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We present a new determination of the strong coupling constant from lattice QCD simulations. We use four
different short-distance quantities to obtain the coupling, three diffénmeinared meson splittings to tune the
simulation parameters, and a wide range of lattice spacings, quark masses, and lattice volumes to test for
systematic errors. Our final result consists of ten different determinationE)QB.Z GeV), which agree well
with each other and with our previous results. The most accurate of these, when evolved perturbatively to the
Z° mass, givesa%(Mz) =0.1174(24). We compare our results with those obtained from other recent lattice
simulations[S0556-282(97)01117-X]

PACS numbegs): 12.38.Gc, 12.38.Aw, 12.38.Bx, 14.40.Gx

I. INTRODUCTION Having tuned our simulation, the second step in our de-
termination of the coupling is to use the simulation to gen-

Precise measurements of the strong coupling constant erate nonperturbative Monte Carlo “data” for a variety of
are important not only for strong-interaction phenomenol-short-distance quantities. Comparison with the perturbative
ogy, but also in the search for new physics. Any discrepancgxpansions for the same quantities then fixes the value of the
between low-energy and high-energy determinations of thiQCD coupling constant. We use the expectation values of
coupling could signal the existence of supersymmetry osmall Wilson loops as our short-distance quantities. These
other phenomena beyond the standard model. No significate very easy to compute in simulations. They are also com-
discrepancies have yet been obsery&fl more stringent pletely Euclidean and very ultraviolet, and therefore largely
tests of the standard model require further improvements ifree of hadronization or other nonperturbative corrections.
precision. In an earlier papg2] we showed that lattice simu- Finally, small Wilson loops have very convergent perturba-
lations of quantum chromodynami¢®CD), when combined tive expansions that are known through second order for ar-
with the very accurate experimental data on ¥ieneson bitrary n¢, the number of light-quark flavors, and through
spectrum, provide among the most accurate and reliable déhird order forn;=0.
terminations ofag. Y’s probe the strong interactions at the  In this paper we examine each of these steps in detail. We
relatively low energies of 500—1000 MeV, where supersym-begin in Sec. Il by describing how we tune the simulation
metry or other new physics has little effect. Thus it is impor-parameters. The most important of these for our analysis is
tant to compare the couplings obtained from lattice QCDthe bare coupling constant, or equivalently the lattice spac-
with those obtained from high-energy accelerator experiing, used in the lattice QCD Lagrangian. The number and
ments, where effects due to a more fundamental underlyingnasses of light quarks entering through vacuum polarization
theory would be much more important. And it is essentialis also important; we present new simulation results that bear
that these couplings be measured as accurately as possibt# these parameters. In Sec. Ill we describe several different
with realistic estimates of the uncertainties involved. In thisdeterminations otvys using different Wilson loops. Each of
paper we review our earlier determination of the couplingthese sections deals extensively with potential systematic er-
and update it to take advantage of new results from thirdfors. Finally, in Sec. IV we summarize our results and dis-
order perturbation theory, as well as new simulations whicteuss future directions.
substantially reduce some of our Monte Carlo errors. We
also report on several new simulations that further bound our
systematic errors, particularly with respect to contributions Il. TUNING OF THE SIMULATION
from quark vacuum polarization.

As discussed ifi2], there are two steps in our determina-
tion of the coupling constant. The first is to create a numeri- Given a lattice spacing, the QCD parameters that deter-
cal simulation that accurately mimics QCD dynamics. We domine Y properties are the bare coupling constgpt in the
this by tuning the bare masses and coupling in a lattice QCIbattice Lagrangian, the bare mabs’ of the constituenb
simulation until it reproduces experimental results for thequarks, and the bare massa%of the light quarks that enter
orbital and radial excitations of mesons. We use th¥  through quark vacuum polarization. Only tle d, ands
family because it is one of the few systems for which bothquarks are light enough to contribute to vacuum polarization
accurate simulations and accurate experimental data asgpreciably. These parameters all vary with the lattice spac-
available. ing. In a simulation, they must be tuned so that physical

A. Procedure
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guantities computed in the simulation agree with the corre- There are several other properties of ffiesystem that
sponding experimental values. The tuning procedure is muchnhake it ideal for tuning the bare coupling. These mesons are
simpler, and therefore more reliable, if one uses physicaéssentially nonrelativistic; the use of a nonrelativistic effec-
quantities that are very sensitive to one of the parameters anfje action[5] to exploit this allows a large portion of the
insensitive to the others. spectrum to be computed efficiently and precisghy7].

Our main interest in this paper is the coupling constantThey are physically small—three or four times smaller than
and so we are particularly careful in tuning the bare coudjight-quark hadrons—and so do not suffer from finite-
pling. We use the mass splittings between radial and orbitajolume errors even on modestly sized lattices. Finally, we
excitations of theY for this purpose. These splittings are have detailed phenomenological quark models that are well-
ideal since they are almost completely insensitive to thgounded theoretically and that give us unprecedented control
b-quark mass. The spin-averaged mass splittings betweesver systematic errors.
1P and ISlevels, and & and 1S levels are observed experi-  In addition to the bare coupling constant, we must also
mentally to vary by only a few percent between h@ndy  tune the bare masses of thequark and of the light quarks.
systems, even thougb quarks are roughly three times We tune the bar&-quark massM® by requiring that they
heavier tharc quarks. This striking insensitivity to the mass mass in the simulation has its correct value of 9.46 GeV.
of the constituents is an accident, but is confirmed by simuReferencd8] presents a detailed discussion. The light-quark
lations for a range of masses near thenass. masses are tuned until the pion and kaon masses are correct.

