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Nonequilibrium QCD: Interplay of hard and soft dynamics in high-energy multigluon beams
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A quantum-kinetic formulation of the dynamical evolution of a high-energy nonequilibrium gluon system at
finite density is developed to study the interplay between quantum fluctuations of high-momadn
gluons and the low-momentuiisoft) mean color field that is induced by the collective motion of the hard
particles. From the exact field equations of motion of QCD, a self-consistent set of approximate quantum-
kinetic equations are derived by separating hard and soft dynamics and choosing a convenient axial-type
gauge. This set of master equations describes the momentum space evolution of the individual hard quanta, the
space-time development of the ensemble of hard gluons, and the generation of the soft mean field by the
current of the hard particles. The quantum-kinetic equations are approximately solved tg%ﬁﬂdeg?) for
a specific example, namely, the scenario of a high-energy gluon beam along the light cone, demonstrating the
practical applicability of the approacf50556-282(97)00817-5
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I. INTRODUCTION AND SUMMARY instance the absence of static magnetic color screddihg

the problem of infrared renormalofg] connected with the

The physics of high-density QCD becomes an increasresummation of perturbation theory in the smalegime, or
ingly popular object of research, both from the experimentalthe problem of confinement associated with collective

phenomenological interest, and from the theoretical, funda-glue” behavior of nonperturbative gluong3]. Interesting

mental point of view. Presently, and in the near future, theProgress in these areas is continuously being made, and con-
collider facilites such as the DES¥p collider HERA  Sistent schemes have emerged to perform calculations of the

. — R parton evolution at very smak [4], at very large density
?
(ep, eA?), Fermilab Tevatronfp, pA), BNL Relativistic [5.6], and for high-temperature QCD of a quark-gluon

Heavy lon Collider(RHIC), and CERN Large Hadron Col- plasma[ 7],

lider (LHC) (pp, AA) are able to probe new regimes of = \ost progress in the context of bulk multiparton dynam-
dense quark-gluon matter at very small Bjorkewor/and at ics at high density has been made by studying “hot QCD”
largeA, with rather different dynamical properties. The com-with a thermally equilibrated quark-gluon system at very
mon feature of high-density QCD matter that can be prohigh temperaturdl. “Hot QCD” has the attractive advan-
duced in these experiments is an expected novel exhibitiotage that the parton density is homogeneous and isotropic in
of the interplay between the high-momentufishort- momentum, and its exact form<T® is known, since
distance perturbative regime and the low-moment@iong-  T>A~200 MeV is the only energy scale in the problem.
wavelength nonperturbative physics. For example, with For this academic scenario, inconsistencies of former pertur-
HERA and Tevatron experiments, one hopes to gain insighibative calculations have been resolved by gauge-invariant
into problems concerning the saturation of the strong rise ofesummation techniquds] as studied in various applica-
the proton structure functions at small Bjorkenpossibly tions[9], and moreover, a self-consistent kinetic theory has
due to color-screening effects that are associated with thibeen formulated10].

overlapping of a large number of smallpartons. Another The present paper, extending previous work of R&f],
example is the anticipated formation of a quark-gluonis to be viewed in this very context: it takes the “hot QCD”
plasma in RHIC and LHC heavy ion collisions, where mul- developments as inspirational guideline, but aims to describe
tiple parton rescattering and cascading may generate a higthe opposite physics extreme, namely a highly
density environment, in which the collective motion of the nonequilibrium! nonuniform, and nonisotropic parton sys-
guanta can give rise to non-Abelian long-wavelength excitatem. Specifically, the attempt is made to derive from first
tions and screening of color charges. principles a self-consistent kinetic description fon@nquil-

In any case, the study of coherent low-momentum excitaibrium scenario of a gluon beam directed along the light
tions in QCD, that are generated by, and interacting with, theone that is, a high-density system of gluons, moving with
high-momentum partonic color charges, is of fundamentalery large energie&,=k,>k, >A along a beam direction
interest in several respects. First, it provides insight into the
basic features of non-Abelian multiparticle dynamics and a——
step towards a rigorous description of parton transport prop-The term “nonequilibrium” is used in the sense of statistical
erties in a dense environment. Secondly, it may help to remany-body physics, describing a quantum system far off the state
solve current problems encountered in perturbative QCD, fosf maximum entropy and thermal equilibrium. Such a nonequilib-

rium system may in general be spatially inhomogenous and aniso-
tropic in momentum, in contrast to a homogeneous, thermal en-
*Electronic address: klaus@bnl.gov semble, or translation invariant system in vacuum.
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(thek, axis), as it would be typical for the initial stage of a
high-energy collider experimerten extreme example is a
collision of two heavy nuclei at the LHC, involving many
thousands of gluons coming down the beam pif®r sim-
plicity the quark degrees of freedom are ignored, but are
straightforward to include.

As illustrated schematically in Fig. 1, the initial multi-
gluon state is imagined as a highly Lorentz contracted sheet
of bare gluons, characterized by a very large momentum
scaleQ (e.g., in an ultrarelativistic nuclear collision, the typi-
cal momentum transfer of hard scatterings that materialize
the gluons out of the colliding beam nugledence the typi-
cal energy and longitudinal momentum of the initial gluons
is ~Q. The subsequent evolution of these bare quanta is, at
leading orderag, well known to lead to a rapid multiplica-
tion and diffusion of gluons through real and virtual radia- >
tion, corresponding to bremsstrahlung and Coulomb-field re- 0 time
generation, respectivefjl2]. As a consequence, the typical
gluon momenta both in longitudinal and transverse direc-
tions, decreasksee Fig. 1a)]. As long as the average trans-
verse momentum is sufficiently largk, =u~1-2 GeV,
ag(n?)<1, a perturbative description of the evolution of the
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gluon density G is appropriate, but whken< g, nonpertur- (®) time

bative dynamics is expected to take over, governed by the >
collective infrared behavior of a large number of long- Qz"

wavelength gluons. If the number density of low-momentum <Ki>

gluons below is large, their dynamics may approximately
be described classicallyp,13] in terms of a coherent mean
field A [see Fig. )].

Given this heuristic picture, the near-at-hand rationale is
therefore to subdivide the dynamical development of the G
gluon ensemble into a perturbative quantum evolution in the
short-distance regim®?= kfa,uz, and a nonperturbative, -
but classical, mean field in the long-wavelength regime Go 4
kf< 2. The corresponding degrees of freedom are referred 0 >
to as hard gluonsfor k, =u, whereas excitations with 0 time
k, <u represent theoft mean field

Because the hard gluons have small transverse extent
A~1/k, <0.2 fm (for u=1 GeV), they can be considered,

Ioca_lly in Space_time’ as i.”co.he.“?”t self-interacting quanta, iEone.(a) The initial multigluon state, prepared at tiig=0 at the
the interparticle distance is significantly larger tharOn the scaleQ with initial conditionAo(lO,Q*,Qz), develops forward
other hand, when the typical transverse momenta drop beloy yime which is described by the evolution of the gluon propagator
., the gluons be_gln to act coherently, and_ collectivity arsesg . 1+ K2y peing a function of both space-time‘=(t,r) and
because the motion taking place over a distance scal®d/ momentuniw Ki=(E.K). The gluons, propagating with large

Iarger, |r_1volve_s coherently a large number gf hard part|clgsK+:E+ K,>K, along thez axis, are accompanied by real and
which gives rise to an average soft color field. The crucial

int of this hard-soft tioris that th | di virtual radiation which causes a diffusion in both transverse direc-
point ot this hard-Soft separations that the over long dis- r, and transverse momentuky as time goes on: The emis-

tances)\>.1/,u, the soft mean field represents the averaggion of gluons increases the multiplicity and decreases the average
gluon motion, but at short distancks< 1/u the hard gluons  yansverse momenték?) at given light cone time ~=t—z and
may be described approximately as in free space. Certainlyignt cone positiorr ¥ =t+z. (b) Top: Qualitative picture of time
such a rigid division of hard and soft physics in terms of agyolution of the typical transverse momentk? ) of hard gluons,
single parameteg, is at his point an arbitrary and idealizing where the earliest emitted daughter gluons have the largest
definition. However, the arbitrariness can in principle be re«?<qQ? and later produced gluons have much smak@r. Even-
moved by considering the variation with respectutpas in  tually modes withk? < 2 will be populated significantly. Bottom:
the usual renormalization-group framework. This interestingCorresponding time development of the number density G of hard
task is beyond the scope of this paper, and remains to b§uons from initial value G and of the average soft field that is
addressed in the future. induced by the population of gluons witi> <2, starting from

The nonquilibrium scenario of a light cone beam of glu- zero initial value. Speculatively, one would expect a saturation at
ons along the light cone has two major advantages over tha&symptotic times due to screening of further gluon emission by the
opposite thermal equilibrium extreme, the isotropic quark-presence of the soft mean field.

FIG. 1. Nonequilibrium scenario of gluon beam along the light
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gluon plasma. First, it favors the two-scale separation beteractions of hard and soft quanta can only be calculated
tween hard and soft physics. Second, it allows to choose aself-consistently from the equations of motion.

axial-type gauge which eliminates to large extent the prob- The strategy for deriving the above master equations fol-
lems of nonlinearities and of ghost degrees of freedom thabws closely the previous work of Ref§l1]. The path-
are encountered in usual covariant gauges. The two-scalgtegral representation of the Yang-Mills action gives an in-
separation arises naturally here, because Lorentz contractigite set of equations of motion for the nonequilibrium
and time dilation along the beam direction plus the Iimitedn_point Green functions, which is the well known analogue

transverse momenta, force the hard gluon fluctuations angs he Bogoliubov-Born-Green-Kirkwood-YuofBBGKY)

self-interactions to be highly localized to short distances, an%ierarchy[14]. This hierarchy, which represents the exact

separates their guantum motion from the _Iow-momentu heory, is truncated to a system of equations involving only
mean-field dynam|cs_ over comparably_long dl_stances. On thﬁwe one- and two-point functions, by arguing that higher-
other hand, the choice of a noncovariant axial gauge, char- ’ .

. ; : : '~ “order correlatorm=3 are comparably small. To achieve
acterized by a directed four-vectoralong a fixed axis, is

. ; . self-consistency of the truncated set of equations at the
very suggestive, because the geometry and klngmatlgs aIIovxr/1s:2 level, then=3 functions must be implicitly lumped
to choosen pa_raIIeI to the gluqn momentu, , in Wh'Ch into the one- and two-point functions. After separating hard
case perturbative QC.:D calculations formally redyc_:e N ManNY, \d soft field modes, as alluded to before, the one-point
respects to the Abelian QED counter parts. This is not posg ion ' i identified with the soft average field
sible for an isotropic thermal system, where all possible di—

rections of gluon motion are equally probable. Given theséx= (A.(X)) and the two-point function is given by the hard
premises, theguantum dynamicss dominated by the self- gluon correlatoriA ,,=(a,(x) a,(y))p, WhereA, anda,
interactions of the hard gluons, which make them fluctuateepresent the soft and hard modes, respectively. The trun-
localized around the light cone, whereas kiveetic dynamics ~cated set of equations of motion then involves the nonequi-
can well be described statistical-mechanically in terms ofibrium version of the Dyson-Schwinger equation forand

mutual interactions among them and in the presence of thejhe classical Yang-Mills equation for the soft mean-fidld

generated soft mean field. As elaborated in Ret], these The two field-equations of motion fak and A can be cast

notions are the keys to formulating a quantum-kinetic de'into much simpler quantum-kinetic equations with the hel
scription, by combining standard techniques of parton evolu- per q q P

tion and renormalization group, with relativistic many-body of the ngner-fu_nctlon technique and g_rad_lent expansion,
and the assumption of two-scale separation implying that the
transport theory.

The main result of this studwithin the outlined physics long-wavelengthA field is slowly varying on the short-
framework, is aset of three master equatignshich couple  distance scale of the hard quantum fluctuations. The result is
the quantum evolution of short-distance fluctuations of théhen the above set of master equations.
individual hard gluons, the space-time development of the A Powerful theoretical framework to derive from exact
gluon system as a whole, and the generation of the soft med(f!d €quations of motion the above approximate quantum

field: (i) an evolution equatiorfor the spectral density of kinetic equations, is the so-callelosed-time-pat(CTP)

each individual hard gluon, which determines the i”t””Sic{gﬂgﬁl\l,zmghr%tﬁ;isfoorfr?ﬁgrgr;?b?egriﬂﬁira;:ffglef?jr ggr?qtilgg
gluon distribution of a hard gluon in accord with mass- and. b P y

coupling-constant renormalization, and which dresses up thgnqltzntgr?oﬂgfs(t:?ﬁ)%r)f{hlet threorslfeor;e (E)fr?]v(;crj]eezs ;nberﬂ:?plrﬁf
bare initial gluons to renormalized “quasiparticlesiii) a d ngamg:s within a weII—estpainshed theoret?cal frame\?vork
transport equationfor the space-time development of the Y '

whole ensemble of these renormalized gluons with respect tgngmally introduced by Schwingelil5] and Keldysh|16]

their propagation in the self-generated soft mean field, amgntCe-I(;Fi)nfo:gnaa'[lllcjsé?ai?::]dtf:f|itdel\r/:trisﬂa;pZ%IC%tlogrsti(;ila?rocu_
well as due to their scatterings off each other, which deter: 9 NP '

. . o | refer to Ref.[11], where the CTP method is applied to
mines the physical gluon phase-space densitiiG;a Yang- high-energy QC[:D] and to Appendixes B and C. PP

Mills equationfor the generation of the soft mean fiekj The fundamental starting point of nonequilibrium field
which is induced by the effective color current of the hard'theory in the CTP formalism is to write down the in-in am-
renormalized gluons, where the current is obtained from the)jit,de Z, for the evolution of the initial quantum state
momentum-weighted gluon phase-space density. Althougfyy forward in time into the remote future. As reviewed in

this set of equations appears at first sight to be of impracticahphengix B, this generalizes the usual quantum field theory
complexity, it allows in fact for a practical applicable calcu- 45nr6ach based on the vacuum-vacuum transition amplitude,
lation scheme, as will be demonstrated with an explicity, i_out amplitude, to account for thepriori presence of

sample calculation. . . . . -
To arrive at the above master equations, three essenti edium pargcles de.S.CI‘IlZ.)e.d. by the d.ensny mai{x) and
0 evolve this nontrivial initial state in the presence of the

aspects of the problem have to be merged: first, the physic X . o . X
dictated aspect of space-time, kinematics and geometry, Se@edmm fromt, to t,, in the future. Then-in amplitudeZ, is

ond, the quantum field aspect of gluon excitations and Selfgraphtcally'd(.aplcted in Fig. 2, and forma!ly itis given by
interactions, and third, the statistical aspect of multiparticleZel J.p1=(inlin) 7;, where 7=(J",J") is an external
interactions in the presence of the mean field. The nontriviafource with components on the upperand lower— time
interconnection of these aspects requiremark directly at  branch, andp(tg) denotes the initial state density matrix.
the level of equations of motipnather than on the level of From the path-integral representationZgf one obtains then
Feynman diagrams, because the relative proportions and ithe nonequilibrium Green functions. The convenient feature
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(@ integration along the contou?. Although for physical ob-
Genal QFT ("in-ous” formatiom) Gi,J) servables the time values are on thebranch, both+ and
gl e in>._i[_\.j_>_.| — branches will come into play at intermediate steps in a
<[, f H, ,D = <Iau4._._._.<.J ¢ self-consistent calculation.
T G N ':}Hk,{)k foo The outline of the papeis as follows. In Sec. II the field
equations of motion for the hard gluon propagator and the
® CTP (“inin" formaism) soft mean field are derived from the path-integral represen-

tation of the in-in amplitudeZ, for noncovariant gauges.
H ]*> After separating hard and soft degrees of freedom, two key
. P approximations are made, that allow us to cast the infinite
B YUl too ) T, 1) Gr D hierarchy of exact equations of motion in terms of a trun-
cated system of only two approximate equations, namely a
FIG. 2. Difference between thia-out formalism of usual quan- Dyson-Schwinger equation for the hard gluon propagator,
tum field theory(in free space or “vacuum)’and thein-in formal-  and a Yang-Mills equation for the soft field. In Sec. Il the
ism of the CTP formulatior(in the presence of surrounding par- transition to a quantum kinetic description is worked out.
ticles or “medium”). (& The in-out amplitude described by the This requires one further key approximation in conjunction
evolution of an asymptoti¢in) state atto— — to an asymptotic  with a clear definition of quantum and kinetic space-time
loup state att,—o by means of the time evolution operator regimes, such that the aforementioned two-scale separation
U(to,t..). BecauseU(to,t.)=U"(t..,to), forward and backward s guaranteed. This also defines the limits for the applicabil-
evolution are identical, and there is no correlation between the twcpty of the quantum kinetic approximation. Provided that the
time branches. Consequently, the Feynman propagafor Gt~ separability condition is satisfied, one finally arrives at the
contains the full dynamics of the two-point correlatiofils) The set of master equations discussed above, for which a system-
in-in amplitude starts at, with a nqntrivial initial multiparticle  5tic calculation scheme is proposed. In Sec. IV an explicit
state described by the density matfikto) and evolves again by calculation to solve the master equations is presented for the
means of time evolution operatbk(ty,t..). Due to statistical inter- physics scenario depicted in Fig. 1. | consider the evolution
actions among the many evolving particles acting as a medium, igf an initial incoherent ensemble of bare gluons moving col-
this casep(to)U(to,t..) #U'(t. ,to). Consequently, the statistical linearly along the light cone as it proceeds in its momentum-
correlation between the two time branches have the effectGhat gng space-time development and generates its soft mean
¢G§, and moreover require the introduction of additional correla-field. To avoid overkill of too many technical details, each
tion functionsG.. and G to account for the cross-talk between section is accompanied by Appendixes. Appendix A defines
upper and lower time branches. the notation and conventions used throughout the paper. Ap-
) ) . ) pendix B reviews the basics of the CTP formalism. Appen-
of this Green function formalism on the closed-time pBth  §ix C discusses the application of the CTP method to QCD
is that it is formally analogous to standarq quantum fieldfor noncovariant gauges. Appendix D shows the advanta-
theory, based on the vacuum-vacuum, or in-out amplitudgyeqys apsence of ghosts in noncovariant gauges. Appendix E
Z[ J]=(outin) ;=(0[0) 7, except for the fact that in the gives details on how to obtain from the in-in amplitude
CTP formalism, the fields have contributions from both time 5, approximate effective action functional from which the of

branches. For detz_iils | refer to App_endix_ B, Wh_ere the basicsygtion for the hard gluon propagator and the soft field are
of thg CTP formahsm are summarized, in particular, how togerived. Appendix F summarizes some basic analyticity
obtain the path integral faf,, that generates the Green func- properties of the free-field propagators in the CTP formalism
tions on the closed-time pafh. and discusses their relation to the gluon phase-space density.
The interpretation of this formal apparatus for the evolu-  Finally some remarks on the most closetyated workin
tion along the closed-time path is rather simple: If the the Jiterature(for an extended discussion, see the Introduc-
initial state is the vacuum itself, that is, the absence of &jon of Ref.[11]). Blaizot and lancy10] have in a series of
rpedium generated by other particles, then the density matrixapers developed a kinetic theory for “hot QCD,” i.e., the
p is diagonal and one hd#)—|0). In this case the evolu- case of a high-temperature quark-gluon plasma. One of the
tion along the+ branch is identical to the antitime ordered key elements of their approach is the formulation of a well-
evolution along the- branch(modulo an irrelevant phase defined and consistent approximation scheme. | adopt many
and space-time points on different branches cannot cros$eatures of this approach in the present, rather different
talk. In the presence of a medium, however, the density maphysical context. The inclusion of the aspect of quantum
trix contains off-diagonal elements, and there are statisticadvolution and renormalization is new here.
correlations between the quantum system and the medium McLerran and co-workerg24], as well as Makhlirf25],
particles(e.g., scatteringsthat lead to correlations between have developed different approaches to calculate the quan-
space-time points on the branch with space-time points on tum evolution of parton systems with light cone dominance,
the — branch. Hence, when addressing the evolution of a.e., in a beam-type scenario as considered in the present
multiparticle system, both the deterministic self-interactionwork. The McLerran-Venugopalan model also gives a pre-
of the quanta, i.e., the tim@nti-timejordered evolution dictive estimate for the feedback effect of the coherent mean
along the+ (—) branchandthe statistical mutual interaction field on the hard gluon evolution that generates this field. In
with each other, i.e., the non-time-ordered cross-talk betweeseveral respects | follow a similar route. In the present work,
the + and — branches, must be included in a self-consistenthe fact that it embodies in addition the aspect of space-time
manner. The CTP method achieves this through the timéevelopment of the evolution is new.

