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We discuss the origin of Yukawa textures in the string-inspired and string-derived models based on the
gauge group SU(49 SU(2) ® SU(2)g supplemented by a U(%)gauged family symmetry. The gauge sym-
metries are broken down to those of the minimal supersymmetric standard model which is the effective theory
below 13° GeV. The combination of the U(J)family symmetry and the Pati-Salam gauge group leads to a
successful and predictive set of Yukawa textures involving two kinds of texture zeyogontalandvertical
texture zeros. We discuss both symmetric and nonsymmetric textures in models of this kind, and in the second
case perform a detailed numerical fit to the charged fermion mass and mixing data. Two of the Yukawa
textures allow a low energy fit to the data with a togdlof 0.39 and 1.02, respectively, for three degrees of
freedom. We also make a first attempt at deriving the nonrenormalizable operators required for the Yukawa
textures from string theorfS0556-282(197)01617-7

PACS numbegs): 12.15.Ff, 12.10.Kt

I. INTRODUCTION we are led tovertical andhorizontaltexture zeros which are
a feature of this model. In the earlier parts of the paper we
Over recent years there has been a good deal of activitghall focus on something we call the string-inspired
concerned with understanding the pattern of fermion masseSU(4)X0O(4) [~SU(4)® SU(2) ® SU(2)g] model which
and mixing angles within the framework of supersymmetrycontains many of the features of a realistic string model such
and unification(see the next section for a revipwWwhe start-  as small group representations and a Y(1gmily symme-
ing point of these analyses is the idea that at high energieigy. Within this simplified model we shall relate the high
the Yukawa matrices exhibit a degree of simplicity, typically energy textures to the low energy quark and lepton masses
involving texture zeros, which can be understood as resultingnd quark mixing angles, and so determine by a bottom-up
from some symmetry. The types of symmetry which haveprocedure the operators which are likely to be relevant at
been considered include grand unified symmetry to accourtigh energies. Later on we shall focus on a particular string
for the vertical mass splittings within a family and family construction from which we learn how nonrenormalizable
symmetry to account for the horizontal mass splittings be-operators may be generated from first principles.
tween families. In order to restrict the ratha hocnature of The detailed layout of the paper is as follows. In Sec. Il
such models, one may appeal to a rigid theoretical structur&e review some ideas concerning Yukawa textures and sum-
such as string theory in terms of which the high energy fieldnarize recent progress in this area. In Sec. Ill we briefly
theory may be viewed as an effective low energy supergraweview the string-inspired SU(40(4) model. In Sec. IV
ity model valid just below the string scale. Viewed from this we discuss symmetric textures in the above model. In Sec. V
perspective certain classes of unified gauge group and familye discuss the nonsymmetric textures. In Sec. VI we per-
symmetry appear to be more promising than others, and iform a full numerical analysis of the nonsymmetric models.
addition one may hope to begin to derive the entries of thén Sec. VIl we review the U(1y) family symmetry approach
Yukawa matrices as low energy nonrenormalizable operatort® the model and perform an analysis relevant for the full
which arise from the string theory. (symmetric and nonsymmetjimodel. In the subsequent two
In this paper, guided by the principles outlined in the sections we present a viable string construction of the model
previous paragraph, we investigate the origin of Yukawa texand indicate how the nonrenormalizable operators may arise
tures in a class of models based on the Pati-Salarin the specific string construction. Finally, Sec. X concludes
SU(4)X SU(2), X SU(2)g symmetry with gauged (1) fam-  the paper.
ily symmetries.

We shall follow both a bottom-up approach, in which the Il YUKAWA TEXTURES
successful textures may be extracted from the known quark
and lepton masses and quark mixing angées] a top-down The pattern of quark and lepton masses and quark mixing

approach in which we shall begin to see how the desiredngles has for a long time been a subject of fascination for
operators may emerge from a particular superstring construgarticle physicists. In terms of the standard model, this pat-
tion. This model involves both quark-lepton unification, tern arises from &3 complex Yukawa matricegb4 real
which leads to Clebsch relations to describe the mass relgarameteswhich result in 9 real eigenvalues plus 4 real
tions within a particular family, and a U(})gauged family mixing parameterg13 real quantitiswhich can be mea-
symmetry which may account for family hierarchies. Thussured experimentally. In recent years the quark and lepton
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masses and mixing angles have been measured with incredé] have made a survey of possible symmetric textures which
ing precision, and this trend is likely to continue in the futureare both consistent with the data and involve the maximum
as lattice QCD calculations provide increasingly accurate esaumber of texture zeros. Assuming GJ relations for the lep-
timates andB factories come on line. Theoretical progress istons, RRR tabulated five possible solutions for up-type and
less certain, although there has been a steady input of thedewn-type Yukawa matrices. We list them below for com-
retical ideas over the years and in recent times there has bepleteness.

an explosion of activity in the area of supersymmetric unified Solution 1:

models. This approach presumes that at very high energies

close to the unification scale, the Yukawa matrices exhibit a

degree of simplicity, with simple relations at high energy 0

running down to low energy. For example, the classic pre—KU:

2240
203 4)\3

V278 0 0
IO N 2N

corrected by the effects of the renormalization grqR6) J2\8
0

diction that the bottom and Yukawa couplings are equal at 0 1 0 4 1
the unification scale can give the correct low energy bottom
and » masses, providing that one assumes the RG equations
of the minimal supersymmetric standard mod#MSSM)
[1].1 In the context of the MSSM it is even possible that the
top, bottom, andr Yukawa couplings are all approximately
equal near the unification scdl8], since, although this re- 0
sults in the top and bottom Yukawa couplings being roughly
the same at low energy, one can account for the large top to \Y=
bottom mass ratio by invoking a large value of gadefined 0
as the ratio of vacuum expectation val(€&V’s) of the two
Higgs doublets of the MSSM.

These successes with the third family relations are not ggution 3:
immediately generalizable to the lighter families. For the re-
mainder of the Yukawa matrices, additional ideas are re-
quired in order to understand the rest of the spectrum. One 0 0
such idea is that of texture zeros: the idea that the Yukawa A
matrices at the unification scale are rather sparse, for exyVU—= 0 A 0 =
ample, the Fritzsch ansaft4]. Although the Fritzsch texture J22 4 0 1 0
does not work for supersymmetric unified models, there are
other textures which do, for example, the Georgi-Jarlskog
(G texture[5] for down-type quark and lepton matrices:

)

Solution 2:

2240
223 223
2% 1

A8 0 0
A& 0 224
A1 0

(4)

2% 0
2\ 4\3
ad 1

5

Solution 4:

0 N2 0 0 Ny O
Aar =3hz O | yo_| Az Az O
0 0 g 0 o0

0 J2a® o 0 22 0
V228 3t A oo 2t 3% 0
0 A1 0 0 1

AE=

u_
A33 A=

)

After diagonalization this leads to\,=\p, \,=3\s,
Ne=A\4/3 at the scaléM gt which result in(approximately
successful predictions at low energy. Actually the factor of 3 4 4
in the 22 element above arises from group theory: It is a 0 0 A 0 22" 0
Clebsch factor coming from the choice of Higgs fields cou- \U— 0 V2a* A¥\2 \D— Y 223 0

pling to this element. 4 o
It is observed that if we choose the uppex 2 block of AN /\/E 1 0 0 1
()

the GJ texture to be symmetrig,;»=\,;, and if we can
disregard contributions from the up-type quark matrix, then
we also have the successful mixing angle prediction Here A\=0.22, and the top and bottom Yukawa couplings
have been factored out for simplicity. These textures are
Viys=VAg/\g (2)  valid at the unification scale. All of the solutions involve
texture zeros in the 11 entry. Solutions 1, 2, and 4 involve
The data therefore support the idea of symmetric matriceadditional texture zeros in the £31 positions which are
and a texture zero in the 11 position. Motivated by the desireommon to both up-type and down-type matrices. Solutions
for maximal predictivity, Ramond, Roberts, and RBRR) 3 and 5 have no texture zeros which are common to both
up-type and down-type matrices, apart from the 11 entry.
Thus solutions 1, 2, and 4 involve rather similar up-type and
down-type matrices, while solutions 3 and 5 involve very
different textures for the two matrices.

Solution 5:

The next-to-MSSM(NMSSM) with an additional low energy
gauge singlet works just as w¢R].
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Having identified successful texturéshe obvious ques- that the various coefficients may arise as a result of the in-
tions are, what is the origin of the texture zeros and what idrared fixed-point structure of the theory beyond the standard
the origin of the hierarchie@owers of the expansion param- model.
eter\)? A natural answer to both these questions was pro- Note that the textures for up-type and down-type matrices
vided early on by Froggatt and Niels¢BN) [8]. The basic are of similar form, although the expansion parameters dif-
idea involves a high energy scaM, a family symmetry fer. Also note that there are no true texture zeros in the quark
group G, and some new heavy matter of mdegs which  sector, merely high powers of the expansion parameter. Thus
transforms undeG. The new heavy matter consists of somethis example most closely resembles RRR solution 2 with
Higgs fields which are singlets under the vertical gauge symapproximate texture zeros in the 11 and=B3 positions.
metry but nonsinglets und&. These break the symmetéy  However, without the inclusion of coefficients, the identifi-
by developing VEV’sV smaller than the high energy scale. cation is not exact. The best fit to RRR solution 2 is obtained
There are also some heavy fields which exist in vectorlikefor the identificatione=\?, e=\ (alternative identifications
representations of the standard gauge group. The vectorlikgq e=\2, e=2)\3lead to larger deviationsHowever even

matter couples to ordinary mattéquarks, leptons, Higgs his choice does not exactly correspond to RRR solution 2, as

bosons via the singlet Higgs boson, leading to “spaghetti- ;o pe shown by taking solution 2 and inserting the numeri-
like” tree-level diagrams. Below the scal the spaghetti 5| values of the entries:

diagrams vyield effective nonrenormalizable operators which
take the form of Yukawa couplings suppressed by powers of

A=V/M. In this way the hierarchies in the Yukawa matrices 0 1x10°* 0

may be explained and the texture zeros correspond to high U 1x 104 0 5% 102

powers of\. A= 72 ,
A specific realization of the FN idea was provided by 0 5x10 1

Ibanez and Ros8R) [9], based on the MSSM extended by a
gauged family U(1) symmetry withé and 6 singlet fields

with opposite X charges, plus new heavy Higgs fields in 0 5x10°° 0

vector representatiorfsAnomaly cancellation occurs via a b 51073 2%10°2 2%x10°2
Green-Schwarz-WittetGSW) mechanism, and the U(%) A= s ©
symmetry is broken not far below the string scé$d. By 0 2x10 1

making certain symmetric charge assignments, IR showed
that the RRR texture solution 2 could be approximately re-
produced. To be specific, for a certain choice of U(1) We compare these numbers to the order of magnitudes pre-
charge assignments, IR generated Yukawa matrices of théicted by the symmetry argument, making the identifications

form e=\2 e=\:
& & & & & e 3x10°% 1x1074 5x10°
| € € €| yo_[ & e €| \U_| 1x107% 2x10°° 5x10°2
e e 1 2 e 1 5X107°° 5x10°2 1
PR 5x10°% 1x10°2 2x10°°