These splittings are also quite insensitive to the masses s discussed, we need only tBequark mass, as we set all
the light quarks. These contribute through vacuum polarizan,=3 light-quark masses /3.
tion, and affect hadronic masses in two ways. First, they Finally we note that it is customary in tuning lattice simu-
allow decays to multihadronic final states; mixing with thesejations to switch the roles of the lattice spacing and the bare
states shifts the masses of the original hadr¥ndecay rates  coupling constant. Rather than choose a lattice spacing and
are typically 0.1% or less of the mass splittings, and thehen tune the bare coupling constant to its correct value, it is
states we examine are all far below & threshold. Thus far simpler to choose a value for the bare coupling constant
we may ignore such effects in our analysis. The second efg,,,, and thencomputethe corresponding lattice spaciragy
fect of vacuum polarization is to renormalize the gluonicusing simulation results. All explicit dependence on the spac-
interactions between the constituents of the hadron. The typing can be removed from the simulation code by expressing
cal momentunty exchanged between thequarks in anY  dimensionful quantities in units af or a~1. The spacing is
is from 0.5 to 1 GeV. This is small compared to theb, and  then not needed as an input to the code, but is specified
t quark masses, and we may ignore their contribution tamplicitly through the input value foig,, or equivalently
vacuum polarization. In contrast, the d, ands quarks are  through 8=6/gZ,. We determinea from the Y mass split-
effectively almost massless at these energies and must liggs AM. The simulation produces these in the dimension-
included in a realistic simulation. At the same time, becausgess combinatiorsAM; to obtaina, we divide by the ex-
their masses are small relatived@ , our simulation results perimentally measured values fAM.

depend only weakly on their exact values. The lattice spacing is a crucial ingredient in our determi-
For sufficiently small masses, the dependence ofYan nation of the renormalized couplings. As we discuss in
mass splitting should be lineg8]: Sec. lll, the short-distance quantities we study specify
. as(g*) for a specific value o&g*. The expectation value of
~ANMO i the axa Wilson loop, for example, givesxg(q*) for
AM=AMT 1+ consi u%s Qy " ’ @ g* =3.4/a. For this to be useful, we need to knay¥, and
thereforea !, in physical units such as GeV. Consequently,

where the renormalizesl mass is 50—100 MeV4], and the o neyt section focuses on how precisely we are able to

u and d masses are 20 or 30 times smaller and thereforgeermine the lattice spacing corresponding to a given value
negligible. It is very costly to simulate lattice QCD with ¢ B.

realistic u and d masses. Here that is unnecessary. The
simple dependence &M on mg means that we obtain re- » o
alistic results if we set all three light-quark masses equal to B. Results:a™" determination

mgr=mg/3, which generates the same correctionAthl as Our lattice simulations used the standard Wilson action

two massless quarks and a strange quark. Thyg  for the gluons, and the staggered-quark action and the hybrid

=15-30 MeV, and Eq(1) suggests that the dependence onmolecular dynamics algorithm for the light quarks. We em-

light-quark masses is a few percent or less of the total magsloyed a nonrelativistic formulation of quark dynamics

splitting, comparable to the Monte Carlo statistical errors in(NRQCD) for the b quarks[5-7]. The n;=0 gauge-field

our analysis. configurations used in our Monte Carlo calculations were
provided by Kilcup and his collaborator§3=6,6.4 [9],
Kogut (8=6) [10], and by the UKQCD Collaboration

Uit is conceivable that the linear term in EG), which is due to ~ (8=5.7,6.2[11]. The ny=2 configurations are from the
chiral symmetry breaking, is strongly suppressed for tiny meson$CRI Lattice Gauge Theory Group and their colleagues in
such as theY, and becomes nonleading. Then the dependence oth€ HEMCGC Collaboration £=5.6) [12], and from the
Mer Would be quadratic, with the correct value forz=my3.  MILC Collaboration (8=5.415,5.47 [13]. Unfortunately,
The sensitivity tomg; would then be far smaller and probably neg- we were unable to obtain configurations with=3 light-
ligible for our analysis. quark flavors, which is the correct humber figr physics.
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TABLE |. Simulation results for meson mass splittirg&M and inverse lattice spacings *, in GeV,
for a range of couplingg, light-quark massemg and heavy-quark massM;g. The gluonica? corrections
aAMy shown are added taAM to obtain the corrected splitting. The error estimates dot are for
statistical errorsa® andv* errors, and errors in the light-quark mass, respectively. Experimental values for
AM are 0.563 GeV folY''—7Y, 0.440 GeV fory,—Y, and 0.458 GeV foy.— &/ 7. .

B Ny amy amg Splitting aAM aAM, a ! (Gev)
6.0 0 - 171 xp=Y 0.174(3) —0.004 2.594)(4)(0)
1.80 0.17412)
2.00 0.17310)
6.0 0 - 1.71 Y' =Y 0.232(5) —0.001 2.44(5)(3)(0)
1.80 0.23911)
2.00 0.23511)
5.6 2 0.010 1.80 Xpb— Y 0.185(5) —0.005 2.447)(4)(7)
0.025 0.20412)
5.6 2 0.010 1.80 Y'Y 0.239(10) —0.002 2.3810)(3)(10)
0.025 0.26213)
5.7 0 - 080  x.—ulp,  0383(10)  —0.009 1.223)(18)(0)
3.15 Yo— Y 0.326(6) ~0.015 1.41(4)(4)(0)
5415 2 00125 080 y.—#ly. 035914  —0.008 1.305)(20)(5)
2.80 Xo— Y 0.323(10) —0.017 1.446)(4)(6)
5.47 2 005 080 .-y,  0.335(15)
2.8 Xb— Y 0.307(12
6.2 0 - 1.22 Xpb— Y 0.127(5) —0.002 3.5214)(5)(0)
Y'Y 0.175(8) —0.0003 3.2215)(5)(0)
6.4 0 - 1.00 Xo— Y 0.107(16) —0.002 4.1963)(6)(0)