>
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Boyanovskiet al. [26] have intensely studied the non-
equilibrium evolution in scalar field theory, using exten- /C[A]=’C(O)+f d*xACH2(%) A 3(x)
sively the techniques of the CTP formalism in conjunction P
with a largeN expansion. Although the focus on this paper is 1
rather different, many of the concepts and results in their + Ef d*xdy K220 (x,y) A 3(x) A™ P(y) + - -
papers concerning the first-principles time evolution of the P
guantum system with associated particle production, dissipa- 5)
tion, mean-field dynamics, etc., may serve as a scalar toy

model for QCD.
The exact knowledge of the in-in amplitudg from Eq.

(1), would require to the calculation of all Green functions

Il. INTERPLAY OF “HARD” AND “SOFT” up to infinite order, and would correspond to the full solution

GLUON DYNAMICS of QCD in nonequilibrium media. Rather than that, the real-

istic goal is to formulate a practical calculation scheme for

the kinetic evolution of a multigluon system. In order to
make progress, one needs to make reasonable approxima-

The in-in amplitudeZ, introduced in Sec. | admits a path- tions that are consistent with the specific physical problem
integral representation which is the generating functional founder study, and truncate the infinite hierarchy of Green
the nonequilibrium Green functions defined on closed-timeunctions.
path P, as discussed in Appendixes B and C: In this section a closed set of approximate equations is
derived that are in principle solvable, given a suitable phys-
ics scenario. The basic idea is to describe an evolving gluon
system in terms of two distinct components, naméigrd,
short-range quantum fluctuatiorend soft, long-wavelength
a ar  rae o collective excitationswhich | assume to be separable by a
where A, =(A," A, ") has two components, living on the characteristic space-time distance. It is clear that the relative
upper (+) and lower () time branches of Fig. 2, with proportions and interactions of hard and soft degrees of free-
DA=11, ,DA%"DAS", and whereK represents the pres- dom must be calculated self-consistently from the equations
ence of external sources. | consider heredl@ess of nonco- of motion.
variant gaugegdefined by{27,28 Starting from the in-in amplitudél), the strategy of the
procedure is the following.

(1) The exact expression of the in-in amplitude
Zp=exp(Wp) is rewritten in terms of soft and hard field
modes by splitting the gauge field, = A ,+a, . Therefrom,
one obtains an infinite set of coupled equations for the Green
functions. In order to reduce this to a finite system, | make
the following approximation.

Approximation 1 The functional Wp=—iInZp is ex-
(n2<0), temporal gauge(n?>0), and light cone gauge p{le)ss?zo)l in terms of _co_nne_cted(nc))ne— and two-point fu_nctions
2_ ; ; G\*.G'“’ alone by eliminatingg'™ for n=3 as dynamical
(n“=0). Referring to Appendix D, the great advantage of” . ; g% and @ d
these gauges is that the Faddeev-Popov ghosts decouple,@'ables' Then the expectation values and G/ de-
that in practical calculations the ghost degrees of freedongcribe the induced soft mean fiekl, and the hardsoft)

A. The in-in amplitude for QCD in noncovariant gauges and
the concept of approximation

Zo(K]= [ DAexHiI[AKD), @

(n*AL(x))=0, )

wheren#* is a constant four-vector, being either spacelike
(n?<0), timelike (n?>0), or lightlike (n?=0). The particu-
lar choice of the vecton* is usually dictated by the physics
or computational convenience, and distinguishesl gauge

can be ignored, just as in Abelian gauge theories. correlation functions&w (Iﬁw).
Then the action in the exponential of Eq.l) is given by (2) From the truncated functiondVp the corresponding
(cf. Appendix Q effective actionl'p is obtained, which generates the desired

self-consistent equations of motion far,, A,,, andD,,,.
Here | make the following approximation.
Approximation 2 It is assumed that the soft field dynam-

ics can be treated classically by the nonpropagating average

containing the Yang-Mills actiohy,, , the gauge-fixing term field A ,, and that the long-range propagation of soft modes,
Igr, and the initial state source terd, containing multi-  described byDW may be ignored at this level, i.e.,

point correlations concentrated ta# to: D,,<A,A,. This assumption is motivated by the widely
studied[ 24,13 observation that a classical treatment of the
1 long-distance dynamics of bosonic quantum fields at high
lym[ Al= — _J’ d*xF2 () F*3(x), density, obeying the classical field equations, should provide
4)p . a good approximation, if the soft modes are sufficiently oc-
cupied.
The original infinite equation system can then be reduced
ledn-Al=— if d*x[n- A%(x) 2, (4) f[o gYang-MiIIs equation for the classical, soft fiedq, , as it
2a)p is induced by the current of hard quanta, and a Dyson-

uvo

I[AK]=lyu[A]l+Icdn- A+ K[ A], (3
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Schwinger equation for the hard propagafoy, subject to ~ former. Substituting the soft-hard mode decompositi6h
the presence of the soft mean field and to quantum fluctuddto Eg. (1), the functional integral of the in-in amplitude
tions. These field equations of motion are still of very intrac-(C11) becomes

table nonlinear character. They are further simplified to

guantum-kinetic equations in Sec. lll. ZP[’C]:J DADaexgli(I[A]+I[a]+1[A.a])}, (8

B. Separating soft and hard dynamics with the soft, hard, and mixed contribution, respectively,

The first step in the strategy is the separation of soft and
hard physics in the path-integral formalism with Green func- 4
tions of both the soft and hard quanta in the presence of thé[A]:J’ d"x
soft classical field that is induced by and feeding back to the
guantum dynamics. A frequently used method for separate
treatment of quantum and classical dynamics in field theory
is the so-called “background field method29] which has
been studied, e.g., in the context of dynamical symmetry
breaking, vacuum structure, confinement and gravity, or for 1 1
hot plasmas in finite temperature QCD. Within the back-|[a]:f d4x( ——fa fera_ (n-a®)?
ground field method, one would split up the gauge field ap- 4+ 2a
pearing in the classical action into an external classical back-
ground field and a quantum field which remains the sole +f d4xlcﬁf)aa"*a+f d*xdyar 2K 2*ParP+
dynamical variable in the path integral. | will, however, not
follow this path, and rather prefer tweat soft and hard (10
physics on equal footinghat is, to separate the gauge field
into a soft classical field plus its soft quantum excitations, (o oo e L a cuva, sa uva
and a hard quantum field. Then both soft and hard fields canl[Ava]_f d*| = 7 b """ - E{d’uv': S i
be quantized and remain as dynamical variablgsiori.

The gauge fieldA, appearing in the classical action

— EFa F#V,a_i (n.Aa)Z)
4 rv 2a

+ f d*xKC 2 AR A+ f d*xdty A2 P

(€)

)

lym[A] is split up into a soft(long-range partA,, and a
hard (short-rangg quantum fielda,, :
] ok . =J d*x{—g P (F5A%) (a*Pa”c+ Arbare
A (x)=j e XA (K) O(ue—kT)
: (2m)* g : +amPAe) + (5% (ARPAYC+ b
d4k . +A/L,bal/,c _ Zfacefbd 2AaAba/"°a”*d
J’ 4e+|k-xAlaL(k)6(ki_M2) )] g e[ u'
(2m) N PN N (12)
=AL(x)+ag(x). (6)

Note that in Eqs(10) and(11) terms involving two-products
xa, A, do not contribute t&Zp, because their expectation

This is the f | definiti f the t “soft” and “hard,” ; '
'S 18 the formal detiniion of Ine terms “Sott an ar %Jue vanishes due to the soft-hard separaf®rwhich de-

as used in this paper. The soft and hard physics are separat d i
by the momentum scalg which is at this point arbitrary. |neAsa,ﬁ.an A, "’}S coir(‘nplmenta_ry. ion 1 f b It
However, this arbitrariness can in principle be overcome by t this point | make approximation 1 from above. It is
consideringu(x) as a dynamicavariable depending on the ass_umed that initial state can be represe_nted as an ensemble
space-time poink, rather than a fixed parameter, and deter-Of |nc?herent Ahard gIET;S' each of Wg.'Ch has very small
mining it self-consistently from the local stability condition SPatia! extentar, <A=1Lju, corresponding fo transverse
dA,(x)/du?(x)=0. From Eq.(6) it is obvious that the cor- momentak; > u“. By definition 9f,u, Fhe ;hort-range char-
responding scale in space-tilve= 1/u. divides soft and hard acter of these quantum fluctuations implies that the expecta-
regimes in terms of the transverse wavelength of fieldion value(a,) vanishes at all times. However, the long-
modes, so that one may associate the soft fildbeing range correlations o; thezeventually populated soft modes
responsible for long-range color collective effects, and theVith small momenté’ < = may lead to a collective mean
hard fielda,, embodying the short-range quantum dynamics/ield with nonvanishingA,,). Accordingly, | impose the fol-
Consequently, the field strength tensor receives a soft part,/@wing condition on the expectation values of the fields:
hard part, and a mixed contribution:
a =0 for t<ty, a !
P 0=(F3,[A1+13 [a]+ g2 [Aal(x).  (7) AuON 20 for 1>, (BnXN=0 forallt
(12
When quantizing this decomposed theory by writing
down the appropriate in-in amplitud&., one must be con- Now | make approximation 2, that is, the quantum fluctua-
sistent with the gauge field decompositi@®) into soft and tions of the soft field are ignored, assuming any multipoint
hard components and with the classical character of theorrelations of soft fields to be small:
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<AZ§_(X1) : Air;(xn)><<Ai]i(Xl)> : <A2rl(xn)> _ 6FP _ i.lc(z)’u,,‘ab(x y) (20)
5R3(x,y) 2i '
foralln=2; (13
The self-consistent equations of motion of the dynamically
i.e., takeA , as a nonpropagating and nonfluctuating, classievolving system are then obtained from E(k9) and (20)
cal field. In particular, by (i) imposing initial conditions in terms of thE kernels at
ab A o A b t=to, and (i) by obtaining an explicit formula fol’s in
iDL, (% Y)=(ALOOAUY ) <(ALCOXALY)), (149 terms of A, andA,,. Concerning the initial conditions, |
confine myself to nonequilibrium initial states of Gaussian

so;hat th? _Iimic} .‘D#v_’of; ca'rlm_biconsiéi.ergd.h ._form (i.e., quadratic in the hard modeand do not consider
s explained in more detail in Appendix E, the generating, ,ggjple linear force terms. That is, | set

functional for theconnectedGreen functions

KD(X)|g0—1. =0, K2@(x,y)|w0-yo_¢=0. (21
Wp[K]= —ilnZp[ K], (15) ( )|x° to ( y)|x° yo=t, (21)
To obtain an explicit expression fdrp, the formal loop
expansion of Eq(18) results in the well-known Cornwall-
Jackiw-Tomboulis formulg30]

which generate the infinite set of connectegboint Green
functionsG\" via

(—D)GM (kg X I .
e ka Te[AA]=1 4 A,a]— ES;{In(AglA)—AglAJrl]
1)
=ocm WelKllic=o +TR[AA], (22
=<aa1(x1) . aak(Xk)Aak+l(Xk+1) .. 'Aan(Xn)>(c) ’ where SPAB...]= Trfpd*x,d*,- - -A(Xl)B(X.Z) e
K1 Hk Hr+1 Kn stands for both the trace over color and Lorentz indices, as

(16)  well as the integration over all space-time positions, hence
giving the expectation valugAB- - - )p as defined in Appen-
is truncated at leval= 3 on the basis of approximatiot2) dix C. Thephysical interpretatiorof the various terms in this
and (14). As a resultWp becomes a functional of the one- expression fol'p is the following[11].

point function(soft mean fieldA) and the two-point function (i) The first term is of ordef:® and is given by the clas-
(hard propagatod) only: sical action(9),(10) at A=A and switched-off sources:
gi})a(x):<Ai(X)>(F§2)EA_;’=IL(X), I eﬁ[A,a]E[|[A]+|[a]+|[A,a]]A:KK:0. (23

2)ab a by (©)—s 7 ab Notice that in the limita=0, this reduces to the classical
Gur N =(B,002,(YNR=IALGY)- (D action for the soft mean field, T o A,01=lyw[A]
P~ +lgdn-Al.
These relations define the soft, classical mean ffeldand ((;’IF)[ The]second term in Eq22) is of order#® and con-
the hard quantum propagatdrin terms of expectation val-  tains the contributions of the coupling between the soft mean

ues of soft and_ hard figld operatd!xg, andfiﬂ’ respectively.  fia1q A and the hard quantum propagafor The free propa-
One now readily obtains theffective actionl'p (or proper Fi . . by (821 [ Aall
vertex functiongl via Legendre transformatiaief. Appendix gator [see Fig. 8] is given by [6°lefA.a]

E): da(x) da(y)la=o: a=o With A switched off, which yields
To[Gl~Tp[A,A]1=W[ KD, K@ ]— KDoA (Ao DY) == Bapdp(x.Y) (305, (24)
1 R where it is understood that the space-time argumerdaad
- EIC(Z)O (iA+AA), (18)  yin A, satisfy x—y)*><1/u?, and
— n*9r+nv ok atay
which is a functional ofonly the soft fieldA and the hard dw(ax)zgw_#jL(anLa—la)Z()X_XZ_
propagatoé as independent dynamical degrees of freedom. n-dx (n-dx)

The equations of motiofior the mean fieldA and for the (25)

hard propagatod in the presence of sources, follow now by Even in the absence of quantum fluctuations, these contribu-

differentiation of Eq.(18) with respect toA andA (cf. Ap-  tions amount to a modification of the free propagator, such
pendix B that the free propagatdx, becomes an effective propagator

A in the mean fielddressedup by the presence @&. This
mean field propagatofsee Fig. 80)], denoted byA, is ob-
tained from[ 621 o A,a]/ da(x) sa(y)Ja—aazo With finite
(19  A#0, which results in

5T
__ = _]C(l)l/«,a X _J d4 K(Z)MV’ab X, AV b ,
SAZ(x) 00— | dYy (X,y)A">(y)
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(a) ''free' propagator:

iA, (x,y)E;—);

(b) "mean field" propagator: é

iA(xy)=

e @ D |

1N
TN
@

N,

S =i, (6 ) +o—ime + Ly

X

(c) "full"” propagator:

Bmys == =ilen+ -O— + O~ + —O—
A® AQ ®4  4®

+ —(O)— + + —O— + -

(d) "full" 3-point function:
~ Xy
-igV(x,y,z)E =Y + g+ =S
z
(e) "full” 4-point function:
~ X, y .
2
EWxy 5 ws= = + U + \@( + e
JH - X

() induced mean field:

A= RQ=—-= + (=7}

w- 2 0.6 .8

FIG. 4. The two-loop contributioi’{?), Egs.(29)—(33), to the
effective actionl'p of Eq. (22), in the diagrammatic representation
of Fig. 3. Formally,l“(pz) is the sum of all two-particle irreducible
graphs with internal lines representing the full gluon propagators

A and full three- and four-gluon verticés and W.

Note thatAg;# Ao, that is,A[g; denotes thdull propagator

for A=0, whereas\ is the free propagator(24). The real
(dispersive part ofl“(Pz) contains the virtual loop corrections
associated with the gluon self-interactions, whereas the
imaginary (dissipativg part contains the emission, absorp-
tion, and scattering processes of hard gluons. In other words,
F(Pz) embodies all the interesting quantum dynamics that is
connected with renormalization group, entropy generation,
dissipation, etc. The explicit form dfff) is diagrammati-
cally shown in Fig. 4, with the vertices and lines defined by

FIG. 3. Diagrammatics of the various terms used for thefijg. 3. Suppressing color and Lorentz indices and employing

n-point functions appearing in the text. The two-point function
G2 =jA is the hard gluon propagator with tfiree-fieldpropagator
Ay (no interactions the mean-fieldpropagatorA (including the
interactions with the classical soft fiel), and thefull propagator ran

A [including both mean-field and quantuffoop) interactiong.

