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It is possible to determine an off-shell propagator for heavy quarks to order 1/m in mass and in any covariant
gaugej, which applies universally to all the quarks, by using the gauge technique. Given a simple ansatz for
the gluon propagator, the result for the leading behavior of the quark propagator isS(v•k)5G(112aj)@(1
1g•v)/2v•k#(2v•k/L)2aj

0 F2@11aj,3/21aj ; aj(v•k)2/3pL2#, wherev is the velocity of the particle
containing the heavy quark,L is a QCD mass scale, andaj[2a(21j)/3p. The above result is a totally
reliable deduction from the assumed gluon propagator in the infrared limit (;1/q2) and accounts for soft-gluon
corrections to the fermion in internal loops.
@S0556-2821~97!04313-0#

PACS number~s!: 11.10.Jj, 11.15.Tk, 11.30.Ly

I. INTRODUCTION

The QCD quark Lagrangian (N flavors! is endowed with
a higher symmetry in the limit of equal quark velocity which
applies even when the quark masses are different@1#. Thus it
generalizes the old U(N)3U(N) supersymmetry@2# for the
equal mass case. Provided that the momentum transfer to the
gluons is not much greater than the QCD scale one can
thereby deduce a number of relations between transition am-
plitudes, which seem to be borne out by experiment. It has
become customary@3# to attribute a velocityv to the hadron
containing a constituent heavy quark so that the momentum
of the quark in a bound state is writtenp5mv1k, where
k denotes the residual quark momentum, itself associated
with the light material that makes up the hadron. As a result
one can show that the ‘‘free’’ quark propagator in the
m→` limit is simply given byS5(11g•v)/2v•k and one
can use this in subsequent leading order calculations of vari-
ous matrix elements.

In this paper we would like to show that one can improve
on S by taking account of soft-gluon corrections. The result
of the dressing is to provide a propagator which contains the
characteristic QCD scaleL and which coincides with the
free one in the limit of vanishing gluon coupling
a5g2/4p. Thus this propagator applies just as well to all the
quarks in the heavy mass limit@4# and does not jeopardize
the prevailing higher symmetry. In order to derive it we use
the ‘‘gauge technique’’@5# for QCD, which is known to be a
reliable method in the infrared and ultraviolet limit@6#. The
technique itself was originally devised by Salam to provide a
closed equation for the source propagator in QED, in a man-
ner which respected the Ward-Takahashi identity, and it was
later extended to non-Abelian gauge theories. It has gained
wide currency today as a useful way of uncovering the non-
perturbative behavior of Green’s functions. In one version of
the gauge technique, it produces a self-consistent equation
for the quark spectral function in any gauge, from which the
propagator follows@7#. In the next section we set out the

velocity projector decomposition of the propagator. Next we
derive the effective vertex for soft gluons and finally we
solve the equation in question, obtaining the result quoted in
the abstract; there we also compare the result with QED
where the scaleL is missing.

II. VELOCITY PROJECTIONS

When one substitutesp5mv1k in the free quark propa-
gator, the resulting expression,

S~p!5
1

m~g•v21!1g•k
, ~1!

has to be taken in the limitm→` in order to discern the
resulting ~leading! dependence on four-velocityv ~with
v251). Now any 434 quark matrixM for a particular fla-
vor, like the propagator, can be decomposed into projections
usingP65(16g•v)/2 according to

M5P1M11P11P1M12P21P2M21P1

1P2M22P2 .

Equivalently, the Mi j sector is defined through
Mi j5PiMPj . This has the effect of resolving the 434 ma-
trix into four separate 232 matrices:

M⇒SM11 M12

M21 M22
D .

In this basis,

g•v⇒S 1 0

0 21D , gm⇒S vm gm

gm 2vm
D .

In particular the inverse free propagator resolves to
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S21~p!5m~g•v21!1g•k⇒S k•v g•k

g•k 2k•v22mD ,
~2!

and correspondingly,

S~p!⇒ 1

k21~k•v !212mk•vS k•v12m g•k

g•k 2k•v D . ~3!

Thus, up to order 1/m2, the freeS decomposes into

S~p!⇒ 1

k•vS 12
k2

2mk•v
g•k

2m

g•k

2m
2
k•v
2m

D 1OS 1

m2D , ~4!

from which one infers that the leading large component is
S11;1/k•v.