Consequently, we performed complete analysesnfor0 M, is the heavy-quark mass. We assume 1.5 GeV and 5 GeV
and ns=2 and extrapolated our results tg=3. The ex- for c andb quarks, respectively. The corrections we used are
fcrapolation was the last step of our analysis, and is describelisted in Table I, as are our final values for the inverse lattice
in Sec. lll. o spacinga*. We allow for a systematic error of AM 4/2 in
As discussed above, we use mass splittings intt®ys-  AM when computing the error ia~2, although our analysis

tem to determine the lattice spacing. Specifically, we use tWgn [2] suggests a much smaller uncertainty. Note that
different mass splittings to make two independent determix vy’ —y) is almost unaffected by this correction. Rela-
Zat'OQS, ‘%; Lhe Iatt'cﬁ §pac(;n%. Yoned 'E thﬁ S_'p“:]t'”gtivistic corrections of ordep* are most likely negligible for

'\l/_ltg[_ _Al\/? eth\e{enbt té[ an tht €Y, and the ot e][ 'tSt € the Y since thev? corrections, which we include, shift our
splitting (xp—Y) between the spin average o b‘%. mass splittings by less than 10%; we include a systematic
mesons and th&. These can be measured accurately in a : : 2 . :

. X . uncertainty of 1% for this. Thev” corrections are certainly
simulation[6,7], and are known very accurately from experi- roer fordv's. where. for example. tha! &r— . splitting is a
ments. Table | summarizes the parameters used in our ma|Pizg Vs, ’ pie, ¥~ ¢ Spiitting

simulations and the results for these two splittings. Our mos’t’4 effect and 25% of thece— i 7. splitting. This_ sugg_ests
reliable results are based on tBe-6 and 5.6 simulations. V. €'7ors could be of ordet 6% for y/s. Recent simulations

We use results from the other simulations, including thosd15] indicate that certain spin-dependerft terms can shift
for the splitting between the spin-averaged mesons and levels by as much as 60 MeV, which is 15% of the splitting.
the spin average of th#/ ¢ and 77, mesons, to calibrate sys- We include a systematic uncertainty 6f15% forv* errors
tematic errors. OuB=6.2 result agrees with that fi4]. in the ¢ splitting. _

Several factors contribute to the uncertainty in our deter- OUr Simulations confirm that the-quark mass has very

mination of the lattice spacing. We used the lattice NRQcD/ttle effect on either of theYospIittings. Thep=6 results
formalism to simulate heavy-quark dynamifs], and in-  Show that a 17% change M" leads to changes of only a

cluded all relativistic corrections through(v2) and all finite ~ feW percent in theé’-Y and x,,-Y splittings. (Note that the

lattice-spacing corrections throug(a?). The leading statistical errors in the splittings for differeM®s are cor-
finite-a error is due t00(a2) errors in the gluon dynamics. related. Consequently, the statistical errors in the differences

We estimate this effect using perturbation thef#}; which between the splittings are somewhat smaller than those for

indicates that onlyS states are affected and that our mea-2nY individual splitting) Since we determing/ ° to within
suredS-state energies should be shifted by 6% [8], the resulting uncertainty in the determination of the

lattice spacing is probably no more than a percent, which is
3 5 much smaller than the statistical errors.
9=720 (aMg)“aAM s, 2 Uncertainties in the light-quark mass can also affect our
lattice spacing determination. In o@=5.6 simulations we
whereAM s is the hyperfine spin splitting of the state and expectam’ to be somewhere in the range 0.01-0.02. This

aAM
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can be inferred from the dependence of the pion mass on GeV
mg, and allows for uncertainties due to quenching and finite- +
a errors. Thus we want light-quark massasy=amg in 10.5¢
the range 0.003-0.006. We have simulation results for ----+--
am2,=0.01 and 0.025. By fitting formulél) to these results ""4;" +
we find thatamg=0.01 should give the correct result to
within 4%, which equals our statistical error. The correct 10.04 Y. V.
range of light-quark masses in o=5.415,5.47 simula-
tions is roughlyam2ﬁ20.005—0.015. We have simulation
results foram2=0.0125 and 0.050, and again the 6—7%
shift caused by changingi is roughly the same as our
statistical errors for botly and Y splittings? Note thaty’s 9.5-
should be more sensitive to small quark masses ffian ®o
since they are roughly twice as large; we saw no evidence for
this in our simulations. These results all indicate thatrtig 1g 3g 1p 1D
dependence is too small compared to our statistical errors to 0 ! ! 2
allow an accurate measuremérithis also means that the FIG. 1. NRQCD simulation results for the spectrum of ffie
tuning errors associated withme are no larger than our system, including radial excitations. Dashed lines indicate experi-
statistical errors, and so we take our statistical errors as @ental values for the triple$ states and for the spin average of the
measure of the uncertainty due to this parameter. triplet P states. The energy zero from simulation results is adjusted
We checked for finite-volume errors by computing theto give the correct mass to the(13S,). Results are from a simu-
charmonium splittings using lattices that are 1.5 fm and 3.0ation with n;=0 (filled circles and from one withn;=2 (open
fm per side. We observed no difference, indicating that theseircles, usinga™*=2.4 GeV for both. The errors shown are statis-
errors are smaller than the 2% statistical errors in these testtcal; systematic errors are of order 20 MeV or less.

