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We calculate the lower moments of the deep-inelastic structure functions of thep and ther meson on the
lattice. Of particular interest to us are the spin-dependent structure functions of ther. The calculations are done
with Wilson fermions and for three values of the quark mass, so that we can perform an extrapolation to the
chiral limit. @S0556-2821~97!04315-4#

PACS number~s!: 12.38.Gc, 13.88.1e, 14.40.Aq, 14.40.Cs

I. INTRODUCTION

The deep-inelastic structure functions of nucleons and
mesons are currently receiving a lot of attention, both experi-
mentally and theoretically. It has become possible to com-
pute these structure functions from first principles within the
framework of lattice QCD@1,2#. This allows a quantitative
test of QCD which goes beyond perturbation theory. The
basis of the calculation is the operator product expansion
which relates the moments of the structure functions to for-
ward hadron matrix elements of certain local operators. Lat-
tice simulations of these matrix elements, combined with an
appropriate calculation of the Wilson coefficients, can in
principle provide complete information of the quark and glu-
onic structure of the hadronic states. The aim of this paper is
to compute the structure functions of thep and ther meson.
Following @2# we use Wilson fermions and work in the
quenched approximation, where internal quark loops are ne-
glected.

The pion structure function, which so far was extracted
from measurements of the Drell-Yan lepton-pair production
cross section@3#, is directly being measured at the DESYep
collider HERA at present@4#, and we expect that new data
will become available soon. Using the techniques described
in @5,6#, it should in principle be possible to measure the
structure functions of ther as well in the near future. Some
of the spin-dependent structure functions, in particular,
should be easy to separate from the dominant pion exchange
process.

But even without having any experimental data to com-
pare with, the internal structure of ther meson is an inter-
esting subject to study on the lattice. In addition to the struc-
ture functions already known from the nucleon, one finds
new structure functions that contain qualitatively new infor-
mation which has no analogue in the case of spin-1

2 targets
@7#. We hope that this investigation will lead to a better un-
derstanding of quark binding effects in hadrons.

The structure functions of ther are also of interest for the

interpretation of photoproduction and two-photon inclusive
cross sections, as the photon has a substantial hadronic com-
ponent which to a good approximation can be described by
the r meson.

For a spin-0 target like thep, the kinematical framework
is simpler than in the familiar nucleon case. The details for
the case of a polarized spin-1 particle have been worked out
by Hoodbhoyet al. @7#. The hadronic tensor, i.e., the imagi-
nary part of the forward current-hadron scattering amplitude,

Wmn~p,q,l,l8!5
1

4pE d4xeiq•x^p,l8u@ j m~x!, j n~0!#up,l&

~1!

~with l, l8 labeling the polarization!, decomposes into eight
structure functions:

Wmn52F1gmn1F2

pmpn

n
2b1r mn1

1
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b2~smn1tmn1umn!

1
1

2
b3~smn2umn!1

1

2
b4~smn2tmn!1 i

g1

n
emnlsqlss

1 i
g2

n2
emnlsql~p•qss2s•qps!, ~2!

wheren5p•q, andr mn , smn , tmn , umn are kinematical ten-
sors@7# constructed from the momentum transferq and the
polarization vectore. The latter satisfiese•p50, e252m2,
and

ss5
2 i

m2
esabtea* ebpt , ~3!

with m being the hadron mass. Hereemnls is the completely
antisymmetric tensor withe0123521.

The structure functionsF1, F2, g1, andg2 play the same
role as for a spin-12 target. In the parton model, the structure

PHYSICAL REVIEW D 1 SEPTEMBER 1997VOLUME 56, NUMBER 5

560556-2821/97/56~5!/2743~12!/$10.00 2743 © 1997 The American Physical Society



of the hadron can be described by the probabilityq↑
m(x)

@q↓
m(x)# of finding a quark with momentum fractionx and

spin up@down# along the direction of motion when the had-
ron is moving with infinite momentum and has spin projec-
tion m50,61. Symmetry implies

q↑
1~x!5q↓

21~x!, q↓
1~x!5q↑

21~x!, q↑
0~x!5q↓

0~x!,
~4!

and so there remain only three independent parton distribu-
tion functionsq↑

1(x), q↓
1(x), andq↑

0(x). In leading order, the
single-flavor structure functionF1

(q)(x) is one-half of the
probability to find a quarkq with momentum fractionx, and
F2

(q)(x) obeys the Callan-Gross relation

F1
~q!~x!5 1

3 @q↑
1~x!1q↓

1~x!1q↑
0~x!#,

F2
~q!~x!52xF1

~q!~x!. ~5!

In the complete structure function,F1
(q)(x) is weighted by

the electric chargeQq of the quarks:

F1~x!5(
q

Qq
2F1

~q!~x!. ~6!

In the following, we will only specify single-flavor structure
functions and omit the superscript (q). For the mesons under
consideration, the structure functions are identical for both
flavors. The polarized structure functiong1(x) gives the
fraction of spin carried by quarks:

g1~x!5 1
2 @q↑

1~x!2q↓
1~x!#. ~7!

The structure functiong2(x) does not have a parton model
interpretation.

The structure functionsb1(x), b2(x), b3(x), and b4(x)
are particular to spin-1 targets as the kinematical factors in
Eq. ~2! involve the target polarization vector to second order,
a feature that does not occur for spin-1

2 targets. In parton
model languageb1(x) and b2(x) depend on the quark-spin
averaged distributionsqm51/2(q↑

m1q↓
m) only:

b1~x!5q0~x!2q1~x!, ~8!

b2~x!52xb1~x!. ~9!

Thusb1(x) andb2(x) measure the difference in parton dis-
tributions of anm51 and m50 target. This difference is
due to the fact that in quantum field theory any Lorentz boost
changes the particle content of a state. These changes differ
for different spin orientations relative to the boost direction.
For a model discussion ofb1, see, e.g.,@8#.