Let us now consider the full propagator in a covariant
gauge, which is best written in the Lehmann-Kallen-like
spectral form for our purposes:

S~p!5E r~W!dW

g•p2W1 ihe~W!
, E dW[S E

2`

2m

1E
m

` D dW,
~5!

for an ordinary sort of particle. In the heavy quark limit we
anticipate that the negative energy cut is ‘‘far away’’ and that
the main contribution from soft gluons will arise in the vi-
cinity of W5m, to within a region of orderL. The free
propagator is of course obtained just by setting
r(W)5d(W2m) above. PutW5m1v, p5mv1k and
take velocity projections as in Eq.~4!, to obtain

S~p!⇒E r~v!dv

2m~v•k2v!1k22v2

3S 2m1k•v1v g•k

g•k 2k•v1v
D .

~6!

We see that the dressed propagator is still dominated by its
S11 component, which assumes a very simple form,
*dvr(v)/(v•k2v) despite the inclusion of QCD interac-
tions. More generally, to order 1/m, we get

S⇒E r~v!dv

v•k2v S 11
~v•k!22k2

2m~v•k2v!

g•k

2m

g•k

2m

v2v•k
2m

D 1OS 1

m2D .

III. APPLICATION OF THE GAUGE TECHNIQUE

The next stage involves the solution of the Dyson-
Schwinger~DS! equation for the propagator, while taking
cognizance of the~longitudinal! Ward-Takahashi identity,

~p2p8!mS~p8!Gm~p8,p!S~p!5S~p8!2S~p!, ~7!

because it can lead to a self-consistent equation forS, if we
ignore certain transverse terms in the vertexGm . If one were
to incorporate the transverse Takahashi identity@8# as well,
one would in effect be solving the full field theory; but the
transverse identity—in anything but two dimensions
@9#—brings in other vertices leading to a system of equations
which is actually not closed, unless one makes further drastic
truncations@10#. Alternatively if one knew the full solution
of the DS equation in any particular gauge, one would be
able to determine it in any other gauge via the Landau-
Khalatnikov-Zumino gauge covariance@11# relations.

We have none of these luxuries. The gauge technique
does its best to solve Eq.~7! in the form stated, while making
sure that the singularities in the nontruncated Green’s func-
tion are properly included. It does not solve the inverse form
of Eq. ~7! because that would give a linear relation between
G andS21 and produce a difficultnonlinearequation for the
inverse propagator; besides which, it is not obvious how to
handle the heavy quark limit for the inverse propagator—
which is dominated by itsS22

21 projection, conversely to
S11 . The gauge technique@5# starts off by defining the
obvious longitudinal solution to the vertex,

S~p8!Gm
i ~p8,p!S~p![E dWr~W!

1

g•p82W
gm

1

g•p2W
,

~8!

as a weighted mass integral. One can readily check that Eq.
~8! obeys Eq.~7! automatically, but of course the full vertex
must include transverse additionsG'; these are unknown
unless one has some knowledge about them through pertur-
bation theory@12# or examines equations for higher-order
Green’s functions@13# or makes use of the transverse iden-
tity @8#, which is essentially equivalent. It is worth pointing
out that such transverse terms are soft, vanishing with the
vector meson momentum. For that reason the gauge tech-
nique is a clearly reliable tool in the infrared limit, though it
is also gauge covariant in the ultraviolet regime@6# as it
happens; it is only at intermediate energies that transverse
corrections to Eq.~8! play an important role.

Returning to heavy quarks, let us expand solution~8! in
powers of 1/m by writing it as

S~p8!Gm
i ~p8,p!S~p!5E dvr~v!

1

m~g•v21!1g•k82v
gm

1

m~g•v21!1g•k2v
~9!

and taking velocity projections
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⇒E r~v!dv

~v•k82v!~v•k2v!S vmF11
~v•k8!22k82

2m~v•k82v!
1

~v•k!22k2

2m~v•k2v!
G1

g•k8gm1gmg•k

2m

vmg•k1gm~v2k•v !

2m

g•k8•vm1gm~v2k8•v !

2m
0

D
~10!

up to order 1/m2. Note that representations~8! and~10! areexactfor smallp2p8 in the complete Green’s function~7! for the
reasons we have already given.

The next step is to use approximation~8! in the DS equation, which we write in the renormalized form

Z215~g•p2m1dm!S~p!1 i
g2

~2p!4
l i

2 E d4qS~p!Gm~p,p2q!S~p!gnD
mn~q!

l i

2
. ~11!