Similarly, the connected three-point functigh®=—igV and the  \ith the contributions

four-point functiong!¥ = —g2W contain soft mean-field plus hard

quantum contributions with internal full propagatbr Finally, the 1 zj 4o J 40 a4

one-point function is the soft mean fiekl that is generated by the m=g9 pd xdy pd X, @7y Wo(X,Y. Xy, Y1)

hard gluons through the coupling to the full three-point and four-

a condensed notation, e.@(xl,xz)zﬁff;(xl,xz), the cor-
responding formula is

point functionsV andW. X A(y1,x)A(y,x), (30
— . 2
A —1,ab _A—Llab b I
(ATHE Y =(Ag DY) —TIE5(X,Y),  (26) r(z)zﬁngpd“xd“yfp i1:[l d*x;d?y;Vo(X,X1,X2)
wherell denotes the self-energy contribution associated with XA(X1,Y1)A X2, Y2)V(V2,Y1,Y)A(Y,X), (31

the presence of the mean fiedd# 0. Its explicit expression
3

is given below in Eq(48). In other words, the effect of the 1

mean field is to shift the pole in the free propagatgrof Eq. F(3)=4—894Ld4xd4y . Hl d*x; d*y;Wo(X, X1 ,X2,X3)
(24) by a dynamically induced “mass” termI1, which can '

produce screening and damping effects. Note that X A(Xq,Y1)A(X0,Y2) A(X3,Y3)

A51=A‘1|A10. It is important to realize that this mean field - .

effect is still on the classical tree-level, and does not involve XW(Y3,Y2,Y1,Y)A(Y,X), (32

quantum fluctuations associated with radiative self-
interactions among the hard gluons. I A 4 e 4
(i) The last terml'2) in Eq. (22) represents the sum of !4 ~ggd Ld xd'y o .1:[1 d™x;d"y;d"ZWo(X,X1,X2,X3)
all two-particle irreducible graphs of ord&?,#3, ... [30],
with the full propagator&, dressed by both the soft mean X&(xz,zz)ﬁ(x3,zg)fl(z3,zz,zl)A(zl,yl)
field and the quantum self-interactiofsee Fig. &)] . . .
XA(X1,Y2)V(Y1,Y2,Y)A(Y,X). (33

2

A ab __~ab rab R "
Aw(x'Y):A[G]MV(X’yH 5A[A]W(x,y), (27 The functionsV and W are thefull proper vertex functions

for the three-gluon and four-gluon coupling, respectively.

where the dependence of the full propagator on the soft meaRheir diagrammatic representation is shown in Fig&d) 3

field A is indicated by an explicit subscript, and and 3e), and formally they are given by the functional

derivatives of I'p at A+#0, namely,

~ab rab fab [8"Tp/da(xy)- - - da(X;) A(Xi+1) - - - 6A(Xn) Ja=n; a=o foOr
A[ﬁ],uV:A[A_],uylAZO’ M[A_]MJA:O:O- (28 n=3 andn=4, respectively,
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—igV2he(x,y,2)= —igVare (x.y,2) + O(g%), @
N N - T
_ ~2\Asabed _ . 2wjabcd 4 0 = (B + X% A+ &+
9 W)\,u.l/a'(xlyisz)_ g Womw(xay,Z,W)"'O(g ),
(39 ( 2 . ) >
= = o+ |-12 —;.\@ + i/6 ?@

which, to lowest order in the coupling constant, reduce to the
bare three- and four-gluon verticeg, andW,, respectively:

8
+(1/2x© +i2 © + 16 ;@)

Vore(%,Y,2) =120, (9= 35),58(x,2) 5p(Y,2) ®
0,0, 9y 8H(Y.X) 85(2,X) 0 = B - 4 x4 W 0
+ 0 (05— 9,) . 56(X,Y) 5p(2,y)}  (35) = (= =)
WEReT L (X,Y,Z,W) . (,,2 L S
:_{(facefbde_fadefcbe) O uOvo 3w %) ®
+ (fabefede_ gadegbce 9000 +<i/259 — zlzx@ + ﬂ6x@ — 14 @)

+(facefdbe_fabefcde) Oro0 }
e FIG. 5. Diagrammatic representation in terms of the rules of

X %(X,y)éﬁ(z,w)é,‘:‘,(y,z). (36 Fig. 3, of the equations of motiorfa) The Yang-Mills equations
(37), (38) for the soft fieldA with the self-coupling contribution
C. Equations of motion E, Egs.(40—(42), and the generating hard gluon currgntegs.

(200—(204). (b) The Dyson-Schwinger equatigqa?) for the hard
Iﬁliropagatoﬁ with the mean-field polarization tenshbr, Egs.(48)—
(50), and the quantum contributidfi, Egs.(51)—(55).

As sketched above and discussed in more detail in Appe
dix E, the equations of motio19) and (20) result from
approximating the exact theory by truncation of the infinite
hierarchy of equations for the-point Green functions to the

one-point function[the soft mean fieldA(x)] and the two-

point function [the hard propagatoiA(x,y)], with all
higher-point functions being combinations of these and con- [D}a FP J(x)=—]3(x)— (K@) 2AN B)(x), (37)
nected by the three-gluon and four-gluon vertices a a ®

—igV(x,y,2) and —g2W(x,y,z,w), respectively. Before where[D,F]=DF —FD with the covariant derivative de-
writing down the explicit form of the resulting equations of fined as D =D A]=4}—igA(x) and F_A#EFM[A_]
motion, it is useful to summarize the terminology introduced
in the course of the above discussion.

Mean field A[Fig. 3(f)]. Denotes the classical soft field as
the expectation value of the gauge fidldwhich is induced
by the abundance of emitted hard gluons and their collective
motion. Free propagatori A, [Fig. 3(@]. Refers to the free
propagation of hard gluons in the absence of interactions,
i.e., vanishing couplingg=0. Mean-field propagatoriA —lab_ cab 2 X gX
[Fig. 3(b)]. Denotes the tree-level propagator without quan- Doy G dx = Tuh = ), (38
tum corrections, i.e., the free propagator with an arbitrarywhere, upon taking into account the gauge consti@ntthe
number=0 of attached external legs coupling to the soft_ n AX in DyLA* does not contribute, because
mean field, but without closed loops that correspond to q“a“c‘):?nm:nm_ a}r;d E . i

) ) . ” g.(37) may be expressed in the al
tum self-interactionsFull propagatoii A [Fig. 3(€)]. Terms  ternative form[see Fig. )]
the dressed propagator of the hard quanta, that is, renormal-
ized by both the interactions with the soft mean fietdl the {(D61+K(2))A_}a(x)+a_a(x) +]a(x)=0. (39)
self-interactions among the hard quanfall vertex func- # " #

tions —igV, — g°W [Figs. 3d), 3(e)]. Represent the three- Here the functiorE contains the soft-field self-coupling
gluon and four-gluon vertices with the internal lines being

obtains, upon taking into account the initial conditi(2t),
KM=0, theYang-Mills equation for A

=[D, ,D_M]/(—ig). The second term on the right side is the
initial state contribution to the current, according to the con-
dition (21), K@ A= [pd?y K3 2°(x,y) AME(y).

Rewriting the left-hand side of Eq437) as

[DM20,FP 1(x) =Dy, 2 A% P(x) + E3(x),

the full hard propagator including mean-field and quantum EA(0=ER),(0+E%,,(), (40)
interactions.
2
-Mi - ' =a g -~
1. Yang-Mills equation for the soft mean field :?1)u(x): -5 . .1:[1 d4XiV82(i;}\(XaXl7X2)A ,b(xl)

The equation of motion for the soft fie@(x), is given
by Eq.(19), i.e., 6T p/ 6A=— KM — K A, from which one X AME(x,), (41)
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—a |g e
25, ()= + f Hl A WEDSS (%, X0 Xg) APP(x4)

Ouvho

XE’C(XZ)F’C’(X:;), (42)

and the currenf is the induced currentdue to the hard
guantum dynamics in the presence of the soft fikld

jZ(X)ZI?l)ﬂ(X)+i?2)M(X)+j?3)ﬂ(x)y (43

]\?l)p,(x): -2 o |1;[1 d4XiVSE?}>\(X!X1'X2)AM’ P¢(X1,Xs),
(44)
ca (1
i,00=— 3 | TT axwelss,
X (X, X1 X, X3) AV P(x1) AN (x5, x3),
(45

ig

3
ifau0=="| 11 didtywg:s3

Ouvho

X (X,Xq ,Xg,Xg) A7 PO (xp y ) AN cc

X (Xg,y2) A7 dd’(Xs,Y3)ngsgwgr(Y1,Y2aY3)-
(46)

It should be remarked that the functi&@on the left-hand
side of EQ.(37) contains the nonlinear self-coupling of the

soft field A alone, whereas the induced currgmn the right-

hand side is determined by the hard propagétorthereby
generating the soft field.

2. Dyson-Schwinger equation for the hard gluon propagator

From the equation of motio(20) for the hard propagator
A20(x,y), thatis,oT'p/ 6A = K®)(2i), one finds after incor-
porating condition (21), KY)=0, the Dyson-Schwinger
equation forA [see Fig. )]:

{(A) 71— (Ag) =KD+ T+T}2(x,y)=0, (47)

whereA is thefully dressed propagatoof the hard quantum

fluctuations in the presence of the soft mean field, defined by

Eqg. (27), whereas) is the free propagatoy given by Eq.
(24). The polarization tensofl has been decomposed into

two parts, a mean-field paﬂ_and a quantum fluctuation part
II. The mean-field polarization tensoll incorporates the

KLAUS GEIGER

wno(X,Y,Z,W)

92
135,.,000) =5 sb0ey) | dzatwnglss

X AMC(2) ATd(w), (50

plus terms of ordeg3ﬁ which one may safely ignore within
the present approximation scheme. Thetuation polariza-
tion tensorIl contains the guantum self-interaction among
the hard quanta in the presenceﬁ It is given by the
variation 24 5T ?)/5A of the two-loop parl’{?, Eq. (29), of
the effective actiod p:

20(x,y) =112, , (6, Y) + 11, (x,Y) + 112, (x,Y)

+1128,, (%), (51)

2
g9
M, == 5 f A d Y WG (XY X, y)

X AN ey, xy) (52)

i g2

ab —
H(z)ﬂy(X,Y) )

2
[T d*d%; Ve (%, X1, X2)
Pi=1

XAM e (xy y Y AT 8 (%) y,)

X \A/g.'r(;\’rt:}(yZ |yl ,y) ’ (53)
4 3

~ g
H?e?)w(x,y): "6 Jp il:[l d4Xid4inSZ(iiT(X:X1,X2vxs)

XAM e (xy ,yl>A"""d“/(x2 Y2)

XA ee(xs,y3)We/ N (ysa)’2,y1 Y),
(54

2
lg
M, 0y == 57| L1 dddy;

X d%z,Wa%9e (x.x;,X,,X3) A7 " (x5,2,)

Oulor

1"
X A" 2" (xg 723)Vp~prp(23 122,21)

X AP (7 y ) AN (%) ys)

X VS (y1,Y2,Y)- (55)

local interaction between the hard quanta and the soft mean

field:

Hab(x y)= H(lm(x y)+l'[(2)/w(x,y), (48)

H(l),U«V X, y) 2 6:;()( y)f d4 Op,v)\(x Y, Z)A)\ C(Z)
(49)

Note that the usual Dyson-Schwinger equatiowvacuumis
contained in Eqs(47)—(55) as the special case when the
mean field vanishesA(x) =0, and initial state correlations
are absent(®(x,y)=0. In this case, the propagator be-
comes the usual vacuum propagator, since the mean-field

contributionII is identically zero, and the quantum pi[t
reduces to the vacuum contribution.
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[ll. TRANSITION TO QUANTUM KINETICS proportional to the average transverse momentum
The equations of motiof37) or (39) for F,, or A, and .1
- . . . . . rou=A=7—, (k)=u, (56)
Eq. (47) for A ,,, are nonlinear integrodifferential equations d (k)

and clearly not solvable in all their generality. However, the
field equations of motiori37) or (47) can be cast into much Wwhere the second relation is imposed by means of the defi-
simpler quantum-kinetic equations with the help of thenition (6) of hard and soft modes. In general,can be a
Wigner-function technique and gradient expansion, and thepace-time-dependent quantity, because the magnitude of
assumption of two-scale separation. As a result one obtaink, ) is determined by both the radiative self-interactions of
finally the three master equations mentioned in Sec. I: a simhe hard gluons and the interactions with the soft field.
plified Yang-Mills equation describing the space-time The kinetic scaler,;, measures the range of the long-
change ofA and two equations for the gluon propagafor ~ wavelength correlations, described by the soft mean-field
namely, first, arevolution equatiorior the QCD evolutionin A, and may be parametrized in terms of the average trans-
momentum space and, secondyansport eﬂjation‘or the  verse wavelength of soft modég, ), such that
space-time development in the presenceAofln order to
achieve this result, one needs to make a third key approxi- fomN = 1 (q,)= (57)
mation (in addition to the two approximations of Sec. I).A k=g, ) qu=9x.
Approximation 31t is assumed that the induced soft field o

A, is slowly varying on the scale of the short-range, hardwhere X may vary from one space-time point to another,
quantum fluctuations, that is, the gradient of the soft field ishecause the population of soft modagq) is determined
small compared to the Compton wavelength of the harqoca)ly py the hard currenf with dominant contribution
quanta. Then one can treat the quantum fluctuations o}, gluons with transverse momentusy.
A(r,k) at short distances separately from the collective ef- The above classification of quantukinetic)scales
fects represented by to the soft fied(r) with long wave- specifies in space-time the relevant regime for the ksot)
length. dynamics, so that the separability of the two scalgg and

I'in imposes the following condition on the relation between

space-time and momentum:

A. Quantum and kinetic space-time regimes

The key to derive from(37) or (47) the corresponding A<\ or (k))=u>gu~(q,). (58
approximate quantum-kinetic equations is the separability of
hard and soft dynamics in terms of the space-time scaldhe physical interpretation of Eq58) is simple: At short
A=1/u, where u is the parametric momentum scale intro- distances 4,;<1/(gu) a hard gluon can be considered as an
duced in Eq(6). This implies that one may characterize the incoherent quanturwhich emits and partly reabsorbs daugh-
dynamical evolution of the gluon system by a short-rangder gluons, corresponding to the combination of real brems-
guantum sca|ed'ua<)\, and a comparably long-rangnetic strahlung and virtual radiative fluctuations. Only a hard
scale f;,=\. Low-momentum collective excitations that probe with a short wavelengftﬁrquacan resolve this quan-
may develop at the particular momentum saogle are thus tum dynamics. On the other hand, at larger distances
well separated from the typical hard gluon momentar,;,~1/(gu), a gluon appears as @herent quasiparticle
k., =pu, if g<1. Therefore, collectivity can arise, because thethat is, as an extended object with a changing transverse size
wavelength of the soft oscillations-1/gu is much larger corresponding to the extent of its intrinsic quantum fluctua-
than the typical extension of the hard quantum fluctuationsions. This dynamical substructure is, however, not resolv-

~1/n. | emphasize that this notion of two characteristic gple by long-wavelength modes=r ;, of the soft fieldA.
scales is not just an academic construction, but rather is a Accordingly, one may classify the quantum and kinetic
typical property of quantum field theory. A simple example regimes, respectively, by associating with two distinct space-

is a freely propagating electron. In this case, the quanturime pointsx* andy* the following characteristic scales:
scale is given the Compton wavelengthl/m, in the rest-

frame of the charge, and measures the size of the radiative .
vacuum polarization cloud around the bare charge. The ki- ~ S*=X*—y*~A=——, d5=7(d—d)~qu,

netic scale, on the other hand, is determined by the mean- 9K

free-path of the charge, which is infinite in vacuum, and in 1 1

medium is inversely proportional to the local charge density rMEE(XM+y#)~)\ =—, Jg=d+d~un (59
)72

times the interaction cross sectionl/(n.oj,). Adopting

this notion to the present case of gluon dynamics, | define o ] —

Il qua@ndr i, as follows. On thekinetic scalethe effect of the soft field modes éf on
The quantum scale,,, measures the spatial extension of the hard quanta involves the coupligé\ to the hard propa-

guantum fluctuations associated with virtual and real radiagator and is of the order of the soft wavelength

tive emission and reabsorption off a given hard gluon, dex =1/(gu), so that one may characterize the soft field

scribed by the hard propagatﬁr. It can thus be interpreted strength by

as its Compton wavelength, corresponding to the typical o o

transverse extension of the fluctuations and thus inversely gAL(r)~gu, gFM(r)~gz,u2, (60)
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plus corrections of ordeg®x* andg®u®, respectively, which A=A+ 8A in terms of gradients of the long-range
are assumed to be small. variation with the kinetic scale and, second, one makes an

On thequantum scaleon the other hand, additional expansion in powers of the soft fighdand of the

A;Vl~kf2,u2>gz,u2~gF_W, (61) induced perturbatior&A[A—]~gA[5].

and one expects that the short-distance fluctuations corre- 1. Gradient expansion

sponding to emission and reabsorption of gluons with mo- To proceed, recall that the coordinaté describes the
mentak, =, are little affected by the long-range, soft meankinetic space-time dependeneer;,, whereass measures
field, because the color forcegF acting on a gluon with the quantum space-time distanee .. In translational in-
momentumk, ~ u produces only a very small change in its variant situations, e.g., in vacuum or thermal equilibrium,
momentum. G(r,s) in Eq. (63 is independent of # and sharply peaked
about s*=0. Here the range of the variation is fixed by
B. The kinetic approximation N=1/u, Eq. (56), corresponding to the confinement length
o , constx 1/A in the case of vacuum, or to the thermal wave-
_The realization of the two space-time scales, shortyongih consk 1/T in equilibrium. On the other hand, in the
distance quantum and quasiclassical kinetic, allows us to re- . L
formulate the quantum field-theoretical problem as a relativPreéSence of a slowly varying soft field with a wavelength
istic many-body problem within kinetic theory. The key A =1/(gu), Eg. (57), the s* dependence is little affected,
element is to establish the connection between the precedinihile the acquiredr” dependence will have a long-
description in terms of Green functions and a probabilisticvavelength variation. In view of the estimat&s), one may
kinetic description in terms of so-called Wigner functions therefore neglect the derivatives g{r,k) with respect to
[31]. Whereas the two-point functions, such as the propaga-“ which are of ordegu, relative to those with respect to
tor or the polarization tensor, depend on two separate spacg* which are of ordef..
time pointsx andy, their Wigner transforms utilizes a mixed ~ Hence one can perform the so-caligdhdient expansion
space-time/momentum representation, which is particularl@f the soft field and the hard propagator and polarization
convenient for implementing the assumption of separatedensor in terms of gradients{d;)", and keep only terms up

quantum and kinetic scales, i.e., that the long-wavelengtkp first ordern=1, i.e.,
field A is slowly varying in space-time on the scale of short- s
range quantum fluctuations. Moreover, the trace of the AM(X)=Aﬂ(r+ —
Wigner-transformed propagator is the quantum analogue of 2
the single particle phase-space distribution of gluons, and o — —
therefore provides the basic quantity to make contact witnd similarly forA,(y)=A,,(r —s/2), as well as
kinetic theory of multiparticle dynamidsl8].