The paper is organized as follows. In Sec. II we recall
some results from the operator product expansion concerning
the relevant operators and their matrix elements. Section III
describes the method we use to extract matrix elements from
three-point functions. The lattice implementation of this
method is discussed in Sec. IV. Section V is devoted to
questions of normalization and renormalization. In Sec. VI
we discuss our results, and Sec. VII presents our conclusions.
Appendix A contains our conventions, and Appendixes B

and C describe some technicalities. The reader who is not
interested in the computational details may skip Secs. III and
IV.

II. OPERATORS AND MOMENTS OF THE STRUCTURE
FUNCTIONS

The moments of structure functions can be related to the
reduced matrix elements of certain local operators between
p or r states. The local operators we consider are built from
g matrices and covariant derivatives and have the general
form, in Minkowski space,

Ô~M !m1•••mn5
1

2n21
Gf f 8c̄ fg

m1iDJ m2
••• iDJ mnc f 8, ~10!

Ô5
~M !m1•••mn5

1

2n21
Gf f 8c̄ fg

m1g5iDJ m2
••• iDJ mnc f 8,

~11!

where c is the quark field, andGf f 8 is a suitably chosen
diagonal flavor matrix. The symmetrized derivative operators

DJ are defined as

DJ5DW 2DQ . ~12!

For a spin-0 particle, the momentum vectorp is the only
quantity the matrix element can depend on, and the reduced
matrix elementvn is defined by

^pW uÔ~M !$m1•••mn%2tracesupW &52vn@pm1
•••pmn2traces#.

~13!

The notation$m1•••mn% denotes symmetrization in the indi-
cesm1, m2, . . . ,mn . Expectation values of operators involv-
ing the g5 matrix vanish from symmetry considerations as
the p is a pseudoscalar particle.

For a spin-1 particle, the structure of the matrix elements
is more complicated due to the polarization degrees of free-
dom. Now both types of operators contribute:1

^p,luÔ~M !$m1 . . . mn%2tracesup,l&

52S$anpm1
•••pmn1dn@e* m1~pW ,l!em2~pW ,l!

2 1
3 pm1pm2#pm3

•••pmn%, ~14!

^p,luÔ5
~M !$m1•••mn%

2tracesup,l&

5
2i

m2
S@r nerstm1er* ~pW ,l!es~pW ,l!ptp

m2
•••pmn#.

~15!

S denotes symmetrization in the indicesm1, . . . , mn and
removal of traces. The reduced matrix elements arean for
the polarization-averaged contribution,dn for the polarized
contributions, andr n for the operators involvingg5.

1Note that we have corrected in Eq.~15! a misprint in@7#.
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By performing an operator product expansion of Eq.~1!,
reduced matrix elements of local operators can be related to
moments of the structure functions. We define thenth mo-
ment of a functionf (x) as

Mn~ f !5E
0

1

xn21f ~x!dx. ~16!

One then finds to leading order, which is twist 2, the follow-
ing representation of the moments of the pion structure func-
tions:

2Mn~F1!5Cn
~1!vn , Mn21~F2!5Cn

~2!vn ; ~17!

for the r structure functions, one obtains@7#

2Mn~F1!5Cn
~1!an ,

Mn21~F2!5Cn
~2!an ,

2Mn~b1!5Cn
~1!dn ,

Mn21~b2!5Cn
~2!dn ,

2Mn~g1!5Cn
~3!r n , ~18!

where Cn
(k)511O(as) are the Wilson coefficients of the

operator product expansion. These relations hold for even
n, except for the last one, which is valid for oddn. However,
since we are calculating in the quenched approximation, we
are allowed to make use of these formulas for alln, keeping
in mind that our results can be meaningfully compared only
with the nonsinglet valence quark distribution.

In the case of thep, the moments of the quark distribu-
tion are given by

^xn21&5vn , ~19!

while for ther they are related to the matrix elementsan :

^xn21&5an . ~20!

III. THREE-POINT FUNCTIONS AND MATRIX
ELEMENTS

In order to calculate the reduced matrix elements on the
lattice, we must calculate the expectation values of local op-
erators of the form~10! and ~11!. To this end, we first need
the connection between the Minkowski operators and those
in Euclidean space. Defining Euclidean operators by

Ôm1•••mn

~E! 5Gf f 8

1

2n21
c̄ fgm1

~E!DJ m2

~E!
•••DJ mn

~E!c f 8, ~21!

Ôm1•••mn

~E!5 5Gf f 8

1

2n21
c̄ fgm1

~E!g5DJ m2

~E!
•••DJ mn

~E!c f 8, ~22!

we obtain the following relation to the operators in
Minkowski space:

Ô~M !m1•••mn5~2 !~2 !n41n5~2 i !n123Ôm1•••mn

~E! , ~23!

wheren4 is the number of timelike indices,n123 the number
of spatial indices, andn551 if the operator carries ag5
matrix. For our Euclidean conventions, see Appendix A.

Lattice operators with the appropriate continuum behavior
can be constructed from the Wilson fermion fields by con-
sidering their symmetry properties under the hypercubic
group H(4) @9#. The operators we have chosen and their
relation to the reduced matrix elements are listed in Appen-
dix B.

The required expectation values of our operators are ex-
tracted from ratios of two- and three-point functions. The
three-point functions we consider are of the general form

^h~ t,pW !O~t!h†~0,pW !&, ~24!

whereh(t,pW ) is the sink operator for a particle moving with
momentumpW in time slicet, andh†(0,pW ) is the correspond-
ing source at time slicet50. These operators are required to
have the correct symmetry properties for the particles in
question and their corresponding Hilbert space operators
ĥ(pW ) should create the desired particles from the vacuum
with nonzero amplitude.O(t) represents the operatorÔ
whose expectation value is to be calculated.