0
— 2 —2 —1
1

NE=| €°
0 2x10°% 2x10°1 1

€
0

These are symmetric in the expansion parametesisd e, Comparison of Eqs(9) and (10) shows that while\V is in
which are regarded as independent parameters. This providgeod agreemeni° differs. In Eq.(10), the 23=32 element

a neat and predictive framework; however, there are somis an order of magnitude too large. When the unknown cou-
open issues. Although the order of the entries is fixed by th@lings and phases are inserted the scheme can be made to
expansion parameters, there are additional parameters of arork. However, some tuning of the unknown parameters is
der unity multiplying each entry, making precise predictionsimplicit. This can be avoided by introducing a small param-
difficult. A way to address the problem of the unknown co- eter é§ into all the elements apart from the 33 renormalizable
efficients has been proposed[itl] where it has been shown element, so that Eq8) gets replaced By

20ver the recent years, there has been an extensive study of fer®In our scheme we will have a unified Yukawa matrix. This, as we
mion mass matrices with zero texturlgg. are going to see, will imply a common expansion parameter for the

3The generalization to include neutrino masses is straightforwardip- and down-type mass matrices and the presence of a fdtor
[10]. the up-quark mass matrix as well.
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B S8 5e® 5e3 Sed higher Kac-Moody levels, simple orbifold compactifications
s — o — in which candidate gauge U(})family symmetries are
\NU=| € € €| \p=| b€ be° de | present do not easily emerge. Nevertheless, there has been
e € 1 set se 1 some progress in this direction and three-family(8® and

Es string-derived models have recently been classifiiet].
(1D Here we restrict our discussion to string constructions based
on the simplek=1 level of Kac-Moody algebras, which are

The idea is that the suppression fact®roriginates from o . Y
more ‘“string friendly.

some flavor-independent physics, while the parametersd . . _
— \Il hl fl P Pry If hW I . P F | The SU(4)» O(4) string model can be viewed as the sim-
e control the flavor structure of the matrices. For examp e’plest string-friendly unified extension of the standard model

suppose we take =\ as in the previous example but scale which can lead to Clebsch relations of the kind we desire.
down the entries by a factor @=0.2. Then we would have The pati-Salam gauge grodp5] may be broken without

1x10°6 2x10°3 4x10°4 adjoint representations and was considered as a unified string
5 L, ., model[16,17] some time ago. This model has recently been
AP= 2%10 1x10 4Xx10 , (12 the subject of renewed interest from the point of view of
4x10° 4 4x102 1 fermion masseEL8], and an operator analysis has shown that

it is possible to obtain desirable features such as Yukawa

which provides a better description of the numerical vaIueémiﬁC"Jltion for the third family and GJ-type relations within

required by the RRR analysis for solution 2 in @), at the this simpler model. A pgrticular featu_re of thg publjshed
expense of introducing the paramerThis example indi- scheme which we Woulq like to emphasize here is the idea of
cates that if family symmetries are to give the correct ordelC€PSCh texture zeroshich arise from the group theory of
of magnitude understanding of Yukawa textures without anyine Pati-Salam gauge group. These Clebsch zeros were used
tuning of parameters, then an extra paraméteeeds to be to account for the lightness of the up quark compared to the
introduced as above. down quark, for examplgl8]. However, the operator analy-
Another aspect of the fermion mass spectrum that on&iS Of[18] did not address the question of the hierarchy be-
would like to understand is that of the mass splitting within atween familiesino family symmetry was introduced, for ex-
particular family. For example the GJ texture in E). pro- ample or the question of t_he origin of the nonrenormalizable
vides an understanding of the relationship between th@Perators. Here we shall introduce a UtIgauge symmetry
charged lepton and down-type quark Yukawa couplings‘.“to _the model and comblne it W|t_h .the Clebsch relatlo_ns
within a given family, and in the simplest U(1)scheme previously useq,'to provide a predictive scheme of fermion
such relations are either absent or accidental, as seen in E§asses and mixing angles. We shall also ensure that we ob-
(8) where the form of\E has been fixed by a parameter tain the corre(_:t order of magnitude for all thg entries of the
choice. Unless such parameters are predicted by the theoryukawa matrices from the symmetry-breaking parameter,
as in the extension of the initial IR scheme that is discusseffSing structures like that of EL1). In our case the quantity
in [11], the only antidote is extra unification. Then, the lep-© Will be identified with a bilinear of heavy Higgs fields
tons share a representation with the quarks, and the magic &/J1ich are responsible for generating the Clebsch structures,
factors of 3 originate from the fact that the quarks have thred/hile the parameters such aswill have trivial Clebsch
colors. For example, the $00) model of Andersoret al. structure(smg_lets _under _the vertical gauge groupt will _
[12] (with both low energy Higgs doublets unified into a generate family hlerarchles from the flavor symmetry. _Thls
single 10 representationpredicts Yukawa unification for the COTTesponds to there being two types of heavy Higgs fields:
third family, GJ relations for the charged leptons and down-Pati-Salam gauge singletgorresponding to IR¢ and 6
type masses, and other Clebsch relations involving up-typéelds) which break the U(1,) family gauge group but leave
quarks. As in the IR approach, the approach followed bythe Pati-Salam group unbroken, aktiH breaking fields
Andersonet al. is based on the FN ideas discussed abovewhose bilinear forms are U(%)singlets but transform non-
Thus, for example, only the third family is allowed to receive trivially under the Pati-Salam gauge group, thereby giving
mass from the renormalizable operators in the superpotentighteresting Clebsch structures. The nonrenormalizable opera-
The remaining masses and mixings are generated from t@rs of interest must therefore involve both types of Higgs
minimal set of just three specially chosen nonrenormalizabléields simultaneously. In view of the unusual nature of such
operators whose coefficients are suppressed by a set of larggerators, we shall provide a string-based discussion of the
scales. The 1221 operator of Andersoet al.is suppressed origin of such operators.
by the ratio (45/M)5, while the 23=32 and operators are It is worth emphasizing that the main features of the pre-
suppressed by (45,/45,)2 and (45%_, S/455) where the vious analysiglike the assumption of (1) symmetries, the
45's are heavy Higgs representations. In a complicated mulntroduction of singlet fields, ettappear naturally in most of
tiscale model such as this, the hierarchies between differerthe recent string constructions. Therefore, in the final sec-
families are not understood in terms of a family symmetrytions of this paper we will try to embed our analysis in the
such as the the U(%)of IR. Indeed it is difficult to imple- context of realistic string models which are constructed
ment a family symmetry in this particular scheme, as thewithin the free fermionic formulation19] of the heterotic
latest attempts based on globaf2y[13] show. To be em- string. In doing so, we should keep in mind that, in realistic
bedded into a string model, grand unified theo(&&JT's) string constructiong19-21 there are usually many con-
such as SQ.0) requirek>1 Kac-Moody levels. With these straints and in general the resulting field theory is quite com-
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plicated. Moreovefin the language of the fermionic strings Higgs doubletsh;,h, whose neutral components subse-
[21]), within the same choice of boundary conditions on thequently develop weak scale VEV's,

string basis vectors of the world-sheet fermions, there are

numerous consistent choices of the projection coefficients (h=v,, (h=0v,, (21
which result in different Yukawa couplings multiplets and

the large number of singlet fields which are usually presentwith tan3=uv,/v;.

For this reason we shall try to develop a “string-model”’-  In addition to the Higgs fields in Eq$17) and (18) the
independent approach and begin by considering a fielthodel also involves an S4) sextet fieldD=(6,1,1) and
theory SU(4)X O(4) model, which possesses the salient feafour singlets¢, and ¢;, i=1,2,3. ¢ is going to acquire an
tures of a realistic string model and at the same time is simelectroweak VEV in order to realize the electroweak Higgs

pler to work with. mixing, while ¢; will participate in an extended “seesaw”
mechanism to obtain light Majorana masses for the left-
IIl. STRING-INSPIRED SU (4)®0(4) MODEL handed neutrinos. Under the symmetry property

. . - @125-(—1)X @125 and H(H)—(—1)XH(H) the tree-

Here we briefly summarize the parts of the modgl Wh'c.hlevel mass terms of the superpotential of the model f&&H
are relevant for our analysis. For a more complete discussion
see[16]. The gauge group is SU(&)O(4) or, equivalently, W:)\iljFiF_jh+)\2HHD+)\3mD+)\HHF_j(Pi+M(Pi(Pj

SU@4)® SU(2) ® SU?2)g. (13 + whh, 22)
The left-handed quarks and leptons are accommodated in the .
representations wherep={¢q)=0(my). The last term generates the Higgs
mixing between the two SM Higgs doublets in order to pre-
- uR uB u® p i vent the appearance of a massless electroweak axion. Note
F''=(4,2)= ( R d® d° _) . (14  that we have banned terms which might lead to unacceptably
large neutrino-Higgsino mixinf22]. The superpotential, Eq.
R G T et (22), leads to the neutrino mass matfik6]
I — L.
_[ml 0 WM™
where a=1,...,4 is an S() index, a,x=1,2 are Mynee=| Y GuT (23
SU(2), g indices, and =1,2,3 is a family index. The Higgs 0 Mgur w
fields are contained in the representations
hy h? in the basis ¢; ,V_j,(pk). Diagonalization of the above gives
h=(122=| vo p- (16)  three light neutrinos with masses of the orden)§?/Mgur
a h2 hy as required and leaves right-handed Majorana masses of the

orderMgyt. Additional terms not included in E¢22) may
(whereh; andh, are the low energy Higgs superfields asso-be forbidden by imposing suitable discrete or continuous
ciated with the MSSM The two heavy Higgs representa- Symmetries, the details of which need not concern us here.
tions are The D field carries color and therefore does not develop a

VEV but the terms in Eq(22), HHD andHHD, combine

R B G
Heb=(4,1,2) = Ua Uy Un Ve 17) the color triplet parts ofd, H, andD into acceptable GUT-
" df dE dS e, scale mass ternf4.6). When theH fields attain their VEV's
at Mgy~ 10 GeV, the superpotential of Eq22) reduces
and to that of the MSSM augmented by neutrino masses. Below
— =8 -0 .+ MGUT _th(_a part of the superpotential involving matter super-
— —__ [dj dj dj ey fields is just
HaX:(4111 ): R B e J— . (18)
Uy U ug vy AT TP i = T
W—)\UQinh2+ )\DQiDjh1+)\ELiEjhl+)\NLi th2+ et
The Higgs fields are assumed to develop vacuum expectation (24)
values(VEV'’s) . . .
The Yukawa couplings in Eq24) satisfy the boundary con-
- — - ditions
(HYy=(vy)~Mgur, (H)=(vu)~Meuyr, (19
leading to the symmetry breaking btg: M (Meun) =My(Meur) =Ag(Meur) = Ae(Mgur)
SU4)® SU2), ® SUR)r— SUB)c® SUR), ® U(D)y, Mi(Meur)- (25)

