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It was suggested earlier that the chiral phase transition is driven by a transition from random instanton–
anti-instanton liquid to correlated instanton–anti-instanton molecules. So far this phenomenon was studied by
numerical simulations, while we develop an alternative semianalytic approach. For two massless quark flavors,
both instantons and ‘‘molecules’’ generate specific four-fermion effective interactions. After those are derived,
we determine the temperature dependence of the thermodynamic quantities, the quark condensate, and the
fraction of molecules using the standard mean field method. Using the Bethe-Salpeter equation, we calculate
the T-dependence of mesonic correlation functions. These results shed new light on the problem of modifica-
tion of hadrons, and they can be tested directly in lattice simulations.@S0556-2821~97!04515-3#

PACS number~s!: 12.38.Lg, 05.70.2a, 11.30.Rd

I. INTRODUCTION

The nature of the chiral restoration phase transition at the
critical temperatureTc'150 MeV remains one of the main
problems in nonperturbative QCD. Not only is it important
to understand it from a theoretical point of view, but it is also
the motivation for current and future heavy-ion collision ex-
periments. Major efforts are also being made to simulate
finite-T QCD on the lattice, and many results have clarified
to some extent the phase diagram of QCD-related theories,
see reviews@1,2#.

At zero temperature the mechanism of spontaneous chiral
symmetry breaking and even the very existence of most light
hadrons is connected with instantons. The quark condensate
is made of the fermionic~quasi!zero modes generated by
them. The specific instanton-based picture suggested in@3#
was studied both analytically@4,6# and numerically@7–11#.
Even the simplest random model~RILM ! reproduces well
multiple mesonic and baryonic correlation functions, as is
known from phenomenology@12# and lattice simulations
@13#. Furthermore, the ‘‘instanton liquid’’ itself, with param-
eters close to those predicted, was ‘‘distilled’’ from lattice
configurations@14–16#.

It is less clear what happens with instantons at finite tem-
peratureT. It has been known for a long time that athigh T
the instanton density is suppressed by Debye-type screening
@17,18#, and it was first suggested that their disappearance
may be the major reason for chiral symmetry restoration
~see, e.g.,@19#!. However recent theoretical analysis atlow T
@20# shows that up toTc the instanton density can only
change a little, and lattice numerical simulations@21# have
confirmed that. Therefore, an instanton suppression cannot
be an explanation, and a better idea was needed.

Another mechanism suggested in@22# is driven by ‘‘pair-
ing’’ of instantons and antiinstantons intoI Ī ‘‘molecules.’’ A
two-component~also called ‘‘cocktail’’! model was used for
the description of the low-temperature (T,Tc) phase. In it
the individual instantons and ‘‘molecules’’ coexist in

ensemble.1 In the high-temperature phaseT.Tc ~for m50!
only molecules survive, and therefore the chiral symmetry
gets restored. In@11# the cocktail model was studied numeri-
cally, by keeping the temperature fixed and changing the
‘‘molecule fraction’’ f . Many mesonic and baryonic corre-
lation functions were calculated: they show very dramatic
changes asf goes from small values to 1. Furthermore, a
very interesting hint for the survival of some hadronsabove
the phase transition were presented. It was shown that the
molecules start to form only close toTc , and that they are
polarized in color space as well as in the Euclidean time
direction, as anticipated in@10,22#.

This scenario of the phase transition was recently con-
firmed by numerical simulations of the instanton vacuum at
finite temperature in which both boson- and fermion-induced
interactions between the pseudoparticles are taken into ac-
count @23,25#. In this approach there is no artificial separa-
tion between random and ‘‘molecular’’ components, and all
correlations follow from the general statistical sum. Still the
basic scenario with rapid growth of correlation right below
Tc was observed. All basic properties of the chiral restora-
tion phase transition were reproduced, including the transi-
tion temperature, its order~second forNf52 and first for
Nf.2!, spectrum of ‘‘screening masses,’’ etc. Furthermore,
correlation functions that have been calculated in@25#, imply
dramatic modifications of hadrons in the low-T phase, close
to the transition point.

The objective of the present paper is to study analytically
several issues related to these ideas. First of all, we study a
single instanton–anti-instanton molecule in much greater de-
tail than ever done before. We found that the configuration
discussed previously, with a separation in time equal to half
Matsubara time 1/2T, develops a true maximum of the par-
tition function starting fromT50.85Tc . We also calculated

1Of course, it is an approximation, modeling a variety of possible
states ranging from uncorrelated~random! instantons to strongly
correlated ones~molecules!.
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its contribution using the saddle-point method.
The second step is to deduce the effective Lagrangian,

describing interaction between quarks. WithT approaching
Tc , it changes from the ’t Hooft one typical for random
liquid to a ‘‘molecule-induced’’ one derived in@23#. Me-
thodically we deviate significantly from the numerical simu-
lations mentioned, which first calculate quark propagation in
a givenbackground field~a superposition of instantons!, av-
eraging over gauge fieldslater. We integrate first over the
collective variables of instantons, deriving theeffective inter-
action between quarks, and then solve the resulting fermion
theory by using the random phase approximation. Basically,
here we follow the same well-trod path as used the Bardeen-
Cooper-Schrieffer theory of superconductivity or Nambu–
Jona-Lasinio model of chiral symmetry breaking.

We decided in this paper to concentrate on the basic case
of two massless flavors, although all calculations can~and
should! be generalized to a different number of flavors
and/or variable quark masses. The case we study is not far
from the real world, but it much simpler because of an exact
chiral symmetry and only four-fermion-type interactions.
Still, the effective interaction is much more complicated than
used, e.g., in the NJL approach, it includes two types of
nonlocal terms—one from the random instantons and anti-
instantons, and the other from the strongly correlated pairs or
molecules. The weights of those areT dependent, deter-
mined by a maximum of the partition function of the system.
It is calculated in a standard Hartree-Fock approximation,
reducing the problem to that of free fermions, but with tem-
perature and~which is even more important! momentum-
dependent mass.

