions, the U(1)8 breaking may be ra-
diative@8#. It can take place if there are Yukawa couplings of
order 1 of a scalar which is a standard model singlet@but
which carries a U(18) charge# to exotic particles. This is
expected in many string models, for which all nonzero
Yukawa couplings are typically of the same magnitude, i.e.,
they are the same as the gauge coupling at the string scale up
to a coefficient of order unity. These can drive the scalar
mass-squared to a negative value at low energies, which is
typically of the same order as the Higgs boson mass-squared,
so that the electroweak and U(1)8-breaking scales are com-
parable, both being controlled by the same soft
supersymmetry-breaking scale.1

In @8#, a model was considered in whichonly one~e.g.,
H2) of the two SM Higgs doublets has nonzero couplings in
the superpotential and contributes to the electroweak break-
ing; i.e., this model roughly corresponds to the large tanb
scenario in the MSSM. The radiative symmetry breaking can
take place withMZ8;1 TeV, and sufficiently smallZ-Z8
mixing angle ~not yet excluded by the direct and indirect
heavy Z8 constraints!, provided the U(1)8 charge assign-
ments for theH2 and the SM singletS @responsible for the
symmetry breaking of U(1)8# have the same sign.

In this paper we consider the more general case with the
two SM doubletsH1,2 now coupled to the SM singletŜ in the
superpotential with the termhsŜĤ1•Ĥ2. In this case, the
U(1)8 charges ofĤ1,2 and Ŝ must sum to zero. This term
provides an effectivem term hs^S&, onceS acquires a non-
zero vacuum expectation value.

Because of this additional term in the superpotential, a
rich spectrum of possible symmetry-breaking scenarios
emerges. In particular, we concentrate on a set of phenom-
enologically viable scenarios with smallZ-Z8 mixing

(&1023) andMZ8 in the range&1 TeV. We also insist on
no dangerous color breaking minimum, e.g., no negative
squark mass-squared parameters or large trilinear soft
supersymmetry-breaking terms that involve squarks. We find
various ranges of parameters that allow for such symmetry-
breaking scenarios. However, all these cases involve some
degree of fine-tuning of parameters, either at the electroweak
scale or at the string scale.2 A few percent of the parameter
space gives a phenomenologically acceptable U(1)8
symmetry-breaking scenario. This fact is important since it
implies that in this class of string models there is a reason-
able probability that the heavyZ8 is in the experimentally
observable region~and not required to become massive at the
string scale!. In addition, these models provide an elegant
solution to them problem, complementary to that of the
Giudice-Masiero mechanism@17#.3

In Sec. II we give explicit expressions for the scalar po-
tential, vector boson masses, scalar masses and related spar-
ticle masses, and introduce certain definitions and conven-
tions that will be used throughout the work. In Sec. III, we
present scenarios to obtain a smallZ-Z8 mixing angle based
on that portion of parameter space in which the trilinear cou-
pling is much greater than the soft mass parameters. In this
caseMZ8 is typically comparable toMZ ~e.g., 200 GeV! and
tanb;1. This scenario is only viable for certain~e.g., lepto-
phobic! couplings. One version of the model has a first-order
electroweak phase transition at tree level and thus has poten-
tially interesting cosmological consequences.

In Sec. IV, we present a scenario in which the singlet
acquires a large VEV so thatMZ8.1 TeV. In this case, all of
the dimensional parameters in the scalar potential are of;1
TeV! and the smaller electroweak scale is due to a cancella-
tion of parameters.

In Section V, we use the renormalization group to relate
the electroweak scale supersymmetry-breaking parameters to
those at the string scale. We first assume the minimal particle
content, consisting of the MSSM particles, the additional sin-
glet, and theZ8. We present the results of the numerical
integration of the renormalization group equations~RGE’s!
for the parameters of the model as a function of their bound-
ary conditions at the string scale. With the minimal particle
content, we conclude that it is necessary to invoke nonuni-
versal values of the soft supersymmetry-breaking parameters
at the string scale to reach the desired low-energy region of
parameter space. Several examples of boundary conditions at
the string scale are presented which lead to the phenomeno-
logically acceptable scenarios of Secs. III and IV. We also
discuss the implications of additional exotic matter in the
RGE’s, and conclude that with additional SU~3! triplets, for
example, the large singlet vacuum expectation value~VEV!
scenario is possible with universal boundary conditions.

The RGE’s are presented in Appendix A. In Appendix B,
we present the details of the numerical results, and we give

1In some cases the breaking will be at an intermediate scale if
there is aD-flat direction involving two scalars both of which have
large Yukawa couplings.

2However, the tuning involved is no worse than that in the MSSM
in the case for which the electroweak scaleMZ is small compared to
m, e.g., form;1 TeV

3With additional U(1)8s the required terms in the Ka¨hler potential
are absent; thus the Giudice-Masiero mechanism is not applicable.
Other possible solutions are surveyed in@8#.
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semianalytic solutions of the RGE’s. Finally, in Appendix C
we present examples of models with anomaly-free U(1)8.

Our goal is to explore the general features of electroweak
breaking in a class of string models, not to construct a spe-
cific model. We therefore focus on the gauge- and
symmetry-breaking sectors of the theory and only specify the
U(1)8 charges when we present concrete numerical ex-
amples.

II. ELECTROWEAK SYMMETRY BREAKING

The gauge group is extended toG5SU(3)c3SU(2)L
3U(1)Y3U(1)Y8 with the couplings g3, g2, gY , g18 ,
respectively.4 The particle content is given by the left-handed
chiral superfieldsL̂ i;(1,2,21/2,QL), Êi

c;(1,1,1,QE), Q̂i

;(3,2,1/6,QQ), Û i
c;( 3̄ ,1,22/3,QU), D̂ i

c;( 3̄ ,1,1/3,QD),

Ĥ1;(1,2,21/2,Q1), Ĥ2;(1,2,1/2,Q2), Ŝ;(1,1,0,QS),
where the subscripti is the family index.

The superpotential for our model is5

W5hsŜĤ1•Ĥ21hQÛ3
cQ̂3•Ĥ2 . ~1!

The form of Eq.~1! is motivated by string models@19#, in
which a given Higgs doublet~i.e., Ĥ2) only has Yukawa
couplings to a single~third! family. This family index will
not be displayed in the rest of the paper.

Gauge invariance of W under U(1)8 requires
Q11Q21QS50. The effectivem parameter is generated by
the VEV ^S&5s/A2, and will then be given byms5hss/A2.

Within string models there is no mechanism for super-
symmetry breaking with quantitative predictive power. We
thus parametrize supersymmetry breaking with the most gen-
eral soft supersymmetry-breaking mass parameters. The soft
supersymmetry-breaking Lagrangian takes the form

LSB5S 2(
i

M il il i1AhsSH1•H21AQhQUcQ•H2

1H.c.D 2m1
2uH1u22m2

2uH2u22mS
2uSu22mQ

2 uQu2

2mU
2 uUu22mD

2 uDu22mE
2 uEu22mL

2uLu2, ~2!

where thel i are gauginos, and the other fields are the scalar
components of the corresponding supermultiplets. Gauge
symmetry breaking is now driven by the vacuum expectation
values of the doubletsH1, H2 and the singletS. The Higgs
potential is the sum of three pieces:

V5VF1VD1Vsoft, ~3!

with

VF5uhsu2@ uH1•H2u21uSu2~ uH1u21uH2u2!#, ~4!

VD5
G2

8
~ uH2u22uH1u2!21

g2
2

2
uH1

†H2u2

1
g18

2

2
~Q1uH1u21Q2uH2u21QSuSu2!2, ~5!

Vsoft5m1
2uH1u21m2

2uH2u21mS
2uSu22~AhsSH1•H21H.c.!,

~6!

whereG25gY
21g2

2 , and

H15S H1
0

H1
2D , H25S H2

1

H2
0 D . ~7!

By an appropriate choice of the global phases of the fields,
we can takeAhs real and positive without loss of generality.
By a suitable gauge rotation we can also make^H2

1&50 and
take^H2

0&5v2 /A2 and^S&5s/A2 real and positive. The re-
quirement̂ H1

2&50 in the vacuum is equivalent to requiring
the squared mass of the physical charged scalar to be positive
and imposes some constraint on the parameter space of the
model, as will be shown later. There is no room for explicit
or spontaneousCP violation in the potential~3! so that
^H1

0&5v1 /A2 is real. Furthermore, with our choiceAhs.0
one hasv1.0 in the true minimum.

Even after the replacement ofhsS by hs^S&5msA2, V
differs from the MSSM by additional terms quadratic in the
Hi in VF and VD . The minimization conditions when all
VEV’s are nonzero give6

m1
25m3

2tanb2
1

8
G2v2cos2b2

1

2
g81

2Q1~Q̄Hv21QSs2!

2
1

2
hs

2~v2sin2b1s2!, ~8!

m2
25m3

2cotb1
1

8
G2v2cos2b2

1

2
g81

2Q2~Q̄Hv21QSs2!

2
1

2
hs

2~v2cos2b1s2!, ~9!

mS
25m3

2 v2

s2
sinbcosb2

1

2
g81

2QS~QHv21QSs2!2
1

2
hs

2v2,

~10!

where m3
25(hs /A2)As, Q̄H5Q1cos2b1Q2sin2b, v25v1

2

1v2
2, and tanb5v2 /v1.

To ensure that the extremum at (v1 ,v2 ,s) is a minimum
of the potential, the squared masses of Higgs scalars should
be positive. In addition,V(v1 ,v2 ,s),0 should also hold for

4Here gY5A3/5g1, whereg1 is the grand unified theory~GUT!
normalized coupling. That is,gY is the coupling usually calledg8 in
the standard model.

5The U~1!8 forbids not only an elementarymĤ1•Ĥ2 term in the

superpotential, but also a termŜ3. Such a term is needed in the
NMSSM @18# to avoid the appearance of an axion after symmetry
breaking. In our model, this massless pseudoscalar is eaten by the
Z8. Also, unlike in the NMSSM the discrete symmetry is embedded
in the gauge symmetry and thus there is no domain wall problem.

6For a more precise analysis of the model, beyond the scope of
this paper, it would be necessary to include one-loop corrections,
which can have a non-negligible effect@20#.
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the minimum to be acceptable. Even if all these conditions
are satisfied, the minimum is not guaranteed to be the global
minimum of the potential. Whether it is still acceptable will
depend on the location and depth of the other possible
minima and of the barrier height and width between the
minima @21#.

Letting Z8 be the gauge boson associated with U(1)8, the
Z-Z8 mass-squared matrix is given by

~M2!Z2Z85S MZ
2 D2

D2 MZ8
2 D , ~11!

where

MZ
25

1

4
G2~v1

21v2
2!, ~12!

MZ8
2

5g81
2~v1

2Q1
21v2

2Q2
21s2QS

2!, ~13!

D25
1

2
g18 G~v1

2Q12v2
2Q2!. ~14!

The eigenvalues of this matrix are

MZ1 ,Z2

2 5
1

2
@MZ

21MZ8
2

7A~MZ
22MZ8

2
!214D4#. ~15!

The Z-Z8 mixing angleaZ-Z8 is given by

aZ-Z85
1

2
arctanS 2D2

MZ8
2

2MZ
2D . ~16!

Phenomenological constraints typically require this mixing
angle to be less than a few times 1023 @1#, although values as
much as ten times larger may be possible in some models
with a light Z8 ~e.g.,MZ2

/MZ1
;2) and certain~e.g., lepto-

phobic! couplings. Then, with good precisionMZ1

2 5G2v2/4

so thatv5246 GeV is fixed.
The spectrum of physical Higgs bosons after symmetry

breaking consists of three neutralCP even scalars (hi
0 ,

i 51,2,3), oneCP odd pseudoscalar (A0), and a pair of
charged Higgs bosons (H6), that is, one scalar more than in
the MSSM. The tree-level masses of the Higgs bosons are

mA0
2

5
A2Ahss

sin2b F11
v2

4s2
sin22bG , ~17!

which is never negative, and

mH6
2

5MW
2 1

A2Ahss

sin2b
2

1

2
hs

2v2. ~18!

mH6
2 could be lighter than theW boson due to the negative

third contribution. It could even be negative for some
choices of the parameters.

Masses for the three neutral scalars can be obtained by
diagonalizing the corresponding 333 mass matrix, which, in
the basis$H1

0r[Re(H1
0)A2,H2

0r ,S0r%, reads

~M2!h05S k1
2v1

21m3
2tanb k12v1v22m3

2 k1sv1s2m3
2 v2

s

k12v1v22m3
2 k2

2v2
21m3

2cotb k2sv2s2m3
2 v1

s

k1sv1s2m3
2 v2

s
k2sv2s2m3

2 v1

s
ks

2s21m3
2 v1v2

s2

D , ~19!

with k i
25G2/41g81

2Qi
2 , k125hs

21g81
2Q1Q22G2/4,

k is5hs
21g81

2QiQS , andks
25g81

2QS
2 .