The lattices we used apB=6 and 5.6 are both ¥6 Thus the =6 simulation is inconsistent with experiment
~1.35 fm per side; th&'s are half the size of the's, with us. e=6 s yulation 1S inconsiste experiment.
This is because in this simulation, in contrast to nature,

a radius of about 0.2 fm. We therefore expect finite volume (=0 there is no light-quark vacuum polarization. The dis-

errors in our mass splittings that are substantially less thall . ) .
204, agreement is smaller when;=2, as is apparent in the

We estimated the electromagnetic shifts of ¥enasses B=5.6 data. And, as we will demonstrate, it disappears com-

using a potential model. For individual mesons, we foundple'to\ely when v(\;e ex_trapolapef to three.l lead .
mass shifts of approximately 1 MeV, with smaller shifts for S €XPected, using an incorrect value forleads to in-

the splittings between them. These are too small to affect ofonSistencies such as the one found in Ser6 simulation.
result. Perturbation theory, though not justified at the momenta rel-

Our final values form~Y's are listed in Table |. obtained €vant for these systems, provides a qualitative explanation
by dividing the experimental values for the splitting#1 by for this d|scr§pancy. The centrifugal parrler makes the aver-
the corrected Monte Carlo simulation resultsAM  29€ Separation between the quarks in fhstate x;, larger

; ~lig i than for theS stateY or Y', as is familiar from hydrogen or
+aAMg. The error estimates for thee” ~'s include statisti- yarog

cal errors inaAM, as well as systematic errors associateofos'tron'uml'( As a r_esult, tne t}[ﬁ)'cal exc_ltﬁmged tmgnlgntum
with the finitea correctionaAMg, v* corrections, and the 'O Xb QUarKs,d,,, IS smaller thangy. . [The perturbative

light-quark massnJ. Other systematic errors are negligible. Pinding energy is given bye3(a) CEM,/16, withq=qy. for
A striking feature of these simulation results is the dis-Y' anda,, for xy. Sinceq, <qy:, the xy, is more tightly
agreement aB=6 betweera ! computed using th& ’'-Y bound. However, fom;=0, this effect is exaggerated, as
splitting and that computed using thg-Y splitting. Taking  «{%)(q) increases more quickly tha#{>)(q) with decreasing
proper account of correlations, this disagreement is threq. Thus, forn;<3, AM(x,—Y) should be underestimated
standard deviations: our simulation gives 136or the ratio  relative to AM(Y'—Y), as is observed. Fitting to data
of these splittings, rather than the experimental value of 1.28xould then require a largea* for AM(x,—Y) than for
AM(Y'=Y).
We end this section by displaying in Figs. 1 and 2 results
2To compare mass splittings #=5.415 with those ag=5.47  rom the 5=6 and 5.6 simulations for several of the low-
one needs the expectation value of the plaquette at each beta; s¥#g excitations and spin splittings, compared with experi-

the following section. From the plaquette values one finds that thénental values. The agreement is excellent and supports the
lattice spacing at the largeB is about 12% smaller. Since the reliability of our simulations. We emphasize that these are

aAM’s are only 5-6 % smaller at the larger beta, the splittings ~ calculations from first principles; our approximations can be
themselves are actually about 6—7 % larger for the larger mass. systematically improved. The only inputs are the

3This insensitivity tom is becausen is so small in our simu-  Lagrangians describing gluons and quarks, and the only pa-
lations. Ourn;=0 simulations are equivalent tos= and give  rameters are the bare coupling constant and quark masses. In
results that are quite different from= 2. So shifts would become particular, these simulations anet based on a phenomeno-
apparent, even with our statistics, for sufficiently largg;. logical quark potential model.

-0
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MeV TABLE IlI. Coefficients for the perturbative expansions, in pow-
ers of ap(Qm ), of small Wilson loops. Scalgy, , is the average
20+ momentum carried by the gluon in the first-order correction.
5 0=Xb2
0T h. o c2 Cs

b --o-¢--Xbl Loop Cy ni=0 ng=2 =0  admn
—20+ R —In W, 4.19 —4.98 —5.57 0 3.40
] —In W, , 7.22 —757 —8.51 2.6 3.07
—404 ----{—-Xbo —InWy3 10.07 -9.60 —10.89 5.3 3.01
—InW,, 11.47 —-10.58 —11.84 11.1 2.65

FIG. 2. NRQCD simulation results for the spin structure of the
lowest-lyingP states. Dashed lines indicate experimental values fopn the lattice: the plaquetté/; ;, Wy ,, Wy 3, and W, ,.
the tripletP states. Masses are relative to the spin-averaged statgach of these loop operators is very different from the oth-
Results are from a simulation withy=0 (filled circles and from  grs: as different, for example, as various moments of a struc-
one withn;=2 (open circle§ usinga™'=2.4 GeV for both. The  yre function. Each is affected differently by nonperturbative
errors shown are statistical; systematic errors are within about offects and higher-order uncalculated perturbative correc-
MeV. tions. The contribution of the gluon condensate, for example,
is 16 times larger folW,, than for Wy ;. By comparing
results obtained from different loop operators we can bound
such systematic errors.
A. The coupling constant from Wilson loops Each of our expectation values has a perturbative expan-
sion of the form

