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Search for a parity-flavor-breaking phase in QCD
with two flavors of Wilson fermions for $=5.0

Khalil M. Bitar
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We present data testing the existence of a parity-flavor-breaking phase in simulations of QCD with two
flavors of light Wilson fermions. This is done by explicit simulations on lattice sizes*o86, and 10 for a
variety of values of3 and« as well as the coefficiertt of an explicit breaking term included in the action. We
find that atg3=6/g2 equal to or greater than 5.0 extrapolation in the parantesarwell as in the lattice volume
show no indication of a phase where parity and flavor are spontaneously broken in the limit di.zero
[S0556-282197)03517-0

PACS numbds): 12.38.Gc, 11.15.Ha

I. INTRODUCTION also loses it at weak couplifd9]. Whereas the picture ad-
vocated by Aoki does not anticipate such a quenching effect

For many years now, AoKil—5] and collaboratorf7—9]  for the phase in QCD, recent phenomenological arguments
have been advocating the existence of a parity-flavorby Creutz[20] tend to show a preference for quenching of
breaking phase in QCD with Wilson fermions as a means ofhis phase if it exists.
explaining why the pion mass in this model approaches small Thus it becomes necessary to explore this important fea-
values as the Wilson parameteapproaches, for every value tUre by explicit simulations of QCD with Wilson fermions on
of inverse square coupling, a critical valuex,. This is in  volumes larger than those already studiey

spite of no-go theoremfsl0,11]] that forbid such a phase in
the continuum limit. Il. SIGNATURE OF THE BROKEN PHASE

Inde_ed analytic arguments have been pres_e_nted to s_upport Following arguments presented by Aoki and Aoki and
the existence of such a phaseft0.0. For finite and, in Gocksch[1,9), it is necessary, in order to investigate the
particular, larger values o8 where current lattice simula- presence of the parity-flavor-breaking phase in simulations,
tions are undertaken, such evidence is lackig to introduce first an explicit breaking term into the action and

Although the picture advocated by Aoki may explain thethen extrapolate the measured order parameter as this term
smallness of the pion masses asapproachesk. it also  tends to zero. Since the extrapolation is to be done, in prin-
explicitly states that these pions are not the Goldstone modesple, after the “infinite volume” limit is taken, such simu-
of spontaneous chiral symmetry breaking. This presents ktions must be done for larger volumes and any order pa-
problem in that it is then not clear that any of the soft pionrameter extrapolation be studied as a function of this
and other theorems associated with this phenomenon will bi#@creasing volume. In such a situation a typical behavior of
respected on the lattice. In other words, this would not be théhe data at finite volumes that one might expect is shown in
expected simulation of true QCD In fact, the |arueana- Flg 1. ltis eXpeCted that the functional dependence of the
lytic analysis, which indicates the existence of this phase atmeasureflorder parameter oh be such that for anfinite
B=0.0, also shows the nonvanishing of ther scattering volume this order parameter vanisheshat0.0.
length which is contrary to the expected spontaneous chiral
symmetry breaking of QCD. This is of course unimportant at | I
B=0.0 but is very important, if true, at the values@ivhere i Infinite volume limit
current simulations are performed. n —

The alternative picture where the explicit chiral /

symmetry-breaking Wilson term causes tbéherwise Gold- /

parameter
N I
\

stong pions to acquire a small mass proportional to the lat- &t
tice spacing does not have such a problem. Indeed, that aIl§ i
these extra effects would disappear as the lattice spacing is. [
made smaller with the approach to the continuum limit was
formally demonstrated some time apt®,13,15.

Several models exhibit a parity-flavor-breaking phase. In 1
the Nambu—Jona-LasiniiNJL) [14,16,17 model with Wil- » —
son fermions this phase was numerically and, in the large Increasing volume 1
N approximation, analytically16,18 confirmed for values N I
of B up to a specific cutoff value. This phase disappears for "
larger values of3. The Schwinger model with two flavors of FIG. 1. Expected variation of computed order parameter with
Wilson fermions exhibits this phase at strong coupling andsolume.

