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We analyze effects due to transverse degrees of freedom in QCD calculations of the fundamental hard
exclusive amplitude of ag* g→p0 transition. A detailed discussion is given of the relation between the
modified factorization approach~MFA! of Stermanet al. and standard factorization~SFA!. Working in the
Feynman gauge, we construct basic building blocks of the MFA from the one-loop coefficient function of the
SFA, demonstrating that Sudakov effects are distinctly different from higher-twist corrections. We show also
that the handbag-type diagram, contrary to naive expectations, does not contain an infinite chain of (M2/Q2)n

corrections: they come only from diagrams with transverse gluons emitted from the hard propagator. A simpler

picture emerges within the QCD sum rule approach: the sum over softq̄G•••Gq Fock components is dual to
q̄q states generated by the local axial vector current. We combine the results based on QCD sum rules with
perturbative QCD radiative corrections and observe that the gap between our curves for the asymptotic and CZ
distribution amplitudes is sufficiently large for an experimental discrimination between them.
@S0556-2821~97!00517-1#

PACS number~s!: 12.38.Bx, 12.38.Lg, 12.38.Qk, 13.40.Gp

I. INTRODUCTION

The form factorFg* g* p0(q1
2 ,q2

2) relating two~in general,
virtual! photons with the lightest hadron, the pion, plays a
crucial role in the studies of exclusive processes in quantum
chromodynamics. With only one hadron involved, it has the
simplest structure analogous to that of the form factors of
deep inelastic scattering. At large photon virtualities, com-
paring the perturbative QCD~PQCD! predictions@1–6# with
experimental data, one can get important information
about the shape of the pion distribution amplitudewp(x).
Because of its relation to the axial anomaly@7#, theg* g* p0

form factor has been an object of intensive studies since the
1960’s@8–13#. Experimentally,Fg* g* p0(q1

2 ,q2
2), for a small

virtuality of one of the photons,q1
2'0, was measured only

recently ate1e2 colliders by the CELLO@14# and CLEO
@15# Collaborations~in the latter case, only a preliminary
announcement of the results was made!. The possibility to
measureFg* g* p0(q1

2'0,q2
2) at fixed-target machines such as

the Continuous Electron Beam Accelerator Facility of Jeffer-
son Lab was also discussed@16#. These measurements in-
spired the studies of the momentum dependence of this form
factor within various models of the nonperturbative quark
dynamics@17–27#.

For a detailed comparison of PQCD predictions with ex-
perimental data, one should have reliable estimates of pos-
sible corrections to the lowest-order handbag contribution, in
particular, those due to the gluon radiation and higher-twist
effects. Within the standard PQCD factorization approach,
the one-loop radiative corrections to the coefficient function
were calculated in Refs.@4–6#. The authors of Refs.@21,28#
incorporated the modified factorization approach of Sterman

and collaborators@29,30# in which the factorization formula
invloves an extra integration over the impact parameterb'

and Sudakov double logarithms of@asln
2(b'

2)#n type are
summed to all orders. In Refs.@21,28# it was claimed that
such an analysis takes into account some transverse-
momentum effects neglected within the standard factoriza-
tion approach @1,31–33#. Incorporating the transverse-
momentum-dependent wave functionC(x,k'), Jakobet al.
@21# also proposed a model for the effects due to the intrinsic
~primordial! transverse momentum.

Another attempt to take into account the transverse mo-
mentum effects was made by Caoet al. @26#, where the light-
cone formalism expression@1# for the g* g→p0 was used.
Adopting an exponential ansatz for the transverse momen-
tum dependence of the wave function, the authors observed
large ‘‘higher-twist’’ corrections, with the conclusion that it
is difficult in such a situation to make a clear distinction
between different shapes of the pion distribution amplitude.

In this paper, we will discuss various types of transverse
momentum effects for theg* gp0 form factor. First, we
briefly outline the derivation of the leading-twist PQCD for-
mula for this process using a covariant factorization ap-
proach@34,31,35# similar to the operator product expansion
~OPE! formalism. In this framework, we identify the basic
types of the higher-twist corrections neglected in the leading-
twist approximation. We show, in particular, that for mass-
less quarks in a scalar theory no intrinsic transverse momen-
tum effects are neglected in the handbag diagram: because of
the simple singularity structure of the massless quark propa-
gator, such effects can be taken into account exactly and lead
to negligible pion mass correctionsmp

2 /Q2 only. In QCD, the
handbag diagram contains a twist-four term interpretable as a
O(k'

2 ) correction, but no terms corresponding to higher pow-
ers ofk'

2 . Hence, the infinite tower of (M2/Q2)n corrections

is generated by operators corresponding to higherq̄G•••Gq
Fock components. In Sec. II, we also discuss the structure of
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the results for the one-loop radiative corrections@4–6# cal-
culated within the standard factorization approach
@31,1,33,36,37#.

In Sec. III, we give a detailed one-loop derivation of the
basic formulas of the modified factorization approach
~MFA!. We write the relevant one-loop integrals in Sudakov
variables used in@29,30#, introduce the impact parameter
b' , as the Fourier conjugate variable to the transverse mo-
mentumk', and reproduce~at one loop! the structure of the
modified factorization@29#. In contrast~and complementary!
to the original analysis, we use Feynman gauge which allows
us to make a direct graph by graph comparison with the
results@4–6# obtained within the standard factorization ap-
proach~SFA!. Since the modified factorization formulas ap-
pear as an intermediate step in our calculations which even-
tually produce the results of the SFA, the two types of
factorization give identical results at any finite order of per-
turbation theory. The difference between the two approaches
is only in different organizations of all-order summation of
higher-loop terms. Namely, in the MFA, the Sudakov-type
double logarithms@asln

2(Qb')#n are treated as logarithmic
enhancements and are summed over all orders to produce a
factor suppressing the contributions from the large-b region.
In the standard approach, the@asln

2(Qb)#n terms are inte-
grated overb' and included order by order. We show that
for the g* gp0 form factor the use of the SFA procedure is
well justified since the results of theb' integration produce
rather mild corrections (;20% at one loop!. Another lesson
from our detailed one-loop study of the MFA is that though
the factorization formula of the MFA explicitly involves an
integral over the impact parameterb' ~or transverse momen-
tum k'), the results of such an integration do not produce
power suppressed contributions. Thus, despite the claims
made, e.g., in Refs.@38,39,21# higher-twist corrections are
not included in the MFA .

In Sec. IV, we discuss two recent attempts@21,26# to
model the intrinsic momentum corrections for the
Fg* gp0(Q2) form factor. The approach of Jakobet al. @21# is
based on the extrapolation of the modified factorization for-
mula into the nonperturbative region. At large impact param-
etersb, the Sudakov suppression factor is supplemented by
the nonperturbative wave functionC̃(x,b) reflecting the ef-
fects due to the primordial transverse momentum distribu-
tion. However, since terms which were inessential for the
derivation of the Sudakov factor at largeQ2 may be quite
important for smallQ2, it is not clear for whichQ2 region
such an extrapolation is sufficiently accurate. We observe, in
particular, that instead of producing theQ250 value dictated
by the axial anomaly@7,40#, the extrapolation formula gives
a logarithmically divergent result suggesting that the ex-
trapolation should not go down to very lowQ2. Cao et al.

@26# use the expression for theq̄q Fock state contribution to
Fg* gp0(Q2) derived in the light-cone formalism by Brodsky
and Lepage@1#. This expression involves no approximations
and has correct limits both for small and largeQ2. In par-
ticular, we demonstrate that, in full accordance with our gen-
eral analysis, it contains no higher-twist contributions. Still,
one should take into account that theq̄q term, by definition,
does not include the contribution due to higherq̄G•••Gq
Fock components of the pion light-cone wave function. As

shown in Ref.@2#, the latter coincides in the real photon limit
Q250 with that of theq̄q Fock component and doubles the
total result at this point. Clearly, the inclusion~or at least
modeling! of this contribution is necessary for a consistent
description of subasymptotic effects. Comparing the ap-
proaches of Refs.@21,26#, we emphasize that they incorpo-
rate two completely different light-cone schemes. The light-
cone formalism of Brodsky and Lepage@1# used in Ref.@26#
is equivalent to incorporating the infinite momentum frame.
On the other hand, the approach of Ref.@21# ~and that of the
underlying papers@29,30#! is based on the Sudakov decom-
position. The basic difference between the two light-cone
approaches is that the momentum of the virtual photon in the
g* g→p0 process is dominated by the transverse component
in the BL light-cone scheme while it is purely longitudinal in
the Sudakov approach.

In Sec. V, we use QCD sum rule ideas to get a model for
the Fg* gp0(Q2) form factor which reproduces both the
Q250 constraint imposed by the axial anomaly and the
lowest-order PQCD results for highQ2. We show also that
the results obtained on the basis of QCD sum rules and
quark-hadron duality can be interpreted in terms of the ef-
fective valence wave function which absorbs information
about soft dynamics of higher Fock components of the stan-
dard light-cone approach. Combining these results with
PQCD radiative corrections, we obtain an expression de-
pending on the choice of the low-energy distribution ampli-
tude. The difference between our results for the asymptotic
and Chernyak-Zhitnitsky~CZ! distribution amplitudes is suf-
ficiently large for an unambiguous experimental discrimina-
tion between these two possibilities.

II. FACTORIZATION

A. Structure of factorization

We define the form factorFg* g* p0(q1
2 ,q2

2) of the
g* g*→p0 transition through the matrix element

4pE ^p,pW uT$Jm~X! Jn~0!%u0&e2 iq1Xd4X

5 ie2A2 emnabq1
aq2

bFg* g* p0~q1
2 ,q2

2!, ~2.1!

whereJm is the electromagnetic current of the light quarks

Jm5euūgmu1edd̄gmd ~2.2!

and up,pW & is a one-pion state with the four-momentump.
Note, that our definition~aimed at getting a simple coeffi-
cient for the spectral density for the triangle anomaly dia-
gram, see Sec. V! differs from that in Refs.@1,21,26# by
factorA2/4p. Experimentally, the most favorable situation is
when one of the photons is real or almost real:q1

2;0. In this
case, we will denote the form factor byFg* gp0(Q2), where
Q2[2q2

2 is the virtuality of the other photon. It should be
sufficiently large for PQCD to be applicable. In general, a
powerlike behavior ofFg* gp0(Q2) in the large-Q2 limit can
be generated by three basic regimes~see Fig. 1!.

The dominant contribution is provided by the first regime
@Fig. 1~a!# which corresponds to large virtuality flow through
a subgraphV containing both photon vertices. The power-
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counting estimate for the large-Q2 behavior of such a con-
figuration with arbitrary number of external lines ofV is
given by ~see Refs.@22,24#!

F~Q2!&Q2(
i

t i, ~2.3!

wheret i ’s are twists~dimension minus spin! of the quark and
gluon external lines ofV, with t51 for the quarks andt50
for the gluons in a covariant gauge. Hence, for the leading
term, one should take the minimal number of quark lines
~two in our case! while the number of the gluonicA fields is
arbitrary. Generically, the leading contribution of this type
can be written as

Fg* g* p0~q1 ,q2!5E C~j,h,q1 ,q2 ;m2!

3^puO~j,h!u0&um2d4jd4h,
~2.4!

where the parameterm2 is the factorization scale,
C(j,h,q1 ,q2) corresponds to the short-distance amplitude
with two external quark lines, andO(j,h) is a composite
operator O(j,h); q̄ (j)g5gnE(j,h;A)q(h). The path-
ordered exponential

E~j,h;A![PexpS igE
h

j

Am~z!dzmD
of the gluonic fieldA results from summation over external
gluon lines ofV. For the quark propagator, e.g., one has

Sc~j2h!1E Sc~j2z!gmgAm~z!Sc~z2h!d4z1•••

5E~j,h;A!Sc~j2h!@11O~G!#, ~2.5!

whereO(G) depends on the gluonic fields through the gluon
field strength tensorGmn and its covariant derivatives. Since
Gmn is asymmetric with respect to the interchange of the
indicesm, n, it should be treated as a twist-one field.

Basically, the contribution~2.4! is analogous to the quark-
antiquark term of the standard operator product expansion
for Ja(0)Jb(z). In this form, the operatorO(j,h) still con-
tains nonleading twist terms. To get the lowest-twist part, we
should expandO(j,h) into the Taylor series

q̄~j!g5gnE~j,h;A!q~h!5 (
n50

`
1

n!
Dn1Dn2

•••Dnn

3 q̄~j!g5gnDn1
Dn2

•••Dnn
q~j!;

D5h2j, ~2.6!

and pick out only the symmetric-traceless part
q̄g5$gnDn1

Dn2
•••Dnn

%q of each local operator from this
expansion. The traces correspond to operators with con-
tracted covariant derivativesDnDn which, for dimensional
reasons, are accompanied by powers of the interval (j2h)2.
Likewise, the (j2h)2 factors produce extra powers ofz2

after integration overj and h. Finally, each power ofz2

results in an extra power of 1/Q2, i.e., each pair of contracted
covariant derivativesDn

•••Dn in a higher-twist operator
produces 1/Q2 suppression at largeQ2. Hence, the twist-two
part ofO(j,h) corresponds to the lowest term of the expan-
sion over (j2h)2:

O~j,h!5O~j,h!u~j2h!2501O@~j2h!2#. ~2.7!

