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We calculate the lower moments of the deep-inelastic structure functions af #mel thep meson on the
lattice. Of particular interest to us are the spin-dependent structure functionspfThe calculations are done
with Wilson fermions and for three values of the quark mass, so that we can perform an extrapolation to the
chiral limit. [S0556-282197)04315-4
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[. INTRODUCTION interpretation of photoproduction and two-photon inclusive
cross sections, as the photon has a substantial hadronic com-
The deep-inelastic structure functions of nucleons angbonent which to a good approximation can be described by
mesons are currently receiving a lot of attention, both experithe p meson.
mentally and theoretically. It has become possible to com- For a spin-0 target like the, the kinematical framework
pute these structure functions from first principles within theis simpler than in the familiar nucleon case. The details for
framework of lattice QCD1,2]. This allows a quantitative the case of a polarized spin-1 particle have been worked out
test of QCD which goes beyond perturbation theory. Thely Hoodbhoyet al.[7]. The hadronic tensor, i.e., the imagi-
basis of the calculation is the operator product expansioRa"y part of the forward current-hadron scattering amplitude,
which relates the moments of the structure functions to for- 1
vyard .hadro.n matrix elements.of certain local operators. Latwe (p,g,\ N )= 4_J d*x€9%(p, N |[j#(x),]*(0)]|p,\)
tice simulations of these matrix elements, combined with an m
appropriate calculation of the Wilson coefficients, can in (1)
principle provide complete information of thg quark. and glu',(with N\, \' labeling the polarization decomposes into eight
onic structure of the hadronic _states. The aim of this paper igq,cture functions:
to compute the structure functions of tireand thep meson.
Following [2] we use Wilson fermions and work in the PP, 1
quenched approximation, where internal quark loops are neW,.,= —F19,,*F;——=bar,,+ gbz(s;w'*‘tﬂu"‘ Upp)
glected.
The pion structure function, which so far was extracted 01 N
from measurements of the Drell-Yan lepton-pair production +503(8,, = UL+ 5048, — ) R Eun0aS
cross sectiof3], is directly being measured at the DE®Y
collider HERA at presenf4], and we expect that new data Oy \
will become available soon. Using the techniques described +Hi= €unoq (P-as”—s-qp°), @
in [5,6], it should in principle be possible to measure the v
structure functions of the as well in the near future. Some
of the spin-dependent structure functions, in particular
should be easy to separate from the dominant pion exchan
process. and
But even without having any experimental data to com-
pare with, the internal structure of themeson is an inter- _
esting subject to study on the lattice. In addition to the struc- So:_'emﬁrf* €sP., 3
ture functions already known from the nucleon, one finds 2 « PR
new structure functions that contain qualitatively new infor-
mation which has no analogue in the case of sptargets ~ with m being the hadron mass. He¢&"*“ is the completely
[7]. We hope that this investigation will lead to a better un-antisymmetric tensor wita®??%= —1.
derstanding of quark binding effects in hadrons. The structure functionk,, F,, g4, andg, play the same
The structure functions of the are also of interest for the role as for a spirg target. In the parton model, the structure

wherev=p-q, andr,,, S,,, t,,, u,, are kinematical ten-
sors[7] constructed from the momentum transéeand the

%%Iarization vectok. The latter satisfies- p=0, e?=—m?,
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of the hadron can be described by the probabiq'@(x) and C describe some technicalities. The reader who is not
[qT(x)] of finding a quark with momentum fraction and  interested in the computational details may skip Secs. Il and
spin up[down] along the direction of motion when the had- IV.

ron is moving with infinite momentum and has spin projec-

tion m=0,=1. Symmetry implies Il. OPERATORS AND MOMENTS OF THE STRUCTURE
L 1 L 1 0 0 FUNCTIONS
()=q;7(x),  q(x)=0q; (%), 9 (x)=0q}(x), ,
o i A o i A (4) The moments of structure functions can be related to the

reduced matrix elements of certain local operators between
and so there remain only three independent parton distribum or p states. The local operators we consider are built from
tion functionsq%(x), q}(x), andq?(x). In leading order, the ¥ matrices and covariant derivatives and have the general
single-flavor structure functiod{?(x) is one-half of the form, in Minkowski space,
probability to find a quarlq with momentum fractiorx, and .

(a) - i ~ — e Lo
F5"(x) obeys the Callan-Gross relation OMur - pn= _Zn_lef,lme'Duz. —-iD*nyr, (10)
F00=3[a100 + () +a(x)],

Fi(x)=2xF¥(x). (5) O k= a3 Gt iy ysiD 2 1D,
In the complete structure functiofr{?(x) is weighted by (12)
the electric charg® of the quarks: where ¢ is the quark field, and3¢ is a suitably chosen
diagonal flavor matrix. The symmetrized derivative operators
Fi00=2 QIF ¥ (). 6) D are defined as
q
D=D-D. (12)

In the following, we will only specify single-flavor structure
functions and omit the superscrig)(. For the mesons under For a spin-0 particle, the momentum vecois the only

consideration, the structure functions are identical for bo”huantity the matrix element can depend on, and the reduced
flavors. The polarized structure functiamy(x) gives the | atrix element . is defined by ’
n

fraction of spin carried by quarks:

S| OMN e - pn} n) = 1...pMn—
6200 =g 00— g0 @ (p|OM1tk1 i —tracesp) = 2v [ p#1- - - p* traceé(.ls)

The structure functiorg,(x) does not have a parton model Tpe notation{ u; - - - u,} denotes symmetrization in the indi-

interpretation. cesuy, My, --- , M. EXpectation values of operators involv-

The structure function®,(x), ba(x), bg(x), andb,(X)  ing the ys matrix vanish from symmetry considerations as
are particular to spin-1 targets as the kinematical factors e - is a pseudoscalar particle.

