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We present a new determination of the strong coupling constant from lattice QCD simulations. We use four
different short-distance quantities to obtain the coupling, three different~infrared! meson splittings to tune the
simulation parameters, and a wide range of lattice spacings, quark masses, and lattice volumes to test for
systematic errors. Our final result consists of ten different determinations ofaP

(3)(8.2 GeV), which agree well
with each other and with our previous results. The most accurate of these, when evolved perturbatively to the
Z0 mass, givesaMS

(5)(MZ)50.1174(24). We compare our results with those obtained from other recent lattice
simulations.@S0556-2821~97!01117-X#

PACS number~s!: 12.38.Gc, 12.38.Aw, 12.38.Bx, 14.40.Gx

I. INTRODUCTION

Precise measurements of the strong coupling constantas
are important not only for strong-interaction phenomenol-
ogy, but also in the search for new physics. Any discrepancy
between low-energy and high-energy determinations of this
coupling could signal the existence of supersymmetry or
other phenomena beyond the standard model. No significant
discrepancies have yet been observed@1#; more stringent
tests of the standard model require further improvements in
precision. In an earlier paper@2# we showed that lattice simu-
lations of quantum chromodynamics~QCD!, when combined
with the very accurate experimental data on theY meson
spectrum, provide among the most accurate and reliable de-
terminations ofas . Y’s probe the strong interactions at the
relatively low energies of 500–1000 MeV, where supersym-
metry or other new physics has little effect. Thus it is impor-
tant to compare the couplings obtained from lattice QCD
with those obtained from high-energy accelerator experi-
ments, where effects due to a more fundamental underlying
theory would be much more important. And it is essential
that these couplings be measured as accurately as possible,
with realistic estimates of the uncertainties involved. In this
paper we review our earlier determination of the coupling,
and update it to take advantage of new results from third-
order perturbation theory, as well as new simulations which
substantially reduce some of our Monte Carlo errors. We
also report on several new simulations that further bound our
systematic errors, particularly with respect to contributions
from quark vacuum polarization.

As discussed in@2#, there are two steps in our determina-
tion of the coupling constant. The first is to create a numeri-
cal simulation that accurately mimics QCD dynamics. We do
this by tuning the bare masses and coupling in a lattice QCD
simulation until it reproduces experimental results for the
orbital and radial excitations ofY mesons. We use theY
family because it is one of the few systems for which both
accurate simulations and accurate experimental data are
available.

Having tuned our simulation, the second step in our de-
termination of the coupling is to use the simulation to gen-
erate nonperturbative Monte Carlo ‘‘data’’ for a variety of
short-distance quantities. Comparison with the perturbative
expansions for the same quantities then fixes the value of the
QCD coupling constant. We use the expectation values of
small Wilson loops as our short-distance quantities. These
are very easy to compute in simulations. They are also com-
pletely Euclidean and very ultraviolet, and therefore largely
free of hadronization or other nonperturbative corrections.
Finally, small Wilson loops have very convergent perturba-
tive expansions that are known through second order for ar-
bitrary nf , the number of light-quark flavors, and through
third order fornf50.

In this paper we examine each of these steps in detail. We
begin in Sec. II by describing how we tune the simulation
parameters. The most important of these for our analysis is
the bare coupling constant, or equivalently the lattice spac-
ing, used in the lattice QCD Lagrangian. The number and
masses of light quarks entering through vacuum polarization
is also important; we present new simulation results that bear
on these parameters. In Sec. III we describe several different
determinations ofaMS using different Wilson loops. Each of
these sections deals extensively with potential systematic er-
rors. Finally, in Sec. IV we summarize our results and dis-
cuss future directions.

II. TUNING OF THE SIMULATION

A. Procedure

Given a lattice spacinga, the QCD parameters that deter-
mine Y properties are the bare coupling constantglat in the
lattice Lagrangian, the bare massM0 of the constituentb
quarks, and the bare massesmq

0 of the light quarks that enter
through quark vacuum polarization. Only theu, d, and s
quarks are light enough to contribute to vacuum polarization
appreciably. These parameters all vary with the lattice spac-
ing. In a simulation, they must be tuned so that physical
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quantities computed in the simulation agree with the corre-
sponding experimental values. The tuning procedure is much
simpler, and therefore more reliable, if one uses physical
quantities that are very sensitive to one of the parameters and
insensitive to the others.

Our main interest in this paper is the coupling constant,
and so we are particularly careful in tuning the bare cou-
pling. We use the mass splittings between radial and orbital
excitations of theY for this purpose. These splittings are
ideal since they are almost completely insensitive to the
b-quark mass. The spin-averaged mass splittings between
1P and 1S levels, and 2S and 1S levels are observed experi-
mentally to vary by only a few percent between theY andc
systems, even thoughb quarks are roughly three times
heavier thanc quarks. This striking insensitivity to the mass
of the constituents is an accident, but is confirmed by simu-
lations for a range of masses near theb mass.

These splittings are also quite insensitive to the masses of
the light quarks. These contribute through vacuum polariza-
tion, and affect hadronic masses in two ways. First, they
allow decays to multihadronic final states; mixing with these
states shifts the masses of the original hadrons.Y decay rates
are typically 0.1% or less of the mass splittings, and the
states we examine are all far below theBB̄ threshold. Thus
we may ignore such effects in our analysis. The second ef-
fect of vacuum polarization is to renormalize the gluonic
interactions between the constituents of the hadron. The typi-
cal momentumqY exchanged between theb quarks in anY
is from 0.5 to 1 GeV. This is small compared to thec, b, and
t quark masses, and we may ignore their contribution to
vacuum polarization. In contrast, theu, d, ands quarks are
effectively almost massless at these energies and must be
included in a realistic simulation. At the same time, because
their masses are small relative toqY , our simulation results
depend only weakly on their exact values.

