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Transverse momentum and Sudakov effects in exclusive QCD processeg: y=° form factor
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We analyze effects due to transverse degrees of freedom in QCD calculations of the fundamental hard
exclusive amplitude of ay* y— «° transition. A detailed discussion is given of the relation between the
modified factorization approactMFA) of Stermanet al. and standard factorizatiofSFA). Working in the
Feynman gauge, we construct basic building blocks of the MFA from the one-loop coefficient function of the
SFA, demonstrating that Sudakov effects are distinctly different from higher-twist corrections. We show also
that the handbag-type diagram, contrary to naive expectations, does not contain an infinite cN&HQH {
corrections: they come only from diagrams with transverse gluons emitted from the hard propagator. A simpler
picture emerges within the QCD sum rule approach: the sum oveq_ﬁ)ﬁ -Gg Fock components is dual to
qq states generated by the local axial vector current. We combine the results based on QCD sum rules with
perturbative QCD radiative corrections and observe that the gap between our curves for the asymptotic and CZ
distribution amplitudes is sufficiently large for an experimental discrimination between them.
[S0556-282(197)00517-1

PACS numbes): 12.38.Bx, 12.38.Lg, 12.38.Qk, 13.40.Gp

I. INTRODUCTION and collaborator$29,3( in which the factorization formula
invloves an extra integration over the impact parambéter
The form factorF y*Wo(qf,qg) relating two(in general, and Sudakov double logarithms @hslnz(bf)]” type are
virtual) photons with the lightest hadron, the pion, plays asummed to all orders. In Reff21,2§ it was claimed that
crucial role in the studies of exclusive processes in quantursuch an analysis takes into account some transverse-
chromodynamics. With only one hadron involved, it has themomentum effects neglected within the standard factoriza-
simplest structure analogous to that of the form factors ofion approach[1,31-33. Incorporating the transverse-
deep inelastic scattering. At large photon virtualities, com-momentum-dependent wave functidn(x,k, ), Jakobet al.
paring the perturbative QCPQCD predictiong 1-6] with [21] also proposed a model for the effects due to the intrinsic
experimental data, one can get important information(primordial transverse momentum.
about the shape of the pion distribution amplitugdg(x). Another attempt to take into account the transverse mo-
Because of its relation to the axial anom§h}, the y* y* #°  mentum effects was made by Cabal.[26], where the light-
form factor has been an object of intensive studies since theone formalism expressidii] for the y* y— 7° was used.
1960's[8-13. ExperimentallyF .« « ﬁo(qing), forasmall Adopting an exponential ansatz fo_r the transverse momen-
virtuality of one of the photonsﬁ~0, was measured only tum dep_endencc_a of the wave func_tlon, the authqrs observed
recently ate*e~ colliders by the CELLO[14] and CLEO !argc_a f‘hlgh.er-t\let” corrections, with the concluspn fthat_ it
[15] Collaborations(in the latter case, only a preliminary IS difficult in such a situation to _makg a cIe_ar dlstlnptlon
announcement of the results was madehe possibility to betwee_n different shapes_of the pion distribution amplitude.
measurd . « WO(Q%’“QQ%) at fixed-target machines such as In this paper, we will dlsc*uss S/anous types of-transverse
the Continuous Electron Beam Accelerator Facility of Jeffer—mpmemum effects fpr t_hey ym form.facto.r. First, we
son Lab was also discusséti6]. These measurements in- briefly outline the derivation of the leading-twist PQCD for-

spired the studies of the momentum dependence of this forrWuIa ;054%? 3pro<_:e§|s '”;S":g a cov?riant ?ct(t)rization ap-
factor within various models of the nonperturbative quarkproac [34, N 3 simi ar 1o the operator product expansion
dynamics[17—-27. (OPB formalism. In this framework, we identify the basic

For a detailed comparison of PQCD predictions with ex-YPes of the hlghgr-tmst corrections neglected in the leading-
iywst approximation. We show, in particular, that for mass-

perimental data, one should have reliable estimates of po ks i lar th intrinsic t
sible corrections to the lowest-order handbag contribution, i eSS quarks In a scalar theory no Itrinsic transverse momen-
fum effects are neglected in the handbag diagram: because of

particular, those due to the gluon radiation and higher-twisth imole sinqularity struct £ th I K
effects. Within the standard PQCD factorization approach, € simplé singularity structure or thé massiess quark propa-
ator, such effects can be taken into account exactly and lead

the one-loop radiative corrections to the coefficient function? o _ . 5
were calculated in Ref§4—6]. The authors of Ref§21,2g 0 nedligible pion mass corrections/Q? only. In QCD, the

incorporated the modified factorization approach of Stermartﬂangbag diagram contains a twist-four term interpretable as a
O(k?) correction, but no terms corresponding to higher pow-

ers ofk? . Hence, the infinite tower of\1%/Q?)" corrections

*Also at Laboratory of Theoretical Physics, JINR, Dubna, Rus-is generated by operators corresponding to high®r - - Gq
sian Federation. Fock components. In Sec. Il, we also discuss the structure of
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the results for the one-loop radiative correctigds-6] cal-  shown in Ref[2], the latter coincides in the real photon limit
culated within the standard factorization approachQ?=0 with that of theqq Fock component and doubles the
[31,1,33,36,3F total result at this point. Clearly, the inclusidor at least

In Sec. Ill, we give a detailed one-loop derivation of the modeling of this contribution is necessary for a consistent
basic formulas of the modified factorization approachdescription of subasymptotic effects. Comparing the ap-
(MFA). We write the relevant one-loop integrals in SudakovProaches of Refd.21,26, we emphasize that they incorpo-
variables used 29,30, introduce the impact parameter rate two completely different light-cone schemes. The light-
b, , as the Fourier conjugate variable to the transverse moigsoggljslr;?:‘rhsg ?rjc?)rrcp))?)?zﬁnzn?h:eiﬁzgﬁ]eu;eodn:gnTuerfr%?ime
mentumk, , and reproducéat one loop the structure of the :
modified factorizatio29]. In contrastand complementajy On the other hand, the approach of Refl] (and that of the
to the original analysis, we use Feynman gauge which allowgnderlylng paper$29,30) is based on the Sudakov decom-

us to make a direct graph by graph comparison with thé)osition. The basic difference between the two light-cone
results[4—6] obtained within the standard factorization ap- approaches is that the momentum of the virtual photon in the

0 : )

. o o v* y— ar° process is dominated by the transverse component
proach(SFA). Since Fhe mod|f|.ed factonzatlo_n formu_las aP- in the BL light-cone scheme while it is purely longitudinal in
pear as an intermediate step in our calculations which evenr o sudakov approach

e L oy e s B2, 1 i Sec.V, e use QD sum e s to get e for
. 9 . y Peihe F . -0(Q?) form factor which reproduces both the
turbation theory. The difference between the two approaches, " ” o i
=0 constraint imposed by the axial anomaly and the

is only in different organizations of all-order summation of L
. . : .. lowest-order PQCD results for higQ°. We show also that
higher-loop terms. Namely, in the MFA, the Sudakov typethe results obtained on the basis of QCD sum rules and

. 2 n . .
double logarithmd aIn"(Qb,)]" are treated as logarithmic eqgark—hadron duality can be interpreted in terms of the ef-

enhancements and are summed over all orders to produc ) . . ; .
fective valence wave function which absorbs information

factor suppressing the contributions from the labgeegion. . )
2 n .. about soft dynamics of higher Fock components of the stan-
In the standard approach, theIn(Qb)]" terms are inte dard light-cone approach. Combining these results with

grated overb, and included order by order. We show that P o . - .
.0 . PQCD radiative corrections, we obtain an expression de-
for the y* yzr™ form factor the use of the SFA procedure is pending on the choice of the low-energy distribution ampli-

well justified since the results of the_integration produce tude. The difference between our results for the asymptotic

rather mild corrections+20% at one loop Another lesson oo PR . .

. : and Chernyak-ZhitnitskyCZ) distribution amplitudes is suf-
from our ‘?'et"’?"ed one-loop study of the MFA is that thoughficiently large for an unambiguous experimental discrimina-
the factorization formula of the MFA explicitly involves an "ot vaan these two possibilities

integral over the impact parameter (or transverse momen-

tum k, ), the results of such an integration do not produce

power suppressed contributions. Thus, despite the claims Il. FACTORIZATION

made, e.g., in Refd.38,39,2] higher-twist corrections are A. Structure of factorization

not included in the MFA . ' 2 2
In Sec. IV, we discuss two recent attempgi,26] to *V\ie d%ﬁne the form factorF .« x ;o(qy,d2) of the

model the intrinsic momentum corrections for the ¥ ¥*— " transition through the matrix element

F o 777o(QZ) form factor. The approach of Jakebal.[21] is

based on the extrapolation of the modified factorization for- 47Tf <7T'5|T{JM(X) JV(O)}|O>e*iCI1Xd4X
mula into the nonperturbative region. At large impact param-
etersb, the Sudakov suppression factor is supplemented by —ie2\2 fwaﬁngng* - 0(62,92), 2.1)

the nonperturbative wave functiobi(x,b) reflecting the ef-

fects due to the primordial transverse momentum distribuwhereJ, is the electromagnetic current of the light quarks
tion. However, since terms which were inessential for the

derivation of the Sudakov factor at large? may be quite J,=e,uy,uteqdy,d 2.2
important for smallQ?, it is not clear for whichQ? region

such an extrapolation is sufficiently accurate. We observe, ignd |7T,5> is a one-pion state with the four-momentym
particular, that instead of producing tQ€=0 value dictated Note, that our definitionaimed at getting a simple coeffi-
by the axial anomaly7,40], the extrapolation formula gives cient for the spectral density for the triangle anomaly dia-
a logarithmically divergent result suggesting that the eXgram, see Sec. \differs from that in Refs[1,21,2§ by
trapolation should not go down to very 10Q” Caoetal.  factor/2/4s. Experimentally, the most favorable situation is
[26] use the expression for theeg Fock state contribution to  when one of the photons is real or almost reél:vo. In this
Fox Wo(QZ) derived in the light-cone formalism by Brodsky case, we will denote the form factor By, WO(QZ), where
and Lepagé1]. This expression involves no approximations Q?= — g3 is the virtuality of the other photon. It should be

and has correct limits both for small and large. Inpar-  sufficiently large for PQCD to be applicable. In general, a
ticular, we demonstrate that, in full accordance with our genpowerlike behavior of o WO(QZ) in the large©? limit can

eral analySiS, it contains no hlghelinSt contributions. Stl”,be generated by three basic reginﬁme F|g ;L

one should take into account that the term, by definition, The dominant contribution is provided by the first regime
does not include the contribution due to higreG---Gqg  [Fig. 1(@] which corresponds to large virtuality flow through
Fock components of the pion light-cone wave function. Asa subgraphv containing both photon vertices. The power-
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whereO(G) depends on the gluonic fields through the gluon
field strength tensoB ,, and its covariant derivatives. Since
G,, is asymmetric with respect to the interchange of the
indicesu, v, it should be treated as a twist-one field.
Basically, the contributiori2.4) is analogous to the quark-
antiquark term of the standard operator product expansion
for J%(0)J#(2). In this form, the operato®(¢, ) still con-
tains nonleading twist terms. To get the lowest-twist part, we

should expand)(¢, ) into the Taylor series

0

— 1
a(é)vsv.E(& W;A)Q(U):nzo mA”lA”z. .. A"n

Xaf) 757VDV1DV2' o DanI(g).

A=n-§, (2.6

and pick out only the symmetric-traceless part
qu{yVDleVZ- . -D,,n}q of each local operator from this

expansion. The traces correspond to operators with con-
tracted covariant derivative®”D,, which, for dimensional
reasons, are accompanied by powers of the integalaf)2.

FIG. 1. Structure of factorization for thie « 7Wo(Qz) form fac- Likewise, the ¢— 7])2 factors produce extra powers af
tor at largeQ®. after integration ove and 7. Finally, each power of?

