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We consider electroweak symmetry breaking in supersymmetric models with an extra nonanonfajous U
gauge symmetry and an extra standard-model singlet s8alaor appropriate charges theg1y' forbids an
elementaryu term, but an effective. is generated by the VEV o8, leading to a natural solution to the
problem. There are a variety of scenarios leading to acceptably Zrzdlimixing and other phenomenological
consequences, all of which involve some but not excessive fine-tuning. One class, driven by a large trilinear
soft supersymmetry-breaking term, implies small mixing, a lighte.g., 200 GeY, and an electroweak phase
transition that may be first order at the tree level. In another class,mii%ho (radiative breaking the typical
scale of dimensional parameters, includMg., and the effectiveu, is ~1TeV, but the electroweak scale is
smaller due to cancellations. We relate the soft supersymmetry-breaking parameters at the electroweak scale to
those at the string scale, choosing Yukawa couplings as determined within a class of string models. We find
that one does not obtain either scenario for universal soft supersymmetry-breaking mass parameters at the
string scale and no exotic multiplets contributing to the renormalization group equations. However, either
scenario is possible when the assumption of universal soft breaking is relaxed. Radiative breaking can also be
generated by exotics, which are expected in most string mo&0556-282(97)02117-6

PACS numbgs): 12.60.Jv, 11.25.Sq, 12.10.Kt

[. INTRODUCTION dard model could solve the problem[6-9], by forbidding
an elementaryw term but inducing an effective. at the
The simplest gauge extension of the standard model inelectroweak scale by the U(1preaking. This possibility is
volves one or more additional () symmetries and their one of the major motivations of this paper. There are also
associated extrZ bosons. Such (1)’s often emerge in the implications for baryogenesis. One popular scenario is that a
breaking of grand unified theori¢&UT’s) or in string com-  lepton asymmetry{10] (or an asymmetry in some other
pactifications, for example. guantum numbe@rwas crea_ted by the out of eql_JiIibrium de-
There has been much phenomenological work on the im¢@y Of @ superheavy particie.g., a heavy Majorana neu-
plications of such heavy’s for precision electroweak ob- trino) long before the electroweak transition, and then con-
servables and for future hadron aatle™ colliders. Present verted t(.) a baryon asymmetry by. sphalerpn effects. .S.UCh a
[1] and future[2] limits as well as search and diagnostic mechanism would not be consistent with an additional

capabilities depend on ti& mass, mixing with theZ, gauge U(1)' at the TeV or electroweak scale unless the Majorana

X . . neutrino were neutral under the U(1Y0n the other hand, an
couplings, and chiral charges of the ordinary quarks and Iep—Xtra U(1) might be useful for electroweak baryogenesis

tons, and are thus very model dependent. For many typica] . . : i~ “ o
. ; - th t ding th ded t of lib-
(especially GUT-motivatedmodels the limits on th&-Z’ ril;m'f:%sgnrqéfjizrﬂr[]gi] providing the heeded “out ot equil

mixing are arqund a few 10" 3. The lower limits on FheZ’ Much of the phenomenological work on extzs has
mass are typically around 500 GeV, usually dominated by,oo of the Jamp-post variety, i.e., there was no strong mo-
direct searches at the Fermilab Tevatromp(~Z’ tjvation to think that an extr&’ would actually be light
—/"/7) [3], but with constraints from precision elec- enough to observe. Certainly, in ordinary GUT’s there is no
troweak tests often competitive. Recently, a number of aurgpuyst prediction for the mass scale of the U(byeaking.
thors[4] have postulated that a possible excesZetbb In supersymmetric models there are constraints on the break-
events at the CERN e~ collider LEP could be accounted ing scale, which are usually of order a TeV, because the U
for by the mixing between th& and a leptophobi¢hadro- (1)’ D term may induce masses of order of the breaking for
philic) Z' which mainly couples to quarks, but the most re-all scalars which carry the U(1)harge[12]. However, that
cent LEP data, especially from ALEPH, have considerablyis more a phenomenological constraint than a theoretical pre-
weakened the case that there is an exfgpdn the future it  diction, and it can be evaded if the breaking occurs along a
should be possible to discover a heaxy at the CERN D-flat direction.

Large Hadron CollidefLHC) for masses up to around 10 However, it was recently argud@] that for a large class
TeV. Diagnostics of its couplings at the LHC or Next Linear of string models with extra (1)’s, the breaking should be at
Collider (NLC) (which have complementary capabilifies the electroweak scale and certainly not larger than a TeV.
should be possible up to a few Td¥]. The string models considered [iB] are based oN=1 su-

In addition to being a useful signature of the underlyingpersymmetric string models with the standard mo &)
theory, an additional )" would have important theoretical gauge group SU(2)X U(1)yX SU(3)c, three families, and
implications. For example, an extra(1)’ breaking at the at least two standard model doublets, i.e., models with at
electroweak scale in a supersymmetric extension of the stateast the particle content of the minimal supersymmetric
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standard mode(MSSM). A number of such models are (<10 ®) andM: in the range<1 TeV. We also insist on
based on fermionicZ,x Z,) orbifold construction$13-16 no dangerous color breaking minimum, e.g., no negative
at a particular point in moduli space. squark mass-squared parameters or large trilinear soft
Such models suffer from a number of phenomenologicaupersymmetry-breaking terms that involve squarks. We find
problems(see Sec. Il i8] for a detailed discussignand  various ranges of parameters that allow for such symmetry-
many such models are already excluded experimentallybreaking scenarios. However, all these cases involve some
Nevertheless, there is a strong motivation to search for suctlegree of fine-tuning of parameters, either at the electroweak
Z' bosons and also for the exofigector under S(2)] su-  scale or at the string scateh few percent of the parameter
permultiplets with which they are usually associated. In adspace gives a phenomenologically acceptable U(1)
dition, they provide a useful testing ground to address th&ymmetry-breaking scenario. This fact is important since it
issues of U(1) breaking within a large class of string mod- implies that in this class of string models there is a reason-
els. able probability that the heavi¥’ is in the experimentally
The relevant models are those in whiéh there is a observable regiofand not required to become massive at the

nonanomalous U(1)which does not acquire a large massstring scalg In addition, these models provide an elegant
from string or shadow sector dynamics, so that its mass mu§@/ution to theu problem, con;plementary to that of the
come from symmetry breaking in the observable sector, angiudice-Masiero mechanisl7]. _
(b) the soft supersymmetry breaking is such that all scalar N Sec. Il we give explicit expressions for the scalar po-
mass-squared terms are positive and of the same order tgntial, vector boson masses, scalar masses and related spar-
magnitude at the string scale, which is the case for modicle masses, and introduce certain definitions and conven-
gravity mediated hidden sector modétsit not necessarily 10NS that will b_e used thr_oughout th/e vx_/o_rk. In Sec. Ill, we
for the gauge mediated supersymmetry-breaking models th&f€Sent scenarios to obtain a sm&lZ’ mixing angle based
have been of recent intergst on that portion of parameter space in which the trilinear cou-
Under these assumptions, the U{breaking may be ra- pling is rr_1uch greater than the soft mass parameters. In this
diative[8]. It can take place if there are Yukawa couplings of €@85€Mz is typically comparable td/ (e.g., 200 GeYand
order 1 of a scalar which is a standard model sinfett ~ t&n3~ 1. This scenario is only viable for certaje.g., lepto-
which carries a U(1) chargd to exotic particles. This is phobig couplings. One version of the model has a first-order
expected in many string models, for which all nonzero€lectroweak phase transition at tree level and thus has poten-
Yukawa couplings are typically of the same magnitude, i.e.i@lly interesting cosmological consequences. _
they are the same as the gauge coupling at the string scale up " Sec. IV, we present a scenario in which the singlet
to a coefficient of order unity. These can drive the scala@cduires alarge VEV so thdz,=1 TeV. In this case, all of
mass-squared to a negative value at low energies, which the dimensional parameters in the scala( potential are bf
typically of the same order as the Higgs boson mass-squarea?v) and the smaller electroweak scale is due to a cancella-
so that the electroweak and U(threaking scales are com- tion of parameters.

parable, both being controlled by the same soft N Section V, we use the renormalization group to relate
supersymmetry-breaking scdle. the electroweak scale supersymmetry-breaking parameters to

In [8], a model was considered in whianly one(e.g., those at the s.tripg scale. We first assume the minim_al part?cle
H,) of the two SM Higgs doublets has nonzero couplings incontent, consisting of the MSSM particles, the addltlonal'sm-
the superpotential and contributes to the electroweak brea@let, and theZ’. We present the results of the numerical
ing; i.e., this model roughly corresponds to the largegtan integration of the renormalization group equatidRGE's)
scenario in the MSSM. The radiative symmetry breaking carfo" the parameters of the model as a function of their bound-
take place withM, ~1 TeV, and sufficiently smalZ-Z’ ary conditions at the stnng_sgale. With the m!mmal partlclg
mixing angle (not yet excluded by the direct and indirect content, we conclude that it is necessary to |r_1voke nonuni-
heavy Z' constraint provided the U(1) charge assign- versal va!ues of the soft supersymmetry-breaklng parameters
ments for theH, and the SM single§ [responsible for the at the string scale to reach the desired low-energy region of
symmetry breaking of U(Z) have the same sign. parameter space. Several examples of boundary conditions at

In this paper we consider the more general case with thihe string scale are presented which lead to the phenomeno-

Ca logically acceptable scenarios of Secs. Ill and IV. We also
two SM doubletsH; ; now coupled to the SM singl&in the discuss the implications of additional exotic matter in the

superpotential with the termsSH;-Ho. In this case, the RGE's, and conclude that with additional & triplets, for
U(1)' charges ofH;, and S must sum to zero. This term example, the large singlet vacuum expectation vaWtEeV)
provides an effectives term hy(S), onceS acquires a non- scenario is possible with universal boundary conditions.
zero vacuum expectation value. The RGE's are presented in Appendix A. In Appendix B,
Because of this additional term in the superpotential, ave present the details of the numerical results, and we give
rich spectrum of possible symmetry-breaking scenarios
emerges. In particular, we concentrate on a set of phenom=———
enologically viable scenarios with smalt-Z' mixing 2However, the tuning involved is no worse than that in the MSSM
in the case for which the electroweak schle is small compared to
L, e.0., foru~1 TeV
YIn some cases the breaking will be at an intermediate scale if 3with additional U(1)s the required terms in the Kéer potential
there is aD-flat direction involving two scalars both of which have are absent; thus the Giudice-Masiero mechanism is not applicable.
large Yukawa couplings. Other possible solutions are surveyed &.
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semianalytic solutions of the RGE’s. Finally, in Appendix C with
we present examples of models with anomaly-free U(1)

Our goal is to explore the general features of electroweak Ve=|hg?[[H1-Hol?+[SI%([H4|?+[H2?)], 4
breaking in a class of string models, not to construct a spe-
cific model. We therefore focus on the gauge- and
symmetry-breaking sectors of the theory and only specify the
U(1)' charges when we present concrete numerical ex-

12
amples. g
P + 5 (QuHI+ Qo Ho?+QdS?)2, (5)

G? 95
Vo=g (IHal*=|H1l?)?+ 5 [HiH|*

Il. ELECTROWEAK SYMMETRY BREAKING

Vo= M2 Hq| 2+ m3|H,| 2+ m3 S|?— (AhSH; - H,+ H.c),
The gauge group is extended ®=SU(3).X SU(2), sor= M| gl ol *+ mg| ™= (ARsSH, - H 26)

XU(1)yXU(1)y, with the couplingsgs, 9,, 9y, di,
respectively* The particle content is given by the left-handed where G2= g$+ g%, and

chiral superfieldsl;~(1,2-1/2Q,), Ef~(1,1,1Q¢), @, HO e
1 2

H,= : 7

Hl) i (HS) v

~(3,2,1/6Qq), Uf~(3,1,-2/3Qu), Df~(3,1,1/3Qp), H,=
Hi~(1,2-12Q1), H.~(1,2,1/2Q,), S5~(1,1,0Q9),
Wh?[]eetgjpsélrjgsglrmg ::f;jﬂ:%ég%?;' By an appropriate choice of_t_he gI_obaI phases of the fi_elds,
we can takeAhg real and positive without loss of generality.
—h&j..[ ... O By a suitable gauge rotation we can also mékg =0 and
W=hsSHy - Hz+holl3Qa-He. @ take(H9)=v,/\2 and(S)=s//2 real and positive. The re-
The form of Eq.(1) is motivated by string modell9], in  quirementH; )=0 in the vacuum is equivalent to requiring
which a given Higgs doubleti.e., H,) only has Yukawa the squared mass of the physical charged scalar to be positive
couplings to a singléthird) family. This family index will ~and imposes some constraint on the parameter space of the
not be displayed in the rest of the paper. model, as will be shown later. There is no room for explicit

Gauge invariance of W under U(1) requires Of spontaneouCP violation in the potential(3) so that
Q,+Q,+Qs=0. The effectiveu parameter is generated by (H2)=v1/+/2 is real. Furthermore, with our choidehs>0
the VEV (S)=s//2, and will then be given by ;=hes/\2.  one has;>0 in the true minimum.