It is simple to obtain some useful information from the
structure of this matrix. The tree-level mass of the lightest
scalarh1

0 satisfies the bound

mh
1
0

2
<MZ

2cos22b1
1

2
hs

2v2sin22b1g81
2Q̄H

2 v2. ~20!

The first term is the usual MSSM tree-level bound. The sec-
ond contribution comes fromF terms and appears also in the
NMSSM @18#, while the third is aD-term contribution from
the U(1)8 and thus is a particular feature of this type of
models@22,23#. In contrast to the MSSM,h1

0 can be heavier

thanMZ at tree level. In addition, radiative corrections@24#
will also be sizeable. This indicates thath1

0 can easily escape
detection at LEP II. Formh

1
0 within the kinematical reach the

composition ofh1
0 will determine its production cross sec-

tions ~e.g., throughZ→Z* h1
0). In particular, theh1

0ZZ cou-
pling, and thus the cross section, are reduced ifh1

0 has a
significant singlet admixture. However, when that suppres-
sion takes placeh2

0 also tends to be light@25#. Actually, in
the limit of h1

0→S0r the mass ofh2
0 satisfies the limit~20!. In

the event that bothh1
0 andh2

0 have a substantial singlet com-
ponent,h3

0 will also tend to be light.
In the general case, when the masses governing the scalar

mass matrix (mA0,MZ ,MZ8) have comparable magnitudes,
the scalar stateshi

0 will be complicated mixtures of the in-
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teraction eigenstates. When there is some hierarchy in those
masses, it is possible to make definite statements about the
composition of the mass eigenstates.

~H1! If MZ8@mA;MZ the heavier scalar is singlet domi-
nated (h3

0;S0r) with massmh
3
0;MZ8. The two lighter states

are mixtures ofH1
0r andH2

0r ~with some mixing angle much
like in the MSSM, although with masses in a different range!
with masses aroundmA;MZ . More precisely, the lightest
scalarh1

0 satisfies the~approximate! mass bound

mh
1
0

2
&MZ

2cos22b1hs
2v2F1

2
sin22b2

hs
2

g81
2QS

2
22

Q̄H

QS
G . ~21!

~H2! When MZ8@mA@MZ the two lighter mixed states
of case ~H1! have a definite composition:h2

0;H1
0rsinb

2H2
0rcosb with mass;mA andh1

0.H1
0rcosb1H2

0rsinb with
mass saturating the bound~21!. In this limit h1

0 has standard
model couplings.

~H3! If mA@MZ8,MZ thenmh
1
0

2
goes to negative values.

This means that the electroweak vacuum ceases to be a mini-
mum and turns into a saddle point; the minimum of the po-
tential lies at some other point in field space and the symme-
try breaking is not in accord with the observed values of the
gauge boson masses.

More details about the Higgs spectrum in particular sce-
narios will be given in the next sections.

The parameterms also plays an important role in the
chargino-neutralino sector. Remembering thatms5hss/A2,
the masses for the two charginosx̃1,2

6 are given by the
MSSM formula

mx̃
1,2
6

2
5

1

2
$M2

21ms
212MW

2

6A~M2
21ms

212MW
2 !224~M2ms2MW

2 sin2b!2%,

~22!

whereM2 is the SU~2! gaugino mass. The following bounds
result from~22!:

mx̃
1
6

2
<H ms

212MW
2 cos2b,

M2
212MW

2 sin2b,
~23!

and the following limiting cases hold:

mx̃
1
6

2 →H ms
2 ~M2

2@ms
2,2MW

2 cos2b!,

M2
2 ~ms

2@M2
2,2MW

2 sin2b!.
~24!

In the first ~second! case, the lightest chargino is predomi-
nantly a Higgsino~gaugino!.

Preliminary LEP results, including data collected at
As5172 GeV set a 95% C.L. lower limit on the chargino
mass of about 70285 GeV @26#. The weaker value
corresponds to light enoughẽ6, ñ e , which can interfere
destructively in thee1e2→x1x2 cross section. For defi-
niteness we impose in our analysismx̃

1
6.80 GeV. Eqs.

~23!, ~24! imply that this lower bound puts a significant con-
straint on the parameter space of the model ifhss is rela-
tively small ~roughly hss,MZ). In general, some parameter
region aroundM2ms5MW

2 sin2b will always be excluded
~for parameter values satisfying exactly that condition,
mx̃

1
6

2
50).

In the neutralino sector, there is an extra U(1)8 zino
and the HiggsinoS̃ as well as the four MSSM neutrali-
nos. The 636 mass matrix reads~in the basis

$B̃8,B̃,W3̃,H̃1
0 ,H̃2

0 , S̃%)

M x̃051
M18 0 0 g18Q1v1 g18Q2v2 g18QSs

0 M1 0 2
1

2
gYv1

1

2
gYv2 0

0 0 M2
1

2
gv1 2

1

2
gv2 0

g18Q1v1 2
1

2
gYv1

1

2
gv1 0 2ms 2ms

v2

s

g18Q2v2
1

2
gYv2 2

1

2
gv2 2ms 0 2ms

v1

s

g18QSs 0 0 2ms

v2

s
2ms

v1

s
0

2 , ~25!
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whereM1 and M18 are the gaugino masses associated with
U~1! and U(1)8, respectively.

For general values of the parameters in this matrix, the
mass eigenstates will be complicated mixtures of Higgsinos
and gauginos. It is useful to consider some limiting cases.

~N1! If M185M15M25ms50 there are two massless

neutralinos. One is a pure photino (x̃1
05 g̃5cosuWB̃

1sinuWW̃3) and the other a pure Higgsinox̃2
05(H̃1

0sinb

1H̃2
0cosb)cosa1S̃sina with tana5(v/s)sinbcosb. The rest

of the neutralinos will have masses controlled byMZ and
MZ8.

~N2! If Mi
2 ,ms

2@MZ
2 , two of the eigenstates are justB̃

andW̃3 with massesuM1u and uM2u, respectively. Next, two
Higgsinos, H̃1

0sinb1H̃2
0cosb and H̃2

0sinb2H̃1
0cosb, are

nearly degenerate with massumsu. The remaining two neu-
tralinos are mixtures ofB̃8 and S̃, and we can consider two
different simple situations; first, ifM18

2@g18
2QS

2s2, then B̃

has massuM18u while S̃ is light, with mass controlled byMZ .
In the other case, withM18

2!g18
2QS

2s2, they have masses
mx̃0

2
5g18

2QS
2s26g18QSM18s.

~N3! If ms
2@Mi

2 ,MZ
2 ~which naturally requiress@v,

hence MZ8
2

@Mi
2 ,MZ

2), the approximate eigenstates are

(B̃86 S̃)/A2 with mass MZ8; B̃, W̃3, with masses
uM1u,uM2u, respectively, and (H̃1

06H̃2
0)/A2 with massumsu.

In the next sections we will give numerical examples of
the pattern expected for charginos and neutralinos in differ-
ent scenarios.

Masses for the rest of the MSSM particles~squarks and
sleptons! can be obtained directly from the MSSM formulas
by settingm5ms5hss/A2 and adding the pertinentD-term
diagonal contributions from the U(1)8 @12#:

dmi
25

1

2
g81

2Qi~Q1v1
21Q2v2

21QSs2!, ~26!

whereQi is the U(1)8 charge of the corresponding particle.
This extra term can produce significant mass deviations with
respect to the minimal model and plays an important role in
the connection between parameters at the electroweak and
string scales. However, in the low-energy analysis, its effect
can always be absorbed in the unknown soft supersymmetry-
breaking mass squared parameters.

Before proceeding with the analysis of different scenarios
it is useful to compare the present model with the simplified
version discussed in Ref.@8#. That version contained one
Higgs doublet and one singlet, with U(1)8 chargesQH and
QS , respectively. It was shown that a sufficiently heavyZ8
~with mass up to;1 TeV! with small mixing to theZ could
be obtained for the caseQHQS.0, which would allow can-
cellations so thatMZ andv can be small compared toumHu,
umSu ands. The more realistic case with two Higgs doublets
offers several advantages. First, there can be a cancellation in
the off-diagonalZ-Z8 mass matrix element~14! if Q1Q2.0.
In addition, the presence of a trilinear coupling in the super-
potential„forbidden by SU~2! in the model of@8#… qualita-
tively changes the Higgs potential, allowing for a richer pat-
tern of symmetry-breaking mechanisms. In particular, the

conditionQHQS.0 ~that in our model would be generalized
to Q̄HQS.0) is no longer necessary.

We can classify the symmetry-breaking scenarios in three
different categories according to the value of the singlet
VEV.

~i! s50. This corresponds to the case of the breaking
driven only by the two Higgs doublets~this would be the
typical case if the soft mass of the singlet remains positive!.
TheZ8 boson would acquire mass of the same order as theZ,
and many other particles~Higgs bosons, charginos, and neu-
tralinos! would tend to be dangerously light (ms50 now!.
There is in principle the possibility of a smallZ-Z8 mixing
due to the cancellation mechanism described and one could
arrange the parameters to barely satisfy experimental con-
straints. However, this requires considerable fine-tuning, and
we do not pursue this singular scenario further.

~ii ! s;v. This case would naturally giveMZ8*MZ ~if
g18Q is not too small! and a smallms ~thus some sparticles
will be expected to be light!. One requiresQ15Q2 to have
negligibleZ-Z8 mixing. Such models are allowed for lepto-
phobic couplings@4#. Particularly interesting examples of
this type of scenario will be presented in the next section.

~iii ! s@v. In this caseMZ8@MZ andms andm3
2 are natu-

rally large. TheZ-Z8 mixing is suppressed by the large mass
MZ8 ~in addition to any accidental cancellation for particular
choices of charges!, eventually relaxing the constraint
Q1Q2.0. As MZ8 increases more fine-tuning is needed to
keepMZ light. This case will be studied in Sec. IV.

III. LARGE TRILINEAR COUPLING SCENARIO

For the sake of simplifying the analysis, the soft
supersymmetry-breaking mass parameters can be written in
terms of dimensionless parametersci and an overall mass
scaleM0:

m1
25c1

2M0
2 , m2

25c2
2M0

2 , mS
25cS

2M0
2 , A5cAM0 .

~27!

Since these are the only dimensional parameters in Eq.~3!,
one can conveniently parametrize the VEV’s as

v15 f 1M0 , v25 f 2M0 , s5 f sM0 . ~28!

We first minimize the potential~3! with respect to the
dimensionless parametersf i defined through Eqs.~27!,~28!
and then go to physical shell by choosing

M05
v

Af 1
21 f 2

2
, ~29!

wherev5246 GeV sets the scale of electroweak symmetry
breaking.

In contrast to the usual MSSM potential,V in Eq. ~3! has
an important trilinear term involving only the Higgs fields.
Therefore, one can consider a symmetry-breaking scenario
driven by this large trilinear term, as opposed to the more
common situation in which the value of the minimum is
determined mainly by the signs and magnitudes of the soft
mass-squared parametersc1

2, c2
2, andcS

2 . If cA is sufficiently
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large compared to the soft mass-squared parameters, a
cA-induced minimum occurs with

f 1; f 2; f s;
cA

A2 hs

, ~30!

where we have also assumed thaths is large enough so that
VF dominates theD terms. Equation~30! corresponds to
v1;v2;s;174 GeV.

In the limit of largecA , the relative signs and the magni-
tudes of the soft mass-squared parameters are not important
since they contribute negligibly to the location of the mini-
mum. However, if the values of the soft mass squared pa-
rameters are nearly the same, Eq.~30! is reached for inter-
mediate values ofcA . In the present low-energy analysis, we
assume for definiteness thatuc1

2u;uc2
2u;ucS

2u. This relation is
very fine-tuned in the context of the renormalization group
analysis, as discussed in Sec. V.

From Eqs.~11!–~14! it is clear thatMZ8 will generally be
comparable toMZ in the largecA case, with the exact value
depending ong18Q1,2,S ~which we assume are of the same
order of magnitude asG). Thus, the only phenomenologi-
cally allowed possibility is to have negligible mixing~and
then only for small couplings to the ordinary leptons!. From
Eq. ~14!, we see that this occurs forQ15Q2, in which case
D2→0 for f 1; f 2. Both D terms in Eq.~5! vanish in this
case for largecA . Therefore, in what follows we choose
Q15Q2.