For sufficiently small masses, the dependence of anY
mass splitting should be linear@3#:

DM'DM0H 11const3 (
u,d,s

mq
0

qY
1•••J , ~1!

where the renormalizeds mass is 50–100 MeV@4#, and the
u and d masses are 20 or 30 times smaller and therefore
negligible. It is very costly to simulate lattice QCD with
realistic u and d masses. Here that is unnecessary. The
simple dependence ofDM on mq

0 means that we obtain re-
alistic results if we set all three light-quark masses equal to
meff

0 [ms
0/3, which generates the same correction toDM as

two massless quarks and a strange quark. Thusmeff
515– 30 MeV, and Eq.~1! suggests that the dependence on
light-quark masses is a few percent or less of the total mass
splitting, comparable to the Monte Carlo statistical errors in
our analysis.1

There are several other properties of theY system that
make it ideal for tuning the bare coupling. These mesons are
essentially nonrelativistic; the use of a nonrelativistic effec-
tive action @5# to exploit this allows a large portion of the
spectrum to be computed efficiently and precisely@6,7#.
They are physically small—three or four times smaller than
light-quark hadrons—and so do not suffer from finite-
volume errors even on modestly sized lattices. Finally, we
have detailed phenomenological quark models that are well-
founded theoretically and that give us unprecedented control
over systematic errors.

In addition to the bare coupling constant, we must also
tune the bare masses of theb quark and of the light quarks.
We tune the bareb-quark massM0 by requiring that theY
mass in the simulation has its correct value of 9.46 GeV.
Reference@8# presents a detailed discussion. The light-quark
masses are tuned until the pion and kaon masses are correct.
As discussed, we need only thes-quark mass, as we set all
nf53 light-quark masses toms

0/3.
Finally we note that it is customary in tuning lattice simu-

lations to switch the roles of the lattice spacing and the bare
coupling constant. Rather than choose a lattice spacing and
then tune the bare coupling constant to its correct value, it is
far simpler to choose a value for the bare coupling constant
glat , and thencomputethe corresponding lattice spacinga
using simulation results. All explicit dependence on the spac-
ing can be removed from the simulation code by expressing
dimensionful quantities in units ofa or a21. The spacing is
then not needed as an input to the code, but is specified
implicitly through the input value forglat , or equivalently
throughb[6/glat

2 . We determinea from the Y mass split-
tings DM . The simulation produces these in the dimension-
less combinationaDM ; to obtaina, we divide by the ex-
perimentally measured values forDM .

The lattice spacing is a crucial ingredient in our determi-
nation of the renormalized couplingas . As we discuss in
Sec. III, the short-distance quantities we study specify
as(q* ) for a specific value ofaq* . The expectation value of
the a3a Wilson loop, for example, givesas(q* ) for
q* 53.4/a. For this to be useful, we need to knowq* , and
thereforea21, in physical units such as GeV. Consequently,
the next section focuses on how precisely we are able to
determine the lattice spacing corresponding to a given value
of b.

B. Results:a21 determination

Our lattice simulations used the standard Wilson action
for the gluons, and the staggered-quark action and the hybrid
molecular dynamics algorithm for the light quarks. We em-
ployed a nonrelativistic formulation of quark dynamics
~NRQCD! for the b quarks @5–7#. The nf50 gauge-field
configurations used in our Monte Carlo calculations were
provided by Kilcup and his collaborators~b56,6.4! @9#,
Kogut (b56) @10#, and by the UKQCD Collaboration
~b55.7,6.2!@11#. The nf52 configurations are from the
SCRI Lattice Gauge Theory Group and their colleagues in
the HEMCGC Collaboration (b55.6) @12#, and from the
MILC Collaboration ~b55.415,5.47! @13#. Unfortunately,
we were unable to obtain configurations withnf53 light-
quark flavors, which is the correct number forY physics.

1It is conceivable that the linear term in Eq.~1!, which is due to
chiral symmetry breaking, is strongly suppressed for tiny mesons
such as theY, and becomes nonleading. Then the dependence on
meff would be quadratic, with the correct value formeff5ms

0/A3.
The sensitivity tomeff would then be far smaller and probably neg-
ligible for our analysis.

2756 56C. T. H. DAVIES et al.



Consequently, we performed complete analyses fornf50
and nf52 and extrapolated our results tonf53. The ex-
trapolation was the last step of our analysis, and is described
in Sec. III.

As discussed above, we use mass splittings in theY sys-
tem to determine the lattice spacing. Specifically, we use two
different mass splittings to make two independent determi-
nations of the lattice spacing. One is the splitting
DM (Y82Y) between theY8 and theY, and the other is the
splitting DM (xb2Y) between the spin average of thexb
mesons and theY. These can be measured accurately in a
simulation@6,7#, and are known very accurately from experi-
ments. Table I summarizes the parameters used in our main
simulations and the results for these two splittings. Our most
reliable results are based on theb56 and 5.6 simulations.
We use results from the other simulations, including those
for the splitting between the spin-averagedxc mesons and
the spin average of theJ/c andhc mesons, to calibrate sys-
tematic errors. Ourb56.2 result agrees with that in@14#.