Within string models there is no mechanism for super- Even after the replacement &S by ho(S)=us\2, V
symmetry breaking with quantitative predictive power. Wediffers from the MSSM by additional terms quadratic in the
thus parametrize supersymmetry breaking with the most gerd; in Vg and Vp. The minimization conditions when all
eral soft supersymmetry-breaking mass parameters. The sofEV’s are nonzero give
supersymmetry-breaking Lagrangian takes the form

1 1 _
mi =m3tang— 5 G%?cos28— 59'1Q1(Quv+Qss?)

Lsg=| — 2 M\\j+AhSH,;-Hy+AghoUQ-H,
I
1
— zhg(vzsinzﬁJrsZ), (8
| el Pl s
2 2 1 2.2 1 12 ra N 2
—m?|U|?—m3|D|?—mZ|E|?—m?|L|?, 2 ma=Mm5CoiB+ 5 G v cos2B— 59'1Q2(Qunv”+Qss?)
where the\; are gauginos, and the other fields are the scalar 1, , )
components of the corresponding supermultiplets. Gauge —5hs(v cosB+s%), 9
symmetry breaking is now driven by the vacuum expectation
values of the doubletsl;, H, and the singleB. The Higgs v2 1 1
potential is the sum of three pieces: mé= mggsinﬂcos{%— EgliQS(QHUZ_FQSSZ)_ Ehé 2
V=Vg+Vp+ Vg, (€©)) (10

where m3=(hg/\2)As, Qu=Q;co€B+Q.sirB, v?=v?
“Here gy= \/3/59,, whereg; is the grand unified theoryGUT) +v§, and taB=v,/v;.
normalized coupling. That ig}y is the coupling usually calleg’ in To ensure that the extremum at;(v,,S) iS a minimum
the standard model. of the potential, the squared masses of Higgs scalars should
*The U1) forbids not only an elementarzH,-H, term in the  be positive. In additiony(v,,v,,s)<0 should also hold for
superpotential, but also a terBF. Such a term is needed in the
NMSSM [18] to avoid the appearance of an axion after symmetry
breaking. In our model, this massless pseudoscalar is eaten by th€For a more precise analysis of the model, beyond the scope of
Z'. Also, unlike in the NMSSM the discrete symmetry is embeddedthis paper, it would be necessary to include one-loop corrections,
in the gauge symmetry and thus there is no domain wall problemwhich can have a non-negligible effd&0].
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the minimum to be acceptable. Even if all these conditiondhenomenological constraints typically require this mixing
are satisfied, the minimum is not guaranteed to be the globangle to be less than a few times £( 1], although values as
minimum of the potential. Whether it is still acceptable will much as ten times larger may be possible in some models

depend on the location and depth of the other possiblevith a lightZ' (e.g., Mz, /MZ ~2) and certair(e.g., lepto-
minima and of the barrier height and width between thephobm) couplings. Then Wlth good preC|S|(MZ —=G22/4

minima[21].
Letting Z’ be the gauge boson associated with U(he so_}_f;]aétvs ezti?u?negflsr?xseigal Hinas bosons after svmmetr
Z-Z' mass-squared matrix is given by © Spectru pny a9 y y
breaking consists of three neutr@lP even scalars i?,

M% A2 i=1,2,3), oneCP odd pseudoscalarA), and a pair of
(M?),_5/ = A2 M2 (11 charged Higgs bosongi("), that is, one scalgr more than in
z/ the MSSM. The tree-level masses of the Higgs bosons are
where
1 2 \fAhSS v?
M%:Z 2(v2+p2), (12) Mjyo= Sin2B —sm223 (17
M2, =0'2(v3Q3+v3Q5+5%QY), w3 _
which is never negative, and
2 1 ’ 2 2
A =591 G(v1Q1—v3Q2). (14
V2Ahs 1
2 a2 s 2.2

The eigenvalues of this matrix are M= =M+ (18)

sin2Bd 2 sV

1

M2 =Z[M2+M2,7(M2—-M5,)2+4A%. (1

2122 2[ z e Vg 2) I 19 mﬁi could be lighter than th&/ boson due to the negative
third contribution. It could even be negative for some
choices of the parameters.

Masses for the three neutral scalars can be obtained by
(16) diagonalizing the corresponding<3 mass matrix, which, in

the basisHY'=Re(H?) 2,HY",S"}, reads

TheZ-Z' mixing anglea .,/ is given by

1 . 2A2
a7 7= zarctal ———= | .
ST

2 U2
K101+m3tan/3 K100~ M3 Kk1g01S— m3S

2 2 2,2, 12 U1
(M2)0=| KiV1w2—Mz  K3v5+M3CO Kasl2S—M3~= |, (19
U2 U1 U1U2
K1s01S—M3—  KpslpS—M3— K282+ ma——
S S SZ
|
with k?=G%l4+g'3 , , k1,=h2+9'3Q,Q,— G?/4, th_anMZ at tree level. In.aqldit_ion, radiative corrgctio[m]
Kis=h2+9 2QiQs, and« —gliQé will also be sizeable. This indicates thﬁt can easily escape

It is simple to obtain some useful information from the detection at LEP II. Foth within the kinematical reach the

structure of this matrix. The tree-level mass of the lightestcomposition ofho will determlne its production cross sec-
scalarh) satisfies the bound tions (e.g., throuth—>Z* 9). In particular, theh9ZZ cou-
pling, and thus the cross section, are reduced‘l’ifhas a
significant singlet admixture. However, when that suppres-
sion takes placé also tends to be light25]. Actually, in

the limit of h9— S”" the mass o satisfies the limit20). In

The first term is the usual MSSM tree-level bound. The secthe event that both? andh3 have a substantial singlet com-
ond contribution comes froR terms and appears also in the ponent,hg will also tend to be light.

NMSSM [18], while the third is aD-term contribution from In the general case, when the masses governing the scalar
the U(1) and thus is a particular feature of this type of mass matrix fso,M,,M5/) have comparable magnitudes,
models[22,23. In contrast to the MSSMhY can be heavier the scalar states? will be complicated mixtures of the in-

ho\ M2co$28+ = h2025|n22,8+ 9'2Q%v%. (20
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teraction eigenstates. When there is some hierarchy in thosehereM,, is the SUW2) gaugino mass. The following bounds
masses, it is possible to make definite statements about thesult from(22):

composition of the mass eigenstates.
(H1) If Mz, >mp~
nated (13~S°r) with massmhg~Mz,. The two lighter states

are mixtures oHY" andHY" (with some mixing angle much

like in the MSSM, although with masses in a different range

with masses arounthy,~M. More precisely, the lightest
scalarh‘{ satisfies théapproximate mass bound

2
Zo=MZ2cog28+h%? 1sin22,8— s —2& :
! 2 9'7Q% Qs

(H2) When M />m,> M the two lighter mixed states
of case (H1) have a definite compositionhy~H?'sing
—HYcogB with mass~m, andh?=HY" cog3+HY'sing with
mass saturating the boug@l). In this limit hg has standard
model couplings.

(H3) If my>Myz/,M;, then mho goes to negative values.

m (21

This means that the eIectroweak vacuum ceases to be a mini- Preliminary LEP results,

M the heavier scalar is singlet domi-

wi+2M3,cogp,
m-:< 23
X1 | M3+2M3sirts, 3
and the following limiting cases hold:
,  [wE (ME>ud2M{cosp),
™7 IM2 (u2>M22M2sir? @9
> (ms>M3,2Mysin’B).

In the first (secondl case, the lightest chargino is predomi-
nantly a Higgsinagauging.
including data collected at

mum and turns into a saddle point; the minimum of the po-\/§= 172 GeV set a 95% C.L. lower limit on the chargino
tential lies at some other point in field space and the symmemass of about 7985 GeV [26]. The weaker value

try breaking is not in accord with the observed values of thecorresponds to light enougEi

gauge boson masses.

Ve, Which can interfere
destructively in thee*e™— y*x~ cross section. For defi-

More details about the Higgs spectrum in particular scenjteness we impose in our analym+>80 GeV. Egs.

narios will be given in the next sections.

The parameterug also plays an important role in the
chargino-neutralino sector. Remembering tpath.s/\2,
the masses for the two charginag‘sf2 are given by the
MSSM formula

(23), (24) imply that this lower bound puts a significant con-
straint on the parameter space of the moddi g is rela-
tively small (roughly hgs<M>). In general, some parameter
region arounszuszM\z}vsinZB will always be excluded
(for parameter values satisfying exactly that condition,

1 mz.=0).
m2. = ={M2+ u2+2M3 e : : -
X1, 202 Ms W In the neutralino sector, there is an extra U(12ino
— 5 — 5 and the HiggsinoS as well as the four MSSM neutrali-
+ M3+ pu2+2M§) 2= 4(Mous— MGsin2g) 2}, nos. The 66 mass matrix reads(in the basis
(22 {B',B,W;,H},HS)
|
M 0 0 91Qw1  91Qav2  9;Qss
1 1
0 My 0 ~59v01 50y 0
1 1
0 0 M2 59v1 T 50v2 0
M7o= , 1 1 vy | (25
91Q1v1 ~50vw1 500 0 THs THRsS
, 1 1 U1
ngZUZ Egyvz — Egvz — Ms 0 _,Uzs?
, v v
9:Qss 0 0 _Ms_z _Ms_l 0
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whereM; and M; are the gaugino masses associated withconditionQyQs>0 (that in our model would be generalized
U(1) and U(1), respectively. to QQs>0) is no longer necessary.

For general values of the parameters in this matrix, the We can classify the symmetry-breaking scenarios in three
mass eigenstates will be complicated mixtures of Higgsinoslifferent categories according to the value of the singlet
and gauginos. It is useful to consider some limiting cases. VEV.

(N1) If M;=M;=M,=u=0 there are two massless (i) s=0. This corresponds to the case of the breaking
neutralinos. One is a pure photinoyy=y=cos,B driven only by the two Higgs doubletshis would be the
+sin0\NVV3) and the other a pure Higgsin’ﬁg:(ﬁ‘fsinﬁ typical case if the soft mass of the singlet remains positive

~ ~ . . ) TheZ' boson would acquire mass of the same order ag the
+H20038)005a+ Ssina with tane= (v/s)sinBcosB. The rest d '

] X and many other particlegliggs bosons, charginos, and neu-
of the neutralinos will have masses controlled My, and tralinog would tend to be dangerously lighi{=0 now.
M.

. ) _ ~_  There is in principle the possibility of a smaltZ" mixing
(N2) If M{, ug>M7, two of the eigenstates are juBt  due to the cancellation mechanism described and one could
andWj; with masse$M ;| and|M,|, respectively. Next, two arrange the parameters to barely satisfy experimental con-
Higgsinos, HYsing+Hcos3 and HIsing—HYcos8, are straints. However, this requires considerable fine-tuning, and
nearly degenerate with magg|. The remaining two neu- We do not pursue this singular scenario further. _
Y = -~ !Z
tralinos are mixtures oB’ and S, and we can consider two (i) s~v. This case would naturally givéz, =M (if

. . L 1128 1222 ~  0;Q is not too smaj)l and a smallug (thus some sparticles
different simple situations; first, iM;“>g,°Qss”, then B will be expected to be light One require€,=Q, to have

has mas$M ;| while S is light, with mass controlled bMz.  negligibleZ-Z’ mixing. Such models are allowed for lepto-

In the other case, wittM;?<g;°Q5s?, they have masses phobic couplings[4]. Particularly interesting examples of

m%OZQiZQészigiQsM Is. this__t_ype of scengrio will be presented in the r21ext section.
(N3) If u?>M2,M3 (which naturally requiress>v, (iii) s>v. In this caseMz,>M; and us andmj are natu-

hence M§,>M?,M§), the approximate eigenstates are rally Igrge. TheZ—Z’ mixing .is suppressed by the Iarge.mass

(B'+8)/yZ with mass My: B, W, with masses Mz (in addition to any accidental cancgllatlon for partlcglar
= ) 5’0’ 0 3 choices of charges eventually relaxing the constraint

[Ma],[M,|, respectively, andH{=H3)/\2 with massius|.  Q,Q,>0. As M, increases more fine-tuning is needed to

In the next sections we will give numerical examples ofkeepM,, light. This case will be studied in Sec. IV.
the pattern expected for charginos and neutralinos in differ-

ent scenarios.