For thep we write

^0uĥ~p;pW !up;pW &5AZp, ~25!

while for the r there are three different particle states and
correspondingly three different operators arranged in a vec-
tor h i(r;t,pW ) that satisfy

^0uĥ j~r;pW !ur;pW ,l&5AZre j~pW ,l! ~26!

up to lattice artifacts~see Appendix A for the definition of
the polarization vectorse i). The correlation function for the
r depends on the polarization vectors:

Cjk5^h j~r;t,pW !O~t!hk
†~r;0,pW !&. ~27!

In order to relate Eq.~27! to the matrix elements we are
interested in, we express this correlation function in terms of
traces involving the transfer matrixŜ:

^h j~r;t,pW !O~t!hk
†~r;0,pW !&5H tr@ŜT2tĥ j~r;pW !Ŝt2tÔŜtĥk

†~r;pW !#, T>t>t>0,

tr@ŜT2tÔŜt2tĥ j~r;pW !Ŝtĥk
†~r;pW !#, T>t>t>0.

~28!

HereT denotes the time extent of our lattice whose spacing is put equal to 1. Then we insert a complete set of orthonormal
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eigenstates of the transfer matrix. If the time differences are chosen sufficiently large, we can restrict ourselves to the lowest
contributing statesupW ,l&, l labeling the three degenerate polarization states of ther. For the first case in Eq.~28! one obtains

Cjk
~1!5(

ll8
^0uĥ j~r;pW !ur;pW ,l&^r;pW ,luÔur;pW ,l8&^r;pW ,l8uĥk~r;pW !u0&e2Et

5Zr(
ll8

e j~pW ,l!ek* ~pW ,l8!^r;pW ,luÔur;pW ,l8&e2Et5Zrm2Tjke2Et, ~29!

whereTjk is the matrix element between Cartesian states,

Tjk5
1

m2(
ll8

e j~pW ,l!ek* ~pW ,l8!^r;pW ,luÔur;pW ,l8&. ~30!

In the second case, one finds an additional sign factor

Cjk
~2!5~21!n41n5Zrm2Tjke2E~T2t !. ~31!

To calculate allCjk components for a given momentum
would be expensive in computer time. Choosing the momen-
tum in the one-direction, we have restricted ourselves to the
componentsC33 and C32. If ^r;pW ,1uÔur;pW ,2&50 and

^r;pW ,1uÔur;pW ,1&5^r;pW ,2uÔur;pW ,2&, then

^r;pW ,1uÔur;pW ,1&5T33, T3250, ~32!

whereas for̂ r;pW ,1uÔur;pW ,1&52^r;pW ,2uÔur;pW ,2&,

^r;pW ,1uÔur;pW ,1&52 iT32, T3350. ~33!

The latter case is relevant to spin-dependent operators. To
satisfy

^r;pW ,1uÔur;pW ,2&50,

it is sufficient that the operators commute with rotations in
the plane transverse topW . This has also motivated our choice
of operators.

The factors that do not depend on the operatorÔ can be
eliminated by taking the ratio of Eq.~27! to another correla-
tor, e.g., the two-point correlator

C~ t !5(
j

^h j~r;t,pW !h j
†~r;0,pW !&

5(
l

@^0uĥ j~r;pW !ur;pW ,l&^r;pW ,luĥk
†~r;pW !u0&e2Et

1^r;pW ,luĥ j~r;pW !u0&^0uĥk
†~r;pW !ur;pW ,l&e2E~T2t !#.

~34!

Using the relations~26! and ~A10!, this reduces to

C~ t !5Zr~2m21E2!~e2Et1e2E~T2t !!. ~35!

We therefore arrive at the following relation between the
ratio of a three- to a two-point correlation function and the
expectation value of the corresponding operator, valid for
t@t@0:

Rjk5
^h j~r;t,pW !O~t!hk

†~r;0,pW !&

(
l

^h l~r;t,pW !h l
†~r;0,pW !&

5
1

21E2/m2

e2Et

e2Et1e2E~T2t !
Tjk . ~36!

For T@t@t@0, we get an analogous equation with the ad-
ditional sign factor from Eq.~31! and with t replaced by
T2t. For t5T/2, which is the choice in our numerical work,
Eq. ~36! gives

Rjk5
1

21E2/m2

1

2
Tjk . ~37!

The ratio may still depend ont due to contributions from the
higher states neglected in Eq.~29!. By searching for plateaus
in the t dependence, one can extract the value of the ratio
with the smallest contamination from higher states.

In the case of thep, there is no polarization, and the
relation ~37! reduces to

R5
^p;pW uÔup;pW &

2
. ~38!

IV. EVALUATION OF THREE-POINT FUNCTIONS ON
THE LATTICE

The actual form of the three-point correlator is given by

^hG
F~ t,pW !OG~t!hG8

F8~0,2pW !&. ~39!

Here we explicitly indicate the flavor matricesF, F8, and
G. hG

F(t,pW ) is a meson operator with momentumpW at time
t:

hG
F~ t,pW !5 (

x:x45t
e2 ipW •xWF f f 8c̄ f a

a ~x!Gabc f 8b
a

~x! ~40!

(a color, f flavor, a Dirac index!, with a suitably chosen
Dirac matrixG. In the case of ther, G5g j , while, for the
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p G5g5. A second meson operator is set at time slice 0
with momentum2pW , andF85F†. The operatorOG(t) has
the general form

OG~t!5 (
x,z,z8:x45t

Gf f 8c̄ f a
a ~z!Jab

ab ~z,z8;x!c f 8b
b

~z8!, ~41!

where Jab
ab (z,z8;x) is a matrix that represents the flavor,

Dirac, and derivative structure of the corresponding local
operator.x can be imagined as the ‘‘center of mass’’ of the
operator while the sum overz andz8 represents the deriva-
tive structure.