Several factors contribute to the uncertainty in our deter-
mination of the lattice spacing. We used the lattice NRQCD
formalism to simulate heavy-quark dynamics@5#, and in-
cluded all relativistic corrections throughO(v2) and all finite
lattice-spacing corrections throughO(a2). The leading
finite-a error is due toO(a2) errors in the gluon dynamics.
We estimate this effect using perturbation theory@2#, which
indicates that onlyS states are affected and that our mea-
suredS-state energies should be shifted by

aDMg5
3

40
~aMq!2aDMHFS, ~2!

whereDMHFS is the hyperfine spin splitting of the state and

Mq is the heavy-quark mass. We assume 1.5 GeV and 5 GeV
for c andb quarks, respectively. The corrections we used are
listed in Table I, as are our final values for the inverse lattice
spacinga21. We allow for a systematic error of6DMg/2 in
DM when computing the error ina21, although our analysis
in @2# suggests a much smaller uncertainty. Note that
DM (Y82Y) is almost unaffected by this correction. Rela-
tivistic corrections of orderv4 are most likely negligible for
the Y since thev2 corrections, which we include, shift our
mass splittings by less than 10%; we include a systematic
uncertainty of61% for this. Thev4 corrections are certainly
larger forc’s, where, for example, theJ/c2hc splitting is a
v2 effect and 25% of thexc2c/hc splitting. This suggests
v4 errors could be of order66% for c’s. Recent simulations
@15# indicate that certain spin-dependentv4 terms can shift
levels by as much as 60 MeV, which is 15% of the splitting.
We include a systematic uncertainty of615% for v4 errors
in the c splitting.

Our simulations confirm that theb-quark mass has very
little effect on either of theY splittings. Theb56 results
show that a 17% change inM0 leads to changes of only a
few percent in theY8-Y andxb-Y splittings.~Note that the
statistical errors in the splittings for differentM0’s are cor-
related. Consequently, the statistical errors in the differences
between the splittings are somewhat smaller than those for
any individual splitting.! Since we determineM0 to within
6% @8#, the resulting uncertainty in the determination of the
lattice spacing is probably no more than a percent, which is
much smaller than the statistical errors.

Uncertainties in the light-quark mass can also affect our
lattice spacing determination. In ourb55.6 simulations we
expectams

0 to be somewhere in the range 0.01–0.02. This

TABLE I. Simulation results for meson mass splittingsaDM and inverse lattice spacingsa21, in GeV,
for a range of couplingsb, light-quark massesmq

0 and heavy-quark massesMq
0 . The gluonica2 corrections

aDMg shown are added toaDM to obtain the corrected splitting. The error estimates fora21 are for
statistical errors,a2 andv4 errors, and errors in the light-quark mass, respectively. Experimental values for
DM are 0.563 GeV forY82Y, 0.440 GeV forxb2Y, and 0.458 GeV forxc2c/hc .

b nf ameff
0 aMq

0 Splitting aDM aDMg a21 (GeV)

6.0 0 - 1.71 xb2Y 0.174~3! 20.004 2.59~4!~4!~0!

1.80 0.174~12!

2.00 0.173~10!

6.0 0 - 1.71 Y82Y 0.232~5! 20.001 2.44~5!~3!~0!

1.80 0.239~11!

2.00 0.235~11!

5.6 2 0.010 1.80 xb2Y 0.185~5! 20.005 2.44~7!~4!~7!

0.025 0.200~12!

5.6 2 0.010 1.80 Y82Y 0.239~10! 20.002 2.38~10!~3!~10!

0.025 0.262~13!

5.7 0 - 0.80 xc2c/hc 0.383~10! 20.009 1.22~3!~18!~0!

3.15 xb2Y 0.326~6! 20.015 1.41~4!~4!~0!

5.415 2 0.0125 0.80 xc2c/hc 0.359~14! 20.008 1.30~5!~20!~5!

2.80 xb2Y 0.323~10! 20.017 1.44~6!~4!~6!

5.47 2 0.05 0.80 xc2c/hc 0.335~15!

2.8 xb2Y 0.307~12!

6.2 0 - 1.22 xb2Y 0.127~5! 20.002 3.52~14!~5!~0!

Y82Y 0.175~8! 20.0003 3.22~15!~5!~0!

6.4 0 - 1.00 xb2Y 0.107~16! 20.002 4.19~63!~6!~0!
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can be inferred from the dependence of the pion mass on
mq

0 , and allows for uncertainties due to quenching and finite-
a errors. Thus we want light-quark massesamq

05ameff
0 in

the range 0.003–0.006. We have simulation results for
ameff

0 50.01 and 0.025. By fitting formula~1! to these results
we find that amq

050.01 should give the correct result to
within 4%, which equals our statistical error. The correct
range of light-quark masses in ourb55.415,5.47 simula-
tions is roughlyameff

0 50.005– 0.015. We have simulation
results for ameff

0 50.0125 and 0.050, and again the 6–7%
shift caused by changingmeff is roughly the same as our
statistical errors for bothc and Y splittings.2 Note thatc’s
should be more sensitive to small quark masses thanY’s
since they are roughly twice as large; we saw no evidence for
this in our simulations. These results all indicate that themeff
dependence is too small compared to our statistical errors to
allow an accurate measurement.3 This also means that the
tuning errors associated withameff are no larger than our
statistical errors, and so we take our statistical errors as a
measure of the uncertainty due to this parameter.

We checked for finite-volume errors by computing the
charmonium splittings using lattices that are 1.5 fm and 3.0
fm per side. We observed no difference, indicating that these
errors are smaller than the 2% statistical errors in these tests.
The lattices we used atb56 and 5.6 are both 16a
'1.35 fm per side; theY’s are half the size of thec’s, with
a radius of about 0.2 fm. We therefore expect finite volume
errors in our mass splittings that are substantially less than
2%.