Masses for the rest of the MSSM particlesjuarks and Ill. LARGE TRILINEAR COUPLING SCENARIO
sleptong can be obtained directly from the MSSM formulas  For the sake of simplifying the analysis, the soft
by settingu= us=hs/\2 and adding the pertinem-term supersymmetry-breaking mass parameters can be written in

diagonal contributions from the U(1)]12]: terms of dimensionless parametexsand an overall mass
scaleM:
1
omP=>g'3Qi(Qui+Qui+Qss?),  (26) mi=CciMg, m;=CiMp, m5=ciMg, A=CaMo. (27

whereQ; is the U(1) charge of the corresponding particle. Since these are the only dimensional parameters in(@g.
This extra term can produce significant mass deviations witlyne can conveniently parametrize the VEV's as

respect to the minimal model and plays an important role in

the connection between parameters at the electroweak and v1=F;Mgy, vo=fMg, s=fM,. (28)
string scales. However, in the low-energy analysis, its effect

can always be absorbed in the unknown soft supersymmetry- \ye first minimize the potentia(3) with respect to the

breaking mass squared parameters. _ ~ dimensionless parametefs defined through Eqs27),(28)
Before proceeding with the analysis of different scenariong then go to physical shell by choosing

it is useful to compare the present model with the simplified
version discussed in Ref8]. That version contained one
Higgs doublet and one singlet, with U("L¥hargesQy and Mo=———,
Qs, respectively. It was shown that a sufficiently hea/y VE+ 15
(with mass up to~1 TeV) with small mixing to theZ could

be obtained for the cag@,Qs>0, which would allow can- wherev =246 GeV sets the scale of electroweak symmetry
cellations so thaM, andv can be small compared tm,|,  breaking.

Img| ands. The more realistic case with two Higgs doublets  In contrast to the usual MSSM potenti®,in Eq. (3) has
offers several advantages. First, there can be a cancellation &m important trilinear term involving only the Higgs fields.
the off-diagonalZ-Z' mass matrix elemeriii4) if Q;Q,>0.  Therefore, one can consider a symmetry-breaking scenario
In addition, the presence of a trilinear coupling in the superdriven by this large trilinear term, as opposed to the more
potential (forbidden by SW2) in the model of[8]) qualita- common situation in which the value of the minimum is
tively changes the Higgs potential, allowing for a richer pat-determined mainly by the signs and magnitudes of the soft
tern of symmetry-breaking mechanisms. In particular, themass-squared parameters c3, andc3. If c, is sufficiently

v
(29
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large compared to the soft mass-squared parameters, a

ca-induced minimum occurs with

fi~fo~fo~ (30

Ca
V2 hy’
where we have also assumed thatis large enough so that
Ve dominates theD terms. Equation(30) corresponds to
v1~V,~S~174 GeV.

In the limit of largec,, the relative signs and the magni-

1
Mpo= E‘/G2+ 2h2 v,

2 o NS
myo= 397 Q%+ > V-

Only Myo depends explicitly on the U(1)charges. If a par-

ticular model allowshg to be much smaller than the gauge
couplings A and h‘l) become light andmy==My,,

tudes of the soft mass-squared parameters are not mportan‘z

since they contribute negligibly to the location of the mini-

Chargmo and neutralino masses depend on the gaugino

mum. However, if the values of the soft mass squared panasses of the SU(2) U(1)y, and U(1) groups, and we

rameters are nearly the same, E80) is reached for inter-
mediate values of, . In the present low-energy analysis, we
assume for definiteness that|~|c3|~|c3. This relation is

very fine-tuned in the context of the renormalization group

analysis, as discussed in Sec. V.
From Eqgs.(11)—(14) it is clear thatM . will generally be
comparable tdM; in the largec, case, with the exact value

discuss their spectrum later in this section. In ¢henduced
minimum the effectiveu parameter takes the form

hss he

ILLS_\/E_Z

This produces a smallp parameter, us=86 GeV for

(36)

depending org;Q; »s (which we assume are of the same h=0.7.

order of magnitude a&). Thus, the only phenomenologi-
cally allowed possibility is to have negligible mixin@gnd
then only for small couplings to the ordinary lept@nSrom
Eq. (14), we see that this occurs f@,=Q,, in which case
A?—0 for f;~f,. Both D terms in Eq.(5) vanish in this
case for largec,. Therefore, in what follows we choose
Q:1=Qa2.

In the largec, solution (30), Mg in Eq. (29) becomes

_hsv 31
0— CA ’ ( )
and
fa
tanB= —= (32
f
The Z' mass is simply given by
M32,=3Q%g’2v?, (33
and
A=hg. (39

To illustrate this scenario we take

(37

and letc, vary from 0 to 10. Motivated by the renormaliza-
tion group analysis in Sec. V, we takg=0.7. We also take
Q:=Q,=-1 and g'?=3%G?sir4,, as is suggested by
simple version of gauge unification, and remark occasionally
on different choices.

|cil=1Ic3l=cg =1

A. Hybrid minimum

First, consider

ci=-1 (39
with ¢, varying from 0 to 10. We call this choice “hybrid,”
since for smalk, the minimum will be determined by these
soft mass-squared parameters, and for largeheir signs
and magnitudes will be irrelevant and a minimum described
by Eg. (30) will occur. Though we are ultimately interested
in the largec, minimum, we describe the properties of
physical quantities in the whole, range.

Figure Xa) shows the variations of the dimensionless field
VEV’'s with c,. For large values o€,, the effects of the
guadratic mass parameters are unimportant and 38 .be-

Using Egs(30), (31) in the expressions for the Higgs massescomes almost exact. It is mainly because of the biasing of the

in Egs. (17)—(19), the limiting values for the Higgs masses

are
3
on: E hSU,

1
Mmyz== §\lgg+2h§ v,

(39

soft mass-squared parametetﬁ and cé are negativethat
f4, o, andfg approach their large, character gradually.
Taking M,=91.19 GeV the mass ratiot Zl/MZ,
Mz,/Mz, Mg/Mz, theZ-Z" mixing anglea, and taig are
shown as a function o€, in Fig. 1(b) for the values of
quadratic mass parameters in E(8). We see that
Mz —Mz, tang—1, anda—0 for largec,; for example,

"Models which differ by a simultaneous rescaling of all of tg
are equivalent sincd, is chosen to give the observed=246
GeV.
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3.0 . . , , FIG. 2. c, dependence of the Higgs boson masses for the hybrid
minimum.
M,,/M, (b) _ _ |
values of thef; varying continuouslyas in a second-order
phase transition In the largec, limit, all quantities are con-
20 F 2 i trolled by Eq.(30).
tan B 10°¢
/ / B. Pure trilinear coupling minimum
Mz1/ lVlz For a second example, we take
T c?=1, c2=1, ci=1 (39)
J/ Mo/Mz and varyc, from 0 to 10. The origin is a minimum, and a
deeper minimum with nonvanishing fields can only be in-
. . . . duced byc, .
%0 2.0 4.0 6.0 8.0 10,0 Figure 3a) shows the variations of the dimensionless field
Ca VEV’s with c,. Forca>cq"=3 all the fields are nonzero

and identical, for our choices of the other parameters, ap-
FIG. 1. (a): c, dependence of the dimensionless field VEV's for proaching the values in E¢30) for largecy .

the hyt?rid minimum.(b): Ca erendence of various dimensionless = |, Fig. 3b) we plot the dimensionless quantities
quantities for the hybrid minimum. le/ML MZZ/MZv Mo/M,, the Z-Z' mixing angle «,
and taB as a function ot for the cA>cj§”t portion of the

tan3=1.03 anda=8_.8>< 10 3 for ca=10. With our specific total range. In this minimunMZIZ Mg, Mzzz 196 GeV,
U(1)" charge assignmentsMz,/Mz—2.14 Mz,~196 a=0, tanB=1, andMy=hg/c,. For other small positive
GeV) for largec,. As we observe from Fig. (&), the gap  values of the quadratic mass parameters, the minimum will
betweenf; andf, decreases rather gradually, and thus it isagain be induced by, , and the same values will be reached
necessary to have larger values @f to obtain a smaller asymptotically. Fig. 4) shows the variation of scalar
Z—Z7' mixing angle. masses as a function of, for the soft mass-squared param-

Figure 2 shows the variation of the scalar masses as gters of Eq(39).
function ofc, for the values of soft mass-squared parameters |n Fig. 4(b) we investigate thé; dependence of the di-
given by Eq.(38). For large enougtt,, all masses reach mensionless potential for different values @f and for the
their asymptotic values given by E(5): my==146 GeV, mass parameters in E¢39). For each value of, V is
Mpo=211 GeV,m232230 GeV, mﬂzz 152 GG‘V,mﬂlz 122 minimized with respect td, andf. The straight dotted line
GeV. at V=0 serves as a reference to separate the two distinct

For the particular parameters in this example, the gauggiinima. For all ca<cgi", the global minimum is at
symmetry is broken to U(R), for all values ofc,. How-  f,;=f,=f,=0. Forc,>c%"=3 the minimum atf,+0 be-
ever, for smaller U(1) couplings or charges or larger values comes the true minimum and the gauge symmetry is broken.
of hg, the global minimum if,;=fs=0, f,#0 for values of Passage of the system from one minimum to the other re-
ca smaller than some critical value, so that an additionalquires quantum tunneling through the barrier. Presumably, as
U(2) is unbroken. This is due to the positive quartic terms inthe universe cooled it would have first been stuck in the local
Ve [EQ. (4)], which dominate theD terms for largehg or ~ minimum, and could have eventually tunneled to the global
small charges. The symmetry is broken to the desireaninimum, with implications for baryogenes[27]. As is
U(1)gm ascy increases through this critical value, with the clear from Fig. 4b), the height of the barrier is very small
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FIG. 4. (a): c, dependence of the Higgs boson masses for the
. ) \ o - .__pure c, minimum. (b): Variation of the potential withf, for the
various dimensionless quantities for the pure trilinear coupllngparameter values in E39) and different values of,, from 2 to 5
minimum. in steps of 0.5.

FIG. 3. (a) ca dependence of the dimensionless VEV’s ghi

compared to the depth of the minimum for the large values . _ . .
of c, required to get small enough, .. In that case there as dictated by universalibin the largeca minimum (30).

is no danger of a large supercooling and the transition cafyigure %a) shows the chargino masses together with th.e LEP
proceed without posing a cosmological probl&idowever, ~OWer bound. IfM;=1100 GeV orM,= —40 GeV,m, is
a detailed discussion of the cosmological implications of thisabove the LEP bound. Féf,—, m, approacheg.s from
model is beyond the scope of this paper. below, and forM,— — 2, m, approacheg from above.
In summary, the hegative soft mas_s_-squared parameters in In Fig. 5b), we show theM, variation of the neu-
the hybrid minimum introduce a splitting among the fleldstralino masses in the large, minimum. In this scenario
A - ’
for smallc, . The gap betweefy andf, decreases gradually the neutralino mass matrix takes a simple form Gf

as a function o, , which indicates that large valuesof "~ ' q ~1 Th " d .
are required to obtain a sufficiently smz@HzZ’ mixing angle. =Q,=Q and tapg=1. e matrix decomposes in two

In the case of the pure trilinear coupling minimum, there is3xX3 matrices [in the basis B, Ws,Hsing—Hlcosp),
no bias from the soft mass-squared parameters and one cgB’ H%ing+HJcos3,S%)]. The first of them has a:22 sub-
obtain a small mixing angle in a reasonable rangecof matrix identical to the chargino mass matrix. Fpr=0 the

values. However, in the large, limit the two minima have  three eigenvalues are exactly equalMg and my: . The

the same limiting properties solely determined by the value . . .
of the trilinear coupling. presence of a nonzem, slightly changes the picture, with

In Fig. 5 we plot the chargino and neutralino masses as 1€ deviations largest whe, is close tomy- . This behav-
function of the SU(2) gaugino mas#, (with M, andM;  ior is shown in Fig. §o) where these particular three eigen-
values are singled out by solid lines. The second33matrix
has one eigenvalue equal tae2, independent of the gaugino
8We thank P.J. Steinhardt for a discussion on this point. masses. The other two eigenvalues are
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massegb) with the SU(2) gaugino mas$/, in the largec, mini-
mum.