Inserting these definitions, the correlation function is

^hG
F~ t,pW !OG~t!hG8

F8~0,2pW !&

5V3 (
x:x45t

(
y:y45t

(
z,z8

e2 i ~pW •yW !F f gF f 8g8
8 Ghh8GabGa8b8

8 ^Jgd
bc~z,z8;x!c̄ f a

a ~y!cgb
a ~y!c̄hg

b ~z!ch8d
c

~z8!c̄ f 8a8
a8 ~0!cg8b8

a8 ~0!&,

~42!

whereV3 is the volume of a time slice.
We integrate out the fermion fields in the quenched ap-

proximation and define

^c f a
a ~x!c̄ f 8b

b
~y!& fermions5d f f 8Gab

ab ~Uux,y!, ~43!

whereG(Uux,y) is the fermion propagator in the gauge field
configurationU ~theU dependence will be indicated explic-
itly only when needed!, and the average is over fermion
fields. There are six different contraction terms. In four of
them, two operators at the same location are contracted.
These fermion-line-disconnected contributions are propor-
tional to trF, trF8, and trG and vanish if these matrices are
chosen traceless. However, this is in general impossible for
trG, as we shall see below, and the omission of the corre-
sponding contraction must be regarded an approximation,
which is, however, consistent with quenching. We use this
approximation for the same reason we use quenching: It is
very hard to go beyond it. The remaining two terms are the
fermion-line-connected contributions

2V3 (
x:x45t

(
y:y45t

(
z,z8

e2 ipW •yW^~ trFGF8!trDC

3@GG~y,z!J~z,z8;x!G~z8,0!G8G~0,y!#

1~ trF8GF!trDC@GG~y,0!G8G~0,z!

3J~z,z8;x!G~z8,y!#&g , ~44!

where the traces are over Dirac and color indices, and the
average is over the gauge field alone.

The two terms can be related to each other by means of
the relations

G~x,y!†5g5G~y,x!g5 , ~45!

g5G5sG†g5 , ~46!

g5G85s8G8†g5 , ~47!

g5J~z,z8;x!†g55sJJ~z8,z;x!, ~48!

wheres,s8,sJ561, and Eq.~48! is valid only if the corre-
sponding operator is suitably symmetrized in its space-time
indices. For thep, G5G85g5 and thuss5s851, while,
for ther, G, G8P$g1 ,g2 ,g3% ands5s8521. Then the cor-
relation function reduces to

2V3 (
x:x45t

(
y:y45t

e2 ipW •yW@~ trFGF8!M ~x,y!

1ss8sJ~ trF8GF!M ~x,y!* ], ~49!

with the basic single-flavor correlation function

M ~x,y!5(
z,z8

^trDCGG~y,z!J~z,z8;x!G~z8,0!G8G~0,y!&g .

~50!

Note that the calculation of this quantity on the lattice re-
quires only two inversions of the fermion matrix, one at 0
and one aty or z.

Using the charge conjugation matrix, defined by

gm
T52C21gmC, ~51!

and the relations

G~Uux,y!5CG~U* uy,x!TC21, ~52!

CGTC215sG, ~53!

CG8TC215s8G8, ~54!

CJ~U* uz8,z;x!TC215sJJ~Uuz,z8;x! ~55!

~where we explicitly denoted the dependence ofJ on the
gauge field!, with s,s8,sJ561, one can further show that

M ~x,y!* 5ss8sJss8sJM ~x,y!. ~56!

We choose traceless matrices forF andF8,

F5S 0 1

0 0D , F85S 0 0

1 0D , ~57!
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and therefore

trF8GF5G11, trFGF85G22. ~58!

We finally arrive at the following expression relating the
propagatorsM (x,y) to the three-point correlation function:

^hG
F~ t,pW !OG~t!hG8

F8~0,2pW !&

52V3~G111sJG22! (
x:x45t

(
y:y45t

e2 ipW •yWM ~x,y!. ~59!

For an operator withn derivatives,sJ is (21)n1n511, where
n551 if the operator contains ag5 matrix, n550 otherwise.
Thus, for oddn1n5, G must not be traceless.

The analogous expression for the two-point correlation
function reads

^hG
F~ t,pW !hG8

F8~0,2pW !&

52V3 (
x:x45t

e2 ipW •xW^trDCG~x,0!G8G~0,x!G&g . ~60!

V. LATTICE AND CONTINUUM OPERATORS

Equations~36! and ~38! relate the numerically comput-
able ratiosRi j andR to expectation values of Euclidean lat-
tice operators. To connect them with the corresponding con-
tinuum Minkowski-space operators, we first introduce the
continuum matrix element of the renormalized Euclidean op-
eratorÔr

cont by the relation

ZÔ^pW luÔupW l&5
1

2E~pW !

1

2k
cont^pW luÔr

contupW l&cont. ~61!

The factor 2E(pW ) is a consequence of the different normal-
ization on the lattice and in the continuum,

^pW lupW 8l8&5dpW ,pW 8dl,l8

cont^pW lupW 8l8&cont5~2p!32E~pW !dl,l8d~pW 2pW 8!, ~62!

and 2k comes from the definition of the Wilson fermion
action on the lattice.ZÔ is the renormalization constant of
the operatorÔ.

In the following, we shall use the renormalization con-
stants calculated in one-loop lattice perturbation theory in the
chiral limit @10#. They can be written in the form

ZÔ512
g2

16p2
CF@gÔln~am!1BÔ2BÔ

c
#, ~63!

where CF54/3, g denotes the bare coupling constant, and
m is the renormalization scale. Note that here the lattice
spacinga has been introduced explicitly. The finite contri-
bution BÔ is fixed in the momentum subtraction renormal-
ization scheme, whereasBÔ

c represents the contribution of
the continuum operator in the modified minimal subtraction
(MS̄) scheme with an anticommutingg5. Hence multiplica-
tion by ZÔ leads from bare operators on the lattice to the

corresponding renormalized~in the MS̄scheme! operators in
the Euclidean continuum. For the renormalization scalem we
choose the inverse lattice spacinga21. Taking the physical
r mass of 770 MeV as input, we obtain from the lattice
masses extrapolated to the chiral limit the valuem52.4
GeV.