20 . .
) Thus, Eq.(25 retains the successful relatiom,=m, at
in the usual notation. Under the symmetry breaking in EQMgyr. Moreover, from the relation AJ(Mgyr)
(20), the bidoublet Higgs fieldh in Eq. (16) splits into two ~ =\{(Mgyr) and the fourth term in Eq(22), we obtain
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through the seesaw mechanism the light neutrino masses TABLE I. When the Higgs fields develop their VEV's at
:O(mﬁlMGUT) which satisfy the experimental limits. Mgut, the n=1 operators utilized lead to the effective Yukawa
couplings with Clebsch coefficients as shown. We have included
the relative normalization for each of the operators. The full set of
n=1 operators and Clebsch coefficients is given in Appendix A.
In this section we briefly review the results of the operatorThesen=1 operators were used in the lower right-hand block of
analysis of Ref[18] and then introduce our new approach the Yukawa matrices in the analysis of RE8].
based on new operators. We discuss the RRR textures as=a — — — —
simple example of the new method. QUh, QDh, LEh, LNh,
The boundary conditions listed in E5) lead to unac-

IV. SYMMETRIC TEXTURES

ceptable mass relations for the light two families. Also, the®” 1 1 1 1
large family hierarchy in the Yukawa couplings appears toO® 1 -1 -1 1
be unnatural since one would naively expect the dimension- 1 1 _3 _3
less couplings all to be of the same order. This leads us to the® — _ - _>
conclusion that tha! in Eq.(22) may not originate from the V5 V5 V5 V5
usual renormalizable tree-level dimensionless coupling. We _ _
: NSIo| b 1 1 3 3
allow a renormalizable Yukawa coupling in the 33 term only © T T T T
and generate the rest of the effective Yukawa couplings by 5 5 5 5
nonrenormalizable operators that are suppressed by some 2 4
higher mass scale. This suppression provides an explanati 0 = = 0
: : V5 V5
for the observed fermion mass hierarchy. 9y
In Ref. [18] we restricted ourselves to all possible non-© 4/5 2/5 4/5 8/5
renormalizable operators which can be constructed from dif0" 8/5 0 0 6/5
ferent group theoretical contractions of the fields: oM 0 2 2 0
n o" 2 0 0 0
f— HH R 8 6
0;;~(FiFph IVEl +H.c., (269 © 0 5 5 0
w
o 0 J2 ~3¢2 0
where we have used the fieldsandH in Egs.(17) and(18)
and M is the large scalM>My. The idea is that when s 8 16 12 6
H,H develop their VEV'’s, such operators will become effec- 55 5\5 5\5 5\5

tive Yukawa couplings of the forrh FF with a small coef-
ficient of orderM4,,/M?2. We considered up to=2 opera-
tors. The motivation for using=2 operators is simply that .
such higher dimension operators are generally expected g the matrix and plays the role of the factor &in Eq.(12).
lead to smaller effective couplings more suited to the 12 andiowever, unlike the previous factor &f the factor of HH)
21 Yukawa entries. However, in our field theory approachhere carries important group theoretical Clebsch information.
we shall restrict ourselves to the simple case considerind fact Eq.(27) amounts to assuming a sort fafctorization
only n=1 operators with the required suppression factor<f the operators with the family hierarchies being completely
originating from a separate flavor sector. We will leave thecontrolled by the, @ fields as in IR, withm,n being depen-
guestion of the definite origin of the operators for now. In-dent oni,j, and the horizontal splittings being controlled by

stead we merely note that one could construct a FN sector t¢e Clebsch factors inI-(H_). However, this factorization is
motivate the operators or that one might expect such operampot complete since we shall assume that the Clebsch factors
tors to come directly out of a string theory. In Sec. VIl we have a family dependence, i.e., they depend, prive select
shall introduce a U(1y family symmetry into the model, the Clebsch factor in each entry from phenomenological ar-
which is broken at a scal®lx>Mgyr by the VEV's of the  guments.

Pati-Salam singlet field® and #. According to the ideas As a first example of our new approach we shall consider
discussed in Sec. Il we shall henceforth consider operators dfie RRR textures discussed in Sec. Il. Our first observation is
the form that, restricting ourselves ta=1 operators, there are no

large Clebsch ratios between the up-type and down-type
— [HH

quarks for any of the operators. This means that it is very
+H.c., 27 difficult to reproduce RRR solutions such as solution 2

whereM’ represents a high scald’ > M gt which may be

identified either with the U(1)-breaking scaléM y or with

6" oM

M/n+m

where the 12 element of the down-type matrix in EQ), for

example, is 50 times larger than its up-type counterpart. Of

course this can be achieved by requiring an accurate cancel-

) lation between two operators, but such a tuning of coeffi-

the string .scale. We have further assumed the form of th%ients looks ugly and unnatural, and we reject it. On the
operators in Eq(26) c_:orrespondlng =1 a_nd glue_d oo Giher hand, the=1 Clebsch coefficients in Table | include
these operators arbitrary powers of the singlet fiedd8.  examples ofzero Clebsch coefficientsvhere the contribu-
Note that the single power oHH) is present in every entry tion to the up-type matrix, for example, is precisely zero.
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Similarly there arezero Clebsch coefficienfsr the down- 0 0 2% 103
type quarks(and charged leptonsThe existence of such - 5
zero Clebsch coefficienenables us to reproduce the RRR Y= 0 3x10 3x10 ,
texture solutions 3 and 5 without fine tuning. Interestingly 2x10°% 3x10°2 1

they are precisely the solutions which are not possible to
obtain by the standard IR symmetry approach, which favors

solutions 1, 2, and 4 and for which the up-type and down- 0 5%X10°% 0
type structures are similar. Thus our approach is capable of 4 _,
describing the RRR solutions which are complementary to AP= 5X10 2x10 0 (32
those described by the IR symmetry approadfo take a 0 0 1
specific example let us begin by ignoring the flavor-
dependent singlet fields, and consider the symmaeteicl
operator texture Thus, the hierarchy 5,<\5, is explained by a Clebsch zero
and a suppression factor of the subdominant operator. Using
0 oM oN Eqg. (32) we can read off the values of the couplings which
oM OW4+sd ON roughly correspond to a unified matrix of dominant cou-
A= : (28)  plings
oN oN Oj;
0 3x107% 1x10°3
whereQOg3; is the renormalizable operator and sd stands for a 3%x10°3 2%x10°2 2x10°2
subdominant operator with a suppression factor compared to A= 3 s ' (33
the other dominant operator in the same entry. Putting in the 1x10 2x10 1

Clebsch coefficients from Table | we arrive at the component

Yukawa matrices, at the GUT scale, of
where we have extracted the Clebsch factors. We find it par-

0 0 2}\&13 ticularly elegant thr_:lt_ the whole quark_and lepton 'spectrum is
U 5 controlled by a unified Yukawa matrix such as in Eg§3)
\U= 0 Az 2hp;3 7 (290  With all the vertical splittings controlled by Clebsch factors.
2}\&13 2)\33 1 At this stage we could introduce a U(d3ymmetry of the

IR kind and the flavor-dependent singlet fields in order to
account for the horizontal family hierarchy of couplings in

D Eq. (33). In the present case we must remember that there is
0 vaaD, o ; i :
a small quantityd multiplying every nonrenormalizable en-
\o—| V2D, AB2/\B 0 (30 try as in Eq. (11, corresponding to then=1 bilinear
0 0 1 d=vv/M? which we have required to be present in every

nonrenormalizable entry. Thus we can understand (B§).
as resulting from a structure such as

0 NI
8 3 4
\E=| VAR 3BN21B 0| (31) 563 562 Se
0 0 1 A= fe° b€ e , (34)
S5t Se 1

where) 3, and\ 5, arise from the dominar®?, operator and
A5, comes from a subdominant operator that is relevant bewhere we identifye=\=0.22 and se®~0.2 which gives
cause of the texture zero Clebsch in the up sectoD¥f.  the correct orders of magnitude for the entries, rather similar
The zeros in the matrices correspond to those of the RRR the case we discussed in Ed.2). Here of course the
solution 5, but of course in our case they arise from theconsiderations apply to the unified Yukawa matrix, however,
Clebsch zeros rather than from a family symmetry reasomot just the down-type quark matrix. The details of the
The numerical values corresponding to RRR solution 5 withU(1)y family symmetry analysis are discussed in Sec. VII.
the correct phenomenology are Here we simply note that such an analysis can lead to a
structure such as the one assumed in (B4).
A similar analysis could equally well be applied to RRR

5In [23], two of us used an alternative approach in order to repro-solution 3. In both cases we are led to a pleasing scheme
duce the structure of solutions 1 and 3 of RRR by the implementawhich involves no unnatural tuning of elements and naturally
tion of a symmetry. These solutions were found to lead to the opcombines the effect of Clebsch coefficients with that of fam-
timal predictions for neutrino masses and mixings. This has beefly Symmetry suppression, in a simple way. The existence of
achieved by a proper choice of chardereger or half-integgrand  the Clebsch texture zeros thus permits RRR solutions 3 and 5
by imposing residua¥, symmetries which forbid different entries which are impossible to obtain otherwise within the general
in the up- and down-quark mass matrices. framework presented here.
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V. NONSYMMETRIC TEXTURES TABLE I1l. Clebsch coefficients oh=2 operators previously

. . . utilized.
In this section we update the nonsymmetric textures based

on bothn=1 andn=2 operators introduced in R€fL8] and QUR QDh
then extend the new approach introduced in the previous 2 !
section to the nonsymmetric domain. As in the previous sec-

. : . . . 442 12y2
tion, we shall begin by ignoring the effect of the singlet O*¢ V2 V2

LEh,

9.2 3.2
25

3

J5

fields, which will be discussed in Sec. VII. 25 25 25
As discussed in Appendix B we shall modify the analysisODd 1 3 1
of Ref.[18] to only include the lower X2 block Ansatz ﬁ E E
oW+sd 0 v V2 32 6.2 2.2
A= ng Oasl (35 5 5 5 5
ot 0 2 2 0
This is then combined with the upperx2 blocks consid- 0? 0 g g 0
ered in Ref[18]: o3 0 2 4 0
Bi=|gad x| (36)
o0 07 We now turn our attention to the new approach intro-
Bo=| aq , (37) duced in the previous section, basedronl operators to-
1O X ] gether with singlet fields which for the moment we shall
) ) ignore. In this case the 21 operator used in R&8] which
o o8 gave an up Clebsch coefficient 1/3 times smaller than the
Bs= oArd x|’ (38 down Clebsch coefficient is not available if we only use
) ’ n=1 operators. We must therefore use a combination of two
0 O operators in the 21 position that allow the up entry to be a bit
B,= opd % |! (39)  smaller than the down entry. We require that the combina-
tion provide a Clebsch relation betwekB, and\5, for pre-
0 o2 dictivity. The two operators cancel slightly in the up sector,

_ but as shown later this cancellation-isl and therefore ac-
Bs= , (40

oPd X ceptable. The result of this is that the prediction\gf, is
lost; however, this prediction was almost excluded by experi-
[0 0% ment anyway, and a more accurate numerical estimate which
Be=|gpa | (4)  does not rely on matrix perturbation theory confirms that
; : V,p in Ref.[18]is too large. So the loss of thg,,, prediction
0 O is to be welcomed. The Clebsch effect of the 12 operator
B=| ~ma , (42) (with a zero Clebsch effect for the up-type quarkan easily
O X | be reproduced at the=1 level by the operato©M, for
” example.
B.— 0 O 43 To get some feel for the procedure we will follow, we first
87 1 oMd x|’ (43) discuss a simple example of a nonsymmetric texture, ignor-

ing complex phases for illustrative purposes. Restricting our-
where X stands for whatever is left in the 22 position, after selves ton=1 operators, we consider the lower block to be
the lower 2<2 submatrix has been diagonalized. TheA; and the upper block to be the modified texture as dis-
Clebsch coefficients of the=2 operators used in Eg86)—  cussed in the previous paragraph. Thus we have
(43) are displayed in Table Il but we refer the reader to Ref.
[18] for the explicit realization of these operators in terms of
the component fields for reasons of brevity. TAasdze

listed above present problems because of the breakdown of 0 oM 0

matrix perturbation theor§.For purposes of comparison oOMi0A O%+sd 0

with the new scheme involving only=1 operators, we will A= , (44)
recalculate the predictions for each of the models from Ref. 0 o° Ogs3

[18] numerically in the next section.