The light-cone matrix element can be parametrized in terms
of the pion distribution amplitude~DA! wp(x):

^0uOn~j,h!up0,p&u~j2h!250

5 ipnE
0

1

e2 ix~jp!2 i x̄ ~hp!wp~x!dx , ~2.8!

which gives the probability amplitude that the fast-moving
pion is a q̄q pair with its longitudinal momentump shared
among the quarks in fractionsx and x̄[(12x) ~throughout
the paper, we use the ‘‘bar’’ convention for the momentum
fractions: x̄[12x, ȳ[12y, etc.!. Substituting this repre-
sentation into the generic expression~2.4!, we obtain the
hard scattering formula

Fg* gp0~q1 ,q2!5
4p

3 E
0

1

T~q1 ,q2 ;xp, x̄ p!wp~x!dx,

~2.9!

where the factor 4p/3 is due to our normalization of the
form factor andT(q1 ,q2 ;k, k̄ ) is the amplitude for the sub-
processg(q1)g* (q2)→ q̄ ( k̄ )q(k). Calculating this lowest-
twist amplitude in the momentum representation, we should
realize that the neglect of the higher-twist operators having
extraD2 is equivalent to takingk250, k̄ 250 for the exter-
nal quark momenta. In general, this limit is singular for dia-
grams with loops, and one should regulate the resulting mass

FIG. 1. Structure of factorization for theFg* gp0(Q2) form fac-
tor at largeQ2.
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singularities lnk2 in some way, e.g., by dimensional regular-
ization or by taking massive quarks andk25mq

2 . In the latter
case, only the logarithmicmq dependence should be kept in
the final result: keeping the power termsmq

2/Q2 exceeds, for
light quarks, the accuracy of the method. The subsequent
procedure is to split the logarithms ln(Q2/m2) into the long-
distance and short-distance parts ln(Q2/m2)5ln(Q2/m2)
1ln(m2/m2) and absorb the long-distance ones ln(m2/m2) into
the pion distribution amplitude:wp(x)→wp(x;m).

Thus, the lowest-twist contribution corresponds to the
parton picture in which only the longitudinal~proportional to
p) components of the external quark momenta appear. In the
lowest order~see Fig. 2!, the amplitude for transition of two
photons into the quark-antiquark pair with collinear lightlike
momentaxp, x̄ p is given1 by the quark propagator:

T0~x,Q2!5
1

2~q12xp!2
5

1

xQ2
. ~2.10!

and the PQCD result@1# for the large-Q2 behavior of the
form factor is

Fg* gp~Q2!5
4p

3 E
0

1wp~x!

xQ2
dx[

4p f p

3Q2
I 0 . ~2.11!

Necessary nonperturbative information is accumulated in the
same integral,

I 05
1

f p
E

0

1wp~x!

x
dx5

Q2

f p
E

0

1

T0~x,Q2!wp~x!dx,

~2.12!

that appears in the one-gluon-exchange diagram for the pion
electromagnetic form factor@32,41,42#. The value ofI de-
pends on the shape of the pion distribution amplitude~DA!
wp(x). In particular, using the asymptotic form@32,41#

wp
as~x!56 f px~12x! ~2.13!

gives I 0
as53. If one takes the Chernyak-Zhitnitsky ansatz

@43#

wp
CZ~x!530f px~12x!~122x!2, ~2.14!

the integralI 0 increases by a sizable factor of 5/3:I 0
CZ55

and one can hope that this difference can be used for an
experimental discrimination between the two competing
models for the pion DA.

Since one of the photons has a small virtuality, one
should, in principle, also take into account the regime@see
Fig. 1~b!# involving a long-distance propagation in theq1
channel, with large momentum flowing through a central
subgraphW containing only the virtual photon vertex. In the
lowest order, this subgraph corresponds to a hard-gluon ex-
change, just as in the asymptotically leading PQCD contri-
bution to the pion electromagnetic form factor. The power
counting for such a contribution intoFg* gp0(Q2) is given by

F~Q2!&Q2tO1
2tO2, ~2.15!

where tOi
, i 51,2 are the twists of composite operatorsOi

corresponding to theq1 andp channel, respectively. Taking
into account that twist of a gauge-invariant color-singlet
composite operatorOi cannot be less than 2, we conclude
that this regime gives a nonleadingO(1/Q4) contribution.

The third regime@Fig. 1~c!# corresponds to Feynman
mechanism, i.e., to a situation when the passive quark is soft.
Using the wave function terminology, we can say that
Fg* gp0(Q2) in this regime is given by an overlap of soft
wave functions describing the initial and final state. This
contribution also behaves as 1/Q4 at largeQ2.

B. Handbag diagram and transverse momentum

For the OPE contribution, the simplest power corrections
come either from the traces of the two-body operatorO(x,y)
which appears in the handbag diagram or from a direct in-
sertion of gluon lines with physical polarizations into the
propagator connecting the photon vertices. SinceDnDn can
be interpreted in the momentum representation as the~gen-
eralized! virtuality k2 of the quark field, the higher-twist op-
erators containingDnDn looks like a natural candidate for
description of the effects due to the transverse momentum of
the quarks. However, there are some practically important
amplitudes which, due to their simple singularity structure,
are ‘‘protected’’ from the towers of (D2)n-type higher-twist
corrections. The most well-known example is given by the
classic ‘‘handbag’’ diagram for deep inelastic scattering. The
lowest-order diagram for theg* g→p0 form factor ~Fig. 2!
has similar properties. Consider its analogue in a toy scalar
model:

F~q2 ,p!5
1

4p2E e2 iq2z^0uf~0!f~z!up&
d4z

z2
.

~2.16!

The first term in thez2 expansion for the matrix element,

^0uf~0!f~z!up&5j2~zp!1z2j4~zp!1~z2!2j6~zp!1•••,
~2.17!

corresponds to the twist-two distribution amplitude while
subsequent terms correspond to operators containing an in-
creasing number of]2’s. It is straightforward to observe that,
while the twist-two term produces the 1/Q2 contribution, the
twist-four term is accompanied by an extraz2 factor which

1In fact, there are two diagrams obtained from one another by the
interchange of photon vertices. However, because of the symmetry
of the distribution amplitudewp(x)5wp(12x), their contributions
can be united.

FIG. 2. Lowest-order diagram.
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completely kills the 1/z2 singularity of the quark propagator,
andd4z integration givesd4(q2xp), which is invisible for
largeQ2. The same is evidently true for all the terms accom-
panied by higher powers ofz2. This means that the handbag
diagram contains only one term with a powerlike behavior
for largeQ2: it cannot generate higher powers of 1/Q2 which
one could interpret as the (^k2&/Q2)n expansion. Since only
thez250 projection of the bilocal operator survives, we can
parametrize

^0uf~0!f~z!up&5E
0

1

w~x!e2 i x̄ ~zp!dx1•••, ~2.18!

where the ellipsis stands for terms producing the ‘‘invisible’’
contributions, and write the lowest-order term as

F~q2 ,p!52E
0

1 w~x!

~q22 x̄ p!2
dx52E

0

1 w~x!

~q12xp!2
dx

5E
0

1 w~x!

xQ21x x̄p2
dx. ~2.19!

Hence, the handbag contribution in this case contains only
the hadron-mass corrections~see@44#!, but it gives no infor-
mation about finite-size effects. In the momentum represen-
tation, the origin of this phenomenon can be traced to the
fact that a straightforward expansion of the propagator is just
in terms of traceless combinations:

1

~q2k!2
5u~ uku,uqu! (

n50

`
2n

~q2!n11
qm1

•••qmn$km1
•••kmn

%

1u~ uku.uqu! (
n50

`
2n

~k2!n11

3qm1
•••qmn$km1

•••kmn
%. ~2.20!

The handbag contribution corresponds touku,uqu, and this
part of Eq. ~2.20! without any approximation produces an
expression equivalent to treating thek momentum as purely
longitudinalk5 x̄ p.

It is worth noting here that though the hadron-mass cor-
rections have apowerlike behavior (p2/Q2)n, they should
not be classified ashigher-twist corrections: they result
from the kinematic hadron-mass dependence of thelowest-
twist contribution. For deep inelastic scattering, the possi-
bility to calculate the target-mass corrections within the
lowest-twist contribution is known as thej-scaling phenom-
enon @45,46#. As emphasized by Elliset al. @44#, the
j-scaling phenomenon can be also understood in terms of the
primordial transverse momentum, if one takes into account
that, for the lowest-twist term, the transverse momentum dis-
tribution is totally due to the nonzero hadron mass, i.e., it has
a purely kinematic nature and for this reason can be calcu-
lated exactly. The quark propagator in QCD has a stronger
singularityẑ/z4. As a result, the handbag-type contribution in
QCD contains a twist-four operator with extraD2 @47#, but
no operators with higher powers ofD2.

One may argue that there is another part in Eq.~2.20!,
whenk is large~i.e., uku.uqu). In this case, thek line corre-
sponds to high virtualities. If such a large momentum goes
directly into the soft hadronic wave function, theQ2 behav-
ior of such a contribution repeats thek2 dependence of the
soft wave function, i.e., very rapidly~say, exponentially! de-
creases withQ2 ~see Sec. IV C below for an explicit illus-
tration!. A more favorable possibility is when the large mo-
mentum by-passes the wave function. Such a configuration
can give a leading-power contribution. In the latter case, the
large virtuality flows through several lines forming a sub-
graph with the same~minimal possible! number of external
quark lines as the lowest-order leading twist contribution. In
the QCD factorization scheme, the relevant contribution pro-
duces a part of a higher-order coefficient function@see Fig.
1~a!#.

C. One-loop radiative correction to the coefficient function

At one loop, the coefficient function for theg* g→p0

form factor was calculated in Refs.@4–6#:

T~x,Q2;m2!5
1

xQ2H 11CF

as

2pF S 3

2
1 lnxD ln~Q2/m2!

1
1

2
ln2x2

xlnx

2~12x!
2

9

2 G J . ~2.21!

In full compliance with the factorization theorems@31,1#
~see also@34,48,49#!, the one-loop contribution contains no
Sudakov double logarithms ln2Q2 of the large momentum
transferQ. Physically, this result is due to the color neutral-
ity of the pion. In the axial gauge, the Sudakov double loga-
rithms appear in the box diagram~c! in Fig. 3 but they are
cancelled by similar terms from the quark self-energy cor-
rections in Figs. 3~d! and 3~e!. In Feynman gauge, the double
logarithms ln2Q2 simply do not appear in any one-loop dia-
gram. It is easy to check that the term containing the loga-
rithm ln(Q2/m2) has the form of convolution

1

xQ2
CF

as

2pS 3

2
1 lnxD5E

0

1 1

jQ2
V~j,x! dj ~2.22!

of the lowest-order~‘‘Born’’ ! term T0(j,Q2)51/jQ2 and
the kernel

V~j,x!5
as

2p
CF F j

x
u~j,x!S 11

1

x2j D
1

j̄

x̄
u~j.x!S 11

1

j2xD G
1

~2.23!

governing the evolution of the pion distribution amplitude.
The 1 operation is defined here, as usual@50#, by

@F~j,x!#15F~j,x!2d~j2x!E
0

1

F~z,x! dz. ~2.24!
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Since the asymptotic distribution amplitude is the eigen-
function of the evolution kernelV(j,x) corresponding to
zero eigenvalue,

E
0

1

V~j,x! was~x! dx50, ~2.25!

the coefficient32 1 lnx of the ln(Q2/m2) term vanishes after the
x integration withwas(x). Hence, the size of the one-loop
correction for the asymptotic DA ism independent and de-
termined by the remaining terms. TheI integral

I[
Q2

f p
E

0

1

T~x,Q2! wp~x! dx ~2.26!

@cf. Eq. ~2.12!# then can be written as

I uw5was53H 12
5

2
CF

as

2pJ . ~2.27!

The negative coefficient25/2 here comes from the constant
term 29/2 @see Eq.~2.21!# partially compensated by two
logarithmic terms which give together12, with 17/4 gen-
erated by the 1

2 ln2x contribution and 11/4 by
2xlnx/@2(12x)# term. With CF54/3, the net factor is

@12 5
3 as /p#. Hence, foras /p'0.1, the one-loop correction

is less than 20% and theas /p expansion looks ‘‘reasonably
convergent.’’ Taking the CZ form forw(x;m), we get

I uw~x,m!5wCZ~x!55H 12CF

as

2pS 5

6
ln~Q2/m2!1

49

72D J .

~2.28!