VI. RESULTS

We have collected more than 500 independent configura-
tions on a 323163 lattice atb56.0 with Wilson fermions
and r 51. Three different hopping parametersk50.1515,
0.153, and 0.155 were used. They correspond to quark
masses of roughly 190, 130, and 70 MeV, respectively. As in
@2#, each gauge update consisted of a single 3-hit Metropolis
sweep followed by 16 overrelation sweeps. This cycle is re-
peated 50 times to generate a new configuration. The code
was run on a Quadrics QH2 data-parallel computer. For com-
pleteness, the smearing technique — Jacobi smearing — we
use to improve the overlap of the operator with the state is
described in Appendix C.

The calculational procedure is as follows: We calculate in
each configuration the three-point functions~50! for a large
set of operators as well as thep andr two-point functions.
In Appendix B we list the operators we have actually stud-
ied. Those withoutg5 are labeled by the pion momentsvn
one can compute from them. The expectation value of such
an operatorÔvn

in the r is a linear combination ofan and

dn . The operators withg5 are labeled by the corresponding
r matrix elementsr n .

Using two values of the momentum, namely,pW 5(0,0,0)
andpW 5(2p/16,0,0), we can check the continuum dispersion
relation of the one-particle energies extracted from the two-
point function. It is satisfied to better than 1%, and even for
nonzero momentum we have a good projection on the
ground statep andr. The particle masses we have used in
our subsequent analysis are taken from Ref.@11#. They are
collected in Table I.

For the computation of the three-point functions, the lo-
cations of the source and the sink are held fixed at 0 and
t5T/2516. Placing the sink atT/2 allows us to search for a
plateau equally well on both sides of the sink. In the case of
the r, we restrict ourselves to the 3-3 and 3-2 components.

For the denominator of the ratios we employed two dif-
ferent procedures: First, we took the actual value of the
propagator at midpoint, and second, we fitted the interior 24
points of the propagator to exponential functions and used
the resulting midpoint value. The second case resulted in
somewhat smaller errors at certain values ofk and p1. We
quote our results including the uncertainty from the former
procedure. We also tried to use the conserved vector current,
as proposed by@1#, but this did not reduce our error margins.

The ratios~36! and ~38! are taken as a function of the

TABLE I. p andr masses in lattice units.

k50.1515 k50.153 k50.155 k5kc50.15717(3)

p 0.5033~4! 0.4221~4! 0.2966~5! 0
r 0.5682~7! 0.5058~8! 0.4227~15! 0.328~5!
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operator insertion pointt, and a fit to the central seven points
on each side that make up the plateau is made. The full
covariance matrix is considered in estimating the error, thus
taking correlations between neighboring points into account
~in fact, only about two independent degrees of freedom out
of seven survived!. Some example plots are shown in Figs. 1
and 2.

In a few cases we have two operators for the same re-
duced continuum matrix element, distinguished by the sub-
scriptsa and b. Ôv2,a and Ôv2,b as well asÔr2,a and Ôr2,b
belong to different representations of the hypercubic group
H(4). Hence the results extracted from operatora and op-
eratorb have to agree only in the continuum limit where the
full O~4! symmetry is hopefully restored, and a comparison
of our results obtained for finite lattice spacing gives us some
indication of the size of lattice artifacts. In the case of the
operators associated tov2,b , r 1,b , and r 2,a we denote the
results obtained with nonzero momentum by an additional
subscriptp.

Applying Eqs.~38!, ~61!, ~B3!, and ~B5! we have calcu-
lated estimates for the pion momentsvn from the measured
ratiosR. The results are summarized in Fig. 3 and in Table
II. The agreement~within errors! of v2,a and v2,b indicates
that — at least in this case — lattice artifacts are not too
large. Assuming a linear dependence on 1/k, i.e., on the bare
quark mass, the values have been extrapolated to the chiral
limit k5kc50.157 17(3). Since the quark masses in our
simulation are rather large (. 70 MeV!, we need this ex-
trapolation in order to obtain numbers that can sensibly be

compared with phenomenological valence quark distribu-
tions. Note, however, that the quark mass dependence of the
results is not very pronounced. Onlyv2,b shows a significant
trend towards smaller values as the chiral limit is approached
which is the expected behavior.

We now come to ther results ~see Figs. 4 and 5 and
Table II!. By means of Eqs.~32!, ~33!, ~61!, and ~B3! we

FIG. 1. The ratioR for the operatorsÔv2a , Ôv2b , Ôv2b at pW

Þ0W , Ôv3, and Ôv4 ~left to right, top to bottom! for the p at
k50.153. The horizontal line is a fit to the central seven points on
both sides.

FIG. 2. The ratiosR33 and R32 for the r operatorsÔv2a ,

Ôv2b , Ôv3, Ôv4, Ôr1a , and Ôr1b ~left to right, top to bottom! at
k50.153.

FIG. 3. Estimates of thep momentsvn5^xn21& for a single
flavor. For each matrix element, the results from the three different
k values are shown versus 1/k with k decreasing~i.e., with the
quark mass increasing! from left to right. The leftmost value is the
chiral extrapolation obtained from a linear fit. The dotted lines give
the free-field~heavy quark! limits. The dashed lines are phenom-
enological valence quark values from@3#, evaluated atm52.4 GeV.
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pass from the ratios~37! to matrix elements whose relation
to an , dn , andr n is listed in Eq.~B6!. The extrapolation to
the chiral limit is performed as for thep. In the case of the
operators withoutg5, i.e., those labeled byvn , we encounter
the problem that instead of one number (vn) we have to
extract the two quantitiesan and dn from the matrix ele-
ments.