f
Measured
T
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TABLE |. Parameters and measured order parameter for
the case of3=5.0 on lattices of volumé&*, for L=6, 8, and 10. r
K h PF6 PF8 PFlO 15077 i
0.1500 0.001 0.019691) 0.0196617) 0.0196611) £
0.1500 0.005 0.09835) 0.0983486) 0.09835%51) g Lol B
0.1500 0.050 0.9685 £
0.1500 0.100 1.8626) z i ]
0.1500 0.300 4.31@8 H 1
50— —
0.1810 0.001 0.02520 0.027722) 0.02732) r il
0.1810 0.005 0.13190 0.129457) 0.136580) g
I P I %/ N R
0.1820 0.001 0.025%7) 0.0262998)  0.025598) 0 - 0 o "
0.1820 0.005 0.12837) 0.132574) 0.131853) @) FF X 10000
0.1820 0.050 1.3966) 1.389 (29 |
0.1820 0.100 2.3886) 2.380 (32 r 1
0.1820 0.300 4.6188) I ]
0.1850 0.001 0.025@3) 0.025@7) 0.02515)
0.1850 0.005 0.12252) 0.127371) 0.122318) i
0.1850 0.050 1.28®5 “: R0 B N
0.1875  0.001 § j ‘|‘ | ' j
0.1875  0.005 = 1 ‘ v"; it ]
10— w ‘M ﬁ“ _
: ‘l‘ ”L '
The variation of this dependence with increasing volume j “ d ]
is crucial to the initial determination of the existence of a f ‘t““("{.ix‘“. .
. . PN IR B s /AW AT YT A
broken phase or its absence. The existence of a broken phat 1000 1100 1200 1300 1400
in the infinite volume limit is signaled by a flattening of this  ® PP X 10000

dependence for larger valuestofand a sharper drop to zero

ash approaches zero. Thus it is clear that a significant vol- FIG. 2. (a) Histogram of computed®F at =5.0, x=0.15,
ume dependence of the order parameter at smaller values Bf 0-001 for all volumes considered; arit) histogram of com-
h is a necessary indicative factor for this phase. If, on the?UtedPF at 5=5.0, x=0.185,h=0.005 for all volumes consid-
other hand, the approach to zero is not varying significanthy¢d:

as the volume increases, the infinite volume limit will not ) , ,
sustain a broken phade. larger value ofp in case the parity-flavor-breaking phase

were to be confirmed at the two smaller values.
‘We introduce into the QCD action a term of the form
ihyrysTar where 75 is a 2X2 matrix representing the third

We report here on simulations done with two flavors ofélement of the generators of flavor &) algebra. Upon in-
Wilson fermions a8=5.0, 5.5, and 8.0 on volumes of tegrating the fermionic variables this is reflected in the simu-

84 and 10 for a variety of values ok ranging from less lation by the —product of two determinants:

than the appropriate, to values greater thag, . DetM (h)* DetM (—h) where M(h) is given by a simple
The choice of these three values ®fvas determined as Modification of the Wilson matriM,y as

follows. The valueB=5.5 represents current simulations on i

larger lattices where spectrum and matrix element calcula- M(h)=My+ihys.

tions are being done; that gt=5.0 represents a lower value ) i

below which relevance to continuum physics is not expected?S Pointed out by Aoki, we also have here

and the last value g@8=28.0 is to extend the search to a much

IIl. NUMERICAL SIMULATIONS

ysM(—h)ys=M"

Yf not careful, one may arrive at wrong conclusions. If simula- an
tions are done only at larger values lofone may use the slightly
varying values of the order parameter there to extrapolate these to
infinite volumelf this step is then followed by a linear extrapolation ] ) .
to h=0.0 a nonzero value for the order parametena.0 may be Simulations were done for the parameletaking values
obtained. At this stage it is tempting to conclude that a brokerf@nging from 0.001 to 0.3. For the volume dependence we
phase exists in that limit. This may be the wrong conclusion if thisconcentrate on the smaller values lofand in particular
is not accompanied by a significant increase in the value of thé1=0.001 anch=0.005 for all three volumes considered and
order parameter at smaller valueshof mostly for values ofk greater than,.

DetM (—h)=DetMT(h).
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FIG. 3. (@ PF vs 1L for 8=5.0, k=0.182,h=0.001; (b) PF vs 1L for 8=5.0, k=0.182,h=0.005; (c) PF vs 1L for =5.0,
x=0.185,h=0.001; and(d) PF vs 1L for 8=5.0, k=0.185,h=0.005.

