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We present data testing the existence of a parity-flavor-breaking phase in simulations of QCD with two
flavors of light Wilson fermions. This is done by explicit simulations on lattice sizes of 64, 84, and 104 for a
variety of values ofb andk as well as the coefficienth of an explicit breaking term included in the action. We
find that atb56/g2 equal to or greater than 5.0 extrapolation in the parameterh as well as in the lattice volume
show no indication of a phase where parity and flavor are spontaneously broken in the limit of zeroh.
@S0556-2821~97!03517-0#

PACS number~s!: 12.38.Gc, 11.15.Ha

I. INTRODUCTION

For many years now, Aoki@1–5# and collaborators@7–9#
have been advocating the existence of a parity-flavor-
breaking phase in QCD with Wilson fermions as a means of
explaining why the pion mass in this model approaches small
values as the Wilson parameterk approaches, for every value
of inverse square couplingb, a critical valuekc . This is in
spite of no-go theorems@10,11# that forbid such a phase in
the continuum limit.

Indeed analytic arguments have been presented to support
the existence of such a phase atb50.0. For finite and, in
particular, larger values ofb where current lattice simula-
tions are undertaken, such evidence is lacking@9#.

Although the picture advocated by Aoki may explain the
smallness of the pion masses ask approacheskc it also
explicitly states that these pions are not the Goldstone modes
of spontaneous chiral symmetry breaking. This presents a
problem in that it is then not clear that any of the soft pion
and other theorems associated with this phenomenon will be
respected on the lattice. In other words, this would not be the
expected simulation of true QCD. In fact, the largeN ana-
lytic analysis, which indicates the existence of this phase at
b50.0, also shows the nonvanishing of thep-p scattering
length which is contrary to the expected spontaneous chiral
symmetry breaking of QCD. This is of course unimportant at
b50.0 but is very important, if true, at the values ofb where
current simulations are performed.

The alternative picture where the explicit chiral
symmetry-breaking Wilson term causes the~otherwise Gold-
stone! pions to acquire a small mass proportional to the lat-
tice spacing does not have such a problem. Indeed, that all
these extra effects would disappear as the lattice spacing is
made smaller with the approach to the continuum limit was
formally demonstrated some time ago@12,13,15#.

Several models exhibit a parity-flavor-breaking phase. In
the Nambu–Jona-Lasinio~NJL! @14,16,17# model with Wil-
son fermions this phase was numerically and, in the large
N approximation, analytically@16,18# confirmed for values
of b up to a specific cutoff value. This phase disappears for
larger values ofb. The Schwinger model with two flavors of
Wilson fermions exhibits this phase at strong coupling and

also loses it at weak coupling@19#. Whereas the picture ad-
vocated by Aoki does not anticipate such a quenching effect
for the phase in QCD, recent phenomenological arguments
by Creutz@20# tend to show a preference for quenching of
this phase if it exists.

Thus it becomes necessary to explore this important fea-
ture by explicit simulations of QCD with Wilson fermions on
volumes larger than those already studied@9#.

II. SIGNATURE OF THE BROKEN PHASE

Following arguments presented by Aoki and Aoki and
Gocksch@1,9#, it is necessary, in order to investigate the
presence of the parity-flavor-breaking phase in simulations,
to introduce first an explicit breaking term into the action and
then extrapolate the measured order parameter as this term
tends to zero. Since the extrapolation is to be done, in prin-
ciple, after the ‘‘infinite volume’’ limit is taken, such simu-
lations must be done for larger volumes and any order pa-
rameter extrapolation be studied as a function of this
increasing volume. In such a situation a typical behavior of
the data at finite volumes that one might expect is shown in
Fig. 1. It is expected that the functional dependence of the
~measured! order parameter onh be such that for anyfinite
volume this order parameter vanishes ath50.0.