Therefore we proceed as follows: The expectation value
of Ôv2,b at pW 50W gives us directlya2, and d2 can then be
calculated fromÔv2,a andÔv2,b at nonvanishing momentum.
The expectation values ofÔv3 and Ôv4, on the other hand,
are proportional tod3 and d4, respectively, ifpW 50W . With
d3 andd4 computed from these matrix elements we use the

corresponding results forpW Þ0W to calculatea3 anda4.
From the matrix elements of the operators withg5 we can

easily extractr 1, r 2, and r 3. The estimatesr 2,a , r 2,ap , and
r 2,b for r 2 agree within the errors. Thus also in this case we
do not observe significant discretization effects.

VII. DISCUSSION

We have calculated the lowest three moments of the
structure functions of thep and ther meson, restricting
ourselves to the leading twist-2 operators in the operator
product expansion.

For thep, we can compare our numbers in the chiral limit
with the experimental data@3#. Our result for^x& is larger
than phenomenology suggests. This is to be expected as our
quenched lattice calculation does not contain any sea quarks
and the valence quarks will therefore carry more of the mo-
mentum. The results for̂x2& and^x3&, on the other hand, are
consistent with the phenomenological numbers. Our results
also agree with the early lattice calculations of Martinelli and
Sachrajda@1# as well as with various model calculations
@12#.

The unpolarizedr structure function looks very similar to
thep structure function, at least for the quark masses that we
have considered. In thep the quarks carry about 60% of the
total momentum, while in ther they carry about 70% at the
smallest quark mass. The higher moments are in agreement
with each other within the error bars. Thus the assumption
F1

r(x);F1
p(x) often used in phenomenological estimates

may well be justified.
The lowest momentr 1 of the polarized structure function

g1 indicates that the valence quarks carry about 60% of the
total spin of ther. For comparison, a similar quenched cal-
culation for the nucleon gave a quark spin fraction of about
the same value@2#, which is reduced to 18% by sea quark
contributions@13#. It is very likely that the same will also
happen here.

The structure functionsb1 andb2 measure the difference
in quark distributions of a~spin projected! m51 andm50
r meson. If the quarks were in a relatives-wave state in the
infinite momentum frame, we would expectb1 andb2 to be
zero. The lowest momentd2 turns out to be positive and
surprisingly large on the scale ofa2, albeit with large statis-
tical errors. Perhaps this indicates that the valence quarks
have a substantial orbital angular momentum. This could
also explain a relatively small quark spin fraction.
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APPENDIX A: CONVENTIONS

The Minkowski space metric has the signature
(1,21,21,21). Minkowski and Euclidean components are
related by

FIG. 4. Estimates for ther momentsan5^xn21& anddn . The
presentation of the data is the same as in Fig. 3.

FIG. 5. Estimates for ther momentsr n . The presentation of the
data is the same as in Fig. 3.
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x45 ix ~M !05 ix0
~M ! , xj5x~M ! j52xj

~M ! , ~A1!

wherej refers to spatial indices. Unless explicitly mentioned,
we label Minkowski-space variables by an (M ).

Covariant derivatives are defined in Minkowski space as

D ~M !m5]~M !m2 igA~M !m ~A2!

and are related to their Euclidean counterparts as

iD ~M !052D4 , iD ~M ! j52 iD j ; ~A3!

similarly, for theg matrices,

g~M !05g4 , g~M ! j5 ig j . ~A4!

The g5 matrix is defined as

g5
~M !5 ig~M !0g~M !1g~M !2g~M !3,

g55g1g2g3g452g5
~M ! . ~A5!

The momentum of the particles is chosen in the one-
direction, pW 5(p,0,0). Polarization vectors for vector par-
ticles satisfy

p~M !mem
~M !~pW ,l!50, e~M !m~pW ,l!em

~M !~pW ,l8!52m2dll8
~A6!

(l56,0) and have the explicit form

e~M !m~pW ,l!5S pW •eWl

m
,eWl1

pW •eWl

m~m1E!
pW D , ~A7!

with the basis vectors

eW 657
m

A2
~0,1,6 i !, ~A8!

eW05m~1,0,0!. ~A9!

They satisfy the completeness relation

(
l

e i
~M !* ~pW ,l!e j

~M !~pW ,l!5m2S d i j 1
1

m2
pipj D .

~A10!

Note that in Euclidean spacee j (pW ,l)5e (M ) j (pW ,l).

APPENDIX B: OPERATORS

On the lattice, the choice of the operators to look at is a
nontrivial matter, because the discretization reduces the sym-
metry group of ~Euclidean! space-time fromO(4) to the
hypercubic groupH(4),O(4). Hence the lattice operators
have to be classified according toH(4) and one should
choose operators belonging to a definite irreducible represen-
tation of H(4). SinceH(4) is a finite group, the restrictions
imposed by symmetry are less stringent than in the con-
tinuum and the possibilities for mixing increase. Whereas
mixing with operators of the same dimension is supposed to
be treatable by perturbation theory, the mixing coefficients
for lower-dimensional operators have to be calculated non-
perturbatively. Hence one would like to avoid mixing with
lower-dimensional operators whenever possible. On the
other hand, as the spin grows, operators with no mixing at all
require more and more nonvanishing momentum compo-
nents in the calculation of their forward hadronic matrix el-

TABLE II. Result overview for a single flavor. The numbers refer to the MSs̄cheme with a renormal-
ization scalem'2.4 GeV. The last column gives the result of the extrapolation to the chiral limit.

k50.1515 k50.153 k50.155 k5kc50.15717

p

v2,a5^x&a 0.301~20! 0.294~28! 0.290~71! 0.279~83!

