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A quantum-kinetic formulation of the dynamical evolution of a high-energy nonequilibrium gluon system at
finite density is developed to study the interplay between quantum fluctuations of high-momentum~hard!
gluons and the low-momentum~soft! mean color field that is induced by the collective motion of the hard
particles. From the exact field equations of motion of QCD, a self-consistent set of approximate quantum-
kinetic equations are derived by separating hard and soft dynamics and choosing a convenient axial-type
gauge. This set of master equations describes the momentum space evolution of the individual hard quanta, the
space-time development of the ensemble of hard gluons, and the generation of the soft mean field by the

current of the hard particles. The quantum-kinetic equations are approximately solved to orderg2(11gĀ) for
a specific example, namely, the scenario of a high-energy gluon beam along the light cone, demonstrating the
practical applicability of the approach.@S0556-2821~97!00817-5#

PACS number~s!: 12.38.Aw, 11.10.Wx, 12.38.Mh

I. INTRODUCTION AND SUMMARY

The physics of high-density QCD becomes an increas-
ingly popular object of research, both from the experimental,
phenomenological interest, and from the theoretical, funda-
mental point of view. Presently, and in the near future, the
collider facilities such as the DESYep collider HERA

(ep, eA?!, Fermilab Tevatron (p p̄, pA), BNL Relativistic
Heavy Ion Collider~RHIC!, and CERN Large Hadron Col-

lider ~LHC! (p p̄, AA) are able to probe new regimes of
dense quark-gluon matter at very small Bjorkenx or/and at
largeA, with rather different dynamical properties. The com-
mon feature of high-density QCD matter that can be pro-
duced in these experiments is an expected novel exhibition
of the interplay between the high-momentum~short-
distance! perturbative regime and the low-momentum~long-
wavelength! nonperturbative physics. For example, with
HERA and Tevatron experiments, one hopes to gain insight
into problems concerning the saturation of the strong rise of
the proton structure functions at small Bjorkenx, possibly
due to color-screening effects that are associated with the
overlapping of a large number of small-x partons. Another
example is the anticipated formation of a quark-gluon
plasma in RHIC and LHC heavy ion collisions, where mul-
tiple parton rescattering and cascading may generate a high-
density environment, in which the collective motion of the
quanta can give rise to non-Abelian long-wavelength excita-
tions and screening of color charges.

In any case, the study of coherent low-momentum excita-
tions in QCD, that are generated by, and interacting with, the
high-momentum partonic color charges, is of fundamental
interest in several respects. First, it provides insight into the
basic features of non-Abelian multiparticle dynamics and a
step towards a rigorous description of parton transport prop-
erties in a dense environment. Secondly, it may help to re-
solve current problems encountered in perturbative QCD, for

instance the absence of static magnetic color screening@1#,
the problem of infrared renormalons@2# connected with the
resummation of perturbation theory in the small-x regime, or
the problem of confinement associated with collective
‘‘glue’’ behavior of nonperturbative gluons@3#. Interesting
progress in these areas is continuously being made, and con-
sistent schemes have emerged to perform calculations of the
parton evolution at very smallx @4#, at very large density
@5,6#, and for high-temperature QCD of a quark-gluon
plasma@7#.

Most progress in the context of bulk multiparton dynam-
ics at high density has been made by studying ‘‘hot QCD’’
with a thermally equilibrated quark-gluon system at very
high temperatureT. ‘‘Hot QCD’’ has the attractive advan-
tage that the parton density is homogeneous and isotropic in
momentum, and its exact form}T3 is known, since
T@L'200 MeV is the only energy scale in the problem.
For this academic scenario, inconsistencies of former pertur-
bative calculations have been resolved by gauge-invariant
resummation techniques@8# as studied in various applica-
tions @9#, and moreover, a self-consistent kinetic theory has
been formulated@10#.

The present paper, extending previous work of Ref.@11#,
is to be viewed in this very context: it takes the ‘‘hot QCD’’
developments as inspirational guideline, but aims to describe
the opposite physics extreme, namely a highly
nonequilibrium,1 nonuniform, and nonisotropic parton sys-
tem. Specifically, the attempt is made to derive from first
principles a self-consistent kinetic description for anonquil-
ibrium scenario of a gluon beam directed along the light
cone, that is, a high-density system of gluons, moving with
very large energiesk0.kz@k'@L along a beam direction

*Electronic address: klaus@bnl.gov

1The term ‘‘nonequilibrium’’ is used in the sense of statistical
many-body physics, describing a quantum system far off the state
of maximum entropy and thermal equilibrium. Such a nonequilib-
rium system may in general be spatially inhomogenous and aniso-
tropic in momentum, in contrast to a homogeneous, thermal en-
semble, or translation invariant system in vacuum.
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~the kz axis!, as it would be typical for the initial stage of a
high-energy collider experiment~an extreme example is a
collision of two heavy nuclei at the LHC, involving many
thousands of gluons coming down the beam pipe!. For sim-
plicity the quark degrees of freedom are ignored, but are
straightforward to include.

As illustrated schematically in Fig. 1, the initial multi-
gluon state is imagined as a highly Lorentz contracted sheet
of bare gluons, characterized by a very large momentum
scaleQ ~e.g., in an ultrarelativistic nuclear collision, the typi-
cal momentum transfer of hard scatterings that materialize
the gluons out of the colliding beam nuclei!. Hence the typi-
cal energy and longitudinal momentum of the initial gluons
is ;Q. The subsequent evolution of these bare quanta is, at
leading orderas , well known to lead to a rapid multiplica-
tion and diffusion of gluons through real and virtual radia-
tion, corresponding to bremsstrahlung and Coulomb-field re-
generation, respectively@12#. As a consequence, the typical
gluon momenta both in longitudinal and transverse direc-
tions, decrease@see Fig. 1~a!#. As long as the average trans-
verse momentum is sufficiently large,k'>m;122 GeV,
as(m

2)!1, a perturbative description of the evolution of the
gluon density G is appropriate, but whenk',m, nonpertur-
bative dynamics is expected to take over, governed by the
collective infrared behavior of a large number of long-
wavelength gluons. If the number density of low-momentum
gluons belowm is large, their dynamics may approximately
be described classically@5,13# in terms of a coherent mean
field Ā @see Fig. 1~b!#.

Given this heuristic picture, the near-at-hand rationale is
therefore to subdivide the dynamical development of the
gluon ensemble into a perturbative quantum evolution in the
short-distance regimeQ2>k'

2 >m2, and a nonperturbative,
but classical, mean field in the long-wavelength regime
k'

2 ,m2. The corresponding degrees of freedom are referred
to as hard gluons for k'>m, whereas excitations with
k',m represent thesoft mean field.

Because the hard gluons have small transverse extent
l;1/k'<0.2 fm ~for m51 GeV!, they can be considered,
locally in space-time, as incoherent self-interacting quanta, if
the interparticle distance is significantly larger thanl. On the
other hand, when the typical transverse momenta drop below
m, the gluons begin to act coherently, and collectivity arises,
because the motion taking place over a distance scale 1/m or
larger, involves coherently a large number of hard particles,
which gives rise to an average soft color field. The crucial
point of this hard-soft separationis that the over long dis-
tancesl.1/m, the soft mean field represents the average
gluon motion, but at short distancesl<1/m the hard gluons
may be described approximately as in free space. Certainly,
such a rigid division of hard and soft physics in terms of a
single parameterm, is at his point an arbitrary and idealizing
definition. However, the arbitrariness can in principle be re-
moved by considering the variation with respect tom, as in
the usual renormalization-group framework. This interesting
task is beyond the scope of this paper, and remains to be
addressed in the future.

The nonquilibrium scenario of a light cone beam of glu-
ons along the light cone has two major advantages over the
opposite thermal equilibrium extreme, the isotropic quark-

FIG. 1. Nonequilibrium scenario of gluon beam along the light
cone.~a! The initial multigluon state, prepared at timet050 at the
hard scaleQ with initial conditionD0(0,Q1,Q2), develops forward
in time which is described by the evolution of the gluon propagator

D̂(r ,K1,K'
2 ) being a function of both space-timer m5(t,rW) and

momentum Km5(E,KW ). The gluons, propagating with large
K15E1Kz@K' along thez axis, are accompanied by real and
virtual radiation which causes a diffusion in both transverse direc-
tion r' and transverse momentumK' as time goes on: The emis-
sion of gluons increases the multiplicity and decreases the average
transverse momentâK'

2 & at given light cone timer 25t2z and
light cone positionr 15t1z. ~b! Top: Qualitative picture of time
evolution of the typical transverse momentum^K'

2 & of hard gluons,
where the earliest emitted daughter gluons have the largest
K'

2 &Q2 and later produced gluons have much smallerK'
2 . Even-

tually modes withK'
2 ,m2 will be populated significantly. Bottom:

Corresponding time development of the number density G of hard

gluons from initial value G0 and of the average soft fieldĀ that is
induced by the population of gluons withK'

2 ,m2, starting from
zero initial value. Speculatively, one would expect a saturation at
asymptotic times due to screening of further gluon emission by the
presence of the soft mean field.
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gluon plasma. First, it favors the two-scale separation be-
tween hard and soft physics. Second, it allows to choose an
axial-type gauge which eliminates to large extent the prob-
lems of nonlinearities and of ghost degrees of freedom that
are encountered in usual covariant gauges. The two-scale
separation arises naturally here, because Lorentz contraction
and time dilation along the beam direction plus the limited
transverse momenta, force the hard gluon fluctuations and
self-interactions to be highly localized to short distances, and
separates their quantum motion from the low-momentum
mean-field dynamics over comparably long distances. On the
other hand, the choice of a noncovariant axial gauge, char-
acterized by a directed four-vectorn along a fixed axis, is
very suggestive, because the geometry and kinematics allows
to choosen parallel to the gluon momentumkz , in which
case perturbative QCD calculations formally reduce in many
respects to the Abelian QED counter parts. This is not pos-
sible for an isotropic thermal system, where all possible di-
rections of gluon motion are equally probable. Given these
premises, thequantum dynamicsis dominated by the self-
interactions of the hard gluons, which make them fluctuate
localized around the light cone, whereas thekinetic dynamics
can well be described statistical-mechanically in terms of
mutual interactions among them and in the presence of their
generated soft mean field. As elaborated in Ref.@11#, these
notions are the keys to formulating a quantum-kinetic de-
scription, by combining standard techniques of parton evolu-
tion and renormalization group, with relativistic many-body
transport theory.

The main result of this studywithin the outlined physics
framework, is aset of three master equations, which couple
the quantum evolution of short-distance fluctuations of the
individual hard gluons, the space-time development of the
gluon system as a whole, and the generation of the soft mean
field: ~i! an evolution equationfor the spectral densityr̂ of
each individual hard gluon, which determines the intrinsic
gluon distribution of a hard gluon in accord with mass- and
coupling-constant renormalization, and which dresses up the
bare initial gluons to renormalized ‘‘quasiparticles;’’~ii ! a
transport equationfor the space-time development of the
whole ensemble of these renormalized gluons with respect to
their propagation in the self-generated soft mean field, as
well as due to their scatterings off each other, which deter-
mines the physical gluon phase-space density G;~iii ! a Yang-

Mills equation for the generation of the soft mean fieldĀ,
which is induced by the effective color current of the hard,
renormalized gluons, where the current is obtained from the
momentum-weighted gluon phase-space density. Although
this set of equations appears at first sight to be of impractical
complexity, it allows in fact for a practical applicable calcu-
lation scheme, as will be demonstrated with an explicit
sample calculation.

To arrive at the above master equations, three essential
aspects of the problem have to be merged: first, the physics-
dictated aspect of space-time, kinematics and geometry, sec-
ond, the quantum field aspect of gluon excitations and self-
interactions, and third, the statistical aspect of multiparticle
interactions in the presence of the mean field. The nontrivial
interconnection of these aspects require towork directly at
the level of equations of motion, rather than on the level of
Feynman diagrams, because the relative proportions and in-

teractions of hard and soft quanta can only be calculated
self-consistently from the equations of motion.

The strategy for deriving the above master equations fol-
lows closely the previous work of Refs.@11#. The path-
integral representation of the Yang-Mills action gives an in-
finite set of equations of motion for the nonequilibrium
n-point Green functions, which is the well known analogue
of the Bogoliubov-Born-Green-Kirkwood-Yuon~BBGKY!
hierarchy @14#. This hierarchy, which represents the exact
theory, is truncated to a system of equations involving only
the one- and two-point functions, by arguing that higher-
order correlatorsn>3 are comparably small. To achieve
self-consistency of the truncated set of equations at the
n52 level, then>3 functions must be implicitly lumped
into the one- and two-point functions. After separating hard
and soft field modes, as alluded to before, the one-point
function is identified with the soft average field
Ām5^Am(x)& and the two-point function is given by the hard
gluon correlatori D̂mn5^am(x) an(y)&P , whereAm and am
represent the soft and hard modes, respectively. The trun-
cated set of equations of motion then involves the nonequi-
librium version of the Dyson-Schwinger equation forD̂ and
the classical Yang-Mills equation for the soft mean-fieldĀ.
The two field-equations of motion forD̂ and Ā can be cast
into much simpler quantum-kinetic equations with the help
of the Wigner-function technique and gradient expansion,
and the assumption of two-scale separation implying that the
long-wavelengthĀ field is slowly varying on the short-
distance scale of the hard quantum fluctuations. The result is
then the above set of master equations.

A powerful theoretical framework to derive from exact
field equations of motion the above approximate quantum
kinetic equations, is the so-calledclosed-time-path~CTP!
formalism. The CTP formalism is a general tool for treating
initial value problems of irreversible multiparticle dynamics
in quantum field theory. It therefore provides an appropriate
language to describe the problem of nonequilibrium gluon
dynamics within a well-established theoretical framework.
Originally introduced by Schwinger@15# and Keldysh@16#
the CTP formalism and its diverse applications is docu-
mented in great detail in the literature@17–23#. In particular,
I refer to Ref. @11#, where the CTP method is applied to
high-energy QCD, and to Appendixes B and C.

The fundamental starting point of nonequilibrium field
theory in the CTP formalism is to write down the in-in am-
plitude ZP for the evolution of the initial quantum state
u in& forward in time into the remote future. As reviewed in
Appendix B, this generalizes the usual quantum field theory
approach based on the vacuum-vacuum transition amplitude,
or in-out amplitude, to account for thea-priori presence of
medium particles described by the density matrixr̂(t0) and
to evolve this nontrivial initial state in the presence of the
medium fromt0 to t` in the future. Thein-in amplitudeZP is
graphically depicted in Fig. 2, and formally it is given by
ZP@J,r̂ #5^ inu in&J,r̂ , where J5(J1,J2) is an external
source with components on the upper1 and lower2 time
branch, andr̂(t0) denotes the initial state density matrix.
From the path-integral representation ofZP one obtains then
the nonequilibrium Green functions. The convenient feature
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of this Green function formalism on the closed-time pathP
is that it is formally analogous to standard quantum field
theory, based on the vacuum-vacuum, or in-out amplitude
Z@J#5^outu in&J5^0u0&J , except for the fact that in the
CTP formalism, the fields have contributions from both time
branches. For details I refer to Appendix B, where the basics
of the CTP formalism are summarized, in particular, how to
obtain the path integral forZP that generates the Green func-
tions on the closed-time pathP.

The interpretation of this formal apparatus for the evolu-
tion along the closed-time pathP is rather simple: If the
initial state is the vacuum itself, that is, the absence of a
medium generated by other particles, then the density matrix
r̂ is diagonal and one hasu in&→u0&. In this case the evolu-
tion along the1 branch is identical to the antitime ordered
evolution along the2 branch~modulo an irrelevant phase!,
and space-time points on different branches cannot cross-
talk. In the presence of a medium, however, the density ma-
trix contains off-diagonal elements, and there are statistical
correlations between the quantum system and the medium
particles~e.g., scatterings! that lead to correlations between
space-time points on the1 branch with space-time points on
the 2 branch. Hence, when addressing the evolution of a
multiparticle system, both the deterministic self-interaction
of the quanta, i.e., the time-~anti-time-!ordered evolution
along the1 (2) branchand the statistical mutual interaction
with each other, i.e., the non-time-ordered cross-talk between
the 1 and2 branches, must be included in a self-consistent
manner. The CTP method achieves this through the time

integration along the contourP. Although for physical ob-
servables the time values are on the1 branch, both1 and
2 branches will come into play at intermediate steps in a
self-consistent calculation.

The outline of the paperis as follows. In Sec. II the field
equations of motion for the hard gluon propagator and the
soft mean field are derived from the path-integral represen-
tation of the in-in amplitudeZP for noncovariant gauges.
After separating hard and soft degrees of freedom, two key
approximations are made, that allow us to cast the infinite
hierarchy of exact equations of motion in terms of a trun-
cated system of only two approximate equations, namely a
Dyson-Schwinger equation for the hard gluon propagator,
and a Yang-Mills equation for the soft field. In Sec. III the
transition to a quantum kinetic description is worked out.
This requires one further key approximation in conjunction
with a clear definition of quantum and kinetic space-time
regimes, such that the aforementioned two-scale separation
is guaranteed. This also defines the limits for the applicabil-
ity of the quantum kinetic approximation. Provided that the
separability condition is satisfied, one finally arrives at the
set of master equations discussed above, for which a system-
atic calculation scheme is proposed. In Sec. IV an explicit
calculation to solve the master equations is presented for the
physics scenario depicted in Fig. 1. I consider the evolution
of an initial incoherent ensemble of bare gluons moving col-
linearly along the light cone as it proceeds in its momentum-
and space-time development and generates its soft mean
field. To avoid overkill of too many technical details, each
section is accompanied by Appendixes. Appendix A defines
the notation and conventions used throughout the paper. Ap-
pendix B reviews the basics of the CTP formalism. Appen-
dix C discusses the application of the CTP method to QCD
for noncovariant gauges. Appendix D shows the advanta-
geous absence of ghosts in noncovariant gauges. Appendix E
gives details on how to obtain from the in-in amplitudeZP
an approximate effective action functional from which the of
motion for the hard gluon propagator and the soft field are
derived. Appendix F summarizes some basic analyticity
properties of the free-field propagators in the CTP formalism
and discusses their relation to the gluon phase-space density.

Finally some remarks on the most closelyrelated workin
the literature~for an extended discussion, see the Introduc-
tion of Ref. @11#!. Blaizot and Iancu@10# have in a series of
papers developed a kinetic theory for ‘‘hot QCD,’’ i.e., the
case of a high-temperature quark-gluon plasma. One of the
key elements of their approach is the formulation of a well-
defined and consistent approximation scheme. I adopt many
features of this approach in the present, rather different
physical context. The inclusion of the aspect of quantum
evolution and renormalization is new here.

McLerran and co-workers@24#, as well as Makhlin@25#,
have developed different approaches to calculate the quan-
tum evolution of parton systems with light cone dominance,
i.e., in a beam-type scenario as considered in the present
work. The McLerran-Venugopalan model also gives a pre-
dictive estimate for the feedback effect of the coherent mean
field on the hard gluon evolution that generates this field. In
several respects I follow a similar route. In the present work,
the fact that it embodies in addition the aspect of space-time
development of the evolution is new.

FIG. 2. Difference between thein-out formalism of usual quan-
tum field theory~in free space or ‘‘vacuum’’! and thein-in formal-
ism of the CTP formulation~in the presence of surrounding par-
ticles or ‘‘medium’’!. ~a! The in-out amplitude described by the
evolution of an asymptoticu in& state att0→2` to an asymptotic
uout& state at t`→` by means of the time evolution operator
U(t0 ,t`). BecauseU(t0 ,t`)5U†(t` ,t0), forward and backward
evolution are identical, and there is no correlation between the two
time branches. Consequently, the Feynman propagatorGF5GF̄

*
contains the full dynamics of the two-point correlations.~b! The
in-in amplitude starts att0 with a nontrivial initial multiparticle

state described by the density matrixr̂(t0) and evolves again by
means of time evolution operatorU(t0 ,t`). Due to statistical inter-
actions among the many evolving particles acting as a medium, in

this caser̂(t0)U(t0 ,t`)ÞU†(t` ,t0). Consequently, the statistical
correlation between the two time branches have the effect thatGF

ÞGF̄
* , and moreover require the introduction of additional correla-

tion functionsG. and G, to account for the cross-talk between
upper and lower time branches.
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Boyanovski et al. @26# have intensely studied the non-
equilibrium evolution in scalar field theory, using exten-
sively the techniques of the CTP formalism in conjunction
with a large-N expansion. Although the focus on this paper is
rather different, many of the concepts and results in their
papers concerning the first-principles time evolution of the
quantum system with associated particle production, dissipa-
tion, mean-field dynamics, etc., may serve as a scalar toy
model for QCD.