FIG. 1. Expected variation of computed order parameter with
volume.
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The variation of this dependence with increasing volume
is crucial to the initial determination of the existence of a
broken phase or its absence. The existence of a broken phase
in the infinite volume limit is signaled by a flattening of this
dependence for larger values ofh and a sharper drop to zero
ash approaches zero. Thus it is clear that a significant vol-
ume dependence of the order parameter at smaller values of
h is a necessary indicative factor for this phase. If, on the
other hand, the approach to zero is not varying significantly
as the volume increases, the infinite volume limit will not
sustain a broken phase.1

III. NUMERICAL SIMULATIONS

We report here on simulations done with two flavors of
Wilson fermions atb55.0, 5.5, and 8.0 on volumes of 64,
84, and 104 for a variety of values ofk ranging from less
than the appropriatekc to values greater thankc .

The choice of these three values ofb was determined as
follows. The valueb55.5 represents current simulations on
larger lattices where spectrum and matrix element calcula-
tions are being done; that atb55.0 represents a lower value
below which relevance to continuum physics is not expected,
and the last value atb58.0 is to extend the search to a much

larger value ofb in case the parity-flavor-breaking phase
were to be confirmed at the two smaller values.

We introduce into the QCD action a term of the form
ihc̄g5t3c wheret3 is a 232 matrix representing the third
element of the generators of flavor SU~2! algebra. Upon in-
tegrating the fermionic variables this is reflected in the simu-
lation by the product of two determinants:
DetM (h)* DetM (2h) where M (h) is given by a simple
modification of the Wilson matrixMW as

M ~h!5MW1 ihg5 .

As pointed out by Aoki, we also have here

g5M ~2h!g55M†

and

DetM ~2h!5DetM†~h!.

Simulations were done for the parameterh taking values
ranging from 0.001 to 0.3. For the volume dependence we
concentrate on the smaller values ofh and in particular
h50.001 andh50.005 for all three volumes considered and
mostly for values ofk greater thankc .

1If not careful, one may arrive at wrong conclusions. If simula-
tions are done only at larger values ofh one may use the slightly
varying values of the order parameter there to extrapolate these to
infinite volume.If this step is then followed by a linear extrapolation
to h50.0 a nonzero value for the order parameter ath50.0 may be
obtained. At this stage it is tempting to conclude that a broken
phase exists in that limit. This may be the wrong conclusion if this
is not accompanied by a significant increase in the value of the
order parameter at smaller values ofh.

FIG. 2. ~a! Histogram of computedPF at b55.0, k50.15,
h50.001 for all volumes considered; and~b! histogram of com-
putedPF at b55.0, k50.185, h50.005 for all volumes consid-
ered.

TABLE I. Parameters and measured order parameterPFL for
the case ofb55.0 on lattices of volumeL4, for L56, 8, and 10.

k h PF6 PF8 PF10

0.1500 0.001 0.01969~31! 0.01966~17! 0.01966~11!

0.1500 0.005 0.0983~15! 0.09834~86! 0.09835~51!

0.1500 0.050 0.968~15!

0.1500 0.100 1.863~26!

0.1500 0.300 4.310~48!

0.1810 0.001 0.0259~20! 0.0277~22! 0.0273~2!

0.1810 0.005 0.1319~90! 0.1294~57! 0.1365~80!

0.1820 0.001 0.0255~17! 0.02629~98! 0.02559~8!

0.1820 0.005 0.1282~87! 0.1325~74! 0.1315~53!

0.1820 0.050 1.396~56! 1.389 ~29!

0.1820 0.100 2.382~56! 2.380 ~32!

0.1820 0.300 4.619~58!

0.1850 0.001 0.0250~13! 0.0250~7! 0.0251~5!

0.1850 0.005 0.1225~52! 0.1273~71! 0.1223~18!

0.1850 0.050 1.287~65!

0.1875 0.001
0.1875 0.005
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The order parameter we compute is the expectation value
of the operatori c̄g5t3c. With our notation this is given as

PF52Im Tr„g5M 21~h!….

IV. RESULTS

For the three values ofb considered, simulations were
performed, as mentioned above, at various values ofk both
below and abovekc . We shall present the data and results
for each value ofb considered separately.