We estimated the electromagnetic shifts of theY masses
using a potential model. For individual mesons, we found
mass shifts of approximately 1 MeV, with smaller shifts for
the splittings between them. These are too small to affect our
result.

Our final values fora21’s are listed in Table I, obtained
by dividing the experimental values for the splittingsDM by
the corrected Monte Carlo simulation resultsaDM
1aDMg . The error estimates for thea21’s include statisti-
cal errors inaDM , as well as systematic errors associated
with the finite-a correctionaDMg , v4 corrections, and the
light-quark massmq

0 . Other systematic errors are negligible.
A striking feature of these simulation results is the dis-

agreement atb56 betweena21 computed using theY8-Y
splitting and that computed using thexb-Y splitting. Taking
proper account of correlations, this disagreement is three
standard deviations: our simulation gives 1.36~3! for the ratio
of these splittings, rather than the experimental value of 1.28.

Thus theb56 simulation is inconsistent with experiment.
This is because in this simulation, in contrast to nature,
nf50; there is no light-quark vacuum polarization. The dis-
agreement is smaller whennf52, as is apparent in the
b55.6 data. And, as we will demonstrate, it disappears com-
pletely when we extrapolatenf to three.

As expected, using an incorrect value fornf leads to in-
consistencies such as the one found in ourb56 simulation.
Perturbation theory, though not justified at the momenta rel-
evant for these systems, provides a qualitative explanation
for this discrepancy. The centrifugal barrier makes the aver-
age separation between the quarks in theP statexb larger
than for theS stateY or Y8, as is familiar from hydrogen or
positronium. As a result, the typical exchanged momentum
for xb quarks,qxb

, is smaller thanqY8 . The perturbative

binding energy is given byas
2(q)CF

2Mb/16, with q5qY8 for
Y8 andqxb

for xb . Sinceqxb
,qY8 , the xb is more tightly

bound. However, fornf50, this effect is exaggerated, as
as

(0)(q) increases more quickly thanas
(3)(q) with decreasing

q. Thus, fornf,3, DM (xb2Y) should be underestimated
relative to DM (Y82Y), as is observed. Fitting to data
would then require a largera21 for DM (xb2Y) than for
DM (Y82Y).

We end this section by displaying in Figs. 1 and 2 results
from the b56 and 5.6 simulations for several of the low-
lying excitations and spin splittings, compared with experi-
mental values. The agreement is excellent and supports the
reliability of our simulations. We emphasize that these are
calculations from first principles; our approximations can be
systematically improved. The only inputs are the
Lagrangians describing gluons and quarks, and the only pa-
rameters are the bare coupling constant and quark masses. In
particular, these simulations arenot based on a phenomeno-
logical quark potential model.

2To compare mass splittings atb55.415 with those atb55.47
one needs the expectation value of the plaquette at each beta; see
the following section. From the plaquette values one finds that the
lattice spacing at the largerb is about 12% smaller. Since the
aDM ’s are only 5–6 % smaller at the larger beta, the splittingsDM
themselves are actually about 6–7 % larger for the larger mass.

3This insensitivity tomeff is becausemeff is so small in our simu-
lations. Ournf50 simulations are equivalent tomeff5` and give
results that are quite different fromnf52. So shifts would become
apparent, even with our statistics, for sufficiently largemeff .

FIG. 1. NRQCD simulation results for the spectrum of theY
system, including radial excitations. Dashed lines indicate experi-
mental values for the tripletS states and for the spin average of the
triplet P states. The energy zero from simulation results is adjusted
to give the correct mass to theY(13S1). Results are from a simu-
lation with nf50 ~filled circles! and from one withnf52 ~open
circles!, usinga2152.4 GeV for both. The errors shown are statis-
tical; systematic errors are of order 20 MeV or less.
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III. DETERMINATION
OF THE RENORMALIZED COUPLING

A. The coupling constant from Wilson loops

Having tuned the simulation, we performed Monte Carlo
simulations to generate ‘‘data’’ for a variety of short-distance
quantities. We determined the coupling by matching the per-
turbative expansions for these quantities to the nonperturba-
tive Monte Carlo results. For short-distance quantities we
chose the expectation valuesWm,n of Wilson loop operators.
In the continuum,

Wm,n[
1

3 K Re Tr PexpS 2 ig R
n,m

A•dxD L , ~3!

whereP denotes path ordering,Am is the QCD vector poten-
tial, and the integral is over a closedma3na rectangular
path. Loop operators for small paths are among the most
ultraviolet, and therefore most perturbative, objects that can
be studied in lattice QCD simulations. Unlike most other
quantities used to determine the QCD coupling, the loop op-
erators are truly short-distance quantities in Euclidean space.
There are no corrections for hadronization, and nonperturba-
tive effects are expected to be very small. For example, the
leading nonperturbative contribution toWm,n due to conden-
sates is probably from the gluon condensate, with

dWm,n52
pa4~mn!2

36
^asF

2&. ~4!

Most studies find that̂asF
2& is of order 0.042 GeV4 @16#.

Sincea21 ranges from 1.2 to 4.2 GeV in our simulations, we
expect condensate contributions to2 ln W1,1, for example, to
be in the range of 0.2–0.01 %, much too small to be impor-
tant here. WhennfÞ0 there are also contributions from
quark condensates, but these are suppressed byas

2 and so are
probably even smaller. The tiny size of such effects make the
Wm,n for small m andn ideal quantities for determining the
coupling in lattice QCD, particularly given the ease with
which they can be computed in simulations.