SWhen the magnitudes dfi,;, Hi,, andH,, are calculated they
are each of the same order in the down Yukawa matrix, thus viowhere O35 is the renormalizable operator. Putting in the
lating the hierarchy in EqB1) that was assumed in the calculation Clebsch coefficients from Table IV we arrive at the compo-
of the predictions. nent Yukawa matrices, at the GUT scale, of
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0 0 0 dissimilar from those in Eq(33); in particular, the upper

U U 2X 2 block is symmetrical with the same values as before. In
\=| ra A2 0 , (45)  this case the lower 22 block has a texture zero in the 23

0 Jaay/\5 1 position, as well as the 31 and 13 positions, but otherwise the

numerical values are very similar to those previously ob-
tained in Eq.(33). Thus this particular nonsymmetric texture

0 Jaap, oo can be described by a structure of the kind
AP= VA A0 , (46) big 3 big
0 _ \/57\[;2/\/5 1 de ) 516 O€ |
N= 56- Set 02 5ePi9 , (53)
0 \/57\?2 0 5eP'9 Se 1
NE=| V2A%  3RB 0 (47 o
0 _3\/5)\;)2/\/3 1 where we identifye=\=0.22 and set~0.1 as before. Can

such a structure for the's be obtained from the U(%)sym-
metry? This will be discussed in Sec. VII.

where\, and\ 3, arise from the difference and sum of two ~ There is no reason to restrict ourselves to nonsymmetric
operators whose normalization factor @ has been explic- textures with a zero in the 13 and 31 positions, as assumed in
itly inserted, and similarly fonY, and A\2,. To obtain the ~Ref.[18]. For example, the following texture is also viable,
numerical values of the entries we use some typical GUT@mounting to a hybrid of the symmetric case considered in
scale values of Yukawa couplings and Cabibbo-KobayashiEq- (28) and the nonsymmetric lower block just considered:
Maskawa(CKM) elementssee Ref[18]) as follows:

N33=1, \;=0.002, \s=0.013,\,=0.04 0 o o
33= 1, Ac=0.00Z, As=0.015, A, =0.04, y W

\—| O oY o (54
Ny=10"°% \4=0.0006,1.=0.0002, (48 ov 0° O

V¢p=0.05, V,s=0.22, V,,=0.004, (49
Here,Og43 is the renormalizable operator. We now perform a
where we have assumed general operator analysis of the nonsymmetric case, assum-
@,=0.115, m,=4.25, tag=55, m,=180 GeV. (50) ingn=1 operators for all nonzero entriea:pa_rt from the 33
renormalizable enty In this general analysis there are two
The textures in Eqs(45), (46), and (47) imply that the 22 classes of texture: those with universal texture zeros in the 13

eigenvalues are just equal to the 22 eleméassuming ma- and 31 positiongessentiallyn=1 versions of the textures
trix perturbation theory is valid—see lajer and considered in Ref[18]) and new textures with nonzero en-

)\léjz: V,/2=0.025. Thus we have\gf 0.004, )\52: 0.03. tr_ies in the 13 and./or 31 position. For now we will not con-
P ioruder the cases with operators in the 13 or 31 positions for
reasons of brevity. In the general analysis we repeat the

Ay=0, )\d:3)\e:)\2Dl\/§)\1D2/)\Sv above procedure, being careful about phases, and obtain
some numerical estimates of the magnitude of each entry
Vub:)\LleVcb/)\c- (51) which will be explained in terms of the U(})family sym-

metry as discussed in the next section.

Note that the up quark mass looks like it is zero, but in With the above discussion in mind, we consider the new
practice we would expect some higher dimension operator t§cheme in which the dominant operators in the Yukawa ma-
be present which will give it a small nonzero value. We thustrix are O3, 0$,, O%, 01,051, andO;,, where the last
have three equations and three unknowns, and solving wéree operators are left general and will be specified later.
find A5;=2x107%, A3 =2x107"3, \D,=3%107%. The dif- We are aware from the analysis in RE£8] that O, must
ference betweeny, and A3, requires suppression dd®  have a zero Clebsch coefficient in the up sector. A combina-
caused by the Clebsch zero in the dominant oper@¥r  tion of two operators must then provide a nonzérg entry
Thus the unified Yukawa matrix involves operators with theto provide a large enougW,,, and an additional, much

approximate numerical coefficients more suppressed operator elsewhere in the Yukawa matrix
5 gives the up quark a small mass. Mgy therefore, the
0 3x107° 0 Yukawa matrices are of the form
-3 -2
N=| 3%10 1.5x10 0 , (52) o
0 25x10°2 1 0 Hie' %12, 0
N = | Haxpie! 2t HppX hie' 2 Hoppxppe! #22 0

where we have extracted the Clebsch factors, and the 22 and 0 H32x'3 2ei b2 H it

21 values in Eq(52) refer to each of the two operators in this
position separately. The numerical values in E5§) are not (55
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where only the dominant operators are listed. Theuper- The basic idea is to do a global fit of each considered
script labels the charge sector a)q'g refers to the Clebsch Ansatzto mg,m,, my, mg, mg, My, Mg, My, ag(Mz),
coefficient relevant to the charge sectan theijth position.  |Vypl, [Veo|, and|V,4 usingm, as a constraint. We use the
¢i; are unknown phases arid;; is the magnitude of the approximation that the whole supersymmet8lUSY) spec-
effective dimensionless Yukawa coupling in thgh posi-  trum of the MSSM lies aMg,sy=m; and that the MSSM
tion. Any subdominant operators that we introduce will beremains a valid effective theory until the scal;,r= 10"
denoted below by a prime and it should be borne in mindGeV. Not wishing to include neutrino masses in this analy-
that these will only affect the up matrix. So far, the known sis, we simply set the right-handed Majorana neutrino mass
Clebsch coefficients are of each family to be 18 GeV so that the neutrinos are
U approximately massless and hence their masses do not affect
X15=0, the renormalization group equatiofRGE'’s) below M g7.
Recall the parameters introduced in E7): ¢5= ¢,
Xg=0, Xz=1, Xz=—3, HY=H},, H2=H,y, Hjy,Hzs,H1sHap,Has. The values
21 21 21 21 22:1122,1112,0132,1133-
of these eight parameters plug at the GUT scale are de-
xg=1, Xgr=—1, Xg=—3. (56 termined bS thg fit. P
The matrices \' are diagonalized numerically and

We have just enough freedom in rotating the phases O|fvub(MGUT)|y|Vus(MGUT)| are determined by

Fi23 andF_m,g to get rid of all but one of the phases in Eq.
(55). When the subdominant operator is added, the Yukawa _
matrices are Vekm=Vu Vol (59

0 0 0 where Vu, and Vp, are the matrices that act upon the

\U= HYe #21 Héze“f’éz 0 (u,c,t), and d,s,b), column vectors, respectively, to trans-
0 HoxY  H form from the weak eigenstates to the mass eigenstates of the
32732 33 quarks. We use the  boundary  conditions
a1(Mgut) = ax(Mgy7)=0.708, motivated by previous
0 HxD 0 analyses based on gauge unification in SUSY GUT models
[24]. Nycrdspemr |Vud, and |Vl are then ruh from
Mgyt to 170 GeV=m, using the RGE’s for the MSSM.
Hax3, Has Below Mgt the effective field theory of the standard model
L g allows the couplings in the different charge sectors to split
£ and run differently. The\; are then evolved to their empiri-
0 Hpxp O cally derived running masses using three-loop QCD
®@one-loop QED18]. m& and\P(m.,) therf fix tang through
the relation[12]

D= Hz1 Haxg, O

NE= H31 szxgz 0 (57)
0 HaxXszp Has

_\2m¥(m,)

where we have defined co ,
vAP(N))

(60)
Hz:€ #2=H ol HpixYiel P21
. - wherev =246.22 GeV is the VEV of the standard model
HDE=H,x5;Fe %21+ Hyp x 5;Fel 421, (58  Higgs field. Predictions of the other fermion masses then
come from
We may now removep,, by phase transformations upon

F_1,2,3 but ¢gl may only be removed by a phase redefinition

of F1 53 which would alter the prediction of the CKM ma- mgﬁkgt(mc,t)%:
trix Vegw - Thus, ¢y, is a physical phase; that is, it cannot be B V2
completely removed by phase rotations upon the fields. Once

the operator€,;,0,;,0;, have been chosen, the Yukawa vCOSB
matrices aM gt including the phase in the CKM matrix are My s b~Nd,s6(M3 1p)——=,
therefore identified wittH;; ,H5,, 5. V2

VI. NUMERICAL ANALYSIS OF MASSES AND MIXING

7 . . . . . . .
ANGLES EROM NONSYMMETRIC TEXTURES All renormalization running in this paper is one loop and in the

modified minimal subtractionﬁ) scheme. The relevant renor-
In this section we discuss the numerical procedure used tmalization group equations are listed in Rgf8g].

analyze the nonsymmetric cases introduced in the previous®The superscripte upon masses, mixing angles, or diagonal

section. We shall perform an analysis on the new approackiukawa couplings denotes an empirically derived value, whereas

based om=1 operators only, and also reanalyze and updatéhe superscripp denotes the prediction of the model for the par-

the original scheme of Ref18] for comparison. ticular fit parameters being tested.
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TABLE lll. Results of best-fit analysis on models with=1 operators only. Note that the input param-
etersH;; ,H;;",cosp shown are evaluated at the scMgyyr. All of the mass predictions shown are running
masses, apart from the pole mass of the top quafRYsE my 1+4ag(m)/37]. The CKM matrix element
predictions are aM ;.