In all cases these simulations were also done at various
values of the external parameterh. For eachk the results of
the compuations on the three volumesL4, L56, 8, and 10,
were compared at the two values ofh50.001, andh50.005.
The variation of the order parameter with 1/L is then used to
obtain an ‘‘infinite volume’’ limit for all values ofh used.
The choice of 1/L is indicated here by the naive dimension of
the order parameter. Following this, the order parameter at
these values ofh were fitted to

PF5A1Bh1/31Ch1Dh2.

A separate fit to the pure quadratic polynomial

PF5A1Ch1Dh2

was also done.
The initial aim in this case is to detect the possible exis-

tence of any nonzero constantA at h50.0 as the limit of the
order parameter at that point. This is of particular interest for
comparing results at values ofk abovekc with those below
kc .

It is useful to point out here that in the presence of a
parity-flavor-breaking phase the order parameter is expected
to vary with h as

PF`5A1Bh1/31••• ,

this being the behavior of the root of the cubic equation
determining the position of the minimum of the quartic ef-
fective potential. In the absence of such a phase the same
behavior follows withA50.0. As the quartic potential be-
comes quadratic, the leading behavior becomes

PF5Ch1••• .

This should, when compared to the data, be also a useful
tool in determining which situation one is in.

FIG. 3. ~a! PF vs 1/L for b55.0, k50.182, h50.001; ~b! PF vs 1/L for b55.0, k50.182, h50.005; ~c! PF vs 1/L for b55.0,
k50.185,h50.001; and~d! PF vs 1/L for b55.0, k50.185,h50.005.
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A. b55.0

The value ofkc at this value ofb is known to be about
0.18. We, consequently, performed simulations well below
that value atk50.15 and well above it atk50.1875 and
intermediate values in between. We present in Table I the
results of these simulations.

The results in Table I clearly show also that the values
computed for the order parameter at the larger values of the
volume are only incrementally different from those measured

FIG. 4. ~a! PF vs h for b55.0, k50.15, and a quadratic fit;
and ~b! PF vs h for b55.0, k50.182, and a quadratic fit.

FIG. 5. Variation ofPF with k at b55.5 andh50.001.

FIG. 6. ~a! PF vs 1/L for b55.5, k50.162,h50.001; and~b!
PF vs 1/L for b55.5, k50.162,h50.005.

TABLE II. Parameters and measured order parameterPFL for
the case ofb55.5 on lattices of volumeL4, for L56,8,10.

k h PF6 PF8 PF10

0.1300 0.001 0.01689~22!
0.1300 0.005 0.0844~10!
0.1300 0.050 0.836~10!
0.1300 0.100 1.633~20!

0.1350 0.001 0.01750~23! 0.01750~14!
0.1350 0.005 0.0874~12! 0.0875~7!

0.1425 0.001 0.01860~29! 0.01863~17!
0.1425 0.005 0.0931~15!

0.1500 0.001 0.02000~40! 0.02009~24!
0.1500 0.005 0.0998~20!

0.1550 0.001 0.02079~51! 0.02140~36!
0.1550 0.005 0.1039~26!

0.1620 0.001 0.02132~54! 0.02200~42! 0.02246~31!
0.1620 0.005 0.1068~26! 0.1102~20! 0.1114~17!
0.1620 0.050 1.041~24! 1.052~14!
0.1620 0.100 1.954~36! 1.969~22!