The order parameter we compute is the expectation valugas also done.

of the operatoi ¢yys 73, With our notation this is given as The initial aim in this case is to detect the possible exis-
tence of any nonzero constafatat h=0.0 as the limit of the

PF=—Im Tr(ysM 1(h)). order parameter at that point. This is of particular interest for
comparing results at values efabovex. with those below
IV. RESULTS Ke

It is useful to point out here that in the presence of a
For the three values oB considered, simulations were parity-flavor-breaking phase the order parameter is expected
performed, as mentioned above, at various values lbbth  to vary withh as
below and abovec.. We shall present the data and results
for each value of3 considered separately.
In all cases these simulations were also done at various PF.,=A+BhY3+--.
values of the external parameter For eachx the results of
the compuations on the three volumel L=6, 8, and 10,
were compared at the two valuestof 0.001, anch=0.005.  this being the behavior of the root of the cubic equation
The variation of the order parameter with_1i6 then used to ~ determining the position of the minimum of the quartic ef-
obtain an “infinite volume” limit for all values ofh used. fective potential. In the absence of such a phase the same
The choice of 1 is indicated here by the naive dimension of behavior follows withA=0.0. As the quartic potential be-
the order parameter. Following this, the order parameter gtomes quadratic, the leading behavior becomes
these values dfi were fitted to

PF=A+Bh'3+Ch+Dh? PF=Ch+--- .
A separate fit to the pure quadratic polynomial

This should, when compared to the data, be also a useful
PF=A+Ch+Dh? tool in determining which situation one is in.
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R / B A. B=5.0

The value ofk. at this value ofg is known to be about
0.18. We, consequently, performed simulations well below
that value at«=0.15 and well above it ak=0.1875 and
A= —032x1072 1 intermediate values in between. We present in Table | the
- results of these simulations.

] The results in Table | clearly show also that the values
computed for the order parameter at the larger values of the
volume are only incrementally different from those measured

PF

0.0 I ‘ 0.1 I I ‘ I 0.2 0.3 L 4
(b) h 0.03 — —
FIG. 4. (@) PF vs h for 8=5.0, k=0.15, and a quadratic fit; |
and(b) PF vs h for 8=5.0, k=0.182, and a quadratic fit. L T I I
0.02 — —
TABLE Il. Parameters and measured order parameter for ) r
the case of3=5.5 on lattices of volumé*, for L=6,8,10.
K h PFe PFg PF1o 0ot _
0.1300 0.001 0.0168922) I
0.1300 0.005 0.08420)
0.1300 0.050 0.83a0) L
0.1300  0.100  1.6320) ool L L L
0.00 0.05 0.10 0.15 0.20
01350  0.001 0.017%23 0.0175014) @) i
0.1350 0.005 0.08742) 0.0875%7) IR — ]
0.1425 0.001 0.0186R9  0.0186317) 0125 — ]
0.1425 0.005 0.09315 [ : ]
| I i
[ T 1
0.1500 0.001 0.020@80) 0.0200924) 0.100 — —
0.1500 0.005 0.09920) L 3
0.1550  0.001 0.020791) 0.0214036) 0075 -
0.1550 0.005 0.103926) r 1
0.1620 0.001 0.021324) 0.0220042) 0.0224631) 0.050 _ _
0.1620 0.005 0.10886) 0.110220) 0.111417) r ]
0.1620  0.050  1.0424) 1.05214) 005 R
0.1620  0.100 1.9586) 1.96922) oL ]
0.1650  0.001 0.021%8)  0.0220%43)  0.0229929) N R B ol
0.1650 0.005 0.10884) 0.110120) 0.111@15) b 0.00 0.05 01'“1 015 0.20
0.1650  0.050  1.0423) 1.05614) (o) /
0.1650 0.100 1.9685) 1.98421)
0.1650 0.300 4.3550) FIG. 6. (a) PF vs 1L for B=5.5, k=0.162,h=0.001; andb)

PF vs 1L for B=5.5, k=0.162,h=0.005.
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TABLE Illl. Parameters and measured order parameter for
the case of3=8.0 on lattices of volumé.#, with L=6,8,10.