Finally, in Sec. V we address the issue of hadron modifi-
cation withT approachingTc . We have calculated a set of
various mesonic correlation functions, using the Bethe-
Salpeter equation. As it is well known, because of finite time
extensiont51/T those do not directly provide masses of the
lowest states. However, they still give a very nontrivial in-
formation about the interaction between quarks at these con-
ditions. Furthermore, all of these results can be directly
tested in lattice calculations, which we hope will be done
soon.

Among our results a notable one is a very different be-
havior of the pion decay constantf p and the coupling to
pseudoscalar currentlp : f p vanishes atT5Tc , butlp does
not. We have found an emerging attractive force in the vec-
tor channel, which may be relevant to enhancement of the
low-mass dilepton production observed in heavy-ion colli-
sions. Finally, we discuss the issue of restoration of the U~1!
chiral symmetry.

II. THE I Ī MOLECULES AROUND Tc

This section is relatively independent of the rest of the
paper in the sense that it deals with properties of thesingle I Ī
molecule. It consists of two steps: the first is a new calcula-
tion of theĪ I interaction in the relevant configuration~that is,
the quantum mechanics of quarks!, while the second deals
with the internal dynamics of a molecule, here we integrate

over its collective variables.2 In the next sections we will
proceed to the statistical ensemble ofmultiple instantons and
‘‘molecules’’ around the critical temperature.

The I Ī interaction and the overlap matrix elements of the
fermionic zero modes, both at zero and at finite temperature,
were studied in detail in@24#. Unfortunately these studies
were not complete in the sense that they did not include our
region of interest—the configurations in which the
pseudoparticles lie around the opposite ends of a diameter on
the Matsubara circle.

The best definition of theclassical I Ī interaction
Sint5(S22S0), whereS0 is the single instanton action, is
given by the so-called streamline configurations@26#. Unfor-
tunately, at finite temperature, the conformal symmetry that
allows to find the streamline is missing. Therefore, one has
to use some ansatz for theI Ī configuration which has a natu-
ral extension to nonzeroT. We are going to use the ratio
ansatz@7#

Am
a ~x!52

1

g

OI
abh̄mn

b ]nP I1O
Ī

ab
hmn

b ]nP Ī

P I1P Ī 21
, ~1!

whereP I5P(x2zI), P Ī 5P(x2zĪ ) and

P~r ,t !511
pTr2

r

sinh~2prT !

cosh~2prT !2cos~2ptT!
, ~2!

which is free from the artifacts of the sum ansatz and pro-
vides a reasonable repulsive core. The classical bosonic in-
teraction is just obtained from this expression, by numerical
calculation of the classical action.

The quark-induced interaction is described in general by
fermionic zero-mode overlap matrix element

TI Ī 5E dtd3xf I
†~x2zI !D” f Ī ~x2zĪ !. ~3!

In this case we use the simplest sum ansatz@27#, because
inthis case one can use an ordinary derivative instead of a
covariant one. As it was shown in@24#, the results in this
case differ insignificantly from the ones obtained by the ratio
ansatz. Further we shall useTI Ī to denote the overlap matrix
element within one molecule.

The O~3! symmetry of theI Ī configuration along the Mat-
subara circle allows us to reduce the above integral and the
integral for the bosonic part of the action to a two-
dimensional one, and we perform the integration numeri-
cally. Our results numerically agree with the ones from@24#
in the region where their formulas are valid~for Matsubara
time separations that are not close toL/25 1/2T). The re-
sults for TI Ī are shown in Fig. 1~a!, and the combined
e2SintT

I Ī

4
in Fig. 1~b! ~the dotted line!.

The second step is to solve the dynamics of the molecule
itself. In another language, one has to account for a multi-
plicity of different I Ī configurations, or take the integral

2For ordinary molecules, these two steps are analogous to quan-
tum mechanics of electrons~orbitals! and then of nuclear motion.
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Zmol~T!5E d11VT
I Ī

2Nfe2Sint ~4!

over all collective variables. These are the time separationt,
the three-dimensional spatial separation, and, for SU~3!,
seven relative orientation angles.3 Most of the 11-
dimensional integrals, however, can be done using a saddle-
point approximation. BothSint andTI Ī decay exponentially
in the spatial separation directions. The second derivatives of
Sint over orientation angles are big, because they are multi-
plied by 8p2/g25S0;10@1. In contrast to that, the angular
dependence of22Nf ln(TI Ī ) is rather weak, so in angular
integrals we treatTI Ī as a constant. Finally, we find that the
saddle-point approximation is not good at all for the integral
along the time separationt.4 That is why we perform this last
integration explicitly.

In Fig. 1~b!, we show the time dependence of
Zmol8 (t)5*d10VT

I Ī

4
e2Sint ~the integration over all variables

but the Matsubara time!, at Tc and at several values of the
temperature down to 0.6Tc , compared to the time depen-
dence of the integrandT

I Ī

4
e2Sint at the saddle point with

respect to the above variables and atTc ~the dotted line!,
which has a maximum at aboutt5L/4 and aminimumat
t5L/2. One can see that aroundTc when the multiplicity of

phase space is included, theI Ī molecules are distributed
aroundt51/2T, however, at lower temperatures this maxi-
mum disappears, so the molecules that we consider play a
role only at high enough temperature. The corresponding
time dependence ofTI Ī at Tc , which is is shown in Fig.
1~a!, is rather weak around the maximum ofZ8. This allows
us to use its central value for all molecules that participate in
our ‘‘cocktail model.’’ After the last integral is done, one
gets the absolute value of the statistical sum for molecules
Zmol . The temperature dependence ofZmol andTI Ī is shown
in Figs. 1~c!, 1~d!.

How accurate is our saddle-point integration? In the next
section we will find that in order to set the phase transition at
Tc5150 MeV one needsZmol about 1.8 larger: it means only
a 5210 % error per integration over each of theI Ī collective
parameters. However, we think the real uncertainty inZmol is
larger, and it is about one order of magnitude@as one can
judge from including24ln(TI Ī ) in the second derivative
over the orientation parameters, etc.#. Nevertheless we think
its temperature dependenceis evaluated reliably, and we use
it below in our calculation of the thermodynamic properties
of the instanton ensemble, the correlation functions, and the
pion coupling constants.