In terms of the center-of-mass coordinate3 (x+y) and
relative coordinates=x—y of two space-time pointg and
y, Eg. (59, one can express any two-point function

G(x,y), such as\,I1, in terms of the coordinates

=AU+ AR, (69

A, (xy)=A,,(r,s)=A,,08)+s-d,A,,(r,s) (65

ﬁﬂy(x,y)zﬁw(r ,s)zﬁw(o,s) +s- 0rﬁ,w(r ,S).
(66)

Then, by using the following conversion rul¢&1,23 to
=G3(r,s) (62) carry out the Wigner transformations:
prit =t

+S S
r 2,!‘ >

@o(x,y) =G

i
The Wigner transformg(r,k) is then defined as the Fourier f d4x’f(x,x')g(x’,y):>f(r,k)g(r,k)+§[(akf)-(a,g)
transform with respect to the relative coordinatdeing the
canonical conjugate to the momentimin general, the nec- —(8,£)-(0,9)] (67)
essary preservation of local gauge symmetry requires a care-
ful definition that obeys the gauge transformation properties i
[7], but for the specific choice of gaug®), the Wigner h(x)g(x,y)=h(r)g(r,k) =5 (d:h)- (99),
transform is simplyf32,46].

i
d*k h , h K)+=(d:h)-(6,9), 68
g(r,s):j e KSG(r k), (y) gx.y)=h(r)g(r.k)+5(3:h)-(39),  (68)
(2m)*
, aff(x,y):(—ik“+3a¢‘)f(r,k),
g(r,k)=f d*se*°G(r,s). (63) 2
1
The Wigner representatiof63) will facilitate a systematic Iy f(x,y)=| +ik*+ Eﬁﬁ‘)f(r,k), (69
identification of the dominant contributions of the soft field

A'to the hard propagatak, a concept that was developed by the transformed polarization tensH(r k) is obtained from
Blaizot and lancu[7]: First, one expands bottA and II(x,y), Egs.(48) and(51), with
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H#,,(r,k)=H_My(r,k)+l:[w(r,k), (70 ngzv(kl,kz,kg,):—ifabc{gw(kl—kz),,+gu,,(k2—k3)>\
where the softmean-field contributioficf. Eqs.(49), (50)] is +9u(Ks—K2) .} (80)

I28(r k) = (I + 1) 25(r k), (7D)
b g b e
Hf‘lw(f’k)—jVSMix(k,O,— K)AMC(r), (72)
ig — —
2, (r k)= 5 Wonono(K.0.0— k) AM(r)AT4(r),
(73
and thequantum contributioricf. Egs.(51)—(55)] is
1125 (r k) = (T 1)+ [T o)+ T (3) + T 4))25(r k), (74)
I, k) = WA (kA — k)
XA)\U’ 'Cd(r,k), (75)
b g’
nﬁw(r,k>=+7f i Va -
><A)\)\',Ccl(r'q)A(r(r/,dd'(r’q!)
x VP (r:q’,q,— k), (76)

a g
(15} k0= f(zw)“. (2m)%

XWS;CL(;\?IT(k'_qI_q,v_p)A)\)\,'CC,(raq)
XAO’O’ ".dd’ (r,q’)ﬁ”"ee'(r,p)

W TSP (1:q,q",p, — k), (77)

T O

g dig  d'p
2m)% (2m)%

(k0 ==

% Wacde

gede (k—a,—q’,—p")A7" 9" (r q)

x A" el (r gV (ra.a’,—p)
XAP}\/’fC,(I’,p)A)\U ,cd’ (r’p/)

x VS (rip,p’, k). (78)

Here the three- and four-gluon vertex functions from Eqswhere d;

(34), (35), and(36) depend explicitly orr:
V(r;ki)=Vo(ki) +O[g*f(r k)1,
W(r;ki)=Wo(ki)+O[g*f(r k)1, (79)

with the bare pointlike verticesVy,W, beingr independent
and given by

abcd
WO}\;LVU

(k1Ko kg, ky) = —{(facefPde—fadefebeyg, g,
_l_(fabefcde_fadefbce)g)\ g
vIuo

+ (facefdbe_fabefedeyg, g 1.
(81)

With the above formulas, one can now convert both the
Yang-Mills equation37) and the Dyson-Schwinger equation
(47) into a set of much simpler equations. For the Dyson-
Schwinger equation, the Wigner transformation together
with the gradient expansion yieldw&o distinct equations for

the hard propagaton&’”(r,k), namely, (i) an evolution
equatiorf and (i) a transport equation They are obtained
[11,23 by taking the sum and difference of Wigner-
transform of Eq.(47) and its adjoint, using the rule$7)—
(69),

(i) Evolution equation

(kz—la )A’“’(r K) ——{1'[" A (r k)

i s
+ ZLaTIy XA ](r k)

—d*(k) 1p+ {H A" (r k)

e
+ 7 okILG AT k)

[akm AT (r k). (82)

(ii) Transport equation
- ([
(k-a,)A*"(r,k)+ E[Hﬁ,‘,A‘”](r,k)
1 N4 KA ov
—Z{a,Hg‘,aAA Hr,k)

i Lo i
= = S5 A1 k) + Z{aI15, A7} (r K)

——{a 114, kA" (r k), (83)

2=9,-9,, [A,B]I=AB—BA, {A,B}=AB+BA. In
Egs.(82) and (83), 1,=1 (0) for AF,AF (A~,A<) arises
as the transform oﬁ‘é(x,y). The functiond ,, (k) is the sum

2In Ref.[11] the “evolution” equation was called the “renormal-
ization” equation, a term that may be misleading. In order to avoid
confusion with the “renormalization group” equation, the name
evolution equation appears more suitable.



2678 KLAUS GEIGER 56

over the gluon polarizations [emerging from the Fourier where the free-field propagatdr, and the mean-field propa-

transform of the operata25)]; gatorA are given by Eqs(24) and(26), respectively. Given
the ansat£87), with the feedback of the induced soft field to
d,.(k)= E e, (k,s) €5 (k,s) the hard propagator being containedaﬁ[A*], the_Iatter is
=12 now expanded in powers of the soft field couplopg, and it
nk,+nk, k.k, is anticipated that the mean-field induced péﬁ[A—] is a
=g,,— ———FX+(n?+ak?)——=. (84 ion bei imesh iccd -
m n-k (n-k)2 correction beingat most g timeghe quantum piecé (g, ;
that is,
K2
with the properties d“(k)=2, k,d**(k) — 0 and . R .
n,d**=0=d*"n,. Furthermore, the initial state contribu- 5A[A](r’k):n;’w 7 (GA(N) - 31)"A g (k)
tion K@ appearing in Eqs(37) and(47), which contributes o
only atr%=t,, has been absorbed into the hard propagator ZQA(T)'ﬂkA[a](F.k) (89)

A;yl(r,k)EA Lrk)— K(Z)(r,k)é(ro—to). (85  and, to the same order of approximation,

For the Yang-Mills equatior{37) determiningF~*(r), one IS 1aT (1K) =9(*AN) kA G),,(r.K),  (90)
obtains on the same level of approximation a compact ex-
pression in terms of the hard curr®ft where, on the right side, the space-time derivative acts only

on A. Now the decompositioi87) with the approximation
S — R d%k (89) is inserted into Eq982), (83), (86), and all terms up to
N, _ _Ga — VAo ~ . .
[D*@Fy, () =—]5(r)=—gy* f (2m)? order g?u®Ag; are kept. The resulting equations can be
compactly expressed in terms of tkimetic momentumkK ,

N rather than thecanonicalmomentumk,, (as always in the
XTr T2 KyA (1K) context of interactions with a gauge figl83]), which for the
class of axial-type gaugd®) amounts to the replacements
i .
— r ~ r ~
+ 2[D ,Aw(r,k)])], (86) k,—K,=k,—gA,(r), aLeDLzﬁL—gaLAV(r)a':.

(99)
WheE '}/MV)\O':2g,uvg)\a_gp,}\gvo_g,u,0'gv)\ and D;\:ﬁ;\

. Taking into account approximation 3 of Sec. Il A implying
—igAx(r).

K?A>D?2A, one finds for the evolution, transport, and Yang-
2. Expansion in powers of gA Mills equation, Eqs(82), (83), and(86), respectively,

In order to isolate the leading effects of the soft mean
field A on the hard quantum propagatbr | follow Ref. [7]
to separate the quantum contribution from the mean field
contribution on the basis of the assumption thatAhield is
slowly varying on the short-range scale of the quantum fluc-
tuations. To do so, recall E427),

{K2 A (r,K) =d*"(K) + {H“ AGHrK), (92

. i
[K-Dr A#)(r,K) =~ 5[11, A5 1(r,K) ~ 5 L, Az

X(r,K), (93
A(rk)=A(r,k)+ sAg(r k), (87
. . YN __= __ K Av
with the quantum piecé 5 and the mean-field padA ) [DrFa,d(r) Jul1) gf (2717)2 Tr{=KuA(r.K)
defined by A
+AY(r,K)K,}, (99
Aol Ay - . ®
A[ﬁ]_A |azo=24¢ —H[azo,
where the color indices are suppressed, noting ﬂ;@
5AE;11= “loagl=—10, 88  =A,,, F\, =T, ],=T%% and T(---1=TrT9---].
3. The physical representation
3This property reflects that in the noncovariant gau@@® only One sees that the original Dyson-Schwinger equaddi

the two physical polarization states propagate, i.e., those witlieduces in the kinetic approximation to the set of algebraic
g,k“=0. For comparison, in the covariant Feynman gauge.equationg92) and(93). Now recall(cf., Appendix B 3 that

d#’=g~”, di=4, andk,d*’=k"#0. in the CTP framework these equations are stil 2 matrix
“Note that in the kinetic approximation, the pie}@), Eq. (46), equatlons which mix the four different components of
does not contribute, because it has two additidhansertions and A= (AF A> A< AF) and off1=(1F,11>,11<,1TF). For the

is down by a factog/u* as compared tq°>(1) and](z). following it is more convenient to employ instead an equiva-
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lent set of indepenfient Iunctions, namely, te¢éardedand 5 =2 1mA V:i(Aret_Aadv)
advanced functiond™, A2% plus thecorrelation function
A" and analogously fofl. This latter set is more directly
connected with physical, observable quantities, and is com-
monly referred to aphysical representatiofl9]
e e e R iE e e Ae . ae with A= (A2M* and o(K°) A= g(— k%) A2% The analo-
A=AT—A=, A=AT-A", A%=AT+A". gous decomposition of the polarization tensor in terms of its
(99 real and imaginary components defines the quantumIpart
Similarly, for the polarization tensor the retarded, advanced®S the sum and difference of the retarded and advanced con-

and correlation functions are defined[aste the subtle dif- tributions, respectively:
ference to Eq(95)]

v

A
Red,, = (A" A% (101)

uvo

,,=2Imi,,=i{1*-1%),,,

ﬁret:ﬁF+ﬁ<’ ﬁadv:ﬁF+ﬂ>, f[cor:_(f[>_ﬁ<). .
(96) A (fyrets fyad

Rd_[lu,,—i(l_[ret-l- 112 (102

pv
Loosely speaking, the retarded and advanced functions char-

acterize the intrinsic quantum nature of a “dressed” gluon,
describing its substructural state of emitted and reabsorb
gluons, whereas the correlation function describes the kineti
correlations among different such “dressed” gluons. The
great advantagé¢19,22 of this physical representation is

that, in general, the dependence on the phase-space occu%\
tion of gluon stategthe local densityis essentially carried

éaﬂd similarly for the mean-field paH associated with the

presence of a soft field. The imaginary pastandl” are the
spectral densityandspectral width respectively, of the hard

gluons.

In terms of this representation one obtains from E§83),

4), and(97)—(100 the following final set ofmaster equa-

PN ns
by the correlation functiond ~,A <, whereas the dependence
i Aet A adv ~ o~ IS ~
of the retarded and advanced functiaxi§, A% on the local {K2,p},,={ Rell,p},,+{["\ReA ;5,} .,
density is weak. More precisely, the retarded and advanced o
propagators and the imaginary parts of the self-energies em- + Q(E,Xﬁxﬁ;’;)':w)- (103
body the renormalization effects and dissipative quantum dy-
namics that is associated with short-distance emission and -, 5= Acon _  irfycor L . A cor
absorption of quantum fluctuations, whereas the correlation [ (A%, =+, R, +il RAL ARG ]
function contains both the effect of interactions with the soft 1 . . 1 . .
mean field and of statistical binary scatterings among the - E{Hcor,p}w— E{F,A[Cg]r}w,
hard gluons.
In going over to the physical representation, one finds —gK EXo KA cor
then that Eqs(92) and (93) give a set of “self-contained” A 710wy
equations for the retarded and advanced functions alone: _g(FfoglrM_Acom Fr), (104)
(K2, Aa, =S (HadvA;%twl— AsadTas),,,  (97) _ . d%k
[Dr 1F)\p,]: _],u.: _gJ’ (2’7T)2
— ~ret ret ~ ret ~ A~ A
[K-D,,Aatv],,=— (HadvAadv—AadeadV)W, (98) XTr{(—K,AP"+AD"K,)}. (105
plus a set of “mixed” equations for the correlation func- ' hePhysical significancef Eqs.(103) and(104) is [11] that
tions: Eqg. (103 determines, in terms of the spectral dengifythe
state of a single gluon with respect to its virtual fluctuations
et g . cret and real emissiorfabsorption processes, corresponding to
{K2,Aao}, = — —(HadVAa V4 TT R ade- Aad 129 the real and imaginary parts of the retarded and advanced

polarization tensor in the presence of the soft fiEldEqua-

+Aretﬂé)w, (99)  tion (104, on the other hand, characterizes, in terms of the
correlation functionA®”, the correlations among different
[K-D;,A%],, (H ot 2 advy [preR S A padv such gluon states. The polarization tensor appears here in
= — = aday adv— aav

distinct ways. The first two terms on the right-hand side ac-
count for scatterings between the single-gluon states. The
- Aret[_[;edtv) (100  next two terms incorporate the renormalization effects which
result from the fact that the gluons between collisions do not
Equations(97)—(100) may be further manipulated by the behave as free particles, but change their dynamical structure
following trick. Let the imaginary and real components of due to virtual fluctuations, as well as real emission and ab-
the retarded and advanced propagators be denoted by  sorption of quanta. The last two terms account for the soft
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interaction with the mean field. Equation(109 finally de-
termines the rate of change of he soft fi¢ldby the hard
gluon current, which involves the full correlation function
Acor_

The interlinked structure of Eq§103—(109) is very con-
venient for explicit calculationfdemonstrated in Sec. VIt

provides a systematic solution scheme, as discussed belo
to solve for the three quantities of interest, namely, the spe

tral dﬂ\SityZ), the correlation functiom®', and the mean
field A. In view of Egs.(103—(105 the natural logic is a
stepwise determination gf— Afg— 5&%—>A°°r—>]—> F.

C. General solution scheme

Let me exemplify the above interpretation of E¢$03
and(104) in more quantitative detaisee also Ref$19,27)).
The formal solutionof Eq. (103 for the retarded and ad-
vanced functions i§19]

A;Le]t}:ArOeiV_i_(Agetl—[retﬁrel)#w
A= Agi+(agimEeAa, (108)

where TI'S=TI"S\+ 1'%}, This determinesp,, via Eq.

(101). OnceA'™ is known, the solution of Eq104) for the
correlation function is given bj19]

AZOJ: _ (AretAgorf 1Aadv)[w+ (Aretﬁcorﬁad\/)/” ,
(107)
with TT'=TT"+ [T, |t has the general forf2]

A (r,K)==ip,,(r,K)G(r K), (108

14

i.e., the convolution of the spectral densﬁ;yw with the
phase-space density of hard gluons G:

G(r,K)=1+2¢(r,K), (109
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II=0 and one finds, utilizing the formulas of Appendix F,
for the free retarded and advanced functions

d,.,(K)

ret
A K2

Ouv

d,.(K)
— adv K
(K) —{—i&'l AOMV(K) Kz—iel (111)

Wence, the free-field spectral densjty which is the differ-

ehce between?' and A3Y, is on-shell:

—ipou,=Af,—AYY,=278(K?)d, (K), (112
by means of the principal-value (PV) formula

(K?*+ie) '=PV(1K?) Fimd(K?). The free-field correla-
tion functionA§™ is then readily determined via E(LO8):

A cor

S (1K) = =21 8(K?)Go(r,K)d,, (K), (113

and so, with G=1+2g,, the number of on-shell gluons per
d*r is

d3K R
No(f)zfmGo(hK),

- 3,09No

Go(r,K)=Go(r,K) o= (27)°2K K (114

The free-field exercise, Eq$111)—(114), illustrates the
two main properties, which hold also for the general inter-
acting case, Eq$106)—(110).

(i) The spectral densitf;MV(r,K) describes the “dress-
ing” of a singlegluon state with momentud with respect
to its radiative quantum fluctuations, i.e., its fluctuating coat
of emitted and reabsorbed gluons. The function
Tr{d,-p*"] is the intrinsic gluon distribution, that is, the
number of gluons inside this gluon state. The spectral density
is a property of the state itself and therefore is nonvanishing
even in vacuum, in the absence of a medium. For on-shell

particlesf),wm 5(K?), and therefore there are no intrinsic

gluons present.
or,

.. . . N C . .
where the 1 comes from the vacuum contribution of a single (i) The correlation function ,,(r,K) describes an inter-
gluon state, and the 2g represents the correlations with oth&ctingensemblef such fluctuating gluon states, and is given

hard gluons that are close by in phase-space. Note that t

Ry the number density G(K) of those gluons weighted with

function g is constrained to be a real and even function irtheir spectral densitﬁw, containing the intrinsic gluon den-

K (cf., Appendix B. From Eq.(108) it follows that the total
number of gluons N in a space-time elemdft is

4
f (::)4

d*K .
=f<2w)4p(r,K)G(r,K),

_dN

N(I’)ZE:

Tr{d,, - (K)IAS(r,K)]

(110

whered,,,(K) is the polarization sum given by E@84),
d,r=2d,, and ;}z%_dw;}w, and an averaging over the
transverse polarizations and the color degrees of freedom
understood.

The above formulas become immediately familiar when
considering for illustration the simplest case of a noninter

acting system of gluons, th&ee-field case. In this case,

sity of each of them. For the noninteracting case, it obviously

reduces to an ensemble of on-shell particles with= |K]|.

In closure of this section, a genesolution schemenay
be the following iteration recipéwhich is exemplified in the
next section

(1) Solve the evolution equatiofi03) for A;e(}v and the

associated spectral densify at starting pointt=t, with
specified initial conditiorf)(to) =pg at a large initial momen-
tum or energy scal®. This can be done just as in free space,
except that the kinetic momentui=k— charries now an
implicit dependence on the soft fiekl with specified initial
{ﬁalueA_(to).