] ) ) results in an extra power of @7, i.e., each pair of contracted
counting estimate for the larg@? behavior of such a con- covariant derivativeD”---D, in a higher-twist operator
figuration with arbitrary number of external lines df is produces 19?2 suppression at larg®2. Hence, the twist-two
given by (see Refs[22,24)) part of O(¢, 5) corresponds to the lowest term of the expan-
sion over ¢— )%

O(&,7)=0(&,m)| (¢~ p2—otOL(E—m?]. (2.7

wheret;’s are twists(dimension minus spirof the quark and  The light-cone matrix element can be parametrized in terms

gluon external lines o¥/, with t=1 for the quarks ant=0 of the pion distribution amplitudéDA) ¢_(X):
for the gluons in a covariant gauge. Hence, for the leading

term, one should take the minimal number of quark lines(0|O,(&,7)|7°,p)| (s 20
(two in our casgwhile the number of the gluonié fields is

arbitrary. Generically, the leading contribution of this type . 1. itord
can be written as =ip, ] e XX (x)dx (2.9

F(Q)=Q 2 Y, 23

which gives the probability amplitude that the fast-moving
pion is aqq pair with its longitudinal momenturp shared
X<p|(’)(§,7])|0>|ﬂzd4§d4n, among the quarks in fractionsandx_z_(l—x) (throughout
(2.9 the paper, we use the “bar” convention for the momentum
where the parameteru? is the factorization scale, fractions:x=1—x, y_El—y, etc). Substituting this repre-
C(¢,7,91,0,) corresponds to the short-distance amplitudesentation into the generic expressi¢h4), we obtain the
with two external quark lines, an@(¢,7) is a composite hard scattering formula

operator O(¢,7)~q(€) ysv,E(£&,7;:A)q(7). The path- ar

) 1 _
ordered exponential F % y70(01,02) =?j0 T(q1,92;XP, XP) ¢ A(X)dX,

Fy* y* ﬂ'o(ql 1q2): J C(f:’?le,QZ;Mz)

(¢ (2.9
E(&, 7;A)=Pex |gf A,(z)dz*

” where the factor 4/3 is cMe to our normalization of the
form factor andT(q;,02;k, k) is the amplitude for the sub-
processy(q4) v* (q,)— q(k)q(k). Calculating this lowest-
twist amplitude in the momentum representation, we should

realize that the neglect of the higher—_twist operators having
S(é- 71)'*‘[ S(é-2)y*gAL(2)S(z— p)diz+ - - extraD? is equivalent to takind?=0, k?=0 for the exter-
nal qguark momenta. In general, this limit is singular for dia-
=E(& 7;,A)SH(E—9)[1+0(G)], (2.5 grams with loops, and one should regulate the resulting mass

of the gluonic fieldA results from summation over external
gluon lines ofV. For the quark propagator, e.g., one has
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q2 the integrall, increases by a sizable factor of 5/§°=5
ﬁy (1-X)p and one can hope that this difference can be used for an
b experimental discrimination between the two competing
models for the pion DA.
Since one of the photons has a small virtuality, one
q /;Xp should, in principle, also take into account the regimmee
17 Fig. 1(b)] involving a long-distance propagation in tlog
channel, with large momentum flowing through a central
FIG. 2. Lowest-order diagram. subgraph/ containing only the virtual photon vertex. In the
lowest order, this subgraph corresponds to a hard-gluon ex-
singularities Iik® in some way, e.g., by dimensional regular- change, just as in the asymptotically leading PQCD contri-
ization or by taking massive quarks akt=mj. In the latter ~ bution to the pion electromagnetic form factor. The power
case, only the logarithmim, dependence should be kept in counting for such a contribution infe,« ,»0(Q?) is given by
the final result: keeping the power ternnné/Q2 exceeds, for F(Q%)=Qto, o .19
light quarks, the accuracy of the method. The subsequent = P :
procedure is to split the logarithms ®Yn?) into the long-
distance and short-distance parts QAP =In(Q% u?)

wheretoi, i=1,2 are the twists of composite operatdPs

2 o . corresponding to thg; andp channel, respectively. Taking
+In(u?/m?) and absorb the long-distance onesuffi() into into account that twist of a gauge-invariant color-singlet

the pion distribution amplitudep .(X) — ¢ (X; u). :
Thus, the lowest-twist contribution corresponds to theCOmIOOSIte operato0); cannot be less than 2, we conclude

. . . . 4 . .
parton picture in which only the longitudingdroportional to tha_f_ktlg'strr]i%"?: gi]rlr\:gFF? nolr(]g?dclgelfo)nggngbggoz'man
p) components of the external quark momenta appeatr. In the : €9 9. - P . ynn
lowest order(see Fig. 2 the amplitude for transition of two mechanism, i.e., to a situation when the passive quark is soft.

. i N : ... Using the wave function terminology, we can say that
photons into t_he 'qua'rk :;Lnnquark pair with colllnea'r lightlike F Wo(Qz) in this regime is given by an overlap of soft
momentaxp, xp is giver by the quark propagator: wave functions describing the initial and final state. This

contribution also behaves asQt/ at largeQ?.

1
TO(X!QZ): - (210)

—(g;—xp)? xQ B. Handbag diagram and transverse momentum
For the OPE contribution, the simplest power corrections

come either from the traces of the two-body oper&?¢x,y)
which appears in the handbag diagram or from a direct in-
sertion of gluon lines with physical polarizations into the
For (Q?)= Af_ﬂfl‘Pw(X) dx= 47wa| 2.1 propagator connecting the photon vertices. SiB¢® , can

vevm 3 Jo xQ? 3Q2 0 ' be interpreted in the momentum representation aqdba-

eralized virtuality k? of the quark field, the higher-twist op-

Necessary nonperturbative information is accumulated in therators containind”D,, looks like a natural candidate for

and the PQCD resultl] for the largeQ? behavior of the
form factor is

same integral, description of the effects due to the transverse momentum of
the quarks. However, there are some practically important
1 (1e.(X) 211 amplitudes which, due to their simple singularity structure,
— ™ — 2 . .
o—f—fo de—f—fo To(X,Q%) @ (x)dX, are “protected” from the towers of§?)"-type higher-twist

(2.12 corrections. The most well-known example is given by the
classic “handbag” diagram for deep inelastic scattering. The
that appears in the one-gluon-exchange diagram for the pio@west-order diagram for the* y— ° form factor (Fig. 2
electromagnetic form factdi32,41,42. The value ofl de- Nas similar properties. Consider its analogue in a toy scalar
pends on the shape of the pion distribution amplit@da)  Model:
¢(X). In particular, using the asymptotic forf82,41]

1 gz diz
F(aP)= 7 | € (01601 (211p) -

©2(x)=6f . x(1—x) (2.13
(2.16
gives 1§°=3. If one takes the Chernyak-Zhitnitsky ansatz ) ) ) ) .
[43] The first term in thez® expansion for the matrix element,
_ 2 242 o
(PgZ(X):gofwx(l_X)(l_ZX)2, (214) <O|¢(O)¢(Z)|p>_§2(zp)+z 54(Zp)+(z ) gﬁ(zp)+(2 177)

corresponds to the twist-two distribution amplitude while
Yn fact, there are two diagrams obtained from one another by théubsequent terms correspond to operators containing an in-
interchange of photon vertices. However, because of the symmetigreasing number af?’s. It is straightforward to observe that,
of the distribution amplituder,(x) = ¢,(1—x), their contributions ~ While the twist-two term produces theQ@? contribution, the
can be united. twist-four term is accompanied by an extra factor which
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completely kills the 12? singularity of the quark propagator, One may argue that there is another part in E520,
and d*z integration givess*(q—xp), which is invisible for ~ whenk is large(i.e., |k|>]q]). In this case, thé& line corre-
largeQ?. The same is evidently true for all the terms accom-sponds to high virtualities. If such a large momentum goes
panied by higher powers af. This means that the handbag directly into the soft hadronic wave function, tE behav-
diagram contains only one term with a powerlike behaviorior of such a contribution repeats thé dependence of the
for largeQ?: it cannot generate higher powers off/which  soft wave function, i.e., very rapidl§say, exponentiallyde-
one could interpret as thék?)/Q?)" expansion. Since only creases wittQ? (see Sec. IV C below for an explicit illus-
the Z2=0 projection of the bilocal operator survives, we cantration. A more favorable possibility is when the large mo-
parametrize mentum by-passes the wave function. Such a configuration
can give a leading-power contribution. In the latter case, the
1 — large virtuality flows through several lines forming a sub-
(0] (0)p(2)|p)= fo e(x)e”**Pdx+---, (218  graph with the saméminimal possible number of external
quark lines as the lowest-order leading twist contribution. In
,, the QCD factorization scheme, the relevant contribution pro-

where the ellipsis stands for terms producing the “invisible duces a part of a higher-order coefficient functjsee Fig.

contributions, and write the lowest-order term as 1(a)]
1 oe(x) 1 op(x) - . . .
F(g,.,p)=— f —_de= - fo —de C. One-loop radiative correction to the coefficient function
° (G2~ xp) (G1=xp) At one loop, the coefficient function for the* y— r°
1 o(X) form factor was calculated in Refgl—6]:
0 XQ“+XxXxp 1 asl (3
T(x,Q%p?)=— 1+Crp §+Inx IN(Q? u?)
Hence, the handbag contribution in this case contains only xQ 7
the hadron-mass correctiofsee[44]), but it gives no infor- 1 xInx 9
mation about finite-size effects. In the momentum represen- +§In2x— 2(1=%) 5 H (2.23

tation, the origin of this phenomenon can be traced to the

fact that a straightforward expansion of the propagator is just
in terms of traceless combinations: In full compliance with the factorization theoreri31,1]

(see alsd34,48,49), the one-loop contribution contains no

i on Sudakov double logarithms 3@? of the large momentum
=0(k|<|a)) > qu' —gfn{k,, -k, transferQ. Physically, this result is due to the color neutral-
n=0 (q n

(a—k)? ity of the pion. In the axial gauge, the Sudakov double loga-
i N rithms appear in the box diagrafo) in Fig. 3 but they are
+o(|k/>]q]) cancelled by similar terms from the quark self-energy cor-
n=0 (k?)"*1 rections in Figs. &) and 3e). In Feynman gauge, the double
logarithms 18Q? simply do not appear in any one-loop dia-
gkt -ginfk, ok b (2.20  gram. It is easy to check that the term containing the loga-

rithm In(Q%?) has the form of convolution

The handbag contribution corresponds|kp<|q|, and this
part of Eqg.(2.20 without any approximation produces an 1
expression equivalent to treating tkenomentum as purely -
longitudinalk= x p. xQ
It is worth noting here that though the hadron-mass cor-
rections have powerlike behavior 2/Q?)", they should Of the lowest-order(“Born” ) term To(£,Q%)=1/¢Q? and
not be classified akigher-twist corrections: they result the kernel
from the kinematic hadron-mass dependence of dlveest
twist contribution. For deep inelastic scattering, the possi- as
bility to calculate the target-mass corrections within the V(é,X)==— C¢
lowest-twist contribution is known as théescaling phenom-
enon [45,46. As emphasized by Elliset al. [44], the —
¢-scaling phenomenon can be also understood in terms of the + i0(§>x)
primordial transverse momentum, if one takes into account X
that, for the lowest-twist term, the transverse momentum dis-
tribution is totally due to the nonzero hadron mass, i.e., it has
a purely kinematic nature and for this reason can be calclz
lated exactly. The quark propagator in QCD has a stronge

singularityz/z*. As a result, the handbag-type contribution in

QCD contains a twist-four operator with exti¥ [47], but [F(&x)].=F(¢ x)—ﬁ(g—x)le(g x) dZ. (2.24
no operators with higher powers Bf. ’ ’ o

ag

3 11
CFZ(E'HI’]X) ZJ‘O@V(&X) d¢ (2.22

oesn| iy
;0(§<X)1+XT§

)

+

overning the evolution of the pion distribution amplitude.
he + operation is defined here, as us{fl], by
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’ as(5 ., , 49
3 I|<P(Xv,u)=(pcz(x):5 1_CFE gm(Q /Iu )—|—7—2

q
2 (1-x)p (2.29

k Again, the negative coefficient-49/72 comes from the
Xp —9/2 term compensated by an increased contribution from
q1/ the logarithmic terms: 3In>x gives +263/72 and
7 —xInx/[2(1-x)] gives 1/6. Forw= Q, the one-loop modified
(a) (d) factor is[1— 155 (as/ )], i.e., the total correction is smaller
than that for the asymptotic DA. Since the resuluislepen-

LLR ﬁ'L\ dent in this case, by an appropriate choicegf namely,

7 ] taking u=e*¥'?Q~1.5Q we can formally get a vanishing
O(as) correction. Then the one-loop expression for the form
factor would coincide with the lowest-order formula,
but with the distribution amplituderS%(x; ) evolved to
the scale u~1.5Q. However, at this scalegp.(X;u)
does not necessarily have the CZ form. To treat the evolu-

b) tion in a consistent way, we set the boundary condition that

(©) eS4(x;u) has the canonical CZ form ¢S4(x)=
ﬁ’lﬁ E 30f, xx(1—2x)? at some specific scaje=Q, (the original
iy D derivation[43] assume®),=0.5 Ge\j. Taking into account