To obtain four independent determinations of the cou-
pling, we used expectation values for the four smallest loops

on the lattice: the plaquetteW1,1, W1,2, W1,3, and W2,2.
Each of these loop operators is very different from the oth-
ers; as different, for example, as various moments of a struc-
ture function. Each is affected differently by nonperturbative
effects and higher-order uncalculated perturbative correc-
tions. The contribution of the gluon condensate, for example,
is 16 times larger forW2,2 than for W1,1. By comparing
results obtained from different loop operators we can bound
such systematic errors.

Each of our expectation values has a perturbative expan-
sion of the form

2 ln Wm,n
~nf !5(

i 51
ci

~nf !~m,n!@aP
~nf !~qm,n!# i , ~5!

where aP is a new nonperturbative definition for the cou-
pling constant introduced in our earlier paper@2# to facilitate
lattice calculations. The scaleqm,n is the average gluon mo-
mentum in the first-order contribution toWm,n , computed
directly from the Feynman diagrams as described in@17,18#.

In Table II we list the perturbative coefficients through
third order for nf50, and through second order fornf52
@19#. Unfortunately, thenf dependence of the third-order co-
efficients has not yet been computed. Given that the second-
order coefficients depend only weakly onnf by design
@17,18#, it is likely that thenf50 third-order coefficients are
also good approximations whennf52. We assume this in
our analysis, but when estimating errors atnf52 we take the
size of the entirenf50 third-order contribution as an esti-
mate of the uncertainty due tonf dependence. Whennf50,
we estimate the truncation error in perturbation theory to be
of orderaP

3 (qm,n) times the leading order contribution.
Note that the plaquetteW1,1 has no third-order contribu-

tion. This is because the couplingaP is defined in terms of
the plaquette@2#; the absence of third- and higher-order cor-
rections is merely a consequence of our conventions. Trun-
cation errors in the plaquette’s expansion reappear when our
coupling is converted to more standard couplings, such as
aMS:

a
MS

~nf !~Q!5aP
~nf !~e5/6Q!$112aP

~nf !/p1XMS~aP
~nf !!2

1O„~aP
~nf !!3

…%. ~6!

Here the third-order coefficientXMS'0.95 for nf50 @20#.
The third-order coefficient is new since our first paper. Un-
fortunately, thenf dependence of this coefficient is not
known. However, the variation of this coefficient asnf goes

FIG. 2. NRQCD simulation results for the spin structure of the
lowest-lyingP states. Dashed lines indicate experimental values for
the triplet P states. Masses are relative to the spin-averaged state.
Results are from a simulation withnf50 ~filled circles! and from
one with nf52 ~open circles!, usinga2152.4 GeV for both. The
errors shown are statistical; systematic errors are within about 5
MeV.

TABLE II. Coefficients for the perturbative expansions, in pow-
ers ofaP(qm,n), of small Wilson loops. Scaleqm,n is the average
momentum carried by the gluon in the first-order correction.

Loop c1

c2
c3

nf50 aqm,nnf50 nf52

2 ln W1,1 4.19 24.98 25.57 0 3.40
2 ln W1,2 7.22 27.57 28.51 2.6 3.07
2 ln W1,3 10.07 29.60 210.89 5.3 3.01
2 ln W2,2 11.47 210.58 211.84 11.1 2.65
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to two or three is unlikely to be large. The factore5/6 in the
scale is chosen to eliminatenf dependence in the second-
order coefficient of the expansion@18#, and therefore also
removes much of thenf dependence in third order. As above,
we use thenf50 value forXMS throughout our analysis, but
whennf52 we take the size of the entire third-order term as
our estimate of the uncertainty due tonf dependence.

The couplingaP was defined to coincide through second
order with the continuum couplingaV defined in @18,17#
from the static-quark potential. The third-order correction to
the static-quark potential has recently been computed@21#,
leading to

aV
~nf !~Q!5aP

~nf !~Q!$11XV~aP
~nf !!21•••%, ~7!

where XV51.8620.14nf1XMS, which is 2.81 fornf50.
Note that this expansion has infrared divergences in fourth-
order and beyond, due to residual retardation effects in the
static quark potential@22#.

B. Results: aP determinations

Monte Carlo simulation results for the expectation values
of the Wilson loop operators are summarized in Table III
@23#. We also tabulate the values ofaP(qm,n) obtained by
matching perturbation theory to Monte Carlo simulation re-
sults. The uncertainties quoted are our estimates of the po-
tential truncation errors in perturbation theory; see Sec. III A.
The only other potential sources of error are nonperturbative
effects, and as discussed, these are almost certainly negli-
gible compared to truncation errors. Finite-volume errors are
much less than 1% for such small loops.

The values for the various coupling constants in this table
are all different. This is because the coupling-constant scales
qm,n are different for each operator and for each parameter
set. To compare these results we must first evolve the run-
ning coupling constants to a common scale. In Table IV we
present the couplings evolved to 8.2 GeV, which is the scale
we chose in@2#. To generate these values, we converted the
correspondingqm,n’s from units of a21 to GeV using the

lattice spacings inferred from each of theY or c mass split-
tings for which we have simulation results. We then evolved
the couplings to 8.2 GeV by numerically integrating the evo-
lution equation foraP . We used the universal second-order
b function together with thenf50 third-order term for
aP . The nf dependence of the third-orderb function is un-
known, but the entire third-order term generally has negli-
gible effect. This is especially true for our most important
results atb56 and 5.6, since 8.2 GeV was chosen to be very
close to theqm,n’s and very little evolution is required.