1
Myo=5[M1+ pe® (M- 19 *+1291°Q%%]. (40

These three eigenvalues are plotted in Figp) Svith dashed
lines. ForM;us=39;°Q%? one of the neutralino masses
from Eg. (40) goes to zero. If the lightest chargino is to
satisfy the LEP bound, the LSP is thé neutralino.

IV. LARGE S SCENARIO

Unlessg; Qs is large, Mz, >M, requiress>v. In that
case it is convenient to examine the U(1hreaking first,
separately from SU(2¥ U(1) breaking, which will repre-
sent only a small correction. The breaking of the U(19
triggered by the running of the soft masé towards nega-
tive values in the infrared. As a result the singlet gets a VE
[see Eq.(10)]

2

S§o= :
22
9:°Qs

That is,M2,~ —2m3(u=S5).

(41)

The presence of this large singlet VEV influences, already
at the tree level, SU(2YU(1) breaking, which is governed
by the minimization condition$8),(9). Let us rewrite these
conditions in a form that resembles the MSSM ones:

1 -, ~
—m§=§ (m?—m3)tan28+

1
M2— Ehguz)sinzﬁ

+39'2<Q -Q,)Quv’tan28
2 1 1 2 H

, Mgsifp—micosp M_%
Ks™ cos28 2
2 — O2cirf
1 g,zszlcoé‘ﬁ Qzsin'B
271 cos28 ’

(42

where m?=m?+3g;?Q;Qss? are the Higgs doublet soft
masses corrected by the singlet VEV. The MSSM case
would be recovered by settingy =h,=0 (but keepingus
fixed). The last term in Eq(42) is negligible if there is a
cancellation in the off-diagonal-Z’ mass term(14). It is

interesting to note tham?+ 2 (the effective Higgs mass
terms in the potentialcan be made negative by ti8con-
tribution. Then SU(2XU(1) breaking can be triggered by
the previous U(1) breaking. This is yet another alternative
to the usual radiative breakirglthough the breaking of the
U(1)’ is itself radiative.

Turning back to the minimization equatiorig2) one
would naturally expecv?~s?. The lightness oM, com-
pared toMz, results from a cancellation of different mass
terms of ordeM ;. The fine-tuning involved is then roughly
given by the ratioM 7, /M. It is illustrative to look at this
cancellation in more detail. Consider first the case of the
MSSM. By naturalness one usually assumes that soft
supersymmetry-breaking mass parameters are at mosfl.of
TeV. If the soft mass parameters are as heavy as that limit,
then some fine-tuning is needed to §&s one order of mag-
nitude lower. We will take this as the limit of admissible
(low-energy fine-tuning. As already mentioned, the pa-
rameter in the MSSM does not naturally satisfy that con-
straint. Consider next the simple model discussgd@]rwith
one single Higgs doublet. For large the cancellation to be
enforced is

1
M+ 591°QuQss’=0(M3), (43

where mﬁ is the Higgs soft mass-squared parameter. One
sees thaQQ<s>0 is needed for the cancellation to occur
[note that, ifmﬁ>0, corresponding to a nonradiative break-
ing of SU(2)XU(1), the opposite conditionQ,Qs<0

\)NOU|d be requirefl Substituting Eq.(41) in Eqg. (43) and

imposing|m?|<1 TeV? one arrives at the condition

My |2
Mz |7_1Qd. (44)
1 Tev/ ~|Qul
From this, it follows that the only possibility of having ;.

significantly heavier than 1 TeV without excessive fine-
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tuning to keepM light is to have|Q,|<|Qg|. The natural 1000

possibility is to haveQpu=0; that would correspond to a 000

U(1)’ trivially decoupled from electroweak breaking. % (a)
In the case of two Higgs doublets, we can similarly re- ¢5 soo | >
quire thatu?, m3, andm? , are at most-1 TeVZ. Thenwe @ 4| R
arrive at the condition o 0 2,3
% 600 |- A
Mz V2 |]Qd [Qd 9'5Q3% = s /
m =min |Q|,|Q|, 2 , (45) c P +
1 2 hs 8 400 F H
o)
and also o 30r
: S0 m_(h° h.°
A Mz 91/Q4| o) /i o
= . (46) P m
1 TeV/\1 TeVv hg I

100 ——/_f
0 . ‘ .

. . 122 H 200 300 400 560 G(I)O 700 B(I)O 960 1000
Consider first the case dnﬁ small compared tg'7Qs. This M, (GeV)

meansug is small compared td,, so that no restriction
comes from theu condition in Eq.(45). In this case,

( Mz, )2<min |Q1+Q, |Q1+Qy
1 Tev) — Qi " Q4

There is a maximum value om (m=2, reached for
Q,:=Q,) and it is not possible to decouple tdé from elec-
troweak breaking by a large hierarchy between the charge
because of the constraif;+Q,+Qs=0. If h? is larger
than g'2Q?2 (that is, u?>M3,), then the minimum in Eq.
(45) goes to zero, which indicates thislt,/ < us~1 TeV to
avoid a large fine-tuning. We conclude that, to hdwg>1
TeV requires excessive fine-tuning in both cases. From Ec:
(46) we also find a natural upper limit to impose on the
parameter:

=m=<2. (47)

Masses (GeV)

Higgs Boson

%0 300 400 56?\/' ?g V)760 800 900 1000
. (Ge

hA=gi|QsO(L TeV). (49 ?
FIG. 6. Variation of the Higgs spectrum wittd;, for A=500

GeV, Q;=Q,=—1/2, and(a) h=0.5 and tapg=1.5; (b) hy=0.7

and tarB=1. There are three scala®olid lineg one pseudoscalar

(dashed ling and one charged paidash-dotted The horizontal

dash-dotted line gives the bouf20).

In addition, theZ-Z' mixing should be small enough. For
moderate values d¥1,, (say 500 GeY, smallZ-Z' mixing
requires a small off-diagonal element in thgZ’ mass ma-
trix. In fact, this matrix element vanishes for some value of
tang if Q;Q,>0. More preciselyf,_, <46 if tang is in

the interval . .
with A°, completing a full SW2) doublet H% A%, H*) not
G(Q,+Q,) M; involved in SU2) breaking. The lightest neutral scalar is
tanB=+Q;/Q,| 1+ 66————— —=| (Q:Q,>0) basically the(real part of thg¢ neutral component of the
49;Q:Q, M3 Higgs doublet which is involved in the $P) breaking and

(49 has then a very small singlet component. The third neutral
scalar has mass controlled b, and is basically the sin-
glet. This mass pattern can be clearly seen in Fig. 6 for
different choices of couplings and U('L¢harges.

(with 6,_7,=0 for the central value This quantifies the
fine-tuning required in tgB. This effect reduces the fraction

of acc_eptgble parameter space, for low valuesvigi.. The The mass of the lightest Higgs boson is of particular in-
reduction is less important fora' closer to the upper natu-

L N terest. The limiting valug21) for mo can be bigger or
ral limit of 1 TeV, where a good cancellation in the off- imiting value(21) h} '99

2 .
diagonalZ-Z’ mass term is not required and eventually theSmaller than the MSSM upper boudzcos23 depending
conditionQ,Q,>0 can be relaxed. on couplings and charge assignments. Note thaDtHerm

The pattern of the spectrum of physical Higgs bosons ircontribution g’faﬁ,vz in Eqg. (20) is exactly compensated
the larges case is particularly simple. As discussed in Sec.after integrating outS and disappears in this decoupling
II, one neutral scalah? remains below the boun(®0) and limit. However, this exact cancellation does not take place
approaches the valué21). The pseudoscalaA® mass, for the F-term contributions. The behavior mhg as a func-
mAo=2Ahss/sin28 is naturally expected to be largenless  tion of M, is shown in Fig. 7a) for two different cases.
Ah, is very small and in that case, one of the neutral scalarsHorizontal dash-dotted lines give the upper bo{ifd. (20)],
and the charged Higgs boson are approximately degeneratiee MSSM boundM ;|cos28| (which is zero in the figune
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150 In Fig. 7(b), we show the dependence ufhtl) on A for

fixed Mz, in the same two cases of Fig(aJ. For smallA,
we are in casH1 of Sec. Il and the inequality21) holds
(actually, it is saturated for the parameters chos€&he ap-
proximation(50) works well in that region. For large, Mpo

increases or decreases depending on the sidgf. dh both
cases, wher\ grows beyondn,~My, mﬁo drops to nega-
1

tive valuegcaseH3 in Sec. I. The minimum of the poten-

tial does not give a correct electroweak breaking; for suffi-
ciently largeA the pattern of VEV’s is similar to the one
encountered in the large, case of the previous section, but
the gauge boson masses would be much larger than the ob-
served values. This behavior differs from the MSSM where
Mpo always increases with larger, until the upper bound is

saturated.
For some values of the parameters the lasgsymptotic

value formﬁo, as computed from Eq21), is negative. An
1

150

example of this case is shown in Figbh In such cases
there is an upper bound dvi;, beyond which the vacuum
would be destabilized.
Eq.(21) | Next we show typical examples of the neutralino-
chargino spectra. In Figs(& and 9a) we fix M,=500 GeV
(assuming thaM, and M; have values as dictated by uni-
versality and show the dependence on the mass ofzhe
boson of the masses in the neutralino-chargino sector. Fig-
ures 8b) and 9b) instead show the variation of the masses
with M, for a fixed value oM, =500 GeV. In Fig. &), we
(b) clearly see how the chargino masses are controlled/by
(fixed) and ug (growing linearly withM3.). For low Mz,
meaningus<M,, the lighter chargino mass followsg and
10 15 20 25 the heavier mass is nearly constant and equa¥ito This
A (TeV) role is interchanged after crossing the~ M, region. The
same behavior is manifest in Fig(l8, where ug is kept
FIG. 7. Mass of the lightest Higgs scala (solid line): (8 asa  constant andvl, varies.
function of Mz, showing the decoupling limig>v for two differ- In Figs. 9a) and 9b) we plot the spectrum of neutralinos
ent cases withA=500 GeV, ta=1. The upper curve has for the same two cases. In Fig(@, for largeM,, we have
Q,=Q,=—3/5,h;=0.6 and the loweQ,=Q,=—1 andhs=0.3; 12 2512 gng the masses follow the pattern described in
(b) as a function ofA for .MZ’:.l T?V in the two same Cases. e discussioricase (N2)] after Eq. (25): the two lower
Dashed and dash-dotted lines give different mass bounds and limi . : .
as discussed in the text. solid) curves asymptqilcallyjlattenlng approafii ;| and
M| and correspond t8 andWs5, respectively. Then there
and the asymptotic value E(1) [to make the figure simpler are two(dashed curves for the doublet Higgsinos tending to
the parameters have been chosen such that(Egisand(21) |us and finally two (dash-dottef curves for twoB’-S
are the same in both cagefigure 7a) shows an example mixed states with masséd,,+M}/2. Also note that two

for which the asymptotic value is bigger than the MSSMneutralino states follow closely the chargino pattern of Fig.
upper bound. This value is approached slowly. After includ-8(a).

o .
0.0 0.5

ing subdominant term@(mf\/M;) in Eq. (21), one obtains Concerning the nature of the LSP, the lightest neutralino
is the natural candidate in these models. In particular, we see
1 h? Q: that the LSP is mostl8. For large gaugi h
2 2 2 2| o s Ry . ge gaugino masses however,
thHMZCOSZZ'BthSU 23|r1225 9'2Q2 2QS if M ’§>M§,, the lightest neutralino is the singlir® whose

mass is then of the order &l,. This possibility is realized

A o — ) in the case shown in Fig.(9).

+ ﬁhsm(h&g 1QsQrv’sin2B.  (50)

tes V. RENORMALIZATION GROUP ANALYSIS
This approximation is represented by dashed lines in Fig.