III. DETERMINATION
OF THE RENORMALIZED COUPLING

Having tuned the simulation, we performed Monte Carlo
simulations to generate “data” for a variety of short-distance _
quantities. We dgtermlned the couphng by matching the per- —In Wf:fn)=2 cf”f)(m,n)[aﬁff)(qm,n)]', (5)
turbative expansions for these quantities to the nonperturba- =1
tive Monte Carlo results. For short-distance quantities we

chose the expectation valués, , of Wilson loop operators. whereap is a hew nonpe.rturbative'definition for t'h.e cou-
In the continuum ’ pling constant introduced in our earlier paj2f to facilitate

lattice calculations. The scatg, , is the average gluon mo-
1 _ mentum in the first-order contribution t&/,, ,, computed
Winn=3 <Re Tr Pexp( —ig % AUX) > (3)  directly from the Feynman diagrams as describeflLif,18].
nm In Table Il we list the perturbative coefficients through
whereP denotes path ordering,, is the QCD vector poten- third order forn;=0, and through second order fof=2
tial, and the integral is over a closedax na rectangular [19]. Unfortunately, the1; dependence of the third-order co-
path. Loop operators for small paths are among the mogfficients has not yet been computed. Given that the second-
ultraviolet, and therefore most perturbative, objects that carder coefficients depend only weakly an by design
be studied in lattice QCD simulations. Unlike most other[17,18, itis likely that then;=0 third-order coefficients are
quantities used to determine the QCD coupling, the loop op@S0 good approximations whem=2. We assume this in
erators are truly short-distance quantities in Euclidean spac€Ur analysis, but when estimating errorsiat=2 we take the
There are no corrections for hadronization, and nonperturbaize of the entireny=0 third-order contribution as an esti-
tive effects are expected to be very small. For example, th&nate of the uncertainty due to dependence. Whem;=0,
leading nonperturbative contribution W, , due to conden- We estimate the truncation error in perturbation theory to be

sates is probably from the gluon condensate, with of order a}(qm ) times the leading order contribution.
Note that the plaquetté/; ; has no third-order contribu-
ma’(mn)? 2 tion. This is because the coupling is defined in terms of
W=~ 36 (asF). (4) the plaquetté?2]; the absence of third- and higher-order cor-

rections is merely a consequence of our conventions. Trun-
Most studies find thataF?) is of order 0.042 GeY/[16]. cation errors in the plaquette’s expansion reappear when our
Sincea ! ranges from 1.2 to 4.2 GeV in our simulations, we coupling is converted to more standard couplings, such as
expect condensate contributions-tdn W, ,, for example, to  ays:
be in the range of 0.2—0.01 %, much too small to be impor-

tant here. Whem;#0 there are also contributions from a%)(Q) =o' (e9%Q){1+ 200"/ 7+ X n")?
qguark condensates, but these are suppresse@ bBynd so are
probably even smaller. The tiny size of such effects make the + O((a(P”f))3)}. (6)

W n for smallm andn ideal quantities for determining the

coupling in lattice QCD, particularly given the ease with Here the third-order coefficierXys~0.95 for ny=0 [20].

which they can be computed in simulations. The third-order coefficient is new since our first paper. Un-
To obtain four independent determinations of the coufortunately, then; dependence of this coefficient is not

pling, we used expectation values for the four smallest loop&nown. However, the variation of this coefficient msgoes
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TABLE Ill. Expectation values of Wilson loop operators for small loops, and the correspongisdgor
a variety of lattice QCD parameters. The uncertainties listed for the expectation values are Mont®Carlo
statistical errors. Those listed for tlg's are estimates of the truncation errors in perturbation theory.

B N am Loop MC value a0 ()
6.0 0 - —IN Wy, 0.5214(0) 0.1519(0)
—InW,, 0.9582(1) 0.1571(6)
—InW, 3 1.3757(2) 0.1584(6)
—InW,, 1.6605(3) 0.1657(8)
5.6 2 0.025 —In W, 0.5719(0) 0.1792(0)
0.010 —InW, 0.5709(0) 0.1788(0)

0.010 —InW,., 1.0522(1) 0.1828(30)

0.010 —In W, 5 1.5123(2) 0.1832(40)

0.010 —InW,, 1.8337(3) 0.1907(80)
5.7 0 - —In W, 0.5995(0) 0.1829(0)
5.415 2 0.0125 —InW; 0.6294(0) 0.2075(0)
5.47 2 0.050 —InW, 0.6134(0) 0.1993(0)
6.2 0 - —InW 0.4884(0) 0.1398(0)
6.4 0 - —InW,, 0.4610(0) 0.1302(0)

to two or three is unlikely to be large. The fac®t®in the lattice spacings inferred from each of thfeor » mass split-
scale is chosen to eliminai® dependence in the second- tings for which we have simulation results. We then evolved
order coefficient of the expansidii8], and therefore also the couplings to 8.2 GeV by numerically integrating the evo-
removes much of the; dependence in third order. As above, |ution equation forap. We used the universal second-order
we use then;=0 value forXys throughout our analysis, but g function together with then;=0 third-order term for
Whennfz 2 we take the size of the entire third-order term asap_ The N dependence of the third-ordﬁrfunction is un-
our estimate of the uncertainty duerp dependence. known, but the entire third-order term generally has negli-
The couplingap was defined to coincide through second gipje effect. This is especially true for our most important

order with the continuum coupling, defined in[18,17  regyits a3=6 and 5.6, since 8.2 GeV was chosen to be very
from the static-quark potential. The third-order correction to|ose to theg,, ,'s and very little evolution is required.