If one groups the various couplings in this table according
to the splitting used to tune the simulation and the number of
light-quark flavorsnf , one finds that the values within a
single group are completely consistent. In particular, results
obtained using different loops are in excellent agreement,
which shows that our estimates of the errors caused by trun-
cating perturbation theory are reasonable. Also, the coupling
constants obtained from the plaquette usingb’s ranging from
5.7 to 6.4, corresponding to scalesq1,1 ranging from 4.8 GeV
to 14.2 GeV, agree well. This demonstrates that the evolu-
tion of our coupling constantaP is well described by the
perturbativeb function; no lattice artifacts are apparent. This
is also illustrated by Fig. 3, where we plot the coupling con-
stantaP(q1,1), obtained from the plaquette, versus the effec-
tive momentum scaleq1,153.4/a at which the coupling is
measured on each lattice. The simulation results for the run-
ning of aP agree well with the prediction of third-order per-
turbation theory@24#.

C. Extrapolation to nf53

The coupling constants in Table IV from simulations with
different nf ’s are significantly different, as are the couplings
from simulations tuned using different meson mass split-
tings. Our final step is to extrapolate tonf53, which is the
correct number of light-quark flavors forY and c physics.
The extrapolated results, which are shown in Table V, should
all agree, and do. To make the extrapolation, we paired
nf50 andnf52 simulations as indicated in the table. For

TABLE III. Expectation values of Wilson loop operators for small loops, and the correspondingaP’s for
a variety of lattice QCD parameters. The uncertainties listed for the expectation values are Monte Carlo~MC!
statistical errors. Those listed for theaP’s are estimates of the truncation errors in perturbation theory.

b nf ameff
0 Loop MC value aP

(nf )(qm,n)

6.0 0 - 2 ln W1,1 0.5214~0! 0.1519~0!

2 ln W1,2 0.9582~1! 0.1571~6!

2 ln W1,3 1.3757~2! 0.1584~6!

2 ln W2,2 1.6605~3! 0.1657~8!

5.6 2 0.025 2 ln W1,1 0.5719~0! 0.1792~0!

0.010 2 ln W1,1 0.5709~0! 0.1788~0!

0.010 2 ln W1,2 1.0522~1! 0.1828~30!

0.010 2 ln W1,3 1.5123~2! 0.1832~40!

0.010 2 ln W2,2 1.8337~3! 0.1907~80!

5.7 0 - 2 ln W1,1 0.5995~0! 0.1829~0!

5.415 2 0.0125 2 ln W1,1 0.6294~0! 0.2075~0!

5.47 2 0.050 2 ln W1,1 0.6134~0! 0.1993~0!

6.2 0 - 2 ln W1,1 0.4884~0! 0.1398~0!

6.4 0 - 2 ln W1,1 0.4610~0! 0.1302~0!
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each separate combination of Wilson loop and meson mass
splitting, we extrapolated 1/aP using the correspondingaP’s
from the two simulations.

We chose to extrapolate 1/aP rather thanaP because nu-
merical experiments using third-order perturbation theory
suggest that 1/aP is significantly more linear innf . To see
how the couplings from our simulations might depend onnf ,
note that theY splittings that we use to determine the lattice
spacing probe QCD at momentum scalesqY of the order
0.5–1 GeV. Thus when we choose a lattice spacing that

gives these splittings their correct physical values, we are in
effect tuning the QCD coupling constant in our simulation to
have its correct value at the scaleqY . ~If nfÞ3, the simula-
tion’s coupling will have the correct valueonly at
qY .! This means that the couplings in ournf50 and 2 simu-
lations agree with the correctnf53 coupling atqY :

aP
~0!~qY!5aP

~2!~qY!5aP
~3!~qY!. ~8!

This equation specifies the dependence of the couplings
obtained in our simulations onnf , but we are unable to use
it directly since perturbation theory is not particularly reli-
able atqY . Nevertheless, we can use this relation to test
different schemes to extrapolatenf as follows. Taking
qY51 GeV, we set all the couplings at that scale equal to
some large value, say 0.65. We then evolve all three to 8.2
GeV using the three-loopb function. Finally, we compare
the 8.2 GeV coupling extrapolated fromnf50 and 2 with the
nf53 coupling obtained by evolving fromqY . Extrapolat-
ing aP gives results that are ‘‘correct’’ to within 1.4%, while
extrapolating 1/aP is correct to within 0.3%. This exercise
indicates that we should extrapolate the inverse coupling and
that the extrapolation errors are probably less than 1%. Such
errors are negligible relative to the other systematic and sta-
tistical errors. Nevertheless, it would be desirable to repeat
our analysis using simulations withnf53 or evennf54.

Equation~8! played a key role in the earliest determina-
tions of the running coupling constant using lattice QCD
@25#. These studies used onlynf50 simulations. As can be
seen from our results, the coupling atnf50 is 25% smaller
than the correctnf53 coupling. This correction was esti-
mated in these earlier papers by perturbatively evolving the
nf50 coupling down toqY , changingnf to three, and then
evolving back up to the original large scale, which is 8.2
GeV in the present analysis. This procedure suggests a cor-
rection of 15–20%, which our simulations show to be an
underestimate but within the error range quoted in the earlier
papers. We emphasize that there is no inconsistency between
these earlier analyses and ours. Our simulations withnf50
give results that are identical with the earlier work. What is
different here is that we have actual simulation results atnf
Þ0 and so get tonf53 using extrapolation, rather than a

TABLE IV. Values of aP(8.2 GeV) from several operatorsWm,n and a variety of tunings for QCD
simulations, with differentb ’s, nf ’s, and meson mass splittings used to fixa21. The two uncertainties listed
are due to uncertainties in the inverse lattice spacing, and to truncation errors in the extraction ofaP using
perturbation theory.

b nf ameff
0 Loop

aP
(nf )(8.2 GeV)

xb2Y Y82Y xc2c/hc

6.0 0 - 2 ln W1,1 0.1552~10!~0! 0.1525~11!~0!