Eg. (2) involve the target polarization vector to second order, Eqor a spin-1 particle, the structure of the matrix elements
a feature that does not occur for sgirtargets. In parton s more complicated due to the polarization degrees of free-

model languag®,(x) andby(x) depend on the quark-spin gom_ Now both types of operators contribdte:
averaged distributiong™=1/2(q1"+q'") only:
b:(x)=9°(x) —g"(x), (8

by (x)=2xby(X). 9

<p,)\|6(M){#1 . -Mn}_trace$p,)\>
=2S{a,p*1- - - prr+di[e*“1(p,\) e#2(p,\)

— %pulpuz]pus. - ptal, (14)
Thusb,(x) andb,(x) measure the difference in parton dis-
tributions of anm=1 andm=0 target. This difference is (p,)\IééM){“l”'“”}—trace$p,7\>
due to the fact that in quantum field theory any Lorentz boost
changes the particle content of a state. These changes differ

i - -
for different spin orientations relative to the boost direction. = — Sr,e” 1€, (p,N) €,(P,N)p,pH2: - - pn].
For a model discussion df;, see, e.g.[8]. m
The paper is organized as follows. In Sec. Il we recall (15
some results from the operator product expansion concerning
the relevant operators and their matrix elements. Section 11§ denotes symmetrization in the indices, ... , u, and

describes the method we use to extract matrix elements from@émoval of traces. The reduced matrix elements agydor
three-point functions. The lattice implementation of thisthe polarization-averaged contributiosh, for the polarized
method is discussed in Sec. IV. Section V is devoted tacontributions, and , for the operators involvingys.
guestions of normalization and renormalization. In Sec. VI

we discuss our results, and Sec. VIl presents our conclusions.—

Appendix A contains our conventions, and Appendixes B Note that we have corrected in EG.5) a misprint in[7].
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By performing an operator product expansion of EL, R 1 - .
reduced matrix elements of local operators can be related to ~ OF5 =Gy, iy EysD B DBy (22
. . My Mp 2n—1 My Mo Mn
moments of the structure functions. We define tile mo-

ment of a functionf(x) as . . . .
we obtain the following relation to the operators in
1 Minkowski space:
Mn(f)zf X" (x)dx. (16)
0

AM) gty — (—\(— . A (E)
OMpy---p (=) (—)na*Ns( |)n12301u1_” (23

Mp?
One then finds to leading order, which is twist 2, the follow-

ing representation of the moments of the pion structure funcwheren, is the number of timelike indices\;,3 the number

tions: of spatial indices, andhy=1 if the operator carries s
matrix. For our Euclidean conventions, see Appendix A.

2M(F)=CPv,, My_4(F))=CPv,;  (17) Lattice operators with the appropriate continuum behavior

) ) can be constructed from the Wilson fermion fields by con-

for the p structure functions, one obtaifig] sidering their symmetry properties under the hypercubic

group H(4) [9]. The operators we have chosen and their
relation to the reduced matrix elements are listed in Appen-
dix B.

The required expectation values of our operators are ex-
tracted from ratios of two- and three-point functions. The
three-point functions we consider are of the general form

2M(Fy)=CPVa,,
Mn_1(F2)=CPa,,
2M(by)=CMd,,

My-1(by)=C{?d,, (n(t,p)O(n) ' (0p)), (24)

ZM”(gl):CE‘g)r”’ (18 where 77(t,|5) is the sink operator for a particle moving with
where C(0=1+0(ay) are the Wilson coefficients of the momentump in time slicet, and '(0,p) is the correspond-
operator product expansion. These relations hold for evelld source at time slice=0. These operators are required to
n, except for the last one, which is valid for oddHowever, have the correct symmetry properties for the particles in
since we are calculating in the quenched approximation, wguestion and their corresponding Hilbert space operators
are allowed to make use of these formulas fomalkeeping  7(p) should create the desired particles from the vacuum
in mind that our results can be meaningfully compared onlywith nonzero amplitude®(r) represents the operatc@

with the nonsinglet valence quark distribution. whose expectation value is to be calculated.
In the case of ther, the moments of the quark distribu- For the 7+ we write

tion are given by
<anl>:vn, (19 <O|’7\7(77;p)|77;5>:\/z_7ﬂ (25

while for the p there are three different particle states and

while for the p they are related to the matrix elememis: ) i )
p ey Al correspondingly three different operators arranged in a vec-