the static-quark potential has recently been compiifid, If one groups the various couplings in this table according

leading to to the splitting used to tune the simulation and the number of
(ng) _ (np 1+ X "2 ... 7 light-quark flavorsn;, one finds that the values within a

ay (Q=apT(Q) viap™) b @ single group are completely consistent. In particular, results

where Xy=1.86- 0.1+ Xgs, which is 2.81 forn,=0. obtained using different loops are in excellent agreement,

Note that this expansion has infrared divergences in fourthwhich shows that our estimates of the errors caused by trun-

order and beyond, due to residual retardation effects in théating perturbation theory are reasonable. Also, the coupling

static quark potentidl22]. constants obtained from the plaquette usfgranging from
5.7 to 6.4, corresponding to scalgs, ranging from 4.8 GeV
B. Results: ap determinations to 14.2 GeV, agree well. This demonstrates that the evolu-

. . . tion of our coupling constanip is well described by the
Monte Carlo simulation results for the expectation values, g hatives function; no lattice artifacts are apparent. This
of the Wilson loop operators are summarized in Table lllig 4150 illustrated by Fig. 3, where we plot the coupling con-
[23]. We also tabulate the values ef(dm,) obtained by  giant, (g, ,), obtained from the plaquette, versus the effec-
matching perturbation theory to Monte Carlo simulation re-tive momentum scalg, ;= 3.4k at which the coupling is

sults. The uncertainties quoted are our estimates of the preaqred on each lattice. The simulation results for the run-
tential truncation errors in perturbation theory; see Sec. ll| A'ning of ap agree well with the prediction of third-order per-
The only other potential sources of error are nonperturbativ?urbationptheor){Z 4]

effects, and as discussed, these are almost certainly negli
gible compared to truncation errors. Finite-volume errors are
much less than 1% for such small loops.

The values for the various coupling constants in this table The coupling constants in Table IV from simulations with
are all different. This is because the coupling-constant scaledifferentn;’s are significantly different, as are the couplings
qmn are different for each operator and for each parametefrom simulations tuned using different meson mass split-
set. To compare these results we must first evolve the rurtings. Our final step is to extrapolate mg= 3, which is the
ning coupling constants to a common scale. In Table IV wecorrect number of light-quark flavors fof and ¢ physics.
present the couplings evolved to 8.2 GeV, which is the scal@he extrapolated results, which are shown in Table V, should
we chose if2]. To generate these values, we converted thall agree, and do. To make the extrapolation, we paired
correspondingm »'s from units of a ! to GeV using the n;=0 andn;=2 simulations as indicated in the table. For

C. Extrapolation to n;=3
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TABLE IV. Values of ap(8.2 GeV) from several operatoi&/, , and a variety of tunings for QCD
simulations, with differenp’s, n;’s, and meson mass splittings used todix'. The two uncertainties listed
are due to uncertainties in the inverse lattice spacing, and to truncation errors in the extraetjonsifig
perturbation theory.

al"(8.2 Gev)

B N¢ aAMggr Loop xo—Y Y'-Y Xc— ¥l n¢
6.0 0 - —InW, 0.1552(10)(0) 0.1525(11)(0)
—InW, 0.1556(10)(6) 0.1528(11)(6)
—InW, 3 0.1560(11)(6) 0.1531(11)(6)
—InW,, 0.1565(11)(8) 0.1537(12)(7)
5.7 0 - —In W, 0.1528(18)(0) 0.1465(61)(0)
6.2 0 - —InWp,; 0.1561(21)(0) 0.1519(23)(0)
6.4 0 - =In W, 0.1515(67)(0)
5.6 2 0.010 —InW, ,; 0.1794(24)(0) 0.1781(33)(0)
0.010 —InW, , 0.1777(24)(30) 0.1764(32)(30)
0.010 —InW, 5 0.1770(24)(40) 0.1757(32)(40)
0.010 —InW,, 0.1767(23)(71) 0.1754(32)(71)
5.415 2 0.0125 —InW 0.1748(34)(0) 0.1696(78)(0)

each separate combination of Wilson loop and meson maggves these splittings their correct physical values, we are in

splitting, we extrapolated &4 using the correspondingp’s

from the two simulations.

We chose to extrapolatedy rather thanyp because nu-

effect tuning the QCD coupling constant in our simulation to

have its correct value at the scale. (If n;# 3, the simula-

tion’s coupling will

have the correct valueonly at

merical experiments using third-order perturbation theorydy -) This means that the couplings in aw=0 and 2 simu-

suggest that b/p is significantly more linear im;. To see

how the couplings from our simulations might depenchen
note that théY splittings that we use to determine the lattice

spacing probe QCD at momentum scatps of the order

lations agree with the correat=3 coupling atqy :

aP(ay)=aP(ay)=a(qy). ®)

This equation specifies the dependence of the couplings

0.5-1 GeV. Thus when we choose a lattice spacing thaebtained in our simulations om, but we are unable to use
it directly since perturbation theory is not particularly reli-
able atqy . Nevertheless, we can use this relation to test
different schemes to extrapolate; as follows. Taking

0.18

op(qi,1)
0.16

0.14

dy=1GeV, we set all the couplings at that scale equal to
some large value, say 0.65. We then evolve all three to 8.2
GeV using the three-loog function. Finally, we compare
the 8.2 GeV coupling extrapolated fram=0 and 2 with the
n{=3 coupling obtained by evolving frorgy . Extrapolat-
ing ap gives results that are “correct” to within 1.4%, while
extrapolating 14p is correct to within 0.3%. This exercise
indicates that we should extrapolate the inverse coupling and
that the extrapolation errors are probably less than 1%. Such
errors are negligible relative to the other systematic and sta-
tistical errors. Nevertheless, it would be desirable to repeat
our analysis using simulations withy=3 or evenn;=4.
Equation(8) played a key role in the earliest determina-
tions of the running coupling constant using lattice QCD