ZE that ¢S%(x) is a combination of two lowest eigenfunctions of

the evolution kernel, we can write the solution of the evolu-
tion equation in the leading logarithm approximation:

/
InQS/AZ v2!Bo

Inu2/ A2

@7 (x; 1) = @231X) +{0SA(Xx) — 2 X)}

(2.29

where y,=50/9 is the relevant anomalous dimension and

s .
Since the asymptotic distribution amplitude is the eigenSo= 11~ 3Ny is the lowest coefficient of the QCIB func-
function of the evolution kerneW(¢&,x) corresponding to tion. In what follows, we takéNy=3 andB,=9. Choosing

(©) (M)

FIG. 3. One-loop diagrams.

zero eigenvalue, ©=Q, we get, for the integral (see alsd51]),
1 | o1 5[, InQ2/A2|>®"
a — = R — ) ——
fo V(£,X) ¢*(x) dx=0, (2.29 1%, = ¢ %00 3 INQ2/A2
the coefficient + Inx of the InQ%«?) term vanishes after the 49 ag)|InQ3/A? 2081
X integration with ¢®{x). Hence, the size of the one-loop +5\1-n—
h . e 108 7 | | InQ%/ A2
correction for the asymptotic DA ig independent and de-
termined by the remaining terms. Thentegral (2.30

0 (1 Note thatctzhe IAx term geg;rates a larger positive contri-
E_f T(x,Q%) ¢, (x) dx (2.26 bution for ¢x (x) _because(pv (x) is more concentra_ted in
fzJo the end-point regiox~0 than ¢2Yx). Furthermore, if the
distribution amplitude is extremely concentrated in the end-
[cf. Eq.(2.12] then can be written as point regionx~0, a positive contribution from theIn?x
term dominates the correction and generates a large positive
5  ag net effect. In such a situation, the one-loop correction van-
as= 3(1— > Ce ﬂ} (2.2 ishes only if u=aQ with a<1l. The broader the DA, the
smaller should be the paramet@rwhich reduces the one-

w

I |<P:<P

) . loop expression to the lowest-order one. Since the effective
The negative coefficient 5/2 here comes from the constant ormalization scale is smaller for a broader DA, perturbative

term — 9/2 [see Eq.('2.21)]' partially compe.nsated by two QCD applicability is postponed to high&@?. One may
logarithmic terms v¥h|<2:h give together 2, with +7/4 gen-  gpecylate that this phenomenon simply indicates that for a
erated by the zIn°x contribution and +1/4 by  proad DA the quark virtualitkQ? is a more natural choice
—xInx/[2(1-x)] term. With Cp=4/3, the net factor is for the effective factorization scale than the photon virtuality
[1-5as/m]. Hence, forag/m~0.1, the one-loop correction Q2 (i.e.,a~(x)) and PQCD is applicable only if the average
is less than 20% and the,/ 7 expansion looks “reasonably xQ? rather tharQ? itself is large enough. One faces a similar
convergent.” Taking the CZ form fop(x;u), we get situation studying the PQCD contribution to the pion form
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factor. The average virtualit{xyQ@?) of the exchanged
gluon in that case is essentially smaller ti@hand one may
guestion both theself-consistencyand reliability of the
PQCD analysis at accessible enerdi&?,53. In Ref.[30], it

was argued that due to the Sudakov effects in the impaatentiate
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there is no surprise that double logarithms @f appear
there. Note the well-known differencey/2m— a /4w be-
tween theoff- and on-shellforms of the double logarithms.

In higher orders, Sudakov logarithms are expected to expo-
producing the Sudakov form  factor

parameter space, the PQCD treatment of the lowest-twistx{ —(ad47) CeIn?(Q%m?)], and the region of very small
one-gluon-exchange term for the pion form factor isxQ? is relatively suppressed due to Sudakov effects.

self-consisteritat smallerQ? than suggested by the estimates

of the magnitude of the average gluon virtualityQ?. One

This also means that taking®~xQ? in Eq. (2.21) is not
an optimal choice, since it is accompanied by a negative

may expect that similar effects manifest themselves also imather than vanishing correction. Indeed, the original motiva-
the y* y#° form factor. Indeed, our numerical analysis of the tion to take a lower scalg<Q was to compensate the posi-

one-loop correction shows that takirg=1 (rather than

tive contribution from the Ifx term. However, taking

a=(x)) provides a good choice for the factorization scale. Itu>~xQ? in Eq. (2.21) for a wide DA generates a negative
is accompanied by a small one-loop correction even for §—In®x) term which overkills the original positivéin® term

broad DA of CZ type.

and converts its sign in the net result. A negative correction,

It is worth noting here that, even without incorporating in its turn, suggests that a larger factorization scale is a better
the impact parameter representation, one can observe sorokoice. This indicates that, for a broad DA, the typical dis-
traces of the Sudakov effects in the structure of the one-loopances probed in the hard subprocess are larger than those

coefficient function in the region of small fractions As

corresponding to ©@? but smaller than those corresponding

explained earlier, the one-loop term is obtained by calculatto the inverse of the average quark virtuabit®?.

ing the y* y—qq amplitude for massive on-shell quarks

As we will see in the next section, the modified factoriza-

with subsequent absorption of the mass logarithms in th&on [30] is similar to the choicg:.?~xQ? and for this reason

form In(u?/n?) into the distribution amplitude. When the vir-

it is accompanied by a negative correction. We will also

tuality xQ? of the quark line connecting the photon vertices €xplicitly show that the latter, in full accordance with the
becomes small, the vertex correction for the virtual photorMFA analysis[29], can be explained by Sudakov effects in

[Fig. 3@] is dominatedin Feynman gaugeby the off-shell
Sudakov double logarithm which can be written as

Q2
E CFInEInX—QZ,

where xQ? is the virtuality of the hard quark. Of course,
since this virtuality is parametrically of the order @f, we
get only a single logarithm with respect ©2, namely,
(ag27) Celn(Q%m?)Inx [cf. (2.21)], just as required for fac-
torization. However, if we write the sum of two terms

2

a Q
IN?x+ 21— Inx
m2

S
2 CF

which dominate the smak-region as

2
2 XQ
In —2—In

2Q°

asc
47 ~F m

we see that it converts into the standanmtshell Sudakov
double logarithm

2

aS 2Q
— 2=
4 m2

when xQ?~m?. Of course, the region whereQ? is para-
metrically of the order of the IR cutofin? is outside the

the impact parameter space.

IIl. ONE-LOOP RADIATIVE CORRECTIONS AND
TRANSVERSE MOMENTUM

A. Vertex correction for virtual photon and Sudakov effects

To establish the connection between standard and modi-
fied factorization approaches, we give below a rather detailed
discussion of the structure of the one-loop coefficient func-
tion using the Sudakov decomposition for the loop momenta.
We use the same definition of transverse momerkuras in
Refs.[29,30, introduce the impact parameter , and then
translate our results intb, space. To be able to make a
diagram by diagram comparison with R¢8], we use the
Feynman gauge. This also allows us to give an independent
one-loop derivation of théd, space Sudakov effects which
complements the general appro&28] based on the analysis
in the axial gaugé.We find it also instructive to demonstrate
how theb, -space double logarithms appear in a situation in
which double logarithms of? are absent in any diagram.

We start with the diagram(8) which is the most natural
suspect in a search for Sudakov effects in Feynman gauge.
According to general rules, calculating the coefficient func-
tion one should assume that external quarks carry purely lon-

gitudinal lightlike momentaxp and xp. Using p and q;
(abbreviated in this section tpfor conveniencgas the basic

formal applicability region of the factorization approach, and 3For the pion EM form factor, exponentiation of a similar combi-

Note, that self-consistency of the PQCD expansismall

nation (Cra¢/4m)[ In?(xy@/n?)—In?(Q%m?P)] suggested in Ref36]
was verified by a two-loop calculatidi®4].
“In a recent papdi55], Li gave a covariant gauge derivation of the

correction$ for the lowest-twist term does not necessarily meanmodified factorization for inclusive processes and heavy-quark de-

that PQCD is reliable, since power correctiodd¥Q?)" can still
be large(see discussion at the end of Seg. V

cays. However, in technical implementation, his approach is quite
different from ours.



2720

Sudakov light-cone variables, we write the momentkirof
the emitted gluon as
k=(¢-

X)p+ pg+k, (3.1

and then take the integral by residue. After that, the con-

tribution of Fig. 3a) (and any other one-loop diagraroan
be schematically written as

2k
T§1>(X,Q2)=;—; cpfoldgf Mi(x,Q%€,k,) dZ—L

_ Y 2
=5 Cr ti(x,Q9). 3.2

The internal amplitud® ,(x,Q?; £,k, ) for the diagram &)
is given by

ppy L (g Q*+K/E
Ma(XaQ 1§!kL) XQ k2[§Q2+k2/§] (§>X)
. K2 (£<x)
[EQ2+ K2/ ET[E(x— &)Q%+xK2] )
(3.3

The k, integral diverges both in thke, —~ andk, —0
limits. The ultraviolet largek, divergencesthey are actually
irrelevant to our analysjsare removed by th& operation,
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smallk, divergence(collinear singularity is converted into
the mass logarithm IG/n?) generating the evolution of the
pion distribution amplitude. The Sudakov effects are also
related to the Mf singularity. It is easy to check that the
coefficient in front of ka in the singular part,

LQ_(E) o=
XQ® K2[£Q2+ K2/ €] | x (£=x).
(3.9

has the form of the product of the Born terné@? and the
relevant part

MM, Q% € k) ==

& 0(&>X)

=% (3.5

a(§)(

+

of the evolution kerne{2.23). Note, that calculating the evo-
lution logarithm IiQ?/n? from dk, /k? , one can tak&, =0
(“neglect k, ") in all other places, in particular, in the de-

nominator factogQ?+ kf/g. However, nothing prevents us
from going beyond the leading logarithm approximation.
Keeping thek? terms, we can take into account those con-
tributions which do not have logarithmic behavior with re-
spect tom? or Q2. We will see that among them, there are
“Sudakov” terms with a specific double-logarithmic depen-
dence on the impact parameter, the variable which is
Fourier-conjugate to the transverse momentym To sepa-
rate the contributions related to the evolution kernel from

while the lowk, collinear divergences can be regulated bythose corresponding to Sudakov effects, we first make the

taking massive quarks. In that cagé,—k?+m? and the

decomposition

1 1 1
_ _ = _ - 3.6
[£Q*+kI/£1xQ° (§Q2+ki/§ W)(f—x)(ﬂki/& 49
and notice that the denominator fac&®?+ kf/g_reduces tocQ? whené=x andk, =0. Hence, we can write
27 1 Elx d2k, £lx
sin 2y _ d d2k __
@ Q) J gf T KR[EQPH K EIXQ? f éJ §Q2+k2f[k2[<§ X)Q2+K?/ €]
1 —~ g/x
—8(6—x)8%(k d¢ | d%k, = —— 1. 3.
To disentangle the product of thefunctions in the¢ andk, variables, we rewrite Eq3.7) as
f f d%k, (E1X) 6(E>X)
EQPHICIE | K\ (6-0Q2+IETE] |
1¢ 1 d?k,
S(¢— = — — 5%k : 3.8
FAET), %kﬁ[(é—X)Q”kf/Z] e 2[(—0Q2+ K2 /z]) g] e9
where the combination
( (£/x) e(§>xq _ (€/%) 0(£>%) L (LX) 8(£>x)
= ——§(é—X) | ———— (3.9
(E=0Q°+KE]  (6-)Q%+K2/ & 0 ({—X)Q*+K2/¢

is an analogue of the “plus” operation for the case when the transverse momentum is present. Similarly, the expression
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1 _52(k)f d%k,
K2[(£—x)Q2+K2/{] YR L-0Q+ K2 ]

(3.10

can be interpreted as a “plus” distribution with respectto. Extracting the pure kf singularity from the (- -), term in
Eq. (3.8),

i( (£1%) 0(&>x) ) _ 1[G 0(§>x>) _i( (£/%) B(&>x) )
l[E-0Q2+Kk/e]) QK (E=0 |, Q% (e—x[e(e-0Q2+K])

we can write Eq(3.8) in the impact parameter representation L (bm) we denote a regularized version of the integral result-

as ing from the first term in Eq(3.11):
sin, 2 1 . 1 2 eiklbl
56,07~ 5 | ‘de| BlEDQIVA(EXLBM L(bm)=Regn ({5 [ ok, e T
+Ea(X,&bQ)+ 8(£-x)Sa(x,bQ)] d?b, . In particular, if the integral is regulated by

(3.12 1/kf—>1/(kf+m2), then L(bm)=Ky(bm). The function

L(bm) containing the mass logarithm mg is multiplied
The functionB(&;bQ) gives the Born term in the space: by the relevant part/,(£,x) of the evolution kernel. As dis-
L ok, cusseg in kEhe kr.))r(E-jcedr:ng]c sectlioqu;/ tr)me n;ass singt;llar;tyl)ln(

] _ o = — must be absorbefdn the form Infn/w), whereu is the fac-
B(g’bQ)_Z §Q2+kf/§_d k.= §K0(bQ\/§), torization scal¢into the redefinition of the distribution am-

(3.13 plitude: ¢ .(X)— @ (X; ). The second term in Ed3.11) is
given by the functionE(x,¢;bQ) which also contains the

whereb= b, | andK(z) is the modified Bessel function. By evolution kerneNV,(&,x):

(E1X) 6(£>X)
X[ E(E—x)Q%+K?]