(x""H=a,. (200 tor 5;(p;t,p) that satisfy
Ill. THREE-POINT FUNCTIONS AND MATRIX (0| mi(p;P)| ;P A)=VZ,€/(P,\) (26)
ELEMENTS

up to lattice artifactgsee Appendix A for the definition of
In order to calculate the reduced matrix elements on thehe polarization vectors;). The correlation function for the
lattice, we must calculate the expectation values of local opp depends on the polarization vectors:
erators of the form{10) and(11). To this end, we first need
the connection between the Minkowski operators and those Cik=(n;(p;t,p)O(7) 7(p;0.0)). (27)
in Euclidean space. Defining Euclidean operators by

In order to relate Eq(27) to the matrix elements we are
1 — E5E. .. B(E)%, 21) interested in, we express this correlation function in terms of
Mn ’

O(E)... :for ¢f7 ~
Hattrhn AL traces involving the transfer matrk

1

(ST ;(p;p) S "OS pl(p;p)], T=t=7=0,

R R 0
(Pt O pi(p;0PN =1 . .. . -
{7 k ) (ST "0 ni(p;p)S'ni(p;p)], T=7=t=0.

(28)

HereT denotes the time extent of our lattice whose spacing is put equal to 1. Then we insert a complete set of orthonormal
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eigenstates of the transfer matrix. If the time differences are chosen sufficiently large, we can restrict ourselves to the lowest
contributing stateiaﬁ,)\}, \ labeling the three degenerate polarization states op ttk@r the first case in Eq28) one obtains

Cle'=2> (0l 7;(p:p)|p:p. A )(p; PN Olpip, A ;P N[ 7(p;p)|0)e !
AN

=2,2 €(p,N) e (PN ){p;p,A|Olp;p, N Yo El=Z,m?T e E, (29
AN

whereT;, is the matrix element between Cartesian states, We therefore arrive at the following relation between the
ratio of a three- to a two-point correlation function and the
expectation value of the corresponding operator, valid for

1 . . A -
TJKZEE (PN s (PN ){p;pNOlp;p, 7). (30  t>7>0:
AN
(mi(p;t,p)O(7) mk(p;0.p))

Z (m(p;t,p) 7 (p;0,p))

In the second case, one finds an additional sign factor Rik

Cig'=(—1)"*"sZ, m?Tje ET-Y, (3D

1 e~ Et

To calculate allCj, components for a given momentum =
would be expensive in computer time. Choosing the momen- 2+E%m? e El4 e ET7Y
tum in the one-direction, we have restricted ourselves to the
componentsCs; and Cg,. If (p;p,+|O|p;p,~)=0 and For T>7>t>0, we get an analogous equation with the ad-
(pip,+10pip, +)=(p:p,—~|Olp:p,—), then ditional sign factor _fror_n Eq(31)_an<_j with t repla_lced by

p:p: PP, s L T—t. Fort=T/2, which is the choice in our numerical work,
Eq. (36) gives

T (36)

(pip,+10lp;p,+)=Ta3, T5=0, (32
R . R R . R 1 1
whereas for(p;p, +|0|p;p, +)=—(p;p,~ |Olp;p,~), Ri= S e 2 1k 37
(pip, +|0lpip,+)=—1Ts, T55=0. (33 The ratio may still depend ondue to contributions from the

higher states neglected in E&9). By searching for plateaus
The latter case is relevant to spin-dependent operators. Ti the r dependence, one can extract the value of the ratio
satisfy with the smallest contamination from higher states.
In the case of ther, there is no polarization, and the
(p;p,+|0|p;p,—)=0, relation (37) reduces to

it is sufficient that the operators commute with rotations in R (7;p|O|;p)

the plane transverse ﬁ) This has also motivated our choice 2
of operators.

The factors that do not depend on the oper&otan be IV. EVALUATION OF THREE-POINT EUNCTIONS ON
eliminated by taking the ratio of E¢27) to another correla- THE LATTICE

tor, e.g., the two-point correlator

(39

The actual form of the three-point correlator is given by

_ IRTEECU P - / -
C(U-; (ﬂJ(P,t,p)ﬂ,(P,O,p» (nF(t.p)OG(T)n?,(O,— p)). (39
_ 0l 7:(p:P) 0: DAY p: BN Tl (p: )| 0YeEL Here We»explicitly indicate the flavor matricé‘stF’, and
2 (Ol m,(piP)lpip M) pip N mlpip)|0) G. 7-(t,p) is a meson operator with momentumat time

S A R n o - t:
+(p;p.N7;(p;P)|0)(0| 7k (p;p) | p;p. N ye ET7Y],
(34 PER)= S € P (0T gt 4(X)  (40)

X:Xg=t
Using the relationg26) and (A10), this reduces to
(a color, f flavor, @ Dirac index, with a suitably chosen
C(t)=Z,(2m*+E?)(e” F'4+-e EBT™Y), (35  Dirac matrixI". In the case of the, I'=;, while, for the
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7 I'=1vs. A second meson operator is set at time slice Owhere Jzi’;(z,z’;x) is a matrix that represents the flavor,

with momentum—p, andF’=F'. The operato®(7) has Dirac, and derivative structure of the corresponding local

the general form operatorx can be imagined as the “center of mass” of the
operator while the sum overandz’ represents the deriva-

O%( )= G 02 (2)328(2.2' % b, 7). (41 tive structure.
n X,z,zr%FT 11072 Jag Vg2 4y Inserting these definitions, the correlation function is