In the largecA solution ~30!, M0 in Eq. ~29! becomes

M05
hsv
cA

, ~31!

and

tanb5
f 2

f 1
.1. ~32!

The Z8 mass is simply given by

MZ8
2

53Q1
2g81

2v2, ~33!

and

A5hsv. ~34!

Using Eqs.~30!, ~31! in the expressions for the Higgs masses
in Eqs. ~17!–~19!, the limiting values for the Higgs masses
are

mA0.A3

2
hsv,

mH6.
1

2
Ag2

212hs
2 v,

mh
1
0.

hs

A2
v, ~35!

mh
2
0.

1

2
AG212hs

2 v,

mh
3
0.A3g18

2 Q1
21

hs
2

2
v.

Only mh
3
0 depends explicitly on the U(1)8 charges. If a par-

ticular model allowshs to be much smaller than the gauge
couplings, A0 and h1

0 become light andmH6.MW ,
mh

2
0.MZ .

Chargino and neutralino masses depend on the gaugino
masses of the SU(2)L , U(1)Y , and U(1)8 groups, and we
discuss their spectrum later in this section. In thecA-induced
minimum the effectivem parameter takes the form

ms5
hss

A2
.

hsv
2

. ~36!

This produces a smallm parameter,ms.86 GeV for
hs.0.7.

To illustrate this scenario we take7

uc1
2u5uc2

2u5ucS
2u51, ~37!

and letcA vary from 0 to 10. Motivated by the renormaliza-
tion group analysis in Sec. V, we takehs50.7. We also take

Q15Q2521 and g81
25 5

3G
2sin2uW, as is suggested by

simple version of gauge unification, and remark occasionally
on different choices.

A. Hybrid minimum

First, consider

c1
251 , c2

2521 , cS
2521 ~38!

with cA varying from 0 to 10. We call this choice ‘‘hybrid,’’
since for smallcA the minimum will be determined by these
soft mass-squared parameters, and for largecA their signs
and magnitudes will be irrelevant and a minimum described
by Eq. ~30! will occur. Though we are ultimately interested
in the large cA minimum, we describe the properties of
physical quantities in the wholecA range.

Figure 1~a! shows the variations of the dimensionless field
VEV’s with cA . For large values ofcA , the effects of the
quadratic mass parameters are unimportant and Eq.~30! be-
comes almost exact. It is mainly because of the biasing of the
soft mass-squared parameters (c2

2 and cS
2 are negative! that

f 1, f 2, and f s approach their largecA character gradually.
Taking MZ591.19 GeV the mass ratiosMZ1

/MZ ,

MZ2
/MZ , M0 /MZ , theZ-Z8 mixing anglea, and tanb are

shown as a function ofcA in Fig. 1~b! for the values of
quadratic mass parameters in Eq.~38!. We see that
MZ1
→MZ , tanb→1, anda→0 for largecA ; for example,

7Models which differ by a simultaneous rescaling of all of thec’s
are equivalent sinceM0 is chosen to give the observedv5246
GeV.
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tanb51.03 anda58.831023 for cA510. With our specific
U(1)8 charge assignments,MZ2

/MZ→2.14 (MZ2
.196

GeV! for large cA . As we observe from Fig. 1~a!, the gap
betweenf 1 and f 2 decreases rather gradually, and thus it is
necessary to have larger values ofcA to obtain a smaller
Z2Z8 mixing angle.

Figure 2 shows the variation of the scalar masses as a
function ofcA for the values of soft mass-squared parameters
given by Eq.~38!. For large enoughcA , all masses reach
their asymptotic values given by Eq.~35!: mH6.146 GeV,
mA0.211 GeV,mh3

0 .230 GeV,mh2

0 .152 GeV,mh1

0 .122

GeV.
For the particular parameters in this example, the gauge

symmetry is broken to U(1)EM for all values ofcA . How-
ever, for smaller U(1)8 couplings or charges or larger values
of hs , the global minimum isf 15 f s50, f 2Þ0 for values of
cA smaller than some critical value, so that an additional
U~1! is unbroken. This is due to the positive quartic terms in
VF @Eq. ~4!#, which dominate theD terms for largehs or
small charges. The symmetry is broken to the desired
U(1)EM ascA increases through this critical value, with the

values of thef i varying continuously~as in a second-order
phase transition!. In the largecA limit, all quantities are con-
trolled by Eq.~30!.

B. Pure trilinear coupling minimum

For a second example, we take

c1
251, c2

251, cS
251 ~39!

and varycA from 0 to 10. The origin is a minimum, and a
deeper minimum with nonvanishing fields can only be in-
duced bycA .

Figure 3~a! shows the variations of the dimensionless field
VEV’s with cA . For cA.cA

crit53 all the fields are nonzero
and identical, for our choices of the other parameters, ap-
proaching the values in Eq.~30! for largecA .

In Fig. 3~b! we plot the dimensionless quantities
MZ1

/MZ , MZ2
/MZ , M0 /MZ , the Z-Z8 mixing angle a,

and tanb as a function ofcA for the cA.cA
crit portion of the

total range. In this minimumMZ1
5MZ , MZ2

5196 GeV,

a50, tanb51, andM05hsv/cA . For other small positive
values of the quadratic mass parameters, the minimum will
again be induced bycA , and the same values will be reached
asymptotically. Fig. 4~a! shows the variation of scalar
masses as a function ofcA for the soft mass-squared param-
eters of Eq.~39!.

In Fig. 4~b! we investigate thef 1 dependence of the di-
mensionless potential for different values ofcA and for the
mass parameters in Eq.~39!. For each value off 1, V is
minimized with respect tof 2 and f s . The straight dotted line
at V50 serves as a reference to separate the two distinct
minima. For all cA,cA

crit , the global minimum is at
f 15 f 25 f s50. For cA.cA

crit53 the minimum atf 1Þ0 be-
comes the true minimum and the gauge symmetry is broken.
Passage of the system from one minimum to the other re-
quires quantum tunneling through the barrier. Presumably, as
the universe cooled it would have first been stuck in the local
minimum, and could have eventually tunneled to the global
minimum, with implications for baryogenesis@27#. As is
clear from Fig. 4~b!, the height of the barrier is very small

FIG. 1. ~a!: cA dependence of the dimensionless field VEV’s for
the hybrid minimum.~b!: cA dependence of various dimensionless
quantities for the hybrid minimum.

FIG. 2. cA dependence of the Higgs boson masses for the hybrid
minimum.
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compared to the depth of the minimum for the large values
of cA required to get small enoughaZ2Z8. In that case there
is no danger of a large supercooling and the transition can
proceed without posing a cosmological problem.8 However,
a detailed discussion of the cosmological implications of this
model is beyond the scope of this paper.

In summary, the negative soft mass-squared parameters in
the hybrid minimum introduce a splitting among the fields
for smallcA . The gap betweenf 1 and f 2 decreases gradually
as a function ofcA , which indicates that large values ofcA
are required to obtain a sufficiently smallZ-Z8 mixing angle.
In the case of the pure trilinear coupling minimum, there is
no bias from the soft mass-squared parameters and one can
obtain a small mixing angle in a reasonable range ofcA
values. However, in the largecA limit the two minima have
the same limiting properties solely determined by the value
of the trilinear coupling.

In Fig. 5 we plot the chargino and neutralino masses as a
function of the SU(2)L gaugino massM2 ~with M1 andM18

as dictated by universality! in the largecA minimum ~30!.
Figure 5~a! shows the chargino masses together with the LEP
lower bound. IfM2*1100 GeV orM2&240 GeV,mx1

is

above the LEP bound. ForM2→`, mx1
approachesms from

below, and forM2→2`, mx1
approachesms from above.

In Fig. 5~b!, we show theM2 variation of the neu-
tralino masses in the largecA minimum. In this scenario,
the neutralino mass matrix takes a simple form ifQ1

5Q2[Q and tanb51. The matrix decomposes in two

333 matrices @in the basis (B̃,W̃3 ,H̃2
0sinb2H̃1

0cosb),

(B̃8,H̃1
0sinb1H̃2

0cosb,S̃0)#. The first of them has a 232 sub-
matrix identical to the chargino mass matrix. Forg150 the
three eigenvalues are exactly equal toM1 and mx̃

1,2
6 . The

presence of a nonzerog1 slightly changes the picture, with
the deviations largest whenM1 is close tomx̃

1,2
6 . This behav-

ior is shown in Fig. 5~b! where these particular three eigen-
values are singled out by solid lines. The second 333 matrix
has one eigenvalue equal to 2ms , independent of the gaugino
masses. The other two eigenvalues are8We thank P.J. Steinhardt for a discussion on this point.

FIG. 3. ~a! cA dependence of the dimensionless VEV’s and~b!
various dimensionless quantities for the pure trilinear coupling
minimum.

FIG. 4. ~a!: cA dependence of the Higgs boson masses for the
pure cA minimum. ~b!: Variation of the potential withf 1 for the
parameter values in Eq.~39! and different values ofcA from 2 to 5
in steps of 0.5.
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mx̃05
1

2
@M181ms6A~M182ms!

2112g18
2Q2v2#. ~40!

These three eigenvalues are plotted in Fig. 5~b! with dashed
lines. For M18ms53g18

2Q2v2 one of the neutralino masses
from Eq. ~40! goes to zero. If the lightest chargino is to
satisfy the LEP bound, the LSP is thex1

0 neutralino.

IV. LARGE S SCENARIO

Unlessg18QS is large, MZ8@MZ requiress@v. In that
case it is convenient to examine the U(1)8 breaking first,
separately from SU(2)3 U~1! breaking, which will repre-
sent only a small correction. The breaking of the U(1)8 is
triggered by the running of the soft massmS

2 towards nega-
tive values in the infrared. As a result the singlet gets a VEV
@see Eq.~10!#

s2.
22mS

2

g18
2QS

2
. ~41!

That is,MZ8
2 ;22mS

2(m5S).

The presence of this large singlet VEV influences, already
at the tree level, SU(2)3U(1) breaking, which is governed
by the minimization conditions~8!,~9!. Let us rewrite these
conditions in a form that resembles the MSSM ones:

2m3
25

1

2F ~m̃1
22m̃2

2!tan2b1S MZ
22

1

2
hs

2v2D sin2b

1
1

2
g18

2~Q12Q2!Q̄Hv2tan2bG ,
ms

25
m̃2

2sin2b2m̃1
2cos2b

cos2b
2

MZ
2

2

2
1

2
g18

2v2
Q1

2cos4b2Q2
2sin4b

cos2b
, ~42!

where m̃i
25mi

21 1
2 g18

2QiQSs2 are the Higgs doublet soft
masses corrected by the singlet VEV. The MSSM case
would be recovered by settingg185hs50 ~but keepingms

fixed!. The last term in Eq.~42! is negligible if there is a
cancellation in the off-diagonalZ-Z8 mass term~14!. It is
interesting to note thatm̃i

21ms
2 ~the effective Higgs mass

terms in the potential! can be made negative by theS con-
tribution. Then SU(2)3U(1) breaking can be triggered by
the previous U(1)8 breaking. This is yet another alternative
to the usual radiative breaking@although the breaking of the
U(1)8 is itself radiative#.

Turning back to the minimization equations~42! one
would naturally expectv2;s2. The lightness ofMZ com-
pared toMZ8 results from a cancellation of different mass
terms of orderMZ8. The fine-tuning involved is then roughly
given by the ratioMZ8 /MZ . It is illustrative to look at this
cancellation in more detail. Consider first the case of the
MSSM. By naturalness one usually assumes that soft
supersymmetry-breaking mass parameters are at most of;1
TeV. If the soft mass parameters are as heavy as that limit,
then some fine-tuning is needed to getMZ one order of mag-
nitude lower. We will take this as the limit of admissible
~low-energy! fine-tuning. As already mentioned, them pa-
rameter in the MSSM does not naturally satisfy that con-
straint. Consider next the simple model discussed in@8# with
one single Higgs doublet. For larges, the cancellation to be
enforced is

mH
2 1

1

2
g18

2QHQSs25O~MZ
2!, ~43!

where mH
2 is the Higgs soft mass-squared parameter. One

sees thatQHQS.0 is needed for the cancellation to occur
@note that, ifmH

2 .0, corresponding to a nonradiative break-
ing of SU(2)3U(1), the opposite conditionQHQS,0
would be required#. Substituting Eq.~41! in Eq. ~43! and
imposingumH

2 u&1 TeV2 one arrives at the condition

S MZ8
1 TeVD 2

&
uQSu
uQHu

. ~44!