v2,b5^x&b 0.3239~70! 0.3150~71! 0.2910~75! 0.273~12!

v2,bp5^x&bp 0.319~23! 0.316~33! 0.325~84! 0.318~98!

v35^x2& 0.1222~83! 0.116~12! 0.117~31! 0.107~35!

v45^x3& 0.0619~45! 0.0580~65! 0.054~18! 0.048~20!

r
a25^x& 0.3555~80! 0.3531~93! 0.340~14! 0.334~21!

a35^x2& 0.1398~93! 0.144~14! 0.182~48! 0.174~47!

a45^x3& 0.0725~72! 0.069~12! 0.074~41! 0.066~39!

d2 0.107~52! 0.128~75! 0.29~20! 0.29~23!

d3 0.0145~32! 0.0135~49! 20.002~14! 0.001~15!

d4 0.0109~100! 0.004~17! 0.007~62! 20.009~58!

r 1,a 0.709~56! 0.715~97! 0.42~34! 0.57~32!

r 1,b 0.721~17! 0.702~20! 0.627~32! 0.590~46!

r 1,bp 0.680~56! 0.62~13! 0.32~44! 0.33~42!

r 2,a 0.2743~62! 0.2631~70! 0.231~12! 0.212~17!

r 2,ap 0.257~17! 0.243~25! 0.216~69! 0.198~76!

r 2,b 0.242~20! 0.232~30! 0.210~89! 0.199~95!

r 3 0.1067~71! 0.099~11! 0.087~33! 0.077~34!
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ements, which makes their Monte Carlo evaluation increas-
ingly difficult. So some kind of compromise is needed.

As a result of our use of the quenched approximation,
purely gluonic operators cannot mix with two-quark opera-
tors and we may restrict ourselves to the latter. Guided by
their H(4) classification given in Ref.@9# we have chosen
the following operators in Euclidean space:

Ôv2,a5Ô$41% ,

Ôv2,b5Ô442
1
3 ~Ô111Ô221Ô33!,

Ôv35Ô$114%2
1
2 ~Ô$224%1Ô$334%!,

Ôv45Ô$1122%1Ô$3344%1Ô$1133%

1Ô$2244%22Ô$1144%22Ô$2233% ,

Ôr1,a5Ô4
5 , Ôr1,b5Ô1

5 , Ôr2,a5Ô$41%
5 ,

Ôr2,b5Ô44
5 2 1

3 ~Ô11
5 1Ô22

5 1Ô33
5 !,

Ôr35Ô$114%
5 2 1

2 ~Ô$224%
5 1Ô$334%

5 !. ~B1!

For v2 and r 2 we have two operators, which belong to the
sameO(4) multiplet in the continuum limit but transform
according to inequivalent representations ofH(4). Hence
their matrix elements provide a test for the restoration of
O(4) symmetry. The renormalization constants for these op-
erators in the MS̄scheme are listed in Table III.

Concerning the mixing properties a few remarks are in
order. Mixing with operators of equal or lower dimension is
excluded for the operatorsÔv2,a , Ôv2,b , Ôr1,a , Ôr1,b ,
Ôr2,a , and Ôr2,b . The case of the operatorÔv3, for which
there are two further operators with the same dimension and
the same transformation behavior, is discussed in Ref.@9#.
The operatorsÔv4 andÔr3, on the other hand, could in prin-
ciple mix not only with operators of the same dimension but
also with an operator of one dimension less and different
chiral properties. It is of the type

c̄smng5DJ m1
DJ m2

•••DJ mn
c, ~B2!

wheren52 in the case ofÔv4, andn51 for Ôr3.

Our analysis ignores mixing completely. This seems to be
well justified forÔv3. Here a perturbative calculation gives a
rather small mixing coefficient for one of the mixing opera-
tors, whereas the other candidate for mixing does not appear
at all in a one-loop calculation, because its Born term van-
ishes in forward matrix elements. The same is true for all
operators of dimension less than or equal to 6 which trans-
form identically toÔv4: Their Born term vanishes in forward
matrix elements, and hence they do not show up in a one-
loop calculation. In the case ofÔr3, however, the mixing is
already visible at the one-loop level. The results forv4 and
r 3 have therefore to be considered with some caution.

The corresponding Minkowski operators are found by ap-
plying Eq. ~23!. Defining the Minkowski analogues of our
Euclidean operators by

Ôv2,a5 iÔv2,a
~M ! , Ôv2,b52Ôv2,b

~M ! , Ôv352Ôv3
~M ! ,

Ôv45Ôv4
~M ! , Ôr1,a52Ôr1,a

~M ! , Ôr1,b5 iÔr1,b
~M ! ,

Ôr2,a52 iÔr2,a
~M ! , Ôr2,b5Ôr2,b

~M ! , Ôr35Ôr3
~M ! , ~B3!

we have

Ôv2,a
~M ! 5Ô~M !$01%,

Ôv2,b
~M ! 5Ô~M !001 1

3 ~Ô~M !111Ô~M !221Ô~M !33!,

Ôv3
~M !5Ô~M !$110%2 1

2 ~Ô~M !$220%1Ô~M !$330%!,

Ôv4
~M !52Ô~M !$1122%1Ô~M !$3300%2Ô~M !$1133%

1Ô~M !$2200%22Ô~M !$1100%12Ô~M !$2233%,

Ôr1,a
~M !5Ô5

~M !0 , Ôr1,b
~M !5Ô5

~M !1 , Ôr2,a
~M !5Ô5

~M !$01% ,

Ôr2,b
~M !5Ô5

~M !001 1
3 ~Ô5

~M !111Ô5
~M !221Ô5

~M !33!,

Ôr3
~M !5Ô5

~M !$110%2 1
2 ~Ô5

~M !$220%1Ô5
~M !$330%!. ~B4!