7(a) and givesmhg rather precisely for largsd .. The sign We now turn to the renormalization group analysis of the

L model presented in Sec. Il to determine what boundary con-
of K=h§+g’§QsQH determines whether the asymptotic ditions at the string scale are required to reach the desired
value is reached from belowK(<0) or above K>0). low-energy parameter space as described in Secs. Ill and IV.
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FIG. 8. Chargino massds) as a function oM, for M,=500 FIG. 9. Neutralino masseg) as a function oM, for M,=500
GeV; (b) as a function oM, for Mz, =500 GeV.(We fix M; and  GeV; (b) as a function oM, for M, =500 GeV.(We fix M; and
M by universality,Q;=Q,=—1/2,hs=0.5, and ta=1.5) M7 by universality,Q,=Q,=—1/2,hs=0.5, and ta=1.5)
As our model is motivated from string theory, we normal- mion fields [with conformal dimensior(1/2,1/2].1° In this
ize the gauge couplings so that at the string scale case, the trilinear coupling ibiozgo J2. For a majority of
models all of the observable fields are of that type. However,

gg=gg=g(1’=gi‘)=go. (51)  for fields whose string vertex operators involve one such
world-sheet fermion field the trilinear coupling = gj.
In (weakly coupledl heterotic string theory this relation Since in the vertex operator one can add at ntast such
among the couplings is valid for the level one Kdoody  world-sheet fermiongthey now saturatél,1) conformal di-
models’ This is approximately consistent with the observedmension of the vertex operaiptthe trilinear coupling with
gauge coupling unification, which occurs Btg=3x 10  one such field i$i°=g,//2 (which is then the smallest pos-
GeV, one order of magnitude beloMt g,~5X 10'” GeV;  sible nonzero value of the Yukawa couplingn the latter
this difference introduces a numerically small inconsistencycase, however, such fields usually correspond to exotics.
in our analysis. Thus, for the sake of simplicity we assume that the
String models based on fermionig{x Z,) orbifold con-  boundary conditions for the Yukawa couplings are given by
structions[13]-[16] at a special point in moduli space pos-
sess the feature that the couplings of the trilinear terms in the h%= hg= go\/f, (52
superpotential are equal for the fields whose string vertex
operators do not involve additiongteal) world-sheet fer- whereg, is defined in Eq.(51). Using the RGE’s of the
MSSM (i.e., in the absence of trilinear couplings lof to
exotic9, this value of the Yukawa couplingoQ determines
%For the KaeMoody levelk#1 the relationship among the cou-
pling constants is altered by adding appropriate factorgkoih the
equation. 0we thank G. Cleaver for a discussion on this point.
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FIG. 10. Scale dependence of the Yukawa couplifigsid
curves are for exact solutio}H:(1/16#2)InM/MString, such that
t~—0.2 at the electroweak scale.

05

the value ofhg at M;. When combined with the VEV of
H,, which ensures the correct electroweak symmetry-
breaking vacuum, this result yields a prediction for the top
qguark mass in the range ef 170—200 GeV[19].

We first consider universal boundary conditions for the
soft supersymmetry-breaking mass parameters at the string
scale. 05|

Universal scalar soft mass-squared parameters:

0.0

02_ . 02_ 02_ 02_ 02 np2
m; “=m, “=mg“=my“=mg"=Mg. (53 10 -
-0.22 -0, 11 0.00

Universal gaugino masses:
FIG. 11. Scale dependence of the dimensionless trilinear cou-
0 0 0 i .
M3=MI=MI=M io: M= C1,,Mo. (54) pling parameterga) and s_oft mass-squared parametéss Bold
curves are for exact solutions.

Universal trilinear couplings: choose for definiteness the U(1khargesQ;=Q,=—1,
QL=Qq=—1/2, and most of the (1) factors are retaineth.
AOZAg:COMO_ (55) We have solved the RGE’s numerically, and investigated

the evolution of the parameters for a wide range of boundary
conditions. With a specific choice of the boundary conditions
of the Yukawa couplings, we have obtained the numerical
solutions for the parameters at the electroweak scale as a

As a second step, we will allow for nonuniversal initial
conditions for the trilinear couplings and the soft mass-

squared parameters, such that in general function of the initial values of the trilinear couplings and
soft mass-squared parameters. The results are qualitatively
A?=c2i|v|0, (56) the same with other choices of initial values of the Yukawa

couplings motivated by string theory; thus for definiteness
02 0252 we consider only the case with initial Yuk_awa couplings
m; “=¢; “Mp. (57 given by Eq.(52). To further our understanding of the evo-
lution of these parameters, we have also derived semianalytic
The one-loop RGE's for the parameters are presented isolutions of the RGE’s. The numerical and semianalytic so-
Appendix A. We assume a minimal particle content, consisfutions are presented and discussed in detail in Appendix B,
tent with the superpotentidll). The renormalization group and shown in some representative graphs. With the numeri-
analysis of the model depends on the choice of U(1) cal results(B7)—(B13), we are able to investigate systemati-
charges of the theory, that enter the RGE'’s for the U(1) cally the effect of the choice of boundary conditions on the
gauge coupling and gaugino. In general, thél)Ufactors  evolution of the trilinear couplings and the soft mass-squared
have a small effect in the RGE’s of the other parameters duparameters.
to the small magnitudes of the(l) gauge couplings and
gaugino masses. The(l) factors are neglected in the run-
ning of the parameters in the semianalytic approach, which isThe factorsS, andS; defined in Appendix A are not included in
often a good approximation. In the numerical analysis, wehe numerical analysis of the RGE’s, as discussed in Appendix C.
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TABLE |. Large c, minimum: Mz,=196 GeV, a;_=0.0, tapp=1.0, my=126 GeV, and
Q:1=Q,=—1. We present the values ofi(3, M,) at the electroweak scale. The gluino masfMs)|.

@ (b) (©

M z M string M z M string M z M string
m? (GeV)? (40.8Y (740¥ (40.8Y (518Y (40.8Y (713Y
m5 (GeV)? (40.87 (2690Y (40.8Y (892) (40.8Y (1180Y
m2 (GeV)? (40.8Y (1090Y (40.8Y (736Y (40.8Y (1020Y
m3 (GeV)? (290Y (1840Y (150¥ (549Y (180Y (581)
mg (GeV)? (380 (1110¥% (250) (409Y (300) (320Y
A (GeV) 204 —4230 204 1290 204 2670
Aq (GeV) 405 —6740 —-175.0 803 —-275 2680
My, (GeV) (1160, 328 400 (—289, —82) —100 (—578,— 164 —200

First, we consider the case of universal boundary condithe electroweak scalé.Negative squark mass-squar@s-
tions, as stated in Eq$53)—(55), assuming that the only cluding both the supersymmetric and soft-breaking contribu-
contributions to the RGE’s are from the MSSM supermultip-tions) are always unacceptable, because they imply that the

lets, S, and Z’ vector multiplet. An example of universal standardlike minimum is an unstable saddle point. We
boundary conditions is presented in Figs. 10 and 11, whictpresent several illustrative examples of nonuniversal bound-
show the scale dependence of the Yukawa couplings, th@ly conditions, the resulting low-energy parameters, and the
dimensionless trilinear couplings, and the dimensionless sofelevant physical quantities in Tables I-VI. For economy of
mass-squared parameters, ©©05=1.0 andC,,=0.1. The Presentation, we display the low-energy values of th¢35U
dimensionless quantities are related to the physical paran@nd SU2) gaugino massesMs, M) explicitly in the last
eters by rescaling wittVl 5, which is defined in Eq(29). line of each table, and do not present the valueMefand
These graphs illustrate the general features of universdyl;, which follow from the assumption of universal gaugino
initial boundary conditionsho(M5) is larger tharhy(M;),  massegsee Eqs(B5) and(54)].
Ao(My) is larger thanA(M;) for C,,=0.019 C,, and In Table I, we present a set of examples of boundary

m32(M) is negative while the other mass-squared parametel‘%ondiFiO”S that Ie.ad to the ;pegial case 2of the Iarzge trilinear
are positive at the electroweak scale. This behavior can bgoupling scenario in whichci(Mz)=c5(Mz)=cg(My)
seen from the solutionéB7)—(B13), and the semianalytic = 1.0, andca(Mz)=5.0. This special case, chosen for defi-
solutions discussed in Appendix B. These solutions alsdliteness to address the effect of the large valug,ofhas the
demonstrate that the initial value of the gaugino mass paran¥-Z' mixing angle identically zero, as discussed in Sec. lll.
eter M, directly controls the splitting of the low-energy In each case, the initial values of the gaugino mass and the
values of the trilinear couplings and the mass-squared pdrilinear couplings must be chosen such thAatakes a large
rameters. value compared to the soft mass-squared parameters at the
These results indicate that the values of the low-energglectroweak scale. This can be obtained either by choosing
parameters obtained with universal boundary conditions a@\% negative, choosing\’ much larger thamA2, or taking
the string scaléand assuming no exotic supermultiplet® M, negative. The initial values of the soft mass-squared
not lie within the phenomenologically acceptable region ofparameters also must be chosen carefully so that
parameter space. The large trilinear coupling scenario of Seuﬁ: m§= mé at the electroweak scale, which clearly is very
Il requiresc,>c2~c3~c2 at the electroweak scale, which fine-tuned. In each example, the initial values of the param-
clearly does not follow from Fig. 11. The scenario of Sec. IV eters are much larger than the low-energy values of the soft
also does not result from universal initial conditions; Fig. mass-squared parameters of the singlet and the Higgs
11(b) demonstrates that whil@3(M) is negativem(M;)  bosons.
is positive, so the singlet does not develop the large VEV In Table II, we present examples of the more general case
necessary for this minimum. of the largec, minimum in which the magnitudes of the soft
Therefore, we must relax our assumptions of universalitysupersymmetry-breaking mass-squared parameters are not
and/or of no exotics to reach the desired low-energy paramexactly equal at the electroweak scale. The first examfag Il
eter space. We first consider the possibility of nonuniversahas the valuex,(Mz)=5.0, cf(Mz)= 1.1, c%(Mz)=O.9,
(but of the same order of magnitydeilinear couplings and and cé(Mz)=1.0; these small deviations in the low-energy
soft mass-squared parameters at the string scale. In most
cases, we must choodd,,, small compared to other soft
masses at the string scale. The valueMbf,, must also be  '2Moderate trilinear terms involving squarks may be allowable
chosen to satisfy the phenomenological bounds on theecause the charge-color breaking minimum may be only local or,
chargino masses and the gluino masses at the electrowedtilglobal, may be separated from the standardlike minimum by a
scale. The boundary conditions are chosen to avoid a damarge barrier. Whether a color- and charge-breaking global mini-
gerous color-breaking minimurfi28], which could result mum is allowed depends on the cosmological history and on the
from negative squark mass-squares or large valug&ofit  tunneling rate from the standardlike minimue].
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TABLE Il. Large c, minimum: (&) Mz,=196 GeV,az_z =7.8X 103, tanB=1.02,m,=125 GeV;(b)
Mz,=196 GeV,a;_=1.9x10"3 tan3=1.01,m,=130 GeV;(c) Mz, =197 GeV,a;_=9.3x10?,
tan3=1.03,m,=131 GeV. In all caseQ,=Q,=—1.