Again, the negative coefficient249/72 comes from the
29/2 term compensated by an increased contribution from
the logarithmic terms: 1

2 ln2x gives 1263/72 and
2xlnx/@2(12x)# gives 1/6. Form5Q, the one-loop modified

factor is@12 49
108(as /p)#, i.e., the total correction is smaller

than that for the asymptotic DA. Since the result ism depen-
dent in this case, by an appropriate choice ofm, namely,
taking m5e49/120Q'1.5 Q we can formally get a vanishing
O(as) correction. Then the one-loop expression for the form
factor would coincide with the lowest-order formula,
but with the distribution amplitudewp

CZ(x;m) evolved to
the scale m'1.5 Q. However, at this scale,wp(x;m)
does not necessarily have the CZ form. To treat the evolu-
tion in a consistent way, we set the boundary condition that
wp

CZ(x;m) has the canonical CZ form wp
CZ(x)[

30 f p x x̄~122x)2 at some specific scalem5Q0 ~the original
derivation@43# assumesQ050.5 GeV!. Taking into account
thatwp

CZ(x) is a combination of two lowest eigenfunctions of
the evolution kernel, we can write the solution of the evolu-
tion equation in the leading logarithm approximation:

wp
CZ~x;m!5wp

as~x!1$wp
CZ~x!2wp

as~x!%F lnQ0
2/L2

lnm2/L2G g2 /b0

,

~2.29!

where g2550/9 is the relevant anomalous dimension and

b05112 2
3 Nf is the lowest coefficient of the QCDb func-

tion. In what follows, we takeNf53 andb059. Choosing
m5Q, we get, for theI integral ~see also@51#!,

I uwp~x,Q0!5w
p
CZ~x! 53H 12

5

3

as

p J S 12F lnQ0
2/L2

lnQ2/L2G 50/81D
15H 12

49

108

as

p J F lnQ0
2/L2

lnQ2/L2G 50/81

.

~2.30!

Note that the ln2x term generates a larger positive contri-
bution for wp

CZ(x) becausewp
CZ(x) is more concentrated in

the end-point regionx;0 thanwp
as(x). Furthermore, if the

distribution amplitude is extremely concentrated in the end-
point region x;0, a positive contribution from the12 ln2x
term dominates the correction and generates a large positive
net effect. In such a situation, the one-loop correction van-
ishes only if m5aQ with a,1. The broader the DA, the
smaller should be the parametera which reduces the one-
loop expression to the lowest-order one. Since the effective
normalization scale is smaller for a broader DA, perturbative
QCD applicability is postponed to higherQ2. One may
speculate that this phenomenon simply indicates that for a
broad DA the quark virtualityxQ2 is a more natural choice
for the effective factorization scale than the photon virtuality
Q2 ~i.e.,a;^x&) and PQCD is applicable only if the average
xQ2 rather thanQ2 itself is large enough. One faces a similar
situation studying the PQCD contribution to the pion form

FIG. 3. One-loop diagrams.
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factor. The average virtualitŷ xyQ2& of the exchanged
gluon in that case is essentially smaller thanQ2 and one may
question both theself-consistencyand reliability of the
PQCD analysis at accessible energies@52,53#. In Ref. @30#, it
was argued that due to the Sudakov effects in the impact
parameter space, the PQCD treatment of the lowest-twist
one-gluon-exchange term for the pion form factor is
self-consistent2 at smallerQ2 than suggested by the estimates
of the magnitude of the average gluon virtualityxyQ2. One
may expect that similar effects manifest themselves also in
theg* gp0 form factor. Indeed, our numerical analysis of the
one-loop correction shows that takinga51 ~rather than
a5^x&) provides a good choice for the factorization scale. It
is accompanied by a small one-loop correction even for a
broad DA of CZ type.

It is worth noting here that, even without incorporating
the impact parameter representation, one can observe some
traces of the Sudakov effects in the structure of the one-loop
coefficient function in the region of small fractionsx. As
explained earlier, the one-loop term is obtained by calculat-
ing the g* g→ q̄q amplitude for massive on-shell quarks
with subsequent absorption of the mass logarithms in the
form ln(m2/m2) into the distribution amplitude. When the vir-
tuality xQ2 of the quark line connecting the photon vertices
becomes small, the vertex correction for the virtual photon
@Fig. 3~a!# is dominated~in Feynman gauge! by theoff-shell
Sudakov double logarithm which can be written as

2
as

2p
CFln

Q2

m2
ln

Q2

xQ2
,

where xQ2 is the virtuality of the hard quark. Of course,
since this virtuality is parametrically of the order ofQ2, we
get only a single logarithm with respect toQ2, namely,
(as/2p) CFln(Q2/m2)lnx @cf. ~2.21!#, just as required for fac-
torization. However, if we write the sum of two terms

as

4p
CFF ln2x12ln

Q2

m2
lnxG

which dominate the small-x region as

as

4p
CFF ln2

xQ2

m2
2 ln2

Q2

m2G ,

we see that it converts into the standardon-shell Sudakov
double logarithm

2
as

4p
CFln2

Q2

m2

when xQ2;m2. Of course, the region wherexQ2 is para-
metrically of the order of the IR cutoffm2 is outside the
formal applicability region of the factorization approach, and

there is no surprise that double logarithms ofQ2 appear
there. Note the well-known differenceas/2p→as/4p be-
tween theoff- and on-shell forms of the double logarithms.
In higher orders, Sudakov logarithms are expected to expo-
nentiate producing the Sudakov form factor3

exp@2(as/4p) CFln2(Q2/m2)#, and the region of very small
xQ2 is relatively suppressed due to Sudakov effects.

This also means that takingm2;xQ2 in Eq. ~2.21! is not
an optimal choice, since it is accompanied by a negative
rather than vanishing correction. Indeed, the original motiva-
tion to take a lower scalem,Q was to compensate the posi-
tive contribution from the ln2x term. However, taking
m2;xQ2 in Eq. ~2.21! for a wide DA generates a negative
(2 ln2x) term which overkills the original positive12 ln2x term
and converts its sign in the net result. A negative correction,
in its turn, suggests that a larger factorization scale is a better
choice. This indicates that, for a broad DA, the typical dis-
tances probed in the hard subprocess are larger than those
corresponding to 1/Q2 but smaller than those corresponding
to the inverse of the average quark virtualityxQ2.

As we will see in the next section, the modified factoriza-
tion @30# is similar to the choicem2;xQ2 and for this reason
it is accompanied by a negative correction. We will also
explicitly show that the latter, in full accordance with the
MFA analysis@29#, can be explained by Sudakov effects in
the impact parameter space.

III. ONE-LOOP RADIATIVE CORRECTIONS AND
TRANSVERSE MOMENTUM

A. Vertex correction for virtual photon and Sudakov effects

To establish the connection between standard and modi-
fied factorization approaches, we give below a rather detailed
discussion of the structure of the one-loop coefficient func-
tion using the Sudakov decomposition for the loop momenta.
We use the same definition of transverse momentumk' as in
Refs. @29,30#, introduce the impact parameterb' , and then
translate our results intob' space. To be able to make a
diagram by diagram comparison with Ref.@5#, we use the
Feynman gauge. This also allows us to give an independent
one-loop derivation of theb' space Sudakov effects which
complements the general approach@29# based on the analysis
in the axial gauge.4 We find it also instructive to demonstrate
how theb'-space double logarithms appear in a situation in
which double logarithms ofQ2 are absent in any diagram.

We start with the diagram 3~a! which is the most natural
suspect in a search for Sudakov effects in Feynman gauge.
According to general rules, calculating the coefficient func-
tion one should assume that external quarks carry purely lon-
gitudinal lightlike momentaxp and x̄ p. Using p and q1
~abbreviated in this section toq for convenience! as the basic

2Note, that self-consistency of the PQCD expansion~small as

corrections! for the lowest-twist term does not necessarily mean
that PQCD is reliable, since power corrections (M2/Q2)n can still
be large~see discussion at the end of Sec. V!.

3For the pion EM form factor, exponentiation of a similar combi-
nation (CFas/4p)@ ln2(xyQ2/m2)2ln2(Q2/m2)# suggested in Ref.@36#
was verified by a two-loop calculation@54#.

4In a recent paper@55#, Li gave a covariant gauge derivation of the
modified factorization for inclusive processes and heavy-quark de-
cays. However, in technical implementation, his approach is quite
different from ours.
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Sudakov light-cone variables, we write the momentumk of
the emitted gluon as

k5~j2x!p1hq1k' ~3.1!

and then take theh integral by residue. After that, the con-
tribution of Fig. 3~a! ~and any other one-loop diagram! can
be schematically written as

Ti
~1!~x,Q2!5

as

2p
CFE

0

1

djE Mi~x,Q2;j,k'!
d2k'

2p

[
as

2p
CF ti~x,Q2!. ~3.2!

The internal amplitudeMa(x,Q2;j,k') for the diagram 3~a!
is given by

Ma~x,Q2;j,k'!5
1

xQ2H 2S j̄

x̄
D Q21k'

2 / j̄

k'
2 @jQ21k'

2 / j̄ #
u~j.x!

1
k'

2 u~j,x!

@jQ21k'
2 / j̄ #@j~x2j!Q21xk'

2 #
J .

~3.3!

The k' integral diverges both in thek'→` and k'→0
limits. The ultraviolet large-k' divergences~they are actually
irrelevant to our analysis! are removed by theR operation,
while the low-k' collinear divergences can be regulated by
taking massive quarks. In that case,k'

2→k'
2 1m2 and the

small-k' divergence~collinear singularity! is converted into
the mass logarithm ln(Q2/m2) generating the evolution of the
pion distribution amplitude. The Sudakov effects are also
related to the 1/k'

2 singularity. It is easy to check that the
coefficient in front of 1/k'

2 in the singular part,

Ma
sing~x,Q2;j,k'!52

1

xQ2

Q2

k'
2 @jQ21k'

2 / j̄ #
S j̄

x̄
D u~j.x!,

~3.4!

has the form of the product of the Born term 1/jQ2 and the
relevant part

Va~j,x!5S j̄

x̄

u~j.x!

j2x D
1

~3.5!

of the evolution kernel~2.23!. Note, that calculating the evo-
lution logarithm lnQ2/m2 from d2k' /k'

2 , one can takek'50
~‘‘neglect k'’’ ! in all other places, in particular, in the de-
nominator factorjQ21k'

2 / j̄ . However, nothing prevents us
from going beyond the leading logarithm approximation.
Keeping thek'

2 terms, we can take into account those con-
tributions which do not have logarithmic behavior with re-
spect tom2 or Q2. We will see that among them, there are
‘‘Sudakov’’ terms with a specific double-logarithmic depen-
dence on the impact parameterb' , the variable which is
Fourier-conjugate to the transverse momentumk' . To sepa-
rate the contributions related to the evolution kernel from
those corresponding to Sudakov effects, we first make the
decomposition

2
1

@jQ21k'
2 / j̄ #xQ2

5S 1

jQ21k'
2 / j̄

2
1

xQ2D 1

~j2x!Q21k'
2 / j̄

~3.6!

and notice that the denominator factorjQ21k'
2 / j̄ reduces toxQ2 whenj5x andk'50. Hence, we can write

2p

Q2
ta
sing~x,Q2!52E

x

1

djE d2k'

j̄ / x̄

k'
2 @jQ21k'

2 / j̄ #xQ2
5E

x

1

djE d2k'

jQ21k'
2 / j̄

H j̄ / x̄

k'
2 @~j2x!Q21k'

2 / j̄ #

2d~j2x!d2~k'!E
x

1

dzE d2 k̃'

z̄ / x̄

k̃'
2 @~z2x!Q21 k̃'

2 / z̄ #
J . ~3.7!

To disentangle the product of thed functions in thej andk' variables, we rewrite Eq.~3.7! as

E
0

1

djE d2k'

jQ21k'
2 / j̄ H 1

k'
2 S ~ j̄ / x̄ ! u~j.x!

~j2x!Q21k'
2 / j̄

D
1

1d~j2x!E
x

1 z̄

x̄
S 1

k'
2 @~z2x!Q21k'

2 / z̄ #
2d2~k'!E d2 k̃'

k̃'
2 @~z2x!Q21 k̃'

2 / z̄ #
D dz J , ~3.8!

where the combination

S ~ j̄ / x̄ ! u~j.x!

~j2x!Q21k'
2 / j̄

D
1

[
~ j̄ / x̄ ! u~j.x!

~j2x!Q21k'
2 / j̄

2d~j2x!E
0

1 ~ z̄ / x̄ ! u~z.x!

~z2x!Q21k'
2 / z̄

dz ~3.9!

is an analogue of the ‘‘plus’’ operation for the case when the transverse momentum is present. Similarly, the expression
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1

k'
2 @~z2x!Q21k'

2 / z̄ #
2d2~k'!E d2 k̃'

k̃'
2 @~z2x!Q21 k̃'

2 / z̄ #
~3.10!

can be interpreted as a ‘‘plus’’ distribution with respect tok' . Extracting the pure 1/k'
2 singularity from the (•••)1 term in

Eq. ~3.8!,

1

k'
2 S ~ j̄ / x̄ ! u~j.x!

@~j2x!Q21k'
2 / j̄ #

D
1

5
1

Q2k'
2 S ~ j̄ / x̄ ! u~j.x!

~j2x!
D

1

2
1

Q2S ~ j̄ / x̄ ! u~j.x!

~j2x!@ j̄ ~j2x!Q21k'
2 #

D
1

, ~3.11!

we can write Eq.~3.8! in the impact parameter representation
as

ta
sing~x,Q2!5

1

2pE0

1

djE B~j;bQ!@Va~j,x!L~bm!