(2) Solve the transport equatidi04) for the correlation

function A= A7+ 5&%. This involves(a) the construc-

cor

tion of A5 with the help ofp andAxivfrom step(1) and (b)
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The typical energies decrease, whereas the average trans-
verse momentum increasps. Fig. 1(@)], but yet within the
hard momentum range

the calculation of the mean-field-induced correctibig]
from the right side of Eq(104). The resulting space-time
evolution of A describes then the evolution of the gluon

density G within a time interval betweert, and Q%> k2= u?> A2 (117
t;~1KK, 1), corresponding to the evolution fro@ down to
a meanK  ; att;. Eventually, the evolving gluon system reaches the point at

(3) Insert the solution for the full correlation function which the transverse momenta become of the order of the
A into the current] on the left side of Eq(105 and energies. This point is defined to be characterized by the
integrate over all moment& from the initial momentum scaleu—the transition from gard,zpertur_bat.iv.e to soft, non-
scaleQ down to the hard-soft scaje. This gives the current Perturbative regimes. WheR{ <, the individual gluons
induced by the motion of the total aggregate of hard gluon§annot be resolved anymore, and their coherent color current
during the evolution betweetg andt,. Then solve the Yang- &cts as the sourci Or‘: the soft mdeakn field. , f
Mills equation (105 to determine the soft field\ (equiva- (lv) Because of t e restricte ”.]e”lat'f re@'mﬂ_ 0

— . the hard gluon dynamics, the coupliag=g“/4m satisfies
lently F) that is generated &t as a result of the hard gluon
evolution. ag(k®)<1, ayk?®)In(Q¥k?)=1, forallk®=pu?
(4) Return to steg1) and proceed with second iteration, (118

replacingA(to) by A(t,), and so forth. . . .
placingA(to) by A(t:) so that a perturbative evaluation of the hard gluon interac-

tions is applicable, providegi=1 GeV. The perturbative
analysis in the following subsections will be restricted to
leading order: the hard gluon interactions then inclodéy
This section is devoted to exemplifying the practical ap-radiative _self-interactions ~g?, but no gluon-gluon
plicability of the developed formalism by following the so- ScatteringS ~g*, or other higher-loop contributions. Hence,
lution scheme of Sec. Il C for the specific physics scenaridfor the hard gluon propagatqﬁzﬁ[ﬁﬁ 5&@ of Eqgs.(87),
advocated in the introduction and schematically illustrated in88), the required accuracy for the quantum contribution
Fig. 1. | consider a high-energy beam current of hard gluong _ i
as it evolves in space-time and momentum space, and even!’

tually induces its soft mean field. 3[5]=A0+C(92'A0)+O(g4) (119

IV. SAMPLE CALCULATION: HARD GLUON
EVOLUTION WITH SELF-GENERATED SOFT FIELD

A. The physics scenario whereAj is the free-field solution. On top of this the inter-

(i) The initial state is modeled as an ensemble of a numaction of the hard gluons with the soft field is treated as a

ber A of uncorrelated hard gluons. The Lorentz-frame ofCOrrectionsA(xy as in Eq.(89), to leading order-gA to the
reference is the one where the gluons move with the speed sblutionA g, of Eq. (119:

light in the +z direction. The initial gluon beam is prepared R o L

at SAaj=C(gA;A[g)) +O(g?A?). (120

f6‘=(to,ﬂo,zo), to=2o=0, O<r,,<R, (115 Although this so defined physics scenario, with an initial
state of bare gluons, being only statistically correlated and
corresponding at, to a sheet located with longitudinal po- incoherent, may appear to be rather academic, it has in fact
sition z, with transverse extent up to a maximuRy speci- valuable physical relevance. For example, it may be viewed
fied later. as the idealized version of the initial density of materialized
(i) The initial hard gluons are imagined to be produced aggluons in the very early stage of a high-energy collision of
some very large momentum scalg> A2, with their ener-  two heavy nuclei. In this example, one expects the material-
gies and longitudinal momentum along tlzeaxis being ization of a large numbeN of virtual gluons in the wave
=Q. These gluons are therefore strongly concentratedunctions of the colliding nuclei, to occur very shortly after
around the light cone with momenta the nuclear overlap by means of hard scatterings. If one

imagines the time of nuclear overlap equaltte=0, and

2
K=k~Q, —~0, (116
Q SAside fromg*<g?, the neglect of scatterings is reasonable here,

and hence have very small spatial extamt~1/Q. That is, because for a beam of almost collinearly moving gluonscthié-

the initial state gluons are taken bare quanta without any sion rate i.e., the number of collisions per unit time and unit vol-
radiation field around them. ume,  Regi=dNgoy/dtdr o= [d%k;d%ksfg (ki) fg,(k2) Z[Mg,g, |2,

(i) The subsequent timelike evolution of these bare gluvanishes if the relative velocity,,=[v; ~vo| =|ki /w1 —kz/w,| of
ons proceeds then by two competing proceséasthe re- ~ any two gluons tends to zero, and hence their total invariant mass
generation of the radiation field by emission and reabsorps=(ki+kz)®. The suppression of gluon scattering arises from
tion of virtual quanta andb) the bremsstrahlung emission of |M |2, being a function of the Mandelstam variablst, u only,
real gluonic offspring. As a consequence, phase space will beanishes if the gluons move parallel, because fren=Uu~0 and
populated with progressing time by more and more gluonsthe scattering matrix element tends to zero.
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assume the average momentum transfer of initial hard scatnentum squared, and negligibly small compared to the scale
terings ~Q?, then the above idealistic scenario acquires aK*)?. Within this kinematic regime, | henceforth consider
more realistic meaning. K2/(K*)2—0.

B. Choice of light cone gauge and kinematics C. Properties of A, and II,,, in the light cone representation

For the purpose of calculational convenience, | will  The most general Lorentz decomposition of the polariza-
henceforth work in thdight cone gaugewhich is a special tion tensorll =1+ ILin liaht cone gaude can be written as
case of the axial-type gaugé®. It is defined by Eqs(C3)— 25 (1 K) = 82001 K g ith gaug
(C6) of Appendix C, that is, 1K) = w1 K, wi

K.K

kv KK
g;.LV K2

uNy
K2

n~Aa=O, n2=0 (AZ:A_Z,EIZ), (121) HMV(Y,K)Z HL+ HH

corresponding to the gauge fixing term in E8)

+

n,K,+K,n, K2n,n,
1 ) K Hl+ 2 21
IGF[n'A]:f d*x —z[n-Aa(x)]Z ., with a—0. n (n-K)
P
(122 (132)

| choose the lightlike vecton* parallel to the direction of where IT, ,I1,II;,IT, are scalar functions of dimension
motion of the gluon beam along the forward light cone: ~ mass squared and depend on the four-vectdfsand
K#=k*—gA¥. In light cone gauge, the Ward identity for the

n*=(n%n, ,n%=(1,0,,-1) (123)  gluon propagatof27]
and employlight cone variablesi.e., for any four-vector 1 A 1 |
v#, lim{—=(n-K)n*A ,,+ K,t=0 (132
a—>0[ o M (277)4 ]
vh=(w v ,0,), vi=vtvT—v?, (124
enforcesll ,, to be transverse with respect g, and sym-
vE=p.=00+p3 JL:(Ulyl}Z)' v, = /ny metric in its arguments and indices:
(129 b_(_yabpr b_ b
n“IIS0=0=Mn", TI5=117¢%, (133
1 - -
U#W’L:E(U+W7+07W+)—UL-WL. (126)  which implies that

Then n“=(n*,n",n,)=(0,1,0,), so that the gauge con-

straint(12]) reads Therefore, withn- K=K ™,

n-A=A"=A_=0, (127
- : 125 (r ,K) = 6°° AT PP JaViass
and the nonvanishing components of the gauge-field tensor pri TN Quv K2 L K2
FHr=—F"F gre
o o . n,K,+K,n, K?n,n,
F+7=—(?+A7, iz gt 3 + W + (K+)2 HH’ (135
F =g A=A~ —ig[A™,AT], 1 K2
In,==g,,-———n,n, II#*", II;=3I1, —11%.
Fl= o AT AT ig[ AT, 128 . 2(9” (K2 ) R
(136

whered™=4g/dr* and the index =1,2 labels the transverse _ o ]
components. The correfpondlng full gluon propagator is given by the in-
Finally, the kinematic impositioti116) reads in terms of verse of &) 1=(Ay) "1—1II. Using the free-field form
light cone variables
Aab

Ouv

(r,K)=6%%d , (K)Ao(r,K),
KTK ™ =K2+K2<(K")?, (129 g i

2
n,K,+ Kﬂn,,+K n,n,
K+ (K+)2

K*=2K?=2K3, K~ =0, Ki>K2% (130 d,u(K)=0,,— (137
Physically this implies that the hard gluons are effectively on

mass shell, i.e., their actual virtualitydegree of off- with the scalar functionsA,=(AF',A3Y AS) [cf., Egs.
shellness K2 is small compared t&? , the transverse mo- (111)—(113)],
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ret 1 ZP= Zret_ zadv (146)
AdvK)=———,  AG(r,K)=—2mi §(K?)Gy(r,K),
Kexie (139 the spectral density follows immediately as
one finds Punlr K) =i (A=A (v K)
KoK =d,,(K)(=2mi)2°(r K*,KD), (147
A ab _ qab _ un™y u'ly
Aun(rK)= & AO(r’K)( 1-11, /KZ) [ v K+ and the correlation function is obtained as
Kn,n,[  T0/K? - R%(r,K)=d,,,(K)(—2mi) 2°(r, K * KD 1+ 2¢(r,K)].
I 2 [ (139 (149
(K2 | 1= (I, —IT))/K
Now, because of Eq130), the last term in Eq(139 van- D. Specifying the initial state
ishes fork?/(K*)2—0, and the full propagatoA can be To fix the initial conditions for the scenario described in

expressed as th_e free-field counterpakis times a scalar ggc v A, bothA and A have to be provided with initial
form-factor functionZ whose momentum dependence con-y,5i,es ar%=t,=0. The initial condition for the hard propa-

tains only the Lorentz invariants: K=K* andK? : gator is chosen as

< ab B A )

AL K) =670, (K) Ao, K) Z(r, K™ KE), (140 A (1K) o= r320= A0, (01 ,K), (149
where, because df?/(K*)?>—-0, the functiond,,, reduces referring to a statistical ensemble of bare gluon states at time
now to r%=0, which can be characterized by a single-particle den-

sity matrix of the Gaussian form as given by E§14) of
d. (K)=g,.— nK,+Kyn, (141) Appendix B. This ansatz corresponds to an initial state
wy Yur K+ source term in Eq47) of the form
and the form factoZ is related to the polarization tensor by Sc;[,,(f,K)|r:(o,r‘i,o)=/Cf3(f,K)5(fo) S(r3)
) = poun(K)Go(r,K). (150
Z(r,K* K?)= -, (142
1-1I, /K As assumed in Sec. IV A, the initial ensemble consists of a

total numberN, of bare gluons with total invariant mass
Q?, all moving with equal fractions of the total momentum
O*=Q*INy. That is, each gluon moves initially with mo-
mentumQ#=(Q™,0,0,) collinearly to the others along the

HereQ is the renormalization point, determined by the mo-light cone. Throughout the ultrarelativistic limit it is under-
’ 2 H + ~ _

mentum scale of the initial state hard gluamich is speci- St00d thatQ"—e, i.e, Q">A, whereA~0.2-0.3 GeV.
fied in the next subsection The spatial distribution of thes&], initial gluons atr®=0 is

The great advantage of the light cone gauge becomes evidken as & distribution along the light cone af=z,=0,
dent now: the solution of the full retarded, advanced, andgnd @ random distribution transverse to the light cone mo-
correlation functiong106—(108) boils down to calculating a tion. That is, the initial multigluon ensemble is prepared at
single scalar function for each of them, namely, the form“%ht cone positionr ™ =to+2,=0 an_d light cone time
factor Z, which is simply multiplied to the free-field forms I~ =to—2o With a transverse smearing<0, </\y/\VQ%,

(111)—(113. For the retarded and advanced functions, withwhere the typical transverse extent of each gluon is
or, ~1/Q?<1 fm. Accordingly, the initial state spectral

with boundary condition

Z(0K" K?)[k=q=1. (143

ret 1 densitypg in Eq. (150 is taken as
Zadv=——r— (144
1_Hadv/K (2 )4 K2+Q2
1 T B -
po(K)=——8(K*=Q") 8| K = ——— | 6%(K)),
one has K K
R d, (K) dKTdK ™ d?K |
A(K)=—L—2"(r K" K]), J ——————po(K)=1. (151)
p,v( ) K2+i€ t( L) (277)4 pO(
rel
A d,,(K) The corresponding retarded and advanced functiba@\sare
adv _ kv dyv + 2
Ao,w(K)—_Kz_iEZa (r,K™, K1), 149 it the form(112)
) . oA Tet A adyx ret i
vAvh|ch s?nsfy 0|the usgful rglgtmns&w (AL,)* and ASK) =PV = | 72 pg(K). (152
ALK, K)=A%(~KOK). Defining K2 2
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Finally, the initial state correlation functiog” is the con-  sional regularization [27], and the two-loop terms
volution of po with the density of bare gluons at the scale [1(3) [1*) are of orderg®. Hence, {1"—I1°™[g%A,] in

Q and light cone timedposition r~=r*=0: Eq. (157 reduces to
g‘;{V(r,K)=J d*K’(2m)%d,,,(K")po(K")Gy(r,K), (fre- [T r k)
(153 o
. __E d"q vasd (kK g —K \"/d’c’b K
where G(r,K)=Gy(r)Go(K) with T2 2 oKy =d, =K+ ) Vo000, (15
N ’ ’ ’ (T(T,
Go(r)zf5(r*)5(r+)a(1—Noer2), —q,9,—K) &% 64 d" (g)d”” (K—q)
X{AMr,q)ASL(r, K—q)— ASL(r,q) AR (r,K—q)},
(2m)* K2+Q? R
Go(K) = 5<K+—Q+>5(K —— | PR, (158

(154 whereAd> (r,K)=Aq(r,K)d**(K) 5% are the zeroth order
. L _ . solutions(111) and(113.

The V|sua_I|zat|0_n of the initial gluon den5|'gy0CBﬁ Eg. (154). The mean-field contributioti1)—(73) to the retarded and
is atwo-dimensional color-charge density is spread out in —

the two transverse directions, in a disc with radius advanced components df, on the other hand, vanishes,

= _Tara ; : ;
R=1/JN;Q?=1/Q, and a4 function in longitudinal direc- Pecause,,=TF,, is antisymmetric and traceldss
tion atr "=0 at timer ~=0. The normalization is such that

the total numben, of initial bare gluons is given b —ret ~ re ret 1
0 g g y (Had‘vAad‘v jj;(r,K)= —2g§abdMAgdv(r,K)(§gP*Fm(r)>
f dr=drtd?r, Go(r,K)=NyGo(K). (155 -0, (159

Finally, because of this statistical ensemble of almost — — )
pointlike, bare gluons, one does not expect any collectivdi€nce, the dependence on the soft fiejd, or A, is resident
mean-field behavior at initial time®=t,=0 and at large only implicitly in the kinetic momentunk ,=k,—gA,,, so
Q?, so that the magnitude of the soft field is initially equal to that Eq. (103) becomes formally identical to the case of
zero which is consistent with E412): A=0, in which K,=k, . Exploiting this formal analogy,

one can evaluate explicitlﬁfﬁ—ﬁi"y" in the kinematic
rangeQ?= (K ")?>K?= u? by using standard techniques of
This completes the construction of the initial state, start-QCD,evOIUtlon ca!culuﬁll,rgtﬂ. ";ﬁf”'”g |ntcoorEq(158) the
ing from which | now address the solution of the set of T€€-field expressions fodg", A ), andAq”, from Egs.
equations(103—(105). (111, (113, one finds that tdD(g“) the polarization tensor

~ ret
TTawv does not depend o hence one may write

A_p,(r+!r_1FJ_)|r_:r+:0:0- (156)

E. Solving for the spectral density;)p,,

~ ret ~ ret ret ret
To find the spectral density,,, the solution ofA[g; and Iaa(r,K)=Tla((K) - Zaa(r,K)=Zaa(K). (160

Af‘g]" is needed. The first correction to the free-field solution
(112 arises from two contributionga) from the one-loop
hard gluon self-interaction of ordgg that is contained in the

hard polarization tensdd and (b) from the (Eupling of the

Using the light cone variable€l26), for the momenta, to-
gether with the light cone phase-space element

— “q2-0” +
hard gl@n propagator to the soft fiekd in IT which is of d4q q: Edq*dq*dqu 5(q+q*—qf)= K dq dqf ,
order gA. Within the perturbative schem@19 and (120 2 2 g*
the retarded and advanced propagators are to be evaluated to (161)
order g? from Eq. (106 with the internal propagators in
ret ~ ~ ~ el
ITadv taken as the free-field solutions and using Eqs(136) and (142, 11— HidVZ%(Hadtv)Z one
re ret
A S AT 2 A 1A 15 finds the form factorsZadtv=(1—1'[3“V/K2)‘1 to leading-log
0] ~o o' Tl g Aol Ag™ (157 accuracy:

_ .ret
with the subsidiary conditiofik- D, ,A?g¥]=0+ 0O(g%. To
order 2. the gluon polarization tensdil as aiven by Eds ®Note, however, that this cancellation occurs only in the light cone
g 9 P 9 y EGS. gauge(122) with gauge parameter=0. In a general noncovariant

(74—(78), reduces to the one-loop terhi(), because the gauge witha+0, one encounters on the right-hand side of Eq.
tadpole termlI™") vanishes as usual in the context of dimen- (159 a finite terma (n-d,)[n,A,(r)+n,A,(r)].
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ZTEt(K'F,Ki) 2 47T
aS(qL): 2 2\ !
1JK+2_Q2d sz+dq+ as(qi) q‘*‘ 11In(q;/A%)
=expy — = — ¢,
2)x? Vo g 2mq? MK
1-z z
(162) ‘}/(Z):ZNC Z(l_Z)"-T"-E , (164)
ZAMKT K2 g(KT)=—Z(—K" K2)g(—K™),
163
(163 andz=q*/K*, 1-z=q'"/K", q'=K—q. The effective
where form-factor functionZ” can be approximately evaluated:
|
3 2
exp| - ﬁ'InZ(Q—) ] for K2=uQ,
2 KE
ZP(K* K?) =zl zadie (165
3ag 1 ,[Q : 2
exp — 5 — Eln2 |- = for K2<u Q.
m M M
|
Substituting 2° into Eq. (145 for A and A2®, one K* -
bt H f thg t qu ( 'A5)'d—1 Krﬁ:t_&ad . f dq+q+P(q+:Qi):(K+)2,
obtains for the spectral densipy=id (A7, —ALY), 0
Kt K2 + 12 (277)4 + + 2 K* d 2
p(K™,KT)=2ZP(K™,KT)——— (K" —Q7) 8(KY) dg"a"—p(a",97)=0, (167)
K 0 aq;
2 2
Jdei as(qr) for any value ofg? . Equation(167) is nothing but a mani-
K> qf 2 festation of light cone momentum conservation, meaning
that the aggregate ajt* momentum from intrinsic gluons
1 ~[KT Sl q’ must add up to the totad * of the gluon state composed of
X fo dzy(z)p| —-.a1 | 2" | KT — | |- those. This is a general property, which is immediately evi-

dent in the free-field case. Next, multiply E¢L66) by
(1660 q*/K™ and integrate ovey* from 0 toK ™, which yields on
account of the sum rulél67)
The previously advocated interpretation of the spectral den-
sity p of an initial state gluon as the density of its “intrinsic”
gluon fluctuations becomes clearer now:represents the
structure function of a gluon that was initialized as a bare
state atQ?. Looking at this gluon state with a resolution 1 2
2 2 2 it -1kt q_i
scaleK?, one sees ak?=Q? only the initial bare gluon XJ dzy(z) 2P (K : z)
itself, becausez?(Q*,Q%) =1, Eq. (143, and the integral 0
term in Eq.(166) vanishes. FolK? <Q?, the form factor ) N ] _ )
Z"(K*,Kf) decreasekcf. Egs.(162), (165)], and so the first WhIClh di)esznot contaip. Next, multlply.th|s formula _Wlth
term, which is the probability that the gluon remains in its 2" (K v;ﬁ) from the Iezft, angi then differentiate with re-
bare initial state, is suppressed By, whereas the integral SPect toKT by applyingK? d/dK? :
term, which is the adjoint probability that the gluon contains
a distribution of intrinsic gluons, increases with weight . J 1t 2 | et 2 it 12
2P(K*,K2)/2°(K*,q%/Z). Hence the evolution of the spec- | KL &?Z (KT,KD) [ (KT KD+ 207K, KT)
tral densityp describes the change of structure of the initially .
bare gluon state due to real and virtual emission and absorp- x(

2d 2 2
14 fQ i ag(qy)

gl 2w

1=2°(K*,K?) )

: (168

tion of daughter gluons, corresponding to the generation of
virtual Coulomb field coat and real bremsstrahlung, respec-

J .
K? —p(K*,K?
L&KEP( J_)

tively. 2 +
y- . ) , as(K7) 1 1./K )
Equation(166) can be solved in closed form by using the =—2"YK" K% 5 f dzy(z)—p| —.zK? |.
following trick to effectively eliminateZ®. First, note that m Jo zZ\2Z

;3 satisfies the momentum sum ryle9] (169
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Using Eq. (162, the derivative&ZP/aKf on the left-hand
side can be rewritten as

s( L)

a
Kfﬁzp’l(KﬁKf)— 2P YKt K? )

1

1
« f dzy(2). (170
0

Substituting this into Eq(166) and multiplying by Z°, one

obtains a differential evolution equation in the manner

of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

[34,35 that involves onlyp, but not 2” anymoré:
J K+
2_ 7 + _ 2

as(K?) [1dz
27 Jo 77(2)

Z~ + 2
—5p(K* KD)|. 171

The explicit solution of this equation is well knowB86,37:

- N
p(KtKi)=po<K+,Ki>+pl<K+,Ki>exp[—ﬁ (KD)

Xex;{ (172
where
2 4
po(K*,Kb:(K? S(K*=Q*)a(K?-Q?),
o, _(277)4 1 Nc ) 1/4 .
pi(K !KL)_T\/ﬁllﬂ_ g(K?)| [h(K*)]3,
g(K{)=In In(Kf/Az)’ h(K™)=In ek 173

F. Solving for the correlation function Aﬁ‘:j
Within the perturbative schem@19 and (120, the cal-

culation of A= Af5+ 5&% is most conveniently split into

two steps.