II. INTERPLAY OF ‘‘HARD’’ AND ‘‘SOFT’’
GLUON DYNAMICS

A. The in-in amplitude for QCD in noncovariant gauges and
the concept of approximation

The in-in amplitudeZP introduced in Sec. I admits a path-
integral representation which is the generating functional for
the nonequilibrium Green functions defined on closed-time
pathP, as discussed in Appendixes B and C:

ZP@K#5E DAexp$ i ~ I @A,K# !%, ~1!

whereAm
a 5(Am

a1 ,Am
a2) has two components, living on the

upper ~1! and lower (2) time branches of Fig. 2, with
DA5)m,aDAm

a1DAm
a2 , and whereK represents the pres-

ence of external sources. I consider here theclass of nonco-
variant gaugesdefined by@27,28#

^nmAm
a ~x!&50, ~2!

where nm is a constant four-vector, being either spacelike
(n2,0), timelike (n2.0), or lightlike (n250). The particu-
lar choice of the vectornm is usually dictated by the physics
or computational convenience, and distinguishesaxial gauge
(n2,0), temporal gauge(n2.0), and light cone gauge
(n250). Referring to Appendix D, the great advantage of
these gauges is that the Faddeev-Popov ghosts decouple, so
that in practical calculations the ghost degrees of freedom
can be ignored, just as in Abelian gauge theories.

Then the actionI in the exponential of Eq.~1! is given by
~cf. Appendix C!

I @A,K#[I YM@A#1I GF@n•A#1K@A#, ~3!

containing the Yang-Mills actionI YM , the gauge-fixing term
I GF, and the initial state source termK, containing multi-
point correlations concentrated att5t0:

I YM@A#52
1

4EP
d4xFmn

a ~x!Fmn,a~x!,

I GF@n•A#52
1

2aEP
d4x@n•Aa~x!#2, ~4!

K@A#5K~0!1E
P
d4xKm

~1!a~x!Am,a~x!

1
1

2EP
d4xd4yKmn

~2!ab~x,y!Am,a~x!An, b~y!1•••.

~5!

The exact knowledge of the in-in amplitudeZP from Eq.
~1!, would require to the calculation of all Green functions
up to infinite order, and would correspond to the full solution
of QCD in nonequilibrium media. Rather than that, the real-
istic goal is to formulate a practical calculation scheme for
the kinetic evolution of a multigluon system. In order to
make progress, one needs to make reasonable approxima-
tions that are consistent with the specific physical problem
under study, and truncate the infinite hierarchy of Green
functions.

In this section a closed set of approximate equations is
derived that are in principle solvable, given a suitable phys-
ics scenario. The basic idea is to describe an evolving gluon
system in terms of two distinct components, namely,hard,
short-range quantum fluctuationsand soft, long-wavelength
collective excitations, which I assume to be separable by a
characteristic space-time distance. It is clear that the relative
proportions and interactions of hard and soft degrees of free-
dom must be calculated self-consistently from the equations
of motion.

Starting from the in-in amplitude~1!, the strategy of the
procedure is the following.

~1! The exact expression of the in-in amplitude
ZP[exp(iWP) is rewritten in terms of soft and hard field
modes by splitting the gauge fieldAm5Am1am . Therefrom,
one obtains an infinite set of coupled equations for the Green
functions. In order to reduce this to a finite system, I make
the following approximation.

Approximation 1. The functional WP52 i lnZP is ex-
pressed in terms of connected one- and two-point functions
G(1),G(2) alone by eliminatingG(n) for n>3 as dynamical
variables. Then the expectation values ofG(1) andG(2) de-
scribe the induced soft mean fieldĀm and the hard~soft!
correlation functionsD̂mn (D̂mn).

~2! From the truncated functionalWP the corresponding
effective actionGP is obtained, which generates the desired
self-consistent equations of motion forĀm , D̂mn , andD̂mn .
Here I make the following approximation.

Approximation 2. It is assumed that the soft field dynam-
ics can be treated classically by the nonpropagating average
field Ām , and that the long-range propagation of soft modes,
described by D̂mn may be ignored at this level, i.e.,
D̂mn! ĀmĀn . This assumption is motivated by the widely
studied@24,13# observation that a classical treatment of the
long-distance dynamics of bosonic quantum fields at high
density, obeying the classical field equations, should provide
a good approximation, if the soft modes are sufficiently oc-
cupied.

The original infinite equation system can then be reduced
to a Yang-Mills equation for the classical, soft fieldĀm , as it
is induced by the current of hard quanta, and a Dyson-
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Schwinger equation for the hard propagatorD̂mn subject to
the presence of the soft mean field and to quantum fluctua-
tions. These field equations of motion are still of very intrac-
table nonlinear character. They are further simplified to
quantum-kinetic equations in Sec. III.

B. Separating soft and hard dynamics

The first step in the strategy is the separation of soft and
hard physics in the path-integral formalism with Green func-
tions of both the soft and hard quanta in the presence of the
soft classical field that is induced by and feeding back to the
quantum dynamics. A frequently used method for separate
treatment of quantum and classical dynamics in field theory
is the so-called ‘‘background field method’’@29# which has
been studied, e.g., in the context of dynamical symmetry
breaking, vacuum structure, confinement and gravity, or for
hot plasmas in finite temperature QCD. Within the back-
ground field method, one would split up the gauge field ap-
pearing in the classical action into an external classical back-
ground field and a quantum field which remains the sole
dynamical variable in the path integral. I will, however, not
follow this path, and rather prefer totreat soft and hard
physics on equal footing, that is, to separate the gauge field
into a soft classical field plus its soft quantum excitations,
and a hard quantum field. Then both soft and hard fields can
be quantized and remain as dynamical variablesa priori.

The gauge fieldAm appearing in the classical action
I YM@A# is split up into a soft~long-range! part Am , and a
hard ~short-range! quantum fieldam :

Am
a ~x!5E d4k

~2p!4
e1 ik•xAm

a ~k!u~m22k'
2 !

1E d4k

~2p!4
e1 ik•xAm

a ~k!u~k'
2 2m2!

[Am
a ~x!1am

a ~x!. ~6!

This is the formal definition of the terms ‘‘soft’’ and ‘‘hard,’’
as used in this paper. The soft and hard physics are separated
by the momentum scalem which is at this point arbitrary.
However, this arbitrariness can in principle be overcome by
consideringm(x) as a dynamicalvariable depending on the
space-time pointx, rather than a fixed parameter, and deter-
mining it self-consistently from the local stability condition
dAn(x)/dm2(x)50. From Eq.~6! it is obvious that the cor-
responding scale in space-timel[1/m divides soft and hard
regimes in terms of the transverse wavelength of field
modes, so that one may associate the soft fieldAm being
responsible for long-range color collective effects, and the
hard fieldam embodying the short-range quantum dynamics.
Consequently, the field strength tensor receives a soft part, a
hard part, and a mixed contribution:

Fmn
a ~x![~Fmn

a @A#1 f mn
a @a#1fmn

a @A,a# !~x!. ~7!

When quantizing this decomposed theory by writing
down the appropriate in-in amplitudeZP , one must be con-
sistent with the gauge field decomposition~6! into soft and
hard components and with the classical character of the

former. Substituting the soft-hard mode decomposition~6!
into Eq. ~1!, the functional integral of the in-in amplitude
~C11! becomes

ZP@K#5E DADaexp$ i ~ I @A#1I @a#1I @A,a# !%, ~8!

with the soft, hard, and mixed contribution, respectively,

I @A#5E d4xS 2
1

4
Fmn

a Fmn,a2
1

2a
~n•Aa!2D

1E d4xKm
~1!aAm,a1E d4xd4yAm,aKmn

~2!abAn,b1•••,

~9!

I @a#5E d4xS 2
1

4
f mn

a f mn,a2
1

2a
~n•aa!2D

1E d4xKm
~1!aam,a1E d4xd4yam,aKmn

~2!aban,b1 . . . ,

~10!

I @A,a#5E d4xS 2
1

4
fmn

a fmn,a2
1

2
$fmn

a Fmn,a1fmn
a f mn,a

1Fmn
a f mn,a% D

5E d4x$2g fabc@~]m
x An

a!~am,ban,c1Am,ban,c

1am,bAn,c!1~]m
x an

a!~Am,bAn,c1am,bAn,c

1Am,ban,c!#2g2f acef bde@2Am
a An

bam,can,d

1Am
a An

bAm,can,d1am
a an

bam,cAn,d#%. ~11!

Note that in Eqs.~10! and~11! terms involving two-products
}am An do not contribute toZP , because their expectation
value vanishes due to the soft-hard separation~6! which de-
finesam andAn as complimentary.

At this point I make approximation 1 from above. It is
assumed that initial state can be represented as an ensemble
of incoherent hard gluons, each of which has very small
spatial extentDr'!l51/m, corresponding to transverse
momentak'

2 @m2. By definition of m, the short-range char-
acter of these quantum fluctuations implies that the expecta-
tion value ^am& vanishes at all times. However, the long-
range correlations of the eventually populated soft modes
with small momentak'

2 <m2 may lead to a collective mean
field with nonvanishinĝAm&. Accordingly, I impose the fol-
lowing condition on the expectation values of the fields:

^Am
a ~x!&H 50 for t<t0,

>0 for t.t0.
^am

a ~x!&5
!

0 for all t.

~12!

Now I make approximation 2, that is, the quantum fluctua-
tions of the soft field are ignored, assuming any multipoint
correlations of soft fields to be small:
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^Am1

a1 ~x1!•••Amn

an ~xn!&!^Am1

a1 ~x1!&•••^Am1

an ~xn!&

for all n>2; ~13!

i.e., takeAm as a nonpropagating and nonfluctuating, classi-
cal field. In particular,

iD mn
ab~x,y![^Am

a ~x!An
b~y!&!^Am

a ~x!&^An
b~y!&, ~14!

so that the limit ‘‘Dmn→0’’ can be considered.
As explained in more detail in Appendix E, the generating

functional for theconnectedGreen functions

WP@K#52 i lnZP@K#, ~15!

which generate the infinite set of connectedn-point Green
functionsG(n) via

~2 i !Gm1•••mn

~n!a1•••an~x1 , . . . ,xn!

[
d

idK~n!
WP@K#uK50

5^am1

a1 ~x1!•••amk

ak ~xk!Amk11

ak11 ~xk11!•••Amn

an ~xn!&P
~c! ,

~16!

is truncated at leveln>3 on the basis of approximations~12!
and ~14!. As a result,WP becomes a functional of the one-
point function~soft mean fieldĀ) and the two-point function
~hard propagatorD̂) only:

Gm
~1!a~x!5^Am

a ~x!&P
~c![ Ām

a ~x!,

Gmn
~2!ab~x,y!5^am

a ~x!an
b~y!&P

~c![ i D̂mn
ab~x,y!. ~17!

These relations define the soft, classical mean fieldĀ, and
the hard quantum propagatorD̂ in terms of expectation val-
ues of soft and hard field operatorsAm andam , respectively.
One now readily obtains theeffective actionGP ~or proper
vertex functional! via Legendre transformation~cf. Appendix
E!:

GP@G#'GP@ Ā,D̂#5WP@K~1!,K~2!#2K~1!+ Ā

2
1

2
K~2!+ ~ i D̂1 ĀĀ!, ~18!

which is a functional ofonly the soft fieldĀ and the hard
propagatorD̂ as independent dynamical degrees of freedom.

The equations of motionfor the mean fieldĀ and for the
hard propagatorD̂ in the presence of sources, follow now by
differentiation of Eq.~18! with respect toĀ and D̂ ~cf. Ap-
pendix E!

dGP

d Ām
a ~x!

52K~1!m,a~x!2E
P
d4y K~2!mn,ab~x,y!Ān, b~y!,

~19!

dGP

dD̂mn
ab~x,y!

5
1

2i
K~2!mn,ab~x,y!. ~20!

The self-consistent equations of motion of the dynamically
evolving system are then obtained from Eqs.~19! and ~20!
by ~i! imposing initial conditions in terms of theK kernels at
t5t0 and ~ii ! by obtaining an explicit formula forGP in
terms of Ām and D̂mn . Concerning the initial conditions, I
confine myself to nonequilibrium initial states of Gaussian
form ~i.e., quadratic in the hard modes! and do not consider
possible linear force terms. That is, I set

K~1!~x!ux05t0
50, K~2!~x,y!ux05y05t0

>0. ~21!

To obtain an explicit expression forGP , the formal loop
expansion of Eq.~18! results in the well-known Cornwall-
Jackiw-Tomboulis formula@30#

GP@ Ā,D̂#5 Ī eff@ Ā,a#2
i

2
Sp@ ln~D0

21D̂ !2D̄0
21D̂11#

1GP
~2!@ Ā,D̂#, ~22!

where Sp@AB . . . #[ Tr*Pd4x1d4x2•••A(x1)B(x2)•••
stands for both the trace over color and Lorentz indices, as
well as the integration over all space-time positions, hence
giving the expectation valuêAB•••&P as defined in Appen-
dix C. Thephysical interpretationof the various terms in this
expression forGP is the following @11#.

~i! The first term is of order\0 and is given by the clas-
sical action~9!,~10! at A5 Ā and switched-off sourcesK:

Ī eff@ Ā,a#[†I @A#1I @a#1I @A,a#‡A5 Ā,K50 . ~23!

Notice that in the limita50, this reduces to the classical
action for the soft mean field, Ī eff@ Ā,0#5I YM@ Ā#

1I GF@n• Ā#.
~ii ! The second term in Eq.~22! is of order\1 and con-

tains the contributions of the coupling between the soft mean
field Ā and the hard quantum propagatorD̂. The free propa-
gator @see Fig. 3~a!# is given by @d2 Ī eff@ Ā,a#/
da(x)da(y)] A50; a50 with Ā switched off, which yields

~D0
21!mn

ab~x,y!52dabdP
4 ~x,y!dmn~]x!]x

2 , ~24!

where it is understood that the space-time argumentsx and
y in D0 satisfy (x2y)'

2 ,1/m2, and

dmn~]x![gmn2
nm]x

n1nn]x
m

n•]x
1~n21a21]x

2!
]x

m]x
n

~n•]x!
2

.

~25!

Even in the absence of quantum fluctuations, these contribu-
tions amount to a modification of the free propagator, such
that the free propagatorD0 becomes an effective propagator
D̄ in the mean field,dressedup by the presence ofĀ. This
mean field propagator@see Fig. 3~b!#, denoted byD̄, is ob-
tained from @d2 Ī eff@ Ā,a#/da(x)da(y)#A5 Ā;a50 with finite
ĀÞ0, which results in
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~D̄21!mn
ab~x,y!5~D0

21!mn
ab~x,y!2P̄mn

ab~x,y!, ~26!

whereP̄ denotes the self-energy contribution associated with
the presence of the mean fieldĀÞ0. Its explicit expression
is given below in Eq.~48!. In other words, the effect of the
mean field is to shift the pole in the free propagatorD0 of Eq.

~24! by a dynamically induced ‘‘mass’’ term}P̄, which can
produce screening and damping effects. Note that

D0
215D̄21u Ā50. It is important to realize that this mean field

effect is still on the classical tree-level, and does not involve
quantum fluctuations associated with radiative self-
interactions among the hard gluons.

~iii ! The last termGP
(2) in Eq. ~22! represents the sum of

all two-particle irreducible graphs of order\2,\3, . . . @30#,

with the full propagatorD̂, dressed by both the soft mean
field and the quantum self-interactions@see Fig. 3~c!#

D̂mn
ab~x,y![D̂ [ 0]mn

ab
~x,y!1dD̂ [ Ā]mn

ab
~x,y!, ~27!

where the dependence of the full propagator on the soft mean
field Ā is indicated by an explicit subscript, and

D̂ [ 0]mn
ab

5D̂ [ Ā]mn
ab u Ā50 , dD̂ [ Ā]mn

ab u Ā5050. ~28!

Note thatD̂ [ 0]ÞD0, that is,D̂ [ 0] denotes thefull propagator
for Ā50, whereasD0 is the free propagator~24!. The real
~dispersive! part ofGP

(2) contains the virtual loop corrections
associated with the gluon self-interactions, whereas the
imaginary ~dissipative! part contains the emission, absorp-
tion, and scattering processes of hard gluons. In other words,
GP

(2) embodies all the interesting quantum dynamics that is
connected with renormalization group, entropy generation,
dissipation, etc. The explicit form ofGP

(2) is diagrammati-
cally shown in Fig. 4, with the vertices and lines defined by
Fig. 3. Suppressing color and Lorentz indices and employing

a condensed notation, e.g.,D̂(x1 ,x2)[D̂mn
ab(x1 ,x2), the cor-

responding formula is

GP
~2!@ Ā,D̂#5G~1!1G~2!1G~3!1G~4! , ~29!

with the contributions

G~1!5
1

8
g2E

P
d4xd4yE

P
d4x1d4y1W0~x,y,x1 ,y1!

3D̂~y1 ,x1!D̂~y,x!, ~30!

G~2!5
i

12
g2E

P
d4xd4yE

P
)
i 51

2

d4xid
4yiV0~x,x1 ,x2!

3D̂~x1 ,y1!D̂~x2 ,y2!V̂~y2 ,y1 ,y!D̂~y,x!, ~31!

G~3!5
1

48
g4E

P
d4xd4yE

P
)
i 51

3

d4xid
4yiW0~x,x1 ,x2 ,x3!

3D̂~x1 ,y1!D̂~x2 ,y2!D̂~x3 ,y3!

3Ŵ~y3 ,y2 ,y1 ,y!D̂~y,x!, ~32!

G~4!5
i

96
g4E

P
d4xd4yE

P
)
i 51

2

d4xid
4yid

4ziW0~x,x1 ,x2 ,x3!

3D̂~x2 ,z2!D̂~x3 ,z3!V̂~z3 ,z2 ,z1!D̂~z1 ,y1!

3D̂~x1 ,y2!V̂~y1 ,y2 ,y!D̂~y,x!. ~33!

The functionsV̂ and Ŵ are thefull proper vertex functions
for the three-gluon and four-gluon coupling, respectively.
Their diagrammatic representation is shown in Figs. 3~d!
and 3~e!, and formally they are given by the functional
derivatives of GP at ĀÞ0, namely,
@dnGP /da(x1)•••da(xi)dA(xi 11)•••dA(xn)#A5 Ā; a50 for
n53 andn54, respectively,

FIG. 3. Diagrammatics of the various terms used for the
n-point functions appearing in the text. The two-point function
G(2)5 iD is the hard gluon propagator with thefree-fieldpropagator

D0 ~no interactions!, the mean-fieldpropagatorD̄ ~including the

interactions with the classical soft fieldĀ), and thefull propagator

D̂ @including both mean-field and quantum~loop! interactions#.

Similarly, the connected three-point functionG(3)52 igV̂ and the

four-point functionG(4)52g2Ŵ contain soft mean-field plus hard

quantum contributions with internal full propagatorD̂. Finally, the

one-point function is the soft mean fieldĀ that is generated by the
hard gluons through the coupling to the full three-point and four-

point functionsV̂ andŴ.

FIG. 4. The two-loop contributionGP
(2) , Eqs.~29!–~33!, to the

effective actionGP of Eq. ~22!, in the diagrammatic representation
of Fig. 3. Formally,GP

(2) is the sum of all two-particle irreducible
graphs with internal lines representing the full gluon propagators

D̂ and full three- and four-gluon verticesV̂ andŴ.

2672 56KLAUS GEIGER



2 igV̂lmn
abc ~x,y,z!52 igV0lmn

abc ~x,y,z!1O~g3!,

2g2Ŵlmns
abcd ~x,y,z,w!52g2W0lmns

abcd ~x,y,z,w!1O~g4!,
~34!

which, to lowest order in the coupling constant, reduce to the
bare three- and four-gluon verticesV0 andW0, respectively:

V0lmn
abc ~x,y,z!5 f abc$glm~]y2]x!ndP

4 ~x,z!dP
4 ~y,z!

1gmn~]z2]y!ldP
4 ~y,x!dP

4 ~z,x!

1gnl~]x2]z!mdP
4 ~x,y!dP

4 ~z,y!% ~35!

W0lmns
abcd ~x,y,z,w!

52$~ f acef bde2 f adef cbe! glmgns

1~ f abef cde2 f adef bce! glngms

1~ f acef dbe2 f abef cde! glsgnm%

3dP
4 ~x,y!dP

4 ~z,w!dP
4 ~y,z!. ~36!

C. Equations of motion

As sketched above and discussed in more detail in Appen-
dix E, the equations of motion~19! and ~20! result from
approximating the exact theory by truncation of the infinite
hierarchy of equations for then-point Green functions to the
one-point function@the soft mean fieldĀ(x)# and the two-

point function @the hard propagatori D̂(x,y)#, with all
higher-point functions being combinations of these and con-
nected by the three-gluon and four-gluon vertices

2 igV̂(x,y,z) and 2g2Ŵ(x,y,z,w), respectively. Before
writing down the explicit form of the resulting equations of
motion, it is useful to summarize the terminology introduced
in the course of the above discussion.