1Ea~x,j;bQ!1d~j2x!Sa~x,bQ!# d2b' .

~3.12!

The functionB(j;bQ) gives the Born term in theb space:

B~j;bQ!5
1

2pE e2 ik'b'

jQ21k'
2 / j̄

d2k'5 j̄ K0~bQAj j̄ !,

~3.13!

whereb5ub'u andK0(z) is the modified Bessel function. By

L(bm) we denote a regularized version of the integral result-
ing from the first term in Eq.~3.11!:

L~bm!5Reg~m!H 1

2pE d2k'

eik'b'

k'
2 J . ~3.14!

In particular, if the integral is regulated by
1/k'

2→1/(k'
2 1m2), then L(bm)5K0(bm). The function

L(bm) containing the mass logarithm ln(mb) is multiplied
by the relevant partVa(j,x) of the evolution kernel. As dis-
cussed in the preceding section, the mass singularity ln(m)
must be absorbed@in the form ln(m/m), wherem is the fac-
torization scale# into the redefinition of the distribution am-
plitude: wp(x)→wp(x;m). The second term in Eq.~3.11! is
given by the functionE(x,j;bQ) which also contains the
evolution kernelVa(j,x):

Ea~x,j;bQ!52
1

2pE eik'b'S ~ j̄ / x̄ ! u~j.x!

~j2x!@ j̄ ~j2x!Q21k'
2 #

D
1

d2k'52F j̄

x̄

u~j.x!

j2x
K0~bQA~j2x! j̄ !G

1

. ~3.15!

It is easy to notice that both the Born termB(j;bQ) and the
evolution-related termsL(bm) and Ea(x,j;bQ) exponen-
tially decrease at largeb, since the functionK0(b•••) be-
haves as exp(2b•••) in this limit. On the other hand, the
‘‘Sudakov’’ term

Sa~x;bQ!5
1

2pE d2k'

eik'b'21

k'
2

3E
x

1S z̄ 2

x̄
D dz

z̄ ~z2x!1k'
2 /Q2

~3.16!

accompanied byd(j2x) in Eq. ~3.12! has a completely dif-
ferent behavior at largeb. Indeed, changing the variablez in
the above integral as 12z5y x̄, we rewrite Eq.~3.16! in the
form

Sa~x;Qb!5
1

2pE d2k'

eik'b'21

k'
2 E

0

1 y2dy

y ȳ1k'
2 / x̄ 2Q2

[s~ x̄Qb!. ~3.17!

According to this representation, the functions( x̄Qb) van-
ishes asb→0. In the opposite limit of large impact param-
eters, it has a double-logarithmic dependence onb. To see
this, we integrate first overy and then overk' taking into
account that the factor (eik'b'21) provides, in the limit of
large b, an effective IR cutoff atk';1/b. As a result, we
obtain the large-b behavior ofs( x̄Qb) @29#:

s~ x̄Qb!'
1

2pE d2k'

eik'b'21

k'
2

lnS x̄Q

k'
D

'E
1/b

dk'

k'

lnS k'

x̄Q
D

'2
1

2
ln2~ x̄Qb!, 1/LQCD@b@1/Q.

~3.18!

To be on the safe side, we included the 1/LQCD@b restric-
tion to emphasize that these results are only valid in the
region where one can trust PQCD expressions for quark and
gluon propagators.
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Integratings( x̄Qb) with the Born term gives, for smallx,

a negative double logarithm2 1
2 ln2x. As discussed above,

such a correction is expected when one usesxQ2 as the
factorization scale. Indeed, for smallx, the Born term is a
function ofxb2Q2. Hence, the choicem251/b2 is essentially
equivalent to settingm2;xQ2.

In Ref. @29#, it was shown that theb-space double loga-
rithms exponentiate in higher orders. In the double logarith-
mic approximation, they give the suppression factor

expH 2
as

4p
CFln2~ x̄Qb!J ~3.19!

for largeb. The running of the coupling constant induces the
next-to-leading logarithms~see @56,57#!. To get them, one
should putas(k'

2 )54p/(b0lnk'
2/L2) under the integral:

as CF s~ x̄Qb!→
CF

2pE d2k'

eik'b'21

k'
2

as~k'
2 !

3E
0

1 y2 dy

y ȳ1k'
2 / x̄ 2Q2

.

~3.20!

In general, the Sudakov effects are governed by theeikonal
@58,59,29# ~or cusp @60–62#! anomalous dimension

Gcusp~as!5
CFas

p H 11
as

p FNcS 67

36
2

p2

12D2
5

18
Nf G1•••J .

~3.21!

Clearly, only theas term of Gcusp(as) manifests itself in a
one-loop calculation. To get further corrections@29#, one
should substituteCFas /p in Eq. ~3.20! by Gcusp(as) and
also use a two-loop expression foras(k'

2 ) ands( x̄Qb) @29#.
Here, we restricted our analysis to the one-loop level.

B. Vertex correction for the real photon

For the real photon, the contribution of the vertex correc-
tion diagram 3~b! is given by

Mb~x,Q,j,k'!5
1

xQ2H j

x

~x2j!Q21xk'
2

k'
2 @j~x2j!Q21xk'

2 #
J u~j,x!.

~3.22!

Again, we concentrate on the term singular atk'50. It is
convenient to split it into two parts. The first part is obtained
by takingxQ2 from the (x2j)Q2 term in the numerator and
the second one by taking (2jQ2). We represent the first part
as

S j

xD 1

k'
2 @j~x2j!Q21xk'

2 #
5

1

k'
2 S 1

jQ21k'
2 / j̄

D j2/x

j~x2j!1xk'
2 /Q2

1
j/x

@j j̄ Q21k'
2 #@j~x2j!Q21xk'

2 #
. ~3.23!

The last term here produces no divergences both for large and smallk' . The 1/k'
2 singularity is contained in the first term

which we arranged to have a form of a product of the same Born term 1/(jQ21k'
2 / j̄ ) with a factor looking as ak'-modified

evolution kernel. Then we write this factor as a sum of a ‘‘plus’’ term and ad(x2j) term:

~j2/x! u~j,x!

j~x2j!1xk'
2 /Q2

5S ~j2/x! u~j,x!

j~x2j!1xk'
2 /Q2D

1

1d~x2j!E
0

1 ~z2/x! u~z,x!

z~x2z!1xk'
2 /Q2

dz. ~3.24!

As a result, the total contribution associated with thek'50 singularity can be written as

tb
sing~x,Q2!5E

0

1

djE d2k'

jQ21k'
2 / j̄ H 1

k'
2 S ~j2/x! u~j,x!

j~x2j!1xk'
2 /Q2D

1

1d~j2x!E
0

x z2

x S 1

k'
2 @z~x2z!1xk'

2 /Q2#

2d2~k'!E d2 k̃'

k̃'
2 @z~x2z!1x k̃'

2 /Q2#
D dz J , ~3.25!

where thed2(k') term comes from the second, ‘‘2jQ2’’
part of the original expression~3.22!.

From this decomposition, we obtain the mass singularity
term

S j

x

u~j,x!

~x2j! D
1

L~bm![Vb~j,x! L~bm!, ~3.26!

the evolution-related contribution

Eb~x,j;b!52Fjx u~j,x!

~x2j!
K0~bQAj~x2j!/x !G

1

,

~3.27!

and the Sudakov term
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Sb~x;bQ!5
1

2pE d2k'

eik'b'21

k'
2 E

0

xS z2

x D dz

z~x2z!1xk'
2 /Q2

5s~AxQb!. ~3.28!

For largeb, the latter behaves as

Sb~x;bQ!'2
1

2
ln2~AxQb!. ~3.29!

By analogy withSa(x;bQ) which is a function ofx̄Qb we
might expect thatSb(x;bQ) should be a function ofxQb.
Our calculation above shows thatSb(x;bQ) is a function of
AxQb. That this result is not unreasonable, can be justified
in the following way. Note, that for smallx, both the Born
term B(x;bQ) and ourSb(x;bQ) are the functions of the

same combinationxb2Q2. Hence, integrating the product
B(x;bQ)Sb(x;bQ) over b just gives 1/Q2 multiplied by a
constant factor: no lnx terms are produced. On the other
hand, a ln2x term would appear ifSb(x;bQ) would behave as
ln2(xQb) for large b. The explicit expression for diagram
3~b! given in Ref.@5# has no ln2x terms.

C. Box and self-energy diagrams

In the Feynman gauge, the box diagram 3~c! contribution
in QCD,

Mc~x,Q;j,k'!5
1

xQ2H x~ j̄ 2Q21k'
2 !

x̄ k'
2 @j j̄ Q21k'

2 #
2

~x2j!2Q21xk'
2

x̄ k'
2 @j~x2j!Q21xk'

2 #
u~j,x!J , ~3.30!

only by a numerical factor differs from that in a model with
scalar or pseudoscalar gluons, in which Sudakov effects are
absent. Hence, thek'50 singularity produces only the evo-
lution effects:

Mc~x;j,k'!5
1

k'
2

Vc~x,j!
1

jQ2
1•••, ~3.31!

whereVc(x,j) is the relevant part,

Vc~x,j!5
j

x
u~j,x!1

j̄

x̄
u~j.x!, ~3.32!

of the evolution kernel. Note, thatVc(x,j) does not have a
‘‘plus’’ form by itself. The missingd(x2j) terms are pro-
vided by two quark self-energy diagrams 3~d! and 3~e!:

Md1e52
1

xQ2 d~x2j!
1

k'
2 E0

1F z̄

x̄
u~z.x!1

z

x
u~z,x!G dz

52
1

2xQ2k'
2

d~x2j!. ~3.33!

The third self-energy diagram 3~f! has only the UV diver-
gence

M f52
1

xQ2 d~x2j!E
0

x z/x

z~x2z!Q21xk'
2

dz d2k' .

~3.34!

Combining evolution kernels from all the diagrams above,
one obtains the total evolution kernelV(j,x) ~2.23!.

D. Standard vs modified factorization

Summarizing the findings of the previous subsections, we
write the sum of the lowest-order term and one-loop dia-
grams in the impact parameter representation as

Fg* gp0~Q2!5
4p

3 E
0

1 H 1

xQ2
1

as

2p
CFE

0

1

djE B~j;bQ!@V~j,x! L~bm!1E~j,x;bQ!

1d~j2x!S~x,bQ!1R~j,x;bQ!#
d2b'

2p J wp~x! dx, ~3.35!

56 2723TRANSVERSE MOMENTUM AND SUDAKOV EFFECTS IN . . .



where B(j;bQ) is the b version of the Born term~3.13!,
V(j,x) is the total evolution kernel,E(x,j;bQ) is the sum
of the evolution-related terms such as~3.15!, ~3.27!,
S(x,bQ) is the total Sudakov term given by Eqs.~3.17!,
~3.28!, andR(j,x;bQ) accumulates all the remaining contri-
butions coming from terms regular atk'50. Integrating
over b and specifying the prescription for the renormalized
distribution amplitudewp(x;m), one would get the result
~2.21! of the standard factorization scheme. In particular, the
term 1

2 ln2x, most sensitive to the width of the distribution
amplitude wp(x;m), comes from a negative contribution

2 1
2 ln2x due to the Sudakov termS(x,bQ) and a positive

contribution ln2x coming from them-independent part of the
convolution

E
0

1

dj E B~j;bQ! ^ V~j,x!L~bm!
d2b'

2p

5
1

xQ2H S 3

2
1 lnxD ln~Q2/m2!1 ln2x1 f ~x!J . ~3.36!

This convolution also contains terms denoted byf (x) which
are less singular atx50. The total sum vanishes when inte-
grated with the nonevolving asymptotic distribution ampli-
tude wp(x). It does not vanish, however, when integrated
with DA’s differing from wp

as(x).
The logarithmic mass singularity lnm contained in the

evolution termV(j,x) L(bm) is eliminated by absorbing it
into the renormalized DA. The procedure used in the modi-
fied factorization approach of Refs.@29,30# is to absorb
ln(mb). As a result, one obtains the pion distribution ampli-
tude wp(x;1/b) normalized at the scalem51/b. Making
such a choice, one should realize thatb is an integration
variable and, to preserve the acquired precision, one must
use the evolution equation to getwp(x;1/b) for all relevant
values of b. In particular, if the distribution amplitude is
assumed to have a CZ-type shape for largeb, it should be
evolved towards the asymptotic shape for smallerb using
Eq. ~2.29!. Modeling wp(x;1/b) by a function of x only
amounts to neglecting them-independent part of the convo-
lution B(j;bQ) ^ V(j,x)L(bm) ~3.36!. As noted before, this
contribution contains ln2x, hence, for extremely wide distri-
bution amplitudes it can exceed that coming from the Suda-

kov term which only contains (2 1
2 ln2x).