Model 1 2 3 4 5
Oy, oM oW OR OR OR
O+ 0y oM+ 04 0%+ 0" oM+0A 0%+ 0" OR+0°®
H,,/10 2 2.88 2.64 2.69 2.67 6.15
H/1073 2.81 4.41 2.13 0.70 1.21
H,/1073 1.30 5.97 1.76 4.33 1.91
cosp 0.87 1.00 0.20 1.00 0.61
Has 1.18 1.05 1.05 1.07 4.6
H,/1073 1.91 1.87 1.87 1.87 2.87
H,,/1073 1.94 1.62 1.63 1.66 0.76
ag(My) 0.119 0.118 0.118 0.118 0.126
mg/MeV 6.25 1.03 8.07 4.14 11.9
mg/MeV 158 150 154 152 228
m./GeV 1.30 1.30 1.30 1.30 1.30
m,/GeV 4.24 4.25 4.25 4.25 4.13
mPYyGeV 182 180 180 180 192
Vid 0.2211 0.2215 0.2215 0.2215 0.2215
[Vyp|/1073 3.71 351 3.50 3.52 3.50
tans 59.5 58.3 58.3 58.5 65.7
X?INpg 0.34 1.16 0.13 0.55 1.84
vCoSB cases, to predict the measured value|\df,|, H3,~0.03.
mgﬁxe,ﬂ(mjﬂ)?, (61) Note that no errors are quoted upon the lepton masses be-

causem, is used as a constraint on the data and because
mg,m, were required to be satisfied to 0.1% by the fit. In
this way we merely use the lepton masses as three con-
straints, using up three DF. We did not perform the fit with

wherem;= 1 GeV. There are 12 data points and 9 param
eters, and so we have three degrees of freed@R). The
parameters are all varied until the globgl/Npg is mini-

mized. The data use@vith 1o errors quotetare[25] smalle_r empirical errors on t_he_ Iepton masses becguse of the
numerical roundoff and minimization errors associated with
m.=0.510 999 MeV, high x? values generated by them. Also, 0.1% is a possible
estimate of higher loop radiative corrections involved in the
m,=105.658 MeV, predictions. Note that no other theoretical errors were taken
into account in the fit. The largest ones may occur in deriva-
m,=1.7771 GeV, tions of m, due to the large\, coupling[26] and the non-

perturbative effects of QCD near 1 GeV. It is not clear how
to estimate these errors since the erromgndepends upon
soft parameters which depend on the SUSY-breaking mecha-
nism in a very model-dependent way and nonperturbative
QCD is an unsolved problem. The correlations between the
empirical estimations of the current quark masses are also

m.=1.3+0.3 GeV,
mPMs=180+12 GeV,

my=10=5 MeV,

m.= 200 100 MeV not_.included. A potentially large error could occur if the
S - ' Ansdze considered are not exact but are subject to correc-
my,=4.25-0.1 GeV tions by higher dimension operators. We discuss this point
' further in Sec. VII.
IV, =(3.50£0.90)x 10°3, The results obtained from this analysis are given in Table

I1l. Out of 16 possible models that fit the texture required by
Egs. (56) and (55), 11 models fit the data witly?/Npe<3.
Out of these 11 models, 5 fit the data with/Npe<2 and
as(My)=0.117+0.005. 62) these are displayed in Table lll. The operators listed as
015,051,051 describe the structure of the models and the
|Vl is fixed by Hg, which does not influence the other entriesHy,,Hq,,Hoq,c056,Has,H5,,H5, are the GUT-scale
predictions to a good approximation and [84,| andHg3, input parameters of the best-fit values of the model. The
effectively decouple from the fit. We merely note that in all estimated & deviation inag(M) from the fits is+0.003

|V, = 0.2215+0.0030,
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TABLE IV. Predictions of best-fit analysis on models from Ref8] with n=2 operators included. All
of the mass predictions shown are running masses, apart from the pole mass of the top quark. The CKM

matrix element predictions are bt .

Model B, B, B B, Bs B B, Bsg
ag(My) 0.123 0.123 0.123 0.124 0.123 0.124 0.125 0.124
mg/MeV 7.58 9.12 4.64 6.18 7.49 3.63 3.53 4.53
my/MeV 215 240 179 210 217 179 200 187
m./GeV 1.29 1.38 1.35 1.16 1.29 1.32 0.86 1.31
m,/GeV 4.19 4.17 4.19 4.19 4.19 4.18 4.20 4.19
mPYYGeV 188 189 189 189 188 189 190 189
Vid 0.2212  0.2213  0.2214 0.2212 0.2212  0.2215 0.2212  0.2214
[Vypl/1073 4.52 4.37 4.05 4.22 4.56 3.74 3.85 3.98
tang 63.2 63.6 63.4 63.7 63.2 63.8 64.3 63.6
X*Npe 0.95 0.96 1.00 1.05 0.97 1.16 1.87 1.04

VIIl. U (1)x FAMILY SYMMETRY
IN THE SU(4) x O(4) MODEL

and the other parameters are constrained to better than 1%
apart from cog, whose br fit errors often cover the whole

possible range. Out of the predictions shown in Table Il In our discussion of the symmetric textures, we assumed

trgiei'Sr%rlljrgmstszngiﬁvz,ﬁﬂetsheagftd ﬁfn:hriové’gesﬁ%f fz/ hiChthat we could obtain the same structure as IR. Of course, as
> . ! . we have already mentioned, the case we are examining is
the best fit is outside theolerrors quoted in Eq(62) on y 9

S X different in two aspects(a) The fermion mass matrices of
ag(Mz). M, [Vy are within 1o of the data point and the different charge sectors have the same origin, and thus
m.,|V.{ are approximately on the central value for all 5

dels. Models 3. 1 d4 tisfactorv fits to th the same expansion parameter, dby all differences be-
glc: © Sth ZQ/Ne S<’1 \,Nan ?rz Vﬁ:yt?ﬁ '? ta ¢ torr]y 'S 10 qeen these sectors arise from Clebsch factors. As a starting
ata withy“/Npe= 1. W€ conciude that the™ 1est has SOMe ,5;ht *\we will therefore briefly repeat the IR analysis for
discriminatory power in this case since, if all of the models

" d Id isticall h 1 symmetric mass matrices in our framework; we then go on to
were equally good, we wou stat|§t|cazl y expect to have 11 jder the nonsymmetric case, with the goal of being able
models withy“/Npe<1, 3 models withy*/Npg=1-2, and 2

L to reproduce the numerical valuéat least to an order of
models withy“=2-3 out of the 16 tested.

i I ) magnitudé of the successfulnsdze given in the previous
We now briefly return to the original models with upper gection.

blocks given byB;_g in Egs. (36)—(43) [18]. After again The structure of the mass matrices is determined by a
isolating the only physical phase %5, a numerical fit family symmetry U(1), with the charge assignment of the
analogous to the above was performed using the same datavarious states given in Table V. The need to preserve
Eq. (62). The main difference in the fit with these models is SU(2), invariance requires left-handed up and down quarks
that there are now four degrees of freedom in thdésiihice  (leptong to have the same charge. This, plus the additional
there is one less parameteAll eight models in question fit requirement of symmetric matrices, indicates that all quarks
the data withy><2 and these are displayed in Table IV. We (leptons of the saméth generation transform with the same
do not display the best-fit input parameters because they afharge «;. Finally, lepton-quark unification under
largely irrelevant for the discussion herer fit deviations of ~ SU(4)® SU(2), ® SU(2)r indicates that quarks and leptons
ag(M;) are again 0.003 foB;_g Note that whereas these Of the same family have the same chaftes is a different
models are able to fitV,J,ms,my,m,,m fairly well, their feature as compa_red to IR, vyhere quarks and leptons of the
predictions ofwg(M) are high and outside therlempirical two lower generations have different gharges un_der the flavor
error bounds.|V,,| is naturally high in these model@s symmetry. The full anomaly-free Abelian group involves an
found in Ref.[18]) and this forcesag(M5) to be large, a(jd|t|onal famlly—anependent componen't Ug)and with
where|V,| may decrease somewhat. To it with a high this fregdom U(1y is made traceless without any Io_ss of
ubl * . generality’ Thus we setr;= — (a,+ a3). Here we consider
ag(My) requires a largeHs; element and this is roughly . e
speaking whymfhys is predicted to be quite high. In each the simplest case where the combinatitH is taken to have

. ) . . zero charge. This is consistent with our requirement that it
model the 2h|gh value ofrg(My) rqulred is the dominant play no role in the mass hierarchies, other than leading to a
source ofy~ apart fromB-,, wherem, is low.

X ) common factors for all nonrenormalizable entries.
In comparison to the new scheme with=1 operators If the light Higgsh,,h,, responsible for the up and down
only, the old scheme with=2 operators fits the data pretty
well, although not quite as well as models 1,3,4. The old————
scheme also has one more prediction than the new one. Howsgjnce we assume that the 33 operator is renormalizable, the re-
ever, the preferred models are the ones incorporating thgation of the tracelessness condition does not change the charge

U(1)x symmetry since they go deeper into the reasons fomatrix since any additional FI charges can always be absorbed into
the zeros and hierarchies in the Yukawa matrices. the Higgsh; charges.
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TABLE V. U(1)x charges assuming symmetric textures. TABLE VI. U(1)x charges for nonsymmetric textures.
Qi Uic dlc Li eic Vic h]_ h2 H H_ Qi Uic dlC Li eic Vic hl h2 H H_
Ul)x a @ a o o o —2a3 —2a3 X —x Ul B a a Bi a a —Pz—az —Pz—az X —X

guark masses, respectively, arise from the same bidoubl
h=(1,2,2), then they have the same U¢lgharge so that
only the 33 renormalizable Yukawa coupling lig,h; is al-
lowed, and only the 33 element of the associated mass ma’[rﬁé7 o . .
will be nonzero. The remaining entries are generated whe e unified ferrmon mass matrices. ,

the U(1), symmetry is broken. This breaking is taken to be B€foré passing to the nonsymmetric case, let us make a
spontaneous, via standard model singlet fields, which can HEW comments on the possibility of having chiral or vector
either chiral or vectorones; in the latter case, which is the Singlets, as well as on the charge of the Higgs fields. Suppose

one studied in IR, two field® and ¢, with U(1)y charge first that @ is a chiral field. From the form of the charge
—1 and+1 respe:ctively and equaI'VEV’s are introduced. Matrix, we observe that if the 22 and 23 entries have a posi-

When these fields get a VEV, the mass matrix acquires itéi\_’e phargeas is nega;ive(for all these entr_ies to be nonva-
structure. For example, the 32 entry in the up quark mas8iShing at the same timeMoreover, the hierarchy 1:3 be-

matrix appears aO(e) because (1) charge conservation tween the 23 and 12 elements indicates thatvould have
only allows the termcSth,(6/M,)® 9% for a,™>as or to be zero in the chiral case, and thus the 13 element would

b TN A N\ e _ la,—ay  tend to be larger than desired. We can say therefore that the
C°tha( /M) 42 for ag>ap. Here e=((0)/M2)! ™2 S ooy enric case with vector fields generates the mass hierar-
where M, is the unification mass scale which governs the