III. EFFECTIVE FOUR-FERMION INTERACTION
AT FINITE T

Let us first recall how, for one instanton, one derives the
well-known ’t Hooft effective interaction. The quark propa-
gator includes the zero-mode part

S~x,y!5SNZM~x,y!1
f I~x2zI !f I

†~y2zI !

2 im
, ~5!

wheref(x) is the quark zero mode in the field of an instan-
ton with center atzI andSNZM(x,y) represent contributions
of nonzero modes~following @4# we shall approximate these
contributions by the free quark propagatorS0!. For Nf light
fermions, one should take the Green function with theNf th
power of S(x,y), multiply it by the instanton probability
(P;mNf). Now powers ofm can be canceled, resulting in
the 2-Nf-fermion interaction which is finite in the chiral limit
(m50).

A similar procedure can be repeated for an isolatedI Ī
molecule@23#: only in this case there are twolow-lying fer-
mionic states. The quark propagator contains the part

Sm~x,y!5Sother modes~x,y!

1
f I ~m!„x2~zm2L/4!…f

Ī ~m!

†
„y2~zm1L/4!…

TI Ī

1
f Ī ~m!„x2~zm1L/4!…f I ~m!

†
„y2~zm2L/4!…

TI Ī
,

~6!

whereTI Ī was defined in Eq.~3!.

3Note that rotations in the direction ofl8 does not change theI Ī
configuration, so that we have only seven orientation parameters.
The measure of integration is described in@28#.

4For example the second derivative ofSint22Nf ln(TI Ī ) along this
direction for a time separation ofL/2, is negative for temperatures
T,230 MeV, although explicit calculations show that this configu-
ration is a maximum forz and not a minimum.

FIG. 1. ~a! The time dependence ofTI Ī at Tc , ~b! the time
dependence ofZmol8 (t)5*d10VT

I Ī

4
e2Sint ~the integration over all

variables but the Matsubara time!, atTc and at several values of the
temperature down to 0.6Tc , compared to the time dependence of
T

I Ī

4
e2Sint at the saddle point with respect to the above variables and

at Tc ~the dotted line!, ~c! the temperature dependence ofZmol , ~d!
the temperature dependence ofTI Ī .
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To get the effective partition function, we generalize the
method of ‘‘fermionization,’’ first developed in@5#. The fer-
mion determinant~which appear in the QCD partition func-
tion after formal integration over the fermion fields! can be
split into the ‘‘zero-mode part’’ and the ‘‘nonzero-mode
part.’’ The former can be written as a sum of all closed

diagrams of theNth order in the ’t Hooft interaction, for
configurations withN/2 instantons andN/2 antiinstantons.
The latter is usually approximated perturbatively.

For the case we are interested in, with some number of
strongly correlatedĪ I pairs, the zero-mode part of the Dirac
matrix has the form

U 0 TI 1 Ī 1 ••• 0 TI 1 Ī N11 0 TI 1 Ī N12 •

T Ī 1I 1 0 ••• T Ī 1I N11 0 T Ī 1I N11 0 •

A A � A A A A A

0 TI N11 Ī 1 ••• 0 TI N11 Ī N11 0 TI N11 Ī N12 •

T Ī N11I 1 0 ••• T Ī N11I N11 0 T Ī N11I N12 0 •

0 TI N12 Ī 1 ••• 0 TI N12 Ī N11 0 TI N12 Ī N12 •

T Ī N12I 1 0 ••• T Ī N12I N11 0 T Ī N12I N12 0 •

A A A A A A A •

U . ~7!

Note that some matrix elements~denoted by bold letters! are
large: those correspond to quarks exchanged inside the mol-
ecules~and were evaluated in the previous section!. Our goal
is to take them into account, so that in the new effective
fermion determinant only small~lightface italic! matrix ele-
ment remain.

For this goal we reintroduce new fermions, reproducing
the zero-mode part of the determinant without intermolecule
lines. It is equivalent to closed loops in (N11N21Nm)-th
order in the fermionic interaction, for configuration with
N1 , N2, andNm number of instantons, anti-instantons, and
molecules. The interaction due to molecules explicitly in-
cludes largeTI Ī matrix elements. Between the interaction
points quarks travel with the free propagator:

TI Ī 5E d4xf I
†~x2zI !D” f Ī ~x2zĪ !

5E d4yd4xf I
†~y2zI !i ]” iS0

3~x2y!i ]”f Ī ~x2zĪ !

→E d4yf I
†~y2zI !i ]”c f~y!

3E d4xc f
†~x!i ]”f Ī ~x2zĪ !, ~8!

where we have used the sum ansatz to go from]” to D” .
We consider here theNf52 case only. The one flavor

case is not interesting~no restoration of the symmetry! while
in the three-flavor case one has a six-fermion interaction,
which can only be reduced to a four-fermion one relevant for
mesonic channels if some quark masses~e.g., the strange
quark mass! are nonzero.

For the Nf52 case in the approximation discussed, the
following fermionic path integral gives the effective partition
function:

Z5E dcdc†
exp$*d4xc†i ]”c%

N1!N2!Nm! )
I 51

N1

cru1

3 )
Ī 51

N2

cru2 )
m51

Nm

cr
2 c

T
I Ī

2 um . ~9!

One can see, that it indeed generates the propagators~5!, ~6!.
Here

u15E dzIdV I )
f 51

2 S E d4xc f
†~x!i ]”f I~x2zI !

3E d4yf I
†~y2zI !i ]”c f~y! D , ~10!

u25E dzĪ dV Ī )
f 51

2 S E d4xc f
†~x!i ]”f Ī ~x2zĪ !

3E d4yf
Ī

†
~y2zĪ !i ]”c f~y! D , ~11!

um5E dzmdVmT
I Ī

2 H T
I Ī

2
1)

f 51

2 F E d4xc f
†~x!i ]”f I ~m!

3S x2zm1
L

4D E d4yf
Ī ~m!

† S y2zm2
L

4D i ]”c f~y!

1E d4xc f
†~x!i ]”f Ī ~m!S x2zm2

L

4D
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3E d4yf I ~m!
† S y2zm1

L

4D i ]”c f~y!G
1(

f 51

2 F E d4xc f
†~x!i ]”f I ~m!S x2zm1

L

4D
3E d4yf I ~m!

† S y2zm1
L

4D i ]”c f~y!