In the formalb50 limit, the functionwp(x;1/b) evolved
according to the leading logarithm approximation formula
~2.29!, coincides with wp

as(x). However, the function
E(x,j;bQ) also develops a logarithmic singularity for small
b, because

K0~Qb••• !52 ln~Qb!1•••

for small b. Hence, two ln(b) singularities present in Eqs.
~3.12!,~3.35! compensate each other in theb→0 limit and
the net coefficient in front of the evolution kernel is ln(Q/m):
the distribution amplitude evolves in fact only to the scale
bmin;1/Q corresponding to the resolving power of the ex-
ternal probe. Absorbing ln(Q/m) into the renormalized distri-
bution amplitude one would getw(x)→w(x;Q), with the
large external momentumQ serving now as a factorization

scale. Such a choice is usually made in the standard factor-
ization approach, in whichm is either a fixed constant, e.g.,
m51 GeV or proportional to the external momentum
m5aQ, with a being a fixed number. In particular, one can
optimize the choice of the parametera by taking the value
producing the shape ofw(x;1/b) averaged over the essential
region of theb integration. Another point is that the PQCD
evolution of w(x;m) is reliable only in a restricted region
m*m0. Since the modified factorization involves integration
over allb, we formally need to know the distribution ampli-
tudew(x;1/b) outside the perturbative regionb&1/m0. One

should remember, however, that the Born termK0(QbAx x̄)
for finite x exponentially suppresses the large-b region. As a
result, essential impact parametersb are;1/Q. The suppres-
sion by the Born term disappears for smallx when the effec-
tive scale becomes 1/AxQ2 rather than 1/Q. In this case, the
suppression of the large-b region is provided by the expo-
nentiation of the Sudakov terms which is the crucial element
of the modified factorization approach@29,30#. As a result of
the exponentiation, the series of@asln

2(Qb)#n terms, each of
which tends to infinity asb→`, is substituted by the expo-
nential of Eq.~3.19! type rapidly vanishing with growingb.

Of course, for finitex, the Born termK0(QbAx x̄) provides
even stronger suppression of the large-b region and the in-
fluence of the Sudakov factor is minor. Only for smallx do
Sudakov effects become important. The relevant combina-
tion x̄Qb in the Sudakov term of the diagram 3~a! converts
into Qb, and the exponentiated Sudakov factor plays a pri-
mary role in squeezing the size of essential impact param-
eters. A special role of the smallx values in theb' integra-

tion is reflected by the2 1
2 ln2x term resulting from the

convolution of the Born term with the one-loop Sudakov
factor

1

2pE B~x;Qb! S~x;Qb! d2b'5
1

xQ2S 2
1

2
ln2x2g~x! D ,

~3.37!

whereg(x) stands for less singular terms. After integration
with the asymptotic distribution amplitude, the

@2 1
2 ln2x2g(x)# term gives approximately29/410.05, to be

compared with the magnitude25/2 of the total one-loop
correction@see discussion after Eq.~2.27!#. Hence, the total
one-loop correction in the case of the asymptotic DA is very
close to the contribution of the Sudakov term alone~the de-
viation is only 12%!. If the higher-loop corrections can be
also approximated by the Sudakov contribution, then the ex-
ponentiated form would produce the all-order result in a
rather compact form.

Discussing the numerical significance of the Sudakov
terms, we should keep in mind that all the logarithmic en-
hancements ln2(Qb) are perfectly integrable and that the re-
gion of smallx, where the Sudakov terms are important, is
small itself: afterb' and x integrations, there are no espe-
cially large contributions in the final result. The total one-
loop correction is only about 20%. Hence, the exponentia-
tion of the Sudakov terms would alter the one-loop corrected
result for the form factor by just a few percent, which is
similar to the accuracy of approximating the total contribu-
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tion by the Sudakov term at one loop. Note also that a few
percent change may be smaller than the contribution gener-
ated by the one-loop termsE(x,j,Qb), R(x,j,Qb) and the
effects due to theb dependence of the renormalized distri-
bution amplitudewp(x;1/b). Moreover, for a wide DA, the
latter are comparable to or exceeding the Sudakov contribu-
tions. In principle, one can try to explicitly include these
corrections within the MFA framework, but the result would
not have a simple form anymore. In this situation, instead of
dealing with convolutions of Bessel functions, one may pre-
fer to use the result~2.21! of the standard factorization ap-
proach which has a simple form with easily controllable ac-
curacy. Another bonus of using the SFA is the ability of
wp(x;Q) to fully absorb the necessary nonperturbative infor-
mation: increasingQ we do not need to make any assump-
tions about the shape ofwp(x;m) at smaller valuesm,Q of
the factorization scalem.

IV. INCLUSION OF PRIMORDIAL TRANSVERSE
MOMENTUM

A. Brodsky-Lepage interpolation

Despite our persistent efforts, we failed so far to find any
traces of contributions capable of producing a series of
transverse-momentum-related power corrections to the lead-
ing PQCD result. Recall that we investigated first the higher-
twist contributions due to operators with contracted covariant
derivatives Dm

•••Dm which are the standard candidates
to describe thek' effects in the OPE-like factorization
approaches. We observed that, for the simplest handbag
diagram, these operators do not produce the expected infi-
nite chain of (1/Q2)n power corrections. Then we studied
one-loop radiative corrections in the Sudakov and impact-
parameter representations. Our results are in full accord
with the corresponding expressions of the MFA@29,30#. But
they also completely agree with the one-loop results@4–6# of
the SFA, i.e., they do not contain any power corrections.
Nevertheless,Fg* gp0(Q2);1/Q2 cannot be a true behavior
of Fg* gp0(Q2) in the low-Q2 region, especially since the
Q250 limit of Fg* gp0(Q2) is known to be finite and nor-
malized by thep0→gg decay rate. The value ofFg* gp0(0)
in QCD @40# is fixed by the axial anomaly@7#

Fg* gp0~0!5
1

p f p
. ~4.1!

If the shape of the pion DA is specified, the large-Q2 behav-
ior is also known. For the asymptotic DA,

Fg* gp0
as

~Q2!5
4p f p

Q2
. ~4.2!

Long ago, Brodsky and Lepage@3# proposed the interpola-
tion formula

Fg* gp0
int,BL

~Q2!5
1

p f p~11Q2/4p2f p
2 !

[
1

p f p~11Q2/s0!
,

~4.3!

which reproduces both theQ250 value~4.1! and the high-
Q2 behavior given by Eq.~4.2!. The BL-interpolation for-

mula ~4.3! has a monopole form with the scale
s054p2f p

2 '0.67 GeV2 numerically close to ther-meson
mass squared:mr

2'0.6 GeV2. Thus, the BL interpolation
suggests a form similar to that based on the vector meson
dominance ~VMD ! expectation Fg* gp0(Q2)51/@p f p(1
1Q2/mr

2)#. In the VMD approach, ther-meson massmr

serves as a parameter determining the pion charge radius,
and it is only natural to expect that the tower of (s0 /Q2)N

corrections suggested by the BL-interpolation formula can be
explained by intrinsic transverse momentum effects. The
only problem ishow to get Eq.~4.3! ~or anything similar to
it! from QCD, i.e., how to construct an expression which
would provide a good model both in perturbative and non-
perturbative regimes. Before proposing our variant of the
solution to this problem, let us discuss briefly two recent
attempts@21,26# to include intrinsic transverse momentum
effects into the description of theg* gp0 form factor.

B. Extrapolation of perturbative results

As emphasized above, despite the fact that the denomina-
tor of the Born term 1/(jQ21k'

2 / j̄ ) is k' modified com-
pared to its collinear approximationjQ2, convoluting
B(j;bQ) with S(j;bQ) one would enjoy no power modifi-
cations of the canonical 1/Q2 behavior, i.e., the transverse-
momentum effects included in the Sudakov term and other
one-loop corrections do not correspond to any higher-twist
contributions. The obvious reason is that, apart from the IR
regulator massm @producing a logarithmic dependence lnm
which is absorbed intow(x;m)#, the large momentumQ is
the only scale that appears in the relevantk' integrals.

In general, the fact that some contribution is written as an
integral over the transverse momentumk' or the impact pa-
rameterb' does not necessarily mean that something beyond
the leading twist is included. To illustrate this point, we note
that even the lowest-order, ‘‘purely collinear’’ contribution
~2.11! can be written in the impact-parameter representation.
A possible form is suggested by the one-loop calculation

F0~Q2!5
2

3E0

1

dxE x̄K0~Ax x̄b2Q2!wp~x! d2b,

~4.4!

where x̄K0(Ax x̄b2Q2) is the impact-parameter profile of
the modified propagator 1/(xQ21k'

2 / x̄ ) @see Eq.~3.13!#.
Though theb version of the quark propagator explicitly de-
pends onb, integrating overb in Eq. ~4.4! gives a simple
power result 1/Q2 without any subleading power corrections.
This phenomenon can be traced to the absence of theb de-
pendence in the distribution amplitude. In the momentum
representation, Eq.~4.4! is equivalent to usingwp(x)d2(k')
for the q̄qp vertex:

F0~Q2!5
4p

3 E
0

1

dx E wp~x!d2~k'!

xQ21k'
2 / x̄

d2k' . ~4.5!

However, as we have seen in the preceding section, radia-
tive corrections generate terms with less trivialk' depen-
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dence. In particular, the one-loop correction containsas /k'
2

terms. As a result, thek'-dependence of theq̄qp vertex at
one loop is

wp~j!d2~k'!1
as

~2p!2k'
2 E0

1

V~j,x! wp~x! dx1••• .

~4.6!

In the impact parameter representation, the sum ofd2(k')
and 1/k'

2 terms is converted into a more suggestive combi-
nation

wp~j!2
as

2p
ln~bm!E

0

1

V~j,x! wp~x! dx, ~4.7!

which can be understood as the two first terms of theas
expansion of the expression for the leading-logarithm
evolved distribution amplitudew(j,1/b) written symboli-
cally as

expF2
as

2p
ln~bm!VG ^ w.

Since all the conclusions made from the studies of one-
loop corrections are based on perturbative analysis, strictly
speaking, they are only applicable to transverse momenta
which are large enough.5 Furthermore, there are no special
reasons to expect that formulas derived for momentak' gen-
erated by perturbative gluon radiation are still true in the
small-k' region dominated by primordial~or intrinsic! trans-
verse momentum. Still, it is tempting to extend the leading-
logarithm convolution formula

F~Q2!5
2

3E0

1

dxE K0~Ax x̄Qb! w~x;1/b! d2b ~4.8!

into the nonperturbative region. To do this, we should sub-
stitute the distribution amplitudew(x;1/b) by a function
which reflects~or models! the nonperturbativeb dependence.

In the light-cone approach@1#, the basic object is the
wave functionC(x,k') which depends both on the fraction
variablex and transverse momentumk' . In QCD, it is cus-
tomary to splitC(x,k') into two components. The soft com-
ponentCsoft(x,k') is due to the nonperturbative part of the
QCD interaction and its width is determined by the size of
the relevantq̄q bound state. It is expected thatCsoft(x,k')
rapidly ~e.g., exponentially! decreases for largek'

2 . In our
perturbative lowest-twist treatment above, the soft wave
function Csoft(x,k') was imitated bywp(x)d2(k'). The
PQCD interaction~gluon radiative corrections! produces the
hard componentChard(x,k') which behaves asas /k'

2 at
largek' . The distribution amplitudewp(x) can be treated as
the integral of the wave functionC(x,k') overk' ~see@1#!:

wp~x!5
A6

~2p!3E C~x,k'! d2k' . ~4.9!

For Csoft(x,k'), this integral perfectly converges. However,
the perturbative 1/k'

2 tail generates logarithmic divergences.
Hence, one should supplement this definition by some regu-
larization procedure specified by a cutoff parameterm:
wp(x)→wp(x,m). The ‘‘cutoff’’ should be understood in a
broad sense. It may be imposed literallyk'

2 ,m2 or one can
use more gentle procedures based, say, on dimensional regu-
larization. In other words,wp(x) is a scheme-dependent ob-
ject: wp(x)→wp

(S)(x). The choice of a specific schemeS is a
matter of convenience. In particular, the Fourier transform

C̃~x,b!5
1

~2p!2E e2 ik'b'C~x,k'! d2k' ~4.10!

to the impact parameter representation can also be treated6

~at least, for smallb) as a regularization scheme for the
integral defining the distribution amplitude:

wp
~F !~x;m51/b!5

A6

2p
C̃~x,b!; b→0. ~4.11!

This observation suggests the extrapolation of the convolu-
tion formula into the nonperturbative region by substituting

w(x;1/b) in Eq. ~4.8! by theb-space wave functionC̃(x,b)
~see Ref.@21#!. Since thek' effects are only essential when
xQ2 ~i.e., x) is small, one can either use the original combi-

nation Ax x̄Qb in the argument of the Born term

K0(Ax x̄Qb) or substitute it byAxQb. In particular, a modi-
fied version of the convolution formula~4.8! written in the
k' representation,

Fg* gp0~Q2!5
1

p2A6
E

0

1

dx E C~x,k'!

xQ21k'
2

d2k' ,

~4.12!

is the starting point of the analysis by Jakobet al. @21#. In
this expression, a simpler formxQ21k'

2 is used for the
modified denominator of the ‘‘hard’’ quark propagator in-
stead of the combinationxQ21k'

2 / x̄ which appears in our
Eq. ~3.13!. However, since the difference is proportional to
k'

2 and vanishes forx50, the two forms have essentially the
same footing. As a model forC(x,k'), Jakobet al. @21#
use the ansatz@2# with the exponential dependence on the
combinationk'

2 /x x̄ ~or Gaussian dependence onk'). We
write it in a form similar to that used in Ref.@21#:

C~G!~x,k'!5
4p2

sA6

wp~x!

x x̄
expS 2

k'
2

2sx x̄
D , ~4.13!