: ; . - . chies in a more natural way.
higher dimension operators. In IR, a different scdb,, is Y

ted for the d k and leot tri Concerning theh,,h, Higgs fields, there are two kinds
ex;l)ec ed for eh own qualrl ﬁm ep og mass matrllces.h originating from free fermionic string models: those coming
N our case, NOwever, all chargeé and mass matrices nNag, ,, Nevey-Schwarz sector, which in general have integer
the same structure under the Uglyymmetry, since all QRN

K formi dated in th ltinlet ncluding zer9 U(1)x charges, and those arising from
hown fermions are accommodated in the same MUMPIELS Qf;isreq sectors, which usually carry fractional Ugl)
the gauge group. The charge matrix is of the form

charges. Which of these cases acquire VEV's is decided
from the phenomenological analysis. For example, to obtain

%ﬁly, unlike what appears here, in most schemes the lepton
mass matrix is described in the generic case by two param-
ers. Fora=1, one generates the structure in E8d) for

—2a2—4a3 —3a3 _0[2_26(3
the structure of Eq(34) we see that the charges lof , may
—3ag 2(ay—a3) a—az [. (63 not be zero, since in such a case the 12 element which is
—a,—2as a,—as 0 proportional to the Higgs charge would be unacceptably

. _ _ o large. For the nonsymmetric case of course this feature does
Then, |nclud|_ng the common facta? yvhlch multiplies all not necessarily hold. Finally, thel,H fields [the SUA4)
nonrenormalizable entries, the following pattern of masses IBiggs fieldd tend to be nonsinglets under extra U{ISym-

obtained(for vectorlike singlets metries. We now proceed to discuss tensymmetric case
Sel2t6al  sel3al s l1+3al which in the framework of U(1) symmetries has been ex-
tensively studied if27]. Here, we will examine what con-
Nd | sell s de |, (64)  straints one may put on the various possibilities for nonsym-
Selttsal  s¢ 1 metric textures, in the model under study.

The charge assignment for this case appears in Table VI.
wheré® a= a3 /(a,— a3). We emphasize that the entries in Fields that belong to the same representation of
Eq. (64) describe the magnitudes of the dominant operatorsSU(4)® SU(2), ® SU(2); are taken to have the same
and do not take the Clebsch zeros of the different chargeharge. Again, it is clear that all fermion mass matrices will
sectors into account. Note the existence of a single expansidrave the same structure. With this charge assignment we
parameter, for all three matrices. Another interesting point isnay proceed as in the symmetric case, and calculate the
that a unique charge combinatiamappears in the exponents possible mass matrices that may arise. The charge matrix is
of all matrices, as a result of quark-lepton unification. Actu-now

—ay—2a3—B,=2B3 ar—az—Br=2B3 —L2—2P3
—ay—2a3tBr— B3  ar—aztBr— B3 Bo—B3 |. (65)

—a2—2a3 ap— (X3 0

0n this simplest(and more predictiverealization,h,~h, and therefore we are in the large fanegime of the parameter space of the
MSSM.
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We now want to find which charge assignments may gener- |chargé11)|>|chargé21)],
ate a mass matrix as close as possible to the form 5=y,

keeping in mind that there is no reason to restrict ourselves |chargé21)| >|chargé22)|,
to nonsymmetric textures with a zero in the 13 and 31 posi-

tions. |charg€12)|> |chargé22)],

In what follows, we will check whether it is possible to
generate the hierarchies in the effective low energy Yukawa
couplings required by ouknsdzeand the data. The required
couplings are detailed in Table Ill. Initially, we determine if
we can obtain the correct structure by chiral singlet fields.
We assume for a starting point that for the 32 entry we have
a,— a3>0 (without a loss of generality since we can always
choose the sign of one entry in the charge matrbhe 23

|charg€13)|>|chargé22)

3

|charg€31)|>|chargé22)

3

|charge32)|<|charg€22)|O(e),

entry has to be smalt is assumed to be zero in thnsaze |chargé12)|~ |chargeé21)|O(e),
in Eq. (55)], indicating that(a) either 8,—B83<0 or (b)
B>— B3 is positive and large #2). Case(b) is excluded, |chargé23)|>|chargé22)|. (66)

since it would indicate that the 22 charge, which is always ) ) o
the sum of the 23 and 32 charges, would be unacceptably€n. we end up with the following possibilities:
large as well(which implies thatH,2<H32, in contradic- Case 1:

tion to the fits in Table Il). What about casé&)? A negative
number must not dominate the 22 entry in the chiral case, az=—2/3, az==5/3, B,=—2, B3=0,
and thus| 8,— B3| would have to be smaller thda,— 5.

This clearly contradicts the required hierarchy between the

22 and 32 elements and so the required couplings can not be 5e® o€ o€

naturally described by a model with only a chiral1lyy v | 862 Se €2 6

Higgs 0. u,d,/— st s 1 ( 7)
For this reason we are going to look for solutions in the € €

case of vector singlets, where it is the absolute value of the

charges that matters. Here, the important difference from the Case 2:

previous case is that a solution with a small and positive

as— agz and a large negativg,— 85 is allowed. The 23 and ar,=—1, ag=—2, B,=—2, B3=0,

32 elements have the correct hierarchy, while the 22 element

can also be sufficiently small, as a result of a cancellation

between terms of opposite sign, with the negative contribu- Se!  Se€3  S€?

tion being dominant. What can we say about the rest of the S Se  5e2

structure and how restrictive should we be when looking for Yud,/ = € € o€ (68

solutions? We could allow for a small asymmetry between s> e 1

the 12 and 21 entries. ActuaIIy\,E’2 can be slightly larger

than \D,. This, combined with the fact that there are un- Case 3:

known coefficients of order unity, indicates that we can have

an asymmetry of orde¢ between the 12 and 21 entries. We ay=—413, az=—T7I3, By=—2, B3=0,

will discuss solutions with such an asymmetry, even in the

case thah2,<\D, due to this coefficient ambiguity as well

as the ambiguity in the experimental value of the up and 58 563 52

down quarks. We also need not drop solutions with a large 4 5

13 or 31 entry, if they are compatible with the numerics. Yoo, = de"  be be (69)
On this basis, we have looked for solutions in the follow- 5% Sse 1

ing way: For the charges of the elements 12-21-22-32 we

made all possible charge assignmefgsch that lead to a

maximum fourth power in terms of the expansion parameter Cas€ 4:

for the resulting mass matrices, for the 12 and 21 entries

This fixes all chargesx,az3,,8; each time. We then ay=—413, a3=—1/3, B,=0, f3=-2,

looked at what the charges of the other entries are and 5 3 4

whether the generated hierarchies are consistent with the de> o€’ Je

phenomenology. v . —| 0" se &€ (70)
The restrictions we require in order to identify a viable u.d,”

. . - S5¢®  Se 1
solution are(in addition to of course that the only renormal-

izable term is in the 33 position
Case 5:

|chargé11)|>|chargé12)|, ap,=—4/3, az=—7/3, B,=—-3, $3=0,
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Se° St Sé€°
Se3 52 Sé€°

Yu,d,/=
S5e8  Se 1

Case 6:

a2=—1, CY3:_2, ﬁ2:_7/3, B3:_1/3,

58 St sé€°
3 2

Yia,= o€’ Oe Oe€
Se® e 1

Case 7:

a2=—5/3, a3:_8/3; B2:_31 33:0!

Se' st S8
Se*  8€® S€°

Yu,d,/:
Se’  Se 1

Case 8:

ay=—413, as=—T7I3, Bo=—TI3, Ba=—1/3,

Se° S&* Sé€°
4 2

Yua, = o€ de Oe
S5€®  Se 1

Case 9:

ay=—413, az=—1/3, Bo=—1/3, B3=—TI3,

Se’ St S€°
Se*  Se 68é€?

Yud, =
Se> Se 1

(71

(72

(73

(749

(75

Se’ St 568
2 2
Yia,= 3 de Oe 77
Se*  Se 1

Of course, here we also have the cases with the opposite
charge assignmefht. Among the various choices, we see that
the charge of the Higgs fields, , is always different from
zero and there are cases where the 13 and 31 elements are
large. We may now examine the results of Table Il in the
context of the Wl)yx symmetry discussion above. We take
all models that fit the data with?/Npe<1, i.e., models 1, 3,
and 4. We define in each of these modef§™ as being the
dimensionless and dominant effective coupling constants in
the SU4)® SU(2) | ® SU(2) g unified Yukawa matrix for the
best fit parameters.

Then, model 1 has

0 0.003 O
0 003 1

We see that case 1 above does not fit this pattern very well if
all dimensionless couplings arel because, in case Hl; is
suppressed in comparison t#;,. Cases 4 and 9 do not
possess approximate texture zeros in the 31 position and this
would affect|V | strongly. Similar objections can be raised
about other cases, except for cases 2, 7, and 8. Case 2 with
€=0.215=0.14 yields

2x10°% 0.001 6x10°°
0.001 0.03 &10°°
6x10°° 0.03 1

, (79

which fits Eq.(78) well apart from a factor of~3 in the 12
position. The next subdominant operator in the 22 position
needs to be 10 2 according to Table IIl. The values of

€ and § used in Eq.(79) give the subdominant operator in
the 22 position to be~6x10"3. This is acceptable, but a
closer match occurs for the next higher dimension operator,
which has magnitude-10~3. An ambiguity occurs in that
we have not set the normalization of the subdominant opera-
tor due to its numerous possibilities and so the original dis-

Let us also list for completeness a few cases with a 'argeérepancy factor of-3 could easily be explained. Below, we

splitting between the 21 and 12 entries to O(€?)]:

Case 10:

a2=—4/3, a3=—1/3, B2:1/3, B3:_5/3,

Se® 52 S€°
4 2

Yoo, = Je€ de Oe
5 Se 1

Case 11:

a2=—2/3, a3=—5/3, B2:_7/3, ﬁ3:_1/3,

(76)

do not consider the numerical size of the subdominant op-
erator because it is clear that some operator can be chosen
that will fit the required number well. If the charge assign-
ments under the (1) x symmetry were the same as in this
case, we would have succeeded in explaining why the as-
sumption of texture zeros was valid. For example, the 13
element in Eq(79) being 6x10 2 instead of zero only af-
fects mixing angle and mass predictions by a small amount.
We have also explained the hierarchies between the elements

The presence of fractional charges implies the existence of re-
sidual discrete symmetries after the breaking of the Abelian sym-
metry.
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in terms of the different mass scales involved in the non- Thus we see that we can explain the hierarchies and tex-
renormalizable operators by not having to choose dimensiorture zero structures of the models that fit the data best. In
less parameters of less than 1(8 greater than )3 Case 7 general, it seems likely that we have enough freedom in set-
with €=0.365=0.08 gives ting charges to attain the required hierarchies for the Yukawa

matrices.
2x10°% 0.001 4x10°3

0.001 0.01 4103 VIIl. STRING MODEL

(80)
6x10°° 0.03 1 In the following, we will present a semirealistic string
model which provides an existence proof of how previously