£ a(&> _
dsz:_{é—LX) Ko(bQV(é—x)€)| . (3.19

Ea(x §'bQ)=—i elkiby
avhse 27 (&— E—X

It is easy to notice that both the Born teB(é;bQ) and the  According to this representation, the functisfix Qb) van-
evolution-related termd.(bm) and E,(x,£;bQ) exponen-  jshes ash—0. In the opposite limit of large impact param-
tially decrease at largb, since the functiorKo(b---) be-  eters, it has a double-logarithmic dependenceboifo see
haves as expfb---) in this limit. On the other hand, the this, we integrate first ovey and then ovek, taking into

“Sudakov” term account that the factoref:°: — 1) provides, in the limit of
large b, an effective IR cutoff ak, ~1/b. As a result, we
1 ekibi—1 i i G :
Sa(X§bQ)=§J o2, _ obtain the largds behavior ofs(xQb) [29]:
K — 1, elbi-1 [XxQ
L) wmiae o S A
>< p—— e .
_ 2 2
x\ X L({—x)+ki/Q dk, l ('ﬁ)
~ — IN| —
accompanied by(£—x) in Eq. (3.12 has a completely dif- w Ky XQ
ferent behavior at largk. Indeed, changing the variabdein 1 o
the above integral as-1{=Yy x, we rewrite Eq(3.16) in the ~~3 IN?(xQb), 1A gep>b>11Q.
form
(3.18
ik, b 2
S,(x:0b)= if 42K e l_lfl _ ydy To be on the safe side, we included the\ 3> b restric-
an 2w * k2 oyy+k?/x2Q? tion to emphasize that these results are only valid in the

L region where one can trust PQCD expressions for quark and
=s(xQb). (3.17 gluon propagators.
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Integratings(x Qb) with the Born term gives, for smat, . . Cras  as \ (67 772) 5 wle
a negative double logarithm- 2In®. As discussed above, cusif @) = °\36 12/ 18|
such a correction is expected when one us€¥ as the (3.2

factorization scale. Indeed, for smal] the Born term is a

function ofxb?Q2. Hence, the choicg?=1/b? is essentially , , _
equivalent to setting.?~xQ?. Clearly, only theas term of I'¢ s { a5) manifests itself in a

In Ref.[29], it was shown that thé-space double loga- one-loop calculation. To get further correctiof29], one

rithms exponentiate in higher orders. In the double logarith-Should substituteCras/ in Eq. (3.20 by I'¢ysfas) and

mic approximation, they give the suppression factor also use a two-loop expression feg(k?) ands(xQb) [29].
Here, we restricted our analysis to the one-loop level.

ag 2
exp — 7 Celn“(xQb) (3.19
B. Vertex correction for the real photon

for largeb. The running of the coupling constant induces the  £q the real photon, the contribution of the vertex correc-
next-to-leading logarithmssee([56,57). To get them, one diagram 8b) is given by
should putag(k?) =4m/(BoInk?/A?) under the integral:

1 e (x-9Q%+xK

— C glkibr—1 Mp(X,Q,&,k, )= 2 O(£<X).
as Cy s(be)e—Ff 0%k, ——— ag(k}) oI X e ey M
2m ki (3.22
1 y*dy
X fo yy+ kf/?Qz' Again, we concentrate on the term singularkat=0. It is

(3.20 convenient to split it into two parts. The first part is obtained
by takingxQ? from the (x— £)Q? term in the numerator and
In general, the Sudakov effects are governed byettk@nal  the second one by taking(£Q?). We represent the first part
[58,59,29 (or cusp[60-62) anomalous dimension as

I3 1 1 1 £2Ix Elx
¥/ 12 221 12| 22412 22 e e 2. w121 (323
XIKI[E(x—8&)Q+xkT] Kki\| EQ +KTI/ &) E(x—E)+XKIIQ™ [E£Q +KTI[&(x—€)Q +xKT]

The last term here produces no divergences both for large and kmallhe 1kf singularity is contained in the first term

which we arranged to have a form of a product of the same Born tergQE/4 kf/g_) with a factor looking as &, -modified
evolution kernel. Then we write this factor as a sum of a “plus” term ang>a— &) term:

(£21%) B(£<X)
E(x— &) +xki/Q?

(&%) 0(6<x) L (21%) (<)
E(x— &) +xKAIQ? 0 {(x—{)+xKIQ?

As a result, the total contribution associated with khe=0 singularity can be written as
. 1 d?k 1 2Ix) O(E<x x 2 1
tglng(Xle):f dff 2 l2 _2( (g ) (g 2 )2) + 5(§_X)f g_( 2 2 2
0 §Q+KI/E| KT\ E(x—=§)+xkI/Q + 0 X\KI[Z(x—)+xki/Q7]

—52(k,) f ¢k, d (3.25
) R [e(x- 0 +XK21QY a '

(3.29

) +6(x—¢§)

where thes?(k,) term comes from the second,~¢Q?” the evolution-related contribution
part of the original expressiof8.22.
From this decomposition, we obtain the mass singularity

0(é<
term Ep(X,&b)=— g%Ko(bQ\/ﬂX—f)/X) :
+(3.27)
(5 6’(§<X)) _
- L(bm)=Vy(§,x) L(bm), (3.29
X (X=8) |, and the Sudakov term
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2 Ikibi gz dg« \/_
x;b fd J' ( =s(\VxQb). 3.2
Sp(x;bQ)= o\ x| 1x—0) +xIEIQ? (VxQb) (3.28
|
For largeb, the latter behaves as same combinatiorxb?Q?. Hence, integrating the product

B(x;bQ)S,(x;bQ) over b just gives 1Q? multiplied by a
1 constant factor: no kterms are produced. On the other

x:bQ)~ — = IN2(VXOb). 3.2 hand, a IAx term would appear i6,(x;bQ) would behave as
S(xbQ) 2 (xQb) (329 In®(xQb) for large b. The explicit expression for diagram

) o _ — 3(b) given in Ref.[5] has no IAx terms.
By analogy withS,(x;bQ) which is a function ofx Qb we

might expect thaS,(x;bQ) should be a function okQb.

Our calculation above shows thgt(x;bQ) is a function of C. Box and self-energy diagrams
JxQb. That this result is not unreasonable, can be justified
in the following way. Note, that for smak, both the Born In the Feynman gauge, the box diagrafa)Zontribution

term B(x;bQ) and ourS,(x;bQ) are the functions of the in QCD,

x(£2Q%+Kk?) (x— £)2Q2+xK
XQ XKC[£EQ2+K2]  XKZ[E(x—£)Q2+ XK

Mc(x,Q; €.k, )= | 9(§<X)]. (3.30

only by a numerical factor differs from that in a model with ¢
scalar or pseudoscalar gluons, in which Sudakov effects ar®l y, .= ——= 8(x— &) —f §>x)+ 0({<x)| d¢
absent. Hence, thie, =0 singularity produces only the evo- xQ
lution effects:
! (X—§) (3.33
=— x—&). .
2xQ%k?
1
M (X €K )= — V(X,&) —2+ (3.3)  The third self-energy diagram(f3 has only the UV diver-
kL £Q gence
whereV (X, &) is the relevant part, 1 J' ZIx 5
M= - — = dZ d’%k, .
=7 xQ? o(x=§) 0 L= 1) QP+ X2 £ dk,
(3.39
€ §_ Combining evolution kernels from all the diagrams above,
Ve(x.)= X O(6<x)+ ;_‘9(§>X)’ (3:32 one obtains the total evolution kerné{¢,x) (2.23.

D. Standard vs modified factorization

of the evolution kernel. Note, that (x,£) does not have a Summarizing the findings of the previous subsections, we
“plus” form by itself. The missingd(x— &) terms are pro- write the sum of the lowest-order term and one-loop dia-
vided by two quark self-energy diagram&@Band 3e): grams in the impact parameter representation as

4
F e yr0l Q0= > . [ ae [ BebQIVEN) Lbm+EEXDQ)

O{X_Qz 2m
2

b,
o } @ -(X) dx, (3.35

+8(£=x)8(x,bQ) +R(£,x;bQ)]
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where B(¢;bQ) is the b version of the Born term(3.13, scale. Such a choice is usually made in the standard factor-
V(&,x) is the total evolution kerneE(x,£;bQ) is the sum ization approach, in whiclx is either a fixed constant, e.g.,
of the evolution-related terms such a8.195, (3.27), pu=1 GeV or proportional to the external momentum
S(x,bQ) is the total Sudakov term given by Eg8.17), pm=aQ, with a being a fixed number. In particular, one can
(3.28), andR(¢,x;bQ) accumulates all the remaining contri- optimize the choice of the parameterby taking the value
butions coming from terms regular & =0. Integrating producing the shape @f(x;1/b) averaged over the essential
over b and specifying the prescription for the renormalizedregion of theb integration. Another point is that the PQCD
distribution amplitudee .(x; ), one would get the result evolution of ¢(x;w) is reliable only in a restricted region
(2.21) of the standard factorization scheme. In particular, theu= u. Since the modified factorization involves integration
term 3Inx, most sensitive to the width of the distribution over allb, we formally need to know the distribution ampli-
amplitude ¢ .(x; 1), comes from a negative contribution tude ¢(x;1/b) outside the perturbative regidns 1/uq. One

—3In?x due to the Sudakov terrB(x,bQ) and a positive should remember, however, that the Born té(a(Qb\/xx_)
contribution Irfx coming from them-independent part of the for finite x exponentially suppresses the lafgeegion. As a

convolution result, essential impact parametbrare~ 1/Q. The suppres-
. &b sion by the Born term disappears for smallvhen the effec-
d B(&'b V(X)L (b L tive scale becomes 4% Q? rather than 19. In this case, the
fo ¢ f (£:bQ & V(&)L (bm) 2 suppression of the larde-region is provided by the expo-

nentiation of the Sudakov terms which is the crucial element
of the modified factorization approa¢h9,30. As a result of
In(Q%m?)+In*x+f(x);. (3.39  the exponentiation, the series [afn%(Qb)]" terms, each of
which tends to infinity ad— o, is substituted by the expo-
This convolution also contains terms denotedfby) which ~ nential of Eq.(3.19 type rapidly vanishing with growing.
are less singular at=0. The total sum vanishes when inte- Of course, for finitex, the Born termK o(Qby/xx) provides
grated with the nonevolving asymptotic distribution ampli- €ven stronger suppression of the latgeegion and the in-
tude ¢_(x). It does not vanish, however, when integratedfluence of the Sudakov factor is minor. Only for smaltio
with DA’s differing from ¢2{(x). Sudz&ov effects become important. The relevant combina-
The logarithmic mass singularity im contained in the tion xQb in the Sudakov term of the diagrantaB converts
evolution termV(&,x) L(bm) is eliminated by absorbing it into Qb, and the exponentiated Sudakov factor plays a pri-
into the renormalized DA. The procedure used in the modimary role in squeezing the size of essential impact param-
fied factorization approach of Ref$29,30 is to absorb eters. A special role of the smallvalues in theb, integra-
|n(mb) As a reSUlt, one obtains the pion distribution ampli- tion is reflected by the_%hqzx term resu]ting from the

tude ¢(x;1/b) normalized at the scalg=1/b. Making  convolution of the Born term with the one-loop Sudakov
such a choice, one should realize timis an integration f5ctor

variable and, to preserve the acquired precision, one must
use the evolution equation to get.(x;1/b) for all relevant 1 1 1
values ofb. In particular, if the distribution amplitude is _J B(x;Qb) S(x;Qb) d2biz_( _Z
assumed to have a CZ-type shape for labget should be 2m Q?l 2
evolved towards the asymptotic shape for smaliensing (3.37
Eq. (2.29. Modeling ¢ ,(x;1/b) by a function ofx only
amounts to neg|ecting tl‘m_independent part of the convo- Whel’eg(X) stands for less Singular terms. After integration
lution B(&;bQ)® V(&,x)L(bm) (3.36. As noted before, this With  the  asymptotic  distribution ~ amplitude,  the
contribution contains Kx, hence, for extremely wide distri- [ — 2Inx—g(x)] term gives approximately 9/4+ 0.05, to be
bution amplitudes it can exceed that coming from the Sudacompared with the magnitude 5/2 of the total one-loop
kov term which only contains- Inx). correction[see discussion after E(R.27)]. Hence, the total