[25]. These studies used onfy=0 simulations. As can be
seen from our results, the couplingrat=0 is 25% smaller
than the correch;=3 coupling. This correction was esti-
mated in these earlier papers by perturbatively evolving the
n{=0 coupling down tagy, changingn; to three, and then
evolving back up to the original large scale, which is 8.2
FIG. 3. Values of the QCD coupling constamp determined  GeV in the present analysis. This procedure suggests a cor-
from the plaquette in simulations with differing lattice spacings rection of 15—-20%, which our simulations show to be an
corresponding tg8=5.7, 6, 6.2, and 6.4, all with;=0. The cou-  underestimate but within the error range quoted in the earlier
pling constant is plotted vs the average momentym carried by  papers. We emphasize that there is no inconsistency between
gluons in the plaquette at the various lattice spacings, witithese earlier analyses and ours. Our simulations njth0
d11=3.4/. The line shows the coupling constant evolution pre-give results that are identical with the earlier work. What is
dicted by third-order perturbation theory. different here is that we have actual simulation results;at
#0 and so get to;=3 using extrapolation, rather than a

{ 1 1

5 10 15
Q1,1 (GeV)
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TABLE V. Values ofa(F,3)(8.2 GeV) from different operators and different tunings of the QCD simula-
tion. The two uncertainties listed are due to uncertainties in the inverse lattice spacing, and to truncation
errors in the extraction ofp using perturbation theory.

(8.2 GeV)

B Loop xo—Y Y'=Y Xc— ¥l nc
6.0,5.6 —In W, 4 0.1946(41)(0) 0.1944(60)(0)
—InW, , 0.1913(42)(52) 0.1912(57)(53)
—InW, 5 0.1897(42)(69) 0.1897(57)(70)
—InW,, 0.1889(40)(120) 0.1887(56)(123
5.7,5.415 —InW, ; 0.1884(57)(0) 0.1841(146)(0)

perturbative analysis that is well motivated but only partly|ution equation forams and applied appropriate matching
justified. That the sizable correction due to light-quarkconditions at quark threshol@i27] to evolve it to the mass of
vacuum polarization was so accurately predicted using petthe Z°. The results for our ten determinations are shown in
turbation theory strengthens our confidence that our nonpefraple VIi. For matching we assumedS masses of 1(3)
turbative treatment of vacuum polarization is correct. Notégey and 4.11) GeV for thec and b quarks, respectively
that if we use the perturbative analysis to correct just oul27 2g. The uncertainties in these masses can shift the final

ny=2 couplings, ignoring oun;=0 couplings, we obtain coypling constant by less than half a percent; we ignore
results that are in excellent agreement with the extrapolateghem.

coupling[26].

Our final results forap in Table V agree well with each
other and with our earlier resulf€]. In particular, the &
discrepancy between results using differanhtsplittings at In this paper we have demonstrated that lattice simula-
n;=0 disappears completely at=3. This is highly non- tions provide among the simplest, most accurate, and most
trivial; we are in effect counting the number of light-quark reliable determinations of the strong coupling constant. Our
flavors that affect real upsilons. It provides confirmation thatten different results, tabulated in Tables V-VII, are in excel-
the quark vacuum polarization is correctly included in ourlent agreement with each other. Indeed, all but one of them

IV. DISCUSSION AND CONCLUSIONS

simulations and extrapolation. agree with our best determination to withits uncertainty;
that is, to within the smallest error bars. Our best result im-
D. Conversion to ags plies

To compare with nonlattice determinations of the cou- (ng)

pling constant, we have converted our results to the modified Vs (Q

minimal subtraction scheméAS) definition of the coupling,

using Eq.(6) with Xys=0.95+ 0.95. Our results are listed in 0.3706288 for Q=1.3 GeV=M. and n;=3,
Table VI, and together with ousp’s in Table V, are the 0.3701288 for Q=1.3 GeV=M. and n;=4,
main result of this paper. Th#S results are somewhat =4 0.223493) for Q=4.1 GeV=M; and n;=4,
larger than in our earlier paper because we now use the 0.223393) for Q=4.1 Ge\=M, and n;=5,
ny=0 value forXyzs, rather than setting it to zero as before. 0.117424) for Q=91.2 Ge\=M; and n;=5,
Our estimate in the earlier paper for the size of this term was 9)

correct and was included as an error. Consequently, our old

results are consistent with our new results within errors.  with errors due to lattice-spacing and perturbation-theory un-
To further facilitate comparisons with other analyses, wecertainties combined in quadrature. These results are about

have numerically integrated the third-order perturbative evodo higher than our previous resuffg]. The shift is entirely

TABLE VI. Values of a%(3.56 GeV) from different operators and different tunings of the QCD simu-
lation. The two uncertainties listed are due to uncertainties in the inverse lattice spacing, and to truncation
errors in the extraction oftp and conversion terys using perturbation theory.