Recalling the connection,Z215*r(W)dW, the spectral form of the equation is

E r~W!dW

g•p2W
@W2m1dm1S~p,W!#50, ~12!

where

S~p,W!5 i
g2

~2p!4
l i

2 E d4qgm

1

g.~p2q!2W
gnD

mn~q!
l i

2
~13!

is the self-energy for a quark of massW due to gluons in first-order perturbation theory.
At this point we carry out the heavy quark expansion and take velocity projections to arrive at

E r~v!dv

v•k2vF ~v1dm!S 11
~v•k!22k2

2m~v•k2v!

g•k

2m

g•k

2m

v2v•k
2m

D 1S S11~v•k,v! S12~v•k,v!

S21~v•k,v! S22~v•k,v!
D G50, ~14!

where, after summing over colors~hence the factor of 4/3!,

S~v•k,v!⇒ i
4g2/3

~2p!4
E d4qDmn~q!

v•~k2q!2vS vmvn@11O~1/m!# vmgn1O~1/m!

g•kvmvn

2m
1

~v2k•v !gmvn

2m

g•kvmgn

2m
2

~v2k•v !gmgn

2m
D ~15!

and up to order (1/m).

IV. THE SPECTRAL EQUATION

To make any further progress and determine the spectral
functionr and thence the propagator, we need to make some
further approximations and/or assumptions about the behav-
ior of the gluon. It is generally accepted that the gluons are
massless so that the propagatorD(q) is at least as singular as
1/q2; it is also known that in the ultraviolet regime this is
subject to well-defined logarthmic damping; the behavior for
smallq2, where the strong force enslaves color, is more mys-
terious and there have been suggestions thatD(q) could be
as singular as 1/q4, that it plateaus, or even that one should
not be using QCD at all but an effective field theory incor-
porating chiral symmetry with real mesons. What is certain
is the occurrence of a mass scaleL demarcating the ultra-
violet from the infrared regime ofD. As we are only inter-
ested in soft-gluon effects on the heavy quark lines, we will
adopt a gluon propagator which implies masslessness, which

cuts off in the ultraviolet and which introduces the funda-
mental QCD mass scaleL. This scale, above which hard-
gluon processes become important, is not to be regarded
purely as an ultraviolet cutoff~that usually lies way above all
normal masses!, but as an intrinsic scale associated with the
running of the non-Abelian coupling constant. For our pur-
poses it is quite enough to use an effective

Dmn~q!5S 2hmn1j
qmqn

q2 D L2

q2~L22q2!
~16!

knowing its limitations full well. It incorporates the main
things we want and also includes a covariant gauge param-
eterj. If other readers wish to modifyD with a more sophis-
ticated and perhaps more realistic expression, they can repeat
our calculations below; while that is sure to alter the precise
form of our answers, we believe it will not affect the main
features of our results in a very significant way.

Returning to the largest component of Eq.~15!, we have
to consider the spectral equation
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05E r~v!dv

v•k2v
@v1dm1S11~v•k,v!#, ~17!

S11~v•k,v!5 i
4g2/3

~2p!4
E d4q

j~v•q!2/q221

v•~k2q!2v

3S 1q2 2
1

q22L2D . ~18!

A straightforward but messy calculation gives

S11~v,v8!5
4a

3pF ~v2v8!S 11
j

2
2j

~v2v8!2

L2 D
3 ln

2~v2v8!

L
1
1

4
j~v2v8!

1
1

2S 12j
~v2v8!2

L2 DA~v2v8!22L2ln

3
v2v82A~v2v8!22L2

v2v81A~v2v8!22L2G ~19!

to leading order and in a general gauge. First we solve the
spectral equation~17!

05E dv8r~v8!Fv81dm

v2v8
1
4a

3pS ln2~v2v8!

L

1
1

2
A~v2v8!22L2ln

v2v82A~v2v8!22L2

v2v81A~v2v8!22L2D G
~20!

in the Fermi-Feynman gaugej50 to discover what is going
on. By taking the imaginary part of Eq.~20!, we obtain

05~v1dm22aL/3!r~v!2~4a/3p!E
v

`

r~v8!dv8.

~21!

This has the solution

r~v!}~v1dm22aL/3!2114a/3p

and, since the self-mass is given by

E ~v1dm!r~v!dv50,

this fixesdm52aL/3. It makes good sense, being governed
by the QCD mass scale and gluon coupling. One last matter
is the proportionality factor: we must ensure thatr(v) re-
duces tod(v) when a→0. Hence we choose the overall
constant so that the result for the spectral function forj50 is
neat and compact; namely,

rj50~v!5
1

vG~4a/3p!S L

v D 4a/3p

. ~22!