(7E(t,p)O%(7) 7,(0,~ p))

=Vs > X X e PYRF! G gl L (02,2 ) YRV (V) UR (D) U {2 ) B o (0) 82 5, (0)),

XXg=T YY4=t 7,7/

(42)
|
whereV; is the volume of a time slice. wheres,s’,s;= *+1, and Eq.(49) is valid only if the corre-
We integrate out the fermion fields in the quenched apsponding operator is suitably symmetrized in its space-time
proximation and define indices. For ther, I'=T""= v and thuss=s’'=1, while,

forthep, I', I'" €{vy1,75,v3} ands=s’=—1. Then the cor-
<‘//?a(X)E?rB(Y)>fermions: 5ff’Gz%(U|ny)r (43) relation function reduces to

whereG(U|x,y) is the fermion propagator in the gauge field Ve DS e PY[(rFGF)M(x,Y)
configurationU (the U dependence will be indicated explic- XiXg=T yiy4=t

ity only when needed and the average is over fermion

fields. There are six different contraction terms. In four of +sS's;(trF'GF)M(X,y)*], (49

them, two operators at the same location are contracted., o i ]

These fermion-line-disconnected contributions are proporith the basic single-flavor correlation function
tional to tF, trF’, and t&G and vanish if these matrices are

chosen traceless. However, this is in ger_1er_al impossible forM(X,y)ZE (troc'G(y,2)3(2,2';x)G(2' ,0)T'G(0y))
trG, as we shall see below, and the omission of the corre- 2,7’

sponding contraction must be regarded an approximation, (50
which is, however, consistent with quenching. We use thi . . . .
approximation for the same reason we use quenching: It i qte that the cqlculatl_on of this quant_lty on th_e lattice re-
very hard to go beyond it. The remaining two terms are thdluires only two inversions of the fermion matrix, one at 0

fermion-line-connected contributions and one ay or z. . . . .
Using the charge conjugation matrix, defined by

-V; > > X eii';&((trFGF')trDc Yu=—C .G, (5)

XXg=T Yy4=t 7,7/

X[I'G(y,z)J(z,2';x)G(z',00I''G(0y)]

g-

and the relations

— * T~—-1
+(IrF' GF)trp [T G(y, 01 G(02) G(UxY)=CEUTly.x) C (52
XJ(2,2';%)G(2',Y) g, (44) Cr'ci=or, (53)
where the traces are over Dirac and color indices, and the Cr''ct=o'T’, (54)
average is over the gauge field alone. ) — ’
The two terms can be related to each other by means of CI(U*|z',z;x)'C™ *=03I(U|z,2";x) (55)

the relations -
(where we explicitly denoted the dependenceJobn the

G(x,y) = y5G(y,X) ¥s, (45) 9auge field, with o,0',0,==1, one can further show that
ol =Sy, 46 M(X,y)* =o' ;55 5;M(X,y). (56)
We choose traceless matrices forandF’,
ys['=s'T"Tys, (47)
0 1 . (00
¥sd(2,2' %) ys=5,0(2' ,Z:), (48) F:(o o F :(1 o)’ 7
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and therefore TABLE I. = andp masses in lattice units.
trtF'GF=Gy,, tUFGF' =G,,. (58 k=0.1515 k=0.153 «=0.155 «k=k,=0.15717(3)
We finally arrive at the following expression relating the = 0.50334)  0.422%4)  0.29685) 0
propagatorsvl (x,y) to the three-point correlation function: p  0.56827) 0.50588) 0.422715) 0.3285)

(ni(t,p)O°(7) 1., (0,~p)) .
corresponding renormaliz€th the MSschemg operators in
_ —ip-y the Euclidean continuum. For the renormalization sgaiee
= ValGut UJGZZ)X:%‘LT y:%‘;t © Mxy). (89 choose the inverse lattice spaciag®. Taking the physical
p mass of 770 MeV as input, we obtain from the lattice
For an operator wit derivativeso; is (—1)"*"s**, where  masses extrapolated to the chiral limit the value: 2.4
ng=1 if the operator contains 5 matrix, ns=0 otherwise. GeV.

Thus, for oddn+ns, G must not be traceless.
The analogous expression for the two-point correlation VI. RESULTS
function reads
We have collected more than 500 independent configura-
(7H(tP) 7} (0-)) tions on a 3% 16° lattice at4="6.0 with Wilson fermions
andr=1. Three different hopping parameteks=0.1515,
0.153, and 0.155 were used. They correspond to quark
masses of roughly 190, 130, and 70 MeV, respectively. As in
[2], each gauge update consisted of a single 3-hit Metropolis
sweep followed by 16 overrelation sweeps. This cycle is re-
peated 50 times to generate a new configuration. The code
Equations(36) and (38) relate the numerically comput- Was run on a Quadrics QH2 data-parallel computer. For com-
able ratiosR;; andR to expectation values of Euclidean lat- Pleteness, the smearing technique — Jacobi smearing — we
tice operators. To connect them with the corresponding condse to improve the overlap of the operator with the state is
tinuum Minkowski-space operators, we first introduce thedescribed in Appendix C.
continuum matrix element of the renormalized Euclidean op- Tr?e cellclpulatitpnaltﬁro;]edure is ?? follg(\;(vr%)\/\fle callculate in
Acont ; each configuration the three-point functi or a large
eratorO, " by the relation set of operators as well as theand p two-point functions.
o 1 1 o In Appendix B we list the operators we have actually stud-
Zo(p\|O|pA\)= — —Con‘<px|of°“'1 5)\>°°”t (61 ied. Those withoutys are labeled by the pion moments
2E(p) 2K one can compute from them. The expectation value of such
an operatorCA)Un in the p is a linear combination o&, and