3E d4x8c f
†~x8!i ]”f Ī ~m!S x82zm2

L

4D
3E d4y8f Ī ~m!

† S y82zm2
L

4D i ]”c f~y8!G J . ~12!

The expression~12! can be obtained from Eq.~7! by keeping
only the terms containing the large matrix elementsT

I Ī

4
and

T
I Ī

2
and then applying Eq.~8! as we did for Eqs.~10! and

~11!. The odd terms inTI Ī disappear, because of the integra-
tion overzm . Herezm andVm are the collective coordinates
of an I Ī molecule~the coordinates of its center of mass and
its global orientation angles!, c5Zmol /TI Ī

2
and cr are the

single instanton partition functions~containing all nonzero
mode contributions! @30# integrated over the instanton radius
r. The convergence of the latter is due to the nonperturbative
g(r), which tends to a constant for larger @15,29#.

Now, applying the inverse Laplace transformation, we get
the partition function

Z5constE db1db2dbmexpH 2~N111!ln~b1 /cr!

2~N211!ln~b2 /cr!2~Nm11!ln@bm /~cr
2c!#

1E d4xS c†i ]”c1b1u11b2u21bm

um

T
I Ī

2 D J .

~13!

To evaluate the effective interactionu i terms we go to
momentum space and do the integrations over the center
coordinates of the instantons, anti-instantons, and molecules.
Some useful formulas for thus obtained ‘‘density matrices’’
in the zero-temperature case are given by Dyakonov and
Petrov in @4#, and they are easily generalized to finite tem-
perature. The Fourier transforms of the fermion zero modes
at finite temperature are@31#

a~k,vn!5~k21vn
2!~A21B2!, ~14!

A5
1

2pr E
0

`

4pr 2drE
0

1/T

dtS cos~kr !

kr
2

sin~kr !

k2r 2 D
3cos~vnt !P1/2] r S ~P21!

P

cosptT

coshprT D , ~15!

B5
1

2pr E
0

`

4pr 2drE
0

1/T

dt
sin~kr !

kr

3sin~vnt !P1/2] r S ~P21!

P

cosptT

coshprT D , ~16!

whereP is the potential~2! that also appears in the finite
temperature zero modesfR in coordinate space@32#:

fR5
1

2pr
P1/2]” S ~P21!

P

cosptT

coshprT D eR, ~17!

and eR is the standard constant spinor coupling spinor and
Dirac indexes.

The next step is to integrate over the orientation angles of
the instantons, anti-instantons, and molecules.5 After the
~four-fermion nonlocal! interaction is obtained, for conve-
nience, one may perform a Fierz transformation, and add the
cross-terms to the interaction.~This is called a Fierz symmet-
ric form of the interaction. Of course, when one writes theT
matrix element in a Schwinger-Dyson-type of equation, one
should not add again the cross channel.! The result has a
color singlet term and a color octet term~containing the
color matricest i

^ t j !, which is given in@23#. These terms do
not enter the mean field equations~where only scalars with
respect to the flavor, color, and space-time appear!, nor do
they appear in the Bethe-Salpeter equations for the mesons,
because they are color singlets.~However, these color octet
terms will appear in the Schwinger-Dyson-type equations for
diquarks that are important when we consider baryon corre-
lation functions. In our paper we do not consider those.!

Combining all fermion terms together, one obtains the
following nonlocal Fierz symmetric four-fermion
interaction:6

S4 f5E )
i 51

4
d4ki

~2p!4 ~2p!4d4~k12k21k32k4!

3Aa~k1!a~k2!Aa~k3!a~k4!

3H ~b11b2!
1

16Nc
2 @~c†ta

2c!22~c†ta
2ig5c!2

1octet terms#2bmF 1

4Nc
2 @~c†tac!21~c†taig5c!2#

2
1

4Nc
2 @~c†tag0c!21~c†tag0g5c!2#

1
1

Nc
2 ~c†g0g5c!21octet termsG J , ~18!

whereta
25( i ,t), while ta5(1,t). The last square brackets

represent the ‘‘molecular interaction’’ derived in@23#. There

5Let us again remind the reader that for the molecules we assume
complete polarization both in coordinate and color space.

6All expressions throughout the text should be understood as
given at finite temperature. In particular,*d4k/(2p)4 means
T(n52`

` *d3k/(2p)3, etc.
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are no two-fermion terms, because the integral over the ori-
entation of the molecule in color space is zero.

One can view this Lagrangian as a variant of the effective
Nambu–Jona-Lasinio model. Note, however, that it is rather
different from what is usually used@33,34#: our coupling
constants depend on temperature, in a way to be determined
in the next section. Also, the interaction is not nonrenormal-
izable because a natural cutoff is given by the nonlocality of
the vertices: multiloop diagrams can~and must! be treated.

IV. THE MEAN FIELD APPROXIMATION
AND THERMODYNAMICS

The effective coupling of the interaction described above
depends on the number of uncorrelated and correlated instan-
tons: and in order to find those one should ideally be able to
calculated the partition function and minimize the free en-
ergy. We will indeed do it now, but under many simplifying
assumptions. Most of them are just technical, and can be
removed later, if needed. They can be made partly because
we are primarily interested only in a comparatively narrow
interval of temperatureT, slightly belowTc , in which sig-
nificant structural changes~the phase transition! take place.

We fix the total pseudoparticle density to be a constant for
T up to Tc5150 MeV, with only compositionf changing.
We takentot5ninst1nanti-inst51 fm24 specifically, lacking a
more accurate number.~None of the results change qualita-
tively if, say, it is modified by a factor of 2.!

Lattice data in@21# indicate, that the instanton radius does
not change much withT until well above the phase transi-
tion. So we also fix it atr50.34 fm. ~However, we are going
to express all dimensional quantities in units ofr and its
powers anyway.!

In Sec. II we have shown that the dominant configuration
for the I Ī molecules is the one in which the distance between
their centers in the Euclidean time direction is equal to
‘‘half-box’’ R5L/2[1/2T, the spatial distance is 0, and they
have the most attractive relative orientation in color space.
Although the molecule distribution has some span around
L/2 in the time direction,TI Ī changes little, which allows us
to use an average value for all molecules.