2 ln W1,2 0.1556~10!~6! 0.1528~11!~6!

2 ln W1,3 0.1560~11!~6! 0.1531~11!~6!

2 ln W2,2 0.1565~11!~8! 0.1537~12!~7!

5.7 0 - 2 ln W1,1 0.1528~18!~0! 0.1465~61!~0!

6.2 0 - 2 ln W1,1 0.1561~21!~0! 0.1519~23!~0!

6.4 0 - 2 ln W1,1 0.1515~67!~0!

5.6 2 0.010 2 ln W1,1 0.1794~24!~0! 0.1781~33!~0!

0.010 2 ln W1,2 0.1777~24!~30! 0.1764~32!~30!

0.010 2 ln W1,3 0.1770~24!~40! 0.1757~32!~40!

0.010 2 ln W2,2 0.1767~23!~71! 0.1754~32!~71!

5.415 2 0.0125 2 ln W1,1 0.1748~34!~0! 0.1696~78!~0!

FIG. 3. Values of the QCD coupling constantaP determined
from the plaquette in simulations with differing lattice spacings
corresponding tob55.7, 6, 6.2, and 6.4, all withnf50. The cou-
pling constant is plotted vs the average momentumq1,1 carried by
gluons in the plaquette at the various lattice spacings, with
q1,153.4/a. The line shows the coupling constant evolution pre-
dicted by third-order perturbation theory.
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perturbative analysis that is well motivated but only partly
justified. That the sizable correction due to light-quark
vacuum polarization was so accurately predicted using per-
turbation theory strengthens our confidence that our nonper-
turbative treatment of vacuum polarization is correct. Note
that if we use the perturbative analysis to correct just our
nf52 couplings, ignoring ournf50 couplings, we obtain
results that are in excellent agreement with the extrapolated
coupling @26#.

Our final results foraP in Table V agree well with each
other and with our earlier results@2#. In particular, the 3s
discrepancy between results using differentY splittings at
nf50 disappears completely atnf53. This is highly non-
trivial; we are in effect counting the number of light-quark
flavors that affect real upsilons. It provides confirmation that
the quark vacuum polarization is correctly included in our
simulations and extrapolation.

D. Conversion to aMS

To compare with nonlattice determinations of the cou-
pling constant, we have converted our results to the modified
minimal subtraction scheme (MS) definition of the coupling,
using Eq.~6! with XMS50.9560.95. Our results are listed in
Table VI, and together with ouraP’s in Table V, are the
main result of this paper. TheMS results are somewhat
larger than in our earlier paper because we now use the
nf50 value forXMS, rather than setting it to zero as before.
Our estimate in the earlier paper for the size of this term was
correct and was included as an error. Consequently, our old
results are consistent with our new results within errors.

To further facilitate comparisons with other analyses, we
have numerically integrated the third-order perturbative evo-

lution equation foraMS and applied appropriate matching
conditions at quark thresholds@27# to evolve it to the mass of
the Z0. The results for our ten determinations are shown in
Table VII. For matching we assumedMS masses of 1.3~3!
GeV and 4.1~1! GeV for the c and b quarks, respectively
@27,28#. The uncertainties in these masses can shift the final
coupling constant by less than half a percent; we ignore
them.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have demonstrated that lattice simula-
tions provide among the simplest, most accurate, and most
reliable determinations of the strong coupling constant. Our
ten different results, tabulated in Tables V–VII, are in excel-
lent agreement with each other. Indeed, all but one of them
agree with our best determination to withinits uncertainty;
that is, to within the smallest error bars. Our best result im-
plies

a
MS

~nf !~Q!

55
0.3706~288! for Q51.3 GeV'Mc and nf53,
0.3701~288! for Q51.3 GeV'Mc and nf54,
0.2234~93! for Q54.1 GeV'Mb and nf54,
0.2233~93! for Q54.1 GeV'Mb and nf55,
0.1174~24! for Q591.2 GeV5MZ and nf55,

~9!

with errors due to lattice-spacing and perturbation-theory un-
certainties combined in quadrature. These results are about
1s higher than our previous results@2#. The shift is entirely

TABLE V. Values ofaP
(3)(8.2 GeV) from different operators and different tunings of the QCD simula-

tion. The two uncertainties listed are due to uncertainties in the inverse lattice spacing, and to truncation
errors in the extraction ofaP using perturbation theory.

b Loop

aP
(3)(8.2 GeV)

xb2Y Y82Y xc2c/hc

6.0,5.6 2 ln W1,1 0.1946~41!~0! 0.1944~60!~0!

2 ln W1,2 0.1913~42!~52! 0.1912~57!~53!

2 ln W1,3 0.1897~42!~69! 0.1897~57!~70!

2 ln W2,2 0.1889~40!~120! 0.1887~56!~123!
5.7,5.415 2 ln W1,1 0.1884~57!~0! 0.1841~146!~0!

TABLE VI. Values of aMS
(3)(3.56 GeV) from different operators and different tunings of the QCD simu-

lation. The two uncertainties listed are due to uncertainties in the inverse lattice spacing, and to truncation
errors in the extraction ofaP and conversion toaMS using perturbation theory.

b Loop

aMS
(3)(3.56 GeV)

xb2Y Y82Y xc2c/hc

6.0,5.6 2 ln W1,1 0.2258~56!~74! 0.2254~81!~70!

2 ln W1,2 0.2213~56!~99! 0.2211~77!~98!