Mean field Ā@Fig. 3~f!#. Denotes the classical soft field as
the expectation value of the gauge fieldA, which is induced
by the abundance of emitted hard gluons and their collective
motion. Free propagatoriD0 @Fig. 3~a!#. Refers to the free
propagation of hard gluons in the absence of interactions,

i.e., vanishing couplingg50. Mean-field propagator i D̄
@Fig. 3~b!#. Denotes the tree-level propagator without quan-
tum corrections, i.e., the free propagator with an arbitrary
number>0 of attached external legs coupling to the soft
mean field, but without closed loops that correspond to quan-

tum self-interactions.Full propagatori D̂ @Fig. 3~c!#. Terms
the dressed propagator of the hard quanta, that is, renormal-
ized by both the interactions with the soft mean fieldand the
self-interactions among the hard quanta.Full vertex func-

tions 2 igV̂,2g2Ŵ @Figs. 3~d!, 3~e!#. Represent the three-
gluon and four-gluon vertices with the internal lines being
the full hard propagator including mean-field and quantum
interactions.

1. Yang-Mills equation for the soft mean field

The equation of motion for the soft fieldĀm
a (x), is given

by Eq.~19!, i.e.,dGP/d Ā52K(1)2K(2)+ Ā, from which one

obtains, upon taking into account the initial condition~21!,
K(1)50, theYang-Mills equation for Ā

@D̄l,ab,F̄lm
b #~x!52 ĵ m

a ~x!2~Kml
~2! ab+ Āl, b!~x!, ~37!

where @D̄,F̄ #5D̄ F̄2 F̄ D̄ with the covariant derivative de-
fined as D̄l[Dl@ Ā#5]x

l2 igĀl(x) and F̄lm[Flm@ Ā#

5@D̄l ,D̄m#/(2 ig). The second term on the right side is the
initial state contribution to the current, according to the con-
dition ~21!, K(2)+ Ā5*Pd4y Kml

(2) ab(x,y) Āl,b(y).
Rewriting the left-hand side of Eq.~37! as

@D̄l,ab,F̄lm
b #~x!5D0ml

21abĀl, b~x!1J̄m
a ~x!,

D0ml
21ab[dab~gml]x

22]m
x ]l

x2nmnl!, ~38!

where, upon taking into account the gauge constraint~2!, the
2nmnlĀl in D0ml

21 Āl does not contribute, because

05^n•A&5nnĀn and Eq.~37! may be expressed in the al-
ternative form@see Fig. 5~a!#

$~D0
211K~2!!Ā%m

a ~x!1J̄m
a ~x!1 ĵ m

a ~x!50. ~39!

Here the functionJ̄ contains the soft-field self-coupling

J̄m
a ~x!5J̄~1!m

a ~x!1J̄~2!m
a ~x!, ~40!

J̄~1!m
a ~x!52

g

2EP
)
i 51

2

d4xiV0mnl
abc ~x,x1 ,x2!Ān,b~x1!

3 Āl,c~x2!, ~41!

FIG. 5. Diagrammatic representation in terms of the rules of
Fig. 3, of the equations of motion.~a! The Yang-Mills equations

~37!, ~38! for the soft field Ā with the self-coupling contribution

J̄, Eqs. ~40!–~42!, and the generating hard gluon currentĵ , Eqs.
~200!–~204!. ~b! The Dyson-Schwinger equation~47! for the hard

propagatorD̂ with the mean-field polarization tensorP̄, Eqs.~48!–

~50!, and the quantum contributionP̂, Eqs.~51!–~55!.
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J̄~2!m
a ~x!51

ig2

6 E
P
)
i 51

3

d4xiW0mnls
abcd ~x,x1 ,x2 ,x3!Ān,b~x1!

3 Āl,c~x2!Ās,d~x3!, ~42!

and the currentĵ is the induced currentdue to the hard
quantum dynamics in the presence of the soft fieldĀ:

ĵ m
a ~x!5 ĵ ~1!m

a ~x!1 ĵ ~2!m
a ~x!1 ĵ ~3!m

a ~x!, ~43!

ĵ ~1!m
a ~x!52

i g

2 E
P
)
i 51

2

d4xiV0mnl
abc ~x,x1 ,x2!D̂nl, bc~x1 ,x2!,

~44!

ĵ ~2!m
a ~x!52

g2

2 E
P
)
i 51

3

d4xiW0mnls
abcd

3~x,x1 ,x2 ,x3!Ān, b~x1!D̂ls, cd~x2 ,x3!,

~45!

ĵ ~3!m
a ~x!52

ig3

6 E
P
)
i 51

3

d4xid
4yiW0mnls

abcd

3~x,x1 ,x2 ,x3!D̂nn8, bb8~x1 ,y1!D̂ll8, cc8

3~x2 ,y2!D̂ss8, dd8~x3 ,y3!V0m8n8l8s8
abcd

~y1 ,y2 ,y3!.

~46!

It should be remarked that the functionJ̄ on the left-hand
side of Eq.~37! contains the nonlinear self-coupling of the
soft field Ā alone, whereas the induced currentĵ on the right-

hand side is determined by the hard propagatorD̂, thereby
generating the soft field.

2. Dyson-Schwinger equation for the hard gluon propagator

From the equation of motion~20! for the hard propagator

D̂mn
ab(x,y), that is,dGP /dD̂5K(2)/(2i ), one finds after incor-

porating condition ~21!, K(1)50, the Dyson-Schwinger

equation forD̂ @see Fig. 5~b!#:

$~D̂ !212~D0!212K~2!1P̄1P̂%mn
ab~x,y!50, ~47!

whereD̂ is thefully dressed propagatorof the hard quantum
fluctuations in the presence of the soft mean field, defined by
Eq. ~27!, whereasD0 is the free propagator, given by Eq.
~24!. The polarization tensorP has been decomposed into

two parts, a mean-field partP̄ and a quantum fluctuation part

P̂. The mean-field polarization tensorP̄ incorporates the
local interaction between the hard quanta and the soft mean
field:

P̄mn
ab~x,y!5P̄~1!mn

ab ~x,y!1P̄~2!mn
ab ~x,y!, ~48!

P̄~1!mn
ab ~x,y!5

ig

2
dP

4 ~x,y!E
P
d4zV0mnl

abc ~x,y,z!Āl,c~z!,

~49!

P̄~2!mn
ab ~x,y!5

g2

6
dP

4 ~x,y!E
P
d4zd4wW0mnls

abcd ~x,y,z,w!

3 Āl,c~z!Ās,d~w!, ~50!

plus terms of orderg3Ā3 which one may safely ignore within
the present approximation scheme. Thefluctuation polariza-

tion tensorP̂ contains the quantum self-interaction among
the hard quanta in the presence ofĀ. It is given by the

variation 2idGP
(2)/dD̂ of the two-loop partGP

(2) , Eq. ~29!, of
the effective actionGP :

P̂mn
ab~x,y!5P̂~1!mn

ab ~x,y!1P̂~2!mn
ab ~x,y!1P̂~3!mn

ab ~x,y!

1P̂~4!mn
ab ~x,y!, ~51!

P̂~1!mn
ab ~x,y!52

g2

2 E
P
d4x1d4y1W0mnls

abcd ~x,y,x1 ,y1!

3D̂ls ,cd~y1 ,x1! ~52!

P̂~2!mn
ab ~x,y!52

i g2

2 E
P
)
i 51

2

d4xid
4yiV0mls

acd ~x,x1 ,x2!

3D̂ll8, cc8~x1 ,y1!D̂ss8, dd8~x2 ,y2!

3V̂s8l8n
d8c8b

~y2 ,y1 ,y!, ~53!

P̂~3!mn
ab ~x,y!52

g4

6 E
P
)
i 51

3

d4xid
4yiW0mlst

acde ~x,x1 ,x2 ,x3!

3D̂ll8, cc8~x1 ,y1!D̂ss8,dd8~x2 ,y2!

3D̂tt8,ee8~x3 ,y3!Ŵt8s8l8n
e8d8c8b

~y3 ,y2 ,y1 ,y!,

~54!

P̂~4!mn
ab ~x,y!52

ig4

24EP
)
i 51

2

d4xid
4yi

3d4ziW0mlst
acde ~x,x1 ,x2 ,x3!D̂sr8,d f8~x2 ,z2!

3D̂tr9,e f9~x3 ,z3!V̂r9r8r
f 9 f 8 f

~z3 ,z2 ,z1!

3D̂rl8, f c8~z1 ,y1!D̂ls8,cd8~x1 ,y2!

3V̂l8s8
c8d8 ~y1 ,y2 ,y!. ~55!

Note that the usual Dyson-Schwinger equation invacuumis
contained in Eqs.~47!–~55! as the special case when the
mean field vanishes,Ā(x)50, and initial state correlations
are absent,K(2)(x,y)50. In this case, the propagator be-
comes the usual vacuum propagator, since the mean-field

contributionP̄ is identically zero, and the quantum partP̂
reduces to the vacuum contribution.
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III. TRANSITION TO QUANTUM KINETICS

The equations of motion~37! or ~39! for F̄mn or Ām and

Eq. ~47! for D̂mn , are nonlinear integrodifferential equations
and clearly not solvable in all their generality. However, the
field equations of motion~37! or ~47! can be cast into much
simpler quantum-kinetic equations with the help of the
Wigner-function technique and gradient expansion, and the
assumption of two-scale separation. As a result one obtains
finally the three master equations mentioned in Sec. I: a sim-
plified Yang-Mills equation describing the space-time

change ofĀ and two equations for the gluon propagatorD̂,
namely, first, anevolution equationfor the QCD evolution in
momentum space and, second, atransport equationfor the
space-time development in the presence ofĀ. In order to
achieve this result, one needs to make a third key approxi-
mation ~in addition to the two approximations of Sec. II A!.

Approximation 3. It is assumed that the induced soft field
Ām is slowly varying on the scale of the short-range, hard
quantum fluctuations, that is, the gradient of the soft field is
small compared to the Compton wavelength of the hard
quanta. Then one can treat the quantum fluctuations of

D̂(r ,k) at short distances separately from the collective ef-
fects represented by to the soft fieldĀ(r ) with long wave-
length.

A. Quantum and kinetic space-time regimes

The key to derive from~37! or ~47! the corresponding
approximate quantum-kinetic equations is the separability of
hard and soft dynamics in terms of the space-time scale
l[1/m, wherem is the parametric momentum scale intro-
duced in Eq.~6!. This implies that one may characterize the
dynamical evolution of the gluon system by a short-range
quantum scale rqua!l, and a comparably long-rangekinetic
scale rkin*l. Low-momentum collective excitations that
may develop at the particular momentum scalegm are thus
well separated from the typical hard gluon momenta
k'>m, if g!1. Therefore, collectivity can arise, because the
wavelength of the soft oscillations;1/gm is much larger
than the typical extension of the hard quantum fluctuations
;1/m. I emphasize that this notion of two characteristic
scales is not just an academic construction, but rather is a
typical property of quantum field theory. A simple example
is a freely propagating electron. In this case, the quantum
scale is given the Compton wavelength;1/me in the rest-
frame of the charge, and measures the size of the radiative
vacuum polarization cloud around the bare charge. The ki-
netic scale, on the other hand, is determined by the mean-
free-path of the charge, which is infinite in vacuum, and in
medium is inversely proportional to the local charge density
times the interaction cross section;1/(nes int). Adopting
this notion to the present case of gluon dynamics, I define
r qua and r kin as follows.

The quantum scaler qua measures the spatial extension of
quantum fluctuations associated with virtual and real radia-
tive emission and reabsorption off a given hard gluon, de-

scribed by the hard propagatorD̂. It can thus be interpreted
as its Compton wavelength, corresponding to the typical
transverse extension of the fluctuations and thus inversely

proportional to the average transverse momentum

r qua[l̂.
1

^k'&
, ^k'&>m, ~56!

where the second relation is imposed by means of the defi-
nition ~6! of hard and soft modes. In general,l̂ can be a
space-time-dependent quantity, because the magnitude of
^k'& is determined by both the radiative self-interactions of
the hard gluons and the interactions with the soft field.

The kinetic scaler kin measures the range of the long-
wavelength correlations, described by the soft mean-field
Ā, and may be parametrized in terms of the average trans-
verse wavelength of soft modes^q'&, such that

r kin[l̄ .
1

^q'&
, ^q'&&gm, ~57!

where l̄ may vary from one space-time point to another,
because the population of soft modesĀ(q) is determined
locally by the hard currentĵ with dominant contribution
from gluons with transverse momentum.m.

The above classification of quantum-~kinetic-!scales
specifies in space-time the relevant regime for the hard~soft!
dynamics, so that the separability of the two scalesr qua and
r kin imposes the following condition on the relation between
space-time and momentum:

l̂! l̄ or ^k'&>m@gm'^q'&. ~58!

The physical interpretation of Eq.~58! is simple: At short
distancesr qua!1/(gm) a hard gluon can be considered as an
incoherent quantumwhich emits and partly reabsorbs daugh-
ter gluons, corresponding to the combination of real brems-
strahlung and virtual radiative fluctuations. Only a hard
probe with a short wavelengthl̂<r quacan resolve this quan-
tum dynamics. On the other hand, at larger distances
r kin'1/(gm), a gluon appears as acoherent quasiparticle,
that is, as an extended object with a changing transverse size
corresponding to the extent of its intrinsic quantum fluctua-
tions. This dynamical substructure is, however, not resolv-
able by long-wavelength modesl̄>r kin of the soft fieldĀ.

Accordingly, one may classify the quantum and kinetic
regimes, respectively, by associating with two distinct space-
time pointsxm andym the following characteristic scales:

sm[xm2ym;l̂5
1

gm
, ]s

m5
1

2
~]x

m2]y
m!;gm,

r m[
1

2
~xm1ym!; l̄ 5

1

m
, ] r

m5]x
m1]y

m;m. ~59!

On thekinetic scalethe effect of the soft field modes ofĀ on
the hard quanta involves the couplinggĀ to the hard propa-
gator and is of the order of the soft wavelength
l̄ 51/(gm), so that one may characterize the soft field
strength by

gĀm~r !;gm, gF̄mn~r !;g2m2, ~60!
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plus corrections of orderg2m2 andg3m3, respectively, which
are assumed to be small.

On thequantum scale, on the other hand,

D̂mn
21;k'

2 *m2@g2m2;gF̄mn , ~61!

and one expects that the short-distance fluctuations corre-
sponding to emission and reabsorption of gluons with mo-
mentak'>m, are little affected by the long-range, soft mean
field, because the color force;gF̄ acting on a gluon with
momentumk';m produces only a very small change in its
momentum.

B. The kinetic approximation

The realization of the two space-time scales, short-
distance quantum and quasiclassical kinetic, allows us to re-
formulate the quantum field-theoretical problem as a relativ-
istic many-body problem within kinetic theory. The key
element is to establish the connection between the preceding
description in terms of Green functions and a probabilistic
kinetic description in terms of so-called Wigner functions
@31#. Whereas the two-point functions, such as the propaga-
tor or the polarization tensor, depend on two separate space-
time pointsx andy, their Wigner transforms utilizes a mixed
space-time/momentum representation, which is particularly
convenient for implementing the assumption of separated
quantum and kinetic scales, i.e., that the long-wavelength
field Ā is slowly varying in space-time on the scale of short-
range quantum fluctuations. Moreover, the trace of the
Wigner-transformed propagator is the quantum analogue of
the single particle phase-space distribution of gluons, and
therefore provides the basic quantity to make contact with
kinetic theory of multiparticle dynamics@18#.

In terms of the center-of-mass coordinater 5 1
2 (x1y) and

relative coordinates5x2y of two space-time pointsx and
y, Eq. ~59!, one can express any two-point function

G(x,y), such asD̂,P, in terms of the coordinates

Gmn
ab~x,y!5Gmn

ab S r 1
s

2
,r 2

s

2D[Gmn
ab~r ,s!. ~62!

The Wigner transformG(r ,k) is then defined as the Fourier
transform with respect to the relative coordinates, being the
canonical conjugate to the momentumk. In general, the nec-
essary preservation of local gauge symmetry requires a care-
ful definition that obeys the gauge transformation properties
@7#, but for the specific choice of gauge~2!, the Wigner
transform is simply@32,46#.

G~r ,s!5E d4k

~2p!4
e2 ik•sG~r ,k!,

G~r ,k!5E d4seik•sG~r ,s!. ~63!

The Wigner representation~63! will facilitate a systematic
identification of the dominant contributions of the soft field

Ā to the hard propagatorD̂, a concept that was developed by
Blaizot and Iancu@7#: First, one expands bothĀ and

D̂5D̂ [ 0]1dD̂ [ Ā] in terms of gradients of the long-range
variation with the kinetic scaler and, second, one makes an
additional expansion in powers of the soft fieldĀ and of the

induced perturbationdD̂ [ Ā];gD̂ [ 0] .

1. Gradient expansion

To proceed, recall that the coordinater m describes the
kinetic space-time dependence;r kin , whereass measures
the quantum space-time distance;r qua. In translational in-
variant situations, e.g., in vacuum or thermal equilibrium,
G(r ,s) in Eq. ~63! is independent ofr m and sharply peaked
about sm50. Here the range of the variation is fixed by
l51/m, Eq. ~56!, corresponding to the confinement length
const31/L in the case of vacuum, or to the thermal wave-
length const31/T in equilibrium. On the other hand, in the
presence of a slowly varying soft fieldĀ with a wavelength
l̄ 51/(gm), Eq. ~57!, the sm dependence is little affected,
while the acquired r m dependence will have a long-
wavelength variation. In view of the estimates~59!, one may
therefore neglect the derivatives ofG(r ,k) with respect to
r m which are of ordergm, relative to those with respect to
sm which are of orderm.

Hence one can perform the so-calledgradient expansion
of the soft field and the hard propagator and polarization
tensor in terms of gradients (s•] r)

n, and keep only terms up
to first ordern51, i.e.,

Ām~x!5 ĀmS r 1
s

2D. Ām~r !1
s

2
•] r Ām~r !, ~64!

and similarly forĀm(y)5 Ām(r 2s/2), as well as

D̂mn~x,y!5D̂mn~r ,s!.D̂mn~0,s!1s•] rD̂mn~r ,s! ~65!

P̂mn~x,y!5P̂mn~r ,s!.P̂mn~0,s!1s•] rP̂mn~r ,s!.
~66!

Then, by using the following conversion rules@11,23# to
carry out the Wigner transformations:

E d4x8 f ~x,x8!g~x8,y!⇒ f ~r ,k!g~r ,k!1
i

2
@~]kf !•~] rg!

2~] r f !•~]kg!] ~67!

h~x!g~x,y!⇒h~r !g~r ,k!2
i

2
~] rh!•~]kg!,

h~y! g~x,y!⇒h~r !g~r ,k!1
i

2
~] rh!•~]kg!, ~68!

]x
m f ~x,y!⇒S 2 ikm1

1

2
] r

mD f ~r ,k!,

]y
m f ~x,y!⇒S 1 ikm1

1

2
] r

mD f ~r ,k!, ~69!

the transformed polarization tensorP(r ,k) is obtained from
P(x,y), Eqs.~48! and ~51!, with
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Pmn~r ,k!5P̄mn~r ,k!1P̂mn~r ,k!, ~70!

where the softmean-field contribution@cf. Eqs.~49!, ~50!# is

P̄mn
ab~r ,k!5~P̄~1!1P̄~2!!mn

ab~r ,k!, ~71!

P̄~1!mn
ab ~r ,k!5

ig

2
V0mnl

abc ~k,0,2k!Āl,c~r !, ~72!

P̄~2!mn
ab ~r ,k!52

ig

6
W0mnls

abcd ~k,0,0,2k!Āl,c~r !Ās,d~r !,

~73!

and thequantum contribution@cf. Eqs.~51!–~55!# is

P̂mn
ab~r ,k!5~P̂~1!1P̂~2!1P̂~3!1P̂~4!!mn

ab~r ,k!, ~74!

P̂~1!mn
ab ~r ,k!51

ig2

2 E d4q

~2p!4i
W0mnls

abcd ~k,q,2q,2k!

3D̂ls ,cd~r ,k!, ~75!

P̂~2!mn
ab ~r ,k!51

g2

2 E d4q

~2p!4i
V0mls

acd ~k,2q,2q8!

3D̂ll8,cc8~r ,q!D̂ss8,dd8~r ,q8!

3V̂s8l8n
d8c8b

~r ;q8,q,2k!, ~76!

P̂~3!mn
ab ~r ,k!52

g4

6 E d4q

~2p!4i

d4p

~2p!4i

3W0mlst
acde ~k,2q,2q8,2p!D̂ll8,cc8~r ,q!

3D̂ss8,dd8~r ,q8!D̂tt8,ee8~r ,p!

3Ŵt8s8l8n
e8d8c8b

~r ;q,q8,p,2k!, ~77!

P̂~4!mn
ab ~r ,k!52

g4

24E d4q

~2p!4i

d4p

~2p!4i

3W0mlst
acde ~k,2q,2q8,2p8!D̂sr8,d f8~r ,q!

3D̂tr9,e f9~r ,q8!V̂r9r8r
f 9 f 8 f

~r ;q,q8,2p!

3D̂rl8, f c8~r ,p!D̂ls8,cd8~r ,p8!

3V̂l8s8
c8d8 ~r ;p,p8,2k!. ~78!