Tc andS0 are related by the requirement that all unpaired
instantons disappear atTc . This condition can be satisfied
only in a window aroundTc5150 MeV. We use the follow-
ing values:Tc5150 MeV, S059.5. However, there is a big
uncertainty in this relation, due to the uncertainty of the cal-
culated value of the molecule activityZmol .

We have ignored all bosonic interactions between random
instantons and amongI Ī molecules.

To calculate the thermodynamic properties of the system,
we first bosonize the fermionic action, making Hubbard-
Stratonovitch transformation

A) a~ki !~c†c!2

→2Aa~k1!a~k2!c†~k1!c~k2!V4~2p!4d4~k32k4!Q

2V4
2~2p!8d4~k12k2!d4~k32k4!Q2. ~19!

Then we consider the bosonic fieldQ as a constant, to be
determined from the grand canonical potential minimization.
As there is no net topological charge,b15b25b. We also
define f 5 2Nm /Ntot , N15N25 @(12 f )/2# ntotV4,
Nm5 ( f /2) ntotV4. After integration over the fermion degrees
of freedom we have the following grand canonical potential:7

DV

V4
52T

I Ī

2
bm1~2 f !ntotlnS b

cr
D1

f

2
ntotlnS bm

cr
2cD

1
Q2

8Nc
2 ~b12bm!24NcE d4k

~2p!4 ln@k21M2~k!#,

~20!

where one can identify the chemical potentials for the ‘‘liq-
uid’’ component ln(b/cr) and for the ‘‘molecular’’ one
ln(bm/cr

2c). The last term corresponding to a gas8 of massive
quarks with the~instanton-induced! momentum-dependent
mass

M ~k!5
a~k!Q~b12bm!

4Nc
2 . ~21!

We shall determine this mass from a self-consistency condi-
tion, represented graphically in Fig. 2~a!, where the vertex
K is a sum of the instanton and the molecular interactions
@Fig. 2~b!#.

Our next step is minimization ofDV with respect to
f ,bm ,b,Q. There are four equations:

bm2cb250, ~22!

T
I Ī

2
2

f ntot

2bm
18NcE d4k

~2p!4

2M ~k!

k21M2~k!

Qa~k!

4Nc
2 2

Q2

4Nc
2 50,

~23!

2
~12 f !ntot

b
14NcE d4k

~2p!4

2M ~k!

k21M2~k!

Qa~k!

4Nc
2 2

Q2

8Nc
2

50, ~24!

4NcE d4k

~2p!4

2M ~k!

k21M2~k!

a~k!

4Nc
2 2

2Q

8Nc
2 50. ~25!

7Note that, our grand canonical potential is not complete in the
following sense. The gauge fields are assumed to be only a super-
position of instantons, while all excitations of the gluonic degrees
of freedom are excluded. In principle, there should be a gluonic
term ~similar to the the last quark term in the action above!, which
eventually~at highT! will lead to the perturbative gluonic part of
the thermal energy. We do not include it because~i! glueballs are
much heavier than mesons and constituent quarks, and are not ex-
cited atT;Tc5150 MeV and~ii ! we mainly use the grand canoni-
cal potential in order to determine parameters such asf and the
quark-related quantitiesQ,b,bm . The missing term describing glu-
onic excitations can hardly affect them.

8We remind the reader that the instanton vacuum has no confine-
ment, so free quarks just change their effective mass in the transi-
tion.

56 2771MEAN FIELD APPROACH TO THE INSTANTON- . . .



One can notice, that the first equation is the condition for
chemical equilibrium between the random and molecular
components.

As we mentioned in the Introduction, we have chosen not
to vary the total density of pseudoparticles, because there are
strong theoretical indications that it is not suppressed up to
Tc , but we have taken it from the lattice data, which also
suggests, that in pure gauge theory it does not change up to
temperatures of the order of the deconfinement transition
T;260 MeV, much higher than those we work with.

Of course, one should in principle perform variation with
respect to this quantity, and the additional equation is
b5cr . However this only adds an additional equation to
those we solve. Attempts to determinecr have to deal with at
least two unsolved problems:~i! the evaluation of the inte-
grated single instanton partition function and~ii ! its T depen-
dence at temperatures belowTc , where the Pisarski-Yaffe
factor does not exist. The formal expression given by
’t Hooft contains a divergent integral over the instanton ra-
dius. The interaction effects in the instanton liquid may make
the integral convergent, provided there is repulsion. If we use
the lattice information for the total density, we can consider
b5cr as an equation which determinescr as a function of
the temperature.

The four equations can be reduced to one ‘‘gap’’ equa-
tion, that has to be solved numerically:

2

Nc
E d4k

~2p!4

b~112cb!a2~k!

k21b~112cb!2~12 f !ntota
2~k!/~2Nc

2!
51,

~26!

with

b5@2~12 f !ntot1A~12 f !2ntot
2 1 f /~2c!ntotTI Ī

2
#

1

T
I Ī

2 .

~27!

At Tc , all unpaired instantons disappear (f→1) and the
chiral symmetry is restored. The conditionf 51 is satisfied
on a line in the T,S0 plane. We have chosenTc
5150 MeV50.26/r andS059.5. Of course, whenf 51 or
f 50, the saddle-point approximation for theb integrals is no
longer valid, so our model is restricted in the region
0, f ,1, where the saddle-point method is justified in the
thermodynamic limit V4→`. We see that whenf→1,

bm5ntot /(2T
I Ī

2
), b5Antot /(2cT

I Ī

2
) does not tend to 0, so

that the UA(1) symmetry remains broken whenT→Tc . This
can also be seen in our discussion of the correlation func-
tions in Sec. IV. Recall that in the Nambu–Jona-Lasinio
model, the coupling constant tends atTc to the nonzero criti-
cal coupling~at which the chiral condensate vanishes and the
chiral symmetry is restored!. So when the density of the
random instanton component goes to zero, the interaction
does not disappear. Indeed, as we know from ’t Hooft, even
when there are no instantons in the vacuum, every external
quark current induces them, so we always have some re-
sidual ’t Hooft interaction.