(1) The quantum ContrlbutIOIACO]r is evaluated to order
the hard polarization tensor

HCOTgZ,AO] is to be calculated again in one-loop approxima-

g®> from Eq. (107, i.e.,
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tum part now is set to zero in this second Stﬁﬁ‘?rzo [as it
is already contained mfg]r from step(1)].

1. The contrlbutlonA%’;

Since to ordeg? only the radiative self-interaction con-

tributes to the hard propagat&m , and scattering processes
that could alter the gluon trajectories are absent, the transport

equation for the panﬁm] simplifies to

[K-D,,A75]=0+0(g". (174
Therefore, with respect to the space-time variableEq.
(174) implies a free-streaming behavior in the presence of

the soft mean field, as implicitly contained K=k—gA,

that is, Afg]f(r,K)=A[°§;(r’—Vr—) with V,=K,/K* and
r'<r. Hence, Eq(107) with Alcglr—>A°°r remains to be con-

sidered:

A= —AF(AL - 172, Ag) ALY, (175

The easiest way to obta|,fh°°]r is to use the formuld108)
and simply convolute the total number density of gluons
G=1+ 2g with the spectral densiﬁy obtained in the preced-
ing subsection. To prove that the relatioh08 is indeed
consistent, one calculates insteér{ig]r from Eq. (175 di-
rectly. The procedure is fully analogous to the previous sub-
section except that, instead df*'— IT2%, one needs to evalu-
atell” +I1~. The resulting form ofI°°[ g2,A,] in Eq. (175

is

(T1°)20(r,K) = — (11" +11%)3%(r,K)

'9
f(z [ Vaa. (e K

x V3l (1:K—q,9,~K)

% 5cc’5dd’d)\)\’(q)d0'(r'(K_q)
X{Ag (r,q)A5(r,K—q)
+A5(r,q)Aq (r,K—q)},

where in the integral, the free-field forrﬁe.iy are given by
(cf. Appendix B:

(176

AGRR(r,K)=Ag (r,K)d*(K) &,

O,u.v

tion with free-field internal propagators. The mean-field part

polarization tensor, on the other hand, is set to zero in this

first step:ch"'z 0.
(2) The mean-field-induced correctioﬁﬁ%
ordergA is then added by calculatidd®] g;A]. The quan-

in leading

It should be noted that in obtainingl71), the fact that

p(K*/z,zK?)=p(K"/z,K?) was used—a property that is due to

the very weakz dependence of thi? argument ofp [35].

AG(r,K)=(—2mi) (K[ 0(=KT)+go(r,=K)].

a7

Inserting into Eq(176) the expression€l77), and observing

that in Eq.(107) I1°" is sandwiched betweeh™! and A2,
i.e., appears only in the combination

ret yycor adv,
A prApv

d,u,)\(K)d)\T(q)dTp(K q) ( )

od,,, (K)TI(K), (179
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where [1{'= ngﬁzT! andd,d,,=d,,, one finds after a needs to evaluatH® to ordergA, using the free-field solu-

calculation analogous as in the preceding subsection the foﬁ'ons (11)—(113 and setfI®®=0. The analogon of Eq.
lowing result for theﬁ[al part of the correlation function: (175 for SA% is
[A]

REo(r K+ K2)=THd, (KA (r.K)]

- SAT= — AGIITg, AglAT) (182
Q2dK[? ag(K(?) r1dz -
:f 2 g2 2 - 7(2) and I1°[g,A,] can be read off from Eq(104), giving the
KS K a o Z : .
C contribution
X |{p(1+2g)}(r,K*12,K?) gKLFR(r) dRASED (K)+g[ FR(N AR (K)
r ALKy
—5{p(1+29}(r.K* K% . o AT
=g6%°d,,,(K)K\F(NsAGH(K). (183

179

The second term on the left side cancels, bec&Usk(g, ,

xfﬁgw—Ei(n)\Kﬁ K,n,)/K*, andn*=—n"=1n,=0,
K™ =0. Notice that this is a specific feature of the employed

light cone representation, and does not hold in a general
cor

G[al(r,K*,Kf)zGo(r,Q*,OL) noncovariant gauge. With E¢L83), the function&ﬁm sat-
isfies the transport equation

cor

Comparison with Eq(171) reveals thatA[ﬁ] is indeed the

convolution of the spectral density with the total gluon
density G=1+2g, as advocated by E¢LO8). Hence,

Q2dK (% ag(K?) (1
+ L L dzy(2) — .7 cor Tho oK A cor
K2 Kiz 27 Jo 24 [K~Dr,5A[A—]]=—ngK>\F (?UA[a]. (184

K™ ) To solve Eq.(184), it is convenient to expresé&%w in

1
- - 12
x zG[O](r’ 7KL terms of a new functio ,=T2®? [7], defined by

, (180) SALR (1K) =d,,, (K)g® (r,K) dX A (1K),
(185

1
—EG[al(r,K+,Ki2)

where G(r,Q*,0,) is the initial gluon density154). In the
limit z<1 the integral180) can be approximately evaluated
analytically[38,39. This gives an estimate of the gluon mul-
tiplicity [40,41] as a function oK? at fixed space-time point
r:

where A[Cg]' is the solution(179. In terms of the function

d#, the transport equatiofi84) becomes now
[K-Dy,@,(r,K)]=F ,,(NK". (186

, o . The function®# evidently satisfies
G[ﬁ](r,Kl):i fo dK+G[6](r,K+,KL)

2 . .
KuH(rK)=0=0" ==K, B, P*+=0,

-1/4
IN(Q?%/A?)
=Gy(r,Qd)| ———~
N [ Q2 i.e.,® " is not an independent variable, but is expressible in
><exp{2 110 In(—z) terms of the transverse componen@;‘[, and®* is sup-
m pressed byK /K* and therefore may be set to zero. The

(181) Blaizot and lancu[7], is that the componeng® , corre-
sponds to the kinetic momentuki,=k,—gA,, that is ac-

K?
SV
quired by a gluon propagating in the presence of the soft

o o . abyad
where G(r,Q7) is given by Eq.(154). It is evident that in  fia|q A, or F,,. The condition(187) reflects then the fact

the kinematic regimeQ*>K?=u?, the hard gluon multi- that the light cone energy transferred by the soft field,
plicity is characterized by a rapid growth as the gap betweeRamely,gd ~, equals the mechanical work done by the Lor-

oL 2 2 . R N N N
the initial scaleQ“ andK?{ increases. entz force gV,-AK,=gV,-®,, where VA=K*/K"

2. The contribution 5A ™ =(1,0V,) is the velocity.

(Al The transport equatiofi86) for ® , can be readily solved

The leading-order mean-field contributioﬁz&% is now [7] with the help of the retarded and advanced functions
ret t

~ re
to be added to the result foyfg]f, Eq.(179. To do so, one  Aa =d,,, Aav,

] interpretation of the functiord,, as was pointed out by




2688 KLAUS GEIGER 56

_ be viewed as a purely multiplicative cascade of gluon emis-
CI)ﬂ(f-K):if d*r’AG(r—r" ,K)F ,,(r" )K" sions, since to ordeg? and due to the quasicollinear motion
of the gluons, statistical scatterings between them do not
contribute. Therefore the space-time development of
G(r,K*,K?) with respect tor=(r=,r*,r,) is of “free-
(189 streaming nature.” That is, the expansion with time of theT
ensemble of gluons as a whole proceeds through a determin-

The free-field retarded and advanced functions admit th&tic diffusion in momentum and space-time, as qualitatively

ace-time representatifn sketched in Fig. &). .
sP ! pres oF] To quantify this heuristic picture, one needs to invoke the

—if drA3%(r—r' ,K)F ,,(r")K".

A(r)et(r_r/’K): O =1 ) S[r —r = (r =" 7)] u_ncertainty principle to relate the developm_ent in_space and
time to the evolution in momentum space, i.e., with respect
. . K, to K* andK? . Specifically, what is the characteristic time
X &2 r,—ri— —+(r’—r”) , r~ in the chosen Lorentz frame that it takes to build up the
K density G¢,K™,K?) from the initial form Gy(r,,Q",0,) at

time r, =0. Viewing the gluon evolution as a cascade of
successive branchings,, ;—K,+K/, wheren labels the

}Z generation in the cascade tree, the lifetime of glgn ; is
—U— —(r —r)), (189 given by the time spair ; that it takes to emit and form the
K* daughterK, andK} as individual offspring, that is, by the
formation time

ASMr—r" K)y=+io(r' —nor't —rt—(r'"=r)]

x &2 r

and thereforei(AF'- A (r—r’ K)=28[r"—r'*—(r~
r'=)16%r,—r, — (K /K")(r"—=r'7)]. Insertion into _ 1Ky Ky Ko
Eqg. (188 then yields Ar, “2l T wz) T e
1n 1n 1in

=TnYns (193

with Ki'=K' ,—K}, K ,=—K!, and K, ,=VK?,.
Here 7,=1/K,, and y,=K}_;/K,, play the role of the
(190 proper time and the Lorentg factor, respectively , in agree-
ment with the uncertainty principle. Similarly, the average
Substituting this result into Eq185 and using the light longitudinal and transverse distances traveled by the gluons
cone components d&f ., Eq.(128), the result for the mean- K, andK/ during the time spadr,, are

=2K"F ,(r).

- — K
r _ .
(I)M(I',K)IZK fo dr FM,,(I'—FY

Hv

field induced correctiodA “* is +
[A] 1 Kiy
feo wor Ar,f:E(V,HV,f’)Ar;: P (194
A (K =Tild, (K)SAZT (r.K)] Kin
__gF Lk Lk Ary o =|V =V JAry =——, (195
=—gF.+ LK K, Kin
< cor whereV#=K*/K* andK, <K " is assumed as before. The
XA (r.K), (191  average total timér ) elapsed up to theth cascade gen-

_ eration with mean gluon momentuk* andK?, and the
where L denotes the transverse vector componemtd,2,  associated spatial spread™), (r ), of the diffusing gluon

and®, =(d1+d?), K, =1/2(K*+K?). ensemble, is then obtained by weighting the evolution2 of the
With Eq (190, the addition 5Ga)(r,K*,K?) to the gluon depSlty G, Eg. (180, with Ar(K"K%)
gluon density Ggy(r,K*,K K?) of Eq. (180 is =(Ar~,Ar7,Ar,) from Egs.(193—(199). Taking the real
emission part of Eq(180), differentiating it with respect to
K+ K2, convoluting it with the weightAr (K™,K?), integrating
5G[A_](r,K+,Kf)= —29K— Fo.(r) over all possible branchings, and normalizing it to the den-
is

sity G(r,K*,Kf) itself, the desired average is

J ,
x| K2 ——Gpg(r,K* ,K?) s 1L Q2dK!? ay(K[?)
(9K2 <r(K IKJ_)>
= G(r,K* K?)Jk? k|2  2m

+O[K2/(K™)?], (192

Q" o + 2 + 12
where the explicit form of derivative term in brackets can be fw K+’ G, KT KIDArKTK )

easily read off the right-hand side of Ed.80).

idz
o _ xf —(2)G(r,K"/z,K!|?). (196)
G. Expansion in space-time of the hard gluon ensemble 0 Z

As argued before in Eq174), the evolution of the hard  Thjs complicated formula can be approximately evaluated
gluon density G, described W‘” can in the present context from the known behavior of G, as has been worked out in
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detail in[42]. For K*<Q" the result is, up to powers of as before the two transverse vector componéntd,2 by
In(Q*/K™), the following estimate: L with summation conventioa, b, ==;_, ;a;b;, Eq. (199
now becomes

K+
(r7 (KT KD)=(r (K™ KD)) = 5 TKTKD), [D. F oy J3(n) =[ 6%, —gf*AS (1), %, ](n)=—]2(r),
- (209
<M(K+,Kf)>=Ki7(K+,Kf), (197 wherej? is the color-charge density at =r*:
1
where J3n=gTaqr)a(r—r"), (202
where
Q+
7’(K+,Kf)=01(Kf)9XF{—Cz(Kf) |H(FH i o dK*
V Aman [T
(198) ( L) 0 (277)32K+
with ¢;,c,>0 very slowly varying functions oKf. This 2., aw + 2 con o
estimate shows that those gluons which are emitted either X | dKE TITPKTA(r,K™,KT)] (203

with large K? or with smallK */Q™, appear the earliest in #

time r~ and contribute the quickest to the diffusion in andAcor:d;j(Acor 4 sAcer ), using Eqs(180), (192:

rtr, . (O0lpr (Al
. 2 . ~ 2 K+_ 2 d
H. Constructing the hard current j, and the induced A% K" KT)=2 1—29K— FLo (DK —
soft field A,, . IK{
The final task of the solution scheme of Sec. llIC is to ><G[5](r,K+,Kf). (204
solve for the soft fieldA, or F,,, which is induced by the

0 : ... Equations(203) and (204) follow from the fact that on the
color currentj ,, being generated by the aggregate of initial : . X
plus emitted hard gluons from the evolution of the gluonIGft'hand S'_de of EC_‘(_ZOO) Ehe correlathn function obeys the
= transversality conditio*A % /=K*d,,,A°=0 and because

density(180. In the equation of motion foF ,, , recall Eq. R - Suv
(105), K#ASP" =K drA®'=2K#A". Notice that in Eq(203) the
e R limits of the integration oveK™ and Kf correspond to the
[D},F, 13(r)=—=72(r), (199  average time ™ and spatial extent, of the gluon system, as
" M

estimated in Eq(197) above, and hencef accounts for the
the current on the right-hand side is determined by the hartbtal gluon multiplicity accumulated by the evolution be-

; ; A cor__ A cor 2 cor
gluon correlation functionA J=ArG, +dA5 . and tweenQ and u.

therefore by the gluon density-6G;g;+ 5Gya], as obtained Integrating both sides of Eq201) overr™, r~, and us-
in the previous subsection: ing Egs.(203 and (204, gives
A \ d*k - T ):f”dr*ffdr(a F. . —ig[A .0,F, .])
J'M(r)ITaJ'Z(f)Z—QJ (Zw)zTr{Ta[KMAi"”’(r,K) o 0 A LA

- X(rrrory). 20
— KA K) ). (200 (Frr) (209
) . . . An approximate method to determine the soft field from Eq.
The first point to be made here is that, for the light CONe(205 is to adopt the approach of Kovchegp$a], who re-
gauge conditiorA” =0, the gauge-field tensd,,, has only  cently calculated the light cone gauge field induced by an
the nonvanishing component$28), and if one requires in ultrarelativistic current of quarks with a uniform momentum
addition A~=0, then in Eg. (199, DF,, distribution, using the known form of the light cone gauge

— 51 5#+EE¢+ . The second observation is that the left- Potential of a single color charg[g4]. Applying his concept
hand side of Eq(200) is essentially the density G of hard to the present case of gluons with a nonuniform distribution
gluons weighted with their momentukt. Because the glu- CG(-K), the first step is to write the color-charge density
ons evolve with the velocity/*=K*/K* along the light of !Eq..(.203) in a “discretized version” as a superposition of
cone, at a given light cone tinre and corresponding coor- -V individual gluon charges:
dinater *=ry +V*r~=r", these gluons appear as an ex- N
tremely thin Lorentz-contracted sheet, but are spread out in s TaS(r =1 )a(r —r)

=1

c e jin=gTr
transverse direction, over a disc with radius-1(K, ). As

a consequence, the gluon currght=(j *,]~,],) has only a

component in thet direction,j#= 5“*]* [24,43. Denoting X &(r, —r DI, D|8(r~—r"), (206
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where N is the total number of glugns at a given correction to the gluon densi§Gyaj is given by Egs(191)
rt=r-, N(r)=1-rf0Q+[dK*/(Zw)32K+]f32dKfG(r,K). and (192, respectively. i

Now the approximate solution to E(RO5) for the light cone (6) Construction of the hard gluon currepfrom the so-
gauge potentiah, at space-time point is obtained by the lution 3°°r=8[°§]r+ 5&‘{2—; of points (4) and (5), with the ex-
superposition of contributions that are induced by the harglicit form given by the formulag202—(204). Approximate

gluons at points; . Following Kovchego(43] in detail, the  eyajuation of the soft mean fiell from the classical Yang-
result is thatA, has only nonvanishing transverse compo-Mills equation (201) with resulting Weizseker-Williams

nents form (207).
o o With this procedure, the original master equati¢h@3)—
AT (r)=A"(r)=0, (105 are solved in first iteration to orde(1+gA). One
could in principle now repeat this cycle, with the first-order
— N L o ro—r, solutions replacing the zeroth-order forms as input. This,
Ai(f)=27rgi21 O(r"—ri") 6(r~—r;)In m however, is beyond the scope of the current paper.
- L i
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matef_f the classical equation of motion for the soft mean APPENDIX A: CONVENTIONS AND NOTATION
field A, that is generated by the collective motion of a given

configuration of hard gluons with a distribution IGK). In Throughout the paper pure 8). Yang-Mills theory for
other words, Eq.(207 is the non-Abelian Weizsker- N¢=3 colors is considered, in the absence of quark degrees
Williams field due to the hard gluons. of freedom, with thegauge field tensor
_ X qa_ 49X 4qa abc 4b 4c
I. Conclusion Fon= A= AL+ 9T A AT (A1)

Let me summarize the input and results of the precedin@nd the classica¥ang-Mills Lagrangian
sample calculation for the evolution of a high-energy gluon 1 1
beam along the light cone. On the basis of the calculation , ()= _ Z 78 () mmuriaig)y = — Z1(g* A2)2— (5 A2
scheme of Sec. Ill C, the logic of the application proceeded m(x) i ) (x) 2{( pAn) = (A
in the following steps. v qv, a X g2y qm.b qv.c

(1) Choice of light cone gauge with gauge vectoalong X (A FHX) + G apel (7,:A,) A AT (X)

i I + I N ’ ’

rf:%l.uon beam directiorK™/K and gauge constraint +ngab°fab°{AzAiA“'b A (x). (A2)
_ (2) Specification of the initial bare gluon ensemble at timégecause only gluonic degrees of freedom are considered,
r-=0 with a momentum distribution of equal momenta gnly the fundamental representatioaf color space is rel-

K*=Q", K,=0, and a spatial distribution being uniform eyant, with the color indices,b, ..., running from 1 to
r.<Rin the transverse pla+ne, butsfunction sheet in lon- N The generators of the $8) color group are the traceless
gitudinal beam direction at”™=0. Hermitian matricesT, with the structure constant$°®, as

(3) Calculation of the retarded and advanced functiongyatrix elements, satisfying

A™ and the associated spectral dengityo orderg? from

the initial values of the hard gluon propagators. The result is Tr(TA,T?)=Ncs*,  [T3T°]=+if2"°T,
stated by Eqs(172 and (173).