(.56 GeV)

B Loop Xo—Y Y'-Y Xc— ¥ nc
6.0,5.6 —InW,, 0.2258(56)(74) 0.2254(81)(70)
—InW, , 0.2213(56)(99) 0.2211(77)(98)
—InW, 5 0.2192(57)(116) 0.2191(77)(114)
—InW,, 0.2181(54)(176) 0.2178(75)(177)

5.7,5.415 —InW, 0.2174(76)(67) 0.2117(197)(62)
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TABLE VII. Values of a%(MZ) from several operators and various tunings of the QCD simulation. The
two uncertainties listed are due to uncertainties in the inverse lattice spacing, and to truncation errors in

perturbative expansions.

a4i3(M2)
B Loop Xo—Y Y'=Y Xc— ¥l ¢
6.0,5.6 —InW, 0.1174(15)(19) 0.1173(21)(18)
—InW,, 0.1163(15)(26) 0.1161(21)(26)
—InW, 5 0.1157(15)(30) 0.1156(21)(30)
—In W, , 0.1154(14)(46) 0.1152(20)(48)
5.7,5.415 —In W, 0.1152(20)(18) 0.1136(52)(16)

due to the new third-order term in the perturbative formula, Lattice coupling constant determinations such as ours en-
Eq. (6), relating the lattice coupling;p to aps. Our Monte  joy a fundamental advantage over traditional methods based
Carlo simulation results are essentially identical to those iron perturbative high-energy processes, allowing significantly
our earlier paper. The shift relative to our earlier result isgreater accuracy. The systematic uncertainties in the pertur-
only 1o because we previously estimated the size of thidative parts of the analyses are similar in both approaches,
third-order term accurately. but the nonperturbative elements differ substantially. When
The bulk of our effort in this analysis was devoted to we tune our simulation to reproduce thiespectrum, we are
understanding and estimating the systematic errors. We vain effect directly tuning the QCD scale paramefgjs. Con-
ied every parameter in the simulation. We used four differensequently, a 5% simulation error in a mass splitting results in
short-distance quantities to extract the coupling, and threa 5% error in Ays, which implies only a 1% error in
different (infrared meson splittings, in two different meson ays(Myz). In high-energy determinations, however, one
families, to tune the bare coupling or lattice spacing. Wemeasures the coupling constant rather than the scale param-
demonstrated that the gross feature&'odind ¢ physics are  eter, and usually only through small radiative corrections to
accurately described by our simulations. We explored than electroweak process. Measurifigs is intrinsically much
role of light-quark vacuum polarization for a range of light- more accurate than measurings.
quark masses. Our simulations were sufficiently accurate to There are prospects for substantially improving the accu-
show thatn¢=0 is the wrong number of light-quark flavors racy of our result fairly soon. We list sources of error in our
for Y’s. Only when we extrapolated to;=3, the correct value fora{>}(M) in Table IX. The dominant error is due to
value, did our simulation results agree with experiment. Toryncation in perturbative expansions, specifically because
see how robust our results are, we redid the analysis but Witthe n, dependent parts of our third-order coefficients have
Vas”OUS ingredients missing. The corresponding shifts imot yet been calculated. The agreement we observe between
al3}(My) are listed in Table VIII; omitting the extrapola-  couplings from different loop operators, each with its own
tion led to the only appreciable difference. perturbative series, suggests that our estimates of this sys-
The various parts of our analysis agree well with the retematic error are realistic or even pessimistic. Nevertheless,
sults of other groups. Thep's that we extract from Wilson our total error could be cut in half by computing this
loop operators agree to within statistical and truncation erdependence, particularly for E@). This is a straightforward
rors with those obtained by very different techniqui2s]. perturbative calculation. For this paper, we halved our statis-
This is the easy part of the analysis. The remainder, involvtical errors for ourn;=0 simulations; the same should be
ing the determination of lattice spacings, has now also beedone forn;#0. Use of an improved gluon action would re-
duplicated. A recent analysis of simulation results from themove the need for tha? correction in they,— Y analysis,
Fermilab and SCRI groups, both of which employ a totallywhile it already has negligible effect ovi’—Y. The addi-
different formalism for b-quark dynamics, gives
a%(Mz)=0.11613), in complete agreement with our re-
sults[30].

TABLE IX. Sources of error in our best determination of
Ol m
aMs( 7).

TABLE VIII. Changes in the coupling constant 8, when Source
different parts of our simulation or analysis are omitted.

Uncertainty

Unknownn; dependence in third-order perturbation 1.9%

(5) theory
Aays(M2) Statistical error in determination @ * 0.9%
Omit O(a?) gluonic corrections —0.6% Light-quark masses 0.9%
Omit tadpole improvement of NRQCD —0.5% Extrapolation inn¢ 0.3%
Omit O(v?,a,a?) corrections in NRQCD +0.9% Finite a andO(v*) errors 0.2%
Omit extrapolation(usen;=2) —4.7% Fourth-order evolution oks 0.01%
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tional cost would be small31]. Using a relativistic formu- that the nonperturbative QCD of hadronic confinement and
lation of c-quark dynamics, rather than NRQCD, might al- the perturbative QCD of high-energy jets are the same
low accurate results from the charmonium spectrum. Atheory.
simulation with eithem;=3 or 4 light quarks would elimi-

nate the extrapolation error and would require perhaps only

twice the computational effort needed fog=2. Finally, We thank Urs Heller, Aida El-Khadra, Martin ‘saoher,
simulations withlarger light-quark massemes would allow  paul Mackenzie, Chris Michael, and Peter Weisz for several
us to pin down more accurately the dependence on this parseful conversations. We also thank Andrew Lidsey for his
rameter. contribution to ourB8=5.7 analysis. This work was sup-

Our lattice determinations of the strong coupling constanported in the U.K. by a grant from PPARC, and in the U.S.
agree well with most determinations based on perturbativéy grants from the National Science Foundation and the De-
high-energy processes. This fact provides striking evidencpartment of Energy.
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