From this, it follows that the only possibility of havingMZ8
significantly heavier than 1 TeV without excessive fine-

FIG. 5. Variation of the chargino masses~a! and the neutralino
masses~b! with the SU(2)L gaugino massM2 in the largecA mini-
mum.
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tuning to keepMZ light is to haveuQHu!uQSu. The natural
possibility is to haveQH50; that would correspond to a
U(1)8 trivially decoupled from electroweak breaking.

In the case of two Higgs doublets, we can similarly re-
quire thatms

2 , m3
2, andm̃1,2

2 are at most;1 TeV2. Then we
arrive at the condition

S MZ8
1 TeVD 2

&minH uQSu
uQ1u

,
uQSu
uQ2u

,
g81

2QS
2

hs
2 J , ~45!

and also

S A

1 TeVD S MZ8
1 TeVD&

g18uQSu
hs

. ~46!

Consider first the case ofhs
2 small compared tog81

2QS
2 . This

meansms is small compared toMZ8 so that no restriction
comes from thems condition in Eq.~45!. In this case,

S MZ8
1 TeVD 2

&minH uQ11Q2u
uQ1u

,
uQ11Q2u

uQ2u J [m<2. ~47!

There is a maximum value ofm (m52, reached for
Q15Q2) and it is not possible to decouple theZ8 from elec-
troweak breaking by a large hierarchy between the charges
because of the constraintQ11Q21QS50. If hs

2 is larger
than g81

2QS
2 ~that is, ms

2@MZ8
2 ), then the minimum in Eq.

~45! goes to zero, which indicates thatMZ8!ms;1 TeV to
avoid a large fine-tuning. We conclude that, to haveMz8@1
TeV requires excessive fine-tuning in both cases. From Eq.
~46! we also find a natural upper limit to impose on theA
parameter:

hsA&g18uQSuO~1 TeV!. ~48!

In addition, theZ-Z8 mixing should be small enough. For
moderate values ofMZ8 ~say 500 GeV!, small Z-Z8 mixing
requires a small off-diagonal element in theZ,Z8 mass ma-
trix. In fact, this matrix element vanishes for some value of
tanb if Q1Q2.0. More precisely,uZ2Z8<du if tanb is in
the interval

tanb.AQ1 /Q2F16du
G~Q11Q2!

4g18Q1Q2

MZ8
2

MZ
2 G ~Q1Q2.0!

~49!

~with uZ2Z850 for the central value!. This quantifies the
fine-tuning required in tanb. This effect reduces the fraction
of acceptable parameter space for low values ofMZ8. The
reduction is less important for aZ8 closer to the upper natu-
ral limit of 1 TeV, where a good cancellation in the off-
diagonalZ-Z8 mass term is not required and eventually the
conditionQ1Q2.0 can be relaxed.

The pattern of the spectrum of physical Higgs bosons in
the larges case is particularly simple. As discussed in Sec.
II, one neutral scalarh1

0 remains below the bound~20! and
approaches the value~21!. The pseudoscalarA0 mass,
mA0

2 .A2Ahss/sin2b is naturally expected to be large~unless
Ahs is very small! and in that case, one of the neutral scalars
and the charged Higgs boson are approximately degenerate

with A0, completing a full SU~2! doublet (H0,A0,H6) not
involved in SU~2! breaking. The lightest neutral scalar is
basically the~real part of the! neutral component of the
Higgs doublet which is involved in the SU~2! breaking and
has then a very small singlet component. The third neutral
scalar has mass controlled byMZ8 and is basically the sin-
glet. This mass pattern can be clearly seen in Fig. 6 for
different choices of couplings and U(1)8 charges.

The mass of the lightest Higgs boson is of particular in-
terest. The limiting value~21! for mh

1
0 can be bigger or

smaller than the MSSM upper boundMZ
2cos22b depending

on couplings and charge assignments. Note that theD-term
contribution g81

2Q̄H
2 v2 in Eq. ~20! is exactly compensated

after integrating outS and disappears in this decoupling
limit. However, this exact cancellation does not take place
for theF-term contributions. The behavior ofmh

1
0 as a func-

tion of MZ8 is shown in Fig. 7~a! for two different cases.
Horizontal dash-dotted lines give the upper bound@Eq. ~20!#,
the MSSM boundMZucos2bu ~which is zero in the figure!,

FIG. 6. Variation of the Higgs spectrum withMZ8 for A5500
GeV, Q15Q2521/2, and~a! hs50.5 and tanb51.5; ~b! hs50.7
and tanb51. There are three scalars~solid lines! one pseudoscalar
~dashed line! and one charged pair~dash-dotted!. The horizontal
dash-dotted line gives the bound~20!.
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and the asymptotic value Eq.~21! @to make the figure simpler
the parameters have been chosen such that Eqs.~20! and~21!
are the same in both cases#. Figure 7~a! shows an example
for which the asymptotic value is bigger than the MSSM
upper bound. This value is approached slowly. After includ-
ing subdominant termsO(mA

2/MZ8
2 ) in Eq. ~21!, one obtains

mh
1
0

2 →MZ
2cos22b1hs

2v2F1

2
sin22b2

hs
2

g81
2QS

2
22

Q̄H

QS
G

1A2hs

A

g81
2QS

2s
~hs

21g81
2QSQ̄H!v2sin2b. ~50!

This approximation is represented by dashed lines in Fig.
7~a! and givesmh

1
0 rather precisely for largeMZ8. The sign

of K5hs
21g81

2QSQ̄H determines whether the asymptotic
value is reached from below (K,0) or above (K.0).

In Fig. 7~b!, we show the dependence ofmh
1
0 on A for

fixed MZ8 in the same two cases of Fig. 7~a!. For smallA,
we are in caseH1 of Sec. II and the inequality~21! holds
~actually, it is saturated for the parameters chosen!. The ap-
proximation~50! works well in that region. For largerA, mh

1
0

increases or decreases depending on the sign ofK. In both
cases, whenA grows beyondmA;MZ8, mh

1
0

2
drops to nega-

tive values@caseH3 in Sec. II#. The minimum of the poten-
tial does not give a correct electroweak breaking; for suffi-
ciently largeA the pattern of VEV’s is similar to the one
encountered in the largecA case of the previous section, but
the gauge boson masses would be much larger than the ob-
served values. This behavior differs from the MSSM where
mh

1
0 always increases with largermA until the upper bound is

saturated.
For some values of the parameters the larges asymptotic

value for mh
1
0

2
, as computed from Eq.~21!, is negative. An

example of this case is shown in Fig. 6~b!. In such cases
there is an upper bound onMZ8 beyond which the vacuum
would be destabilized.

Next we show typical examples of the neutralino-
chargino spectra. In Figs. 8~a! and 9~a! we fix M25500 GeV
~assuming thatM1 and M18 have values as dictated by uni-
versality! and show the dependence on the mass of theZ8
boson of the masses in the neutralino-chargino sector. Fig-
ures 8~b! and 9~b! instead show the variation of the masses
with M2 for a fixed value ofMZ85500 GeV. In Fig. 8~a!, we
clearly see how the chargino masses are controlled byM2
~fixed! and ms ~growing linearly withMZ8). For low MZ8,
meaningms,M2, the lighter chargino mass followsms and
the heavier mass is nearly constant and equal toM2. This
role is interchanged after crossing thems;M2 region. The
same behavior is manifest in Fig. 8~b!, where ms is kept
constant andM2 varies.

In Figs. 9~a! and 9~b! we plot the spectrum of neutralinos
for the same two cases. In Fig. 9~a!, for largeMZ8 we have
Mi

2 ,ms
2@MZ

2 and the masses follow the pattern described in
the discussion@case ~N2!# after Eq. ~25!: the two lower
~solid! curves asymptotically flattening approachuM1u and
uM2u and correspond toB̃ andW̃3 , respectively. Then there
are two~dashed! curves for the doublet Higgsinos tending to
umsu and finally two ~dash-dotted! curves for two B̃8-S̃
mixed states with massesMZ86M18/2. Also note that two
neutralino states follow closely the chargino pattern of Fig.
8~a!.

Concerning the nature of the LSP, the lightest neutralino
is the natural candidate in these models. In particular, we see
that the LSP is mostlyB̃. For large gaugino masses however,
if M 81

2@MZ8
2 , the lightest neutralino is the singlinoS̃ whose

mass is then of the order ofMZ . This possibility is realized
in the case shown in Fig. 9~b!.

V. RENORMALIZATION GROUP ANALYSIS

We now turn to the renormalization group analysis of the
model presented in Sec. II to determine what boundary con-
ditions at the string scale are required to reach the desired
low-energy parameter space as described in Secs. III and IV.

FIG. 7. Mass of the lightest Higgs scalarh1
0 ~solid line!: ~a! as a

function of MZ8 showing the decoupling limits@v for two differ-
ent cases withA5500 GeV, tanb51. The upper curve has
Q15Q2523/5, hs.0.6 and the lowerQ15Q2521 andhs.0.3;
~b! as a function ofA for MZ851 TeV in the two same cases.
Dashed and dash-dotted lines give different mass bounds and limits
as discussed in the text.
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As our model is motivated from string theory, we normal-
ize the gauge couplings so that at the string scale

g3
05g2

05g1
05g18

05g0 . ~51!

In ~weakly coupled! heterotic string theory this relation
among the couplings is valid for the level one Kacˇ-Moody
models.9 This is approximately consistent with the observed
gauge coupling unification, which occurs atMG.331016

GeV, one order of magnitude belowM string.531017 GeV;
this difference introduces a numerically small inconsistency
in our analysis.

String models based on fermionic (Z23Z2) orbifold con-
structions@13#–@16# at a special point in moduli space pos-
sess the feature that the couplings of the trilinear terms in the
superpotential are equal for the fields whose string vertex
operators do not involve additional~real! world-sheet fer-

mion fields @with conformal dimension~1/2,1/2!#.10 In this
case, the trilinear coupling ishi

05g0A2. For a majority of
models all of the observable fields are of that type. However,
for fields whose string vertex operators involve one such
world-sheet fermion field the trilinear coupling ish05g0.
Since in the vertex operator one can add at mosttwo such
world-sheet fermions@they now saturate~1,1! conformal di-
mension of the vertex operator#, the trilinear coupling with
one such field ish05g0 /A2 ~which is then the smallest pos-
sible nonzero value of the Yukawa coupling!. In the latter
case, however, such fields usually correspond to exotics.

Thus, for the sake of simplicity we assume that the
boundary conditions for the Yukawa couplings are given by

hQ
0 5hS

05g0A2, ~52!

where g0 is defined in Eq.~51!. Using the RGE’s of the
MSSM ~i.e., in the absence of trilinear couplings ofh2 to
exotics!, this value of the Yukawa couplinghQ

0 determines
9For the Kacˇ-Moody levelkÞ1 the relationship among the cou-

pling constants is altered by adding appropriate factors ofAk in the
equation. 10We thank G. Cleaver for a discussion on this point.

FIG. 8. Chargino masses~a! as a function ofMZ8 for M25500
GeV; ~b! as a function ofM2 for MZ85500 GeV.~We fix M1 and
M18 by universality,Q15Q2521/2, hs50.5, and tanb51.5.!

FIG. 9. Neutralino masses~a! as a function ofMZ8 for M25500
GeV; ~b! as a function ofM2 for MZ85500 GeV.~We fix M1 and
M18 by universality,Q15Q2521/2, hs50.5, and tanb51.5)
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the value ofhQ at MZ . When combined with the VEV of
H2, which ensures the correct electroweak symmetry-
breaking vacuum, this result yields a prediction for the top
quark mass in the range of;1702200 GeV@19#.

We first consider universal boundary conditions for the
soft supersymmetry-breaking mass parameters at the string
scale.

Universal scalar soft mass-squared parameters:

m1
0 25m2

0 25mS
0 25mU

0 25mQ
0 25M0

2 . ~53!

Universal gaugino masses:

M3
05M2

05M1
05M18

05M1/25C1/2M0 . ~54!

Universal trilinear couplings:

A05AQ
0 5C0M0 . ~55!

As a second step, we will allow for nonuniversal initial
conditions for the trilinear couplings and the soft mass-
squared parameters, such that in general

Ai
05cAi

0 M0 , ~56!

mi
0 25ci

0 2M0
2 . ~57!