@ (b) ©

M z M string M z M string M z M string
m3 (GeV)? (42.87 (562) (19.9Y (684 (23.4Y (686
m3 (GeV)? (38.77 (11109 (18.0Y (12407 (13.57 (1250¥
m3 (GeV)? (40.87 (802y (19.0Y (979Y (19.17 (982y
m3 (GeV)? (201Y (704Y (245Y (701 (245) (703y
mg (GeV)? (400Y (556) (380Y (469Y (380) (4717
A (GeV) 204 1180 190 2330 191 2330
Aq (GeV) —-270 689 —290 2290 —290 2290
My, (GeV) (—434,-123 —150  (-578,—169 —200 (—578,—164 —200

values of the soft mass-squared parameters yield a mixinghe initial values of the parameters are chosen to lead to the
angle around 10?, which may be barely allowable for negative value ofn2 at the electroweak scale required for
Mz, ~200 GeV. Smaller mixing may be obtained for larger this scenario. In addition, we choose values of the squark
values ofc,, such aza(Mz)=10.0, as shown in (b), with  soft mass-squared parameters such that the masses of the
the values of the dimensionless low-energy soft masssquarks will not be made negative when adding the large
squared parameters as above. Example) llalso has U(1)’ D-term contribution(26). In this caseM, =1 TeV,

. 2 _ 2 _

cé(MZ):lo.O, but cl(l\_/l_z)—1.5, c_Z(MZ)fO.S, iigd tanB=1, and theZ-Z' mixing angle is zero; the last two

FFSF](MZ)_LO' Iand the mixing dangle |shag_a|n ﬁfl_o : results are due to our assumption tIﬁ(MZ):ci(MZ),
ese examples are presented to emphasize the increass, i;q, requires fine-tuned boundary conditions. In addition,

thg hierarchy between the values of the parameters at.”}%g is negative at low energies, while the other soft mass-

string scale and the Iow—gnergy values with the IncreaSIn%quared parameters are positive. This requires taking the ini-

value of c,. The comparison of examples(b) and li(c)

demonstrates the fine-tuning required at the string sl tial values of the parameters very large relative to the low-

(02
well as at the electroweak scafer this scenario. The values energy values, and choosing, ~ large compared to the
mtlal values of the other soft mass-squared parameters. In

of the soft mass-squared parameters at the string scale € e the charai traint | tisfied
very similar, yet the resulting low-energy parameters yield IS minimum, hé chargino mass constraint 1S satished as

quite different values for the mixing angle. '°”$ %T|'\<I/1’2| is chtosen Iarge'enlough. | f bound
Table 1l shows examples that yield the hybrid minimum diti abie h'przelsends moLe t}l/plca exampies ot holl\JAn ir{ con-
of the large c, scenario discussed in Sec. lll, for itions which lead to the large minimum with Mz,=

ca(M3)=5.0, cp(M;)=8.0, andc,(M;)=10.0 [cases(a), TeVZ tf';l_rﬁ= 2, and a nonzero mixing angle. In each example,
(b), and (c), respectively. Large values ofcy(M,) are the initial values of the mass parameters are Iat@gra_
needed to obtain a small enough mixing angle when the lowtactor 5-10 than the low-energy values. In comparison with
energy soft mass-squared parameters differ in magnitude &he results of Table IV, in most cases the magnitudenf
sign. This in turn causes the values of the parameters at tHiéeed not be taken as large relative to the other soft mass-
string scale to be much larger in magnitude than those at thequared parameters, because in this cases allowed to be
electroweak scale, similar to the results presented in Table Inegative at the electroweak scale.

In Table IV, we present examples of boundary conditions In Table VI, we present examples which lead to a case of
that lead to the casg@arges scenario described in Sec. IV. the larges minimum with a lighterZ’ mass (700 GeV}, a

TABLE Il Hybrid minimum: (a) Mz,=200 GeV,az_z =3.4x 1072, tanB=1.11,m,=135 GeV;(b)
Mz,=198 GeV,a; 7 =1.4x10 2 tan3=1.04, m,=134 GeV;(c) Mz,=197 GeV,az 7 =9.3x10"3,
tanB=1.03,m,=133 GeV. In all case®,=Q,=—1.

(€Y (b) (©)

M z M string M 4 M string M z M string
m? (GeV)? (36.5¢ (545) (23.1¢ (560 (18.57 (582)
m5 (GeV)? —(36.5¢ (892) —(23.17 (939y —(18.57 (959y
m2 (GeV)? —(36.5Y (7847 —(23.17 (807Y —(18.57 (837Y
m3 (GeV)? (210y (301 (208Y (367 (180Y (364)
m3 (GeV)? (405Y (2177 (410Y (2717 (3977 (260Y
A (GeV) 183 1920 184 1940 185 2110
Aq (GeV) —-310 1790 —311 1810 -301 2020

My, (GeV) (—578,—-164  —200 (-578,-164  —200 (-578-164  —200
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TABLE IV. Large s minimum: Mz,=1TeV,az 2 =0.0, tag=1.0,m,=172 GeV, and);=Q,=-1

@ (b) (@]

M z M string M z M string M z M string
m3 (GeV)? (430y (1660) (430) (969Y (4307 (713Y
m3 (GeV)? (430Y (32407 (430Y (1880Y (4307 (2350Y%
m3 (GeV)? —(701Y (2150¢ —(701y (1030¢ —(701) (4787
m3 (GeV)? (4500 (2300Y (425 (1190Y (425) (1630¥
mg (GeV)? (511Y (1660Y (475Y (782) (495Y (1030Y
A (GeV) 500 3150 500 808 500 —1460
Aq (GeV) 190 1760 339 —1410 363 — 4440
My, (GeV) (289, 82 100 (746, 212 258 (995, 282 344

nonzero mixing angle and t@+ 1.4. This case has a differ- ditional color triplets, a large smglet VEV is guaranteed with
ent choice of U(1) chargesQ,=—1, Q,=—1/2. Once universal boundary conditiongsm3 is negative at the elec-
again, the initial values of the parameters are larger than thoweak scale. This was shown [ii] in the limit in which
values of the parameters at the electroweak scale. As ithe gaugino masses and trilinear couplings can be neglected.
Table V,m3(M;) is negative, so in most of the examples the The additional coupling of the smglet to the exotic triplets
magnitude ofmd2 is comparable to the initial values of the increases the overall weight driving negative in its RGE
other soft mass-squared parameters. in analogy withm3 , as discussed in Appendix B. In contrast,

In summary, without exotic particles it is necessary tothe large trilinear coupling scenario is more difficult to ob-
invoke nonuniversal trilinear couplings and soft mass-tain in this case. The presence of the new trilinear coupling
squared parameters at the string scale to reach either so&p acts to lower the fixed point value &f further, such that
nario. In most cases, small initial values of the gauginoat low energies Ap(Mz)~Aq(Mz)>A(M7). Universal
masses relative to the soft mass-squared parameters are b@undary conditions would not lead to this minimum; the
quired, such thaM,<m?. It is also necessary to have initial values of the trilinear couplings and the soft
m? 2>m?(M;) for the large trilinear coupling scenario, and Supersymmetry-breaking mass-squared parameters would
for many of the examples that lead to the lasgminimum. have to be chosen to mvert this hierarchy and obtain similar
With these generic features of the values of the parameters ¥@lues ofmf, m3, andmg at the electroweak scale.
the string scale, it is possible to reach the phenomenologi-
cally viable low-energy parameter space with the minimal
particle content.

Another possibility is to add to our model by considering In this paper, we explored the features of the supersym-
exotic particles, as are expected in many string models. Oneetric standard model with an additional nonanomalous
example involves color tripletD;~(3,1Yp ,Qp) and  U(1)" gauge symmetry. The model is a “minimal” exten-

sion of the minimal supersymmetric standard model
(MSSM), with one standard model singlet chiral superfigld
added to the MSSM particle content. The U{Tharges are

W=hD§I51152. (58) chosen to allow the trilinear coupling & to the MSSM

doublet chiral superfield§-|1,2 in the superpotential. This
The presence of these exotics affects the running of thehoice of U(1) charges implies that the bilinear coupling of

SU(3) and U1) gauge couplings. Taken by themselves theythe two doublet#, , is absent; hence, there is no elementary
would destroy the gauge coupling unificatithThus, one  ,, parameter in the superpotential. However, wiSefscalar

must assume thaﬁ)lvz are associated with other exotics so component Ofé) acquires a nonzero vacuum expectation
thatj:he gauge unification is restored. One example would b@ajue (VEV), this trilinear term generates an effectiye
for D; to be part of a complete GUT supermultiplet. Ex- term, which leads to a natural solution of tpeproblem.
amples of anomaly-free models consistent with gauge unifi- The gauge structure, particle content, and nature of the
cation are given in Appendix C. Clearly, the implications arecouplings of this type of model are key ingredients of a large
very model dependent. A precise numerical analysis of thelass ofN=1 supersymmetric string models based on fermi-
associated renormalization group equations of such models @nic constructionge.g.,Z,X Z, asymmetric orbifoldsat a
beyond the scope of this paper. However, it is useful to conparticular point in moduli space. Within this approach, we
sider the consequences of these exotics on the low-energgentified the minimal particle content and their couplings in
parameter space using a semianalytic approach. With the athe supersymmetric part of the theory which are necessary to
address the symmetry-breaking patterns. Thus, we ignored
the difficult problems associated with the couplings of addi-
13Small ~10% corrections to the RGE predictions, which could tional exotic particles in such string models. Another diffi-
be due to exotics, may even be desirable, due to the values of theulty of this class of string models is the absence of a mecha-
predicted unification scale anek. nism for supersymmetry breaking with unique quantitative

VI. CONCLUSIONS

~(3_,1,YD2,QD2) which couple to the singlet through the
additional term in the superpotential
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TABLE V. Large s minimum: Mz,=1 TeV, az_7=6.3x10"3%, tanB=2.0, m,=163 GeV, and

Q1=Q,=—-1.
@ (b) (©

M z M string M z M string M z M string
m? (GeV)? (4277 (937Y (4277 (696Y (427Y (665)
m5 (GeV)? —(173Y (1810Y —(173y (2450Y — (173 (1190%
m2 (GeV)? —(704Y (949Y —(704Y (383Y —(704) (174Y
m3 (GeV)? (200y (1310 (310) (1870Y (262) (8877
mg (GeV)? (380y (974) (400Y (1280Y (362) (674
A (GeV) 250 2710 250 —2670 250 1460
Aq (GeV) —109 2460 210 —4810 178 696
My, (GeV) (—289,—82 —100 (723, 205 250 (289, 82 100

predictions. We chose to parametrize the supersymmetryy(1)’ charges of the Higgs fields. Th& mass is typically

breaking with a general set of soft supersymmetry-breakingn the range of 1 TeV. It is interesting to note that the range

mass parameters. of mass parameters for this scenario is similar to that of the
The analysis given in this paper generalizes the work ofyyssm.

[8], which investigated the gauge symmetry-breaking pattern Renormalization group analysisVe have also explored

of the above class of string models in the limit of a largethe  relationship between the values of the soft
tanB scenario. We have addressed the nature of phenomenggpersymmetry-breaking mass parameters at the electroweak
logically acceptable electroweak symmetry-breaking scegcgle and the values at the string scale by analyzing the
narios and the resulting particle spectrum in detail. In addiRGE’s of the model. We have solved the RGE's numerically

tion, we have analyzed the RGE's of the model to exploreas a function of the boundary conditions at the string scale.

the range of pqrametgrs at the string scale which leads to “We have also derived semianalytic solutions of the RGE’s to
phenomenolog!cally V|abl_e low-energy paramet_er SPACE. ¢\ her our understanding of the evolution of the parameters.
We summarize the main results of the analysis as followsm the analysis, we chose the initial values of the Yukawa

Gauge symmetry-breaking scenaridd/e found a rich . . . . )
structurge )éf phénomeno?ogically acceptable gaugE(:oupllngs(ofthe Higgs fields to the singlet and of the Higgs

symmetry-breaking patterns, which involved a certain buti€!d to the third quark familyto be of the order of magni-
not excessive amount of fine-tuning of the parameters. Thi/de of the gauge coupling, as determined in a class of string
symmetry breaking necessarily takes place in the eled0dels based on the fermionic construction. These couplings
comprises a few percent of the full parameter spaceZtdé  Mass parameters.

mixing is acceptably small and th2’ mass is sufficiently We found that with the minimal particle content, univer-
large. The symmetry-breaking patterns fall into two characsal soft supersymmetry-breaking mass parameters at the
teristic classes: string scale do not yield the phenomenologically acceptable

(i) Large trilinear coupling scenario.The symmetry range of parameters at the electroweak scale. The results
breaking is driven by a large value of the soft which lead tothe phenomenologically acceptable low-energy
supersymmetry-breaking trilinear coupling. When the trilin- parameter space can be classified as follows.
ear coupling is larger than the scalar soft mass parameters by (i) Nonuniversal boundary conditionsVith the minimal
a factor of 5 to 10, the VEV’s o, ,, andS are approxi- particle content, nonuniversal soft supersymmetry-breaking
mately equal. For equal U(1harges f0|2|1 andl:|2, thez- mass parameters are required at the string scale to obtain the
Z’' mixing is suppressed; it can be easily ensured to b&iable gauge symmetry-breaking scenarios previously de-
<1073, TheZ’ is light, with mass~200 GeV. In this sce- Scribed. In most cases, the gaugino masses at the string scale
nario, the electroweak phase transition may be first ordefiust be chosen small relative to the other soft
with potentially interesting cosmological implications. supersymmetry-breaking mass parameters. For the large tri-