K h PFG PFS PFlO

0.1200 0.001  0.015919)
0.1200 0.005 0.079860)
0.1200 0.050 0.784B9)
0.1200 0.100 1.5417)

1 0.1300 0.001 0.016925) 0.0170815  0.0170Z10)
] 0.1300 0.005 0.08432) 0.08517) 0.08517)
0.1300 0.050 0.8320)

1 0.1300 0.100 1.62719)

PF

A= -0.48x1073

0.5

PN /e N BRI R R I
.00 0.02 0.04 0.06 0.08 0.10

(a) ' b 0.1400  0.001  0.017829
PF B=55 K=0.165 vs h 0.1400  0.005 0.08919
. [T 0.1400  0.050 0.8784)
] 0.1400 0.100 1.7322

0.1460 0.001 0.018@80) 0.0186120) 0.0185314)
0.1460 0.005  0.09G26) 0.092612) 0.09277)
0.1460 0.050 0.8924)

0.1460 0.100 1.7225

PF

0.1500 0.001 0.018229) 0.0185721) 0.0185%10)
] 0.1500 0.005  0.092Q7) 0.09289) 0.09276)

] 0.1500 0.050 0.9024)
- 0.1500 0.100 1.73@6)

] 0.1550 0.001  0.018329)
0.1550 0.005  0.09125)

(o) 0.1600  0.001  0.018298)

0.1600 0.005 0.09215)
FIG. 7. (8 PF vsh for 3=5.5, k=0.162, and a quadratic fit; g 1600 0.050 0.9033)
and(b) PF vs h for 8=5.5, k=0.165, and a quadratic fit. 0.1600 0.100  1.7495)

L 0.1800 0.001 0.020126)
on the small volume for all values @findicated. For values 0.1800 0.005 0.08462)

of K I_ess the_ch, these results are co_n5|st_ent within errors., 1 ano 0050 0.8783)
This is best illustrated by the overlapping histograms of thes%

. - .1800 0.100 1.7022
measurements at=0.15 given in Fig. 2a). For k=0.185 a
similar histogram, Fig. @), indicates only an incremental
increase of the peak of the distribution with volume. This B. B=55
incremental change may be used to obtain an “infinite vol-

ume limit” of these values assuming a linear extrapolation in 1 he value ofk. in this case is also known to be in the
1/L wherel is the lattice linear dimension as shown, for neighborhood ofc=0.16. Table Il details the results of our

example, in Figs. @—3(d). It is clear here that the data are compuations for values of well below and above this value.
consisterllt with béing esséntially “constant” with volume. A We concentrate in this discussion on the results obtained at
guadratic fit inh to this “infinite volume values” is not «=0.162 and 0.165, both abowg and where the postulated

A . . phase is expected to exist.
significantly d|fferent from a fit tq the data at volumé 6 We show in Fig. 5 the variation of the computed order
where we obtain, for example, Figs(a# and 4b), a zero

arameter withc over the range used fér=0.001. No sharp
constant for the extrapolated value of the order parameter %tnange is indicated as the valueqf=0.16 is crossed
h=0.0 for k=0.15 belowk, andx=0.182 slightly above it. ' '

i HEVS Analysis similar to that described above is also performed
For values ofk both below and above, this clearly implies oy this data set.

the absence of any volume dependence of the order param- The results at the larger volumes show only an incremen-
eter and, hence, in both cases and in particular the latter casg| increase, if any, as Shown, for examp|e, for the case of
the absence of a parity-flavor-breaking phase in the system at=0.162 at botrh=0.001 anch=0.005, in Figs. &) and
B=5.0. A fit with a leadingh™® is not as good a description 6(b).

of the data as it leads to a much highét Hence, we further Here again an “infinite volume” limit may indeed be
conclude that the effective potential of the system is preinferred and a quadratic fit ih gives for the “constant” in
dominanty quadratic at smdtl. the fit a value which is consistent with zero as shown in Figs.
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FIG. 8. Variation ofPF with « at 8=8.0 andh=0.005.

7(a), and 1b) for k=0.162 and«x=0.165.