0.1650 0.001 0.02158~6! 0.02205~43! 0.02299~29!
0.1650 0.005 0.1086~34! 0.1101~20! 0.1110~15!
0.1650 0.050 1.047~23! 1.056~14!
0.1650 0.100 1.966~35! 1.984~21!
0.1650 0.300 4.354~50!
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on the small volume for all values ofk indicated. For values
of k less thankc , these results are consistent within errors.
This is best illustrated by the overlapping histograms of these
measurements atk50.15 given in Fig. 2~a!. For k50.185 a
similar histogram, Fig. 2~b!, indicates only an incremental
increase of the peak of the distribution with volume. This
incremental change may be used to obtain an ‘‘infinite vol-
ume limit’’ of these values assuming a linear extrapolation in
1/L where L is the lattice linear dimension as shown, for
example, in Figs. 3~a!–3~d!. It is clear here that the data are
consistent with being essentially ‘‘constant’’ with volume. A
quadratic fit in h to this ‘‘infinite volume values’’ is not
significantly different from a fit to the data at volume 64

where we obtain, for example, Figs. 4~a! and 4~b!, a zero
constant for the extrapolated value of the order parameter at
h50.0 fork50.15 belowkc andk50.182 slightly above it.
For values ofk both below and abovekc this clearly implies
the absence of any volume dependence of the order param-
eter and, hence, in both cases and in particular the latter case,
the absence of a parity-flavor-breaking phase in the system at
b55.0. A fit with a leadingh1/3 is not as good a description
of the data as it leads to a much higherx2. Hence, we further
conclude that the effective potential of the system is pre-
dominanty quadratic at smallh.

B. b55.5

The value ofkc in this case is also known to be in the
neighborhood ofk50.16. Table II details the results of our
compuations for values ofk well below and above this value.
We concentrate in this discussion on the results obtained at
k50.162 and 0.165, both abovekc and where the postulated
phase is expected to exist.

We show in Fig. 5 the variation of the computed order
parameter withk over the range used forh50.001. No sharp
change is indicated as the value ofkc50.16 is crossed.

Analysis similar to that described above is also performed
for this data set.

The results at the larger volumes show only an incremen-
tal increase, if any, as shown, for example, for the case of
k50.162 at bothh50.001 andh50.005, in Figs. 6~a! and
6~b!.

Here again an ‘‘infinite volume’’ limit may indeed be
inferred and a quadratic fit inh gives for the ‘‘constant’’ in
the fit a value which is consistent with zero as shown in Figs.

FIG. 7. ~a! PF vs h for b55.5, k50.162, and a quadratic fit;
and ~b! PF vs h for b55.5, k50.165, and a quadratic fit.

TABLE III. Parameters and measured order parameterPFL for
the case ofb58.0 on lattices of volumeL4, with L56,8,10.

k h PF6 PF8 PF10

0.1200 0.001 0.01591~19!

0.1200 0.005 0.0796~10!

0.1200 0.050 0.7845~89!

0.1200 0.100 1.541~17!

0.1300 0.001 0.01691~25! 0.01708~15! 0.01702~10!

0.1300 0.005 0.0843~12! 0.0851~7! 0.0851~7!

0.1300 0.050 0.832~10!

0.1300 0.100 1.627~19!

0.1400 0.001 0.01782~29!

0.1400 0.005 0.0897~18!

0.1400 0.050 0.875~14!

0.1400 0.100 1.732~22!

0.1460 0.001 0.01806~30! 0.01861~20! 0.01853~14!

0.1460 0.005 0.0908~16! 0.0926~12! 0.0927~7!

0.1460 0.050 0.892~14!

0.1460 0.100 1.721~25!

0.1500 0.001 0.01823~29! 0.01857~21! 0.01855~10!

0.1500 0.005 0.0920~17! 0.0928~9! 0.0927~6!

0.1500 0.050 0.902~14!

0.1500 0.100 1.736~26!

0.1550 0.001 0.01838~29!

0.1550 0.005 0.0919~15!

0.1600 0.001 0.01829~28!

0.1600 0.005 0.0921~15!

0.1600 0.050 0.905~13!

0.1600 0.100 1.749~25!

0.1800 0.001 0.02012~76!

0.1800 0.005 0.0896~12!

0.1800 0.050 0.878~13!

0.1800 0.100 1.703~22!
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7~a!, and 7~b! for k50.162 andk50.165.
We are then again led to conclude the absence of a parity-

flavor-breaking phase at these values ofk abovekc .
Attempts at fits with a leadingh1/3 behavior again lead

invariably to worse fits indicating again a dominant quadratic
behavior of the effective potential for the order parameter.