d,. The operators withys are labeled by the corresponding
p matrix elements,,.
<§)\|5f)\f>:55’5,5)\’)\, U§ing two values of the momentum, name@,z(0,0,0)
andp=(27/16,0,0), we can check the continuum dispersion
00m<5)\|5')\'>60m:(27)325(5)5M,5(5_5'), (62)  relation of the one-particle energies extracted from the two-
point function. It is satisfied to better than 1%, and even for
and 2 comes from the definition of the Wilson fermion nonzero momentum we have a good projection on the
action on the latticeZg is the renormalization constant of ground stater andp. The particle masses we have used in
the operato©. our subsequent analysis are taken from Ret]. They are
In the following, we shall use the renormalization con- collected in Table I.
stants calculated in one-loop lattice perturbation theory in the For the computation of the three-point functions, the lo-

= V3 >, e PXtrpeG(x,0T'GO0XT),.  (60)

X:Xgq=t

V. LATTICE AND CONTINUUM OPERATORS

The factor E(p) is a consequence of the different normal-
ization on the lattice and in the continuum,

chiral limit [10]. They can be written in the form cations of the source and the sink are held fixed at 0 and
t=T/2=16. Placing the sink af/2 allows us to search for a
2 . plateau equally well on both sides of the sink. In the case of
Z5=1- @CF[%'n(aMH Bo—Bgl, (63)  thep, we restrict ourselves to the 3-3 and 3-2 components.

For the denominator of the ratios we employed two dif-
dferent procedures: First, we took the actual value of the
eoropagator at midpoint, and second, we fitted the interior 24
points of the propagator to exponential functions and used
the resulting midpoint value. The second case resulted in

where Cr=4/3, g denotes the bare coupling constant, an
u is the renormalization scale. Note that here the lattic
spacinga has been introduced explicitly. The finite contri-
bution By is fixed in the momentum subtraction renormal- somewhat smaller errors at certain valuescoind pt. We

ization scheme, whered83 represents the contribution of quote our results including the uncertainty from the former
the continuum operator in the modified minimal subtractionprocedure. We also tried to use the conserved vector current,
(MS) scheme with an anticommutings. Hence multiplica- as proposed bj], but this did not reduce our error margins.
tion by Zg leads from bare operators on the lattice to the The ratios(36) and (38) are taken as a function of the
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FIG. 1. The ratioR for the operator®,,,, 0,2, O,z at p 0 5 0 15 2 5 % 0 5 10 15 2 2 3
#0, O, and O,, (left to right, top to bottorh for the = at _ A
«x=0.153. The horizontal line is a fit to the central seven points on  FIG. 2. The ratiosRg; and Rs, for the p operatorsO,za,
both sides. O,2p, Oy3, Opay Orqa, @andO, 4y, (left to right, top to bottom at
x=0.153.
operator insertion point, and a fit to the central seven points
on each side that make up the plateau is made. The fullympared with phenomenological valence quark distribu-
covariance matrix is considered in estimating the error, thugons. Note. however. that the quark mass dependence of the
taking correlations between neighboring points into accountegyits is not very pronounced. Only,, shows a significant

(in fact, only about two independent degrees of fre_ed(_)m OUfrend towards smaller values as the chiral limit is approached
of seven survived Some example plots are shown in Figs. 1\yhich is the expected behavior.

and 2. We now come to the results(see Figs. 4 and 5 and

In a feW. cases we _have two op(_arators_ for the same "erable ). By means of Eq5(32), (33), (61), and (B3) we
duced continuum matrix element, distinguished by the sub-

scriptsa andb. O,,, andO,,;, as well asO,,, andO,,},
belong to different representations of the hypercubic group ™
H(4). Hence the results extracted from operadoand op- 051 oo
eratorb have to agree only in the continuum limit where the

full O(4) symmetry is hopefully restored, and a comparison 0.4
of our results obtained for finite lattice spacing gives us some }H -~