Here the three- and four-gluon vertex functions from Eqs.
~34!, ~35!, and~36! depend explicitly onr :

V̂~r ;ki !5V0~ki !1O@g4f ~r ,ki !#,

Ŵ~r ;ki !5W0~ki !1O@g4f ~r ,ki !#, ~79!

with the bare pointlike verticesV0 ,W0 being r independent
and given by

V0lmn
abc ~k1 ,k2 ,k3!52 i f abc$glm~k12k2!n1gmn~k22k3!l

1gnl~k32k2!m%. ~80!

W0lmns
abcd ~k1 ,k2 ,k3 ,k4!52$~ f acef bde2 f adef cbe!glmgns

1~ f abef cde2 f adef bce!glngms

1~ f acef dbe2 f abef cde!glsgnm%.

~81!

With the above formulas, one can now convert both the
Yang-Mills equation~37! and the Dyson-Schwinger equation
~47! into a set of much simpler equations. For the Dyson-
Schwinger equation, the Wigner transformation together
with the gradient expansion yieldstwo distinct equations for

the hard propagatorD̂mn(r ,k), namely, ~i! an evolution
equation2 and ~ii ! a transport equation. They are obtained
@11,23# by taking the sum and difference of Wigner-
transform of Eq.~47! and its adjoint, using the rules~67!–
~69!,

~i! Evolution equation:

S k22
1

4
] r

2D D̂mn~r ,k!2
1

2
$P̄s

m ,D̂sn%~r ,k!

1
i

4
@] r

lP̄s
m ,]l

kD̂sn#~r ,k!

5dmn~k! 1̂P1
1

2
$P̂s

m ,D̂sn%~r ,k!

1
i

4
@]k

lP̂s
m ,]l

r D̂sn#~r ,k!

2
i

4
@] r

lP̂s
m ,]l

kD̂sn#~r ,k!. ~82!

~ii ! Transport equation:

~k•] r !D̂
mn~r ,k!1

i

2
@P̄s

m ,D̂sn#~r ,k!

2
1

4
$] r

lP̄s
m ,]l

kD̂sn%~r ,k!

52
i

2
@P̂s

m ,D̂sn#~r ,k!1
1

4
$]k

lP̂s
m ,]l

r D̂sn%~r ,k!

2
1

4
$] r

lP̂s
m ,]l

kD̂sn%~r ,k!, ~83!

where] r
2[] r•] r , @A,B#[AB2BA, $A,B%[AB1BA. In

Eqs. ~82! and ~83!, 1̂P51 (0) for D̂F,D̂ F̄ (D̂.,D̂,) arises
as the transform ofdP

4 (x,y). The functiondmn(k) is the sum

2In Ref. @11# the ‘‘evolution’’ equation was called the ‘‘renormal-
ization’’ equation, a term that may be misleading. In order to avoid
confusion with the ‘‘renormalization group’’ equation, the name
evolution equation appears more suitable.
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over the gluon polarizationss @emerging from the Fourier
transform of the operator~25!#;

dmn~k!5 (
s51,2

«m~k,s!•«n* ~k,s!

5gmn2
nmkn1nnkm

n•k
1~n21ak2!

kmkn

~n•k!2
. ~84!

with the properties3 dm
m(k)52, kmdmn(k) →

k2→0
0 and

nmdmn505dmnnn . Furthermore, the initial state contribu-
tion K(2) appearing in Eqs.~37! and~47!, which contributes
only at r 05t0, has been absorbed into the hard propagator

D̂mn
21~r ,k![D̂mn

21~r ,k!2Kmn
~2!~r ,k!d~r 02t0!. ~85!

For the Yang-Mills equation~37! determiningF̄mn(r ), one
obtains on the same level of approximation a compact ex-
pression in terms of the hard current4 ĵ :

@D̄l,ab,F̄lm
b #~r !52 ĵ m

a ~r !52ggmnlsE d4k

~2p!2

3TrH TaS klD̂ns~r ,k!

1
i

2
@D̄l

r ,D̂ns~r ,k!# D J , ~86!

where gmnls52gmngls2gmlgns2gmsgnl and D̄l
r 5]l

r

2 igĀl(r ).

2. Expansion in powers of gĀ

In order to isolate the leading effects of the soft mean

field Ā on the hard quantum propagatorD̂, I follow Ref. @7#
to separate the quantum contribution from the mean field
contribution on the basis of the assumption that theĀ field is
slowly varying on the short-range scale of the quantum fluc-
tuations. To do so, recall Eq.~27!,

D̂~r ,k![D̂ [ 0]~r ,k!1dD̂ [ Ā]~r ,k!, ~87!

with the quantum pieceD̂ [ 0] and the mean-field partdD̂ [ Ā]
defined by

D̂ [ 0]
21

5D̂21u Ā505D0
212P̂u Ā50 ,

dD̂ [ Ā]
21

5D̄212D0
2152P̄, ~88!

where the free-field propagatorD0 and the mean-field propa-

gatorD̄ are given by Eqs.~24! and~26!, respectively. Given
the ansatz~87!, with the feedback of the induced soft field to

the hard propagator being contained indD̂ [ Ā] , the latter is
now expanded in powers of the soft field couplinggĀ, and it

is anticipated that the mean-field induced partdD̂ [ Ā] is a

correction beingat most g timesthe quantum pieceD̂ [ 0] ;
that is,

dD̂ [ Ā]~r ,k!5 (
n51,̀

1

n!
~gĀ~r !•]k!

nD̂ [ 0]~k!

.gĀ~r !•]kD̂ [ 0]~r ,k! ~89!

and, to the same order of approximation,

] r
mdD̂ [ Ā] mn~r ,k!.g~] r

mĀl!]k
lD̂ [ 0]mn~r ,k!, ~90!

where, on the right side, the space-time derivative acts only
on Ā. Now the decomposition~87! with the approximation
~89! is inserted into Eqs.~82!, ~83!, ~86!, and all terms up to

order g2m2D̂ [ 0] are kept. The resulting equations can be
compactly expressed in terms of thekinetic momentumKm
rather than thecanonical momentumkm ~as always in the
context of interactions with a gauge field@33#!, which for the
class of axial-type gauges~2! amounts to the replacements

km→Km5km2gĀm~r !, ]m
r→D̄m

r 5]m
r 2g]m

r Ān~r !]n
k .
~91!

Taking into account approximation 3 of Sec. III A implying

K2D̂@D̄r
2D̂, one finds for the evolution, transport, and Yang-

Mills equation, Eqs.~82!, ~83!, and~86!, respectively,

$K2,D̂ [ 0]
mn

%~r ,K !5dmn~K !1
1

2
$P̂s

m ,D̂ [ 0]
sn

%~r ,K !, ~92!

@K•D̄r ,D̂mn#~r ,K !52
i

2
@P̄s

m ,D̂ [ 0]
sn

#~r ,K !2
i

2
@P̂s

m ,D̂ [ 0]
sn

#

3~r ,K !, ~93!

@D̄r
l ,F̄lm#~r !52 ĵ m~r !52gE d4K

~2p!2
Tr$2KmD̂n

n~r ,K !

1D̂m
n ~r ,K !Kn%, ~94!

where the color indices are suppressed, noting thatD̂mn
ab

5D̂mn , F̄lm5TaF̄lm
a , ĵ m5Taĵ m

a , and Tr@•••#5TrTa@•••#.

3. The physical representation

One sees that the original Dyson-Schwinger equation~47!
reduces in the kinetic approximation to the set of algebraic
equations~92! and~93!. Now recall~cf., Appendix B 3! that
in the CTP framework these equations are still 232 matrix
equations which mix the four different components of

D̂5(D̂F,D̂.,D̂,,D̂ F̄) and ofP̂5(P̂F,P̂.,P̂,,P̂ F̄). For the
following it is more convenient to employ instead an equiva-

3This property reflects that in the noncovariant gauges~C6! only
the two physical polarization states propagate, i.e., those with
«mkm50. For comparison, in the covariant Feynman gauge,
dmn5gmn, dm

m54, andkmdmn5knÞ0.
4Note that in the kinetic approximation, the pieceĵ (3) , Eq. ~46!,

does not contribute, because it has two additionalD̂ insertions and

is down by a factorg/m4 as compared toĵ (1) and ĵ (2) .
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lent set of independent functions, namely, theretardedand

advanced functionsD̂ ret, D̂adv, plus thecorrelation function

D̂cor, and analogously forP̂. This latter set is more directly
connected with physical, observable quantities, and is com-
monly referred to asphysical representation@19#

D̂ ret5D̂F2D̂,, D̂adv5D̂F2D̂., D̂cor5D̂,1D̂..
~95!

Similarly, for the polarization tensor the retarded, advanced,
and correlation functions are defined as@note the subtle dif-
ference to Eq.~95!#

P̂ ret5P̂F1P̂,, P̂adv5P̂F1P̂., P̂cor52~P̂.2P̂,!.
~96!

Loosely speaking, the retarded and advanced functions char-
acterize the intrinsic quantum nature of a ‘‘dressed’’ gluon,
describing its substructural state of emitted and reabsorbed
gluons, whereas the correlation function describes the kinetic
correlations among different such ‘‘dressed’’ gluons. The
great advantage@19,22# of this physical representation is
that, in general, the dependence on the phase-space occupa-
tion of gluon states~the local density! is essentially carried

by the correlation functionsD̂.,D̂,, whereas the dependence

of the retarded and advanced functionsD̂ ret,D̂adv on the local
density is weak. More precisely, the retarded and advanced
propagators and the imaginary parts of the self-energies em-
body the renormalization effects and dissipative quantum dy-
namics that is associated with short-distance emission and
absorption of quantum fluctuations, whereas the correlation
function contains both the effect of interactions with the soft
mean field and of statistical binary scatterings among the
hard gluons.

In going over to the physical representation, one finds
then that Eqs.~92! and ~93! give a set of ‘‘self-contained’’
equations for the retarded and advanced functions alone:

$K2,D̂adv
ret

%mn5dmn1
1

2
~Padv

ret
D̂adv

ret
1D̂adv

ret
Padv

ret
!mn , ~97!

@K•D̄r ,D̂adv
ret

#mn52
i

2
~Padv

ret
D̂adv

ret
2D̂adv

ret
Padv

ret
!mn , ~98!

plus a set of ‘‘mixed’’ equations for the correlation func-
tions:

$K2,D̂adv
ret

%mn52
1

2
~Padv

ret
D̂adv1P retD̂adv

ret
1D̂adv

ret
Padv

1D̂ retP:!mn , ~99!

@K•D̄r ,D̂:#mn52
i

2
~Padv

ret
D̂adv1P retD̂adv

ret
2D̂adv

ret
Padv

2D̂ retPadv
ret

!mn . ~100!

Equations~97!–~100! may be further manipulated by the
following trick. Let the imaginary and real components of
the retarded and advanced propagators be denoted by

r̂mn[2 ImD̂mn5 i ~D̂ ret2D̂adv!mn ,

ReD̂mn5
1

2
~D̂ ret1D̂adv!mn , ~101!

with D̂ ret5(D̂adv)* andu(K0)D̂ ret5u(2k0)D̂adv. The analo-
gous decomposition of the polarization tensor in terms of its

real and imaginary components defines the quantum partP̂
as the sum and difference of the retarded and advanced con-
tributions, respectively:

Ĝmn[2 ImP̂mn5 i ~P̂ ret2P̂adv!mn ,

ReP̂mn5
1

2
~P̂ ret1P̂adv!mn , ~102!

and similarly for the mean-field partP̄, associated with the
presence of a soft field. The imaginary partsr̂ andĜ are the
spectral densityandspectral width, respectively, of the hard
gluons.

In terms of this representation one obtains from Eqs.~93!,
~94!, and~97!–~100! the following final set ofmaster equa-
tions:

$K2,r̂%mn5$ ReP̂,r̂%mn1$Ĝ,ReD̂ [ 0]%mn

1g~ F̄m
l r̂ln1 r̂m

l F̄ln!, ~103!

@K•D̄r ,D̂cor#mn51 i @P̂cor, ReD̂ [ 0]#mn1 i @ ReP̂,D̂ [ 0]
cor

#mn

2
1

2
$P̂cor,r̂%mn2

1

2
$Ĝ,D̂ [ 0]

cor
%mn

2gKlF̄ls]s
KD̂ [ 0]mn

cor

2g~ F̄m
l D̂ [ 0]ln

cor
2D̂ [ 0]m

corl F̄ln!, ~104!

@D̄r
l ,F̄lm#52 ĵ m52gE d4k

~2p!2

3Tr$~2KmD̂n
corn1D̂m

cornKn!%. ~105!

Thephysical significanceof Eqs.~103! and~104! is @11# that
Eq. ~103! determines, in terms of the spectral densityr̂, the
state of a single gluon with respect to its virtual fluctuations
and real emission~absorption! processes, corresponding to
the real and imaginary parts of the retarded and advanced
polarization tensor in the presence of the soft fieldF̄ . Equa-
tion ~104!, on the other hand, characterizes, in terms of the

correlation functionD̂cor, the correlations among different
such gluon states. The polarization tensor appears here in
distinct ways. The first two terms on the right-hand side ac-
count for scatterings between the single-gluon states. The
next two terms incorporate the renormalization effects which
result from the fact that the gluons between collisions do not
behave as free particles, but change their dynamical structure
due to virtual fluctuations, as well as real emission and ab-
sorption of quanta. The last two terms account for the soft
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interaction with the mean fieldF̄ . Equation~105! finally de-
termines the rate of change of he soft fieldF̄ by the hard
gluon current, which involves the full correlation function

D̂cor.
The interlinked structure of Eqs.~103!–~105! is very con-

venient for explicit calculations~demonstrated in Sec. IV!. It
provides a systematic solution scheme, as discussed below,
to solve for the three quantities of interest, namely, the spec-

tral density r̂, the correlation functionD̂cor, and the mean
field Ā. In view of Eqs.~103!–~105! the natural logic is a

stepwise determination ofr̂→D̂ [ 0]
cor→dD̂ [ Ā]

cor→D̂cor→ ĵ→ F̄ .

C. General solution scheme

Let me exemplify the above interpretation of Eqs.~103!
and~104! in more quantitative detail~see also Refs.@19,22#!.
The formal solutionof Eq. ~103! for the retarded and ad-
vanced functions is@19#

D̂mn
ret 5D0mn

ret 1~D0
retP retD̂ ret!mn ,

D̂mn
adv5D0mn

adv 1~D0
advPadvD̂adv!mn , ~106!

where Padv
ret 5P̂adv

ret 1P̄adv
ret . This determinesr̂mn via Eq.

~101!. OnceD̂adv
ret is known, the solution of Eq.~104! for the

correlation function is given by@19#

D̂mn
cor52~D̂ retD0

cor21D̂adv!mn1~D̂ retP̂corD̂adv!mn ,
~107!

with Pcor5P̂cor1P̄cor. It has the general form@22#

D̂mn
cor~r ,K !52 i r̂mn~r ,K !G~r ,K !, ~108!

i.e., the convolution of the spectral densityr̂mn with the
phase-space density of hard gluons G:

G~r ,K !5112g~r ,K !, ~109!

where the 1 comes from the vacuum contribution of a single
gluon state, and the 2g represents the correlations with other
hard gluons that are close by in phase-space. Note that the
function g is constrained to be a real and even function in
K ~cf., Appendix F!. From Eq.~108! it follows that the total
number of gluons N in a space-time elementd4r is

N~r ![
dN

d4r
5E d4K

~2p!4
Tr@dmn

21~K !i D̂mn
cor~r ,K !#

5E d4K

~2p!4
r̂~r ,K !G~r ,K !, ~110!

where dmn(K) is the polarization sum given by Eq.~84!,

dmn
2152dmn and r̂5 1

2 dmnr̂mn , and an averaging over the
transverse polarizations and the color degrees of freedom is
understood.

The above formulas become immediately familiar when
considering for illustration the simplest case of a noninter-
acting system of gluons, thefree-field case. In this case,

P50 and one finds, utilizing the formulas of Appendix F,
for the free retarded and advanced functions

D0mn
ret ~K !5

dmn~K !

K21 i e
, D0mn

adv ~K !5
dmn~K !

K22 i e
. ~111!

Hence, the free-field spectral densityr0 which is the differ-
ence betweenD0

ret andD0
adv, is on-shell:

2 ir0mn5D0mn
ret 2D0mn

adv 52pd~K2!dmn~K !, ~112!

by means of the principal-value ~PV! formula
(K26 i e)215PV(1/K2)7 ipd(K2). The free-field correla-
tion functionD0

cor is then readily determined via Eq.~108!:

D0mn
cor ~r ,K !522p id~K2!G0~r ,K !dmn~K !, ~113!

and so, with G05112g0, the number of on-shell gluons per
d4r is

N0~r !5E d3K

~2p!32K0
G0~r ,KW !,

G0~r ,KW !5G0~r ,K !uK05uKW u5~2p!32K0
dN0

d3K
. ~114!

The free-field exercise, Eqs.~111!–~114!, illustrates the
two main properties, which hold also for the general inter-
acting case, Eqs.~106!–~110!.

~i! The spectral densityr̂mn(r ,K) describes the ‘‘dress-
ing’’ of a singlegluon state with momentumK with respect
to its radiative quantum fluctuations, i.e., its fluctuating coat
of emitted and reabsorbed gluons. The function
Tr@dmn

21r̂mn# is the intrinsic gluon distribution, that is, the
number of gluons inside this gluon state. The spectral density
is a property of the state itself and therefore is nonvanishing
even in vacuum, in the absence of a medium. For on-shell
particles r̂mn}d(K2), and therefore there are no intrinsic
gluons present.

~ii ! The correlation functionD̂mn
cor(r ,K) describes an inter-

actingensembleof such fluctuating gluon states, and is given
by the number density G(r ,K) of those gluons weighted with
their spectral densityr̂mn , containing the intrinsic gluon den-
sity of each of them. For the noninteracting case, it obviously
reduces to an ensemble of on-shell particles withK05uKW u.

In closure of this section, a genericsolution schememay
be the following iteration recipe~which is exemplified in the
next section!.

~1! Solve the evolution equation~103! for D̂adv
ret and the

associated spectral densityr̂ at starting pointt5t0 with
specified initial conditionr̂(t0)5r0 at a large initial momen-
tum or energy scaleQ. This can be done just as in free space,
except that the kinetic momentumK5k2gĀ carries now an
implicit dependence on the soft fieldĀ with specified initial
value Ā(t0).

~2! Solve the transport equation~104! for the correlation

function D̂cor5D̂ [ 0]
cor

1dD̂ [ Ā]
cor . This involves~a! the construc-

tion of D̂ [ 0]
cor with the help ofr̂ andD̂adv

ret
from step~1! and~b!
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the calculation of the mean-field-induced correctiondD̂ [ 0]
cor

from the right side of Eq.~104!. The resulting space-time

evolution of D̂cor describes then the evolution of the gluon
density G within a time interval betweent0 and
t1;1/̂ K'1&, corresponding to the evolution fromQ down to
a meanK'1 at t1.

~3! Insert the solution for the full correlation function

D̂cor into the currentĵ m on the left side of Eq.~105! and
integrate over all momentaK from the initial momentum
scaleQ down to the hard-soft scalem. This gives the current
induced by the motion of the total aggregate of hard gluons
during the evolution betweent0 andt1. Then solve the Yang-
Mills equation ~105! to determine the soft fieldĀ ~equiva-
lently F̄ ) that is generated att1 as a result of the hard gluon
evolution.

~4! Return to step~1! and proceed with second iteration,
replacingĀ(t0) by Ā(t1), and so forth.

IV. SAMPLE CALCULATION: HARD GLUON
EVOLUTION WITH SELF-GENERATED SOFT FIELD

This section is devoted to exemplifying the practical ap-
plicability of the developed formalism by following the so-
lution scheme of Sec. III C for the specific physics scenario
advocated in the introduction and schematically illustrated in
Fig. 1. I consider a high-energy beam current of hard gluons
as it evolves in space-time and momentum space, and even-
tually induces its soft mean field.

A. The physics scenario

~i! The initial state is modeled as an ensemble of a num-
ber N0 of uncorrelated hard gluons. The Lorentz-frame of
reference is the one where the gluons move with the speed of
light in the 1z direction. The initial gluon beam is prepared
at

r 0
m5~ t0 ,rW'0 ,z0!, t05z050, 0<r'0<R, ~115!

corresponding att0 to a sheet located with longitudinal po-
sition z0 with transverse extent up to a maximumR, speci-
fied later.

~ii ! The initial hard gluons are imagined to be produced at
some very large momentum scaleQ2@L2, with their ener-
gies and longitudinal momentum along thez axis being
.Q. These gluons are therefore strongly concentrated
around the light cone with momenta

k0.k3'Q,
k'

2

Q2
'0, ~116!

and hence have very small spatial extentDr;1/Q. That is,
the initial state gluons are taken asbare quanta without any
radiation field around them.

~iii ! The subsequent timelike evolution of these bare glu-
ons proceeds then by two competing processes:~a! the re-
generation of the radiation field by emission and reabsorp-
tion of virtual quanta and~b! the bremsstrahlung emission of
real gluonic offspring. As a consequence, phase space will be
populated with progressing time by more and more gluons.

The typical energies decrease, whereas the average trans-
verse momentum increases@cf. Fig. 1~a!#, but yet within the
hard momentum range

Q2@k'
2 >m2@L2. ~117!