We can now use Eqs.~13!, ~14!, and~15! to calculate the
expectation values of the Minkowski space operators. For the
p, one obtains, withp25p350,

^Ôv2,a
~M ! &52v2p0p1, ^Ôv2,b

~M ! &52v2@~p0!21 1
3 ~p1!2#,

^Ôv3
~M !&52v3~p1!2p0, ^Ôv4

~M !&524v4~p1!2~p0!2.
~B5!

For ther with polarizationl56, one finds

^Ôv2,a
~M ! &52~a22 1

3 d2!p0p1, ^Ôv2,b
~M ! &52~a22 1

3 d2!@~p0!2

1 1
3 ~p1!2#1 2

3 m2d2 , ^Ôv2,b
~M ! &p15052a2m2,

^Ôv3
~M !&52~a32 1

3 d3!~p1!2p02 1
3 m2d3p0,

^Ôv4
~M !&524~a42 1

3 d4!~p1!2~p0!21 1
3 m4d4 ,

TABLE III. Renormalization constantsZ.

OperatorÔ ZÔ

Ôv2,a
0.989196

Ôv2,b
0.978369

Ôv3
1.102397

Ôv4
1.229911

Ôr1,a , Ôr1,b
0.866625

Ôr2,a
0.997086

Ôr2,b
0.998587

Ôr3
1.108573
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^Ôr1,a
~M !&562r 1p1, ^Ôr1,b

~M !&562r 1p0,

^Ôr2,a
~M !&56r 2@~p0!21~p1!2#, ^Ôr2,b

~M !&56 8
3 r 2p0p1,

^Ôr3
~M !&56 2

3 r 3p1@~p1!212~p0!2#. ~B6!

APPENDIX C: SMEARING

The method we use for smearing is to smear the quark in
a planex45t @14#:

Sc f a
a ~xW ,t !5(

yW

SHab~xW ,yW ;U,t !c f a
b ~yW ,t !, ~C1!

where the kernelH is chosen to have the correct gauge trans-
formation properties and is diagonal in spin space.S is the
smearing label. So, for example, for no smearing
S5L5 local; then, LHab(xW ,yW ;U,t)5dabdxWyW . SH is also
taken as Hermitian:

SHba~yW ,xW ;U,t !* 5SHab~xW ,yW ;U,t !. ~C2!

Also the smeared antiquark is defined as

Sc̄ f a
a ~xW ,t !5(

yW
c̄ f a

b ~yW ,t !HS
ba~yW ,xW ;U,t !. ~C3!

Note that we can choose different smearing for the quark and
antiquark. Thus for a smeared meson operator we have

S8Sh~ t,pW !5(
xW

F f f 8e
2 ipW •xWS8c̄ f a

a ~xW ,t !Gab
Sc f 8b

a
~xW ,t !,

~C4!

with the appropriate correlation function

CS8S~ t,pW ;t0!5^S8S8h~ t,pW !SSh~ t0 ,2pW !&, ~C5!

so thatS andS8 are smearing at the source and sink, respec-
tively.

The smeared quark propagator is defined by

S8SGab
f ab~x,y;U !d f f 85^S8c f a

a ~x!Sc̄ f 8b
b

~y!& fermions ~C6!

(LLG[G). So in meson correlation functions we can simply
replaceG with S8SG to allow for smearing.

The smeared quark propagators are found sequentially.
Generate the smeared sourceSS from a point source at

(xW0 ,t0) and so, withS0a
a (xW t)5dxWxW0

d tt0
daa0daa0

,

SSaa0

f aa0~xW ,t;xW0 ,t0!5SHaa0~xW ,xW0 ;U,t !d tt0
daa0

. ~C7!

Find LSG, by solvingMLSG5SS. We thus have

LSGab
f ab~xW ,t;xW0 ,t0![(

yW
Gab

f ab8~xW ,t;yW ,t0!SHb8b~yW ,xW0 ;U,t0!.

~C8!

From LSG we generateS8SG by applying S8H:

S8SGab
f ab~xW ,t;xW0 ,t0!

5(
yW

S8Haa8~xW ,yW ;U,t !LSGab
f a8b~yW ,t;xW0 ,t0!.

~C9!

Note that this step can be expensive~in CPU time! in com-
parison to Eq.~C7! as we must smear on everyx45t plane.

Practically we shall use Jacobi smearing~as advocated
mainly by @15#!. This is given by

(
xW8

K~xW ,t;xW8t !SS~xW8,t !5S0~xW ,t !, ~C10!

whereS0 is the original point source. Here

K512ksDs ~C11!

andDs is a covariant derivative in thex45t plane, viz.,

Dsab
ab ~xW ,t;yW ,t !5dab(

i 51

3

@Ui
ab~xW ,t !dxW1 ıW,yW

1Ui
†ab~xW2 ıW,t !dxW2 ıW,yW#. ~C12!

Hence we needH5K21. Rather than performing this inver-
sion completely we Jacobi iterateNs times, and so

SS~n!~xW ,t !5S0~xW ,t !1ksDs
SS~n21!~xW ,t !, n51,2, . . . ,

~C13!

with SS(0)(xW ,t)5S0(xW ,t).
We thus have two parametersks andNs at our disposal.

ks controls the coarseness of the iteration, while increasing
Ns increases the size of the smeared object roughly like a
random walk. Physically we wish to smear until our source is
about the size of the meson. A suitable measure of the~rms!
radius is given by

r 25

(
xW

~xW2xW0!2uSS~xW ,t0 ;xW0 ,t0!u2

uSS~xW ,t0 ;xW0 ,t0!u2
. ~C14!

@Note that on a periodic lattice (xW2xW0)2 is taken as the mini-
mum distance fromxW to xW0.# Explicitly for b56.0 we have
chosenks50.21,Ns550. This givesra of about 3.5a&0.5
fm which corresponds roughly to the hadron radius.
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