The one-loop RGE’s for the parameters are presented in
Appendix A. We assume a minimal particle content, consis-
tent with the superpotential~1!. The renormalization group
analysis of the model depends on the choice of U(1)8
charges of the theory, that enter the RGE’s for the U(1)8
gauge coupling and gaugino. In general, the U~1! factors
have a small effect in the RGE’s of the other parameters due
to the small magnitudes of the U~1! gauge couplings and
gaugino masses. The U~1! factors are neglected in the run-
ning of the parameters in the semianalytic approach, which is
often a good approximation. In the numerical analysis, we

choose for definiteness the U(1)8 chargesQ15Q2521,
QL5QQ521/2, and most of the U~1! factors are retained.11

We have solved the RGE’s numerically, and investigated
the evolution of the parameters for a wide range of boundary
conditions. With a specific choice of the boundary conditions
of the Yukawa couplings, we have obtained the numerical
solutions for the parameters at the electroweak scale as a
function of the initial values of the trilinear couplings and
soft mass-squared parameters. The results are qualitatively
the same with other choices of initial values of the Yukawa
couplings motivated by string theory; thus for definiteness
we consider only the case with initial Yukawa couplings
given by Eq.~52!. To further our understanding of the evo-
lution of these parameters, we have also derived semianalytic
solutions of the RGE’s. The numerical and semianalytic so-
lutions are presented and discussed in detail in Appendix B,
and shown in some representative graphs. With the numeri-
cal results~B7!–~B13!, we are able to investigate systemati-
cally the effect of the choice of boundary conditions on the
evolution of the trilinear couplings and the soft mass-squared
parameters.

11The factorsS1 andS18 defined in Appendix A are not included in
the numerical analysis of the RGE’s, as discussed in Appendix C.

FIG. 10. Scale dependence of the Yukawa couplings~bold
curves are for exact solutions!. t5(1/16p2)lnm/MString, such that
t;20.2 at the electroweak scale.

FIG. 11. Scale dependence of the dimensionless trilinear cou-
pling parameters~a! and soft mass-squared parameters~b!. Bold
curves are for exact solutions.
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First, we consider the case of universal boundary condi-
tions, as stated in Eqs.~53!–~55!, assuming that the only
contributions to the RGE’s are from the MSSM supermultip-

lets, Ŝ, and Z8 vector multiplet. An example of universal
boundary conditions is presented in Figs. 10 and 11, which
show the scale dependence of the Yukawa couplings, the
dimensionless trilinear couplings, and the dimensionless soft
mass-squared parameters, forC051.0 andC1/250.1. The
dimensionless quantities are related to the physical param-
eters by rescaling withM0, which is defined in Eq.~29!.

These graphs illustrate the general features of universal
initial boundary conditions:hQ(MZ) is larger thanhs(MZ),
AQ(MZ) is larger thanA(MZ) for C1/2*0.019 C0, and

m2
2(MZ) is negative while the other mass-squared parameters

are positive at the electroweak scale. This behavior can be
seen from the solutions~B7!–~B13!, and the semianalytic
solutions discussed in Appendix B. These solutions also
demonstrate that the initial value of the gaugino mass param-
eter M1/2 directly controls the splitting of the low-energy
values of the trilinear couplings and the mass-squared pa-
rameters.

These results indicate that the values of the low-energy
parameters obtained with universal boundary conditions at
the string scale~and assuming no exotic supermultiplets! do
not lie within the phenomenologically acceptable region of
parameter space. The large trilinear coupling scenario of Sec.
III requirescA@c1

2;c2
2;cS

2 at the electroweak scale, which
clearly does not follow from Fig. 11. The scenario of Sec. IV
also does not result from universal initial conditions; Fig.
11~b! demonstrates that whilem2

2(MZ) is negative,mS
2(MZ)

is positive, so the singlet does not develop the large VEV
necessary for this minimum.

Therefore, we must relax our assumptions of universality
and/or of no exotics to reach the desired low-energy param-
eter space. We first consider the possibility of nonuniversal
~but of the same order of magnitude! trilinear couplings and
soft mass-squared parameters at the string scale. In most
cases, we must chooseM1/2 small compared to other soft
masses at the string scale. The value ofM1/2 must also be
chosen to satisfy the phenomenological bounds on the
chargino masses and the gluino masses at the electroweak
scale. The boundary conditions are chosen to avoid a dan-
gerous color-breaking minimum@28#, which could result
from negative squark mass-squares or large values ofAQ at

the electroweak scale.12 Negative squark mass-squares~in-
cluding both the supersymmetric and soft-breaking contribu-
tions! are always unacceptable, because they imply that the
standardlike minimum is an unstable saddle point. We
present several illustrative examples of nonuniversal bound-
ary conditions, the resulting low-energy parameters, and the
relevant physical quantities in Tables I–VI. For economy of
presentation, we display the low-energy values of the SU~3!
and SU~2! gaugino masses (M3, M2) explicitly in the last
line of each table, and do not present the values ofM1 and
M18 , which follow from the assumption of universal gaugino
masses@see Eqs.~B5! and ~54!#.

In Table I, we present a set of examples of boundary
conditions that lead to the special case of the large trilinear
coupling scenario in whichc1

2(MZ)5c2
2(MZ)5cS

2(MZ)
51.0, andcA(MZ)55.0. This special case, chosen for defi-
niteness to address the effect of the large value ofcA , has the
Z-Z8 mixing angle identically zero, as discussed in Sec. III.
In each case, the initial values of the gaugino mass and the
trilinear couplings must be chosen such thatA takes a large
value compared to the soft mass-squared parameters at the
electroweak scale. This can be obtained either by choosing
AQ

0 negative, choosingA0 much larger thanAQ
0 , or taking

M1/2 negative. The initial values of the soft mass-squared
parameters also must be chosen carefully so that
m1

25m2
25mS

2 at the electroweak scale, which clearly is very
fine-tuned. In each example, the initial values of the param-
eters are much larger than the low-energy values of the soft
mass-squared parameters of the singlet and the Higgs
bosons.

In Table II, we present examples of the more general case
of the largecA minimum in which the magnitudes of the soft
supersymmetry-breaking mass-squared parameters are not
exactly equal at the electroweak scale. The first example II~a!
has the valuescA(MZ)55.0, c1

2(MZ)51.1, c2
2(MZ)50.9,

and cS
2(MZ)51.0; these small deviations in the low-energy

12Moderate trilinear terms involving squarks may be allowable
because the charge-color breaking minimum may be only local or,
if global, may be separated from the standardlike minimum by a
large barrier. Whether a color- and charge-breaking global mini-
mum is allowed depends on the cosmological history and on the
tunneling rate from the standardlike minimum@21#.

TABLE I. Large cA minimum: MZ2
5196 GeV, aZ2Z850.0, tanb51.0, mh5126 GeV, and

Q15Q2521. We present the values of (M3, M2) at the electroweak scale. The gluino mass isuM3u.

~a! ~b! ~c!

MZ M string MZ M string MZ M string

m1
2 ~GeV!2 (40.8)2 (740)2 (40.8)2 (518)2 (40.8)2 (713)2

m2
2 ~GeV!2 (40.8)2 (2690)2 (40.8)2 (892)2 (40.8)2 (1180)2

mS
2 ~GeV!2 (40.8)2 (1090)2 (40.8)2 (736)2 (40.8)2 (1020)2

mU
2 ~GeV!2 (290)2 (1840)2 (150)2 (549)2 (180)2 (581)2

mQ
2 ~GeV!2 (380)2 (1110)2 (250)2 (409)2 (300)2 (320)2

A ~GeV! 204 24230 204 1290 204 2670
AQ ~GeV! 405 26740 2175.0 803 2275 2680
M1/2 ~GeV! ~1160, 328! 400 (2289, 282! 2100 (2578, 2164! 2200

56 2875ELECTROWEAK BREAKING AND THE m PROBLEM IN . . .



values of the soft mass-squared parameters yield a mixing
angle around 1022, which may be barely allowable for
MZ8;200 GeV. Smaller mixing may be obtained for larger
values ofcA , such ascA(MZ)510.0, as shown in II~b!, with
the values of the dimensionless low-energy soft mass-
squared parameters as above. Example II~c! also has
cA(MZ)510.0, but c1

2(MZ)51.5, c2
2(MZ)50.5, and

cS
2(MZ)51.0, and the mixing angle is again of;1022.

These examples are presented to emphasize the increase in
the hierarchy between the values of the parameters at the
string scale and the low-energy values with the increasing
value of cA . The comparison of examples II~b! and II~c!
demonstrates the fine-tuning required at the string scale~as
well as at the electroweak scale! for this scenario. The values
of the soft mass-squared parameters at the string scale are
very similar, yet the resulting low-energy parameters yield
quite different values for the mixing angle.

Table III shows examples that yield the hybrid minimum
of the large cA scenario discussed in Sec. III, for
cA(MZ)55.0, cA(MZ)58.0, andcA(MZ)510.0 @cases~a!,
~b!, and ~c!, respectively#. Large values ofcA(MZ) are
needed to obtain a small enough mixing angle when the low-
energy soft mass-squared parameters differ in magnitude or
sign. This in turn causes the values of the parameters at the
string scale to be much larger in magnitude than those at the
electroweak scale, similar to the results presented in Table II.

In Table IV, we present examples of boundary conditions
that lead to the case~larges scenario! described in Sec. IV.

The initial values of the parameters are chosen to lead to the
negative value ofmS

2 at the electroweak scale required for
this scenario. In addition, we choose values of the squark
soft mass-squared parameters such that the masses of the
squarks will not be made negative when adding the large
U(1)8 D-term contribution~26!. In this case,MZ2

51 TeV,

tanb51, and theZ-Z8 mixing angle is zero; the last two
results are due to our assumption thatc1

2(MZ)5c2
2(MZ),

which requires fine-tuned boundary conditions. In addition,
mS

2 is negative at low energies, while the other soft mass-
squared parameters are positive. This requires taking the ini-
tial values of the parameters very large relative to the low-
energy values, and choosingm2

0 2 large compared to the
initial values of the other soft mass-squared parameters. In
this minimum, the chargino mass constraint is satisfied as
long asuM1/2u is chosen large enough.

Table V presents more typical examples of boundary con-
ditions which lead to the larges minimum with MZ2

51

TeV, tanb52, and a nonzero mixing angle. In each example,
the initial values of the mass parameters are larger~by a
factor 5–10! than the low-energy values. In comparison with
the results of Table IV, in most cases the magnitude ofm2

0 2

need not be taken as large relative to the other soft mass-
squared parameters, because in this casem2

2 is allowed to be
negative at the electroweak scale.

In Table VI, we present examples which lead to a case of
the larges minimum with a lighterZ8 mass (;700 GeV!, a

TABLE II. Large cA minimum: ~a! MZ2
5196 GeV,aZ2Z857.831023, tanb51.02,mh5125 GeV;~b!

MZ2
5196 GeV,aZ2Z851.931023, tanb51.01, mh5130 GeV; ~c! MZ2

5197 GeV,aZ2Z859.331023,
tanb51.03,mh5131 GeV. In all casesQ15Q2521.

~a! ~b! ~c!

MZ M string MZ M string MZ M string

m1
2 ~GeV!2 (42.8)2 (562)2 (19.9)2 (684)2 (23.4)2 (686)2

m2
2 ~GeV!2 (38.7)2 (1110)2 (18.0)2 (1240)2 (13.5)2 (1250)2

mS
2 ~GeV!2 (40.8)2 (802)2 (19.0)2 (979)2 (19.1)2 (982)2

mU
2 ~GeV!2 (201)2 (704)2 (245)2 (701)2 (245)2 (703)2

mQ
2 ~GeV!2 (400)2 (556)2 (380)2 (469)2 (380)2 (471)2

A ~GeV! 204 1180 190 2330 191 2330
AQ ~GeV! 2270 689 2290 2290 2290 2290
M1/2 ~GeV! (2434, 2123! 2150 (2578, 2164! 2200 (2578, 2164! 2200

TABLE III. Hybrid minimum: ~a! MZ2
5200 GeV,aZ2Z853.431022, tanb51.11,mh5135 GeV;~b!

MZ2
5198 GeV,aZ2Z851.431022, tanb51.04, mh5134 GeV; ~c! MZ2

5197 GeV,aZ2Z859.331023,
tanb51.03,mh5133 GeV. In all casesQ15Q2521.

~a! ~b! ~c!

MZ M string MZ M string MZ M string

m1
2 ~GeV!2 (36.5)2 (545)2 (23.1)2 (560)2 (18.5)2 (582)2

m2
2 ~GeV!2 2(36.5)2 (892)2 2(23.1)2 (939)2 2(18.5)2 (959)2

mS
2 ~GeV!2 2(36.5)2 (784)2 2(23.1)2 (807)2 2(18.5)2 (837)2

mU
2 ~GeV!2 (210)2 (301)2 (208)2 (367)2 (180)2 (364)2

mQ
2 ~GeV!2 (405)2 (217)2 (410)2 (271)2 (397)2 (260)2

A ~GeV! 183 1920 184 1940 185 2110
AQ ~GeV! 2310 1790 2311 1810 2301 2020
M1/2 ~GeV! (2578, 2164! 2200 (2578, 2164! 2200 (2578,2164! 2200
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nonzero mixing angle and tanb51.4. This case has a differ-
ent choice of U(1)8 chargesQ1521, Q2521/2. Once
again, the initial values of the parameters are larger than the
values of the parameters at the electroweak scale. As in
Table V,m2

2(MZ) is negative, so in most of the examples the
magnitude ofm2

0 2 is comparable to the initial values of the
other soft mass-squared parameters.