indication of the size of lattice artifacts. In the case of the 0-3
operators associated ¥, 1, andr,, we denote the ol 1FTTT TR
results obtained with nonzero momentum by an additional
subscriptp. 0.1 -} e
Applying Egs.(38), (61), (B3), and(B5) we have calcu- 00 B 4ae
lated estimates for the pion momemts from the measured . 2 3
ratios R. The results are summarized in Fig. 3 and in Table K2 Ky Ky x> ==
Il. The agreemen(within errorg of V2a and.v2b indicates FIG. 3. Estimates of ther momentsv,=(x""1) for a single
that — at least in this case — lattice artifacts are not t0Qjayor, For each matrix element, the results from the three different
large. Assuming a linear dependence ok, 1/e., on the bare . values are shown versuskliith « decreasingi.e., with the
quark mass, the values have been extrapolated to the chirgliark mass increasiidgrom left to right. The leftmost value is the
limit «=x.=0.157 173). Since the quark masses in our chiral extrapolation obtained from a linear fit. The dotted lines give
simulation are rather largex{ 70 MeV), we need this ex- the free-field(heavy quark limits. The dashed lines are phenom-
trapolation in order to obtain numbers that can sensibly b&nological valence quark values frd8l, evaluated ap.=2.4 GeV.
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0.6 corresponding results fqr# 0 to calculateaz anda,.
From the matrix elements of the operators wjthwe can
O easily extractry, r,, andrs. The estimates,,, r,4,, and
0.4 rpp for r, agree v_vith_in the e_rrors._Thys also in this case we
i do not observe significant discretization effects.
0.3
............... VII. DISCUSSION
0.2
} {\}—1 _______________ We have calculated the lowest three moments of the
0.1 { } - structure functions of ther and thep meson, restricting
ourselves to the leading twist-2 operators in the operator

0.0 product expansion.

For thes, we can compare our numbers in the chiral limit
with the experimental datg8]. Our result for(x) is larger

2 3
<xX> <X > <X >

0.6 than phenomenology suggests. This is to be expected as our
05 quenched lattice calculation does not contain any sea quarks
’ and the valence quarks will therefore carry more of the mo-

0.4 mentum. The results fgx?) and(x®), on the other hand, are
03 consistent with the phenomenological numbers. Our results
also agree with the early lattice calculations of Martinelli and
0.2 Sachrajda[1] as well as with various model calculations
0.1 [12].
T I The unpolarizeg structure function looks very similar to
0.0 53— 1 3= the 7 structure function, at least for the quark masses that we
0.1 have considered. In the the quarks carry about 60% of the
d2 d3 d4 total momentum, while in the they carry about 70% at the

smallest quark mass. The higher moments are in agreement
with each other within the error bars. Thus the assumption
F{(x)~F7(x) often used in phenomenological estimates
may well be justified.

The lowest moment, of the polarized structure function
g, indicates that the valence quarks carry about 60% of the
total spin of thep. For comparison, a similar quenched cal-
culation for the nucleon gave a quark spin fraction of about
the same valu¢2], which is reduced to 18% by sea quark
contributions[13]. It is very likely that the same will also
happen here.

The structure functionb; andb, measure the difference

FIG. 4. Estimates for thp momentsa,=(x""1) andd,,. The
presentation of the data is the same as in Fig. 3.

pass from the ratio§37) to matrix elements whose relation
to a,, d,, andr, is listed in Eq.(B6). The extrapolation to
the chiral limit is performed as for the. In the case of the
operators withoutys, i.e., those labeled by,,, we encounter
the problem that instead of one number,) we have to
extract the two quantities, and d, from the matrix ele-
ments.

Therefore we proceed as follows: The expectation value?n quark distributions of dspin projectefim=1 andm=0

of O,z at p=0 gives us directlya,, andd, can then be |, meson. If the quarks were in a relatisavave state in the
calculated fromD,, , andO,,, at nonvanishing momentum. infinite momentum frame, we would expdzt andb, to be

The expectation values @,; andO,,, on the other hand, zero. The lowest momerd, turns out to be positive and
are proportional tods and d,, respectively, ifp=0. With surprisingly large on the scale af, albeit with large statis-

d; andd, computed from these matrix elements we use thdical errors. Perhaps this indicates that the valence quarks
have a substantial orbital angular momentum. This could

12 also explain a relatively small quark spin fraction.
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rla b ©2b 3 APPENDIX A: CONVENTIONS

The Minkowski space metric has the signature
FIG. 5. Estimates for the moments ,. The presentation of the (1,—1,—1,—1). Minkowski and Euclidean components are
data is the same as in Fig. 3. related by
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TABLE Il. Result overview for a single flavor. The numbers refer to the 8¢8eme with a renormal-
ization scaleu~2.4 GeV. The last column gives the result of the extrapolation to the chiral limit.

x=0.1515 xk=0.153 xk=0.155 k=k.=0.15717

T

V2a=(X)a 0.30120) 0.29428) 0.29071) 0.27983)
V2p={(X)p 0.323970) 0.315Q71) 0.291G75) 0.27312
v2,bp:<x>bp 0.31923) 0.31633) 0.32584) 0.31899)
v3=(x?) 0.122283) 0.11612) 0.11731) 0.10735)
v4=(x%) 0.061945) 0.058065) 0.05418) 0.04820)
p

a,=(x) 0.355580) 0.353193) 0.34014) 0.33421)
az=(x% 0.139893) 0.14414) 0.18249 0.17447)
a,=(x% 0.072572) 0.06912) 0.07441) 0.06639)
d, 0.10752) 0.12875) 0.2920) 0.2923
d; 0.014532 0.0135%49) —0.00214) 0.001(15)
dy4 0.0109100 0.00417) 0.00762) —0.009598)
Ma 0.70956) 0.71597) 0.4234) 0.5732)
lp 0.72117) 0.70220) 0.627132) 0.59046)
l1pp 0.68056) 0.6213 0.3244) 0.3342
(P 0.274362) 0.263170) 0.23112) 0.21217)
M2ap 0.25717) 0.24325) 0.21669) 0.19876)
lop 0.24220) 0.23230) 0.21089) 0.19995
rs 0.106771) 0.09911) 0.087133) 0.077134)

xa=ixMO=ixM  x=xMi=—xM (A1) ) m
e.=+—(0,1=xi), (A8)
wherej refers to spatial indices. Unless explicitly mentioned, V2

we label Minkowski-space variables by al{.