5In particular, speaking about the double-logarithmic behavior ‘‘at
largeb’’ we imply that b may be much larger numerically than 1/Q
but is still within the PQCD applicability range.

6The basic difference betweenwp(x;1/b) and C̃(x,b) is that
*0

1wp(x;m)dx is given by the same constantf p for any m while

*0
1C̃(x,b)dx in general depends onb.
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where s is the width parameter andwp(x) is the desired
pion distribution amplitude.7 In the b' representation, the
model wave function is

C̃~G!~x,b'!5
2p

A6
wp~x!expS 2

1

2
b'

2 sx x̄ D . ~4.14!

The model is restricted by two conditions taken from Ref.
@2#. First, the two-body Fock component of the pion light-
cone wave functionC(x,k') is required to satisfy the con-
straint

E
0

1

dx E C~x,k'!
d2k'

16p3
5

f p

2A6
~4.15!

imposed by thep→mn rate. This gives the usual normaliza-
tion condition for the pion DA

E
0

1

wp~x! dx5 f p . ~4.16!

The second condition specifies the value of thex integral of
C(x,k') at zero transverse momentum

E
0

1

C~x,k'50! dx 5
A6

f p
. ~4.17!

For the model ansatz~4.13!, this condition results in the
following constraint for theI 0 integral:

I 0[
1

f p
E

0

1

wp~x!
dx

x
5

3s

s0
. ~4.18!

In obtaining Eq.~4.18!, we incorporated the symmetry prop-
erty wp(x)5wp( x̄ ) of the pion DA and used again the no-
tations0 for the important combination 4p2f p

2 . SinceI 0
as53

and I 0
CZ55, the width parameters aresas5s0'0.67 GeV2

andsCZ5 5
3 s0'1.11 GeV2.

In the form ~4.17!, the second condition was derived in
Ref. @2# from the requirement that thep0→gg decay rate@or
Fg* gp0(Q250) which is the same# calculated within the
light-cone approach coincides with that given by the axial
anomaly. It is easy to see, however, that in theQ2→0 limit,
the k' integral in Eq.~4.12! logarithmically diverges in the
small-k' region for any function which is nonvanishing at
k'50. Note, thatC(x,k'50) cannot vanish if we wish to
satisfy the condition~4.17!. Rather ironically, the condition
which presumably should secure the correct value for

Fg* gp0(Q2) at Q250 guarantees instead that the extrapola-
tion formula diverges at that point. This gives a clear warn-
ing that one should be very careful using the simplest ex-
trapolation: it is difficult to judgea priori how reliably the
formula failing for Q250 models the subasymptotic effects
for moderateQ2. The authors of Ref.@21# also include the
Sudakov exponential in which they take a symmetric combi-
nations( x̄Qb)1s(xQb). As noted earlier, our one-loop cal-
culation in Sec. III B shows that forFg* gp0(Q2) one should
use s(AxQb) instead ofs(xQb). Our final observation is
that expanding Eq.~4.12! in k'

2 /Q2 one would get an infinite
series of power corrections under thex integral. According
to our general result, the handbag diagram should not pro-
duce a chain of higher-twist contributions. Hence, the ex-
trapolation formula cannot be interpreted simply as a
transverse-momentum-corrected expression for the handbag
diagram.

C. Transverse momentum in the light-cone formalism

Another attempt to model the subasymptotic corrections
was made in Ref.@26#. It is based on the Brodsky-Lepage
formula @1# for the two-body~i.e., q̄q) contribution to the
g* gp0 form factor in the light-cone formalism:

~e'3q'!Fg* gp0
q̄q

~Q2!5
1

p2A6
E

0

1

dxE @e'3~xq'1k'!#

~xq'1k'!22 i e

3C~x,k'! d2k' . ~4.19!

Here,q' is a two-dimensional vector in the transverse plane
satisfyingq'

2 5Q2, e' is a vector orthogonal toq' and also
lying in the transverse plane@1#, and the cross denotes the
vector product. Again, the wave function is chosen in the
Gaussian form~4.13! satisfying the constraints8 ~4.15! and
~4.17!. Though the integrand of Eq.~4.19! looks rather sin-
gular, there are no problems with the convergence of thek'

integral in theq'→0 limit. The result is finite, since

q'
a1k'

a

~q'1k'!22 i e
U

q'→0

5p d2~k'! q'
a ~4.20!

for any test functionC(x,k') which depends onk' through
k'

2 . Because of thed2(k') function, theQ250 result is
determined by the wave function at zero transverse momen-
tum.

In Ref. @26#, it is claimed that thek' /Q expansion of Eq.
~4.19! produces large ‘‘higher-twist’’ corrections to the
leading-twist result. In fact, whenC(x,k') has an exponen-
tial k'

2 dependence, it is trivial to calculate thek' integral
explicitly:7In the original model@2# k'

2 appears in the combinationk'
2 1Mq

2 ,
whereMq is the constituent quark mass. As a result, the distribution

amplitudewp(x) is exponentially suppressed as exp@2Mq
2/2sx x̄#

in the end-point regions. Jakobet al., however, follow Chibisov
and Zhitnitsky@63# who insist that the constituent quark massMq

should not appear in QCD-motivated models forC(x,k'). In par-
ticular, Mq does not appear in the model wave function
C (LD)(x,k') @23# based on local quark-hadron duality~see Sec. V
below!: only the current quark massesmq ~usually set to zero foru
andd quarks! are present in QCD Feynman integrals.

8As emphasized recently by Kroll@51#, Caoet al. use constituent
quark massesMq;330 MeV which produces a strong exponential

suppression exp@2Mq
2/2sx x̄# of the end-point regions. As a result,

the I -integral for the DA corresponding to their ‘‘CZ’’ model is
3.71 rather than 5, i.e., despite zero atx51/2, such a model gives a
rather narrow DA, which is closer in this sense to the asymptotic
DA rather than to the original CZ one.
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Fg* gp0
q̄q

~Q2!5
4p

3 E
0

1wp~x!

xQ2 F12expS 2
xQ2

2 x̄s
D Gdx ~4.21!

to see that the correction term in the integrand of Eq.~4.21!
has an exponentially decreasing rather than a power behavior
for large Q2. This result agrees with our general statement
that the handbag diagram contains no higher-twist contribu-
tions. Our analysis works in this case since the Brodsky-
Lepage formula~4.19! corresponds to the handbag contribu-
tion written in the light-cone variables without any

approximation. Just as in the covariant treatment, the naively
expected series of power corrections (^k'

2 &/Q2)n does not
appear because the expansion of

xq'1k'

~xq'1k'!2 ~4.22!

contains only traceless combinations. Indeed, multiplying
Eq. ~4.22! by q' /Q2 and defining (k'q')5uk'uQcosf, we
obtain

S 1

Q2D xQ21uk'uQcosf

x2Q212xuk'uQcosf1k'
2

5
1

xQ2H u~ uk'u,xQ!1 (
n51

`

~21!nF S uk'u
xQ D n

u~ uk'u,xQ!2S xQ

uk'u D
n

u~ uk'u.xQ!Gcos~nf!J .

~4.23!

For a wave functionC(x,k') depending onk' throughk'
2

only, all the oscillating terms proportional to cos(nf) @i.e., to
Chebyshev polynomialsTn(cosf) corresponding to traceless
combinations in two dimensions# vanish after the angular
integration. Only then50 term written outside the sum over
n gives a nonzero result. Hence, for the wave functions of
C(x,k')5c(x,k'

2 ) type, we can write

Fg* gp0
q̄q

~Q2!5
2

pA6
E

0

1 dx

xQ2E0

xQ

c~x,k'
2 ! k'dk' .

~4.24!

This means that the leading 1/xQ2 term in Eq.~4.21! comes
from the integral over allk'’s while the exponential correc-
tion appears because the integration region in Eq.~4.24! is
restricted byk',xQ. Another subtlety is that theQ250
value

F q̄q~Q250!5
1

2p f p

dictated by Eqs.~4.17! and ~4.20! @and manifest in Eq.
~4.21!# gives only a half of what is needed to get the correct
p0→gg rate ~4.1!. As explained in Ref.@2#, the other half
comes from the term which can be interpreted as the contri-
bution of the q̄qg Fock component of the pion wave func-
tion. In a formal PQCD diagrammatics, this contribution is
represented by graphs containing the gluons coupling to the
quark line between the photon vertices. For highQ2, such
diagrams correspond to higher-twist corrections associated
with the q̄G•••Gq operators. In this sense, the result of Ref.
@2# is equivalent to a nonperturbative constraint on the
Q2→0 limit of such contributions. One can expect that the
q̄qg contribution decreases as 1/Q4 or faster for largeQ2

since it contains higher twists only. Interpretation of this
contribution in terms of theq̄qg Fock component is re-
stricted to the case of realg: Ref. @2# gives no expression
beyond theQ250 point. In Ref.@26# this contribution is not
included. However, if the terms which double the result for

Q250 are not included, it is premature to make specific
quantitative statements about the size of subasymptotic cor-
rections in the region of moderateQ2.

We may also wonderwhy the formulas~4.12! and ~4.19!
corresponding to two attempts to include the primordial
transverse momentum have such a strikingly different ana-
lytic structure. In particular, the denominator of the integrand
of Eq. ~4.19! vanishes fork'52xq' while that of Eq.~4.12!
is finite for all k' provided thatq'Þ0. The answer is very
simple: the two expressions imply two different definitions
of what is longitudinal and what is transverse. Equation
~4.12! is based on the Sudakov decomposition in which the
momentumq1 of the real photon has only the light-cone
‘‘plus’’ component while the momentump of the pion has
only the light-cone ‘‘minus’’ component. As a result, the
momentum transferq25p2q1 in the Sudakov variables is
purely longitudinal and has both plus and minus components,
with q2

2522(q1p). On the other hand, the Brodsky-Lepage
formula corresponds to the infinite momentum frame in
which the plus components ofq1 and p coincide. The plus
component of the momentum transferq2 vanishes in this
frame, butq2 has a nonzero transverse componentq' , with
uq'u5Q or q2

252q'
2 . Evidently, the two frames cannot be

obtained from one another by a boost. Furthermore, one
should not expect a diagram by diagram correspondence be-
tween the two approaches. The main purpose of imposing
the requirementq2

150 in the light-cone approach is to avoid
the Z graphs. However, in Sudakov variables~and in any
approach in whichq2 has a nonzero plus component! the Z
graphs should be added to reproduce the light-cone result
~see@64#!.

Both the approaches@21,26# discussed above fail to repro-
duce theQ250 value corresponding to the axial anomaly.
Our point of view is that complying with the anomaly con-
straint should be a minimal requirement for any model of
subasymptotic effects in theg* gp0 form factor. A maximal-
ist attitude is that such a fundamental constraint should be
satisfied automatically rather than imposed as an external
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condition. This can be only realized in an approach which is
directly related to QCD and produces anomaly as a conse-
quence of QCD dynamics.

V. QUARK-HADRON DUALITY AND EFFECTIVE WAVE
FUNCTION

A. QCD sum rule calculation of f p and local duality

QCD sum rules provide us with the approach which deals
both with perturbative and nonperturbative aspects of QCD.
The basic idea of the QCD sum rule approach@65# proposed
by Shifman, Vainshtein, and Zakharov~SVZ! is the quark-
hadron duality, i.e., the possibility to describe one and the
same object in terms of either quark, gluon, or hadronic
fields. To get information about the pion, the QCD sum rule
practitioners usually analyze correlators involving the axial
vector current. In particular, to calculatef p one should con-
sider thepmpn-part of the correlator of two axial vector cur-
rents

Pmn~p!5 i E eipx^0uT ~ j 5m~x! j 5n~0! !u 0& d4x

5pmpnP2~p2!2gmnP1~p2!. ~5.1!

The dispersion relation

P2~p2!5
1

pE0

` r~s!

s2p2
ds1 ‘ ‘subtractions’’ ~5.2!

representsP2(p2) as an integral over hadronic spectrum
with the spectral densityrhadron(s) determined by projections

^0u j 5m~0!up;P&5 i f pPm , ~5.3!

etc., of the axial current onto hadronic states

rhadron~s!5p f p
2 d~s2mp

2 !1p f A1

2 d~s2mA1

2 !

1 ‘ ‘higher states’’ ~5.4!

( f p
exp'130.7 MeV in our normalization!. On the other hand,

when the probing virtuality is negative and large, one can use
the operator product expansion

P2~p2!5P2
quark~p2!1

A

p4
^asGG&1

B

p6
as^ q̄q&21••• ,

~5.5!

whereP2
quark(p2) is the perturbative version ofP2(p2) given

by a sum of PQCD Feynman diagrams while the condensate
terms^GG&, ^ q̄q&, etc.@with perturbatively calculable coef-
ficientsA,B, see Eq.~5.10! below#, describe or parametrize
the nontrivial structure of the QCD vacuum. For the quark
amplitudeP2

quark(p2), one can also write down the dispersion
relation ~5.2!, with r(s) substituted by its perturbative ana-
loguerquark(s):

rquark~s!5
1

4pS 11
as

p
1••• D ~5.6!