In summary, without exotic particles it is necessary to
invoke nonuniversal trilinear couplings and soft mass-
squared parameters at the string scale to reach either sce-
nario. In most cases, small initial values of the gaugino
masses relative to the soft mass-squared parameters are re-
quired, such thatM1/2!mi

0 . It is also necessary to have
mi

0 2@mi
2(MZ) for the large trilinear coupling scenario, and

for many of the examples that lead to the larges minimum.
With these generic features of the values of the parameters at
the string scale, it is possible to reach the phenomenologi-
cally viable low-energy parameter space with the minimal
particle content.

Another possibility is to add to our model by considering
exotic particles, as are expected in many string models. One
example involves color tripletsD̂1;(3,1,YD1

,QD1
) and

D̂2;( 3̄ ,1,YD2
,QD2

) which couple to the singlet through the
additional term in the superpotential

W5hDŜD̂1D̂2 . ~58!

The presence of these exotics affects the running of the
SU~3! and U~1! gauge couplings. Taken by themselves they
would destroy the gauge coupling unification.13 Thus, one
must assume thatD̂1,2 are associated with other exotics so
that the gauge unification is restored. One example would be
for D̂ i to be part of a complete GUT supermultiplet. Ex-
amples of anomaly-free models consistent with gauge unifi-
cation are given in Appendix C. Clearly, the implications are
very model dependent. A precise numerical analysis of the
associated renormalization group equations of such models is
beyond the scope of this paper. However, it is useful to con-
sider the consequences of these exotics on the low-energy
parameter space using a semianalytic approach. With the ad-

ditional color triplets, a large singlet VEV is guaranteed with
universal boundary conditions, asmS

2 is negative at the elec-
troweak scale. This was shown in@8# in the limit in which
the gaugino masses and trilinear couplings can be neglected.
The additional coupling of the singlet to the exotic triplets
increases the overall weight drivingmS

2 negative in its RGE
in analogy withm2

2 , as discussed in Appendix B. In contrast,
the large trilinear coupling scenario is more difficult to ob-
tain in this case. The presence of the new trilinear coupling
AD acts to lower the fixed point value ofA further, such that
at low energies AD(MZ);AQ(MZ)@A(MZ). Universal
boundary conditions would not lead to this minimum; the
initial values of the trilinear couplings and the soft
supersymmetry-breaking mass-squared parameters would
have to be chosen to invert this hierarchy and obtain similar
values ofm1

2, m2
2, andmS

2 at the electroweak scale.

VI. CONCLUSIONS

In this paper, we explored the features of the supersym-
metric standard model with an additional nonanomalous
U(1)8 gauge symmetry. The model is a ‘‘minimal’’ exten-
sion of the minimal supersymmetric standard model
~MSSM!, with one standard model singlet chiral superfieldŜ
added to the MSSM particle content. The U(1)8 charges are
chosen to allow the trilinear coupling ofŜ to the MSSM
doublet chiral superfieldsĤ1,2 in the superpotential. This
choice of U(1)8 charges implies that the bilinear coupling of
the two doubletsĤ1,2 is absent; hence, there is no elementary
m parameter in the superpotential. However, whenS ~scalar
component ofŜ) acquires a nonzero vacuum expectation
value ~VEV!, this trilinear term generates an effectivem
term, which leads to a natural solution of them problem.

The gauge structure, particle content, and nature of the
couplings of this type of model are key ingredients of a large
class ofN51 supersymmetric string models based on fermi-
onic constructions~e.g., Z23Z2 asymmetric orbifolds! at a
particular point in moduli space. Within this approach, we
identified the minimal particle content and their couplings in
the supersymmetric part of the theory which are necessary to
address the symmetry-breaking patterns. Thus, we ignored
the difficult problems associated with the couplings of addi-
tional exotic particles in such string models. Another diffi-
culty of this class of string models is the absence of a mecha-
nism for supersymmetry breaking with unique quantitative

13Small ;10% corrections to the RGE predictions, which could
be due to exotics, may even be desirable, due to the values of the
predicted unification scale anda3.

TABLE IV. Large s minimum:MZ2
51 TeV,aZ2Z850.0, tanb51.0,mh5172 GeV, andQ15Q2521.

~a! ~b! ~c!

MZ M string MZ M string MZ M string

m1
2 ~GeV!2 (430)2 (1660)2 (430)2 (969)2 (430)2 (713)2

m2
2 ~GeV!2 (430)2 (3240)2 (430)2 (1880)2 (430)2 (2350)2

mS
2 ~GeV!2 2(701)2 (2150)2 2(701)2 (1030)2 2(701)2 (478)2

mU
2 ~GeV!2 (450)2 (2300)2 (425)2 (1190)2 (425)2 (1630)2

mQ
2 ~GeV!2 (511)2 (1660)2 (475)2 (782)2 (495)2 (1030)2

A ~GeV! 500 3150 500 808 500 21460
AQ ~GeV! 190 1760 339 21410 363 24440
M1/2 ~GeV! ~289, 82! 100 ~746, 212! 258 ~995, 282! 344
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predictions. We chose to parametrize the supersymmetry
breaking with a general set of soft supersymmetry-breaking
mass parameters.

The analysis given in this paper generalizes the work of
@8#, which investigated the gauge symmetry-breaking pattern
of the above class of string models in the limit of a large
tanb scenario. We have addressed the nature of phenomeno-
logically acceptable electroweak symmetry-breaking sce-
narios and the resulting particle spectrum in detail. In addi-
tion, we have analyzed the RGE’s of the model to explore
the range of parameters at the string scale which leads to the
phenomenologically viable low-energy parameter space.

We summarize the main results of the analysis as follows.
Gauge symmetry-breaking scenarios.We found a rich

structure of phenomenologically acceptable gauge
symmetry-breaking patterns, which involved a certain but
not excessive amount of fine-tuning of the parameters. The
symmetry breaking necessarily takes place in the elec-
troweak energy range.14 For a range of the parameters which
comprises a few percent of the full parameter space, theZ-Z8
mixing is acceptably small and theZ8 mass is sufficiently
large. The symmetry-breaking patterns fall into two charac-
teristic classes:

~i! Large trilinear coupling scenario.The symmetry
breaking is driven by a large value of the soft
supersymmetry-breaking trilinear coupling. When the trilin-
ear coupling is larger than the scalar soft mass parameters by
a factor of 5 to 10, the VEV’s ofH1,2, andS are approxi-
mately equal. For equal U(1)8 charges forĤ1 andĤ2, theZ-
Z8 mixing is suppressed; it can be easily ensured to be
,1023. The Z8 is light, with mass;200 GeV. In this sce-
nario, the electroweak phase transition may be first order
with potentially interesting cosmological implications.

~ii ! Large singlet VEV scenario.In this case, the symme-
try breaking is driven by a negative mass squared term forS.
Its absolute magnitude is in general larger than that of the
mass squared terms forH1,2. A certain fine-tuning of the soft
mass parameters is needed to ensure acceptably smallZ-Z8
mixing. This scenario is viable~for different ranges of pa-
rameters! without imposing additional constraints on the

U(1)8 charges of the Higgs fields. TheZ8 mass is typically
in the range of 1 TeV. It is interesting to note that the range
of mass parameters for this scenario is similar to that of the
MSSM.

Renormalization group analysis.We have also explored
the relationship between the values of the soft
supersymmetry-breaking mass parameters at the electroweak
scale and the values at the string scale by analyzing the
RGE’s of the model. We have solved the RGE’s numerically
as a function of the boundary conditions at the string scale.
We have also derived semianalytic solutions of the RGE’s to
further our understanding of the evolution of the parameters.
In the analysis, we chose the initial values of the Yukawa
couplings~of the Higgs fields to the singlet and of the Higgs
field to the third quark family! to be of the order of magni-
tude of the gauge coupling, as determined in a class of string
models based on the fermionic construction. These couplings
provide a dominant contribution to the RGE’s of the soft
mass parameters.

We found that with the minimal particle content, univer-
sal soft supersymmetry-breaking mass parameters at the
string scale do not yield the phenomenologically acceptable
range of parameters at the electroweak scale. The results
which lead to the phenomenologically acceptable low-energy
parameter space can be classified as follows.

~i! Nonuniversal boundary conditions.With the minimal
particle content, nonuniversal soft supersymmetry-breaking
mass parameters are required at the string scale to obtain the
viable gauge symmetry-breaking scenarios previously de-
scribed. In most cases, the gaugino masses at the string scale
must be chosen small relative to the other soft
supersymmetry-breaking mass parameters. For the large tri-
linear coupling scenario, the soft mass-squared parameters at
the string scale are about a factor of 10 larger than their
values at the electroweak scale.15

~ii ! Additional exotics.Many string models predict the
existence of additional exotic particles, such as additional
SU~3! triplets which couple toŜ with Yukawa couplings of
the order of the gauge couplings. The presence of such exotic

14The scale of U(1)8 symmetry breaking can be in the 101021014

GeV range for the case of more than one SM singlet and the appro-
priate choices of their U(1)8 charges@8#.

15In a large class of models for supersymmetry breaking, the val-
ues of these mass parameters at the string scale are closely related
to the value of the gravitino mass.

TABLE V. Large s minimum: MZ2
51 TeV, aZ2Z856.331023, tanb52.0, mh5163 GeV, and

Q15Q2521.

~a! ~b! ~c!

MZ M string MZ M string MZ M string

m1
2 ~GeV!2 (427)2 (937)2 (427)2 (696)2 (427)2 (665)2

m2
2 ~GeV!2 2(173)2 (1810)2 2(173)2 (2450)2 2(173)2 (1190)2

mS
2 ~GeV!2 2(704)2 (949)2 2(704)2 (383)2 2(704)2 (174)2

mU
2 ~GeV!2 (200)2 (1310)2 (310)2 (1870)2 (262)2 (887)2

mQ
2 ~GeV!2 (380)2 (974)2 (400)2 (1280)2 (362)2 (674)2

A ~GeV! 250 2710 250 22670 250 1460
AQ ~GeV! 2109 2460 210 24810 178 696
M1/2 ~GeV! (2289, 282! 2100 ~723, 205! 250 ~289, 82! 100
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particles can modify the RGE analysis significantly.16 Using
the semianalytic approach, we determined that, for example,
additional color triplets ensure a large value of the singlet
VEV even with universal boundary conditions. This indi-
cates that the latter scenario is obtainable for universal soft
mass parameters at the string scale when such exotics are
present. In the limit of small gaugino masses and trilinear
couplings, this result was exhibited numerically in@8#. In
contrast, the large trilinear coupling scenario is more difficult
to obtain with additional exotic particles. We found that non-
universal boundary conditions for the soft supersymmetry-
breaking trilinear couplings are required to reach this sce-
nario.

The analysis presented in this paper exhibits the viability
and predictive power of supersymmetric models with an ad-
ditional U(1)8, whose gauge structure, particle content, and
nature of couplings are key ingredients of a large class of
string vacua. For a range of soft supersymmetry-breaking
parameters at the string scale, such models allow for inter-
esting gauge symmetry-breaking scenarios, which can be
tested at future colliders.
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APPENDIX A: RENORMALIZATION GROUP EQUATIONS

We present the renormalization group equations for the
gauge couplings, gaugino masses, Yukawa couplings, trilin-
ear couplings, and soft mass-squared parameters for the
model.17 In the following equations,S1 andS18 are defined to
be

S15(
a

Yama
25(

i 51

NF

~mEi
22mLi

21mQi
21mDi

222mUi
2!

2m1
21m2

2 , ~A1!

S185(
a

Qama
25(

i 51

NF

~QEimEi
212QLimLi

216QQimQi
2

13QDimDi
213QUimUi

2)

12Q1m1
212Q2m2

21QSmS
2 , ~A2!

NF denotes the number of families, and the scale variable is
given by

t5
1

16p2
ln

m

M string
. ~A3!

The normalization of the U(1)8 gauge coupling is model
dependent. For definiteness, we choose to normalize the
gauge couplings by requiring that the gauge couplings and
charges satisfy the constraint thatgi

0 2 Tr Q2 is constant,
where the trace is evaluated over one family. With the choice
of U(1)8 charges used in the renormalization group analysis,
g18(t) is numerically very similar tog1(t).