In the formalb=0 limit, the functione.(x;1/b) evolved ~ ©One-loop correction in the case of the asymptotic DA is very
according to the leading logarithm approximation formulaClose to the contribution of the Sudakov term aldgtie de-
(2.29, coincides with ¢(x). However, the function viation is only 12%. If the higher-loop corrections can be

E(x,£;bQ) also develops a logarithmic singularity for small also ap_proximated by the Sudakov contribution, then th_e ex-
b, because ponentiated form would produce the all-order result in a

rather compact form.
Ko(Qb---)=—In(Qb)+- - - Discussing the numerical significance of the Sudakov
terms, we should keep in mind that all the logarithmic en-
for small b. Hence, two Inlf) singularities present in Egs. hancements ffQb) are perfectly integrable and that the re-
(3.12,(3.39 compensate each other in the-~0 limit and  gion of smallx, where the Sudakov terms are important, is
the net coefficient in front of the evolution kernel is@i(): small itself: afterb, andx integrations, there are no espe-
the distribution amplitude evolves in fact only to the scalecially large contributions in the final result. The total one-
bmin~1/Q corresponding to the resolving power of the ex-loop correction is only about 20%. Hence, the exponentia-
ternal probe. Absorbing IQ¥m) into the renormalized distri- tion of the Sudakov terms would alter the one-loop corrected
bution amplitude one would gep(x)— ¢(X;Q), with the  result for the form factor by just a few percent, which is
large external momentur® serving now as a factorization similar to the accuracy of approximating the total contribu-

xQ?

3 I
§+ nx

In?x—g(x)




56 TRANSVERSE MOMENTUM AND SUDAKQOV EFFECTS IN ... 2725

tion by the Sudakov term at one loop. Note also that a fewnmula (4.3) has a monopole form with the scale
percent change may be smaller than the contribution genes—0=47-r2f§~0.67 GeV? numerically close to the-meson
ated by the one-loop ternts(x,£,Qb), R(x,£,Qb) and the  mass squaredn’~0.6 Ge\2. Thus, the BL interpolation
effects due to théd dependence of the renormalized distri- suggests a form similar to that based on the vector meson
bution amplitudep .(x;1/b). Moreover, for a wide DA, the dominance (VMD) expectation F o y77()((32):1/[7T]¢7T(1
latter are comparable to or exceeding the Sudakov contribus Qzlmi)]. In the VMD approach, the-meson massn,
tions. In principle, one can try to explicitly include these serves as a parameter determining the pion charge radius,
corrections within the MFA framework, but the result would gnd it is only natural to expect that the tower &f, (Q?)\

not have a simple form anymore. In this situation, instead otorrections suggested by the BL-interpolation formula can be
dealing with convolutions of Bessel functions, one may preexplained by intrinsic transverse momentum effects. The
fer to use the resulf2.21) of the standard factorization ap- only problem ishowto get Eq.(4.3) (or anything similar to
proach which has a simple form with easily controllable ac-it) from QCD, i.e., how to construct an expression which
curacy. Another bonus of using the SFA is the ability of woyld provide a good model both in perturbative and non-
¢+(x;Q) to fully absorb the necessary nonperturbative infor-perturbative regimes. Before proposing our variant of the
mation: increasingQ we do not need to make any assump-solution to this problem, let us discuss briefly two recent
tions about the shape af (x; 1) at smaller valueg.<Q of  attempts[21,26 to include intrinsic transverse momentum
the factorization scalg:. effects into the description of thg* y#° form factor.

IV. INCLUSION OF PRIMORDIAL TRANSVERSE B. Ext lati f perturbati it
MOMENTUM . Extrapolation of perturbative results

As emphasized above, despite the fact that the denomina-
_ _ _ _ tor of the Born term 1/£Q3?+k?/¢) is k, modified com-
Despite our persistent efforts, we failed so far to find anypared to its collinear approximatiogQ2, convoluting
traces of contributions capable of producmg a series OE(g;bQ) with S(£:bQ) one would enjoy no power modifi-
transverse-momentum-related power corrections to the leadxiions of the canonical @? behavior, i.e., the transverse-
ing PQCD result. Recall that we investigated first the higheryy,omentum effects included in the Sudakov term and other
twist contributions due to operators with contracted Cova”anbne-loop corrections do not correspond to any higher-twist
derivatives D*---D,, which are the standard candidates contributions. The obvious reason is that, apart from the IR
to describe thek, effects in the OPE-like factorization regulator massn [producing a logarithmic dependencenrin

approaches. We observed that, for the simplest handpqghich is absorbed int(x; )], the large momentun® is
diagram, these operators do not produce the expected infpe only scale that appears in the releviantintegrals.

. . 2 . . i 3 X A
nite chain of_ (1_@ )" power cor_recnons. Then we S'E_Ud'ed In general, the fact that some contribution is written as an
one-loop radiative corrections in the Sudakov and 'mpaCtTntegral over the transverse momentimor the impact pa-

parameter represer_ltations. Ogr results are in full accor meterb, does not necessarily mean that something beyond
with the corresponding expressions of the ME29,30. But 4 |eading twist is included. To illustrate this point, we note

they also completely agree with the one-loop regultst] of 5t even the lowest-order, “purely collinear” contribution

the SFA, i.e., they do not contain any power cOITections(, 11 can be written in the impact-parameter representation.

2 2 :
NeverthelestY* yno(Q )”1/2Q cannot be a true behavior A nossible form is suggested by the one-loop calculation
of Fx,-0(Q%) in the lowQ“ region, especially since the

Q2=0 limit of F_«..0(Q?) is known to be finite and nor- 2 (1 _ —
malized by thewoy—>yyy decay rate. The value & x,,0(0) Fo(Q%)= §fo dXJ xKo(Vxxb?Q?) ¢ (x) d?b,
in QCD [40] is fixed by the axial anomal}7]

A. Brodsky-Lepage interpolation

(4.9

1
Py 7"0(0):77_1‘7,' 4.1 where xKo(Vxxb2Q?) is the impact-parameter profile of

the modified propagator MQ>+ kf/x) [see EQq.(3.13].
Though theb version of the quark propagator explicitly de-
pends onb, integrating ovem in Eq. (4.4) gives a simple
ppr power result 10? without any subleading power corrections.
7 (4.2 This phenomenon can be traced to the absence db ithe-

Q2 pendence in the distribution amplitude. In the momentum
representation, Eq4.4) is equivalent to using,(x) 52(k, )
for the qqm vertex:

If the shape of the pion DA is specified, the lar@é-behav-
ior is also known. For the asymptotic DA,

F?; WO(QZ) =

Long ago, Brodsky and Lepad&] proposed the interpola-

tion formula
i 1 1 Am (1 (x)8%(k,)
intBL ~2\ _ — 2 _ T P 1) 0
Pyl Q) = o L Qam?12) ~ (17 Qs FolQ)=3 fo dx f e TR 49
4.3
which reproduces both th®?=0 value(4.1) and the high- However, as we have seen in the preceding section, radia-

Q? behavior given by Eq(4.2). The BL-interpolation for- tive corrections generate terms with less trivial depen-
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dence. In particular, the one-loop correction contaigsk? J6

; 0 Pa(X)= 53| P(xk.) d’k, . (4.9
terms. As a result, thie, -dependence of thgq vertex at (2m)3
one loop is

For ¥s°f(x,k, ), this integral perfectly converges. However,
) s 1 the perturbative ]slf tail generates logarithmic divergences.
¢x(§) (k) + Wfo V(EX) @q(X) dxt--- . Hence, one should supplement this definition by some regu-
+ (4.6) larization procedure specified by a cutoff parameter
o -(X)—e.(X,n). The “cutoff’ should be understood in a

; ; 2
In the impact parameter representation, the sund®gk, ) broad sense. It may be imposed I|terdtlfy<ﬂ or one can

and 1k? terms is converted into a more suggestive combi-US€ more gentle procedures based, say, on dimensional regu-
nation larization. In other wordse .(X) is a scheme-dependent ob-

ject: ¢.(x)— ¢'9(x). The choice of a specific scherds a
. 1 matter of convenience. In particular, the Fourier transform
¢x(8) =5 _In(bm) JO V(EX) ox(X) dx, (4.7

W(x,b)= fe*”‘ibﬂlf(x,kl) d’k, (4.10
which can be understood as the two first terms of dhe (2m)?
expansion of the expression for the leading-logarithm
evolved distribution amplitudep(&,1/b) written symboli- tO the impact parameter representation can also be tfeated
cally as (at least, for smalb) as a regularization scheme for the

integral defining the distribution amplitude:

Qg
expg — =—In(bmV|® ¢.
2

6 ~
go(,TF)(X;,u,=1/b)=£ W(x,b); b—0. (4.1

Since all the conclusions made from the studies of one- ) .
loop corrections are based on perturbative analysis, strictlj Nis observation suggests the extrapolation of the convolu-
speaking, they are only applicable to transverse moment#on formula into the nonperturbative region by sEbstltuth
which are large enoughFurthermore, there are no special o(x;1/b) in Eqg. (4.8) by theb-space wave functio®(x,b)
reasons to expect that formulas derived for moméntgen-  (see Ref[21]). Since thek, effects are only essential when
erated by perturbative gluon radiation are still true in thexQ? (i.e., x) is small, one can either use the original combi-

smallk, region dominated by primordidbr intrinsic) trans-  5tion /xx_Qb in the argument of the Born term

verse momentum. Still, it is tempting to extend the leading- — . ) . .
logari , piing g Ko( VX xQb) or substitute it by/xQb. In particular, a modi-
garithm convolution formula . ) ) . !
fied version of the convolution formul@.8) written in the
k, representation,

) 1 (x,k)
Fy*ywo(Q )= 2\/_J‘ dx f 2—k2 d kJ_ ,
into the nonperturbative region. To do this, we should sub- N6 /o xQ +ki

stitute the distribution amplituder(x;1/b) by a function (4.12
which reflectgor model$ the nonperturbative dependence. . ) ) )

In the light-cone approachl], the basic object is the |s.the startlng point o.f the analy5|52by gal_«ab al. [21]. In
wave functionW (x,k, ) which depends both on the fraction thiS expression, a simpler fOEmQ ka is used for the
variablex and transverse momentukn . In QCD, it is cus- Modified denominator of the “hard” quark propagator in-
tomary to split¥ (x,k, ) into two components. The soft com- stead of the combinat!onQZJr kf/_X which appears in our
ponent¥°(x k) is due to the nonperturbative part of the Eq. (3.13. However, since the difference is proportional to
QCD interaction and its width is determined by the size ofkf and vanishes fox=0, the two forms have essentially the
the relevantqq bound state. It is expected thdt°(x,k,) ~ same footing. As a model fo¥(x,k, ), Jakobet al. [21]
perturbative lowest-twist treatment above, the soft wavecombinationk?/xx (or Gaussian dependence &n). We
function ¥s°f(x,k,) was imitated bye. (x)8?(k,). The write it in a form similar to that used in Reff21]:

PQCD interactior(gluon radiative correctiongproduces the

hard component?"qx k, ) which behaves as/k® at 472 ¢ _(X) K?
—exp — , (413
X

F(Q2)=§foldxf Ko( VXXQb) ¢(x:1b) d?b (4.8

largek, . The distribution amplitude ,(x) can be treated as VO(x,k )=—=

the integral of the wave functioW (x,k, ) overk, (see[1]): o6 xx 20%

SIn particular, speaking about the double-logarithmic behavior “at fThe basic difference betweep,(x;1/b) and W(x,b) is that
largeb” we imply that b may be much larger numerically tharQl/  Jo¢~(X;)dx is given by the same constahf. for any . while
but is still within the PQCD applicability range. fé\lf(x,b)dx in general depends dn
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where o is the width parameter ang.(x) is the desired F « Wo(Qz) at Q=0 guarantees instead that the extrapola-
pion distribution amplitudé.In the b, representation, the tion formula diverges at that point. This gives a clear warn-
model wave function is ing that one should be very careful using the simplest ex-
trapolation: it is difficult to judgea priori how reliably the
=& 2w 1, formula failing for Q2=0 models the subasymptotic effects
W(x,by) = 6 ¢n(X)exp — 5 bioxx|. (414 5 moderateQ?. The authors of Refi21] also include the
Sudakov exponential in which they take a symmetric combi-
The model is restricted by two conditions taken from Ref.nations(xQb)+s(xQb). As noted earlier, our one-loop cal-
[2]. First, the two-body Fock component of the pion light- culation in Sec. Ill B shows that fdf . Wo(QZ) one should
cone wave function? (x,k,) is required to satisfy the con- use s(\xQb) instead ofs(xQb). Our final observation is

straint that expanding Eq4.12) in kf/Q2 one would get an infinite
) series of power corrections under thdantegral. According

fldx f W (x,k,) &:f_w 4.15 to our general result, the handbag diagram should not pro-

0 163 2.6 ' duce a chain of higher-twist contributions. Hence, the ex-

trapolation formula cannot be interpreted simply as a
imposed by ther— v rate. This gives the usual normaliza- transverse-momentum-corrected expression for the handbag
tion condition for the pion DA diagram.