Eventually, the evolving gluon system reaches the point at
which the transverse momenta become of the order of the
energies. This point is defined to be characterized by the
scalem—the transition from hard, perturbative to soft, non-
perturbative regimes. WhenK'

2 &m2, the individual gluons
cannot be resolved anymore, and their coherent color current
acts as the source of the soft mean field.

~iv! Because of the restricted kinematic region~117! of
the hard gluon dynamics, the couplingas5g2/4p satisfies

as~k'
2 !!1, as~k'

2 !ln~Q2/k'
2 !.1, for all k'

2 >m2,
~118!

so that a perturbative evaluation of the hard gluon interac-
tions is applicable, providedm*1 GeV. The perturbative
analysis in the following subsections will be restricted to
leading order: the hard gluon interactions then includeonly
radiative self-interactions ;g2, but no gluon-gluon
scatterings5 ;g4, or other higher-loop contributions. Hence,

for the hard gluon propagatorD̂5D̂ [ 0]1dD̂ [ Ā] of Eqs.~87!,
~88!, the required accuracy for the quantum contribution

D̂ [ 0] is

D̂ [ 0]5D01Ĉ~g2;D0!1O~g4!, ~119!

whereD0 is the free-field solution. On top of this the inter-
action of the hard gluons with the soft field is treated as a

correctiondD̂ [ Ā] as in Eq.~89!, to leading order;gĀ to the

solution D̂ [ 0] of Eq. ~119!:

dD̂ [ Ā]5C̄~gĀ;D [ 0]!1O~g2Ā2!. ~120!

Although this so defined physics scenario, with an initial
state of bare gluons, being only statistically correlated and
incoherent, may appear to be rather academic, it has in fact
valuable physical relevance. For example, it may be viewed
as the idealized version of the initial density of materialized
gluons in the very early stage of a high-energy collision of
two heavy nuclei. In this example, one expects the material-
ization of a large numberN0 of virtual gluons in the wave
functions of the colliding nuclei, to occur very shortly after
the nuclear overlap by means of hard scatterings. If one
imagines the time of nuclear overlap equal tot050, and

5Aside fromg4!g2, the neglect of scatterings is reasonable here,
because for a beam of almost collinearly moving gluons, thecolli-
sion rate, i.e., the number of collisions per unit time and unit vol-

ume, Rcoll5dNcoll /dtd3r}*d3k1d3k2f g1
(k1) f g2

(k2) (̄uMg1g2
u2,

vanishes if the relative velocityv125uv12v2u5uk1 /v12k2 /v2u of
any two gluons tends to zero, and hence their total invariant mass

ŝ5(k11k2)2. The suppression of gluon scattering arises from

uM u2, being a function of the Mandelstam variablesŝ, t̂ , û only,

vanishes if the gluons move parallel, because thenŝ. t̂.û'0 and
the scattering matrix element tends to zero.
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assume the average momentum transfer of initial hard scat-
terings 'Q2, then the above idealistic scenario acquires a
more realistic meaning.

B. Choice of light cone gauge and kinematics

For the purpose of calculational convenience, I will
henceforth work in thelight cone gaugewhich is a special
case of the axial-type gauges~2!. It is defined by Eqs.~C3!–
~C6! of Appendix C, that is,

n•Aa50, n250 ~Am
a 5 Ām

a ,am
a !, ~121!

corresponding to the gauge fixing term in Eq.~3!

I GF@n•A#5E
P
d4xS 2

1

2a
@n•Aa~x!#2D , with a→0.

~122!

I choose the lightlike vectornm parallel to the direction of
motion of the gluon beam along the forward light cone:

nm5~n0,nW' ,n3!5~1,0W' ,21! ~123!

and employlight cone variables, i.e., for any four-vector
vm,

vm5~v1,v2,vW'!, v25v1v22v'
2 , ~124!

v65v75v06v3, vW'5~v1,v2!, v'5AvW'
2 ,

~125!

vmwm5
1

2
~v1w21v2w1!2vW'•wW ' . ~126!

Then nm5(n1,n2,nW')5(0,1,0W'), so that the gauge con-
straint ~121! reads

n•A5A15A250, ~127!

and the nonvanishing components of the gauge-field tensor
F̄mn52 F̄ nm are

F̄1252]1Ā2, F̄1 i5]1Āi ,

F̄2 i5]2Āi2] i Ā22 ig@ Ā2,Āi #,

F̄ i j 5] i Ā j2] j Āi2 ig@ Āi ,Ā j #, ~128!

where]65]/]r 6 and the indexi 51,2 labels the transverse
components.

Finally, the kinematic imposition~116! reads in terms of
light cone variables

K1K25K21K'
2 !~K1!2, ~129!

K1.2K0.2K3, K2.0, K'
2 @K2. ~130!

Physically this implies that the hard gluons are effectively on
mass shell, i.e., their actual virtuality~degree of off-
shellness! K2 is small compared toK'

2 , the transverse mo-

mentum squared, and negligibly small compared to the scale
(K1)2. Within this kinematic regime, I henceforth consider
K2/(K1)2→0.

C. Properties of D̂µn and Pµn in the light cone representation

The most general Lorentz decomposition of the polariza-

tion tensorP5P̂1P̄ in light cone gauge can be written as
Pmn

ab(r ,K)5dabPmn(r ,K), with

Pmn~r ,K !5S gmn2
KmKn

K2 D P'1S KmKn

K2 D P i

1S nmKn1Kmnn

n•K DP11S K2nmnn

~n•K !2 D P2 ,

~131!

where P' ,P i ,P1 ,P2 are scalar functions of dimension
mass squared and depend on the four-vectorsr m and
Km5km2gĀm. In light cone gauge, the Ward identity for the
gluon propagator@27#

lim
a→0

H 1
a ~n•K !nmD̂mn1

1

~2p!4
KnJ 5

!
0 ~132!

enforcesPmn to be transverse with respect tonm and sym-
metric in its arguments and indices:

nmPmn
ab505Pmn

abnn, Pmn
ab5Pnm

ba , ~133!

which implies that

P i52P151P2 . ~134!

Therefore, withn•K5K1,

Pmn
ab~r ,K !5dabS gmn2

KmKn

K2 D P'1dabS KmKn

K2

1
nmKn1Kmnn

K1
1

K2nmnn

~K1!2 D P i , ~135!

P'5
1

2S gmn1
K2

~K1!2
nmnnD Pmn, P i53P'2Pm

m .

~136!

The corresponding full gluon propagator is given by the in-

verse of (D̂)215(D0)212P. Using the free-field form

D0mn
ab ~r ,K !5dabdmn~K !D0~r ,K !,

dmn~K !5gmn2
nmKn1Kmnn

K1
1

K2nmnn

~K1!2
, ~137!

with the scalar functionsD0[(D0
ret,D0

adv,D0
cor) @cf., Eqs.

~111!–~113!#,
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D
0
adv
ret

~K !5
1

K26 i e
, D0

cor~r ,K !522p id~K2!G0~r ,K !,

~138!

one finds

D̂mn
ab~r ,K !5dabD0~r ,K !S 1

12P' /K2D H gmn2
nmKn1Kmnn

K1

1
K2nmnn

~K1!2 S P i /K2

12~P'2P i!/K
2D J . ~139!

Now, because of Eq.~130!, the last term in Eq.~139! van-

ishes forK2/(K1)2→0, and the full propagatorD̂ can be
expressed as the free-field counterpartsD0 times a scalar
form-factor functionZ whose momentum dependence con-
tains only the Lorentz invariantsn•K5K1 andK'

2 :

D̂mn
ab~r ,K !5dabdmn~K !D0~r ,K !Z~r ,K1,K'

2 !, ~140!

where, because ofK2/(K1)2→0, the functiondmn reduces
now to

dmn~K !5gmn2
nmKn1Kmnn

K1
~141!

and the form factorZ is related to the polarization tensor by

Z~r ,K1,K'
2 !5

1

12P' /K2
, ~142!

with boundary condition

Z~0,K1,K'
2 !uK5Q51. ~143!

HereQ is the renormalization point, determined by the mo-
mentum scale of the initial state hard gluons~which is speci-
fied in the next subsection!.

The great advantage of the light cone gauge becomes evi-
dent now: the solution of the full retarded, advanced, and
correlation functions~106!–~108! boils down to calculating a
single scalar function for each of them, namely, the form
factorZ, which is simply multiplied to the free-field forms
~111!–~113!. For the retarded and advanced functions, with

Zadv
ret

5
1

12P
'
adv
ret

/K2
~144!

one has

D̂mn
ret ~K !5

dmn~K !

K21 i e
Zret~r ,K1,K'

2 !,

D̂0mn
adv ~K !5

dmn~K !

K22 i e
Zadv~r ,K1,K'

2 !, ~145!

which satisfy the useful relationsD̂mn
ret 5(D̂mn

adv)* and

D̂mn
ret (K0,KW )5D̂mn

adv(2K0,KW ). Defining

Zr[Zret2Zadv, ~146!

the spectral density follows immediately as

r̂mn~r ,K !5 i ~D̂ ret2D̂adv!mn~r ,K !

5dmn~K !~22p i !Zr~r ,K1,K'
2 !, ~147!

and the correlation function is obtained as

D̂mn
cor~r ,K !5dmn~K !~22p i !Zr~r ,K1,K'

2 !@112g~r ,K !#.
~148!

D. Specifying the initial state

To fix the initial conditions for the scenario described in

Sec. VI A, bothD̂ and Ā have to be provided with initial
values atr 0[t050. The initial condition for the hard propa-
gator is chosen as

D̂mn~r ,K !ur 05r 3505D0mn~0,rW' ,K !, ~149!

referring to a statistical ensemble of bare gluon states at time
r 050, which can be characterized by a single-particle den-
sity matrix of the Gaussian form as given by Eq.~B14! of
Appendix B. This ansatz corresponds to an initial state
source term in Eq.~47! of the form

D0mn
cor ~r ,K !ur 5~0,rW',0!5Kmn

~2!~r ,K !d~r 0!d~r 3!

5r0mn~K !G0~r ,K !. ~150!

As assumed in Sec. IV A, the initial ensemble consists of a
total numberN0 of bare gluons with total invariant mass
Q2, all moving with equal fractions of the total momentum
Qm5Qm/N0. That is, each gluon moves initially with mo-
mentumQm5(Q1,0,0') collinearly to the others along the
light cone. Throughout the ultrarelativistic limit it is under-
stood thatQ2→`, i.e., Q1@L, whereL'0.220.3 GeV.
The spatial distribution of theseN0 initial gluons atr 050 is
taken as ad distribution along the light cone atr 3[z050,
and a random distribution transverse to the light cone mo-
tion. That is, the initial multigluon ensemble is prepared at
light cone position r 15t01z050 and light cone time
r 25t02z0 with a transverse smearing 0<r'<N0 /AQ2,
where the typical transverse extent of each gluon is
dr''1/Q2!1 fm. Accordingly, the initial state spectral
densityr0 in Eq. ~150! is taken as

r0~K !5
~2p!4

K1
d~K12Q1!dS K22

K'
2 1Q2

K1 D d2~KW '!,

E dK1dK2d2K'

~2p!4
r0~K !51. ~151!

The corresponding retarded and advanced functionsD
0
adv
rel

are
of the form ~111!

D
0
adv
ret

~K !5PVS 1

K2D 7
i

2
r0~K !. ~152!
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Finally, the initial state correlation functionD0
cor is the con-

volution of r0 with the density of bare gluons at the scale
Q and light cone time~position! r 25r 150:

D0mn
cor ~r ,K !5E d4K8~2p!4dmn~K8!r0~K8!G0~r ,K !,

~153!

where G0(r ,K)[G0(r )G0(K) with

G0~r !5
N0

p
d~r 2!d~r 1!u~12N0r'

2 Q2!,

G0~K !5
~2p!4

K1
d~K12Q1!dS K22

K'
2 1Q2

K1 D d2~KW '!.

~154!

The visualization of the initial gluon density G0 in Eq. ~154!
is a two-dimensional color-charge density: It is spread out in
the two transverse directionsrW' in a disc with radius
R51/AN0Q251/Q, and ad function in longitudinal direc-
tion at r 150 at timer 250. The normalization is such that
the total numberN0 of initial bare gluons is given by

E dr2dr1d2r'G0~r ,K ![N0G0~K !. ~155!

Finally, because of this statistical ensemble of almost
pointlike, bare gluons, one does not expect any collective
mean-field behavior at initial timer 05t050 and at large
Q2, so that the magnitude of the soft field is initially equal to
zero which is consistent with Eq.~12!:

Ām~r 1,r 2,rW'!ur 25r 15050. ~156!

This completes the construction of the initial state, start-
ing from which I now address the solution of the set of
equations~103!–~105!.

E. Solving for the spectral densityr̂µn

To find the spectral densityr̂mn , the solution ofD̂ [ 0]
ret and

D̂ [ 0]
adv is needed. The first correction to the free-field solution

~112! arises from two contributions:~a! from the one-loop
hard gluon self-interaction of orderg2 that is contained in the

hard polarization tensorP̂ and ~b! from the coupling of the

hard gluon propagator to the soft fieldĀ in P̄ which is of
order gĀ. Within the perturbative scheme~119! and ~120!
the retarded and advanced propagators are to be evaluated to
order g2 from Eq. ~106! with the internal propagators in

Padv
ret

taken as the free-field solutions

D̂
[ 0]
adv
ret

5D
0
adv
ret

1D
0
adv
ret

P̂adv
ret

@g2;D0#D
0
adv
ret

, ~157!

with the subsidiary condition@K•D̄r ,D̂
[ 0]
adv
ret

#501O(g4). To

order g2, the gluon polarization tensorP̂ as given by Eqs.

~74!–~78!, reduces to the one-loop termP̂ (2), because the

tadpole termP̂ (1) vanishes as usual in the context of dimen-

sional regularization @27#, and the two-loop terms

P̂ (3),P̂ (4) are of orderg4. Hence, (P̂ ret2P̂adv)@g2;D0# in
Eq. ~157! reduces to

~P̂ ret2P̂adv!mn
ab~r ,K !

52
ig2

2 E d4q

~2p!4
V0mls

acd ~K,2q,2K1q!V̂0s8l8n
d8c8b

~r ;K

2q,q,2K !dcc8ddd8dll8~q!dss8~K2q!

3$D0
adv~r ,q!D0

cor~r ,K2q!2D0
cor~r ,q!D0

ret~r ,K2q!%,

~158!

whereD0mn
ab (r ,K)5D0(r ,K)dmn(K)dab are the zeroth order

solutions~111! and ~113!.
The mean-field contribution~71!–~73! to the retarded and

advanced components ofP̄, on the other hand, vanishes,
becauseF̄mn5TaF̄mn

a is antisymmetric and traceless6:

~P̄adv
ret

D̂adv
ret

!mn
ab~r ,K !522gdabdmnD

0
adv
ret

~r ,K !S 1

3
grlF̄ rl~r ! D

50. ~159!

Hence, the dependence on the soft fieldF̄mn or Ām is resident
only implicitly in the kinetic momentumKm5km2gĀm , so
that Eq. ~103! becomes formally identical to the case of
Ā50, in which Km5km . Exploiting this formal analogy,

one can evaluate explicitlyP̂mn
ret 2P̂mn

adv in the kinematic
rangeQ2*(K1)2@K'

2 >m2 by using standard techniques of
QCD evolution calculus@11,35#. Inserting into Eq.~158! the
free-field expressions forD0

ret, D0
adv, and D0

cor, from Eqs.
~111!, ~113!, one finds that toO(g2) the polarization tensor

P̂adv
ret

does not depend onr ; hence one may write

P̂adv
ret

~r ,K ![P̂adv
ret

~K ! Zadv
ret

~r ,K ![Zadv
ret

~K !. ~160!

Using the light cone variables~126!, for the momenta, to-
gether with the light cone phase-space element

d4q 5
‘ ‘ q2→0’’ 1

2
dq1dq2d2q'd~q1q22q'

2 !5
p

2

dq1

q1
dq'

2 ,

~161!

and using Eqs.~136! and ~142!, P̂'
ret2P̂'

adv5 1
2 (P̂adv

ret
)m

m one

finds the form factorsZadv
ret

5(12P
'
adv
ret

/K2)21 to leading-log
accuracy:

6Note, however, that this cancellation occurs only in the light cone
gauge~122! with gauge parametera50. In a general noncovariant
gauge withaÞ0, one encounters on the right-hand side of Eq.

~159! a finite terma (n•] r)@nnĀm(r )1nmĀn(r )#.
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Zret~K1,K'
2 !

5expH 2
1

2EK'
2

K125Q2

dq'
2 E

0

K1dq1

q1

as~q'
2 !

2pq'
2

gS q1

K1D J ,

~162!

Zadv~K1,K'
2 !u~K1!52Zret~2K1,K'

2 !u~2K1!,
~163!

where

as~q'
2 !5

4p

11ln~q'
2 /L2!

,

g~z!52NcS z~12z!1
12z

z
1

z

12zD , ~164!

and z5q1/K1, 12z5q81/K1, q85K2q. The effective
form-factor functionZr can be approximately evaluated:

Zr~K1,K'
2 !5Zret2Zadv'5 expH 2

3as

2p
ln2S Q2

K'
2 D J for K'

2 >mQ,

expH 2
3as

2p F1

2
ln2S Q2

m2D 2 ln2S K'
2

m2 D G J for K'
2 ,m Q.

~165!

SubstitutingZr into Eq. ~145! for D̂mn
ret and D̂mn

adv, one

obtains for the spectral densityr̂5 idmn
21(D̂mn

ret 2D̂mn
adv),

r̂~K1,K'
2 !5Zr~K1,K'

2 !
~2p!4

K1 F d~K12Q1!d~K'
2 !

1E
K'

2

Q2dq'
2

q'
2

as~q'
2 !

2p

3E
0

1

dzg~z!r̂S K1

z
,q'

2 DZr21S K1,
q'

2

z D G .

~166!

The previously advocated interpretation of the spectral den-
sity r̂ of an initial state gluon as the density of its ‘‘intrinsic’’
gluon fluctuations becomes clearer now:r̂ represents the
structure function of a gluon that was initialized as a bare
state atQ2. Looking at this gluon state with a resolution
scaleK'

2 , one sees atK'
2 5Q2 only the initial bare gluon

itself, becauseZr(Q1,Q2)51, Eq. ~143!, and the integral
term in Eq. ~166! vanishes. ForK'

2 ,Q2, the form factor
Zr(K1,K'

2 ) decreases@cf. Eqs.~162!, ~165!#, and so the first
term, which is the probability that the gluon remains in its
bare initial state, is suppressed byZr, whereas the integral
term, which is the adjoint probability that the gluon contains
a distribution of intrinsic gluons, increases with weight
Zr(K1,K'

2 )/Zr(K1,q'
2 /z). Hence the evolution of the spec-

tral densityr̂ describes the change of structure of the initially
bare gluon state due to real and virtual emission and absorp-
tion of daughter gluons, corresponding to the generation of
virtual Coulomb field coat and real bremsstrahlung, respec-
tively.

Equation~166! can be solved in closed form by using the
following trick to effectively eliminateZr. First, note that
r̂ satisfies the momentum sum rule@19#

E
0

K1

dq1q1r̂~q1,q'
2 !5~K1!2,

E
0

K1

dq1q1
]

]q'
2
r̂~q1,q'

2 !50, ~167!

for any value ofq'
2 . Equation~167! is nothing but a mani-

festation of light cone momentum conservation, meaning
that the aggregate ofq1 momentum from intrinsic gluons
must add up to the totalK1 of the gluon state composed of
those. This is a general property, which is immediately evi-
dent in the free-field case. Next, multiply Eq.~166! by
q1/K1 and integrate overq1 from 0 toK1, which yields on
account of the sum rule~167!

15Zr~K1,K'
2 !F11E

K'
2

Q2dq'
2

q'
2

as~q'
2 !

2p

3E
0

1

dzg~z!Zr21S K1,
q'

2

z D G , ~168!

which does not containr̂. Next, multiply this formula with
Zr21(K1,K'

2 ) from the left, and then differentiate with re-
spect toK'

2 by applyingK'
2 ]/]K'

2 :

S K'
2 ]

]K'
2
Zr21~K1,K'

2 !D r̂~K1,K'
2 !1Zr21~K1,K'

2 !

3S K'
2 ]

]K'
2
r̂~K1,K'

2 !D
52Zr21~K1,K'

2 !
as~K'

2 !

2p E
0

1

dzg~z!
1

z
r̂S K1

z
,zK'

2 D .

~169!
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Using Eq. ~162!, the derivative]Zr/]K'
2 on the left-hand

side can be rewritten as

K'
2 ]

]K'
2
Zr21~K1,K'

2 !52Zr21~K1,K'
2 !

1

2

as~K'
2 !

2p

3E
0

1

dzg~z!. ~170!

Substituting this into Eq.~166! and multiplying byZr, one
obtains a differential evolution equation in the manner
of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ~DGLAP!

@34,35# that involves onlyr̂, but notZr anymore7:

K'
2 ]

]K'
2
r̂~K1,K'

2 !5
as~K'

2 !