Gauge couplings:

d

dt
g35~2NF29!g3

3 , ~A4!

d

dt
g25~2NF25!g2

3 , ~A5!

d

dt
g15S 2NF1

3

5Dg1
3 , ~A6!

d

dt
g185~2NF12r !g18

3, ~A7!

where

16Since such exotics destroy the gauge coupling unification, one
has to assume that there are additional exotics~that, however, do

not couple toŜ), so that the gauge coupling unification is restored.
17We do not present the renormalization group equations for the

soft mass-squared parameters of the staus and the bottom squarks,
as they do not influence directly the symmetry-breaking pattern.
These terms are included in the definitions~A1! and ~A2!.

TABLE VI. Large s minimum: MZ2
5700 GeV, aZ2Z851.431024, tanb51.4, mh5120 GeV, and

Q1521, Q2521/2.

~a! ~b! ~c!

MZ M string MZ M string MZ M string

m1
2 ~GeV!2 (207)2 (480)2 (207)2 (407)2 (207)2 (546)2

m2
2 ~GeV!2 2(354)2 (824)2 2(354)2 (622)2 2(354)2 (2360)2

mS
2 ~GeV!2 2(499)2 (381)2 2(499)2 (82.8)2 2(499)2 (558)2

mU
2 ~GeV!2 (200)2 (527)2 (262)2 (472)2 (242)2 (1780)2

mQ
2 ~GeV!2 (350)2 (384)2 (362)2 (389)2 (384)2 (1190)2

A ~GeV! 250 2340 250 1520 250 22760
AQ ~GeV! 2190 2440 263 1030 200 25140
M1/2 ~GeV! (2463, 2132! 2160 ~361, 103! 125 ~795, 226! 275
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r 5
2~Q1

21Q2
2!1QS

2

6QQ
2 13~QU

2 1QD
2 !12QL

21QE
2

. ~A8!

Gaugino masses:

d

dt
M352~2NF29!g3

2M3 , ~A9!

d

dt
M252~2NF25!g2

2M2 , ~A10!

d

dt
M152S 2NF1

3

5Dg1
2M1 , ~A11!

d

dt
M1852~2NF12r !g18

2M18 . ~A12!

Yukawa couplings:

d

dt
hs5hs$4hs

213hQ
2 2@3g2

21g1
212g18

2~Q1
21Q2

21QS
2!#%,

~A13!

d

dt
hQ5hQH 6hQ

2 1hs
22S 16

3
g3

213g2
21

13

9
g1

2

12g18
2~QU

2 1QQ
2 1Q2

2! D J . ~A14!

Trilinear couplings:

d

dt
A58hs

2A16hQ
2 AQ22@3M2g2

21M1g1
2

12M18g18
2~Q1

21Q2
21QS

2!#, ~A15!

d

dt
AQ512hQ

2 AQ12hs
2A22S 16

3
M3g3

213M2g2
21

13

9
M1g1

2

12M18g18
2~QU

2 1QQ
2 1Q2

2! D . ~A16!

Soft scalar mass-squared parameters:

d

dt
mS

254~mS
21m1

21m2
21A2!hs

228M18
2g18

2QS
212QSg18

2S18 ,

~A17!

d

dt
m1

252~mS
21m1

21m2
21A2!hs

228S 3

4
M2

2g2
21

1

4
M1

2g1
2

1M18
2g18

2Q1
2D2g1

2S112g18
2Q1S18 , ~A18!

d

dt
m2

252~mS
21m1

21m2
21A2!hs

216~m2
21mQ3

21mU3
2

1AQ
2 !hQ

2 28S 3

4
M2

2g2
21

1

4
M1

2g1
21M18

2g18
2Q2

2D
1g1

2S112g18
2Q2S18 , ~A19!

d

dt
mU3

254~m2
21mQ3

21mU3
21AQ

2 !hQ
2 28S 4

3
M3

2g3
21

4

9
M1

2g1
2

1M18
2g18

2QU
2 D2

4

3
g1

2S112g18
2QUS18 , ~A20!

d

dt
mQ3

252~m2
21mQ3

21mU3
21AQ

2 !hQ
2 28S 4

3
M3

2g3
21

3

4
M2

2g2
2

1
1

36
M1

2g1
21M18

2g18
2QQ

2 D1
1

3
g1

2S112g18
2QQS18 .

~A21!

APPENDIX B: SOLUTIONS OF RGE’s

1. Numerical results

The RGE’s for the gauge couplings and gaugino masses
with the initial conditions~51! and ~54! can be solved to
yield

g3
2~ t !5

g0
2

122~2NF29!g0
2t

, ~B1!

g2
2~ t !5

g0
2

122~2NF25!g0
2t

, ~B2!

g1
2~ t !5

g0
2

122~2NF13/5!g0
2t

, ~B3!

g18
2~ t !5

g0
2

122~2NF12r !g0
2t

, ~B4!

wherer is defined in Eq.~A8!, and

Mi~ t !5Mi
0

gi
2~ t !

g0
2

. ~B5!

These solutions are inserted in the RGE’s for the other pa-
rameters, which we integrated numerically. As a concrete
example, we choose the U(1)8 charges Q15Q2521,
QQ5QL521/2, and initial values of the Yukawa couplings
hQ

0 5hs
05g0A2. The Yukawa couplings are given by

hs~MZ!50.758 , hQ~MZ!51.186. ~B6!

The trilinear couplings take the values

AQ~MZ!520.039A010.07AQ
0 11.84M1/2, ~B7!

A~MZ!50.283A020.215AQ
0 20.12M1/2. ~B8!

Finally, the soft mass-squared parameters are given by
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m1
2~MZ!520.13m2

0 210.8m1
0 220.2mS

0 210.071mU
0 2

10.071mQ
0 220.053A0 210.0061AQ

0 2

10.72~M1/2!
210.035A0AQ

0 20.065A0M1/2

10.056AQ
0 M1/2, ~B9!

m2
2~MZ!50.45m2

0 220.12m1
0 220.12mS

0 220.43mU
0 2

20.43mQ
0 220.027A0 220.025AQ

0 2

23.81~M1/2!
210.029A0AQ

0 10.026A0M1/2

20.13AQ
0 M1/2, ~B10!

mS
2~MZ!520.26m2

0 220.4m1
0 210.6mS

0 210.14mU
0 2

10.14mQ
0 220.1A0 210.01AQ

0 210.82~M1/2!
2

10.07A0AQ
0 20.13A0M1/210.11AQ

0 M1/2,

~B11!

mU
2 ~MZ!520.28m2

0 210.05m1
0 210.05mS

0 210.67mU
0 2

20.33mQ
0 210.017A0 220.021AQ

0 2

14.18~M1/2!
220.004A0AQ

0 10.06A0M1/2

20.13AQ
0 M1/2, ~B12!

mQ
2 ~MZ!520.14m2

0 210.027m1
0 210.027mS

0 220.17mU
0 2

10.83mQ
0 210.0086A0 220.01AQ

0 215.6 ~M1/2!
2

20.002A0AQ
0 10.03A0M1/220.064AQ

0 M1/2.

~B13!

We have also obtained results for different choices of the
initial values of the Yukawa couplings as can appear in a
class of models. The low-energy results do not change sig-
nificantly. For example, withhQ

0 5g0A2 andhS
05g0, the val-

ues of the coefficients do not change more than 10%.

2. Semianalytic solutions

In the following section we present approximate analyti-
cal solutions to the RGE’s. To solve the RGE’s, we first
make the approximation that the gauge couplings~B1!–~B4!
are replaced by their average values

gi5
1

2
@gi~MZ!1g0# ~ i 53,2,1,18!. ~B14!

Similarly, we replace the gaugino masses~B5! with

Mi5
1

2
@Mi~MZ!1M1/2# . ~B15!

This yields the respective values 1.00, 0.69, 0.59, 0.58 for
the gauge couplings g3 ,g2 ,g1 ,g18 , and 2.07M1/2,
0.91M1/2, 0.70M1/2, 0.69M1/2 for the gaugino masses
M3 , M2 , M1 , M18 . Under these approximations, we can
solve the coupled equations for the Yukawa couplings by

noticing that with the choice of initial conditions,hQ remains
relatively close to its fixed point value,18 while hs evolves
significantly. The approximate solution is

hs
2~ t !5

g̃S
2

12~12 g̃S
2/hS

02!e7 g̃S
2t

, ~B16!

hQ
2 ~ t !5

g̃Q
2

12~12 g̃Q
2 /hQ

0 2!e12g̃Q
2 t

, ~B17!

in which

g̃S
25

1

7S 3g2
22

16

3
g3

21
5

9
g1

212~2QS
212Q1

21Q2
22QU

2

2QQ
2 ! g18

2D , ~B18!

g̃Q
25

1

6S 16

3
g3

213g2
21g1

212~QU
2 1QQ

2 1Q2
2! g18

22 h̄S
2D ,

~B19!

h̄S5
1

2
@hS

01hs~MZ!#, ~B20!

h̄Q5
1

2
@hQ

0 1hQ~MZ!#. ~B21!

As a first approximation to solve for the trilinear couplings,
we use the averaged Yukawa couplings, averaged gaugino
masses, and averaged gauge couplings, and the U~1! factors
are neglected for simplicity. The equations are then solved to
yield

AQ~ t !5a1Qel1t1a2Qel2t2b1Qel1t1b2Qel2t2AQP ,
~B22!

A~ t !5a1Sel1t1a2Sel2t2b1Sel1t1b2Sel2t2ASP,
~B23!

where the initial condition-dependenta and b coefficients
are

a iQ5a i~AQ
0 ,AS

0!, ~B24!

b iQ5a i~AQP ,ASP!, ~B25!

a iS5a iQ

~l i212h̄Q
2 !

2 h̄S
2

, ~B26!

b iS5b iQ

~l i212h̄Q
2 !

2 h̄S
2

. ~B27!

We have introduced some shorthand notation:

18The gauge couplings run, so this is not a fixed point in the exact
sense. However, this approach is valid in the limit that Eq.~B14!
holds.
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a1~A,B!5
A~12h̄Q

2 2l2!12 h̄S
2B

l12l2
, ~B28!

a2~A,B!5
A~l1212h̄Q

2 !22 h̄S
2B

l12l2
, ~B29!

l1,256 h̄Q
2 14 h̄S

26A~6 h̄Q
2 24 h̄S

2!2112h̄Q
2 h̄S

2,
~B30!

AQP5
~128/3!g3

2M3118g2
2M2

42h̄Q
2

, ~B31!

ASP5
2~32/3!g3

2M316g2
2M2

14h̄S
2

. ~B32!

With the approximations~B14!, ~B15!, ~B19!, and~B20!, the
fixed point values areAQP52.3M1/2 and ASP521.8M1/2.
This analysis slightly overestimates the splitting of the fixed
point values, but shows the tendency forAQ(MZ) to be
larger thanA(MZ) for M1/2 positive.

The equations for the trilinear terms can also be solved
when the running of the SU~3! gauge coupling and gaugino
are included. The others are neglected for simplicity, as the
SU~3! gauge coupling is dominant. In this case the solutions
are

AQ~ t !5a1Qel1t1a2Qel2t1M1/2f Q„I 1~ t !,I 2~ t !…,
~B33!

A~ t !5a1Sel1t1a2Sel2t1M1/2f S„I 1~ t !,I 2~ t !… ,
~B34!

in which

f Q52
16

9

el1t~12h̄Q
2 2l2!I 1~ t !1el2t~l1212h̄Q

2 !I 2~ t !

l12l2
,

~B35!

f S52
16

9

6 h̄Q
2
„el1tI 1~ t !2el2tI 2~ t !…

l12l2
, ~B36!

and the functionsI i(t) are defined by

I i~ t !5E
x50

6g0
2 t

e2l i x/6g0
2 dx

~11x!2
. ~B37!

To solve the RGE’s for the soft mass-squared parameters,
only the SU~3! gauge coupling and gaugino are included in
the analysis. To obtain relatively compact approximate ana-
lytical solutions, the trilinear couplings are also replaced by
their average values:

ĀQ5
1

2
@AQ

0 1AQ~MZ!#, ~B38!

Ā5
1

2
@A01A~MZ!#. ~B39!

With these further approximations, it is useful to consider the
solutions for the sums defined by

S15mQ
2 1mU

2 1m2
2 , ~B40!

S25mS
21m1

21m2
2 . ~B41!

The solutions are given by

S1~ t !5~g11r1!el1t1~g21r2!el2t2D1 , ~B42!