1
f @, (x) dx=f_. (4.16 C. Transverse momentum in the light-cone formalism
0

Another attempt to model the subasymptotic corrections

The second condition specifies the value of thetegral of ~ Was made in Ref[26]. It is based on the Brodsky-Lepage
W(x,k,) at zero transverse momentum formula [1] for the two-body(i.e., qq) contribution to the
y* v form factor in the light-cone formalism:

1 V6
f W (x,k, =0) dx = —. (4.1 & 1 fl L€, X(xq, +k,)]
f. xq,)F% 2)= d
0 (€.Xq,) y WO(Q ) 260 X (xq, +K,)P—ie
For the model ansat#4.13, this condition results in the X W (x,k, ) d?k (4.19
LAY . .

following constraint for thd , integral:

1 (1 dx 3o Here,q, is a two-dimensional vector in the transverse plane
lo= f_J qDW(X)T: ~ (4.18  satisfyingg?=Q?, €, is a vector orthogonal tq, and also

w0 0 lying in the transverse pland], and the cross denotes the
- . vector product. Again, the wave function is chosen in the
In obtaining Eq.@il&, we mporporated the symm_etry prop- GaussiSn forn"(4.1g3 satisfying the constrairftg4.15 and
erty ¢(X) = ¢(x) of the pion DA and ‘z‘szed qgaln;She NO- (4.17. Though the integrand of E¢4.19 looks rather sin-
tation So for the important combination#7f7.. Sincelg=3  gyar, there are no problems with the convergence okthe
andl5“=5, the width parameters axg**=s,~0.67 GeV* integral in theq, —0 limit. The result is finite, since
ando®?=32s,~1.11 Ge\?.

In the form (4.17), the second condition was derived in qf+kf
Ref.[2] from the requirement that the®— y+y decay ratgor m
Fx,-0(Q?=0) which is the samlecalculated within the Qi
light-cone approach coincides with that given by the axial
anomaly. It is easy to see, however, that in @fe—0 limit, ~ for any test function?(x,k, ) which depends ok, through
thek, integral in Eq.(4.12 logarithmically diverges in the k7. Because of thes?(k,) function, theQ?=0 result is
smallk, region for any function which is nonvanishing at determined by the wave function at zero transverse momen-
k, =0. Note, that¥(x,k, =0) cannot vanish if we wish to tum.
satisfy the conditior(4.17). Rather ironically, the condition In Ref.[26], it is claimed that thé, /Q expansion of Eq.
which presumably should secure the correct value fof4.19 produces large “higher-twist” corrections to the

leading-twist result. In fact, wheW (x,k, ) has an exponen-
tial k> dependence, it is trivial to calculate the integral
"In the original mode|2] k? appears in the combinatidd + M2,  explicitly:
whereM, is the constituent quark mass. As a result, the distribution
amplitude ¢ (x) is exponentially suppressed as Exp/lé/Z(rxx_]
in the end-point regions. Jakait al., however, follow Chibisov  °As emphasized recently by Krdlb1], Caoet al. use constituent
and Zhitnitsky[63] who insist that the constituent quark madg quark masse ;~330 MeV which produces a strong exponential
should not appear in QCD-motivated models ¥(x,k ). In par-  suppression exp- Mé/Zax x] of the end-point regions. As a result,
ticular, M, does not appear in the model wave function the I-integral for the DA corresponding to their “CZ” model is
(D) (x,k, ) [23] based on local quark-hadron dualisee Sec. V. 3.71 rather than 5, i.e., despite zerocat1/2, such a model gives a
below): only the current quark masseg, (usually set to zero fou rather narrow DA, which is closer in this sense to the asymptotic
andd quarkg are present in QCD Feynman integrals. DA rather than to the original CZ one.

=m &%(k,) qf (4.20
qL*}O
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approximation. Just as in the covariant treatment, the naively

d0 o AT [104(X) xQ? . . A
Foxm0(Q ):? >{1-expg ——=]|dx (4.2)  expected series of power correction&{)/Q?)" does not
0 xQ 2xa appear because the expansion of
to see that the correction term in the integrand of @R xq, +k;
has an exponentially decreasing rather than a power behavior W (4.22
1

for large Q2. This result agrees with our general statement
that the handbag diagram contains no higher-twist contribu-
tions. Our analysis works in this case since the Brodsky<ontains only traceless combinations. Indeed, multiplying
Lepage formulg4.19 corresponds to the handbag contribu- Eq. (4.22 by q, /Q? and defining k, q,) =k, |Qcosp, we
tion written in the light-cone variables without any obtain

k| X

(E) 0(|kL|<xQ)—<%) o([k [>xQ)

1 o
— a(lkL|<xQ)+n21<—1>“

( 1) xQ?+|k [Qeosp
x2Q2+2x|k, |Qcosp+kZ  xQ?

& cos{n¢)}.

(4.23

For a wave function? (x,k, ) depending ork, throughk? Q?=0 are not included, it is premature to make specific
only, all the oscillating terms proportional to cogj) [i.e., to  quantitative statements about the size of subasymptotic cor-
Chebyshev polynomial§, (cosp) corresponding to traceless rections in the region of modera@?.
combinations in two dimensiohssanish after the angular We may also wondewhy the formulas(4.12 and(4.19
integration. Only then=0 term written outside the sum over corresponding to two attempts to include the primordial
n gives a nonzero result. Hence, for the wave functions ofransverse momentum have such a strikingly different ana-
P (x,k, )= zp(x,kf) type, we can write Iytic structure. In particular, the denominator of the integrand
of Eq. (4.19 vanishes fok, = —xq, while that of Eq.(4.12
fXQ (x.k2) k. dk is finite for all k, provided thatg, #0. The answer is very
0 POk ke dky simple: the two expressions imply two different definitions
(4.24 of what is longitudinal and what is transverse. Equation
) ) 5 ] (4.12 is based on the Sudakov decomposition in which the
This means that the Ieadln,ng ‘termin Eq.(4.21) comes  homentumgq, of the real photon has only the light-cone
f_rom the integral over alk; s while fche exp_one_ntlal COITeC- «pjys” component while the momenturp of the pion has
tion appears because the integration region '”(E‘ﬂz‘g 'S" only the light-cone “minus” component. As a result, the
restricted byk, <xQ. Another subtlety is that thQ“=0 momentum transfeq,=p—q, in the Sudakov variables is

value purely longitudinal and has both plus and minus components,
_ with g3=—2(q;p). On the other hand, the Brodsky-Lepage
FI9(Q*=0)= P formula corresponds to the infinite momentum frame in
i which the plus components of; and p coincide. The plus
dictated by Egs.(4.17) and (4.20 [and manifest in Eq. component of the momentum transfgs vanishes in this
(4.21)] gives only a half of what is needed to get the correctframe, butg, has a nonzero transverse compongnt with
70— yy rate (4.1). As explained in Ref[2], the other half |q,|=Q or g3=—q?. Evidently, the two frames cannot be
comes from the term which can be interpreted as the contriobtained from one another by a boost. Furthermore, one
bution of theqqy Fock component of the pion wave func- should not expect a diagram by diagram correspondence be-
tion. In a formal PQCD diagrammatics, this contribution istween the two approaches. The main purpose of imposing
represented by graphs containing the gluons coupling to thghe requirement; =0 in the light-cone approach is to avoid
quark line between the photon vertices. For high such  the 7 graphs. However, in Sudakov variablénd in any
diagrams_correspond to higher-twist corrections associategpproach in whichy, has a nonzero plus compongttte Z
with the G- - - Gq operators. In this sense, the result of Ref.graphs should be added to reproduce the light-cone result
[2] is equivalent to a nonperturbative constraint on the(see[64]).
QZ*)O limit of such contributions. One can expect that the  Both the approachd€1,26 discussed above fail to repro-
qqy contribution decreases asQt! or faster for largeQ?  duce theQ?=0 value corresponding to the axial anomaly.
since it contains higher twists only. Interpretation of this Our point of view is that complying with the anomaly con-
contribution in terms of the(ﬁ'y Fock component is re- straint should be a minimal requirement for any model of
stricted to the case of reat: Ref.[2] gives no expression subasymptotic effects in thg* y#° form factor. A maximal-
beyond theQ?=0 point. In Ref[26] this contribution is not ist attitude is that such a fundamental constraint should be
included. However, if the terms which double the result forsatisfied automatically rather than imposed as an external

2

P 1dx
FQE 2y — T
bY ,},WO(Q ) 77'\/6 OXQ2
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condition. This can be only realized in an approach which igwe neglect light quark massesience, for large- p?, one
directly related to QCD and produces anomaly as a consesan write
guence of QCD dynamics.

hadror(S quark(s)
V. QUARK-HADRON DUALITY AND EFFECTIVE WAVE _f

A B
ds =E<asGG>+ E%(QQ)
FUNCTION

. ) +eee (5.7
A. QCD sum rule calculation of f . and local duality

QCD sum rules provide us with the approach which dealsThis expression essentially states that the condensate terms
both with perturbative and nonperturbative aspects of QCcDdescribe the difference between the quark and hadron spec-
The basic idea of the QCD sum rule approf88] proposed tra. At this point, using the known values of the condensates,
by Shifman, Vainshtein, and Zakhar¢8VZ) is the quark- One can try to construct a model for the hadronic spectrum.
hadron duality, i.e., the possibility to describe one and thdn the axial vector current channel one has an infinitely nar-
same object in terms of either quark, gluon, or hadronigow pion peakp,=mf238(s—mZ), a rather wide peak at
fields. To get information about the pion, the QCD sum rules~1.6 Ge\? corresponding t&\; and then a “continuum”
practitioners usually analyze correlators involving the axialat higher energies. The simplest approximation is to thgat
vector current. In particular, to calculate one should con- also as a part of the continuum, i.e., to use the model
sider thep,,p,-part of the correlator of two axial vector cur-

rents p"dOYs)~ 7t 5(s—mi) +p¥Ks) (s=sy), (5.8
M iox . ) 4 in which all the higher resonances including the are ap-
H’”(D)Zlf ePXO|T (j5,(x) j5,(0) )| O d*x proximated by the quark spectral density starting at some
effective thresholds,. Neglecting the pion mass and requir-
=p,.p,I15(p?) —g,,I1(p?). (5.)  ing the best agreement between the two sides of the resulting
sum rule
The dispersion relation
ET quarlis) A B o
.. 1= p(s) _ —2=—f ds + — ay(GG)+ —alqg)’+
»(p?)= —f ;ds+subtractions” (5.2 p p p 59
—p .

representsll,(p?) as an integral over hadronic spectrum in the region of Iarg_epz, we can fit the remaining parameters
with the spectral density"29°s) determined by projections f. ands, characterizing the model spectrum. In practice, the
more convenient SVZ-borelized versipsb] of this sum rule