The opposite limitf→0 should not be considered in our
model, because as we go down fromTc , the approximations
that we have made for the instanton ensemble, namely, that
we have uncorrelated instanton liquid and polarized mol-
ecules oriented in the time direction, become worse. How-
ever, it is worth noticing that although the numerator in Eq.
~27! goes to 0, whenf→0, the denominator also decreases,
because the molecules tend to expand and ‘‘melt’’ into the
liquid, so b even increases, when we decrease the tempera-
ture.

We have not answered the question about theb value
above Tc . We can calculate the residual ’t Hooft interaction
at high temperature, where the integral over the instanton
radius is well convergent due to thermal effects, but we can-
not extrapolate it towardsTc . Moreover, nothing preventsb
from having a discontinuity atTc , because atTc DF and its
first derivatives do not depend onb. So we can conclude that
the residual UA(1)-violating ’t Hooft interaction immedi-
ately aboveTc remains unknown.

Our results are presented in Fig. 3, where the molecule
fraction f , the effective quark massM (0,pT), the quark
condensatê c̄c&, and the energy densitye are presented.
Note, that the local̂c̄c& has one power of the form factora
less under the momentum integral, compared to the nonlocal
mean fieldQ. ^c̄c& is normalized to the phenomenological
value of the quark condensate atT50. We see that in about
20 MeV the fraction of the molecules drops to about half, the
quark condensate almost reaches its phenomenological value
at T50, but the constituent quark mass, which is defined as
the value of the momentum-dependent mass from the gap
equation at zero spatial momentum and Matsubara frequency
pT, is still low—about 1/3 of its phenomenological value at
T50. @The reader should be warned that one can hardly
compare the mass value obtained in the present calculation

FIG. 2. ~a! The Hartree-Fock~self-consistency! equation for the
quark propagator.~b! The four-fermion interaction as a sum of the
’t Hooft vertex and the molecular vertex.~c! The Bethe-Salpeter
equation for theT matrix in the mesonic channels.~d! The pionT
matrix near the massless pion pole.~e! The diagram for the pion
coupling to the axial current.
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with the usual constituent quark massM (kW50,
v50);350 MeV because the minimal energy possible
v'pTc is rather large.# In addition, the finite temperature
form factors have a maximum at spatial momentum
kmaxÞ0, so we show with a dotted line the temperature de-
pendence of the mass defined atk5(kmax,pT).

This behavior of the thermodynamic quantities looks
similar to the one obtained in@31# or in the NJL models@34#,
and both are governed by similar gap equations for the con-
stituent quark mass or the quark condensate. However, the
physics of the transition in our case is quite different. In@34#
the transition is governed by the suppression of the quark
condensate by thermal excitations of quarks. In@31# there is
an additional thermal suppression of the instanton density,
which results in an additional suppression of the effective
coupling constant. In our case, the main effect is the reorga-
nization of the instanton vacuum: it leads to reorganization
of the Lagrangian by itself. This can be seen by the fact that
the mean fieldQ ~a nonlocalanalogue of the quark conden-
sate!, is proportional to the square root of the density of the
random component 12 f . Our mechanism makes the transi-
tion region narrower and the transition temperatureTc lower.

In Fig. 4~a! we show the pressurep52DF ~solid line!,
together with its different components: pressure of free mass-
less fermions 4Nc*@d4k/(2p)4# ln(k2) ~open triangles!, the
deviation from it, due to the effective mass
4Nc* @d4k/(2p)4# ln$@k21M2(k)/k2#% ~open squares!, the
contribution from the condensate2 Q2/8Nc

2(b12bm)

~stars!, the contributions from the moleculesT
I Ī

2
bm

2 ( f /2) ntotln(bm/cr
2c) ~black squares!, and the instanton liq-

uid 2(12 f )ntot ln(b/cr) ~black triangles!. For compari-
son,we also show that the pressure of a pionic gas
p50.987T4 ~dotted line! is significantly smaller than any of
the components under consideration, and thus unimportant.

In Fig. 4~b! the energy densitye below the phase transi-

tion point is shown to be actually directly proportional to the
molecule fractionf . This correlates well with the observa-
tion made in@23#, that ~unlike the individual instantons! the
molecules have a net positive energy, even in the classical
approximation.

V. MESONIC CORRELATION FUNCTIONS

Our last step is investigation of the effect of the four-
fermion effective interaction on mesonic spectra atT'Tc .
Using the Bethe-Salpeter equation one may calculate me-
sonic correlation functions, similar to what was done in
@33,34#. Our major advantage is that we naturally have non-
local vertices, which provide an ultraviolet cutoff. We start
with the two-body interaction kernelK, which is given by
the four-fermion terms in the effective Lagrangian. Then we
have the BS equation for the quark-antiquarkT matrix @Fig.
2~c!#:

T~q!5K1 i Tr E d4P

~2p!4 aS p1
q

2DaS p2
q

2D
3FKSFS p1

q

2DT~q!SFS p2
q

2D G . ~28!

The trace is taken over the Dirac, flavor, and color matrices.
Forthe colorless meson channels we need only the color sin-
glet terms in the Lagrangian. Then using the symmetries of
the Matsubara space-time, we can decomposeT andK into
covariant structures.

^q̄4q3uKuq̄2q1&5(
i ,a

Ka
i FGa

t i

2 G
34
FGa

t i

2 G
12

, ~29!

FIG. 3. ~a! The molecule fractionf , ~b! the effective quark mass
M (0,pT) ~solid line! andM (kmax,pT) ~dotted line!, ~c! the energy
density e, and ~d! the quark condensatêc̄c&, normalized to the
phenomenological value at zero temperature as a function of the
temperature. All dimensional quantities are in units of the inverse
instanton radius 1/r5580 MeV.