(4) Evaluation of the quantum pa;ﬁtfg]r of the correlation
function, involving the result foR adv of point (3). The solu-  In compact notation,

tion for A[Cglr and the corresponding gluon phase-space den-
sity Gyg) is given by Eqs(180) and(181), respectively.

cor

—ifabe=(T?)Pe, (A3)

A=TRAY,  FL,=T0F, =0y A~ WA, —ig[A, Al

(5) Evaluation of the mean-field paﬁﬁ[;], involving the 1 b D Al
solution for g of point (4). The result forﬁﬁ% and the B (—ig)[ wiBsl (A4)
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where &’;Eﬁ/&x” acting on the space-time argument

XM= (xo,i). Thecovariant derivativedenoted byD , , is de- Im® /

fined as ) t
————— I e e 0 0 0 D—T—
D,.(X)=35—igTA%(x)=d,~igA,x)  (A5) Re®
d its adjoint iD " (y) =", +ig.A,(y). | t OO /’\l |
and its adjoint i «(Y)=d,+igA,(y). In components, us- T b tot o tos T — branch
ing Eq. (A3), t, te
Dib(x)zybaz_gfabcAi(X), (A6) FIG. 6. The close-time path in the compléxplane for the

evolution of operator expectation values in an arbitrary initial state.
with the color coupling strength being related to the strong  any point on the forward, positive brandf—t.. is understood at
coupling as=g?/(4m). In general, for any color matri® an earlier instant than any point on the backward, negative branch
with matrix element,,(x), the action of the covariant de- t,—t,.
rivative is

[D, ,O(x)]zﬁZO(x)—ig[AM(x),O(x)], (A7) _remote _past with appropriate asymptotic in state ar_1d evolves
it to t,, in the asymptotic future, by means of the time evo-
and in particular, the covariant derivative of the field strengthlution operatorU(t..,to). Multiplication with the Hermitian
tensor readSDM,fv)\]zaiifw\—ig[AM,fM]_ conjugate counterpart, which corresponds to a backward
The convention for placing indices and labels are sucrevolution fromt., to to under the action obJ'(to,t.,). The
that color indices ab, ..., arealways written as super- resulting in-out amplitude may be interpreted as the sum
scripts, whereas all other labels may be subscripts or supeever all n-point Green functions for space-time points along
scripts. In particular, thdorentz vector indicess,v, ..., a path in the complex plane, exclusively on the upper
may be raised or lowered according to the Minkowski metric(lower) branch for the forward(backward evolution. In
g.,=diag(1-1,-1,—1), and the usual convention for vacuum there is no correlation between the two time
summation over repeated indices is understood. Finallypranches and so, for instance, the two-point Green functions
some shorthand notation is employed: namely, are the usual time-ordered Feynmaf (anti-time-ordered

F . .
A-B=A,g"B,, K-(AB)=K,A"B’, (A8 A") propagator [see Fig. 2a), right pane]. Because
UT(tg,t.) =U(t.,to), one hasA™(t;,t,)=—AF(t,,ty).
In the case of anedium the above concept fails, because
A°B= LdAXA(X) -B(x), of thea priori presence of medium particles described by the

density matrixp(to). Instead one has to construct a general-
ized transition amplitude, called the in-in amplitude, which
Ko(AB)EJ d*xd*yK(x,y)-[A(X)B(Y)], (A9)  accounts for the nontrivial initial state & embodied in the
=]

density matrixp(to), and evolves the system in the presence

where the labeP under the integral sign refers to the inte- of the medium fromi, to t.. in the future, by means of the

gration of the time component® (y°) along a closed path time evolution operatod(to,t..) [szee Fig. 2), left panel.
in the complex time plane. Because now (tg,t..) # U(t.. ,to) p(to), forward and back-

ward contributions are not merely conjugate to each other,
but interfere, giving rise to statistical correlations between
upper and lower time branch of the contour in th@#ane. As

a consequence the space of Green functions is enlarged by
1. The in-in amplitude Zp non-time-ordered correlation functions. For example, the

The key problem in this paper is describing the dynamicafwo-point functions are nowA”,A" plus the new functions
development of a multiparticle systethere gluony that A~ andA~ [see Fig. ), right pane].
evolves from an initially prepared quantum state, e.g., pro- The fundamental quantity of interest is the in-in amplitude
duced by a high-energy particle collision. There is a crucialp for the evolution of the initial quantum staltien) forward
difference between the evolution of the systeninivacuum  in time into the remote future, starting from a specified initial
(which means, free space in the absence of surrounding magtate that could be either the vacuum or a medium. Within
ter) andin medium(which could be either an external matter the CTP formalism the amplitud&s can be evaluated by
distribution, or an internal particle density induced by thetime integration over thelosed-time path Rn the complex
gluons themselvesAs illustrated by Fig. 2 in the Introduc- t plane. As illustrated in Fig. 6, this closed contour extends
tion, this difference arises from the interactions, and hencdfom t=t, to t=t,, in the remote future along the positive
nontrivial statistical correlations between the gluons and thé+) branch and back td=ty, along the negative <)
particles of the environment. branch, where any point on the branch is understood at an
In the case ofvacuum the usual quantum field theory earlier instant than any point on the branch:
describes the time evolution of the system by the vacuum- . . .
vacuum transition amplitude, also called the in-out amplitude Zp[ 7,p1=Zp[ 7", 7 ,p]1=TrH{U' (15, )U s (t,to)p(to)},
[see Fig. Pa), left panel. That is, one starts at tirg in the (B1)

APPENDIX B: BASICS OF THE CLOSED-TIME-PATH
FORMALISM
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where thep(t,) is the initial state density matrix, arid and ~ Points of the closed-time paf. Hence, one obtains the path

UT are the time evolution operator and its adjoint integral representation fatp in analogy to usual field theory
[20,21]

Uj+(t,t0) ZTGXP[ —i

t
f dt’d3x’ 7 (x")- AT (x")
to

]' Zp[f.j‘,ﬁ]:f DA DA exdi(I[A* ]+ T eA")

UTJ+(to,t)=TTeXp{ +i —i(I*[A7]+ T A IM[p],  (B6)

Jtdt'd3x’j(x’)-A(x')} ,
o (BZ) where

with T (T") denoting the timdantitime) ordering operator. M(p)=(A"(to)|p[ A" (o). (B7)
Note that), (J_) is the source along the positiyeegative
branch of the closed-time path of Fig. 6, and in gendral
#J_, so thatZ, depends on two different sources. If these

are set equal, one h&&(J,J,p)=Trp, which is equal to

The generalized classical actioh4] accounts for all four
field orderings on the closed-time path

e A _ _ =T A"]— ~1=1(0 a /B
unity in the absence of initial correlations, being a statement ILAI=ILAT = LA ] = 1 U AL A, ]
of unitarity. H1Orqu (3. AN ABAY
Zp contains the full information about the development of [0Vap 9, AL) AL ]
the initial state via the creation, interaction, and destruction +|(2)[92Wa376AzAfAZAf]1 (B8)

of quanta, through the agency of the sources: the quanta are

initially created(e.g., by particle collisiop they evolve by where the correspondence with the terms of @) is ob-
further creation and annihilatioineal and virtual emission or vious (the color indices are suppressed her@nd where
absorption as well as scatteringand are finally destroyed «,8,y,6=+,—:

(e.g., by detection in a calorimejeBoth the act of initial

creation and final destruction represent the external sources U,z=u*f=diag1,-1)
Jin the sense of a probing apparatus, whereas the interme-

diate dynamics is governed by the underlying quantum )
theory. Hence, in order to describe the time evolution of the Wapys=SION @) 8apdpy0ys, (B9)
initially prepared quantum system, to the final detected state
the knowledge ofZ, allows us to extract objectively the

self-contained development of the system, when the external’; ; .
influence removedi.e. pthe SOUrces e)l/re switched Yoff ailed version of the compact forg€1) used in Sec. Il as the

The functionalZy can be represented as a path integral b)ﬁlizrtlnag pglr;t, ﬁxcgg;f?:;r;cte Fag(iﬁev'Z(?ﬁa\égegg:?'gggtggd
imposing boundary conditions in terms of complete sets ijresgsetégn A'\X' (gend Sc': Int, which 15 ! )
eigenstates of the gauge fields, at initial time t=t: IN Appendix

Vagy™ 5&[3”37 )

Wth the usual summation convention over repeated Greek
|dlceSa B, ... . Equations(B6)—(B8) represent the de-

A(to,)Z)|A+(t0))=A+(>Z)|A+(to)>, 2. The density matrix and the initial state
Turning to the properties of the initial state incorporated
Altg,X)| A (tg))=A"(X)| A (o)), (B3) in the functional M(p) with the density matrixp(to), we
denote byt, the initial point of time from which on the
and in the remote future at=t,,: evolution of the multigluon state is followed, and assume
that all the dynamics prior tt, is contained in the form of
Al (te )| A’ (1)) = A" (X)| A’ (t..)). (B4) theinitial state

Then, making use of the completeness of the eigenstates, one _ a
obtains from Eq(B1) the following functional integral rep- liny=| A(to))= T1 [A3(to)). (B10)
resentation foZp : pa

o The initial state at=t, can be constructed by expanding the
ZplT T p] gauge field operator in the Heisenberg representation in
terms of a Fock basis of noninteracting single-gluon states,
_ f DA DA DA (A (1)U (to,t.)] the in-basis,

3

X A(t) WAL U 7+ (L to) AT (t0)) as, = fdk
A (tg,X) =
(2m)°

X (A (to)|p|A* (to))- (B5)

0(K%) (21) 8(k?)

The first two amplitudes are the transition amplitudes in the x> [e ™ *c2(k,s)+e*caT(k,s)]
presence off ¥ andJ ", whereas the density matrix element s
incorporates the initial state correlations tgtat the end- (B11)
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so that a particular Fock state is given (syppressing color

and Lorentz indices W (g, Xn) =

mry (X0 X0 = 7 o7 o ZeL k] Y

n®n@, )= 1 \/T(CT(k,,sl »""0). a=1, (B16)
(B12)  depending on whether the space-time poixtdie on the

A + or — time branch. One can then construct a perturbative

Here ¢’ (c) is the creation(annihilatio) operator for a  expansion of the nonequilibrium Green functions in terms of

single-gluon state with definite four-momentumand spin - modified Feynman rulesas compared to standard field

s, satisfyingc’|0)=1 (c|0)=0) and then() are the occu- theory [18,19,23.

pation numbers of the different gluon states(!) (i) All local one-point functionsG(al)(x), such as the

E<n(i)|6(ki,Si)eT(ki,Si)|n(i)>- Finally, |0) denotes the gauge-field or the color current, are “vectors” with two

vacuum state or a ground state different than the vacuur@omponents:

(e.g., a hadron Thus, a general multigluon stdté) at time

to is given by a superposition of such states: <A+) (j+)
X)= X)= . Bl
AX={ - IX 7 (B17)
| A(to)) = ,l:la % CL(n®,n®, ... n®) Similarly, all two-point functionsG{7)(x,y), such as the
" gluon propagatorA ,, and the polarlzanon tensdf,,, , are
XN n@ o n®)y, (B13) 2% 2 matrices with components
with real-valued coefficient€. Alternatively, the initial state ++ +- ++ +-
fh be ch 7ed by thensi : A A II II
of the system at, can be characterized by thensity matrix A (x,,x,)= - TI(X1,Xp) = TERS—
(B18)

p(to)=|Alto))(Alto)],  (po)ij=(n"|p(to)InD). y
(B14) Explicitly, the components of the propagator are

For instance, the case of empty vacuum corresponds to a

diagonal density matrixp(tg)=|0)(0| with (po)”ocﬁIj :
whereas a general density matrix that describes any form of a o
single-particle density distribution &g is A, <(xy)=A o (GY)=—1(AJ(y) A, (%),

~ d3k A >(X’ )EA_:(X' ):_I A_(X)A:( ) ,

(x Y)=A, (xY)=—i(TA, (X4, (y)), (B19

where A" is the usual time-ordered Feynman propagator,

AF is the corresponding anti-time-ordered propagator, and
where () denotes the hypersurface of the initial values andy > (A%) is the unordered correlation function for

F is ac-number function related to the single-particle phase~ 0>Yo (Xo<Yo). In compact notation,

space density of gluons aroumd- dx with four-momentum

within k#+dk%dk, andN a normalization factor. The form AL (xy)=—(TpAX)AY)(Y)), (B20)
(B15) describes a large class of interesting nonequilibrium
systemg19], and contains as a special case the thermal eqw
librium distribution, namely, whemn— —i/T and F(to,x,k)
—kod(k?)T™L, so thatp(Tq)— Nexd —Hym /T]. TpA(X)B(Y):= 0p(X0,Y0) A(X)B(Y) + 0p(Yo ’XO)B(Y)?E(s)é)l')

AP (X Y)=A () =—I(TAL(X)A; (Y)),

(B15)

X 8(ko)F(to,x,k)C2(k,5)C2(K,S) |,

where the generalized time-ordering operalgris defined

3. Perturbation theory and Feynman rules with the @ function defined as

The convenient feature of the CTP formalism is that it is

formally completely analogous to standard quantum field, (Xo.Yo) = 1 ifxo succeeds yon the contouP,
theory, except for the fact that the fields have contributions Op(X0:Yo) =15 ¢ Xo precedes y on the contouP.
from both time branches. In particular, one obtains as in (B22)

usual field theory, from the path-integral representation

(C11) the n-point Green function&™(x,, . .. X,), which,  Higher order product\(x)B(y)C(2)- - - are ordered analo
however, now include all correlations between points on eigously. Finally, the generalized, function on the closed-
ther positive and negative time branches time pathP is defined as
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+8%x—y) if xo andy, from positive branch,
S4(x,y):=4{ —&%x—y) if Xo andy, from negative branch, (B23)
0 otherwise.

(i) The number of elementary vertices is doubled, be-  for g=g=y=+: T (x)=T®. ,,-Tr® ),
cause each propagator line of a Feynman diagram can be «By
either of the four components of the Green functions. The
interaction vertices in which all the fields are on the
branch are the usual ones, while the vertices in which the F(a“,)ﬁ, ()=, ,—-TW ).
fields are on the- branch have the opposite sign. On the 7
other hand, combinatoric factors, rules for loop integrals,
etc., remain the same as in usual field theory. Specifically,
the three-gluon and four-gluon vertices

fora=B=y=6=+:

APPENDIX C: THE in-in AMPLITUDE Z, FOR QCD
IN NONCOVARIANT GAUGES

For the case of QCD, a path-integral representation of the
in-in amplitudeZ; is obtained along the lines of Appendix

3) I VRPRE) 2) B 1, except that one has to extend the generic forniB&
Gapy(X1:X2,X3)= Pd XG 1o (X1, X) G g/ p(X2,X) to account for eliminating the spurious gauge degrees of
freedom by the usual Faddeev-Popov procedds. The
XG? (x5,)T3 (%), gauge theory version of E¢B6) for the class of noncovari-
ry « By ant gauges?) reads, therefore,
Gldys(X1,X2,X3,Xs) zp[j,p]=/vf DA detFa(f[ A expli (I[A, TN} M(p).