S2~ t !5~d11h1!el1t1~d21h2!el2t2D2 , ~B43!

in which

g i5a i~mQ
0 21mU

0 21m2
0 2,mS

0 21m1
0 21m2

0 2!, ~B44!

r i5a i~D1 ,D2!, ~B45!

d i5g i

~l i212h̄Q
2 !

2 h̄S
2

, ~B46!

h i5r i

~l i212h̄Q
2 !

2 h̄S
2

, ~B47!

D15 ĀQ
2 2

128

63

g3
2M3

2

h̄Q
2

, ~B48!

D25 Ā21
32

21

g3
2M3

2

h̄S
2

. ~B49!

The renormalization group equations for the individual mass-
squared parameters may then be integrated explicitly to yield

m1
2~ t !5

5

7
m1

0 22
1

7
m2

0 22
2

7
mS

0 21
1

7
mU

0 21
1

7
mQ

0 21
1

7
D1

2
2

7
D223.05g3

2M3
2t

12 h̄S
2H h11d1

l1
el1t1

h21d2

l2
el2tJ , ~B50!

m2
2~ t !52

1

7
m1

0 21
3

7
m2

0 22
1

7
mS

0 22
3

7
mU

0 22
3

7
mQ

0 22
3

7
D1

2
1

7
D219.14g3

2M3
2t

1
2 h̄S

2~h11d1!16 h̄Q
2 ~g11r1!

l1
el1t

1
2 h̄S

2~h21d2!16 h̄Q
2 ~g21r2!

l2
el2t, ~B51!
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mS
2~ t !52

4

7
m1

0 22
2

7
m2

0 21
3

7
mS

0 21
2

7
mU

0 21
2

7
mQ

0 21
2

7
D1

2
4

7
D226.1g3

2M3
2t14 h̄S

2

3H h11d1

l1
el1t1

h21d2

l2
el2tJ , ~B52!

mU
2 ~ t !5

2

21
m1

0 22
6

21
m2

0 21
2

21
mS

0 21
13

21
mU

0 22
8

21
mQ

0 2

1
8

21
D11

2

21
D222.54g3

2M3
2t

14 h̄Q
2 H r11g1

l1
el1t1

r21g2

l2
el2tJ , ~B53!

mQ
2 ~ t !5

1

21
m1

0 22
2

21
m2

0 21
1

21
mS

0 22
4

21
mU

0 21
17

21
mQ

0 2

2
4

21
D11

1

21
D226.6g3

2M3
2t

12 h̄Q
2 H r11g1

l1
el1t1

r21g2

l2
el2tJ . ~B54!

These solutions are valid in the limit of small initial gaugino
masses, such that their contribution to the evolution of the
trilinear couplings and the mass squares is small. When this
condition is not satisfied, the SU~3! gaugino masses and
gauge couplings control the evolution of all the parameters,
and the approximation of neglecting the running of the
gaugino masses and gauge couplings breaks down. As stated
above, it is possible to incorporate the running of the SU~3!
gauge coupling and gaugino in solving the equations for the
trilinear couplings and obtain solutions to these equations
that are in better agreement with the exact solutions. This is
also possible for the soft mass-squared parameters, but the
solutions are cumbersome and thus do not yield much physi-
cal insight, so they are not presented here.

In the limit in which the gaugino masses and trilinear
couplings are neglected (D i , r i , andh i are zero!, it is pos-
sible to use the semianalytic expressions to show that with
universal initial conditions, the only soft mass-squared pa-
rameter that will run negative ism2

2. In this limit, Eqs.~B42!
and ~B43! approach zero asymptotically. Therefore, in the
asymptotic limit the appropriate sums of the individual mass-
squared parameters must also approach zero. SinceH2
couples both to the quarks and the singlet in the superpoten-
tial, it has a greater weight driving it negative in its RGE
~A19!, and it will be negative at low energies. The other soft
mass-squared parameters have smaller group theoretical
prefactors, and in the asymptotic limit they must be positive
to compensate for the negative value ofm2

2. This indicates
that the other soft mass-squared parameters are necessarily
positive at the electroweak scale, as the asymptotes dominate
the low-energy behavior. Although the solution of the RGE’s
requires a choice of average values of the Yukawa couplings,
the asymptotes of the mass-squared parameters do not de-

pend on the Yukawa couplings; it is only the group theoret-
ical factors present in the RGE’s that lead to this result.

This also indicates why it becomes so simple to havemS
2

negative when we add exotics that couple to the singlet in the
superpotential. This increases the effective group theoretical
factor in the RGE formS

2 , so it is naturally negative at the
electroweak scale for universal boundary conditions.

APPENDIX C: NONANOMALOUS U „1…8

In this work, we consider the phenomenological conse-
quences of an additional nonanomalous U(1)8 symmetry.
The requirement that the U(1)8 symmetry be anomaly-free
severely constrains the U(1)8 charge assignments of the
theory; the charges must be chosen so that the U(1)8 triangle
anomaly and the mixed anomalies cancel. Furthermore, we
require that the charges forbid an elementarym term
(Q11Q2Þ0) but allow our induced m term
(Q11Q21QS50). Finally, we require~for models involv-
ing light exotic supermultiplets! that the approximate gauge
unification under the standard model group be respected. In
this appendix, we display two models which satisfy these
constraints and provide ‘‘existence’’ proofs. One involvesad
hoccharge assignments for the minimal particle content, and
the other is GUT motivated and involves exotics. The con-
struction of realistic string-derived models is beyond the
scope of this paper.

In the model we consider with the MSSM particle content
and one additional singlet, for which approximate gauge uni-
fication is respected, the anomaly constraints are

05(
i

~2QQi1QUi1QDi !, ~C1!

05(
i

~3QQi1QLi !1Q11Q2 , ~C2!

05(
i

S 1

6
QQi1

1

3
QDi1

4

3
QUi1

1

2
QLi1QEiD

1
1

2
~Q11Q2!, ~C3!

05(
i

~QQi
21QDi

222QUi
22QLi

21QEi
2!2Q1

21Q2
2 ,

~C4!

05(
i

~6QQi
313QDi

313QUi
312QLi

31QEi
3!

12Q1
312Q2

31QS
3 . ~C5!

The first four constraints correspond to the mixed anomalies
with SU~3!, SU~2!, @U(1)Y] 2, and U(1)Y , respectively. The
final equation is the U(1)8 triangle anomaly condition.

There are also constraints from the requirements of gauge
invariance:

QU31QQ31Q250, ~C6!

Q11Q21QS50, ~C7!
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where Eqs.~C6! and ~C7! follow from the existence of a
Yukawa interaction for thet quark mass and a term to gen-
erate an effectivem parameter, respectively. We do not re-
quire the existence of Yukawa interactions for leptons (QE
1QL1Q150) or down-type quarks (QD1QQ1Q150).
This is consistent with our superpotential~1!, which does not
include Yukawa couplings for these superfields. This implies
in general that these fields must have masses generated by
other mechanisms~e.g., higher-dimensional terms in the su-
perpotential and/or extra fields in the model!. In one of the
examples below we obtain that the condition
QE1QL1Q150 is automatically satisifed for the third gen-
eration, so that the mass of the tau lepton can be generated
by higher-dimensional terms. However,QD1QQ1Q1Þ0 in
that model, so that the bottom quark mass~and the masses of
the first two generations! generated by higher-dimensional
terms would be suppressed by powers of the U(1)8 breaking
scale, and are thus too small.

We have been able to find examples of charge assign-
ments for our model which satisfy the anomaly@Eqs.~C1!–
~C5!# and gauge invariance@Eqs. ~C6!–~C7!# constraints.
One simple possibility is

QE35Q22Q1 , QL352Q2 ,

QQ352 1
3 Q1 , QS52~Q11Q2!,

QD35 1
3 ~Q113Q2!, QU35 1

3 ~Q123Q2!, ~C8!

for arbitrary Q1 and Q2, and the first and second families
have zero U(1)8 charges ~other examples with nonzero
charges for all three families can easily be constructed!. This
choice is consistent with string models where U(1)8 charges
for quarks and leptons of different families arenot equalin
general.

We now consider the effects of neglecting the U~1! fac-
tors ~A1! and ~A2! in the analysis of the RGE’s for the soft
mass parameters. It is straightforward to derive the evolution
equations forS1 andS18 ; if the charge assignments are such
that the conditions for anomaly cancellation and gauge in-
variance of the superpotential@Eqs.~C1!–~C7!# are satisfied,
one obtains a homogeneous coupled system involving only
S1, S18 , the U~1! gauge couplings, and the U(1)8 charges.
For universal soft mass-squared parameters at the string
scale,S1 andS18 are manifestly zero when the anomaly con-
ditions are satisfied, and they remain zero fromM string to
MZ . When there are nonuniversal soft mass-squared param-
eters,S1 andS18 have nonzero initial values. In the semiana-
lytic approach in which the gauge couplings are replaced by
their average values, it is possible to solve this coupled sys-
tem for our example of U(1)8 charge assignments, and show
that the system exponentially decays. Therefore, these fac-
tors become less important, and neglecting them in the RGE
analysis is well justified.

As an example of a GUT-motivated U(1)8, we consider
the c @2#, which occurs in the breaking of E6 to
SO(10)3U(1)c . It is not our intention to consider GUT’s
per se, but rather to use this as an existence proof of accept-
able U(1)8 quantum numbers. The theory will be anomaly-
free if the matter supermultiplets transform according to

3327L1n~27L127L* !, ~C9!

where 27L and 27L* ;(27R)† refer to 27-plets ofE6. Since the
27L and 27L* pairs are vector, any submultiplets can have a
string ~or GUT! scale mass and decouple without breaking
the U(1)c or introducing anomalies, and indeed in most
string models one expects only parts of the 27L127L* to be
present in the observable sector.

It is convenient to display the decomposition of the 27L

under the SU(5)3U(1)c subgroup,

27L→~10,1!L1~5* ,1!L1~1,1!L1~5,22!L1~5* ,22!L

1~1,4!L , ~C10!

where the first and second quantities are the SU~5! multiplet
and A24Qc , respectively. In Eq. ~C10!, the (10,1)L
1(5* ,1)L constitutes an ordinary family, (1,1)L and (1,4)L
are standard model singlets, and (5,22)L1(5* ,22)L are
exotic multiplets which form a vector pair under the standard
model gauge group but are chiral under U(1)c . In particular,
(5,22)L consists ofDL and h2, whereD is a color-triplet
charge21/3 quark andh2 has the standard model quantum
numbers of theH2. Similarly, (5* ,22)L consists ofD̄L and
h1, whereh1 has the quantum number of either theH1 or a
lepton doublet.

Any of the threeh1’s and threeh2’s have the appropriate
quantum numbers to be the MSSM Higgs doublets. Further-
more, the (1,4)L could be the singletS, with the two Yukawa

couplings in Eq.~1! allowed by U(1)c . An exotic hDŜD̂D̂̄
coupling, as in Eq.~58!, is also allowed. Hence, a model
consisting of three 27-plets has most of the ingredients
needed to display the considerations of this paper, albeit with
additional singlets and (5,22)L1(5* ,22)L pairs.

The model as such is not consistent with the observed
approximate gauge unification. The two extra
(5,22)L1(5* ,22)L pairs and the singlets do not affect the
standard model gauge unification at one-loop. However, the
D andD̄ associated with the two Higgs doublets destroy the
unification, and they cannot be made superheavy without
breaking the U(1)c and also introducing anomalies in the
effective low-energy theory.

Gauge unification can be restored without introducing
anomalies by adding a single 27L127L* pair, and assuming,
for example, that only the Higgs-like doubletsh2 and h3
associated with the (5,22)L ~from 27L) and (5* ,12)L

~from 27L* ) remain in the observable sector. Theh2 is
equivalent to theh2’s from the other 27-plets, while theh3 is
similar to theh1 multiplets, except that it has the opposite
Qc . The h3 is not a candidate for theH1, because itsQc
would not allow the Yukawa interactions in Eq.~1! needed
to generate an effectivem @an elementarym is allowed by U
(1)c is this case# or the effective Yukawa interactions~e.g.,
generated by higher-dimension terms in the superpotential!
for the down-type quarks and electrons. Thus, in this model
the Higgs multiplets~or at leastH1) are not associated with
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the extra 27L127L* , although the latter are needed for gauge
unification. This is not anad hocassumption, but a conse-
quence of the allowed couplings; the model actually has
eight Higgs-like doublets, fourh2’s, threeh1’s, and oneh3.

Assuming positive soft mass squares at the Planck scale, the
only fields to actually acquire VEV’s will be those which
have the necessary Yukawa interactions in Eq.~1! and pos-
sibly Eq. ~58!, i.e., anh1 andh2 pair.
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