FIG. 4. ~a! The pressurep52DF, and its components, as a
function of the temperature. The pressure is shown by a solid line
and the different contributions to it are as follows: pressure of
free massless fermions 4Nc*@d4k/(2p)4# ln(k2) ~open triangles!,
the deviation from it, due to the effective mass
4Nc* @d4k/(2p)4# ln$@k21M2(k)#/k2% ~open squares!, the contribu-
tion from the condensate2 Q2/8Nc

2(b12bm) ~stars!, the contribu-
tions from the moleculesT

I Ī

2
bm2 ( f /2) ntotln(bm /cr

2c) ~black
squares!, and the instanton liquid2(12 f )ntotln(b/cr) ~black tri-
angles!. For comparison, the pressure of a pion gas is shown by a
dotted line. ~b! The dependence of the energy densitye on the
molecule fractionf .
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whereGa denotes Dirac tensors.
Because atTÞ0 there is less symmetry than at zero tem-

perature, we have more structures. However, our particular
action ~18! contains only scalar and pseudoscalar terms and
the time oriented vector and axial terms produced byg0 and
g0g5 ; therefore, only the following coefficients are non-
zero:

KS
i 5

21

4Nc
2 F2bm12S d i02

1

2DbG ,
KP

i 5
1

4Nc
2 F22bm12S d i02

1

2Db G ,
KV

i 5
1

2Nc
2 bm ,

KA
i 5

1

2Nc
2 ~124d i0!bm . ~30!

If we define the loop integral:

Jab
i j ~q!5 iNctr E d4p

~2p!4 aS p1
q

2DaS p2
q

2D
3FGa

t i

2
SFS p1

q

2DGb

t j

2
SFS p2

q

2D G ,
~31!

then the solution of the Bethe-Sapeter~BS! equation~in ma-
trix notation! is

T5@12JT#21K. ~32!

To get the mesonic correlation function for the correspond-
ing channel, we have to multiplyT from the left and the right
with two loop integralsJ ~those have only two form factors
Aa, instead of four, because the correlation function is de-
fined for pointlike currents!. For all channels, we have sepa-
rated equations except for the pseudoscalar and axial vector
channels which mix both for isospin 1~p! and 0~h!. In Fig.
5 we show the Fourier transforms of the correlation functions
for Euclidean time separation of the currents, normalized to
the free correlation function at finite temperature. We show
them in six steps with DT'9 MeV, starting from
T5150 MeV and ending withT'105 MeV.

The most striking feature is the strong attraction in the
pion channel, which remains robust and does not disappear
at Tc . This is due mainly to the residual ’t Hooft interaction
~induced by the propagating quarks! and in a lesser extent to
the attractive character of the molecular interaction in this
channel ~triangles!. This feature is in agreement with the
lattice simulations aroundTc @35#, which also show a strong
pion signal beyondTc . Furthermore, atTc our pion signal is

similar to the one from the numerical simulations of the in-
teracting instanton liquid@11#, although stronger.9

The results are in agreement with all chiral theorems, and
they clearly show restoration of the chiral symmetry atTc .
In particular, atT5Tc the p pseudoscalar correlation func-
tion ^PP1& coincides with thes scalar correlation function
^SS0&. Another feature in agreement with the chiral symme-
try is that the pion is decoupled from the axial current
( f p→0) atT→Tc , but remains coupled to the pseudoscalar
one (lpÞ0) even in the pure molecular vacuum (f 51).

An open theoretical issue debated in the literature ishow
strongly the UA(1) chiral symmetry is violated atT;Tc ,
see, e.g.,@29,36–38#. We remind the reader that this symme-
try is strongly broken by random liquid at lowT, but it is
respected by the new term in the Lagrangian due to ‘‘mol-
ecules’’ which we derived above. Although molecules are
prevailing aboveTc , the ’t Hooft interaction, nevertheless,
does not disappear completely at anyT. One way to explain
it is to say that external currents can always induce addi-
tional instantons, absent in vacuum.

The way to measure UA(1)-violating effects is to calcu-

9The differences might be due to the fact that we are considering
the chiral limit, while in @11# the quarks have a nonzero mass,
which leads to the smearing of all signals.

FIG. 5. Mesonic correlation functions for Euclidean time sepa-
ration of the currents, normalized to the free correlation function at
finite temperature. Att50 and t51/T they are 1, but we have
subtracted 1 for convenience.t is in units ofr. These are the iso-
spin 1 pseudoscalar-pseudoscalar~a!, pseudoscalar-axial~b!, and
axial-axial ~c! correlators; the isospin 0 pseudoscalar-pseudoscalar
~d!, pseudoscalar-axial~e!, and axial-axial~f! correlators; the scalar-
scalar correlators for isospin 1~g! and 0~h!; and the vector-vector
correlators, which are the same for isospin 1 and 0~i!. There are six
different temperatures, starting atT'150 MeV and ending with
T'105 MeV. For comparison, the correlation functions of a purely
‘‘molecular’’ vacuum atTc are plotted with triangles.
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late the correlation function forh ~the isoscalar pseudosca-
lar! or the isovector scalar, to be referred to asd, and com-
pare their properties with the pion ors ones. These two
channels are UA(1) partners ofs andp, and if this symme-
try gets~approximately! restored,10 those should converge.

As shown in @9#, in the random instanton vacuum the
correlation functions in theh, d channels, display so strong a
repulsive interaction that they become negative.11 Our results
show that although theh, d correlatorsincreasewhen T
approaches the phase transition point, the U~1! restoration
still does not happen in our model. For comparison, we have

plotted in Fig. 5~triangles! the same correlation functions at
Tc if only the U~1! symmetric molecule-induced interaction
is included.

Because we obtain the correlation functions for Euclidean
momenta by numerical procedure, we cannot analytically
continue them and find the pole meson masses. However, the
p mass is guaranteed by the Goldstone theorem to be 0. We
can therefore derive the pion decay constantsf p and lp .
The quarkT matrix in the pseudoscalar,I 51 channel has the
following form near the pion pole@see Fig. 2~d!#:

Tpuq050, q→05
@gP~ ig5t3!1gA

0~2 ig0g5t3!# ^ @gP~ ig5t3!1gA
0~ ig0g5t3!#

q0
21q2 . ~33!