(Cy
- f d*%GY, (%1, 0)GZ (%2, )G (x3,%)

P where A=(A", A7) and J=(J%,J) have two compo-
nents, living on thet and— time branches of Fig. 2. Physi-
cal expectation values are defined as functional averages
over Tp-ordered products ofn field operators 1i=1),
weighted byZ;:

2 4
XG(xa )T 5 (%),

with T®)(x) andT"*)(x) denoting the elementary, amputated

vertices (with the external legs removgdhave, for fixed 1
@,B,7,6, two components. For instance, as in Fig. 7, forthe (O,(x;)---On(X,))p= _ f DA detFS(f[A])
external points on the--branch, Zp[0,p]

xexpli(I[A,J])}
XM(p)Tp[O1(X1) - - - On(Xp)]-

(C2
Popr)=ing,n): —— T 3 2 The structure of the functiondp in Eqgs.(C1) and(C2) is
the following.
. ot Rt (i) The functional integra{with normalizationV) is over
Py xp, %) ¥ \]/ all gauge field configurations with measuréed.A
+ +

EHM,aDAi, subject to the condition of gauge fixing, here
for the class of noncovariant gaugetefined by

+ o+ + o+
6(4)(x1, Xy, X3,%): % >'< N
+ o+ + o+ fAl:=n-A%(x)—B¥X)=(n*A%(x))=0, n#t= ,
g VIn?|
(€3

FIG. 7. Example for the appearance of additional contributions

to the n-point functionsG™ for the propagatoG?, the three- w . . .
vertexG®, and the four-vertexz® In usual quantum field theory wheren® is a constant four-vector, being either spacelike

2 . . 2 . . 2_ . .
referring to free space or “vacuum,” only the graphs are non- (n _<0)’ timelike (n“>0), or lightlike (n _,O)' With _th's
zero. In the CTP formalism, accounting for the presence of sur-ChaOlce of gauge class thecal gauge constrainon the fields
rounding matter or “medium,” new diagrams arise that correspondA;,(X) in the path-integra(C1) becomes

to statistical correlations between the field living on theand —
time branches of Fig. 6. detFs(n- A*—B*) =consXexpil gdn-.A]}, (C4)
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1
lodn- A=~ o J A4 (€5 KLAI=KO f A0 A ()

1
2 dAx gty (@ab a vbyy. ..
where def is the Faddeev-Popov determindwhich in the + zfpd XAy (0 y) AREO0 ATY)

case of the noncovariant gauges turns out to be a constant
factor, cf., Appendix @, and wheres(n- A)=II,8(n- A?%). -
The right side translates this constraint intgauge fixing HZO
functionall g. The particular choice of the vectar* and of

the real-valued parameter is dictated by the physics or Clearly, the sequence of kernet&™ contains as much in-
computational convenience, and is distinguished furtheformation as the original density matrix. In the special case

within the class of noncovariant gaugie 28:* thatp is diagonal, the kernels(™ =0 for all n, and the usual

“vacuum field theory” is recovered.

homogeneous axial gauge:n®<0, a=0, The path-in_tegral repres_entati(ﬁl) can be_r_ewritten ir_l a
more convenient form. First, the gauge-fixing functional
Icd n- A] is implemented, using E4C5). Second, the series

inhomogenous axial gauge:n?<0, a=1, representationC9) is inserted into the initial state functional
M(p). Third, K© is absorbed in the overall normalization
N of Zp (henceforth set to unily and the external source

temporal axial gauge: n>>0, a=0, Jin the one-point kernek™):

|

KMo A(1)A(2)- - - A(N)]. (C9)

>

KO:=ilnN, KY:=x®+7. (C10
light cone gauge: n?=0, «a=0. (Ce)
Then Eq.(C1) becomes

(ii) The exponential is theeffective classical actiowith
respect to both thet+ and the — time contour,I[A,J]
=I[A",J"]-1*[A7,J ], including the usual Yang-Mills .
action lyy=Jd**Lyy, plus the source7 coupled to the Where, instead of E¢C7),
gauge fieldA:

20 2p1=ZdK)= | DASKIILAKD), (€1

1
I[AK]I=lym[ Al + 1 cdn- A+ /c<1>oA+E KPZo(AA)

1
__ = 4 v,a
I[A,J] 4de XF5, (X) FH7(X) +%,C<3>O(AAA)+ e (C12

+J d*xT5(0) A% 2(x)=lym[ A]+ P A. The objects of physical relevance are thgoint Green
P functions @™, defined as the coefficients in a functional ex-
(C7) pansion ofZp

o in n
(iii) The form of the initial state at=t, as described by ~ Zp[K]=Zp[0]> o J IT d*G™(xy, ... x)K™
the density matrixp [an example is given in Appendix B 2, nmrmsE

Eq. (B14)] is embodied in the functiotM(p) which is the X(X1y + v v Xn), (C13
density-matrix element of the gauge fields at initial titge ) ) )
that is, theG™ are functional averages in the sense of Eq.
(C2):
M(p)=(A*(to)|p|A”(to)) =expiK[A]),  (C§
GMaL Ay ,Xn)E<A211(Xl). : 'Ai';(xn)%:

M- My
where A refers to the+ and — time branchat t,, respec- 1

tively (cf., Fig. 2. The functional may be expanded in a =Z.00] mzp[’ﬂbc:o-
series of nonlocal kernels corresponding to multipoint corre- pLETTSK

lations concentrated att: (C14)

The practical evaluation ap amounts therefore to cal-
8The analogy with the class of covariant gauges defined byulating theG(™ in the expansiofC13) up to the order of

fa[ A]:=a,- A2— B2, instead of Eq(C3), is evident: in place of Eq. desired accuracy. For instance, the one-, two-, and three-

(C5), it results in the familiar gauge-fixing functional Point Green functions according to E@14) are

exp{—il2afpd*x(d- A%)?}, wherea=1 gives theFeynman gauge 1

anda=0 thelLandau gauge GPA(x)=(A%(X))p, (C1H
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G220(x,y) = (AL(X) A(Y))p= (Ao(y))p

5
i SKCP3(x)
+ (A (X)) p(ANY))p s

G(3)ab°(x,y,z) :<Ai(x)A5(y)Ai(Z)>P

JTA2N

1 o
2| T o(2)ab
2\ 18K 2% (x,y)
o
+e 1 . 1)b
i SKCD(x) i S

<A§(Z)>P
y)

+m[<A5(Y)>P<A§(Z)>P]

+(AL(x)) p(AY)) p( AR (2))p

KLAUS GEIGER

1= f Do 1;[ S A1) detF, (D5)

where the determinant is Jacobian for the change of variables
¢a_> aaV

ar 4(6)

b )
00 #2[A1=0

-1
=| f Do [] 5<¢3[Aif>]>j . (D®)
a
Following this procedure one arrives at

zZnave 7= f DA detF];[ S(p[AL])

x exp(i (1 ywm[ Al + Jo A} X M(p),
(D7)

Higher order Green functions are generated in a way similar

to Eq.(C14.

APPENDIX D: NONCOVARIANT GAUGES
AND THE ABSENCE OF GHOSTS

which is now a gauge invariant expression due to the proper
account of the subsidiary conditiq®4) that guarantees the
correct transformation properties of the gauge fields in the
presence of the sourcegg

To obtain the final form oZp as quoted in Eq(C1), one

In this appendix the standard procedure of gauge fieldntegrates functionally over the arbitrary functio®(x) in-
quantization is applied to the class of noncovariant gaugegoduced in Eq(D4), by choosing, e.g., a Gaussian weight
(C6), and it is shown that ghost degrees of freedom are infunctional
deed absent, reducing the general nonlinear dynamics of
QCD essentially to a linear QED-type dynamics. For an ex-

cellent review and bibliography, see Rg27]. Recall that
under local gauge transformations

gl 0°]=exd =i 6%(x)T?], (D1)
the gauge fields transform as
(0a_ -
A= A= gL 071 AL 67, (D2)

implying that 7%, 7% = 72 F)2 that is the gauge invari-
ance of the Yang-Mills actiohy,[ .A]. However, the source
term JoA in the generating functionalp of Eq. (C1) is not
gauge invariant under the transformatiofidl). Conse-
guently, thenaive functional

Z%naiva:f DAexp[i(IYM[A]+~7°A)}XM(;)) (D3)

is also not a gauge invariant quantity. As is well known, this

can be remedied by applying the formal Faddeev-Pd@éy
procedure and integrating the path-integZal over all pos-

sible gauge transformationg %) subject to the linear sub-

sidiary condition
$LA =0 AP0 - g2(x)=0, (D4

with normalized spacelike vector* and 82(x) an arbitrary

i
W[ﬁa]=exp[ — 5 f d“X[Ba(X)]Z] ; (D8)
2 P
with the real valued parametersQw=<1, upon which the
Faddeev-Popov determinant @etan be rewritten in a more
suitable way:

detr:f DB 13 exp{ - zl—afpd“x[ﬁa(x)]z}

x [ AL?(x) — BA(x)]. (D9)

In order to calculate the determinant, it is sufficient to inte-
grate overé? in a small vicinity where the argument of the
8 function passes through zero at givei”? and 82. For
infinitesimal gauge transformations

o[ 6%]— 6g[ 02]=1—i 63(x)T?, (D10
the gauge fields transform as
1
_ fabcpb
AL A+ 6AT,  SAL =100 AT — galﬁea,
(D11)

so that one obtains

SN AD2(x) - BA(x)]

1
_ (fa bcpb (0)c_— X _
—5( I’IMA# (x)+ fabcg n“AM gn”ﬁﬂea B2

weight function. The Faddeev-Popov trick to implement the

constraintD4) in the noninvariant functional""® by mul-
tiplying with

_ 5 1abcgh e S peg o D12
B " 7,60%/, (D12
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becauser* A= g2, This latter expression is evidently in-

dependent oﬂlz. Therefore, when substituted into E§9),

detF is also explicitly independent of the gauge fields, and

hence can be pulled out of the path integfaland absorbed

in an (irrelevan} normalization, which may be set equal to

unity. The final result is then

22,51 | DASXHI (1l AT+ ol A+ 5 A)

X M(p), (D13

where, from Eq(D9),

IGF[n-A]Eexp{ - Zi—afpd“x[n-Aa(x)]z’. (D14)
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G300 = (AL 00)5 + (a3 (0)F,
GL230(x,y) = (AL(X)AL(y)) )+ (a2 (x)al(y))
GRRPx,y,2) =(AL(X)ALY)AL(2)) )
+@i(a)y)ai(2)y,  (E4

and similarly expresses higher order Green functions which
involve 4,5 . .., space-time points.

W5 of Eq. (ED) involves the source& that do not have
any immediate physical interpretation; it is more convenient
to work with the corresponding effective actibip , the gen-
erating functional for the proper vertex functions, which de-
termines the equations of motion for the physically relevant
Green functions. Theffective actionl'p is defined as the
multiple Legendre transform, and is obtained by eliminating

In conclusion, the property of gauge field independence ofne source variablefs in favor of the connected Green func-
the Faddeev-Popov determinant proves that there are indeggns g:

no ghost fields coupling to the gluon fields, hence the formu-

lation is ghost-free
APPENDIX E: THE TRUNCATED
EFFECTIVE ACTION Tp[A,A]

The generating functional for theonnectedGreen func-

tions, denoted bg", is defined as usual:
W[ K] = —iInZp[K]. (ED)

FromW, one obtains theonnectedsreen functionsi™ by
functional differentiation analogous to E@14) in terms of
mixed products ok, andA,, fields:

(=DG% (X, . Xn)

sk

We[K]
K=0
=(aill(xl)- : 'aii(xk)Aiiill(XH RE 'Air;(xn)><°),
(E2)

where the superscript] indicates the “connected parts.” It
follows then that

P —_—

- (1)a
Sy e 00,

SWip 1
T _Trc@ab (1)a (1)b
oWp
5’C(3);Lv)\,abC(X’y,Z)

1
= 5[0y 2)+3G3%(xy) GP(2)

+G20G () G(2)], (E3)

where, for example,

1
p[G]=Wp[K]— KWogD) — EIC(z)O(g(Z) +ghgh)

_ %/C(3)o(g(3)+3g(2)g(1)+ g(l)g(l)g(l))_ -

(E9

So far no approximations have been made. The variation of
I's with respect to the Green functiogs” would yield an
infinite set of coupled equations, the analogue of the
Bogoliubov-Born-Green-Kirkwood-Yvor{BBGKY) hierar-
chy [14]

— =KW - @ogD)
g(l)

_ %IC(3)°(Q(2)+Q(1)Q(1))— .

STy 1 1
T @ @D .
o =50 :

aTp_ 1
G B

At this point approximations 1 and 2 of Sec. Il A are in-
voked. It is assumed that the initial state igdilute) en-
semble of hard gluons of very small spatial extent, cor-
responding to transverse momekte> u2. By definition of

\, or u, the short-range character of these quantum fluctua-
tions implies that the expectation valga,) vanishes at all
times. However, the long-range correlations of the eventually
populated soft modes with very small momehfaé w? may
lead to a collective mean field with nonvanishi(g). Ac-
cordingly, the following condition is imposed on the expec-
tation values of the fields:

3 _...

5 , (E6)

a =0 for t<ty, a !
(AL(X)) =0 for t>t,, (a,(x))=0 forall t.

(E?
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Furthermore, the quantum fluctuations of the soft field are Agafﬂ(x,y)= —i(Tad(x)a%y)),
ignored, assuming any multipoint correlations of soft fields . "
to be small, Fab = b

a a a a AOMV(X'Iy): _I<TaM(X)av(y)>1

(AL (x0) - - AT (%) Y (AT (1)) - - (AR (X))
A>ab V) =—i a® ab ’
foralln=2; (E8) 0ur (XY) {a,(0a,(y)
i.e., A, is treated as a nonpropagating and nonfluctuating, Aﬁjf(x,y)= —i(a'ﬁ(y)ai(y)). (FD
classical field. Hence, the set of Green functidis) re-
duces to For free fields, one may write
G0 =(AL00)E = A%(X), -
. AuODE = AZD(x.y)=8%d,,(3)A0(x,y) (A=AFAF,A~ A7),

14

G2%(x,y)=(a2(x)a(y))¥'=iA2(x,y).  (E9) (F2)

These relations define the soft, classical mean ffeldand ~ Whered,,,(dy) is defined by Eq(25), and the functions\,

the hard quantum propagataks on the right side are thscalar parts of the propagators. The
Now the hierarchy is truncated for=3. However, to F.F,>,< components of the latter obey the following free-

perform this truncation properly, one must eliminate all thefield equations with different boundary conditions:

G® G¥ etc., as dynamical variables by introduciigf]

S GZAE(x,y)=A5(x,y)32=+ 5%(x,y)

To[GY,G21=To[¢D,¢?,33. 34 ...], (E10 TV oIy o

whereG™ for all n=3 are functionals of the one- and two- FAF(X,Y)=AF(x,y)Fo=—*(x.y),
point functions alone, and are determined by the implicit
'g’(n)::'g(n)[g(l),g(Z)],
TA5 (%Y)=Ag (x,y)35=0, (F3)
ool g0, 0 foralln=3 E1
- o = =
GG, g1 orafin=s. (E1D and the identities

From Egs.(E3) and(E4) one sees that then the infi_nite set of Ag(x,y)= 0(X0,Yo) A (X,Y)+ 0(Yo.Xo) A (X.Y),
Green functions reduces to involve onlg)=A, and

2)=jA thatl'p b functional of only the soft F

Tuw= 12, 90 thal p becomes & luncional of ony ME SOt Fy) = (35, y) A5 (x,Y) + 6(¥0 Xo) A5 (x,y)-
mean fieldA, and the hard propagatod ,, (F4)

~ A Al= 1 27— 1 o_ . .
Te[G]~Tp[A,A]=Wp[ LY, L] KDoA Because of the relatior{f4), the set of equation$-3) can be

1 R solved by only two independent functions, namefy, a
- EIC(Z)o(i A+AA). (E12  purely imaginary and odd functidm ~ and(ii) a purely real
and even functiom *:

The equations of motiofior the mean fieldA and for the

N FA —_ sab b
hard propagatoA in the presence of external sources, follow 147 (xy)= 8%, (9x){[au(x),2,(Y)]),

now from Eqgs.(E4), (E6), and(E12): =i(Ag —A)(XY),
or _
5@: ) = —/C(l)“'a(X)—f dlyK@#r20(x,y) A"P(y), AT(x,y)=6%d,,,(3)({a,(x),ady))=i(Ag +A5)(X.Y).
X P F5
n E13 (F9
ST 1 From Eg.(F3) it follows that these functions obey
= 5 KPR (xy), (E14) ) )
8, 06Y) FPAT(Y)=AT(xY)32=0, AT(xy)=—AT(y.X),

APPENDIX F: ANALYTIC PROPERTIES

224 + _ A+ 92 __ + _ +
OF THE FREE-FIELD PROPAGATORS HAT(XY)=AT(XY)dy=0, AT(XY)=+AT(y.X),

(F6)
The components of the free-field propagaa@ﬁ,, are de-
fined as in Eq(B19), i.e., with the general solutions
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d*k ” ) The free-field solutions o&F,AF,A> A< can now be

> e T2 5(k?) easily reconstructed using the following identities implied by
(2m) Egs.(F1) and(F4):

X[g1(k) = g2(—=k)],

A*(x,y)z—if

2AF(x,y)=—iAT(x,y)+[26(x°y%) —1]A~(x,y),
4

A+(><,y)=f €27 5(k3)[gy(K) +ga(— k)], 2AF(x,y)=—iA*(x,y) +[26(y°,x%) — 1]A~(x,Y),
(2m) (F9)
(F7)
where the functions 2A7(x,y)=—iAT(x,y) +AT(x,y),
91(K)=0(ko) + f1(K), go(—K)=0(—kg)+fo(—k), 2A7(x,y)=—iAT(xy)—AT(Xy), (F10
(F8)

from which, upon Fourier transformation, one obtains
contain the positive and negative frequency modes, respec-

tively. Here 6(*+ky) is the vacuum contribution, while d?k ,

f, {=k) are the additional contributions from a medium. Ag(x,y)=f e O ———i2m (kA (k) |,
From Egs.(F5—-(F7), one can now infer immediately the (2m) k*+ie

analytic properties of;, f,, corresponding to those af;, A

9z Fy _ [ 4k —ike ey T 2
(1) One observes, becauge is purely imaginary and Ao(x,y)—f (277)49 KC—ie 127 (k%)f (k) |,

A™ is purely real, that

f,(k),f,(k)=real ¢

A5 00y)= [ e iz sk (ko) + KT,
(2m)*
must hold.

(2) Because the commutator of free fields, i.e., the imagi-

nary functionA™, must be independent of the state of the < _ i
A0 (X!y) -

e KOV —i275(k?)[ 6(—Ko)

medium (2m)*
! d*k . +f(k)]}. (F11)
AT (Xx,y)= —iJ e 27 5(k?)
(2m) Finally, inferring the corresponding free-field forms of the
X[ 6(ko) — O(—ko)], retarded, advanced, and correlation functions is straightfor-
ward:

it follows that

A(X y) =+ 6(Xg . Vo)A (X,y) = (AF = AS)(x,
f1(K)=fo(—k)=f(k). S XY)=+0(X0,Yo) A~ (X,y)=(Ag—Ag)(X,y)

d% 1
(3) Because the anticommutator, i.e., the real function =f 4e"k‘<x‘y) |
A" must satisfy (2m) k+2ie
! ady, — F >
f dxd*yh* (x)A* (x,y)h(y)=0 A (X,Y) == 0(Yo,X0) A~ (X,y) =(Ag —Ag)(X,y)
: . d 1
for any smooth, but in general complex-valued functigrit :J e~ ik-(x=y) ’
follows that (2m)* k?—2ie
f(E)EJ dkof(k%,k)=0 forallk, AT(X,y)=—TAT(X,y)=(Ag +A5)(X,y)
. > . .. d4k —ik-(x—y) ; 2
and so the “on-shell” functiorf (k) is positive definite may = 2 )43 {—i2ms(k9)[1+2f(K)]}.
indeed be identified with the positive definite phase-space &
densityd N/d3k. (F12
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