(i) Large singlet VEV scenaridn this case, the symme- linear coupling scenario, the soft mass-squared parameters at
try breaking is driven by a negative mass squared ternsfor the string scale are about a factor of 10 larger than their
Its absolute magnitude is in general larger than that of th&alues at the electroweak scafe.
mass squared terms fbi; ,. A certain fine-tuning of the soft (i) Additional exotics.Many string models predict the
mass parameters is needed to ensure acceptably Zrzall  €Xistence of additional exotic particles, such as additional
mixing. This scenario is viabléfor different ranges of pa- SU(3) triplets which couple tdS with Yukawa couplings of
rameters without imposing additional constraints on the the order of the gauge couplings. The presence of such exotic

“The scale of U(1) symmetry breaking can be in the'f6 10 9N a large class of models for supersymmetry breaking, the val-
GeV range for the case of more than one SM singlet and the apprates of these mass parameters at the string scale are closely related
priate choices of their U(1)charged8]. to the value of the gravitino mass.
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TABLE VI. Large s minimum: Mz,=700 GeV, az 7 =1.4X 1074, tan3=1.4, m;=120 GeV, and
Q]_: - l, Q2: - 1/2

(@ (b) ()

M 4 M string M 4 M string M z M string
m? (GeV)? (207Y (480Y (207Y (407Y (207Y (546
m5 (GeV)? —(354) (824Y —(354) (622 — (354 (2360Y
m2 (GeV)? —(499Y (381Y — (4997 (82.8Y — (499) (558)
m3 (GeV)? (200y (527Y (262) (4727 (242y (1780Y
mg (GeV)? (350)? (384) (362) (389y (3847 (1190Y
A (GeV) 250 2340 250 1520 250 —2760
Aq (GeV) —190 2440 263 1030 200 —5140
My, (GeV) (—463,-132) —-160 (361, 103 125 (795, 226 275

particles can modify the RGE analysis significartfiyusing Ne
the semianalytic approach, we determined that, for example, S;=2, Y,m2=> (mg?—m 2+ mgZ+mp2—2m,?)
<1

additional color triplets ensure a large value of the singlet a
VEV even with universal boundary conditions. This indi-
cates that the latter scenario is obtainable for universal soft —mi+m3, (A1)
mass parameters at the string scale when such exotics are
present. In the limit of small gaugino masses and trilinear Ne
couplings, this result was exhibited numerically [8]. In S|=>, Qam§=21 (Qeimel+2Qim 2+ 6Qqmg’
a 1=

contrast, the large trilinear coupling scenario is more difficult
to obtain with additional exotic particles. We found that non-

universal boundary conditions for the soft supersymmetry- +3QpiMp! +3Quimy)
breaking trilinear couplings are required to reach this sce-
nario. ? Ping q +2Q;mf +2Q,m5+Qgm3, (A2)

The analysis presented in this paper exhibits the viability . ) )
and predictive power of supersymmetric models with an adN.F denotes the number of families, and the scale variable is
ditional U(1)’, whose gauge structure, particle content, anddiven by
nature of couplings are key ingredients of a large class of
string vacua. For a range of soft supersymmetry-breaking 1 )%
parameters at the string scale, such models allow for inter- t= 16’1T2|nMstring
esting gauge symmetry-breaking scenarios, which can be
tested at future colliders.

. (A3)

The normalization of the U(1)gauge coupling is model
dependent. For definiteness, we choose to normalize the
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Gauge couplings
APPENDIX A: RENORMALIZATION GROUP EQUATIONS

o . d
We prese.nt the ren_ormallzatlon group equauons for Fhe &g3=(2NF—9)g§, (A4)
gauge couplings, gaugino masses, Yukawa couplings, trilin-
ear couplings, and soft mass-squared parameters for the

model?’ In the following equationsS; andS; are defined to d
be 94 S §92= (2Ne—5)g3, (A5)
8since such exotics destroy the gauge coupling unification, one agl= ( 2Ng+ 5 gf, (AB)

has to assume that there are additional exdticat, however, do

not couple t0S), so that the gauge coupling unification is restored.
"we do not present the renormalization group equations for the igi: (2NF+2r)g13, (A7)

soft mass-squared parameters of the staus and the bottom squarks, dt

as they do not influence directly the symmetry-breaking pattern.

These terms are included in the definitigqigl) and (A2). where



2880 CVETIC, DEMIR, ESPINOSA, EVERETT, AND LANGACKER 56
2(02+02)+ 02 4
_ . (Q21 Qi) QS 5 . (A8) dth3 4(m2+ mQ3+ mU3+A )hZQ_ ( g3+ Mlgl
6Qg+3(Qy+Qp) +2Q(+ Qg
. 4
Gaugino masses: 29;2Q3 | - §gisl+ 29:%QyS], (A20)
d
—M3=2(2Ng—9)g5M3, (A9)
dt 2 2.2 3 2.2
dth3 2(m3+ mQ3+ mU3+A )h M3g3+ ZMzgz
—M,=2(2Ng—5)g5M,, (A10) 1
dt 1212 2 12 ’
Migi+Mi%g] QQ §9151+291 QpS;-
d 3
giM:= 2(2N +=]g?My, (A11) (A21)
d ' APPENDIX B: SOLUTIONS OF RGE’s
—M}=2(2Ng+2r)g}2M}. (A12)

dt

Yukawa couplings:

giNs=hs{4h3+3h5—[3g3+ 07+ 20;%(Q+ Q5+ Q9 1},
(A13)
16 13
ahq=ho[6hé+h§—(§g§+39§+ 59t
+29;%(Qf +Q5+Q?) ] (A14)
Trilinear couplings:
d 2
Fral SA+6h3Aq—2[3M,g5+ M 03
+2M19;%(QF+Q3+Q9)], (A15)

d 2 16 13 2

+2M1912<Q6+Qé+Q§>) : (A16)

Soft scalar mass-squared parameters:

d
dtms 4(m&+ms +m3+A?)hi—8M1%g;2Q5+2Qs09:%S]
(A17)

2h2_ 3 1
dtml 2(ms+ml+m2+A yhs— gz+ Mlg1

M] 912Q1) 9551*'2912(?151, (A18)

2__ 2 2 2 2\ 2 2 2 2
&mz—Z(mSJr mi+m;+A)hg+6(m;+ mgz+my3

1
+Aé)hé—< M3g3+ 7 Migi+M;%gi%Q3

+92S,+20;%Q,S;, (A19)

1. Numerical results

The RGE's for the gauge couplings and gaugino masses
with the initial conditions(51) and (54) can be solved to
yield

) g5
% N9k (81
9:(1)= 1—2(235—5)9@ ’ (82
9= 2(2N?:g+ 3562t (83)
012(0)= % ®2)

1-2(2Ng+2r)gét’
wherer is defined in Eq(A8), and

0

M;(t) =M

(B5)

These solutions are inserted in the RGE's for the other pa-
rameters, which we integrated numerically. As a concrete
example, we choose the U(l)chargesQ;=Q,=—1,
Qo=QL=—1/2, and initial values of the Yukawa couplings
hO hd=gy\2. The Yukawa couplings are given by

hy(Mz)=0.758 , ho(M2)=1.186. (B6)

The trilinear couplings take the values
Ag(Mz)=—0.039A%+ 0.07Ag+ 1.84M 4, (B7)
A(M7)=0.283A°—0.215A2—0.12M,;,.  (B8)

Finally, the soft mass-squared parameters are given by



m2(Mz)=—0.13m9%+0.8m{ ?—0.2m2%+0.071mJ?
+0.071mQ’—0.053A% 2+ 0.0061A%°
+0.72(Myp)?+0.035A°A% — 0.065A°M 4
+0.056A3M 15, (B9)

m3(My)=0.45m)52-0.12m?2-0.12m2%-0.43mY?
—0.43mQ?—0.027A%2-0.025A%°
—3.81(Myp)?+0.029A°A% +0.026A°M

—0.13A3M gy, (B10)

m3(Mz)=—0.26m5%—0.4m} 2+ 0.6 m32+0.14m?
+0.14m?—0.1A%2+0.01A2%+0.82(My5)?
+0.07A°A — 0.13A°M 15+ 0.11A3M 45,
(B11)
m3(Mz)=—0.28m) %+ 0.05mJ %+ 0.05m3 %+ 0.67mJ?
—0.33my*+0.017A%2-0.021A%?
+4.18(M )2~ 0.004A°A2 +0.06 A°M y

—0.13A3M 5, (B12)

M&(Mz) = —0.14m) *+0.027m{ *+0.027mg*~0.17m{)
+0.83m%+0.0086A%2—0.01A%*+5.6 (M y5)?

—0.002A°A2 +0.03A°M 1, 0.064AZM 4.
(B13)
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noticing that with the choice of initial conditionkg remains
relatively close to its fixed point valug while hg evolves
significantly. The approximate solution is

N 2
Js
h3(t)= = — (B16)
* 1-(1-gYh®)eTed
9o’
h&(t) = = — (B17)
Q 1_(1_gé/h%2)elZQZQt
in which
1 16 , 5
9§=7<39§—3g§+§gi+2<2Q§+2Qi+Q%—Q6
-Q%) 912), (B19)
~2:£1_62+32+ 2+2 2+ 2+2 r2_ﬁ2
9q 6 393 95+97+2(Q+Qa+Q3%) 9; s/
(B19)
I 0
hs=5[hg+hy(M2)], (B20)
I 0

As a first approximation to solve for the trilinear couplings,
we use the averaged Yukawa couplings, averaged gaugino
masses, and averaged gauge couplings, and thefattors

are neglected for simplicity. The equations are then solved to
yield

We have also obtained results for different choices of the Aq(t)= ;g '+ ayoe?'— B1geM '+ Boge?' —Agp,

initial values of the Yukawa couplings as can appear in a
class of models. The low-energy results do not change sig-
nificantly. For example, withg = go+2 andhg=g,, the val-

ues of the coefficients do not change more than 10%.

2. Semianalytic solutions

In the following section we present approximate analyti-
cal solutions to the RGE's. To solve the RGE’s, we first

make the approximation that the gauge coupli(@k)—(B4)
are replaced by their average values

1 .
gizz[gi(Mz)"“go] (i=3,2,1,1). (B14)
Similarly, we replace the gaugino massB8&) with
1
Mi=5[Mi(Mz)+Myp] . (B15)

(B22)

A(t) = a3 M+ a g2 — BrseM+ Brset ' — Agp,
(B23)

where the initial condition-dependent and 8 coefficients
are

aig=a;(AY.AY), (B24)
Bio= ai(Agp.,Asp), (B25)
(\j—12h32)
Qis= aiQTSQ, (B26)
(N;—12h2)
ﬁis:ﬁiQ#Q- (B27)
2h3

We have introduced some shorthand notation:

This yields the respective values 1.00, 0.69, 0.59, 0.58 for

the gauge couplings g5,9,,91,9;, and 2.0%Myp,

0.9IM,,, 0.7M4j,, 0.6M,, for the gaugino masses !¥The gauge couplings run, so this is not a fixed point in the exact
Mz, My, My, Mj. Under these approximations, we can sense. However, this approach is valid in the limit that 6{4)
solve the coupled equations for the Yukawa couplings byholds.
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A(12h3—\,)+2h3B

ay(AB)= W . (829

A(N;—12h2)—2h2B
ap(A,B)= —— 9 =, (B29)

A=Ay
N1,=6h%+4h%+ \(6h3—4h2)2+12h2h3,

(B30)

(128/3g3M3+1835M,
Agp= , (B31
QP 42% )
—(32/3g5M 3+ 695M, ©32

SP 14h2 '

With the approximation$B14), (B15), (B19), and(B20), the
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With these further approximations, it is useful to consider the
solutions for the sums defined by

S1=mj+my+m3, (B40)
S,=m3+mi+m3. (B41)

The solutions are given by
Si()=(y1+p)e'+(y+py)er2—Ay, (B4
So(H)=(8;+ n)etM'+(85+ p)etd—A,,  (B43

in which

yi= ai(myZ+my?+md 2 mg>+mi?+md?), (B49)

fixed point values aré\qp=2.3My, and Agp=—1.8My,. pi=ai(A1,Ay), (B45)
This analysis slightly overestimates the splitting of the fixed
point values, but shows the tendency fag(Mz) to be ()\,_12?2)
larger thanA(M5) for M, positive. =i I——zQ’ (B46)
The equations for the trilinear terms can also be solved 2hg
when the running of the SB@) gauge coupling and gaugino
are included. The others are neglected for simplicity, as the ()\-—12?)
SU(3) gauge coupling is dominant. In this case the solutions 7= pi '—_ZQ, (B47)
are 2hg
Aq(t) = a1qeM'+ ayqeM'+ Mypf o(11(1),12(1)), 128 GZM2
rvi gSM3
Q
A(t) = a1+ apge™2' + Mypf o1 1(1),15(1))
(B34 32 g5M3
il 33
in which T (B49)