We are then again led to conclude the absence of a parity
flavor-breaking phase at these valuescadbovex, .

Attempts at fits with a leadingy'”® behavior again lead
invariably to worse fits indicating again a dominant quadratic
behavior of the effective potential for the order parameter.
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FIG. 9. (a) PF vs 1L for 8=8.0, k=0.146,h=0.005; andb)
histogram of computed®F at 3=8.0, xk=0.15, h=0.005 for all
volumes considered.

0= I L I Lo
0.00 0.02 0.04 0.06 0.08 0.10

FIG. 10.(a) PF vsh for 8=8.0, k=0.146, and a quadratic fit;
and(b) PF vs h for 8=8.0, k=0.16, and a quadratic fit.

C. B=8.0

The value ofk. in this case has not been determined
numerically. We estimate its value using a tadpole improved
perturbative procedure as discussefif]. We obtain in this
case a value in the neighborhood gf=0.145. Conse-
quently, our simulations are performed at valuesdfelow
and above this value as shown in Table III.

We show in Fig. 8 the variation of the computed order
parameter withx over the range used. No sharp change is
indicated as the value of,=0.145 is crossed.

We concentrate here on the data at the values atfove
k.. Using the same procedure as above, essentially the same
conclusion follows. Figures(8) and 9b) show that no sig-
nificant change in the evaluation of the order parameter at
the larger volumes exists fotr=0.146 ath=0.005 and as
seen by the overlapping histograms fot=0.15 at
h=0.005.

Furthermore, quadratic fits inh at, for example,
x=0.146 and«=0.16 again have a leading “constant” that
is consistent with zero as shown in Figs.(d0and 1Qb),
respectively. Therefore, one is led again to the absence of
any signal for a parity-flavor-breaking phase at this value of

Finally the obvious leading linear dependence of the fit
indicates again a dominant quadratic effective potential at
this value ofg as well.
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V. CONCLUSIONS to 10%, we are not in a position to exclude the possibility that

such a signal(for the existence of a parity-flavor-broken
phas¢ may emerge for lattice sizes that are larger thah 10

It has been demonstrated that@t 0.0 such a phase may
exist in QCD in the largeN (color) limit. It has also been
demonstrated using various volumes that this phase does ex-
tend beyond3=0.0 at least up tg3=3.5. Should the anal-

such a way that one needs to be at infinte volume in the weal gy with the NJL model hold, this phase could pinch out at a

coupling limit. This possibility is based on the behavior that <5.0. Our data, up to the volumes considered'{ 1 eavor

) : his alternative.
%C;"(;lely happens for the two-dimensional Gross Nevel} It should be remarked that all current fits to spectrum and

This of course need not happen for QCD, but the pc)Ssig:urrent matrix element computations done negrand at

bility should be considered. Unfortunately, it is not subject to}[/r?lumes UIIJ tdo_ ﬂ% 32 rter:y Or]: the chiral Grc])ltdhst;)ne ne;]ture Off
total elimination through finite volume simulations. This is € pions. Indications, theretore, are such that, as shown tor-

so as the arguments f] supporting a volume dependence mally sometime ago, the behavior of QCD i_n this region is
of the signal requires at least one dimension of the lattice tgn’_nply related to the approach to zero lattice spacing and
be already largéinfinite) in extent. Clearly, if a signal is not infinite volum.e of a'the.ory that is fundamentally with a
seen for a prechosen large volume one might always argu%oldstone chiral realization as QCD is expected to be.
that it happens yet at a larger volume than the one used.
An alternative possibility is represented by the Nambu—
Jona-Lassinio model in four dimensions, which also exhibits
a parity-flavor-breaking phase for small values @f This | wish to thank Urs Heller for providing a modified QCD
model does not exhibit such a phase above a cutoff value afode for performing the simulations reported in this paper.
B even for infinite volume as shown ji8,16,17. The phase All these simulations were done on the SCRI IBM compute

It is clear from the discussion above that, up to lattice
volumes of 10, simulations of QCD with two flavors of
Wilson fermions do not indicate a parity-flavor-breaking
phase aj3=5.0 as postulated by Aoki and collaborators.

The authors of Ref.6] argue, however, that such signals
may only be seen at larger volumes for larger valueg,an
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