Covariant derivatives are defined in Minkowski space as éozm(l,0,0). (A9)
DMk = 5(Mu_jgAMIK (A2)  They satisfy the completeness relation
and are related to their Euclidean counterparts as
E(M)** Mg M=m?| s 1
iDMO=_p, iDMi=—iD,; (A3) < €i (P,N) g (p,A)=m ij+ﬁpipj .
A10
similarly, for the y matrices, (A10)
o i - 5N = eMi(p
Y MO~ 7,(M),:Wj_ (A4) Note that in Euclidean spaag(p,\)=¢€""(p,\).
The ys matrix is defined as APPENDIX B: OPERATORS
M) =iy (M0, (M1 (M)2,,(M)3 On the lattice, the choice of the operators to look at is a
nontrivial matter, because the discretization reduces the sym-
75=71727374=—7(5M)- (A5) metry group of(Euclidean space-time fromO(4) to the

hypercubic grouH(4)CO(4). Hence the lattice operators
The momentum of the particles is chosen in the onehave to be classified according té(4) and one should

direction, p=(p,0,0). Polarization vectors for vector par- choose operators belonging to a definite irreducible represen-

ticles satisfy tation of H(4). SinceH(4) is a finite group, the restrictions
imposed by symmetry are less stringent than in the con-
p(M“‘e(MM)(ﬁ,)\):O, e(MW(ﬁ,)\)eLM)(ﬁ,)\’):—mzb‘w tinuum and the possibilities for mixing increase. Whereas

(A6)  mixing with operators of the same dimension is supposed to

be treatable by perturbation theory, the mixing coefficients

(A==,0) and have the explicit form for lower-dimensional operators have to be calculated non-
perturbatively. Hence one would like to avoid mixing with

lower-dimensional operators whenever possible. On the

other hand, as the spin grows, operators with no mixing at all

require more and more nonvanishing momentum compo-
with the basis vectors nents in the calculation of their forward hadronic matrix el-

p-e - p-e\

Mg \)= !
€PN m &t m(erE)p :

(A7)
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TABLE IIl. Renormalization constantg. Our analysis ignores mixing completely. This seems to be
N - well justified forf)v3. Here a perturbative calculation gives a
OperatorO 25 rather small mixing coefficient for one of the mixing opera-
O 0.989196 tors, whereas the other candidate for mixing does not appear

at all in a one-loop calculation, because its Born term van-

Ou2p 0.978369 ishes in forward matrix elements. The same is true for all
0,3 1.102397 operators of dimension less than or equal to 6 which trans-
O,a 1.229911 form identically toO, ,: Their Born term vanishes in forward
Or1ar Or1p 0.866625 matrix elements, and hence they do not show up in a one-
Orza 0.997086 loop calculation. In the case &,5, however, the mixing is
Orz,b 0.998587 already visible at the one-loqp level. _The results zfQ_rand

Ors 1.108573 r; have therefore to be considered with some caution.

The corresponding Minkowski operators are found by ap-
plying Eq. (23). Defining the Minkowski analogues of our

ements, which makes their Monte Carlo evaluation increasEuclidean operators by

ingly difficult. So some kind of compromise is needed. N A ) . A (M) (M)
As a result of our use of the quenched approximation, ©v2a=10,2a:  Ou2p="042p, Ou3=—0,3",

purely gluonic operators cannot mix with two-quark opera- R R R R R R

tors and we may restrict ourselves to the latter. Guided by ~ 0,,=0%, O,1,=—0), 0,1,=i0!}},

their H(4) classification given in Ref.9] we have chosen

the following operators in Euclidean space: O2a= —iéﬁ“z’[;, érz,féﬁ%, 0,:=0M (B3)
évz,a: 6{41}, we have
©v2,b:©44_ 3011+ Ot C333): éi“é'zl: oMoy
0,3= 0114~ 3(O204+ Oj334), Oy =004 3 (O OM224 GMISS)

0,4=Oy1123+ Oz3ag + Oja133 Ol =0M1Ha — 3(OM1220+ QI

+ 042244~ 201144 = 2012233 OM) = — B(M){1123 4 (M)[3300 _ ¢y(M)(1133
Or1a=0%, 0,1p=0%, O20=0%, +OM(2208 _ p(M)(1100 4 p(y(M)(2233,
Oy20= 0%~ §(0%+ 05+ 05, O=04"", Ofiy=00",  O[=0Le,
Ora= 0114~ 3(Or04 + Ofzag)- (B1) O = 08"+ (O 11+ O 22+ O,
Foruv, andr, we hav_e two oper_ators, vyhi_ch belong to the (")(rgll):(")gM){llo}_%((")'(E’M){22q+égM){330}). (B4)
sameO(4) multiplet in the continuum limit but transform
according to inequivalent representations tdf4). Hence We can now use Eq€13), (14), and(15) to calculate the

their matrix elements provide a test for the restoration Ofgypectation values of the Minkowski space operators. For the
0O(4) symmetry. The renormalization constants for these OP7, one obtains, witp2=p3=0,

erators in the MScheme are listed in Table III.
Concerning the mixing properties a few remarks are in <Of,'\£',;>=2v2pop1, <o£“2{"l>)>:202[(p0)2+%(pl)Z],

order. Mixing with operators of equal or lower dimension is

t?xcluded f9r the operator®,,,, O,zp, AOrlya, Or1p, (OMY=2p,(p1)2p°,  (OM)y= — 4y ,(ph)%(p°)2.