(0]j5,(0)[m;P)y=if P, (5.3
. . §2 :_f pquarlis)e—s/M2 as(GG)
etc., of the axial current onto hadronic states ™ 7)o 12rM?2
PR s) = mfZ8(s—m7)+ wrf} S(s—mj ) 176mag(qa)>
+‘‘higher states” (5.9

is used for actual fitting. Using the standard values for the

ondensateéGG), (qq)?, the scales, is adjusted to get an
%almos) constant result for the right-hand side of £E§.10
starting with the minimal possible value of the SVZ-Borel
A B parameteM?. The magnitude of , extracted in this way, is
I1,(p?) = 13" p2) + —(aGG)+ _e“S<qq>2+ . very close to its experimental vald€®~130 MeV.
p p Of course, changing the values of the condensates, one
(5.5  would get the best stability for a different magnitude of the
effective thresholdsy, and the resulting value df_, would
wherel13“*(p?) is the perturbative version 61,(p?) given  also change. There exists an evident correlation between the
by a sum of PQCD Feynman diagrams while the condensatgajues off . ands, since, in theM?— o limit, the sum rule
terms(GG), (qq), etc.[with perturbatively calculable coef- reduces to the local duality relation
ficientsA,B, see Eq(5.10 below], describe or parametrize

(f2P~130.7 MeV in our normalization On the other hand,
when the probing virtuality is negative and large, one can us
the operator product expansion

the nontrivial structure of the QCD vacuum. For the quark fzzifso quarfs) gs (5.1
ampIitudeH‘g“a'k(pz), one can also write down the dispersion ™ w)o P ) ’
relation (5.2), with p(s) substituted by its perturbative ana-
logue paUa(s): Using the explicit lowest-order expressip'®(s)=1/4r,
we get
quar _ 1 %s
P = | 1k (5.6 So=A4m2f2 (5.12
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Note thatsy=4m2f2 coincides with the combination which
appears in the Brodsky Lepage interpolation formydlz).

B. Quark-hadron duality for the F .« -0(Q?) form factor

Information about they* y* — #° form factor can be ex-
tracted from the three-point correlation functig6]

Fap(01,02) = fd“x dly e ldxiaz
><<0|T{‘J/,L(X)‘Jv(y) JSa(O)}|O>
(5.13
calculated |n the reg|0n where all the virtualities

ai=—q? qi3=-—Q? andp? (qlﬂL q,)? are spacelike.
The form factorF « ,« -0(9%,Q?) appears in the invariant

ampIitudeF(pZ,qZ,Qz) corresponding to the tensor structure

€.vpoPUi0; . The dispersion relation for the three-point
amplitude
s,
F(p%09%,Q%)= f Mds+ “‘subtractions’
0 S—p
(5.19

specifies the relevant spectral densitfs,q?,Q?). For the

hadronic spectrum we assume again the “first resonance plus

perturbative continuum” ansatz
p"ITs,0%, Q%) = 7f ,F yx yx -0(9%, Q%) S(s—m?)
+0(s>sg) p®*%s,9%,Q%. (5.19
The lowest-order  perturbative  spectral density

p%@s,92,Q?) is given by the Feynman parameter repre-
sentation

)dxldxzdxg. (5.16

2 2
X X3+ QXoX3
X1X2

pQUark(S’qZ,QZ) — Zflé‘( s—
0

3

1) 1—2 Xi
i=1

Scaling the integration variablesx;+x,=y, X,=Xy,
x1=(1—x)y=xy and taking trivial integrals ovex; andy,
we get

b QR
[sxx+XxQ%+ xq?]?

peKs,0%,Q%) =2 f

0

(5.17

The variablex here can be treated as the light-cone fraction

of the pion momentunp carried by one of the quarks. In
particular, the denominator of the integrand in E§.17) is
related to that of the hard quark propagator:
(g;—Xp)2= — (XQ%+ X2+ SXX).

Putting one photon on shelj?=0, we can easily calcu-
late thex integral:

I. V. MUSATOV AND A.

V. RADYUSHKIN

1 xx(xQ?)?

uarl Q2
paas,g?=0, Qz)zzfo PEINCIE

T (stQ)%
(5.18

This result explicitly shows that if the larger virtuali?
also tends to zero, the spectral dengiff?'{s,Q?) becomes
narrower and higher, approachidgs) in the Q>—0 limit
(see[67]). Thus, the perturbative triangle diagram dictates
that two real photons can produce only a single massless
pseudoscalar state: there are no other states in the spectrum
of final hadrons(see[68]). As Q? increases, the spectral
function broadens, i.e., higher states can also be produced.
A detailed study of the QCD sum rule for tFe,,0(Q?)
form factor was performed in Ref§22,24. The results of
this investigation are rather close to those based on the
simple local quark-hadron duality ansatz:

LD
y*ym

q“‘""'f(s Q?) ds.

7t

o(Q?) (5.19

Using the explicit expression fgr?3's,Q?), we can write
P2, @)= [ x|

Wfﬁ(1+Q2/SO)

So xx(xQZ)2

[sxerxQZ]3

(5.20

This result coincides with the Brodsky-Lepage interpolation
formula (4.3).

C. Effective wave function

The formulas based on the local quark-hadron duality pre
scription can be interpreted in terms of the effective two-
body light-cone wave functiof23]. Consider the lowest-
order perturbative spectral density for the two-point
correlator. It can be written as the Cutkosky-cut quark loop
integral

3

quark(s) _ k

Py
><¢9(p+—k+)5[(|0—k)2]d4k (5.2)

wheres=p?. Introducing the light-cone variables forand
k!

(1—k—) A(k,) S(K?
o, +) 6(k%)

p={p,=P,p_=s/P,p, =0}; k={k,=xPk_k,},

and integrating ovek_, we get

3 1 k2
pquarlts): —2] dXJ' 5( S— % deL . (522)
27°Jo XX

The § function here expresses the fact that the light-cone
comb|nat|onk2/xx coincides withs=p?, the invariant mass

of the qq pair. Substituting this expression fpf'a’(s) into
the local duality formuld5.11), we obtain the following rep-
resentation forf2
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o_ 3 (* 2 e A2
f”:Fjo dxf O(kT<xxsp) d°k, . (5.23
au

It has a structure similar to the expression fgrin the light-
cone formalism 1] [cf. Eq. (4.19]:

f.=\6 folde W(x,k,) (5.24

To cast the local duality resu(6.23 into the form of Eq.
(5.24), we introduce the “local duality” wave function for
the pion:

26

f

m

WO (x k, )= (k% <xxSp).

(5.29

2731
- 1 (xQ%)?
B(X;bQ)EEJe kibim %k,
=%XQ2b2Kz(\/§bQ)- (5.30

Note thatB(x;bQ) is finite for b=0: B(x;0)=1 while the

“old” Born term B(x;bQ)zxKo(\/;bQ) (3.13 has a

logarithmic singularity at the origin of thke space. The ex-
pression(5.28 looks similar to the extrapolation formula
(4.12. Furthermore, since

2k? K4
+ 1
(xQ?+k?)?2  (xQ*+k?)3
(5.3)

xQ»* 1
(XQ2+K?)®  xQ2+K2

The specific form dictated by the local duality implies thatthe twok, modifications of the hard quark propagatox Qf

WLP(x k,) simply imposes a sharp cutoff & x x=s,. In

differ only by O(k?) terms invisible in the analysis of effects

theb, space, the effective wave function can be written asinduced by the 1d2 singularity at smalk, . However, this

X xSg J1(b, VXXSp),

whereJ,(z) is the Bessel function.

_ 6
TLO(x,b, )= Wf—fbi (5.26

D. Effective wave function andF Wo(Qz) form factor

Consider now the local duality expressidb.20 for
Fox Wo(QZ). Replacings, the invariant mass of theq pair,
by its light-cone equivaleri?/x x, we getF';'fWo(Qz) as an
integral over the longitudinal momentum fracti®nand the
transverse momentuky, :

ZfJ f

X O(k?<xxsg) d2k, .

(xQ%)?
Q2+ k2 )3

Fle,0(Q)=

(5.27

Now, introducing the effective wave functiowP(x,k,)
given by Eq.(5.25, we write F-°(Q?) in the “light-cone
(xQ?)?

form”
fo f (xQ2+k2)3

XWLO(x,k, ) d2k, .

F I;D o Q?)

(5.28

In the impact parameter representation, this formula is

For WO(Q )—2 \/‘f dxf xQ?b?

XKo(VxbQWP(x,b,) d?b, .
(5.29

The function K,(y/xbQ), where K,(z) is the modified

difference is very essential when one extrapolates into the
region of smallQ?. To demonstrate this, let us analyze Eq.
(5.28 in some particular limits. For real photons, using the
fact that

u

1
- - 2
(ke 2 0

(5.32
in the x?—0 limit, we obtain that ther®— yy decay rate is

determined by the magnitude of the LD wave function at
zero transverse momentum:

LD
y* ym0

1
WLO(x,k,

!

This requirement is similar to that in the Brodsky-Lepage
formalism. However, according to the explicit forf®.25 of
WLP(x,k, =0), the integral(5.33 is twice larger than the
constraint(4.17) imposed on the valenagq light-cone wave
function. As a result, the local duality formula exactly repro-
duces theF ,«,,0(0) value (4.1 dictated by the axial
anomaly. This outcome can be interpreted by saying that
WLP(x,k,) is aneffectivewave function(see[69]) describ-

ing the soft content of alj G- - - Gq Fock components of the
usual light-cone approadisee alsd63]). Note, that higher-
order radiative corrections to the perturbative spectral den-
sity p9@{s,Q%) are explicitly accompanied by the
as(,uﬁ)/ 7 factors per each extra loop. After integration over
the duality interval B=s<s,, there are two physical scales:
sp andQ?. At low Q?, the duality intervak, sets the scale at
the low-momentum end of the UV-divergent integrals,
hence, a natural choice for the normalization scalg is
wi~Ssq. At high Q?, the short-distance dominated parts of
the higher-order corrections should reproduce the PQCD re-
sults which suggesp§~Q2 for these terms. In any case,
suppression by at least(sy)/ 7w~ 0.1 per each extra loop is
guaranteed. Sincesy>A2, the gluonic corrections to

=0)dx. (5.33

Bessel function, originates from the new version of the Bornpd2'{s,Q?) are suppressed by powers @f(s,)/ m~0.1. In

term written in theb space

other words, the higher-order diagrams contributing to
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p®es,Q?) correspond to exchange of hard gluons whosg4.16). To guarantee the anomaly result for th@— yy rate,

wave lengths are larger thanyK.
WhenQ? is so large that thkf term can be neglected, we

we impose the following constraint on the integral of
(D) (x k,) at zero transverse momentum:

get the expression 1 2.6
f YP)(x k, =0) dx = f. (5.40
LD 2 1 (rdx LD 2 0 fr
Fy*Wo(Q )= 2\/6 OX_QZ W= (x,k,) dk,
™ Substituting the model ansats.39, we derive from this
+0(1/Q%). (5.39 constraint the condition for the standard intedral
i . 11 dx 3o
Identifying the wave function integrated over the transverse lo= f_f %(X)7= - (5.4
wJ0 0

momentum with the pion distribution amplitude

G
#P00= s [ W0k P, =6 x(1-x),

(5.35
we obtain the lowest-order PQCD formula.11):
A (1o(X)
Fy* '}’7TO(Q2)|Q2*>OCZ ?fo X_QT dx+ O(l/Q4)
(5.36

for the largeQ? behavior of they* y— #¥ transition form
factor.

To summarize, the local duality formul®.20 exactly
reproduces the Brodsky-Lepage interpolatid3) between
the Q=0 value 1#f, fixed by the axial anomaly and the
leading large@? term 4xf_/Q? calculated for the
asymptotic form of the pion distribution amplitude.

wheres, is the basic combinatios,=472f2 . Takingl3°=3
and 15%=5, we fix the width parameters®=s, and
o%%=2%s,~1.11 Ge\2. Note, that in the CZ calculatid3],
the duality interval was 0.75 Gé\for the zeroth moment of
the DA and 1.5 GeV for the second one; our effective du-
ality interval ¢ for the CZ-type DA appears to be the av-
erage of these two. Using the ansé839 in Eq. (5.28 and
integrating over the transverse momentum, we obtain

27 (1o, (X 1
Fo o= [y Lo,
Y 3 Jo XXcr{ (14 x0/Q?)?
(5.42
This formula has correct limits both f@2=0 and largeQ?.