~we neglect light quark masses!. Hence, for large2p2, one
can write

1

pE0

`rhadron~s!2rquark~s!

s2p2 ds 5
A

p4
^asGG&1

B

p6
as^ q̄q&2

1••• . ~5.7!

This expression essentially states that the condensate terms
describe the difference between the quark and hadron spec-
tra. At this point, using the known values of the condensates,
one can try to construct a model for the hadronic spectrum.
In the axial vector current channel, one has an infinitely nar-
row pion peakrp5p f p

2 d(s2mp
2 ), a rather wide peak at

s'1.6 GeV2 corresponding toA1 and then a ‘‘continuum’’
at higher energies. The simplest approximation is to treatA1
also as a part of the continuum, i.e., to use the model

rhadron~s!'p f p
2 d~s2mp

2 !1rquark~s! u~s>s0!, ~5.8!

in which all the higher resonances including theA1 are ap-
proximated by the quark spectral density starting at some
effective thresholds0. Neglecting the pion mass and requir-
ing the best agreement between the two sides of the resulting
sum rule

f p
2

p2 5
1

pE0

s0rquark~s!

s2p2 ds 1
A

p4
as^GG&1

B

p6
as^ q̄q&21•••

~5.9!

in the region of largep2, we can fit the remaining parameters
f p ands0 characterizing the model spectrum. In practice, the
more convenient SVZ-borelized version@65# of this sum rule

f p
2 5

1

pE0

s0
rquark~s!e2s/M2

ds 1
as^GG&

12pM2

1
176pas^ q̄q&2

81M4 1••• ~5.10!

is used for actual fitting. Using the standard values for the
condensateŝGG&, ^ q̄q&2, the scales0 is adjusted to get an
~almost! constant result for the right-hand side of Eq.~5.10!
starting with the minimal possible value of the SVZ-Borel
parameterM2. The magnitude off p extracted in this way, is
very close to its experimental valuef p

exp'130 MeV.
Of course, changing the values of the condensates, one

would get the best stability for a different magnitude of the
effective thresholds0, and the resulting value off p would
also change. There exists an evident correlation between the
values off p ands0 since, in theM2→` limit, the sum rule
reduces to the local duality relation

f p
2 5

1

pE0

s0
rquark~s! ds. ~5.11!

Using the explicit lowest-order expressionr0
quark(s)51/4p,

we get

s054p2f p
2 . ~5.12!
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Note thats054p2f p
2 coincides with the combination which

appears in the Brodsky-Lepage interpolation formula~4.3!.

B. Quark-hadron duality for the F g* g* p0„Q2
… form factor

Information about theg* g*→p0 form factor can be ex-
tracted from the three-point correlation function@66#

Famn~q1 ,q2!5
4p

iA2
E d4x d4y e2 iq1x2 iq2y

3^0uT$Jm~x!Jn~y! j 5a~0!%u0&

~5.13!

calculated in the region where all the virtualities
q1

2[2q2, q2
2[2Q2 andp25(q11q2)2 are spacelike.

The form factorFg* g* p0(q2,Q2) appears in the invariant
amplitudeF(p2,q2,Q2) corresponding to the tensor structure
emnrspaq1

rq2
s . The dispersion relation for the three-point

amplitude

F~p2,q2,Q2!5
1

pE0

`r~s,q2,Q2!

s2p2
ds1 ‘ ‘subtractions’’

~5.14!

specifies the relevant spectral densityr(s,q2,Q2). For the
hadronic spectrum we assume again the ‘‘first resonance plus
perturbative continuum’’ ansatz

rhadron~s,q2,Q2!5p f pFg* g* p0~q2,Q2!d~s2mp
2 !

1u~s.s0! rquark~s,q2,Q2!. ~5.15!

The lowest-order perturbative spectral density
rquark(s,q2,Q2) is given by the Feynman parameter repre-
sentation

rquark~s,q2,Q2!52E
0

1

dS s2
q2x1x31Q2x2x3

x1x2
D

3dS 12(
i 51

3

xi D dx1dx2dx3 . ~5.16!

Scaling the integration variables:x11x25y, x25xy,
x15(12x)y[ x̄ y and taking trivial integrals overx3 andy,
we get

rquark~s,q2,Q2!52E
0

1 x x̄~xQ21 x̄ q2!2

@sx x̄1xQ21 x̄ q2#3
dx.

~5.17!

The variablex here can be treated as the light-cone fraction
of the pion momentump carried by one of the quarks. In
particular, the denominator of the integrand in Eq.~5.17! is
related to that of the hard quark propagator:
(q12xp)252(xQ21 x̄ q21sx x̄).

Putting one photon on shell,q250, we can easily calcu-
late thex integral:

rquark~s,q250, Q2!52E
0

1 x x̄~xQ2!2

@sx x̄1xQ2#3
dx 5

Q2

~s1Q2!2 .

~5.18!

This result explicitly shows that if the larger virtualityQ2

also tends to zero, the spectral densityrquark(s,Q2) becomes
narrower and higher, approachingd(s) in the Q2→0 limit
~see @67#!. Thus, the perturbative triangle diagram dictates
that two real photons can produce only a single massless
pseudoscalar state: there are no other states in the spectrum
of final hadrons~see @68#!. As Q2 increases, the spectral
function broadens, i.e., higher states can also be produced.

A detailed study of the QCD sum rule for theFg* gp0(Q2)
form factor was performed in Refs.@22,24#. The results of
this investigation are rather close to those based on the
simple local quark-hadron duality ansatz:

Fg* gp0
LD

~Q2!5
1

p f p
E

0

s0
rquark~s,Q2! ds. ~5.19!

Using the explicit expression forrquark(s,Q2), we can write

Fg* gp0
LD

~Q2!5
2

p f p
E

0

1

dxE
0

s0 x x̄~xQ2!2

@sx x̄1xQ2#3
ds

5
1

p f p~11Q2/s0!
. ~5.20!

This result coincides with the Brodsky-Lepage interpolation
formula ~4.3!.

C. Effective wave function

The formulas based on the local quark-hadron duality pre-
scription can be interpreted in terms of the effective two-
body light-cone wave function@23#. Consider the lowest-
order perturbative spectral density for the two-point
correlator. It can be written as the Cutkosky-cut quark loop
integral

rquark~s!5
3

2p2E k1

p1
S 12

k1

p1
D u~k1! d~k2!

3u~p12k1!d@~p2k!2#d4k ~5.21!

wheres[p2. Introducing the light-cone variables forp and
k,

p5$p1[P,p25s/P,p'50%; k5$k1[xP,k2 ,k'%,

and integrating overk2 , we get

rquark~s!5
3

2p2E0

1

dxE dS s2
k'

2

x x̄
D d2k' . ~5.22!

The d function here expresses the fact that the light-cone
combinationk'

2 /x x̄ coincides withs[p2, the invariant mass

of the q̄q pair. Substituting this expression forrquark(s) into
the local duality formula~5.11!, we obtain the following rep-
resentation forf p

2 :
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f p
2 5

3

2p3E0

1

dxE u~k'
2 <x x̄s0! d2k' . ~5.23!

It has a structure similar to the expression forf p in the light-
cone formalism@1# @cf. Eq. ~4.15!#:

f p5A6 E
0

1

dxE C~x,k'!
d2k'

8p3
. ~5.24!

To cast the local duality result~5.23! into the form of Eq.
~5.24!, we introduce the ‘‘local duality’’ wave function for
the pion:

CLD~x,k'!5
2A6

f p
u~k'

2 <x x̄s0!. ~5.25!

The specific form dictated by the local duality implies that
CLD(x,k') simply imposes a sharp cutoff atk'

2 x x̄5s0. In
the b' space, the effective wave function can be written as

C̃LD~x,b'!5
A6

p f pb'

Ax x̄s0 J1~b'
Ax x̄s0!, ~5.26!

whereJ1(z) is the Bessel function.

D. Effective wave function andF g* gp0„Q2
… form factor

Consider now the local duality expression~5.20! for
Fg* gp0(Q2). Replacings, the invariant mass of theqq̄ pair,
by its light-cone equivalentk'

2 /x x̄, we getFg* gp0
LD (Q2) as an

integral over the longitudinal momentum fractionx and the
transverse momentumk' :

Fg* gp0
LD

~Q2!5
2

p2f p

E
0

1

dx E ~xQ2!2

~xQ21k'
2 !3

3u~k'
2 <x x̄s0! d2k' . ~5.27!

Now, introducing the effective wave functionCLD(x,k')
given by Eq.~5.25!, we write FLD(Q2) in the ‘‘light-cone
form’’

Fg* gp0
LD

~Q2!5
1

p2A6
E

0

1

dx E ~xQ2!2

~xQ21k'
2 !3

3CLD~x,k'! d2k' . ~5.28!

In the impact parameter representation, this formula is

Fg* gp0
LD

~Q2!5
1

2pA6
E

0

1

dxE xQ2b2

3K2~AxbQ!C̃LD~x,b'! d2b' .

~5.29!

The function K2(AxbQ), where K2(z) is the modified
Bessel function, originates from the new version of the Born
term written in theb space

B̃~x;bQ![
1

2pE e2 ik'b'
~xQ2!2

~xQ21k'
2 !3

d2k'

5
1

4
xQ2b2K2~AxbQ!. ~5.30!

Note thatB̃(x;bQ) is finite for b50: B̃(x;0)51 while the

‘‘old’’ Born term B(x;bQ)5 x̄K0(Ax x̄bQ) ~3.13! has a
logarithmic singularity at the origin of theb space. The ex-
pression~5.28! looks similar to the extrapolation formula
~4.12!. Furthermore, since

~xQ2!2

~xQ21k'
2 !3

5
1

xQ21k'
2

2
2k'

2

~xQ21k'
2 !2

1
k'

4

~xQ21k'
2 !3

,

~5.31!

the twok' modifications of the hard quark propagator 1/xQ2

differ only byO(k'
2 ) terms invisible in the analysis of effects

induced by the 1/k'
2 singularity at smallk' . However, this

difference is very essential when one extrapolates into the
region of smallQ2. To demonstrate this, let us analyze Eq.
~5.28! in some particular limits. For real photons, using the
fact that

m4

~m21k'
2 !3
→

1

2
d~k'

2 ! ~5.32!

in them2→0 limit, we obtain that thep0→gg decay rate is
determined by the magnitude of the LD wave function at
zero transverse momentum:

Fg* gp0
LD

~0!5
1

2pA6
E

0

1

CLD~x,k'50!dx. ~5.33!

This requirement is similar to that in the Brodsky-Lepage
formalism. However, according to the explicit form~5.25! of
CLD(x,k'50), the integral~5.33! is twice larger than the
constraint~4.17! imposed on the valenceq̄q light-cone wave
function. As a result, the local duality formula exactly repro-
duces theFg* gp0(0) value ~4.1! dictated by the axial
anomaly. This outcome can be interpreted by saying that
CLD(x,k') is aneffectivewave function~see@69#! describ-
ing the soft content of allq̄G•••Gq Fock components of the
usual light-cone approach~see also@63#!. Note, that higher-
order radiative corrections to the perturbative spectral den-
sity rquark(s,Q2) are explicitly accompanied by the
as(mR

2)/p factors per each extra loop. After integration over
the duality interval 0<s<s0, there are two physical scales:
s0 andQ2. At low Q2, the duality intervals0 sets the scale at
the low-momentum end of the UV-divergent integrals,
hence, a natural choice for the normalization scalemR is
mR

2;s0. At high Q2, the short-distance dominated parts of
the higher-order corrections should reproduce the PQCD re-
sults which suggestmR

2;Q2 for these terms. In any case,
suppression by at leastas(s0)/p;0.1 per each extra loop is
guaranteed. Sinces0@L2, the gluonic corrections to
rquark(s,Q2) are suppressed by powers ofas(s0)/p;0.1. In
other words, the higher-order diagrams contributing to
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rquark(s,Q2) correspond to exchange of hard gluons whose
wave lengths are larger than 1/As0.

WhenQ2 is so large that thek'
2 term can be neglected, we

get the expression

Fg* gp0
LD

~Q2!5
1

p2A6
E

0

1 dx

xQ2 E CLD~x,k'! d2k'

1O~1/Q4!. ~5.34!

Identifying the wave function integrated over the transverse
momentum with the pion distribution amplitude

wp
LD~x![

A6

~2p!3E CLD~x,k'! d2k' 56 f px~12x!,

~5.35!

we obtain the lowest-order PQCD formula~2.11!:

Fg* gp0~Q2!uQ2→`5
4p

3 E
0

1wp~x!

xQ2 dx1O~1/Q4!

~5.36!

for the large-Q2 behavior of theg* g→p0 transition form
factor.

To summarize, the local duality formula~5.20! exactly
reproduces the Brodsky-Lepage interpolation~4.3! between
the Q250 value 1/p f p fixed by the axial anomaly and the
leading large-Q2 term 4p f p /Q2 calculated for the
asymptotic form of the pion distribution amplitude.