C. b58.0

The value ofkc in this case has not been determined
numerically. We estimate its value using a tadpole improved
perturbative procedure as discussed in@21#. We obtain in this
case a value in the neighborhood ofkc.0.145. Conse-
quently, our simulations are performed at values ofk below
and above this value as shown in Table III.

We show in Fig. 8 the variation of the computed order
parameter withk over the range used. No sharp change is
indicated as the value ofkc.0.145 is crossed.

We concentrate here on the data at the values ofk above
kc . Using the same procedure as above, essentially the same
conclusion follows. Figures 9~a! and 9~b! show that no sig-
nificant change in the evaluation of the order parameter at
the larger volumes exists fork50.146 ath50.005 and as
seen by the overlapping histograms fork50.15 at
h50.005.

Furthermore, quadratic fits inh at, for example,
k50.146 andk50.16 again have a leading ‘‘constant’’ that
is consistent with zero as shown in Figs. 10~a! and 10~b!,
respectively. Therefore, one is led again to the absence of
any signal for a parity-flavor-breaking phase at this value of
b.

Finally the obvious leading linear dependence of the fit
indicates again a dominant quadratic effective potential at
this value ofb as well.

FIG. 8. Variation ofPF with k at b58.0 andh50.005.

FIG. 9. ~a! PF vs 1/L for b58.0, k50.146,h50.005; and~b!
histogram of computedPF at b58.0, k50.15, h50.005 for all
volumes considered.

FIG. 10. ~a! PF vs h for b58.0, k50.146, and a quadratic fit;
and ~b! PF vs h for b58.0, k50.16, and a quadratic fit.
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V. CONCLUSIONS

It is clear from the discussion above that, up to lattice
volumes of 104, simulations of QCD with two flavors of
Wilson fermions do not indicate a parity-flavor-breaking
phase atb>5.0 as postulated by Aoki and collaborators.

The authors of Ref.@6# argue, however, that such signals
may only be seen at larger volumes for larger values ofb, in
such a way that one needs to be at infinte volume in the weak
coupling limit. This possibility is based on the behavior that
actually happens for the two-dimensional Gross-Neveu
model.

This of course need not happen for QCD, but the possi-
bility should be considered. Unfortunately, it is not subject to
total elimination through finite volume simulations. This is
so as the arguments of@6# supporting a volume dependence
of the signal requires at least one dimension of the lattice to
be already large~infinite! in extent. Clearly, if a signal is not
seen for a prechosen large volume one might always argue
that it happens yet at a larger volume than the one used.

An alternative possibility is represented by the Nambu–
Jona-Lassinio model in four dimensions, which also exhibits
a parity-flavor-breaking phase for small values ofb. This
model does not exhibit such a phase above a cutoff value of
b even for infinite volume as shown in@18,16,17#. The phase
region pinches out at a finite value ofb.

Thus, whereas our results do not indicate that a nonzero
value ofPF at h50 emerges forb>5.0 for lattice sizes up

to 104, we are not in a position to exclude the possibility that
such a signal~for the existence of a parity-flavor-broken
phase! may emerge for lattice sizes that are larger than 104.
It has been demonstrated that atb50.0 such a phase may
exist in QCD in the largeN ~color! limit. It has also been
demonstrated using various volumes that this phase does ex-
tend beyondb50.0 at least up tob53.5. Should the anal-
ogy with the NJL model hold, this phase could pinch out at a
b,5.0. Our data, up to the volumes considered (104), favor
this alternative.

It should be remarked that all current fits to spectrum and
current matrix element computations done nearkc and at
volumes up to 163332 rely on the chiral Goldstone nature of
the pions. Indications, therefore, are such that, as shown for-
mally sometime ago, the behavior of QCD in this region is
simply related to the approach to zero lattice spacing and
infinite volume of a theory that is fundamentally with a
Goldstone chiral realization as QCD is expected to be.
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