2p E
0

1dz

z
g~z!F r̂S K1

z
,K'

2 D
2

z

2
r̂~K1,K'

2 !G . ~171!

The explicit solution of this equation is well known@36,37#:

r̂~K1,K'
2 !5r0~K1,K'

2 !1r1~K1,K'
2 !expF2

Nc

12p
g~K'

2 !G
3expFA4Nc

11p
g~K'

2 !h~K1!G , ~172!

where

r0~K1,K'
2 !5

~2p!4

K1
d~K12Q1!d~K'

2 2Q2!,

r1~K1,K'
2 !5

~2p!4

K1

1

A4p
F Nc

11p
g~K'

2 !G1/4

@h~K1!#23/4,

g~K'
2 !5 lnF ln~Q2/L2!

ln~K'
2 /L2!

G , h~K1!5 lnS Q1

K1 D . ~173!

F. Solving for the correlation function D̂µn
cor

Within the perturbative scheme~119! and ~120!, the cal-

culation ofD̂cor5D̂ [ 0]
cor

1dD̂ [ Ā]
cor is most conveniently split into

two steps.

~1! The quantum contributionD̂ [ 0]
cor is evaluated to order

g2 from Eq. ~107!, i.e., the hard polarization tensor

P̂cor@g2,D0# is to be calculated again in one-loop approxima-
tion with free-field internal propagators. The mean-field part
polarization tensor, on the other hand, is set to zero in this

first step:P̄cor50.

~2! The mean-field-induced correctiondD̂ [ Ā]
cor in leading

ordergĀ is then added by calculatingP̄cor@g;D0#. The quan-

tum part now is set to zero in this second step:P̂cor50 @as it

is already contained inD̂ [ 0]
cor from step~1!#.

1. The contributionD̂
†0‡
cor

Since to orderg2 only the radiative self-interaction con-

tributes to the hard propagatorD̂ [ 0] , and scattering processes
that could alter the gluon trajectories are absent, the transport

equation for the partD̂ [ 0] simplifies to

@K•D̄r ,D̂ [ 0]
cor

#501O~g4!. ~174!

Therefore, with respect to the space-time variabler , Eq.
~174! implies a free-streaming behavior in the presence of
the soft mean field, as implicitly contained inK5k2gĀ,

that is, D̂ [ 0]
cor(r ,K)5D̂ [ 0]

cor(r 82Vr2) with Vm5Km /K1 and

r 8,r . Hence, Eq.~107! with D̂ [ 0]
cor→D0

cor remains to be con-
sidered:

D̂ [ 0]
cor

52D0
ret~D0

cor212P̂cor@g2,D0# !D0
adv. ~175!

The easiest way to obtainD̂ [ 0]
cor is to use the formula~108!

and simply convolute the total number density of gluons
G5112g with the spectral densityr̂ obtained in the preced-
ing subsection. To prove that the relation~108! is indeed

consistent, one calculates insteadD̂ [ 0]
cor from Eq. ~175! di-

rectly. The procedure is fully analogous to the previous sub-
section except that, instead ofPret2Padv, one needs to evalu-

ateP.1P,. The resulting form ofP̂cor@g2,D0# in Eq. ~175!
is

~P̂cor!mn
ab~r ,K !52~P̂.1P̂,!mn

ab~r ,K !

5
ig2

2 E d4q

~2p!4
V0mls

acd ~K,2q,2K1q!

3V̂0s8l8n
d8c8b

~r ;K2q,q,2K !

3dcc8ddd8dll8~q!dss8~K2q!

3$D0
.~r ,q!D0

,~r ,K2q!

1D0
,~r ,q!D0

.~r ,K2q!%, ~176!

where in the integral, the free-field formsD0mn
: are given by

~cf. Appendix F!:

D0mn
:ab~r ,K !5D0

:~r ,K !dmn~K !dab,

D0
:~r ,K !5~22p i !d~K2!@u~6K1!1g0~r ,6K !#.

~177!

Inserting into Eq.~176! the expressions~177!, and observing

that in Eq.~107! Pcor is sandwiched betweenD̂ ret and D̂adv,
i.e., appears only in the combination

D̂ml
ret P̂lr

corD̂rn
adv}dml~K !dlt~q!dtr~K2q!drn~K !

}dmn~K !P̂'
cor~K !, ~178!

7It should be noted that in obtaining~171!, the fact that

r̂(K1/z,zK'
2 ). r̂(K1/z,K'

2 ) was used—a property that is due to

the very weakz dependence of theK'
2 argument ofr̂ @35#.
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where P̂'
cor5grtP̂rt

cor, and dmldln5dmn , one finds after a
calculation analogous as in the preceding subsection the fol-

lowing result for theD̂ [ 0] part of the correlation function:

D̂ [ 0]
cor

~r ,K1,K'
2 !5Tr@dmn

21~K !D̂ [ 0]mn
cor

~r ,K !#

5E
K'

2

Q2dK'8
2

K'8
2

as~K'8
2!

2p E
0

1dz

z
g~z!

3F $r̂~112g!%~r ,K1/z,K'8
2!

2
z

2
$r̂~112g!%~r ,K1,K'8

2!G .
~179!

Comparison with Eq.~171! reveals thatD̂ [ 0]
cor is indeed the

convolution of the spectral densityr̂ with the total gluon
density G5112g, as advocated by Eq.~108!. Hence,

G[0]~r ,K1,K'
2 !5G0~r ,Q1,0'!

1E
K'

2

Q2dK'8
2

K'8
2

as~K'8
2!

2p E
0

1

dzg~z!

3F1

z
G[0]S r ,

K1

z
,K'8

2D
2

1

2
G[0]~r ,K1,K'8

2!G , ~180!

where G0(r ,Q1,0') is the initial gluon density~154!. In the
limit z!1 the integral~180! can be approximately evaluated
analytically@38,39#. This gives an estimate of the gluon mul-
tiplicity @40,41# as a function ofK'

2 at fixed space-time point
r :

G[0]~r ,K'
2 !5 i E

0

Q1

dK1G[0]~r ,K1,K'
2 !

5G0~r ,Q2!S ln~Q2/L2!

ln~K'
2 /L2!

D 21/4

3expH 2A Nc

11pFAlnS Q2

L2D
2AlnS K'

2

L2D G J , ~181!

where G0(r ,Q2) is given by Eq.~154!. It is evident that in
the kinematic regimeQ2>K'

2 >m2, the hard gluon multi-
plicity is characterized by a rapid growth as the gap between
the initial scaleQ2 andK'

2 increases.

2. The contributiondD̂
†Ā‡
cor

The leading-order mean-field contributiondD̂ [ Ā]
cor is now

to be added to the result forD̂ [ 0]
cor , Eq. ~179!. To do so, one

needs to evaluateP̄cor to ordergĀ, using the free-field solu-

tions ~111!–~113! and setP̂cor50. The analogon of Eq.

~175! for dD̂ [ Ā]
cor is

dD̂ [ Ā]
cor

52D [ 0]
ret P̄cor@g,D0#D [ 0]

adv, ~182!

and P̄cor@g,D0# can be read off from Eq.~104!, giving the
contribution

gKlF̄ls~r !]s
KD [ 0]mn

corab
~K !1g@ F̄m

l ~r !D [ 0]ln
cor

~K !

2D [ 0]m
corl

~K !F̄ln~r !#ab

5gdabdmn~K !KlF̄ls~r !]s
KD [ 0]

corab
~K !. ~183!

The second term on the left side cancels, becauseF̄m
l D̂ [ 0]ln

cor

} F̄m
l gln2 F̄m

l (nlKn1Klnn)/K1, andn152n251,n'50,
K250. Notice that this is a specific feature of the employed
light cone representation, and does not hold in a general

noncovariant gauge. With Eq.~183!, the functiondD̂ [ Ā]
cor sat-

isfies the transport equation

@K•D̄r ,dD̂ [ Ā]
cor

#52gdmnKlF̄ls]s
KD [ 0]

cor. ~184!

To solve Eq.~184!, it is convenient to expressdD̂ [ Ā]mn
cor in

terms of a new functionFm5TaFm
a @7#, defined by

dD̂ [ Ā]mn
cor

~r ,K !5dmn~K !gFl~r ,K !]l
KD̂ [ 0]

cor
~r ,K !,

~185!

where D̂ [ 0]
cor is the solution~179!. In terms of the function

Fm, the transport equation~184! becomes now

@K•D̄r ,Fm~r ,K !#5 F̄mn~r !Kn. ~186!

The functionFm evidently satisfies

KmFm~r ,K !50⇒F25
2

K1
KW '•FW ' , F150,

~187!

i.e., F2 is not an independent variable, but is expressible in
terms of the transverse componentsFW ' , and F1 is sup-
pressed byK2/K1 and therefore may be set to zero. The
interpretation of the functionFm , as was pointed out by
Blaizot and Iancu@7#, is that the componentgFm corre-
sponds to the kinetic momentumKm5km2gĀm that is ac-
quired by a gluon propagating in the presence of the soft
field Ām or F̄mn . The condition~187! reflects then the fact
that the light cone energy transferred by the soft field,
namely,gF2, equals the mechanical work done by the Lor-

entz force gVW'•DKW '5gVW'•FW ' , where Vm5Km/K1

5(1,0,VW') is the velocity.
The transport equation~186! for Fm can be readily solved

@7# with the help of the retarded and advanced functions

D
0mn
adv
ret

5dmn D
0
adv
ret

,
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Fm~r ,K !5 i E d4r 8D0
ret~r 2r 8,K !F̄mn~r 8!Kn

2 i E d4r 8D0
adv~r 2r 8,K !F̄mn~r 8!Kn.

~188!

The free-field retarded and advanced functions admit the
space-time representation@7#

D0
ret~r 2r 8,K !52 iu~r 22r 82!d@r 12r 812~r 22r 82!#

3d2S rW'2rW'8 2
KW '

K1
~r 22r 82!D ,

D0
adv~r 2r 8,K !51 iu~r 822r !d@r 812r 12~r 822r 2!#

3d2S rW'8 2rW'2
KW '

K1
~r 822r 2!D , ~189!

and therefore i (D0
ret2D0

adv)(r 2r 8,K)52d@r 12r 812(r 2

2r 82)#d2@rW'2rW'8 2(KW '/K1)(r 22r 82)#. Insertion into
Eq. ~188! then yields

Fm~r ,K !52KnE
0

r 2

dr82F̄mnS r 2
K

K1
r 82D [2KnFmn~r !.

~190!

Substituting this result into Eq.~185! and using the light
cone components ofF̄mn , Eq. ~128!, the result for the mean-

field induced correctiondD̂ [ Ā]
cor is

dD̂ [ Ā]
cor

~r ,K !5Tr@dmn
21~K !dD̂ [ Ā]mn

cor
~r ,K !#

52gF̄'1~r !S K'

]

]K1
2K1

]

]K'
D

3D̂ [ 0]
cor

~r ,K !, ~191!

where' denotes the transverse vector componentsi 51,2,

andF'5 1
2 (F11F2), K'51/A2(K11K2).

With Eq. ~190!, the addition dG[ Ā] (r ,K1,K'
2 ) to the

gluon density G[0](r ,K1,K'
2 ) of Eq. ~180! is

dG[ Ā]~r ,K1,K'
2 !522g

K1

K'

F̄'1~r !

3S K'
2 ]

]K'
2
G[0]~r ,K1,K'

2 !D
1O@K'

2 /~K1!2#, ~192!

where the explicit form of derivative term in brackets can be
easily read off the right-hand side of Eq.~180!.

G. Expansion in space-time of the hard gluon ensemble

As argued before in Eq.~174!, the evolution of the hard

gluon density G, described byD̂cor, can in the present context

be viewed as a purely multiplicative cascade of gluon emis-
sions, since to orderg2 and due to the quasicollinear motion
of the gluons, statistical scatterings between them do not
contribute. Therefore the space-time development of
G(r ,K1,K'

2 ) with respect tor 5(r 2,r 1,rW') is of ‘‘free-
streaming nature.’’ That is, the expansion with time of the
ensemble of gluons as a whole proceeds through a determin-
istic diffusion in momentum and space-time, as qualitatively
sketched in Fig. 1~a!.

To quantify this heuristic picture, one needs to invoke the
uncertainty principle to relate the development in space and
time to the evolution in momentum space, i.e., with respect
to K1 and K'

2 . Specifically, what is the characteristic time
r 2 in the chosen Lorentz frame that it takes to build up the
density G(r ,K1,K'

2 ) from the initial form G0(r 0 ,Q1,0') at
time r 0

250. Viewing the gluon evolution as a cascade of
successive branchingsKn21→Kn1Kn8 , wheren labels the
generation in the cascade tree, the lifetime of gluonKn21 is
given by the time spanDr n

2 that it takes to emit and form the
daughtersKn andKn8 as individual offspring, that is, by the
formation time

Dr n
25

1

2S Kn
1

K'n
2

2
Kn

18

K'n82 D 5
Kn21

1

K'n
2

[tngn, ~193!

with Kn
185Kn21

1 2Kn
1 , KW 'n52KW 'n8 and K'n[AKW 'n

2 .
Here tn51/K'n and gn5Kn21

1 /K'n play the role of the
proper time and the Lorentzg factor, respectively , in agree-
ment with the uncertainty principle. Similarly, the average
longitudinal and transverse distances traveled by the gluons
Kn andKn8 during the time spanDr n

2 are

Dr n
15

1

2
~Vn

11Vn
18!Dr n

2.
Kn21

1

K'n
2

, ~194!

Dr'n5uVW'n2VW'n8 uDr n
2.

2

K'n
, ~195!

whereVm5Km/K1 andK'!K1 is assumed as before. The
average total timêr 2& elapsed up to thenth cascade gen-
eration with mean gluon momentumK1 and K'

2 , and the
associated spatial spread^r 1&, ^r'&, of the diffusing gluon
ensemble, is then obtained by weighting the evolution of the
gluon density G, Eq. ~180!, with Dr (K1,K'

2 )
[(Dr 2,Dr 1,Dr') from Eqs.~193!–~195!. Taking the real
emission part of Eq.~180!, differentiating it with respect to
K'

2 , convoluting it with the weightDr (K1,K'
2 ), integrating

over all possible branchings, and normalizing it to the den-
sity G(r ,K1,K'

2 ) itself, the desired average is

^r ~K1,K'
2 !&5

1

G~r ,K1,K'
2 !
E

K'
2

Q2dK'8
2

K'8
2

as~K'8
2!

2p

3F E
K1

Q1dK18

K18
G~r ,K1,K'8

2!Dr ~K18,K'8
2!G

3E
0

1dz

z
g~z!G~r ,K1/z,K'8

2!. ~196!

This complicated formula can be approximately evaluated
from the known behavior of G, as has been worked out in
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detail in @42#. For K1!Q1 the result is, up to powers of
ln(Q1/K1), the following estimate:

^r 2~K1,K'
2 !&.^r 1~K1,K'

2 !&5
K1

K'
2
T~K1,K'

2 !,

^r'~K1,K'
2 !&5

2

K'

T~K1,K'
2 !, ~197!

where

T~K1,K'
2 !5c1~K'

2 !expF2c2~K'
2 !AlnS Q1

K1 D G ,

~198!

with c1 ,c2.0 very slowly varying functions ofK'
2 . This

estimate shows that those gluons which are emitted either
with large K'

2 or with small K1/Q1, appear the earliest in
time r 2 and contribute the quickest to the diffusion in
r 1,r' .

H. Constructing the hard current ĵ µ and the induced
soft field Āµ

The final task of the solution scheme of Sec. III C is to
solve for the soft fieldĀm or F̄mn , which is induced by the
color currentĵ m , being generated by the aggregate of initial
plus emitted hard gluons from the evolution of the gluon
density~180!. In the equation of motion forF̄mn , recall Eq.
~105!,

@D̄r
l ,F̄lm#a~r !52 ĵ m

a ~r !, ~199!

the current on the right-hand side is determined by the hard

gluon correlation function D̂mn
cor5D̂ [ 0]mn

cor
1dD̂ [ Ā]mn

cor , and
therefore by the gluon density G5G[0]1dG[ Ā] , as obtained
in the previous subsection:

ĵ m~r !5Taĵ m
a ~r !52gE d4k

~2p!2
Tr$Ta@KmD̂n

corn~r ,K !

2KnD̂m
corn~r ,K !#%. ~200!

The first point to be made here is that, for the light cone
gauge conditionA150, the gauge-field tensorF̄mn has only
the nonvanishing components~128!, and if one requires in
addition A250, then in Eq. ~199!, D̄lF̄lm

5d'
l dm1D̄'F̄'1 . The second observation is that the left-

hand side of Eq.~200! is essentially the density G of hard
gluons weighted with their momentumKm. Because the glu-
ons evolve with the velocityVm5Km/K1 along the light
cone, at a given light cone timer 2 and corresponding coor-
dinate r 15r 0

11V1r 25r 2, these gluons appear as an ex-
tremely thin Lorentz-contracted sheet, but are spread out in
transverse directionr' over a disc with radius;1/̂ K'&. As

a consequence, the gluon currentĵ m5( ĵ 1, ĵ 2, ĵW') has only a
component in the1 direction, ĵ m5dm1 ĵ 1 @24,43#. Denoting

as before the two transverse vector componentsi 51,2 by
' with summation conventiona'b'[( i 51,2aibi , Eq. ~199!
now becomes

@D̄' ,F̄1'#a~r !5@dab]'2g fabcĀ'
c ~r !,F̄1'

b #~r !52 ĵ 1
a ~r !,
~201!

where ĵ 1
a is the color-charge density atr 25r 1:

ĵ 1
a ~r !5gTaJ~rW'!d~r 22r 1!, ~202!

where

J~rW'!52pE
0

Q1 dK1

~2p!32K1

3E
m2

Q2

dK'
2 Tr@TaK1D̂cor~r ,K1,K'

2 !# ~203!

and D̂cor5dmn
21(D̂ [ 0]mn

cor
1dD̂ [ Ā]mn

cor ), using Eqs.~180!, ~192!:

D̂cor~r ,K1,K'
2 !52S 122g

K1

K'

F'1~r !K'
2 ]

]K'
2 D

3G[0]~r ,K1,K'
2 !. ~204!

Equations~203! and ~204! follow from the fact that on the
left-hand side of Eq.~200! the correlation function obeys the

transversality conditionKmD̂mn
cor5KmdmnD̂cor50 and because

KmD̂n
corn5Kmdn

nD̂cor52KmD̂cor. Notice that in Eq.~203! the
limits of the integration overK1 andK'

2 correspond to the
average timer 2 and spatial extentr' of the gluon system, as
estimated in Eq.~197! above, and hence,J accounts for the
total gluon multiplicity accumulated by the evolution be-
tweenQ andm.

Integrating both sides of Eq.~201! over r 1, r 2, and us-
ing Eqs.~203! and ~204!, gives

J~rW'!5E
0

r 1

dr1E
0

r 2

dr2~]'F̄'12 ig@ Ā' ,]'F̄'1# !

3~r 1,r 2,rW'!. ~205!

An approximate method to determine the soft field from Eq.
~205! is to adopt the approach of Kovchegov@43#, who re-
cently calculated the light cone gauge field induced by an
ultrarelativistic current of quarks with a uniform momentum
distribution, using the known form of the light cone gauge
potential of a single color charge@44#. Applying his concept
to the present case of gluons with a nonuniform distribution
G(r ,K), the first step is to write the color-charge densityJ
of Eq. ~203! in a ‘‘discretized version’’ as a superposition of
N individual gluon charges:

ĵ 1
a ~r !5g TrF(

i 51

N

Ti
ad~r 12r i

1!d~r 22r i
2!

3d2~rW'2rW' i !J~rW' i !Gd~r 22r 1!, ~206!
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where N is the total number of gluons at a given

r 15r 2, N(r )5p*0
Q1

@dK1/(2p)32K1#*m2
Q2

dK'
2 G(r ,K).

Now the approximate solution to Eq.~205! for the light cone
gauge potentialĀm at space-time pointr is obtained by the
superposition of contributions that are induced by the hard
gluons at pointsr i . Following Kovchegov@43# in detail, the
result is thatĀm has only nonvanishing transverse compo-
nents

Ā1~r !5 Ā2~r !50,

ĀW '~r !52pg(
i 51

N

u~r 12r i
1! u~r 22r i

2!lnS rW'2rW' i

urW'2rW' i u2D
3J~rW' i ! Tr@Ti

aS~r !TaS21~r !#, ~207!

where

S~r !5 )
i 51

N

expF2p ig2TaTi
au~r 12r i

1!u~r 22r i
2!

3 lnS rW'2rW' i

urW'2rW' i u2D G . ~208!

It is important to note that Eq.~207! is only an approximate
solution of Eq.~205! for the induced soft field. It is anesti-
mateof the classical equation of motion for the soft mean

field ĀW ' that is generated by the collective motion of a given
configuration of hard gluons with a distribution G(r ,K). In
other words, Eq.~207! is the non-Abelian Weizsa¨cker-
Williams field due to the hard gluons.

I. Conclusion

Let me summarize the input and results of the preceding
sample calculation for the evolution of a high-energy gluon
beam along the light cone. On the basis of the calculation
scheme of Sec. III C, the logic of the application proceeded
in the following steps.