For the asymptotic distribution amplitude, E.42 pro-
duces the expressio(b.20) coinciding with the Brodsky-

The application of the local duality ansatz in a generallepage interpolation formula. For the Chernyak-Zhitnitsky
situation when both photons are virtual was discussed in ReDA we get

[23]. The basic formula written in terms of the effective
wave function is given by

1 (s
Fo e 0(0%.Q) = —— fo p™(s,0%, Q?) ds

2 (1 X X(XQ%+ xg?)2
RENONE 5
mfzlo [k?+xQ%+ xq?]®

XWLP(x Kk, ) d?k, . (5.37)

For q?=Q?=0 it satisfies the anomaly constrai.1),
while when bothg? andQ? are large it reduces to the PQCD
formula

Am (1 @ (X)
Foyxpx wO(Q2)|q2vQ2Hw: ?fo XQTX—qZ dx+0(1/Q*%).

(5.38

E. Extended local duality
Note, that the pion distribution amplitudg.35 produced

1 1 2Q?
Foh(Q?)= [ S 5
7. 1+Q%s o+Q
4 2 2
+12Q—2 14 2% il 1 T o }
T o Q2

(5.43

Despite its apparent complexity, this expression is very close
numerically to the simplest interpolation

. 1
FIvo20(Q?) = 5.4
e Q) Qe 549

between the anomaly value @ =0 and the PQCD result
FPRCD: “10Q%) = $(4f,/Q?) calculated for the CZ distribu-

yrym® L
tion amplitude.

Thus, Egs.(5.20, (5.44 model the modification of the
basicl y integral by power corrections. On the other hand, the

modification ofl, by radiative corrections is described by

by the local duality prescription coincides with the Egs.(2.27), (2.29. Though we obtained these two types of
asymptotic DA. To model wave functions corresponding tomodifications in a completely independent way, it is tempt-
DA's different from ¢2(x), we propose to use the sharp ing to combine them in a single expression. A self-

cutoff analogue of the Gaussian modél13: consistent, but a rather time-consuming way to do this is to
5 calculate the spectral densipf“®{s,Q?) to two loops and

WD)y k, )= Sl ‘P”(_X) a(kigxx_a-)’ (5.39 apply the local duality prescription. Then both the radiative

o6 xx and power corrections would result from the same expres-

sion. We leave such a calculation for a future investigation.

whereo is again the width parameter agd.(x) the desired In the absence of a completely unified approach, we can

DA, which satisfies the standafd-normalization constraint try to get an interpolating formula by combining the two
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independent calculations described above. A natural idea i®ctions are rather small, we expect that a self-consistent
to write all the one-loop diagrams in tierepresentatiom la  inclusion of radiative corrections should be rather close to a
modified factorization and then substitute (x,1b) by  simple product of the nonperturbative 140Q? o) factors

T (x,b) and the Born facto€Ko(V¢£bQ) by the modified ~ and perturbative corrections from Eqg.27), (2.29. Such a
version £ £€Q2b2K,(\€bQ). This will give a more reliable Product gives
behavior in the smal@? region where the corrections are as ) 1 j 5 ay(Q?)
dominated by power terms. However, changing the structure Fox Wo(Q )=~ > L 37 . ]

of the Born factor would affect the radiative corrections and i (1+ Q%) (5.45
spoil the results at the hig? end, where one should ex- '
actly reproduce the PQCD results. Since the perturbative cofer the asymptotic form of the pion DA, and

|
cz N _Eas(Qz) ~ InQ2/ A2\ 508" 1 49 a(Q?)) [ InQ¥/ A2\ 5081
FV*YWO(Q - f 2 > 7D 4+ — 1
ol 1+Q%sl 3T QA 17 :Q%s|” 108 = |\InQ¥A

(5.46

for the case when the pion DA .(x;u) coincides with  ability of simplest PQCD formulas is limited in first place by
goﬁz(x) for w=Q,. These expressions have necessary interpower corrections rather than by the increasing value of the
polating properties: in the absence of radiative correction§CD running couplingrs(Q?). The crucial fact here is that
they coincide with the local duality expressions, while forthe scalesy;~0.7 Ge\V? determining the deviation from the
large Q2, when the power corrections can be ignored, theyPQCD 1Q? behavior is much larger thak?. It is also much
reproduce PQCD results. From Fig. 4, one can see that tharger than other typical nonperturbative scales such as the
curves forF2; | o(Q?) andF(y:fwo(Qz) (with Qu~0.5 GeV  square of the constituent quark mad§~0.1 Ge\? or the
[33]) in this model are sufficiently separated from each otheverage transverse moment¢ki ) [in the LD model(5.25),
which allows for an unambiguous experimental discrimina<k?)-°=s,/10~0.07 Ge\?]. This observation can be easily
tion between them. explained by the fact that®> present in the modified Born

It is instructive to make a more detailed comparison of theterm (5.28 is added tocQ? rather than taQ?. This enhances
relative size of perturbativeD(«as) and nonperturbative the relative size of power corrections by a factor such as
o/Q? corrections. Taking\ =200 MeV, we observe that the 1/x). In full accordance with the statements made in Refs.
perturbative correction for the asymptotic DA changes thg52,53, the onset of the&d? region where the lowest-order
lowest-order result by=30% for Q°=0.5 Ge\?. This PQCD result is reliabléin the sense that PQCD gives a good
means that the PQCD expansion for the lowest-twist term irapproximation is determined by the size of the average vir-
this case is self-consistent f@” as low as 0.5 Ge¥. Onthe tuality xQ? of the “hard” quark. If its value is too small,
other hand, the power correctisg/Q? exceeds 70% for all PQCD is unreliable even if the effective coupling is neg-
Q?<1 GeV2. This clearly indicates that PQCD results are ligible and perturbation theory for the lowest-twist contribu-
not reliable below 1 Ge¥. To reduce the ratis,/Q? to the  tion is self-consistent.
20% level, one should tak®@?=3 GeV?. This is an illustra-

tion of the well-known statemer(see, e.g.[65]) that reli- VI CONCLUSIONS

0.2 In this paper, we discussed the status of QCD-based the-
oretical predictions for th& « 77To(Q2) form factor. As we

0.15 repeatedly emphasized, in this case one deals with a rather
+ favorable situation when QCD fixes both tiF=0 value

(dictated by the axial anomalyand the larged? behavior

0. 05 governed by perturbative QCD. Still, constructing a dynami-
cally supported interpolation between the two limits, it is
very important to adequately reproduce at mode€tethe
corrections to the asymptotic PQCD result, both perturbative
and nonperturbative.

FIG. 4. Combination/2Q?F ,x ,,o(Q?) /4w (measured in Ge¥/ _V\/o_rking within the frameW(_)rk of the standard PQCD _fac-
and equivalent tQ%F .« ,.o(Q?), with the form factof® . ,.o(Q?) torization approacSFA), which allows one to unambig-
normalized according to definition adopted in Ré24,26,3§ as a  OUSly separate the contributions having different power-law
function of Q2. The lower curve corresponds to our model with the Pehavior at largeQ?, we gave a detailed analysis of the
asymptotic DA[Eq. (5.45] and the upper one is based on Eq. one-loop coefficient function for the leading twist-two con-
(5.46). Data are taken from CELLO Collaboration publicatidd].  tribution. To explore the role of the transverse degrees of
Preliminary CLEO dat#15] (not shown are very close to the lower freedom, we wrote the relevant Feynman integrals in the
curve. Sudakov representation and showed how the SFA produces

o] 2 a [3) 8
Q% (GeV?)
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the basic building blocks of the modified factorization ap-quark-hadron duality approach provides a framework in
proach(MFA) [29], such as the Sudakov-type double loga-which such a self-consistent unification is guaranteed. The
rithms Irf(b) with respect to the impact parameter which  only missing ingredient is the perturbative spectral density
is a Fourier conjugate to the transverse momerkymThe  p%@s ,Q?) at the two-loop level.
fact that we derived the Sudakov effects within the lowest- There are two further improvements which should be
twist contribution of the SFA, explicitly demonstrates that made in the perturbative part of the problem. First, it is nec-
they should not be confused with the higher-twist effects. Inessary to fix the argument of the running coupling constant
other words, though the Sudakov terms are given by inteeg. In our analysis, we either left it unspecified and esti-
grals ovem, (ork,), they are purely perturbative and do not mated the corrections assuming that/7=~0.1 or took
produce power corrections to the lowest-order PQCD resultA =200 MeV in the one-loop expression fat(Q?). How-
Furthermore, we observed that the power correctiongver, for a precise comparison with experimental data, esti-
1/Q? due to the intrinsic transverse momentum are rathemating the magnitude of the, correction one should explic-
elusive both within the OPE-type factorization and the light-itly specify the UV renormalization scheme, fix the
cone approach of Brodsky and Lepage. Contrary to naiv@arameterugr in the argument of the running coupling
parton expectations, the simplest handbag-type diagram ias(ug), and use the proper value of the QCD scale A
both cases does not produce an infinite tower ofQf)?  very effective scale-fixing prescription is provided by the
terms: such a series is generated by contributions corréBrodsky-Lepage-MackenziéBLM) approach[70]. To use
sponding to physicaltransversg gluons emitted from the the BLM prescription, one should calculate two-loop PQCD
hard propagator connecting the photon vertices. It goes witheorrections to the coefficient function containing quark loop
out saying that an explicit summation of such terms is ansertions into the gluon propagator. Another problem is the
formidable task in both of these approaches. A simpler picinclusion of the effects due to the two-loop evolution of the
ture emerges within the QCD sum rule approach in whichpion distribution amplitud¢71—-73. Originally, the relevant
the infinite sum over the soft parts of thgG---Gq Fock  corrections expanded in terms of a few Iowes_t eigenfunctions
components is dual to thgq states generated by the local of the one-lqop kernel, were found to be tif§]. Recent
axial current. An important observation establishing the conProgress74] in understanding the structure of the two-loop
nection between the QCD sum rule and light-cone ap€Volution suggests that higher harmonics cannot be ne-
. . . . . — glected, and the size of the two-loop evolution corrections is
prqaches IS th?t mtegrgtmg the mvanant. massf the qq somewhat larger than estimated [iB]. However, our pre-
pair over the pion duality interval€s<s, is equivalent to

liminary numerical estimategr5] of the effects due to the
using the effective two-body wave functioh®(x,k, ). The y &75]

result obtfained from the local quarlg-hadron.dua(ujb) an-- ;npopo:glggb?;/cilﬁgﬁge(;l‘ef\(/)erl?hﬁ)s:tégr;eWG] do not indicate
satz applied to the lowest-order triangle diagram coincides
with the Brodsky-Lepage interpolation formul&], i.e., it
reproduces both th&?=0 value specified by the axial
anomaly and the hig®* PQCD behavior with the normal-  We thank N. Isgur for encouragement and interest in this
ization corresponding to the asymptotic distribution ampli-work, R. Akhoury, V. M. Braun, S. J. Brodsky, P. Kroll, V.
tude for the pion. To test the sensitivity to the shape of tha. zakharov, and A. R. Zhitnitsky for stimulating criticism
pion distribution amplitude, we proposed a model for theand discussions, and V. L. Chernyak for attracting our atten-
effective wave functiont’°(x,k, ) which reduces to the de- tion to Ref.[26]. One of us(A.R.) expresses a special grati-
sired DA after thek, integration and still provides the cor- tude to G. Sterman fofin)numerous discussions and corre-
rect limits for the form factor both at low and high?. spondence about the connection between the standard and
In our analysis, the regions of small and large transversenodified factorization approaches. We thank A. V. Afa-
momenta(responsible for power @? and ag corrections, nasev, V. V. Anisovich, I. Balitsky, W. Broniowski, W. W.
respectively were studied separately, within the frameworksBuck, F. Gross, M. R. Frank, G. Korchemsky, B. Q. Ma, L.
of two different approaches. In spite of this, the basic resultankiewicz, M. A. Strikman, and A. Szczepaniak for useful
written in terms of thek, integrals look rather similar. A discussions. This work was supported by the U.S. Depart-
major challenge for a future study is the construction of ament of Energy under Contract No. DE-AC05-84ER40150
unified approach in which both the nonperturbative power-and Grant No. DE-FG05-94ER40832 and also by Polish-
suppressed terms and the perturbative radiative corrections$.S. Il Joint Maria Sklodowska-Curie Fund, Project No.
emerge from the expansion of the same expression. TheAA/NSF-94-158.
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