We should note that at this level we may naively expect gygiescribed nonrenormalizable operators may be generated
corrections to the constraint in E¢80) through the next frqm first principles using string theory. Before this, let us
order of & operators in each element. We could have atPriefly comment on how the basic features of the U(1)
tempted to include these possible errors in the numerical fit§ymmetries that we have discussed arise in string construc-
but we did not due to the fact that they are very modeftons. o

dependent. Deeper model building in terms of constructing !N realistic free fermionic string mode[49,17] there ar7e

the nonrenormalizable operators out of extra fields or exam$ome general features: At a sCaMgying~50suingX 10"

ining underlying string models would be required to explainG€V, one obtains an effectié=1 supergravity model with
why this should not be the case. It should also be borne i gauge symmetry structure which is usually a product of
mind that explanations for exact texture zeros can be made fon-Abelian groups times several U(1) factors. The non-
this context by setting fractional U(} charges on the heavy Abelian symmetry contalns an observable a}nd a hldQen sec-
fields in the operators or by leaving certain heavy fields oufor- The massless superfields accommodating the Higgs and
of the FN model. Case 8 witle=0.365=0.08 gives the known chiral fields transform nontrivially under the observ-

same results as in E¢80), except with the 22 element as able part and usually carry nonzero charges under the surplus

0.03. U(1) factors. The latter act as family symmetries in the way
From Table Il we see that model(ge model that fits the ~described above. Some of them are anomalous, but it turns
data the besthas out that one can usually define new linegf}Jcombinations
where all but one are anomaly free. The anomalo(b i$
0 0.002 O broken by the Dine-Seiberg-Witten mechanidi28], in

which a potentially large Fayet-lliopould3 term is gener-
ated by the VEV of the dilaton field. A term, however,
0 003 1 breaks supersymmetry and destabilizes the string vacuum,
unless there is a direction in the scalar potential whicb is

Choosinge=0.26,5=0.12 in case 2 gives a good match to flat andF flat with respect to the nonanomalous gauge sym-

HiejmpN 0.002 0.03 _ 81)

Eq. (81): metries. If such a direction exists, some of the singlet fields
will acquire a VEV, canceling the anomaloDsterm, so that

9x10°® 0.002 8x10°3 supersymmetry is restored. Since the fields corresponding to

_3 such a flat direction typically also carry charges for the nona-
0'00_25 0.03 810 (82 nomalousD terms, they break all (1) symmetries sponta-
6x10 0.03 1 neously. For the string model in R¢L.7], the expected order

of magnitude for the VEV of the singlet fields is

Case 7 withe=0.40,5=0.07 or case 8 with the sameand  (Pi)~(0.1=0.3)<Mgying. Thus, their magnitude is of the
8 both give a fairly good match as well. right order to produce the required mass entries in the mass
Model 4 is different in the sense that it possesses a hieffatrices via nonrenormalizable operators.

archy between the 12 and 21 entries of the effective Yukawa AS an application of the above procedure, we will make a
couplings: first attempt to derive the relevant operators for the mass

matrices of the model based on the work in Réf7]. The
0 0.0007 O string model is defined in terms of nine basis vectors
{S,by,b,,b3,b,,bs,bg,@,{} and a suitable choice of the
HE™~ 0.004 003 (83  Gliozz-Scherk-Olive (GSO projection coefficient matrix.
0 003 1 The resulting gauge group has a Pati-Salam
[SU(4)XSU(2) X SU(2)z] non-Abelian observable part,
accompanied by four (1) Abelian factors and a hidden
SU(8)xU(1) symmetry.
3%x10°7 0.0007 4x10°3 In the following, for convenience, we denote a set of com-
0.004 003 4103 -, plii( ] _;ighet_123 filrmions with. the . Iettgrs
75 ' {2 o Z 2 and real right fermions with
10 0.03 1 {y! ¢ w5 Now, a specific model is defined in terms of
a set of boundary conditions on the phases picked up by the
an extremely good match to Eq@83). Case 6 with fermions when parallel transported around noncontractible
€=0.286=0.11 provides a good match also. loops. The model is derived from the bafl¥]

Here, case 1 witt=0.2,=0.15 predicts
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S={y* x*?* %0.-.0}, In addition, one obtains fractionally charged states which

arise in nonstandard representations of the Pati-SéR&h

b1={¢”,X12,y3456F45§‘1’1'"SF}, symmetry,_namely., (1,1,2 and (1,2,].) and one pair
(4,1,1)+(4,1,1). Finally, under the hidden gauge group,

b2:{¢M,X34’y12F2w56$6;\1714'-5?}, one obtains ten irreducible representatiahsz; sitting in

the 8 of SU(8) while carrying quantum numbers under all

five U(1) symmetries of the model. All states are divided to
those arising from the Neveu-SchwdNS) and RamondR)

- - sectors. In particular the NS sector gives the graviton mul-
ba={v* x'2y>y % 00w Syl tiplet as well as the singlet fielo®; ,®;;, sextets and the

bidoubletshs, h.

b3={¢“,)(56,a)1234w_1234;‘171' . 5?}’

b5:{lp,u,'X34,y26y26lw15w15;q,1- . -57]2}’
S IX. CALCULATION OF TREE-LEVEL

bs={0,0y°y°® w'?w!% Wt 5512312371} AND NONRENORMALIZABLE OPERATORS
IN THE STRING MODEL

To calculate the superpotential of the model, one needs to
— - — obtain vertex operators for all physical states of the theory.

— f\/46,,46 46 46.41,123, 12 .
a={y*y*, v w*yi?z12, To construct vertex operators for the states of a given model,

i . . every world-sheet fermion has to be represented by a confor-
All world-sheet fermions appearing in the basis are assumef,) field. In the case that a representation of the model can

to have periodic boundary conditions, while those not apy)e fully factorized in a left- and a right-moving piece, one
pearing are antiperiodic. An immediate consequence of using,, pair them up to bosonized fields. Now, according to the
only periodic and antiperiodic boundary conditions is that yefinition of the supersymmetry generat8rin the above
the resulting gauge symmetry is in general a product Ofyaqis of our model, one can conclude that the left-moving
SO(n) groups. Thus, in the_above basis, for example, thefields X' can be bosonizedx(lt|X2)/\/§=exp[t|812} and
complex world sheet fermiong* *° define an SO(10) sym-  similarly for the y3* and x>*© pairs. N=1 supersymmetry
metry which is broken by the last vector into implies the existence of an extra current, which is expressed
SO(6)®0(4). Now, bearing in mind that this part will be in terms ofS; as[37]

interpreted as the observable gauge symmetry, we observe

the isomorphies SO(6)SU(4), O(4)y-SU(2)®SU(2). J(0) =19¢(S12+ Sza+ Ssp) (86)
The two SU2)'s are going to accommodate the left and right

components of the matter fields. Thus, the resulting gaugend which is extended to three (1ys generated by
symmetry is isomorphic to the Pati-SaldRS gauge group.  s,,,S;,,Ss.

Thus the complete symmetry of the model under the above The Yukawa couplings in four-dimensional superstring
choice is models correspond to expectation values of the form

[SU(4) X SU(2) X SU(2) X U(1)3], X [SU(8) X U(1)],
(85 < J d?q, f d?q, J d2q3V§(q1)V§(q2)V§(q3)>, (87)

where the subscript(h) denote the observable and hidden B o
parts, respectively. With the specific choice of the projectionvhere theVi"= are the vertex operators for the fermionic
coefficient matrix in[17], one obtains three chiral families in (F) and the bosonicg) states, whileq, ;5 are the two-
the (4,2,1)+(4,1,2) representations of the PS symmetryd'mens'onal coordinates. Thus, a vertex operator for any

: . . — physical state is a collection of conformal fields that repre-
an.d. two Higgs pairs transforming as (4,15204.1,2), all sent the quantum numbers of the state under all symmetries
arising from the sectorb, , 3 andb,,bs.

. . of the model. The piece of the vertex operators involving the
In particular, the massless spectrum contains thre

Bosonized left-moving fieldg' is given for the bosons by

(F1341.=(4,2,1) representations obtained from the Secmr%/?pexp[aSlz}exp{,BSM}exp{ySie}. Similarly, for the fer-

b1 34 which gcccmmodate the Ieft-handﬂl fermiol,ﬁelds.mions, VF L expl(a—1/2)S, texpl(B—1/2)Ssibexpi(y
There are five (41,2) representationsFGasF2.F2)r  _1/2)5.1. The subscripts-1,— 1/2 refer to the correspond-
named after the corresponding sectors and tWQng ghost numbers. The total ghost number should add up to
Ha5=(4,1,2) arising from the sectoks,s. Thus, two linear  _3 "4nq thus in trilinear terms the nonvanishing couplings
combinations of the=; will play the role of the GUT Higgs are proportional to the correlatgiv"VFV®). In nonrenor-

H, while the remaining thre&’'s accommodate the right- malizable contributions, the remaining vertex operators
handed fermions. The spectrum includes also bidoublet‘s/ff- . ~VE have to be “picture changed” in the zero picture
h;=(1,2,2), sextetsD;=(6,1,1), and a sufficient number [37]. In general, a particular correlator is nonvanishing, only
of singlet fields®;;,¢;,{. A certain number of singlets if it is invariant under the three ()’s. In addition it has to
should develop VEV’s in order to satisfy the flatness condi-respect the usudtight-moving gauge invariance and other
tions and give masses to unwanted color triplets and exotiglobal symmetries. For example, pure NS couplings are pos-
states. sible only at the tree level. The same is true for higher order
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couplings involving only Ramond fields, and so on. A com-In particular, for the string model in Ref[17],
plete list of rules is found in37]. T Qx]=72, and therefore the order of magnitude for the
If we imply the well-defined set of rules to calculate the singlet fields is(®;)~(0.1-0.3)X Mging. (See also Appen-
Yukawa interactions in the present string model, we obtairdix C for the detail9. This indicates that the singlet VEV’s
the following tree-level terms that are relevant to our discushave the correct magnitude, in order to produce the required
sion:; mass entries in the mass matrices via the nonrenormalizable
operators of Eq(89). We also note here that the spontaneous
_ 1 o . breaking of the anomalous(l) symmetry introduces one
W—Fy Fsphiot —=F4rFsr{ 2t FarFa ha+ £1h3hy more mass scaldl y in the theory, which is characterized by
V2 the magnitude of the related singlet VEV's. Thus, one natu-
rally expects the hierarchM gin=Mx=Myr.
One possible choice of nonzero VEV's is

(D 1) (D), (E1),( ), 93)

+&4hgh 1o+ @+ Bshpshyot £ hghy,
+ E4N3hypt Dy hpho+ ashlzh_lz‘*' R (88)

where the ellipsis stands for terms involving exotic and hid- , . , .
den fields and other couplings irrelevant for our purpose. Th nd{Zs) (Zg)#0 of the hidden fields. Solving the flatness

F-flathess conditions are derived for the complete tree—Ieve?ogd't;or;]s(A_pand'X Q; o_g/eﬁ_/ndS_ th"’l‘t thi orc_ier Of. magni-
superpotential, which is given [17] and involves in total 18 tude of the singlet VI_EV S 1/8y /N P.a.nc units. It is easy
singlet fields. Five of these fields, namelp to see that the choic@3) satisfies trivially theF-flatness
zero quanturﬁ numbers under th(elh’Jgroups ’\1/\’/h'iié the rest conditions. We should point out, however, that this choice is

_ not unique. There are other cases which also satisfy condi-
of the fields(denoted byf1 254 £1234 120 {120 P12v tions(90) and(91), and hopefully a solution which meets the

® 1y, P15, P12) have nontrivial quantum numbers. phenomenological requirements does exist. The nonzero
From the above, it is clear that only a few Yukawa cou-VEV’s in Eq. (93) provide all dangerous color triplets with
plings are available for fermion mass generation at the tregnasses from tree-level superpotential terms. Here we would
level. The missing terms are expected to be obtained fromike to investigate if they are also capable of producing the
nonrenormalizabléNR) terms. In the case of the PS symme- relevant operators for the fermion masses. This computation

try we expect NR terms of the form will prove to be a rather hard task mainly due to the rapidly
o increasing number of NR operators as the calculation pro-
—  HH®®; ceeds to higher orders. We will see, however, that the pattern
FFhM4—’ etc., (89) of the fermion mass matrices described in the previous sec-
string tions is basically obtained.