~1! Choice of light cone gauge with gauge vectorn along
the gluon beam directionK1/K and gauge constraint
A150.

~2! Specification of the initial bare gluon ensemble at time
r 250 with a momentum distribution of equal momenta
K15Q1, K'50, and a spatial distribution being uniform
r'<R in the transverse plane, but ad-function sheet in lon-
gitudinal beam direction atr 150.

~3! Calculation of the retarded and advanced functions

D̂adv
ret and the associated spectral densityr̂ to orderg2 from

the initial values of the hard gluon propagators. The result is
stated by Eqs.~172! and ~173!.

~4! Evaluation of the quantum partD̂ [ 0]
cor of the correlation

function, involving the result forD̂adv
ret

of point ~3!. The solu-

tion for D̂ [ 0]
cor and the corresponding gluon phase-space den-

sity G[0] is given by Eqs.~180! and ~181!, respectively.

~5! Evaluation of the mean-field partdD̂ [ Ā]
cor , involving the

solution for D̂ [ 0]
cor of point ~4!. The result fordD̂ [ Ā]

cor and the

correction to the gluon densitydG[ Ā] is given by Eqs.~191!
and ~192!, respectively.

~6! Construction of the hard gluon currentĵ from the so-

lution D̂cor5D̂ [ 0]
cor

1dD̂ [ Ā]
cor of points ~4! and ~5!, with the ex-

plicit form given by the formulas~202!–~204!. Approximate
evaluation of the soft mean fieldĀ from the classical Yang-
Mills equation ~201! with resulting Weizsa¨cker-Williams
form ~207!.

With this procedure, the original master equations~103!–
~105! are solved in first iteration to orderg2(11gĀ). One
could in principle now repeat this cycle, with the first-order
solutions replacing the zeroth-order forms as input. This,
however, is beyond the scope of the current paper.
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APPENDIX A: CONVENTIONS AND NOTATION

Throughout the paper pure SU~3! c Yang-Mills theory for
Nc53 colors is considered, in the absence of quark degrees
of freedom, with thegauge field tensor

Fmn
a 5]m

xAn
a2]n

xAm
a 1g fabcAm

bAn
c ~A1!

and the classicalYang-Mills Lagrangian

LYM~x!52
1

4
Fmn

a ~x!Fmn, a~x!52
1

2
$~]m

xAn
a!22~]m

xAn
a!

3~]x
nAn, a!%~x!1g fabc$~]m

xAn
a!Am,bAn,c%~x!

1g2f abcf ab8c8$Am
bAn

cAm,b8An,c8%~x!. ~A2!

Because only gluonic degrees of freedom are considered,
only the fundamental representationof color space is rel-
evant, with the color indicesa,b, . . . , running from 1 to
Nc . The generators of the SU~3! color group are the traceless
Hermitian matricesTa with the structure constantsf abc, as
matrix elements, satisfying

Tr~Ta,Tb!5Ncd
ab, @Ta,Tb#51 i f abcTc ,

2 i f abc5~Ta!bc. ~A3!

In compact notation,

Am[TaAm
a , Fmn[TaFmn

a 5]m
xAn2]n

xAm2 ig@Am ,An#

5
1

~2 ig !
@Dm ,Dn#, ~A4!
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where ]m
x []/]xm acting on the space-time argument

xm5(x0,xW ). Thecovariant derivative, denoted byDm , is de-
fined as

Dm~x![]m
x 2 igTaAm

a ~x!5]m
x 2 igAm~x! ~A5!

and its adjoint isDm
† (y)[]m

y 1 igAm(y). In components, us-
ing Eq. ~A3!,

Dm
ab~x!5dab]m

x 2g fabcAm
c ~x!, ~A6!

with the color coupling strengthg being related to the strong
coupling as5g2/(4p). In general, for any color matrixO
with matrix elementsOab(x), the action of the covariant de-
rivative is

@Dm ,O~x!#[]m
x O~x!2 ig@Am~x!,O~x!#, ~A7!

and in particular, the covariant derivative of the field strength
tensor reads@Dm ,Fnl#5]m

xFnl2 ig@Am ,Fnl#.
The convention for placing indices and labels are such

that color indices a,b, . . . , are always written as super-
scripts, whereas all other labels may be subscripts or super-
scripts. In particular, theLorentz vector indicesm,n, . . . ,
may be raised or lowered according to the Minkowski metric
gmn5diag(1,21,21,21), and the usual convention for
summation over repeated indices is understood. Finally,
some shorthand notation is employed: namely,

A•B[AmgmnBn , K•~AB![KmnAmBn, ~A8!

A+B[E
P
d4xA~x!•B~x!,

K+~AB![E
P
d4xd4yK~x,y!•@A~x!B~y!#, ~A9!

where the labelP under the integral sign refers to the inte-
gration of the time componentsx0 (y0) along a closed path
in the complex time plane.

APPENDIX B: BASICS OF THE CLOSED-TIME-PATH
FORMALISM

1. The in-in amplitude ZP

The key problem in this paper is describing the dynamical
development of a multiparticle system~here gluons!, that
evolves from an initially prepared quantum state, e.g., pro-
duced by a high-energy particle collision. There is a crucial
difference between the evolution of the system inin vacuum
~which means, free space in the absence of surrounding mat-
ter! andin medium~which could be either an external matter
distribution, or an internal particle density induced by the
gluons themselves!. As illustrated by Fig. 2 in the Introduc-
tion, this difference arises from the interactions, and hence,
nontrivial statistical correlations between the gluons and the
particles of the environment.

In the case ofvacuum, the usual quantum field theory
describes the time evolution of the system by the vacuum-
vacuum transition amplitude, also called the in-out amplitude
@see Fig. 2~a!, left panel#. That is, one starts at timet0 in the

remote past with appropriate asymptotic in state and evolves
it to t` in the asymptotic future, by means of the time evo-
lution operatorU(t` ,t0). Multiplication with the Hermitian
conjugate counterpart, which corresponds to a backward
evolution from t` to t0 under the action ofU†(t0 ,t`). The
resulting in-out amplitude may be interpreted as the sum
over all n-point Green functions for space-time points along
a path in the complext plane, exclusively on the upper
~lower! branch for the forward~backward! evolution. In
vacuum there is no correlation between the two time
branches and so, for instance, the two-point Green functions
are the usual time-ordered FeynmanDF ~anti-time-ordered
D F̄) propagator @see Fig. 2~a!, right panel#. Because
U†(t0 ,t`)5U(t` ,t0), one hasDF(t1 ,t2)52D F̄(t2 ,t1).

In the case of amedium, the above concept fails, because
of thea priori presence of medium particles described by the
density matrixr̂(t0). Instead one has to construct a general-
ized transition amplitude, called the in-in amplitude, which
accounts for the nontrivial initial state att0 embodied in the
density matrixr̂(t0), and evolves the system in the presence
of the medium fromt0 to t` in the future, by means of the
time evolution operatorU(t0 ,t`) @see Fig. 2~b!, left panel#.
Because nowU†(t0 ,t`)ÞU(t` ,t0) r̂(t0), forward and back-
ward contributions are not merely conjugate to each other,
but interfere, giving rise to statistical correlations between
upper and lower time branch of the contour in thet plane. As
a consequence the space of Green functions is enlarged by
non-time-ordered correlation functions. For example, the
two-point functions are nowDF,D F̄ plus the new functions
D, andD. @see Fig. 2~b!, right panel#.

The fundamental quantity of interest is the in-in amplitude
ZP for the evolution of the initial quantum stateu in& forward
in time into the remote future, starting from a specified initial
state that could be either the vacuum or a medium. Within
the CTP formalism the amplitudeZP can be evaluated by
time integration over theclosed-time path Pin the complex
t plane. As illustrated in Fig. 6, this closed contour extends
from t5t0 to t5t` in the remote future along the positive
(1) branch and back tot5t0 along the negative (2)
branch, where any point on the1 branch is understood at an
earlier instant than any point on the2 branch:

ZP@J,r̂ #[ZP@J1,J2,r̂ #5Tr$UJ2
†

~ t0 ,t !UJ1~ t,t0!r̂~ t0!%,
~B1!

FIG. 6. The close-time path in the complext plane for the
evolution of operator expectation values in an arbitrary initial state.
Any point on the forward, positive brancht0→t` is understood at
an earlier instant than any point on the backward, negative branch
t`→t0.
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where ther̂(t0) is the initial state density matrix, andU and
U† are the time evolution operator and its adjoint

UJ1~ t,t0!5TexpH 2 i F E
t0

t

dt8d3x8J1~x8!•A1~x8!G J ,

UJ1
†

~ t0 ,t !5T†expH 1 i F E
t0

t

dt8d3x8J2~x8!•A2~x8!G J ,

~B2!

with T (T†) denoting the time~antitime! ordering operator.
Note thatJ1 (J2) is the source along the positive~negative!
branch of the closed-time path of Fig. 6, and in generalJ1

ÞJ2 , so thatZP depends on two different sources. If these
are set equal, one hasZP(J,J,r)5Trr̂, which is equal to
unity in the absence of initial correlations, being a statement
of unitarity.

ZP contains the full information about the development of
the initial state via the creation, interaction, and destruction
of quanta, through the agency of the sources: the quanta are
initially created~e.g., by particle collision!, they evolve by
further creation and annihilation~real and virtual emission or
absorption as well as scattering!, and are finally destroyed
~e.g., by detection in a calorimeter!. Both the act of initial
creation and final destruction represent the external sources
J in the sense of a probing apparatus, whereas the interme-
diate dynamics is governed by the underlying quantum
theory. Hence, in order to describe the time evolution of the
initially prepared quantum system, to the final detected state,
the knowledge ofZP allows us to extract objectively the
self-contained development of the system, when the external
influence removed~i.e., the sources are switched off!.

The functionalZP can be represented as a path integral by
imposing boundary conditions in terms of complete sets of
eigenstates of the gauge fieldsAm at initial time t5t0:

A~ t0 ,xW !uA1~ t0!&5A1~xW !uA1~ t0!&,

A~ t0 ,xW !uA2~ t0!&5A2~xW !uA2~ t0!&, ~B3!

and in the remote future att5t` :

A8~ t` ,xW !uA8~ t`!&5A8~xW !uA8~ t`!&. ~B4!

Then, making use of the completeness of the eigenstates, one
obtains from Eq.~B1! the following functional integral rep-
resentation forZP :

ZP@J1,J2,r̂ #

5E DA1DA2DA8^A2~ t0!uUJ2
†

~ t0 ,t`!u

3A~ t`!&^A~ t`!uUJ1~ t` ,t0!uA1~ t0!&

3^A1~ t0!ur̂uA1~ t0!&. ~B5!

The first two amplitudes are the transition amplitudes in the
presence ofJ1 andJ2, whereas the density matrix element
incorporates the initial state correlations att0 at the end-

points of the closed-time pathP. Hence, one obtains the path
integral representation forZP in analogy to usual field theory
@20,21#

ZP@J1,J2,r̂ #5E DA1DA2exp@ i ~ I @A1#1J1+A1!

2 i ~ I * @A2#1J2+A2!#M@ r̂#, ~B6!

where

M~ r̂ !5^A1~ t0!ur̂uA2~ t0!&. ~B7!

The generalized classical actionI @A# accounts for all four
field orderings on the closed-time pathP:

I @A#[I @A1#2I * @A2#5I ~0!@uabAm
aAn

b#

1I ~1!@gvabg~]mAn
a!Am

bAn
g#

1I ~2!@g2wabgdAm
aAn

bAm
gAn

d#, ~B8!

where the correspondence with the terms of Eq.~A2! is ob-
vious ~the color indices are suppressed here!, and where
a,b,g,d51,2:

uab5uab5diag~1,21!, vabg5dabubg ,

wabgd5sign~a!dabdbgdgd , ~B9!

with the usual summation convention over repeated Greek
indices a,b, . . . . Equations~B6!–~B8! represent the de-
tailed version of the compact form~C1! used in Sec. II as the
starting point, except for the Faddeev-Popov determinant and
the gauge fixing constraint, which is omitted here and ad-
dressed in Appendix C.

2. The density matrix and the initial state

Turning to the properties of the initial state incorporated
in the functionalM( r̂) with the density matrixr̂(t0), we
denote byt0 the initial point of time from which on the
evolution of the multigluon state is followed, and assume
that all the dynamics prior tot0 is contained in the form of
the initial state:

u in&[uA~ t0!&5 )
m,a

uAm
a ~ t0!&. ~B10!

The initial state att5t0 can be constructed by expanding the
gauge field operatorA in the Heisenberg representation in
terms of a Fock basis of noninteracting single-gluon states,
the in-basis,

Am
a ~ t0 ,xW !5E d3k

~2p!3
u~k0!~2p!d~k2!

3(
s

@e2 ik•xĉm
a ~k,s!1eik•xĉm

a†~k,s!#

~B11!
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so that a particular Fock state is given by~suppressing color
and Lorentz indices!

un~1!,n~2!, . . . ,n~`!&5 )
i

1

An~ i !!
~ ĉ†~ki ,si !!n~ i !

u0&.

~B12!

Here ĉ† ( ĉ) is the creation~annihilation! operator for a
single-gluon state with definite four-momentumk and spin
s, satisfyingĉ†u0&51 (ĉu0&50) and then( i ) are the occu-
pation numbers of the different gluon states,n( i )

[^n( i )uĉ(ki ,si) ĉ
†(ki ,si)un( i )&. Finally, u0& denotes the

vacuum state or a ground state different than the vacuum
~e.g., a hadron!. Thus, a general multigluon stateuf& at time
t0 is given by a superposition of such states:

uA~ t0!&5 )
m,a

(
n~ i !

Cm
a ~n~1!,n~2!, . . . ,n~`!!

3un~1!,n~2!, . . . ,n~`!&, ~B13!

with real-valued coefficientsC. Alternatively, the initial state
of the system att0 can be characterized by thedensity matrix

r̂~ t0![uA~ t0!&^A~ t0!u, ~ r̂0! i j [^n~ i !ur̂~ t0!un~ j !&.
~B14!

For instance, the case of empty vacuum corresponds to a
diagonal density matrixr̂(t0)5u0&^0u with ( r̂0) i j }d i j ,
whereas a general density matrix that describes any form of a
single-particle density distribution att0 is

r̂~ t0!5NexpF(
s
E

V
d3xE d3k

~2p!32k0

3u~k0!F~ t0 ,xW ,k!ĉm
a†~k,s!ĉm

a ~k,s!G , ~B15!

whereV denotes the hypersurface of the initial values and
F is ac-number function related to the single-particle phase-
space density of gluons aroundxW1dxW with four-momentum
within km1dk0dkW , andN a normalization factor. The form
~B15! describes a large class of interesting nonequilibrium
systems@19#, and contains as a special case the thermal equi-
librium distribution, namely, whent→2 i /T and F(t0 ,xW ,k)
→k0d(k2)T21, so thatr̂(T0)→Nexp@2ĤYM /T#.

3. Perturbation theory and Feynman rules

The convenient feature of the CTP formalism is that it is
formally completely analogous to standard quantum field
theory, except for the fact that the fields have contributions
from both time branches. In particular, one obtains as in
usual field theory, from the path-integral representation
~C11! the n-point Green functionsG(n)(x1 , . . . ,xn), which,
however, now include all correlations between points on ei-
ther positive and negative time branches

Ga1a2 . . . an

~n! ~x1 , . . . ,xn!5
1

ZP@0#

d

idK~n!
ZP@K#U

K50

,

a i56, ~B16!

depending on whether the space-time pointsxi lie on the
1 or 2 time branch. One can then construct a perturbative
expansion of the nonequilibrium Green functions in terms of
modified Feynman rules~as compared to standard field
theory! @18,19,22#.

~i! All local one-point functionsGa
(1)(x), such as the

gauge-field or the color current, are ‘‘vectors’’ with two
components:

A~x![SA1

A2D , J~x![SJ1

J2D . ~B17!

Similarly, all two-point functionsGab
(2)(x,y), such as the

gluon propagatoriDmn and the polarization tensorPmn , are
232 matrices with components,

D~x1 ,x2![S D11 D12

D21 D22D , P~x1 ,x2![S P11 P12

P21 P22D .

~B18!

Explicitly, the components of the propagator are

Dmn
F ~x,y![Dmn

11~x,y!52 i ^TAm
1~x!An

1~y!&,

D
mn

,~x,y![Dmn
12~x,y!52 i ^An

1~y!Am
2~x!&,

D
mn

.~x,y![Dmn
21~x,y!52 i ^Am

2~x!An
1~y!&,

Dmn
F̄ ~x,y![Dmn

22~x,y!52 i ^ T̄Am
2~x!An

2~y!&, ~B19!

where DF is the usual time-ordered Feynman propagator,
D F̄ is the corresponding anti-time-ordered propagator, and
D. (D,) is the unordered correlation function for
x0.y0 (x0,y0). In compact notation,

Dmn~x,y!52 i ^TPA~x!A~y!~y!&, ~B20!

where the generalized time-ordering operatorTP is defined
as

TPA~x!B~y!:5uP~x0 ,y0!A~x!B~y!1uP~y0 ,x0!B~y!A~x!,
~B21!

with the uP function defined as

uP~x0 ,y0!5H 1 if x0 succeeds y0 on the contourP,

0 if x0 precedes y0 on the contourP.
~B22!

Higher order productsA(x)B(y)C(z)••• are ordered analo
gously. Finally, the generalizeddP function on the closed-
time pathP is defined as
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dP
4 ~x,y!:5H 1d4~x2y! if x0 and y0 from positive branch,

2d4~x2y! if x0 and y0 from negative branch,

0 otherwise.

~B23!

~ii ! The number of elementary vertices is doubled, be-
cause each propagator line of a Feynman diagram can be
either of the four components of the Green functions. The
interaction vertices in which all the fields are on the1
branch are the usual ones, while the vertices in which the
fields are on the2 branch have the opposite sign. On the
other hand, combinatoric factors, rules for loop integrals,
etc., remain the same as in usual field theory. Specifically,
the three-gluon and four-gluon vertices

Gabg
~3! ~x1 ,x2 ,x3![E

P
d4xGa8a

~2!
~x1 ,x!Gb8b

~2!
~x2 ,x!

3Gg8g
~2!

~x3 ,x!Ga8b8g8
~3!

~x!,

Gabgd
~4! ~x1 ,x2 ,x3 ,x4!

[E
P
d4xGa8a

~2!
~x1 ,x!Gb8b

~2!
~x2 ,x!Gg8g

~2!
~x3 ,x!

3Gd8d
~2!

~x4 ,x!Ga8b8g8d8
~4!

~x!,

with G (3)(x) andG (4)(x) denoting the elementary, amputated
vertices ~with the external legs removed!, have, for fixed
a,b,g,d, two components. For instance, as in Fig. 7, for the
external points on the1-branch,

for a5b5g51: Ga8b8g8
~3!

~x!5~G111
~3! ,2G222

~3! !,

for a5b5g5d51:

Ga8b8g8d8
~4!

~x!5~G1111
~4! ,2G2222

~4! !.

APPENDIX C: THE in-in AMPLITUDE ZP FOR QCD
IN NONCOVARIANT GAUGES

For the case of QCD, a path-integral representation of the
in-in amplitudeZP is obtained along the lines of Appendix
B 1, except that one has to extend the generic formula~B6!
to account for eliminating the spurious gauge degrees of
freedom by the usual Faddeev-Popov procedure@45#. The
gauge theory version of Eq.~B6! for the class of noncovari-
ant gauges~2! reads, therefore,

ZP@J,r̂ #5NE DA detFd~ f @A# !exp$ i ~ I @A,J# !%M~ r̂ !,

~C1!

whereA5(A1,A2) and J5(J1,J2) have two compo-
nents, living on the1 and2 time branches of Fig. 2. Physi-
cal expectation values are defined as functional averages
over TP-ordered products ofn field operators (n>1),
weighted byZP :

^O1~x1!•••On~xn!&P[
1

ZP@0,r̂ #
E DA detFd~ f @A# !

3exp$ i ~ I @A,J# !%

3M~ r̂ !TP@O1~x1!•••On~xn!#.

~C2!

The structure of the functionalZP in Eqs. ~C1! and ~C2! is
the following.

~i! The functional integral~with normalizationN) is over
all gauge field configurations with measureDA
[)m,aDAm

a , subject to the condition of gauge fixing, here
for the class of noncovariant gaugesdefined by

f a@A#:5n•Aa~x!2Ba~x!⇒^nmAm
a ~x!&50, nm[

nm

Aun2u
,

~C3!

where nm is a constant four-vector, being either spacelike
(n2,0), timelike (n2.0), or lightlike (n250). With this
choice of gauge class thelocal gauge constrainton the fields
Am

a (x) in the path-integral~C1! becomes

detFd~n•Aa2Ba!5const3exp$ i I GF@n•A#%, ~C4!