Or24, andO,,p,. The case of the operat@,s, for which (B5)

there are two further operators with the same dimension and . o _

the same transformation behavior, is discussed in [@adf.  For thep with polarization\ =+, one finds

The operator®, , andO, 3, on the other hand, could in prin- . M (M

ciple mix not only with operators of the same dimension but (090 =2(a,—3d)p%", (OFp)=2(a,— 5d,)[(p°)?

also with an operator of one dimension less and different

chiral properties. It is of the type

+35(pH%+3m?dy,  (O[3})p1-0=2a,m7,
%Mv)/SSﬂlS,uz' o Sﬂnl/l, (BZ) <©§1,\él)> = 2(33_% 3)(p1)2 0— %m2d3p01

wheren=2 in the case 0f,,, andn=1 for O, 5. (O =—4(ay—3d,)(pH)*(p%) %+ 3m*d,,
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(O ==2r,pt, (OW)y==+2rp° S'SGIA(X,t;Xo, to)
(O30 =£ral(p%%+(pH?],  (Of3h)==5rp%pt, =S SHA (X,9:U, )G (Y 1o o).
y
(OW)==5r5p [ (pH2+2(p°)2]. (B6) (C9)

APPENDIX C: SMEARING Note that this step can be expensiwe CPU time in com-

The method we use for smearing is to smear the quark iparison to Eq(C7) as we must smear on evexy=t plane.
a planex,=t [14]: Practically we shall use Jacobi smearitas advocated
mainly by[15]). This is given by

PR (X0 =2 SHEGY U DR, (v, (CD)
y
ot +\Ser v/ _ o

where the kerngH is chosen to have the correct gauge trans- g‘ KOGEXT)ZS(X, 1) = So(x, 1), (C10
formation properties and is diagonal in spin spa8és the
smearing label. So, for example, for no smearing
S=L=local; then, "H3%(x,y;U,t)=6%s;;. SH is also whereS, is the original point source. Here
taken as Hermitian:

SHPa(y,x;U,t)* =SH3%(x,y; U, t). (C2) K=1-kDs (C1))

Also the smeared antiquark is defined as
andDg is a covariant derivative in the,=t plane, viz.,

SR =2 YRy, OHS (Y. XU, (C3
Y 3
Note that we can choose different smearing for the quark and D2os(X,tiy, 1) = 5aﬁi21 [U2P(X,1) 8gs 1y
antiquark. Thus for a smeared meson operator we have -
o +U(x—1,1)8;-75].  (C12
SSp(t,p) =2 Fre P Y (O %7 4(X, ),
X

(C4  Hence we neet =K. Rather than performing this inver-

: . . . sion completely we Jacobi iteralé; times, and so
with the appropriate correlation function

CS,S(LF;;IO):(S,S’ W(t,ﬁ)ss”](th_ﬁ))a (CS) SS(n)()'(),t):SO()Z,t)_i_KSDSSS(nfl)()_(),t), n:1,2,

so thatS andS’ are smearing at the source and sink, respec- (C13
tively.
The smeared quark propagator is defined b - -
a propag y with SSO(x,t)=Sy(x,t).
’ i ’ ) H
s SGL"};b(x,y,U)éffF(S 2 (x)S f,B(y»fermionS (C6) We thus have two parameteks and N_S at our dl;posal. _
ks controls the coarseness of the iteration, while increasing

(‘.G=G). So in meson correlation functions we can simply Ns increases the size of the smeared object roughly like a
. g's . random walk. Physically we wish to smear until our source is
replaceG with > >G to allow for smearing.

. about the size of the meson. A suitable measure ofriing)
The smeared quark propagators are found sequentially. ~_ -~ " =~ °
) radius is given by
Generate the smeared soure® from a point source at
(Xo.to) and so, WithS},,(xt) = 85 8, %%

aao’
TR v S oSt en t |2
Sslzzo(x,t;xo,to)=SHaaO(x,x0;U,t)5n05w0. (C7) g (X=X0)*[S(X,0; X0, o) |
r= S 5 . (C14
Find 3G, by solvingMSG=S5S. We thus have °S(X,to; X0, to)|

LS~fab, o +. 2 _ fab’ /2 +.0 + \Syb’b/\ o . ..
Gaﬁ(x,t,xo,to)—%} Gap (X1Y,to)"H 2y, X0 U, o). [Note that on a periodic latticex(- xo)? is taken as the mini-
(C8  mum distance fronx to x.] Explicitly for 3=6.0 we have
, , chosenk,=0.21,N,=50. This givesra of about 3.2<0.5
From “SG we generate® SG by applying S H: fm which corresponds roughly to the hadron radius.
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