Comparing with~32!, we get:

gP5AKP
3 ~12KA

3JA0A0
33

!

dDp /dq2 U
q050, q→0

, ~34!

gA5gP

~KA
3JPA0

33 )

~12KA
3JA0A0

33
!
U

q050, q→0

, ~35!

where Dp5det(12KpJp)5(12KP
3JPP

33 )(12KA
3JAA

33 )
2KP

3KA
3(JPA

33 )2. Using the definitions

i f pqmd i j 5 K 0Uc̄~0!gmg5

t i

2
c~0!Up j~q!L , ~36!

lpd i j 5 K 0Uc̄~0!ig5

t i

2
c~0!Up j~q!L , ~37!

and calculating a simple loop diagram@Fig. 2~d!#, we get

lp5T̃PP
3 gP , ~38!

f p
0 5~ T̃PA0

3 /q0gP1T̃A0A0
3 gA /q0!uq050, q→0 , ~39!

f p
i 5~ T̃PAi

3 /qigP!uq050, q→0 , ~40!

where the tilde indicates that the loop integral is with two
factors ofAa only, and because of the lack of O~4! symme-

try, there are twof p’s coupled to the time and the spatial
components of the axial vector current. The results are
shown in Fig. 6.gA and the twof p’s go to 0 atTc as required
by the restoration of the chiral symmetry.lp , however, re-
mains finite. This means that the pion~and also his chiral
partners!, survive the phase transition. This conclusion is
consistent with numerical evidence obtained from the calcu-
lation of the Euclidean correlation functions in the time di-
rection @11#, but therelp , although remaining finite, de-
creases towardsTc , while in our calculationlp slightly
increases. This difference, as we have mentioned before,
might be due to the nonzero quark current masses in@11#.

Furthermore, in our approach we have found a signal of
attractive interaction also in the vector~r! channel. It is seen
as an additional maximum in the correlators, shown in Fig.
5~i!, which is the same as the one, generated by the
molecule-induced interaction~triangles!. This signal wasnot
observed in@10#.12

VI. SUMMARY

In this paper we studied individual instanton–anti-
instanton molecules, in much greater details than was done
before. We determined classical bosonic interaction in the
ratio ansatz and quark-induced interaction. Then we per-
formed 11-dimensional integration over collective variables,
10 in the saddle-point approximation, and the last one explic-
itly.

The results obtained have been used in studies of mol-
ecule formation in the ensemble, at temperatures close to

10The issue of UA(1) restoration was debated in the literature for
some time. One clearly cannot claim exact restoration, as is obvious
from the fact that very small instantons violate it but do not care
about the magnitude ofT. However, forNf.2 massless flavors
~which we do not discuss!, the manifestations of the UA(1) viola-
tion are not visible in theh8 channel and can only be found in states
with more quarks.

11This is an artifact of the ‘‘randomness’’ of the instanton liquid
related to too strong fluctuations of the topological charge: it disap-
pears in the interacting instanton liquid.

12One possible explanation is related to the different treatment of
the nonzero mode part of the quark propagator. In@10# an additional
repulsive interaction is included. The same authors did simulations
with the free propagator, that we use, for the nonzero mode of the
quark propagator and they noticed an attractive correlation function
in the r channel. However, some other contributions are not in-
cluded in both approaches~e.g., the confinement, which provides an
attractive interaction!. So the question of whetherr ‘‘melts’’ below
or at Tc remains open.
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chiral restoration pointT'Tc . We have used a semianalytic
two-component~or ‘‘cocktail’’ ! model, with contributions
from uncorrelated instanton liquid and polarizedI Ī mol-
ecules, and have confirmed that chiral restoration is driven
by formation of the instanton–anti-instanton molecules.

Both random and molecular components have generated
an effective four-fermion interaction. With standard mean
field methods we have derived semianalytically the thermo-
dynamics of the system. The basic conclusion is that there is

a rapid temperature dependence of the fraction of molecules
f , see Fig. 3~a!, which jumps fromf ;0.5 atT50.7Tc to 1 at
Tc . The corresponding jump in energy density is strongly
correlated with it@see Fig. 4~b!#, confirming the idea sug-
gested in@23# that formation of ‘‘molecules’’ is the major
reason of rapid growth of the energy density around the
phase transition point.

We have also calculated the mesonic correlation func-
tions, using Bethe-Salpeter-type equation. We have found
that the pion is decoupled from the axial current atTc , as it
should, but remains coupled to the pseudoscalar one even in
pure molecular vacuum (f 51). A strong signal has been
found that, unlike the one reported numerically in@11#, does
not decrease with the temperature, indicating that the pion
survives the phase transition as a bound state and that its
radius does not swell atTc . Thes meson follows the pattern
of chiral symmetry restoration, joining the pion. The ‘‘repul-
sive’’ channelsh, d show an increase of the correlators, in-
dicating strongly decreasing masses. Nevertheless, they do
not exactly join the pion and thes ones, so U(1)A symmetry
remains noticeably broken.

ACKNOWLEDGMENTS

We would like to thank J. J. M. Verbaarschot for the
many useful discussions. The reported work was partially
supported by the U.S. DOE Grant No. DE-FG-88ER40388.

@1# F. Karsch, inLattice 93, Proceedings of the International Sym-
posium, Dallas, Texas, edited by T. Draperet al. @Nucl. Phys.
B ~Proc. Suppl.! 34, 63 ~1994!#.

@2# C. DeTar, inLattice 94, Proceedings of the International Sym-
posium, Bielefeld, Germany, edited by F. Karschet al. @Nucl.
Phys. B~Proc. Suppl.! 42 ~1995!#; in Quark Gluon Plasma 2,
edited by R. Hwa~World Scientific, Singapore, 1995!.

@3# E. V. Shuryak, Nucl. Phys.B203, 93 ~1982!; B203, 116
~1982!.

@4# D. I. Diakonov and V. Yu. Petrov, Zh. Eksp. Teor. Fiz.89, 361
~1985! @Sov. Phys. JETP62, 204 ~1985!#; Nucl. Phys.B272,
457 ~1986!.

@5# D. I. Diakonov and V. Yu. Petrov, in Hadron Matter Under
Extreme Conditions, Kiev, 1986~unpublished!, p. 192.

@6# M. A. Nowak, J. J. M. Verbaarschot, and I. Zahed, Nucl. Phys.
B324, 1 ~1989!.

@7# E. Shuryak, Nucl. Phys.B302, 559 ~1988!; B302, 574 ~1988!;
B302, 599 ~1988!; B319, 521 ~1989!; B319, 541 ~1989!.

@8# E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys.B341, 1
~1990!.

@9# E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys.B410, 55
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