FIG. 7. Example for the appearance of additional contributions
to the n-point functionsG(n) for the propagatorG(2), the three-
vertexG(3), and the four-vertexG(4) In usual quantum field theory
referring to free space or ‘‘vacuum,’’ only the1 graphs are non-
zero. In the CTP formalism, accounting for the presence of sur-
rounding matter or ‘‘medium,’’ new diagrams arise that correspond
to statistical correlations between the field living on the1 and2
time branches of Fig. 6.
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I GF@n•A#52
1

2aEP
d4x@n•Aa~x!#2, ~C5!

where detF is the Faddeev-Popov determinant~which in the
case of the noncovariant gauges turns out to be a constant
factor, cf., Appendix C!, and whered(n•A)[)ad(n•Aa).
The right side translates this constraint into agauge fixing
functionalI GF. The particular choice of the vectornm and of
the real-valued parametera is dictated by the physics or
computational convenience, and is distinguished further
within the class of noncovariant gauges@27,28#:8

homogeneous axial gauge:n2,0, a50,

inhomogenous axial gauge:n2,0, a51,

temporal axial gauge: n2.0, a50,

light cone gauge: n250, a50. ~C6!

~ii ! The exponentialI is theeffective classical actionwith
respect to both the1 and the 2 time contour, I @A,J#
[I @A1,J1#2I * @A2,J2#, including the usual Yang-Mills
action I YM5*d4xLYM , plus the sourceJ coupled to the
gauge fieldA:

I @A,J#52
1

4EP
d4xFmn

a ~x!Fmn,a~x!

1E
P
d4xJ m

a ~x!Am, a~x![I YM@A#1J+A.

~C7!

~iii ! The form of the initial state att5t0 as described by
the density matrixr̂ @an example is given in Appendix B 2,
Eq. ~B14!# is embodied in the functionM( r̂) which is the
density-matrix element of the gauge fields at initial timet0

M~ r̂ !5^A1~ t0!ur̂uA2~ t0!&[exp~ iK@A# !, ~C8!

whereA6 refers to the1 and2 time branchat t0, respec-
tively ~cf., Fig. 2!. The functionalK may be expanded in a
series of nonlocal kernels corresponding to multipoint corre-
lations concentrated att5t0:

K@A#5K~0!1E
P
d4xKm

~1!a~x!Am,a~x!

1
1

2EP
d4xd4yKmn

~2!ab~x,y!Am,a~x!An,b~y!•••

[ (
n50

`
1

n!
K~n!+@A~1!A~2!•••A~n!#. ~C9!

Clearly, the sequence of kernelsK(n) contains as much in-
formation as the original density matrix. In the special case
that r̂ is diagonal, the kernelsK(n)50 for all n, and the usual
‘‘vacuum field theory’’ is recovered.

The path-integral representation~C1! can be rewritten in a
more convenient form. First, the gauge-fixing functional
I GF@n•A# is implemented, using Eq.~C5!. Second, the series
representation~C9! is inserted into the initial state functional
M( r̂). Third, K(0) is absorbed in the overall normalization
N of ZP ~henceforth set to unity!, and the external source
J in the one-point kernelK(1):

K~0!:5 i lnN, K~1!:5K~1!1J. ~C10!

Then Eq.~C1! becomes

ZP@J,r̂ #⇒ZP@K#5E DAexp$ i ~ I @A,K# !%, ~C11!

where, instead of Eq.~C7!,

I @A,K#[I YM@A#1I GF@n•A#1K~1!+A1
1

2
K~2!+~AA!

1
1

6
K~3!+~AAA!1•••. ~C12!

The objects of physical relevance are then-point Green
functions G(n), defined as the coefficients in a functional ex-
pansion ofZP

ZP@K#5ZP@0# (
n51

`
i n

n! E )
i 51

n

d4xiG
~n!~x1 , . . . ,xn!K~n!

3~x1 , . . . ,xn!, ~C13!

that is, theG(n) are functional averages in the sense of Eq.
~C2!:

Gm1 . . . mn

~n!a1 . . . an~x1 , . . . ,xn![^Am1

a1 ~x1!•••Amn

an ~xn!&P

5
1

ZP@0#

d

idK~n!
ZP@K#uK50 .

~C14!

The practical evaluation ofZP amounts therefore to cal-
culating theG(n) in the expansion~C13! up to the order of
desired accuracy. For instance, the one-, two-, and three-
point Green functions according to Eq.~C14! are

Gm
~1!a~x!5^Am

a ~x!&P , ~C15!

8The analogy with the class of covariant gauges defined by
f a@A#:5]x•Aa2Ba, instead of Eq.~C3!, is evident: in place of Eq.
~C5!, it results in the familiar gauge-fixing functional
exp$2i/2a*Pd4x(]•Aa)2%, wherea51 gives theFeynman gauge
anda50 theLandau gauge.
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Gmn
~2!ab~x,y!5^Am

a ~x!An
b~y!&P5

d

idKm
~1!a~x!

^An
b~y!&P

1^Am
a ~x!&P^An

b~y!&P ,

Gmnl
~3!abc~x,y,z!5^Am

a ~x!An
b~y!Al

c~z!&P

5
1

2S d

idKmn
~2!ab~x,y!

1
d

idKm
~1!a~x!

d

idKn
~1!b~y!

D ^Al
c~z!&P

1
d

idKm
~1!a~x!

@^An
b~y!&P^Al

c~z!&P#

1^Am
a ~x!&P^An

b~y!&P^Al
c~z!&P.

Higher order Green functions are generated in a way similar
to Eq. ~C14!.

APPENDIX D: NONCOVARIANT GAUGES
AND THE ABSENCE OF GHOSTS

In this appendix the standard procedure of gauge field
quantization is applied to the class of noncovariant gauges
~C6!, and it is shown that ghost degrees of freedom are in-
deed absent, reducing the general nonlinear dynamics of
QCD essentially to a linear QED-type dynamics. For an ex-
cellent review and bibliography, see Ref.@27#. Recall that
under local gauge transformations

g@ua#[exp@2 iua~x!Ta#, ~D1!

the gauge fields transform as

Am
a→Am

~u!a5g@ua#Am
a g21@ua#, ~D2!

implying thatFmn
a Fmn

a 5Fmn
(u)aFmn

(u)a , that is the gauge invari-
ance of the Yang-Mills actionI YM@A#. However, the source
termJ+A in the generating functionalZP of Eq. ~C1! is not
gauge invariant under the transformations~D1!. Conse-
quently, thenaive functional

ZP
~naive!5E DAexp$ i ~ I YM@A#1J+A!%3M~ r̂ ! ~D3!

is also not a gauge invariant quantity. As is well known, this
can be remedied by applying the formal Faddeev-Popov@45#
procedure and integrating the path-integralZP over all pos-
sible gauge transformationsg(ua) subject to the linear sub-
sidiary condition

fa@Am
~u!#[nmAm

~u!a~x!2ba~x!5
!

0, ~D4!

with normalized spacelike vectornm andba(x) an arbitrary
weight function. The Faddeev-Popov trick to implement the
constraint~D4! in the noninvariant functionalZP

(naive) by mul-
tiplying with

15E Du )
a

d~fa@Am
~u!# ! detF, ~D5!

where the determinant is Jacobian for the change of variables
fa→ua,

~detF!ab5 detS dfa@Am
~u!#

dub D
fa[A

m
~u!] 50

5H E Du )
a

d~fa@Am
~u!# !J 21

. ~D6!

Following this procedure one arrives at

ZP
~naive!→ZP5E DA detF )

a
d~fa@Am#!

3exp$ i ~ I YM@A#1J+A!%3M~ r̂ !,
~D7!

which is now a gauge invariant expression due to the proper
account of the subsidiary condition~D4! that guarantees the
correct transformation properties of the gauge fields in the
presence of the sourcesJ.

To obtain the final form ofZP as quoted in Eq.~C1!, one
integrates functionally over the arbitrary functionsba(x) in-
troduced in Eq.~D4!, by choosing, e.g., a Gaussian weight
functional

w@ba#5expH 2
i

2aEP
d4x@ba~x!#2J , ~D8!

with the real valued parameter 0<a<1, upon which the
Faddeev-Popov determinant detF can be rewritten in a more
suitable way:

detF5E Db )
a

expH 2
i

2aEP
d4x@ba~x!#2J

3d@nmAm
~u!a~x!2ba~x!#. ~D9!

In order to calculate the determinant, it is sufficient to inte-
grate overua in a small vicinity where the argument of the
d function passes through zero at givenA(u)a and ba. For
infinitesimal gauge transformations

g@ua#→dg@ua#512 iua~x!Ta, ~D10!

the gauge fields transform as

Am
a→Am

a 1dAm
a , dAm

a 5 f abcubAm
c 2

1

g
]m

x ua,

~D11!

so that one obtains

d@nmAm
~u!a~x!2ba~x!#

5dS nmAm
~u!a~x!1 f abcubnmAm

~u!c2
1

g
nm]m

x ua2baD
5dS f abcubbc2

1

g
nm]m

x uaD , ~D12!
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becausenmAm
(u)a5ba. This latter expression is evidently in-

dependent ofAm
a . Therefore, when substituted into Eq.~D9!,

detF is also explicitly independent of the gauge fields, and
hence can be pulled out of the path integralZP and absorbed
in an ~irrelevant! normalization, which may be set equal to
unity. The final result is then

ZP@J,r̂ #5E DAexp$ i ~ I YM@A#1I GF@n•A#1J+A!%

3M~ r̂ !, ~D13!

where, from Eq.~D9!,

I GF@n•A#[expH 2
i

2aEP
d4x@n•Aa~x!#2J . ~D14!

In conclusion, the property of gauge field independence of
the Faddeev-Popov determinant proves that there are indeed
no ghost fields coupling to the gluon fields, hence the formu-
lation is ghost-free.

APPENDIX E: THE TRUNCATED

EFFECTIVE ACTION GP†Ā,D̂‡

The generating functional for theconnectedGreen func-
tions, denoted byG(n), is defined as usual:

WP@K#52 i lnZP@K#. ~E1!

FromWP one obtains theconnectedGreen functionsG(n) by
functional differentiation analogous to Eq.~C14! in terms of
mixed products ofam andAm fields:

~2 i !Gm1•••mn

~n!a1•••an~x1 , . . . ,xn!

[
d

idK~n!
WP@K#U

K50

5^am1

a1 ~x1!•••amk

ak ~xk!Amk11

ak11 ~xk11!•••Amn

an ~xn!&P
~c!,

~E2!

where the superscript (c) indicates the ‘‘connected parts.’’ It
follows then that

dWP

dK~1!m,a~x!
5Gm

~1!a~x!,

dWP

dK~2!mn,ab~x,y!
5

1

2
@Gmn

~2!ab~x,y!1Gm
~1!a~x!Gn

~1!b~y!#,

dWP

dK~3!mnl,abc~x,y,z!

5
1

6
@Gmnl

~3!abc~x,y,z!13Gmn
~2!ab~x,y! Gl

~1!c~z!

1Gm
~1!a~x!Gn

~1!b~y!Gl
~1!c~z!#, ~E3!

where, for example,

Gm
~1!a~x!5^Am

a ~x!&P
~c!1^am

a ~x!&P
~c! ,

Gmn
~2!ab~x,y!5^Am

a ~x!An
b~y!&P

~c!1^am
a ~x!an

b~y!&P
~c! ,

Gmnl
~3!abc~x,y,z!5^Am

a ~x!An
b~y!Al

c~z!&P
~c!

1^am
a ~x!an

b~y!al
c~z!&P

~c! , ~E4!

and similarly expresses higher order Green functions which
involve 4,5, . . . , space-time points.

WP of Eq. ~E1! involves the sourcesK that do not have
any immediate physical interpretation; it is more convenient
to work with the corresponding effective actionGP , the gen-
erating functional for the proper vertex functions, which de-
termines the equations of motion for the physically relevant
Green functions. Theeffective actionGP is defined as the
multiple Legendre transform, and is obtained by eliminating
the source variablesK in favor of the connected Green func-
tionsG:

GP@G#5WP@K#2K~1!+G~1!2
1

2
K~2!+~G~2!1G~1!G~1!!

2
1

6
K~3!+~G~3!13G~2!G~1!1G~1!G~1!G~1!!2•••.

~E5!

So far no approximations have been made. The variation of
GP with respect to the Green functionsG(n) would yield an
infinite set of coupled equations, the analogue of the
Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY! hierar-
chy @14#

dGP

G~1!
52K~1!2K~2!+G~1!

2
1

2
K~3!+~G~2!1G~1!G~1!!2•••,

dGP

G~2!
52

1

2
K~2!2

1

2
K~3!+G~1!2•••,

dGP

G~3!
52

1

6
K~3!2•••, etc. ~E6!

At this point approximations 1 and 2 of Sec. II A are in-
voked. It is assumed that the initial state is a~dilute! en-
semble of hard gluons of very small spatial extent!l, cor-
responding to transverse momentak'

2 @m2. By definition of
l, or m, the short-range character of these quantum fluctua-
tions implies that the expectation value^am& vanishes at all
times. However, the long-range correlations of the eventually
populated soft modes with very small momentak'

2 !m2 may
lead to a collective mean field with nonvanishing^A&. Ac-
cordingly, the following condition is imposed on the expec-
tation values of the fields:

^Am
a ~x!& H 50 for t<t0 ,

>0 for t.t0 , ^am
a ~x!&5

!
0 for all t.

~E7!
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Furthermore, the quantum fluctuations of the soft field are
ignored, assuming any multipoint correlations of soft fields
to be small,

^Am1

a1 ~x1!•••Amn

an ~xn!&!^Am1

a1 ~x1!&•••^Am1

an ~xn!&

for all n>2; ~E8!

i.e., Am is treated as a nonpropagating and nonfluctuating,
classical field. Hence, the set of Green functions~E4! re-
duces to

Gm
~1!a~x!5^Am

a ~x!&P
~c![ Ām

a ~x!,

Gmn
~2!ab~x,y!5^am

a ~x!an
b~y!&P

~c![ i D̂mn
ab~x,y!. ~E9!

These relations define the soft, classical mean fieldĀ, and

the hard quantum propagatorsD̂.
Now the hierarchy is truncated forn>3. However, to

perform this truncation properly, one must eliminate all the
Gm

(3) , Gm
(4) , etc., as dynamical variables by introducing@20#

GP@G~1!,G~2!#[GP@G~1!,G~2!,G̃~3!,G̃~4!,•••#, ~E10!

whereG̃(n) for all n>3 are functionals of the one- and two-
point functions alone, and are determined by the implicit
equations

G̃~n!:5 G̃~n!@G~1!,G~2!#,

dGP@G~1!,G~2!#

d G̃~n!@G~1!,G~2!#
50 for all n>3. ~E11!

From Eqs.~E3! and~E4! one sees that then the infinite set of
Green functions reduces to involve onlyGm

(1)5 Ām and

Gmn
(2)5 i D̂mn , so thatGP becomes a functional of only the soft

mean fieldĀm and the hard propagatorD̂mn :

GP@G#'GP@ Ā,D̂#5WP@K~1!,K~2!#2K~1!+ Ā

2
1

2
K~2!+~ i D̂1 ĀĀ!. ~E12!

The equations of motionfor the mean fieldĀ and for the

hard propagatorD̂ in the presence of external sources, follow
now from Eqs.~E4!, ~E6!, and~E12!:

dGP

d Ām
a ~x!

52K~1!m,a~x!2E
P
d4yK~2!mn,ab~x,y!Ān,b~y!,

~E13!

dGP

dD̂mn
ab~x,y!

5
1

2i
K~2!mn,ab~x,y!. ~E14!

APPENDIX F: ANALYTIC PROPERTIES
OF THE FREE-FIELD PROPAGATORS

The components of the free-field propagatorD0mn
ab are de-

fined as in Eq.~B19!, i.e.,

D0mn
Fab~x,y!52 i ^Tam

a ~x!an
b~y!&,

D0mn
F̄ab~x,y!52 i ^ T̄am

a ~x!an
b~y!&,

D0mn
.ab~x,y!52 i ^am

a ~x!an
b~y!&,

D0mn
,ab~x,y!52 i ^an

b~y!am
a ~y!&. ~F1!

For free fields, one may write

D0mn
ab ~x,y!5dabdmn~]x!D0~x,y! ~D[DF,D F̄,D.,D,!,

~F2!

wheredmn(]x) is defined by Eq.~25!, and the functionsD0
on the right side are thescalar parts of the propagators. The
F,F̄ ,.,, components of the latter obey the following free-
field equations with different boundary conditions:

]W x
2D0

F~x,y!5D0
F~x,y!]Q y

251d4~x,y!,

]W x
2D0

F̄~x,y!5D0
F̄~x,y!]Q y

252d4~x,y!,

]W x
2D0

.~x,y!5D0
.~x,y!]Q y

250,

]W x
2D0

,~x,y!5D0
,~x,y!]Q y

250, ~F3!

and the identities

D0
F~x,y!5u~x0 ,y0!D0

.~x,y!1u~y0 ,x0!D0
,~x,y!,

D0
F̄~x,y!5u~x0 ,y0!D0

,~x,y!1u~y0 ,x0!D0
.~x,y!.

~F4!

Because of the relations~F4!, the set of equations~F3! can be
solved by only two independent functions, namely,~i! a
purely imaginary and odd functioniD2 and~ii ! a purely real
and even functionD1:

iD2~x,y![dabdmn~]x!^@am~x!,an
b~y!#&,

5 i ~D0
.2D0

,!~x,y!,

D1~x,y![dabdmn~]x!^$am~x!,an
b~y!%&5 i ~D0

.1D0
,!~x,y!.

~F5!

From Eq.~F3! it follows that these functions obey

]W x
2D2~x,y!5D2~x,y!]Q y

250, D2~x,y!52D2~y,x!,

]W x
2D1~x,y!5D1~x,y!]Q y

250, D1~x,y!51D1~y,x!,
~F6!

with the general solutions
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D2~x,y!52 i E d4k

~2p!4
e2 ik•~x2y!2pd~k2!

3@g1~k!2g2~2k!#,

D1~x,y!5E d4k

~2p!4
e2 ik•~x2y!2pd~k2!@g1~k!1g2~2k!#,

~F7!

where the functions

g1~k![u~k0!1 f 1~k!, g2~2k![u~2k0!1 f 2~2k!,
~F8!

contain the positive and negative frequency modes, respec-
tively. Here u(6k0) is the vacuum contribution, while
f 1,2(6k) are the additional contributions from a medium.

From Eqs.~F5!–~F7!, one can now infer immediately the
analytic properties off 1, f 2, corresponding to those ofg1,
g2.

~1! One observes, becauseD2 is purely imaginary and
D1 is purely real, that

f 1~k!, f 2~k!5real

must hold.
~2! Because the commutator of free fields, i.e., the imagi-

nary functionD2, must be independent of the state of the
medium

D2~x,y!5
!

2 i E d4k

~2p!4
e2 ik•~x2y!2pd~k2!

3@u~k0!2u~2k0!#,

it follows that

f 1~k!5 f 2~2k![ f ~k!.

~3! Because the anticommutator, i.e., the real function
D1 must satisfy

E d4xd4yh* ~x!D1~x,y!h~y!>
!

0

for any smooth, but in general complex-valued functionh, it
follows that

f ~kW ![E dk0f ~k0,kW !>0 for all kW ,

and so the ‘‘on-shell’’ functionf (kW ) is positive definite may
indeed be identified with the positive definite phase-space
densitydN/d3k.

The free-field solutions ofDF,D F̄,D.,D, can now be
easily reconstructed using the following identities implied by
Eqs.~F1! and ~F4!:

2DF~x,y!52 iD1~x,y!1@2u~x0,y0!21#D2~x,y!,

2D F̄~x,y!52 iD1~x,y!1@2u~y0,x0!21#D2~x,y!,
~F9!

2D.~x,y!52 iD1~x,y!1D2~x,y!,

2D,~x,y!52 iD1~x,y!2D2~x,y!, ~F10!

from which, upon Fourier transformation, one obtains

D0
F~x,y!5E d4k

~2p!4
e2 ik•~x2y!S 11

k21 i e
2 i2pd~k2! f ~k!D ,

D0
F̄~x,y!5E d4k

~2p!4
e2 ik•~x2y!S 21

k22 i e
2 i2pd~k2! f ~k!D ,

D0
.~x,y!5E d4k

~2p!4
e2 ik•~x2y!$2 i2pd~k2!@u~k0!1 f ~k!#%,

D0
,~x,y!5E d4k

~2p!4
e2 ik•~x2y!$2 i2pd~k2!@u~2k0!

1 f ~k!#%. ~F11!

Finally, inferring the corresponding free-field forms of the
retarded, advanced, and correlation functions is straightfor-
ward:

D0
ret~x,y!51u~x0 ,y0!D2~x,y!5~D0

F2D0
,!~x,y!

5E d4k

~2p!4
e2 ik•~x2y!S 1

k212i e
D ,

D0
adv~x,y!52u~y0 ,x0!D2~x,y!5~D0

F2D0
.!~x,y!

5E d4k

~2p!4
e2 ik•~x2y!S 1

k222i e
D ,

D0
cor~x,y!52 iD1~x,y!5~D0

.1D0
,!~x,y!

5E d4k

~2p!4
e2 ik•~x2y!$2 i2pd~k2!@112 f ~k!#%.

~F12!
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