2 ln W1,3 0.2192~57!~116! 0.2191~77!~114!
2 ln W2,2 0.2181~54!~176! 0.2178~75!~177!

5.7,5.415 2 ln W1,1 0.2174~76!~67! 0.2117~197!~62!
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due to the new third-order term in the perturbative formula,
Eq. ~6!, relating the lattice couplingaP to aMS. Our Monte
Carlo simulation results are essentially identical to those in
our earlier paper. The shift relative to our earlier result is
only 1s because we previously estimated the size of this
third-order term accurately.

The bulk of our effort in this analysis was devoted to
understanding and estimating the systematic errors. We var-
ied every parameter in the simulation. We used four different
short-distance quantities to extract the coupling, and three
different ~infrared! meson splittings, in two different meson
families, to tune the bare coupling or lattice spacing. We
demonstrated that the gross features ofY andc physics are
accurately described by our simulations. We explored the
role of light-quark vacuum polarization for a range of light-
quark masses. Our simulations were sufficiently accurate to
show thatnf50 is the wrong number of light-quark flavors
for Y’s. Only when we extrapolated tonf53, the correct
value, did our simulation results agree with experiment. To
see how robust our results are, we redid the analysis but with
various ingredients missing. The corresponding shifts in
aMS

(5)(MZ) are listed in Table VIII; omitting thenf extrapola-
tion led to the only appreciable difference.

The various parts of our analysis agree well with the re-
sults of other groups. TheaP’s that we extract from Wilson
loop operators agree to within statistical and truncation er-
rors with those obtained by very different techniques@29#.
This is the easy part of the analysis. The remainder, involv-
ing the determination of lattice spacings, has now also been
duplicated. A recent analysis of simulation results from the
Fermilab and SCRI groups, both of which employ a totally
different formalism for b-quark dynamics, gives
aMS

(5)(MZ)50.116(3), in complete agreement with our re-
sults @30#.

Lattice coupling constant determinations such as ours en-
joy a fundamental advantage over traditional methods based
on perturbative high-energy processes, allowing significantly
greater accuracy. The systematic uncertainties in the pertur-
bative parts of the analyses are similar in both approaches,
but the nonperturbative elements differ substantially. When
we tune our simulation to reproduce theY spectrum, we are
in effect directly tuning the QCD scale parameterLMS. Con-
sequently, a 5% simulation error in a mass splitting results in
a 5% error in LMS, which implies only a 1% error in
aMS(MZ). In high-energy determinations, however, one
measures the coupling constant rather than the scale param-
eter, and usually only through small radiative corrections to
an electroweak process. MeasuringLMS is intrinsically much
more accurate than measuringaMS.

There are prospects for substantially improving the accu-
racy of our result fairly soon. We list sources of error in our
value foraMS

(5)(MZ) in Table IX. The dominant error is due to
truncation in perturbative expansions, specifically because
the nf dependent parts of our third-order coefficients have
not yet been calculated. The agreement we observe between
couplings from different loop operators, each with its own
perturbative series, suggests that our estimates of this sys-
tematic error are realistic or even pessimistic. Nevertheless,
our total error could be cut in half by computing thisnf
dependence, particularly for Eq.~6!. This is a straightforward
perturbative calculation. For this paper, we halved our statis-
tical errors for ournf50 simulations; the same should be
done fornfÞ0. Use of an improved gluon action would re-
move the need for thea2 correction in thexb2Y analysis,
while it already has negligible effect onY82Y. The addi-

TABLE VII. Values of aMS
(5)(MZ) from several operators and various tunings of the QCD simulation. The

two uncertainties listed are due to uncertainties in the inverse lattice spacing, and to truncation errors in
perturbative expansions.

b Loop

aMS
(5)(MZ)

xb2Y Y82Y xc2c/hc

6.0,5.6 2 ln W1,1 0.1174~15!~19! 0.1173~21!~18!

2 ln W1,2 0.1163~15!~26! 0.1161~21!~26!

2 ln W1,3 0.1157~15!~31! 0.1156~21!~31!

2 ln W2,2 0.1154~14!~46! 0.1152~20!~48!

5.7,5.415 2 ln W1,1 0.1152~20!~18! 0.1136~52!~16!

TABLE VIII. Changes in the coupling constant atMZ when
different parts of our simulation or analysis are omitted.

DaMS
(5)(MZ)

Omit O(a2) gluonic corrections 20.6%
Omit tadpole improvement of NRQCD 20.5%
Omit O(v2,a,a2) corrections in NRQCD 10.9%
Omit extrapolation~usenf52! 24.7%

TABLE IX. Sources of error in our best determination of
aMS

(5)(MZ).

Source Uncertainty

Unknownnf dependence in third-order perturbation
theory

1.9%

Statistical error in determination ofa21 0.9%
Light-quark masses 0.9%
Extrapolation innf 0.3%
Finite a andO(v4) errors 0.2%
Fourth-order evolution ofaMS 0.01%
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tional cost would be small@31#. Using a relativistic formu-
lation of c-quark dynamics, rather than NRQCD, might al-
low accurate results from the charmonium spectrum. A
simulation with eithernf53 or 4 light quarks would elimi-
nate the extrapolation error and would require perhaps only
twice the computational effort needed fornf52. Finally,
simulations withlarger light-quark massesmeff would allow
us to pin down more accurately the dependence on this pa-
rameter.

Our lattice determinations of the strong coupling constant
agree well with most determinations based on perturbative
high-energy processes. This fact provides striking evidence

that the nonperturbative QCD of hadronic confinement and
the perturbative QCD of high-energy jets are the same
theory.
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