16 eMi(12h3—\p)1 4 (1) + 2 (N, —12h2) 1 5(1)

9 A=A (83;5) squared parameters may then be integrated explicitly to yield
5 1 2 1 1 1
T2 (ahqt Aot 200y 2 02— 02 % 02, .02, ~,.02, —
S:_1§66hQ(e () —e'2l,(1)) (836 ml(t)—7ml 7m2 7mS+7mU+7mQ+7A1
A=A ’
: , - EA —3.0552M 2t
and the functions;(t) are defined by 752 2933
+6 +6
|i(t)=f69‘2’te*%iX’69§ dX)Z. (B37) +2F§ 71 : Lohty 72 : 2 ot ' (B50

x=0 (1+x
To solve the RGE'’s for the soft mass-squared parameters, , =~ 1 4, 3 4, 02 3 02 3 o, 3
only the SU3) gauge coupling and gaugino are included in ma(t)=— 7M + 7Mz = ZMs =2 My—=ZMg — 7Al
the analysis. To obtain relatively compact approximate ana- 1
Iythal solutions, the Frlhnear couplings are also replaced by S A,+9.142M2t
their average values: 7

— 1 2hZ( 5+ 8))+6h3(y1+pq)
Aq=35[A%+Ag(M2)], (B39 p SO P o
1
Pw 2
— 1 2hg(mo+ 82) +6hg(y2+p2)
A= E[A°+A(Mz)]. (B39) + ™ e, (B51)

The renormalization group equations for the individual mass-



2 3 2 2 2
= my %+ S m@%+ o mp*+ S my>+ Z4;

4
2 02
Me()=-7m "7 7 7 7

5
4
—7A2—6.1g§|v|§t+4ﬁ§

+6 +4
71 1e"1t+772 zehzt'
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pend on the Yukawa couplings; it is only the group theoret-
ical factors present in the RGE’s that lead to this result.
This also indicates why it becomes so simple to hmée
negative when we add exotics that couple to the singlet in the
superpotential. This increases the effective group theoretical
factor in the RGE formé, so it is naturally negative at the
electroweak scale for universal boundary conditions.

(B52)
1 2
APPENDIX C: NONANOMALOUS U (1)’
m2(t)= —=m? 2~ Emg 24 imo 24 l_3m0 2_ Emoz In this work, we consider the phenomenological conse-
v 21 21 2175 217V 21¢@ quences of an additional nonanomalous U(Bymmetry.
The requirement that the U(1)symmetry be anomaly-free
8 2 S | . X
+ A+ = A,—2.5492M2t severely constrains the U(1)charge assignments of the
21 21 theory; the charges must be chosen so that the Uglangle
pit 71 oot 7o anomaly and the mixed anomalies cancel. Furthermore, we
+4ﬁé ehit 4 ghatt (B53) require that the charges forbid an elementaty term
A A2 (Q1+Q,#0) but allow our induced u term
(Q1+ Q2+ Qg=0). Finally, we requirgffor models involv-
) 1 ., 2 45, 1 o) 02 17 4, ing light exotic supermultiplejsthat the approximate gauge
MQ() = 53 M1 "= 53 Mz ™+ 5o Mg~ oo My ™+ 57 Mg unification under the standard model group be respected. In
this appendix, we display two models which satisfy these
4 A 1 A 2012 constraints and provide “existence” proofs. One involaek
T51M1t 51 2~ 6.605M3t hoccharge assignments for the minimal particle content, and
the other is GUT motivated and involves exotics. The con-
Loh2 p1Tt Vle}\lt+ P2t y2 oMt (B54) struction of realistic string-derived models is beyond the
Q \ ' scope of this paper.

1 2
In the model we consider with the MSSM particle content

These solutions are valid in the limit of small initial gaugino @nd one additional singlet, for which approximate gauge uni-
masses, such that their contribution to the evolution of thdication is respected, the anomaly constraints are
trilinear couplings and the mass squares is small. When this

condition is not satisfied, the $8) gaugino masses and 0=, (2Qqi*+ Qui*Qpi)» (C1)
gauge couplings control the evolution of all the parameters, i
and the approximation of neglecting the running of the
i d li breaks d . As stated
gaugino masses and gauge couplings breaks down. As state 0=Ei (3Qqi+Qu) +Q1+Qs, (C2)

above, it is possible to incorporate the running of thg3U
gauge coupling and gaugino in solving the equations for the
trilinear couplings and obtain solutions to these equations
that are in better agreement with the exact solutions. This is
also possible for the soft mass-squared parameters, but the
solutions are cumbersome and thus do not yield much physi-
cal insight, so they are not presented here.

In the limit in which the gaugino masses and trilinear
couplings are neglected\(, p;, and #; are zerg, it is pos-
sible to use the semianalytic expressions to show that with 0=, (Qo?+Qp?—2Qu?— Q.7+ Qe?) — Q2+ Q3,
universal initial conditions, the only soft mass-squared pa- :

1 1 4 1
OZZ 6QQi+ §QDi+ §QUi+ EQLiJFQEi

1
+§(Q1+Q2)y (C3

rameter that will run negative m%. In this limit, Eqs.(B42) (C4
and (B43) approach zero asymptotically. Therefore, in the

asymptotic limit the appropriate sums of the individual mass- 0=2 (6Qoi+3Qp +3Qui+2Q. P+ Q)
squared parameters must also approach zero. Sthce i

couples both to the quarks and the singlet in the superpoten- +2Qi+ 2Q§+Q§. (C5)

tial, it has a greater weight driving it negative in its RGE

(A19), and it will be negative at low energies. The other softthe first four constraints correspond to the mixed anomalies
mass-squared parameters have smaller group theoretiGg|in SU(3), SU2), [U(1)y]2, and U(1),, respectively. The
prefactors, and in the asymptotic limit they must be positivesina| equation is the U(Z)triangle anomaly condition.

to compensate for the negative valuero§. This indicates There are also constraints from the requirements of gauge
that the other soft mass-squared parameters are necessajflyariance:
positive at the electroweak scale, as the asymptotes dominate

the low-energy behavior. Although the solution of the RGE’s

requires a choice of average values of the Yukawa couplings,

the asymptotes of the mass-squared parameters do not de-

Qu3ztQqs+Q2=0, (Co)

Q1+Q2+Qs=0, (C7)
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where Egs.(C6) and (C7) follow from the existence of a 3X 27, +n(27 +27"), (C9)
Yukawa interaction for thé quark mass and a term to gen-

erate an effectivex parameter, respectively. We do not re-

quire the existence of Yukawa interactions for lepto@&(  \\here 27 and 27 ~(27x) " refer to 27-plets oE. Since the
+Qu+Q,=0) or down-type quarks Qo+ Qo+Q1=0). 57 4 27 pairs are vector, any submultiplets can have a
This is consistent with our superpotentia), which does not - b » any P )
include Yukawa couplings for these superfields. This impliesStrlng (or GUT? scale mass and d.ecouple V.V'thOUt preakmg
in general that these fields must have masses generated B¢ Y(1), or introducing anomalies, and indeed in most
other mechanismé.g., higher-dimensional terms in the su- S{iNg models one expects only parts of the 227' to be
perpotential and/or extra fields in the modeh one of the ~Present in the observable sector.

examples below we obtain that the condition Itis convenient to display the decomposition of thg 27
Qe+ Q. +Q;=0 is automatically satisifed for the third gen- under the SU(5XU(1),, subgroup,

eration, so that the mass of the tau lepton can be generated

by higher-dimensional terms. Howev€lp+ Qg+ Q,#0 in

that model, so that the bottom quark méassd the masses of 27, — (10,9, +(5*,1)_ + (1,2 +(5,—2)_ +(5*,—2),

the first two generationsgenerated by higher-dimensional

terms would be suppressed by powers of the U{drkaking +(1.4., (C10
scale, and are thus too small.

We have been able to find examples of charge assign- _ - _
ments for our model which satisfy the anomflgs.(C1)—  Where the first and second quantities are theSphultiplet
(C5)] and gauge invariancgEgs. (C6)—(C7)] constraints. and 24Q,, respectively. In Eq.(C10, the (10,1)
One simple possibility is +(5*,1), constitutes an ordinary family, (1,1)and (1,4)

are standard model singlets, and %), +(5*,—2)_ are

exotic multiplets which form a vector pair under the standard
Qes=Q2~ Q1. Qus=—Q2, model gauge group but are chiral under U{1)n particular,
Qo3=— 3 Q4, Qs=—(Q;+Q,), (5,—2)_ consists ofD_ andh,, whereD is a color-triplet

charge—1/3 quark anch, has the standard model quantum

—1 1 _ _ -
Qos=35(Q1+3Q2), Qus=3(Q1=3Q2), (C8  hymbers of thed,. Similarly, (5*,—2), consists oD, and
h,, whereh; has the quantum number of either tHe or a
lepton doublet.

for arbitrary Q; and Q,, and the first and second families Any of the threeh,'s and threeh,’s have the appropriate

have zero U(1) charges(other examples with nonzero .
charges for all three families can easily be constructédis quantum numbers to be the MSSM Higgs doublets. Further-

choice is consistent with string models where U(tharges more, the (1,4) could be the single$, with the two Yl{kf“lv_a
for quarks and leptons of different families awet equalin ~ couplings in Eq(1) allowed by U(1),. An exotichp,SDD
general. coupling, as in Eq(58), is also allowed. Hence, a model

We now consider the effects of neglecting thélJUfac-  consisting of three 27-plets has most of the ingredients
tors (A1) and(A2) in the analysis of the RGE's for the soft needed to display the considerations of this paper, albeit with
mass parameters. It is straightforward to derive the evolutio@dditional singlets and (5,2),_+(5*,—2)_ pairs.
equations forS, andS; ; if the charge assignments are such  The model as such is not consistent with the observed
that the conditions for anomaly cancellation and gauge ina@pproximate  gauge unification. ~The two extra
variance of the superpotentidtqgs.(C1)—(C7)] are satisfied, (5,—2).+(5*,—2), pairs and the singlets do not affect the
one obtains a homogeneous coupled system involving onl§tandard model gauge unification at one-loop. However, the
S1, S, the U1) gauge couplings, and the U(1tharges. D andD associated with the two Higgs doublets destroy the
For universal soft mass-squared parameters at the stringnification, and they cannot be made superheavy without
scale,S; andS; are manifestly zero when the anomaly con- breaking the U(1) and also introducing anomalies in the
ditions are satisfied, and they remain zero frévy,,, to  effective low-energy theory.

M. When there are nonuniversal soft mass-squared param- Gauge unification can be restored without introducing
eters,S, andS; have nonzero initial values. In the semiana-anomalies by adding a single 2727 pair, and assuming,
lytic approach in which the gauge couplings are replaced bjor example, that only the Higgs-like doublets and h;
their average values, it is possible to solve this coupled sysassociated with the (5,2), (from 27) and (5,+2),
tem for our example of U(2)charge assignments, and show (from 27°) remain in the observable sector. Thwg is
that the system exponentially decays. Therefore, these faequivalent to théa,’s from the other 27-plets, while the; is
tors become less important, and neglecting them in the RGEimilar to theh; multiplets, except that it has the opposite
analysis is well justified. Qy- Thehs is not a candidate for thel;, because i€,

As an example of a GUT-motivated U(,)we consider would not allow the Yukawa interactions in E(l) needed
the  [2], which occurs in the breaking of E£to to generate an effective [an elementary is allowed by U
SO(10)xU(1),. It is not our intention to consider GUT's (1), is this cas¢or the effective Yukawa interactions.g.,
per se, but rather to use this as an existence proof of accemienerated by higher-dimension terms in the superpotgntial
able U(1) quantum numbers. The theory will be anomaly- for the down-type quarks and electrons. Thus, in this model
free if the matter supermultiplets transform according to  the Higgs multipletqor at leastH ;) are not associated with
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the extra 27+ 27 , although the latter are needed for gaugeAssuming positive soft mass squares at the Planck scale, the
unification. This is not arad hocassumption, but a conse- only fields to actually acquire VEV’s will be those which
guence of the allowed couplings; the model actually hasave the necessary Yukawa interactions in @g.and pos-
eight Higgs-like doublets, foun,’s, threeh;’s, and oneh;.  sibly Eq.(58), i.e., anh; andh, pair.
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