The application of the local duality ansatz in a general
situation when both photons are virtual was discussed in Ref.
@23#. The basic formula written in terms of the effective
wave function is given by

Fg* g* p0
LD

~q2,Q2!5
1

p f p
E

0

s0
rquark~s,q2, Q2! ds

5
2

p f p
E

0

1

dxE x x̄~xQ21 x̄ q2!2

@k'
2 1xQ21 x̄ q2#3

3CLD~x,k'! d2k' . ~5.37!

For q25Q250 it satisfies the anomaly constraint~4.1!,
while when bothq2 andQ2 are large it reduces to the PQCD
formula

Fg* g* p0~Q2!uq2,Q2→`5
4p

3 E
0

1 wp~x!

xQ21 x̄ q2
dx1O~1/Q4!.

~5.38!

E. Extended local duality

Note, that the pion distribution amplitude~5.35! produced
by the local duality prescription coincides with the
asymptotic DA. To model wave functions corresponding to
DA’s different from wp

as(x), we propose to use the sharp
cutoff analogue of the Gaussian model~4.13!:

C~LD!~x,k'!5
8p2

sA6

wp~x!

x x̄
u~k'

2 <x x̄s!, ~5.39!

wheres is again the width parameter andwp(x) the desired
DA, which satisfies the standardf p-normalization constraint

~4.16!. To guarantee the anomaly result for thep0→gg rate,
we impose the following constraint on thex integral of
C (LD)(x,k') at zero transverse momentum:

E
0

1

C~LD!~x,k'50! dx 5
2A6

f p
. ~5.40!

Substituting the model ansatz~5.39!, we derive from this
constraint the condition for the standard integralI 0

I 0[
1

f p
E

0

1

wp~x!
dx

x
5

3s

s0
, ~5.41!

wheres0 is the basic combinations054p2f p
2 . TakingI 0

as53
and I 0

CZ55, we fix the width parameterssas5s0 and

sCZ5 5
3 s0'1.11 GeV2. Note, that in the CZ calculation@43#,

the duality interval was 0.75 GeV2 for the zeroth moment of
the DA and 1.5 GeV2 for the second one; our effective du-
ality interval sCZ for the CZ-type DA appears to be the av-
erage of these two. Using the ansatz~5.39! in Eq. ~5.28! and
integrating over the transverse momentum, we obtain

Fg* gp0
LD

~Q2!5
2p

3 E
0

1wp~x!

x x̄s
F12

1

~11 x̄s/Q2!2Gdx.

~5.42!

This formula has correct limits both forQ250 and largeQ2.
For the asymptotic distribution amplitude, Eq.~5.42! pro-
duces the expression~5.20! coinciding with the Brodsky-
Lepage interpolation formula. For the Chernyak-Zhitnitsky
DA we get

Fg* gp0
LD,CZ

~Q2!5
1

p f p
H 1

11Q2/s
2

2Q2

s1Q2

112
Q4

s2F S 11
2Q2

s D lnS 11
s

Q2D 22G J .

~5.43!

Despite its apparent complexity, this expression is very close
numerically to the simplest interpolation

Fg* gp0
int,CZ

~Q2!5
1

p f p~11Q2/sCZ!
~5.44!

between the anomaly value atQ250 and the PQCD result

Fg* gp0
PQCD, CZ(Q2)5 5

3 (4p f p /Q2) calculated for the CZ distribu-
tion amplitude.

Thus, Eqs.~5.20!, ~5.44! model the modification of the
basicI 0 integral by power corrections. On the other hand, the
modification of I 0 by radiative corrections is described by
Eqs. ~2.27!, ~2.29!. Though we obtained these two types of
modifications in a completely independent way, it is tempt-
ing to combine them in a single expression. A self-
consistent, but a rather time-consuming way to do this is to
calculate the spectral densityrquark(s,Q2) to two loops and
apply the local duality prescription. Then both the radiative
and power corrections would result from the same expres-
sion. We leave such a calculation for a future investigation.

In the absence of a completely unified approach, we can
try to get an interpolating formula by combining the two
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independent calculations described above. A natural idea is
to write all the one-loop diagrams in theb representationa lá
modified factorization and then substitutewp(x,1/b) by

C̃(x,b) and the Born factorj̄ K0(Aj j̄ bQ) by the modified
version 1

4 jQ2b2K2(AjbQ). This will give a more reliable
behavior in the small-Q2 region where the corrections are
dominated by power terms. However, changing the structure
of the Born factor would affect the radiative corrections and
spoil the results at the high-Q2 end, where one should ex-
actly reproduce the PQCD results. Since the perturbative cor-

rections are rather small, we expect that a self-consistent
inclusion of radiative corrections should be rather close to a
simple product of the nonperturbative 1/(11Q2/s) factors
and perturbative corrections from Eqs.~2.27!, ~2.29!. Such a
product gives

Fg* gp0
as

~Q2!'
1

p f p~11Q2/s0!
H 12

5

3

as~Q2!

p J
~5.45!

for the asymptotic form of the pion DA, and

Fg* gp0
CZ

~Q2!'
1

p f p
H 1

11Q2/s0
H 12

5

3

as~Q2!

p J F12S lnQ0
2/L2

lnQ2/L2D 50/81G1
1

11 3
5 Q2/s0

H 12
49

108

as~Q2!

p J S lnQ0
2/L2

lnQ2/L2D 50/81J
~5.46!

for the case when the pion DAwp(x;m) coincides with
wp

CZ(x) for m5Q0. These expressions have necessary inter-
polating properties: in the absence of radiative corrections
they coincide with the local duality expressions, while for
large Q2, when the power corrections can be ignored, they
reproduce PQCD results. From Fig. 4, one can see that the
curves forFg* gp0

as (Q2) andFg* gp0
CZ (Q2) ~with Q0'0.5 GeV

@33#! in this model are sufficiently separated from each other
which allows for an unambiguous experimental discrimina-
tion between them.

It is instructive to make a more detailed comparison of the
relative size of perturbativeO(as) and nonperturbative
s/Q2 corrections. TakingL5200 MeV, we observe that the
perturbative correction for the asymptotic DA changes the
lowest-order result by&30% for Q2*0.5 GeV2. This
means that the PQCD expansion for the lowest-twist term in
this case is self-consistent forQ2 as low as 0.5 GeV2. On the
other hand, the power corrections0 /Q2 exceeds 70% for all
Q2&1 GeV2. This clearly indicates that PQCD results are
not reliable below 1 GeV2. To reduce the ratios0 /Q2 to the
20% level, one should takeQ2*3 GeV2. This is an illustra-
tion of the well-known statement~see, e.g.,@65#! that reli-

ability of simplest PQCD formulas is limited in first place by
power corrections rather than by the increasing value of the
QCD running couplingas(Q

2). The crucial fact here is that
the scales0'0.7 GeV2 determining the deviation from the
PQCD 1/Q2 behavior is much larger thanL2. It is also much
larger than other typical nonperturbative scales such as the
square of the constituent quark massMq

2;0.1 GeV2 or the
average transverse momentum^k'

2 & @in the LD model~5.25!,
^k'

2 &LD5s0/10'0.07 GeV2#. This observation can be easily
explained by the fact thatk'

2 present in the modified Born
term ~5.28! is added toxQ2 rather than toQ2. This enhances
the relative size of power corrections by a factor such as
1/̂ x&. In full accordance with the statements made in Refs.
@52,53#, the onset of theQ2 region where the lowest-order
PQCD result is reliable~in the sense that PQCD gives a good
approximation! is determined by the size of the average vir-
tuality xQ2 of the ‘‘hard’’ quark. If its value is too small,
PQCD is unreliable even if the effective couplingas is neg-
ligible and perturbation theory for the lowest-twist contribu-
tion is self-consistent.

VI. CONCLUSIONS

In this paper, we discussed the status of QCD-based the-
oretical predictions for theFg* gp0(Q2) form factor. As we
repeatedly emphasized, in this case one deals with a rather
favorable situation when QCD fixes both theQ250 value
~dictated by the axial anomaly! and the large-Q2 behavior
governed by perturbative QCD. Still, constructing a dynami-
cally supported interpolation between the two limits, it is
very important to adequately reproduce at moderateQ2 the
corrections to the asymptotic PQCD result, both perturbative
and nonperturbative.

Working within the framework of the standard PQCD fac-
torization approach~SFA!, which allows one to unambig-
ously separate the contributions having different power-law
behavior at largeQ2, we gave a detailed analysis of the
one-loop coefficient function for the leading twist-two con-
tribution. To explore the role of the transverse degrees of
freedom, we wrote the relevant Feynman integrals in the
Sudakov representation and showed how the SFA produces

FIG. 4. CombinationA2Q2Fg* gp0(Q2)/4p ~measured in GeV2

and equivalent toQ2F̃g* gp0(Q2), with the form factorF̃g* gp0(Q2)
normalized according to definition adopted in Refs.@21,26,38# as a
function ofQ2. The lower curve corresponds to our model with the
asymptotic DA @Eq. ~5.45!# and the upper one is based on Eq.
~5.46!. Data are taken from CELLO Collaboration publication@14#.
Preliminary CLEO data@15# ~not shown! are very close to the lower
curve.
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the basic building blocks of the modified factorization ap-
proach~MFA! @29#, such as the Sudakov-type double loga-
rithms ln2(b) with respect to the impact parameterb' which
is a Fourier conjugate to the transverse momentumk' . The
fact that we derived the Sudakov effects within the lowest-
twist contribution of the SFA, explicitly demonstrates that
they should not be confused with the higher-twist effects. In
other words, though the Sudakov terms are given by inte-
grals overb' ~or k'), they are purely perturbative and do not
produce power corrections to the lowest-order PQCD result.

Furthermore, we observed that the power corrections
1/Q2 due to the intrinsic transverse momentum are rather
elusive both within the OPE-type factorization and the light-
cone approach of Brodsky and Lepage. Contrary to naive
parton expectations, the simplest handbag-type diagram in
both cases does not produce an infinite tower of (1/Q2)n

terms: such a series is generated by contributions corre-
sponding to physical~transverse! gluons emitted from the
hard propagator connecting the photon vertices. It goes with-
out saying that an explicit summation of such terms is a
formidable task in both of these approaches. A simpler pic-
ture emerges within the QCD sum rule approach in which
the infinite sum over the soft parts of theq̄G•••Gq Fock
components is dual to theq̄q states generated by the local
axial current. An important observation establishing the con-
nection between the QCD sum rule and light-cone ap-
proaches is that integrating the invariant masss of the q̄q
pair over the pion duality interval 0<s<s0 is equivalent to
using the effective two-body wave functionCLD(x,k'). The
result obtained from the local quark-hadron duality~LD! an-
satz applied to the lowest-order triangle diagram coincides
with the Brodsky-Lepage interpolation formula@3#, i.e., it
reproduces both theQ250 value specified by the axial
anomaly and the high-Q2 PQCD behavior with the normal-
ization corresponding to the asymptotic distribution ampli-
tude for the pion. To test the sensitivity to the shape of the
pion distribution amplitude, we proposed a model for the
effective wave functionCLD(x,k') which reduces to the de-
sired DA after thek' integration and still provides the cor-
rect limits for the form factor both at low and highQ2.

In our analysis, the regions of small and large transverse
momenta~responsible for power 1/Q2 and as corrections,
respectively! were studied separately, within the frameworks
of two different approaches. In spite of this, the basic results
written in terms of thek' integrals look rather similar. A
major challenge for a future study is the construction of a
unified approach in which both the nonperturbative power-
suppressed terms and the perturbative radiative corrections
emerge from the expansion of the same expression. The

quark-hadron duality approach provides a framework in
which such a self-consistent unification is guaranteed. The
only missing ingredient is the perturbative spectral density
rquark(s,Q2) at the two-loop level.

There are two further improvements which should be
made in the perturbative part of the problem. First, it is nec-
essary to fix the argument of the running coupling constant
as . In our analysis, we either left it unspecified and esti-
mated the corrections assuming thatas /p'0.1 or took
L5200 MeV in the one-loop expression foras(Q

2). How-
ever, for a precise comparison with experimental data, esti-
mating the magnitude of theas correction one should explic-
itly specify the UV renormalization scheme, fix the
parametermR in the argument of the running coupling
as(mR), and use the proper value of the QCD scaleL. A
very effective scale-fixing prescription is provided by the
Brodsky-Lepage-Mackenzie~BLM ! approach@70#. To use
the BLM prescription, one should calculate two-loop PQCD
corrections to the coefficient function containing quark loop
insertions into the gluon propagator. Another problem is the
inclusion of the effects due to the two-loop evolution of the
pion distribution amplitude@71–73#. Originally, the relevant
corrections expanded in terms of a few lowest eigenfunctions
of the one-loop kernel, were found to be tiny@6#. Recent
progress@74# in understanding the structure of the two-loop
evolution suggests that higher harmonics cannot be ne-
glected, and the size of the two-loop evolution corrections is
somewhat larger than estimated in@6#. However, our pre-
liminary numerical estimates@75# of the effects due to the
modified evolution developed in Ref.@76# do not indicate
appreciable changes for theI integral.
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