A bonus of this choice is that the heavy quark propagator
simplifies to the elegant nonperturbative expression:

Sj50~v•k!5GS 12
4a

3p D11g•v
2v•k S 2

L

v•kD
4a/3p

. ~23!

In the limit a→0 one recovers the free result 1/(v•k) for
S.

Now we turn to the general gaugej. Noting that the
j-dependent part ofS11(v•k,v) vanishes at the threshold
v•k5v, the gauge dependence ofr arises purely from the
imaginary part ofS11 . In this way Eq.~21! gets modified
to

05~v1dm22a/3p!r~v!2
4a

3pEv

`

dv8r~v8!

3F11
j

2
2j

~v2v8!2

L2 G . ~24!

Once again the self-mass condition requiresdm52aL/3,
which is satisfyinglygauge-independent. The resulting inte-
gral equation for the spectral function is a little bit harder to
solve now; nevertheless one may establish that it reduces to
a generalized hypergeometric function:

r~v!5
1

vG~2aj!
S L

v D 22aj

0F2S 11aj ,3/21aj ;
ajv2

3pL2D ,
~25!

whereaj[2a(21j)/3p. Thereupon@14# the heavy quark
propagator becomes

S~v•k!5G~112aj!
11g•v
2v•k S 2

L

v•kD
22aj

3 0F2S 11aj ,3/21aj ;
aj~v•k!2

3pL2 D1O~1/m!.

~26!

This is universal to all the quarks and could be used to esti-
mate the soft-gluon corrections in loops which result from
dressing fermion lines and their vertices. Notice that when
j522, namely in the Fried-Yennie gauge, the result simpli-
fies to

S→
11g•v
2v•k 0F2S 1,32 ,2a~v•k!2

3pL2 D .
In any case Eq.~26! agrees with the gauge covariance iden-
tities @11# in the infrared regime connected with our particu-
lar gluon propagator. However, a word of caution: the result
~26! does not take account of gluon self-interactions; those
will somehow need to be included separately in heavy quark
calculations.

There is one further test of our work. One needs to verify
that to order 1/m the other, ‘‘small component’’ sectors in
the propagator velocity projections are correctly determined
by Eq. ~25! because they are fixed in terms of the leading
r. We have indeed checked this out: theS12 sector pro-
duces precisely the same equation as Eq.~24!, while the
S22 sector is nothing but the self-mass condition,
*(v1dm)r(v)dv50, which we have already settled@15#.
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Finally it is worth comparing the answers with the gauge
technique solutions for scalar QED say. Those solutions do
not have the benefit of an intrinsic cutoff; rather the source
mass itself acts as the cutoff and the results read

m2r~W!5
~W2/m221!2122aj

G~22aj!
2F1

3S 2aj,12aj ;22aj ;12
W2

m2 D ,
aj5~j12!a/4p,

m2S~p!5G~11aj!G~21aj!2F1~11aj,21aj ;2;p
2/m2!.

We notice a strong similarity with Eqs.~25! and ~26!,
which becomes greater when one substitutesp5mv1k and
expands to order 1/m. The only change is that for QEDm
takes the place ofL as the argument of the hypergeometric
function. In our case of course,L has physical meaning
~;300 MeV! and should not be taken to infinity. However if
one were to considerL@v•k, one would obtain the behavior
S(v•k);(v•k)2122a(21j)/3p. In some ways the Bloch-
Nordsieck approximation to QCD—whereby thegm-matrix

vertex is simply replaced byvm—resembles our approach to
this problem since it does away with the matrix algebra too.
The Bloch-Nordsieck method has a long history@16# and it
has been studied in various contexts@17#, especially in QED,
where it reproduces the behavior stated above apart from a
color factor 4/3 in the exponent. It also is subject to the same
criticisms as our analysis, as far as the hard gluons are con-
cerned.

It only remains to obtain the nonleading behavior ofS in
the various sectors. This entails solving the spectral equation
up to order 1/m and is where our use of approximations~9!
and ~16! start to look a bit suspect because they are con-
nected with gluons which carry off appreciable momentum.
Taking account of those effects and determining mass depen-
dence of the heavy quark Lagrangian is a nice subject for
future research.
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