_ We will first start the examination of the tree-level super-
which act as effective mass operators once the fieldsl,  potential. Because of the string symmetries and th#g) U
and®; ; get VEV's. The scale where the Higgs fieltlsH charges of the superfields, as can be seen fron{@8y.only
obtain their VEV’s is determined from phenomenological three terms relevant to the fermion masses exist at the three
requirements and renormalization group analy38 of the level:
particular model. Moreover, the singlet VEV's are not com-
pletely arbitrary since they should satisfy tHe- and — [ —
F-flatness conditions. In general, tieflatness conditions W—Fy Fsghiot EF4RF5R§2+ FarFsLhs. (94
read

Here, hy5,h; are bidoublets and;, is a singlet, while the
2 _ F_ r chiral fields have been presented previously. We may
21" {Quiw),Mp=0 (%0 give a nonzero VEV to one of the two bidoublet Higgs fields
(or to a linear combination c@h,,+ sinéh;) and support one
. generation with masses at the tree level. Since there are more
> QL(@)|?=0, (91)  than one doublets in the spectrum, first, we should determine
! the massless state along the chosen flat direction. At the tree

level, the bidoublet Higgs mass matrix obtained from the
where(d;) are the singlet VEV's ang stands for the uni- reglevant terms is

fied gauge coupling aMgying. U(1)x in Eg. (90) is the

2

g
1927

Ei Qll(Pi)|?+

anomalous 1) combination andQ} the corresponding 0 §_1 0 & h;

U(1)yx charge of the single®;. Equation(91) holds for all - — h

the nonanomalous (@) symmetries of the particular model. (hship s h—z) §1 P &4 @3 _12

From relations(90) and (91), it is clear that the order of 811218 T & 0 & hsy |’

magnitude of the VEV’s of the singlet fields is determined 4 e

by the Tr term. Thus, we expect that §&4 3 & Py 12 95
(@)?=0 9*Tr(Qw) 92) with ¢=d3/2. In order to have at least one nonzero eigen-

19272 Pr value we impose dptn, |= (&, £,— £€,€4)2=0, which is sat-



2650 ALLANACH, KING, LEONTARIS, AND LOLA 56
isfied for any value of theb,,®,, &5, VEV's, provided  sector. Recalling now tha . and H=F 5 originate from
& E,= £,&,. The choice(93) is consistent with these re- the same sectdy,, while F4 , H=Fsg andhy, are obtained

quirements. Moreover, it leavels;,h;, massless at three frombss. We find that
level. We then leh,, develop a VEV and give masses to the

) L — _— 2 4
top, bottom, andr particles living in theF,, ,Fsg represen- E. H)(F.-Hh 0%_.! Z_0dh, —/€h
tations. Theh; bidoublet is expected to receive a mass from (FaH)(ForM)hio— 07— \/EQ 5 df
a NR term. Thus, to proceed further, we need the contribu- (99

tions of the nonrenormalizable terms. As in the tree-level

case, a nonvanishing NR term of the superpotential mugte., this operator contributes to down quark and charged lep-
obey all the string selection rul¢87] and be invariant under ton mass matrices. Since this_contribution is the second larg-
all the gauge and global symmetries. Since here we discussst after the tree-level terf, Fsghy,, we identify Eq.(99)

the fermion masses, we are primarily interested in those opwith the 23 entry of the corresponding mass matrices. It is
erators contributing to the corresponding matrices. At fourtl‘uear, therefore, that in this pictUIFeSR,F_ZR accommodate

order, we find no relevant terms. At fifth order, there areye right components of the third and second generations,
several operators which in principle could contribute to therespectively, whereaB,, contains the left fermions of the

fermion mass matrices. We list them here: heavy generation. In order to obtain nonzerquark andu
_ . ) masses, we need to fill in the 32 entry of the down and
FsrFaLhsé1 62, FarFalhs®345s, (96)  charged lepton mass matrices with a higher order operator,
so that the X 2 lower block of the corresponding mass ma-
F1rF1 N1al 2@, F5RF4Lh12(I)i2! (97) trices exhibits a structure of the asymmetric type considered

in the previous section,

FsrF aLF 2rF 2rN12 (98) — (72 (HA) Fil

FrMyeFr=(For,Fsr) 1 hio £l
(scaled with the proper powers bfgying). Let us analyze the 7132 4L
above contributions in terms of the particular flat direction

chosen here. It is clear that, irrespective of the choice of th

S!nglet VEVS, th_e term496) do not add a new contrlbutl_on_ represents in general one of the two remaining left-handed
since they constitute small corrections to the already eX'St'n%urpletsF To determine which of the latter will ac
(1,3)L - -

tree-level termF3F3hs. Moreover, within the given choice  ¢ommodate the second generation and calcujeone has
of our flat direction,(®;)=(¢,)=0, the termg97) do not  to proceed above the fifth order and find the relevant nonva-
also generate any new fermion mass term. Thus, there is onbjishing correlators. For example, choosing a new flat direc-

one term which contributes to the fermion mass matricesiion in which ¢,,®, singlets develop nonzero VEV's while

namely, the operator of Eq98). This is an=1 operator . : . . .
according to our classification in the previous sections. wenterpretingFs ,Fap as the third generationy,, may arise

have already interpreteB sy and F,,_ as the left and right from the fifth order NR operatoFy F1ghs,¢,®, in Eq.

components of the third fermion generation. Up to now we(%)' Interestingly, this is am=0 operator according to our
P 9 - VP classification; however, it is suppressed compared to a tree-

have not determined which &z, F3g is going to play the  |eye| term due to the presence of the “effective” flavor fac-

ro]e of the sec_ond fa}mlly. The flfth order operator still Ieav.estor 8= (T,®,)IM2,.. Furthermore, higher NR terms wil

this undetermined since both fields enter in the operatorina_ . . ‘= string o
ertainly involven=2, 3, etc., operators. Thus, it is clear

symmetric way. Thus there are two options. E|theuve S€that the above procedure will requine=2 operators and the

(F2r)=0, or we have to rename the fields so that ,Fsr  gnalysis will be more involved than the field theory model
are the third generation fermions ahg the massless Higgs Jescribed in the our earlier sections.

boson. In the first case we retain the fifth order contribution  Ag a matter of fact, a detailed analysis requires also the

to the mass matrix, while in the second we have a uniquexamination of all possible flat directions as well as calcula-
choice for the second family and the Higgs boson; i.e.4ion of the nonrenormalizable contributions to even higher
H=F 2z and F g accommodates the right-handed fields oforders, since one has to ensure that the necessary Weinberg-
the second generation. Salam doublets living in some combination of dug,hq,

In order to calculate the contribution of the operator inbidoublets remain massless up to this order. For the moment,
Eqg. (98) to the mass matrices, we should properly contracin our first approach to this model, we have been able to
the various fields involved in the NR term. In principle, the show that the rather complicated string construction stays in
numerical coefficient in front of the desired operator is aclose analogy with the field theory approach presented in the
linear combination of the Clebsch-Gordan coefficients preearly sections.
sented in Table |, each of them multiplied by a different
phase factor. Our ignorance about the numerical coefficients X. CONCLUSIONS
of the mass matrix entries has been minimized in the un-
known phase factors. However, we can make a natural as- We have examined Yukawa textures within a string-
sumption that the largest contributions come from contracinspired SU(4)X O(4) model extended by a gauged U{1)
tions occurring first for the fields belonging to the samefamily symmetry and nonrenormalizable operators above the

(100

evherenij stand for higher order NR contributions, whitg
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unification scale of the form in Eq27). These operators spond precisely to thAnsatzin Eq. (35). Within the given

factorize into a factor iH) and a factor involving the sin- String construction, such aAnsatzdoes not appear to be
glet fields# 7 The singlet fieldsy 7 break the U(1) sym- possible. The reason is the extrd1l symmetries and the

. . A : : her discretelik mmetriéselection rulesl ver in th
metry and provide the horizontal family hierarchies while the%weegesr(é;trenogeslyA neetwé:teriﬁ;t gongtffcﬁgr? v(\?ith ; ﬁew

H,H fields break the S4)®@SU2) ®SU2)g symmetry houndary condition on the string basis is required in order to
and give the vertical splittings arising from group-theoreticmake contact with the phenomenologically preferra-
Clebsch relations between different charge sectors. The fagzze This will be the subject of future work.
tor (HH) also provides an additional flavor-independent sup-
pression factos which helps the fit. The quark and lepton ACKNOWLEDGMENTS
masses and quark mixing angles are thus described at high i _
energies by a single unified Yukawa matrix whose flavor_ B-A. would like to thank J. Holt for advice on the? test.
structure is controlled by a broken U(gjamily symmetry, The work of S.F.K. was partlglly supported by PPARC Grant
and all vertical splittings controlled Clebsch factors. An im- NO- GR/K55738. S.L. would like to acknowledge the Theory
portant feature of the scheme is the existence of ClebscffoUP at the University of Southampton for PPARC finan-
zeros which allow an entirely new class of textures to pecial support which greatly facilitated this research. The work
obtained. For example, the RRR solutions 3 and 5 may b@f S:L. was funded by Grant No. TMR ERBFMBICT-
reproduced by this scheme which are complementary to the20565 and at the initial stages BYENEA-91A300. The
RRR solution 2 favored by the IR approach. work of G.K.L. was partially supported bJWIENEA-

In addition to the symmetric textures we have also per—9JA300-
formed a completely new analysis of the nonsymmetric tex-
tures which are motivated by the string construction. A glo- APPENDIX A: n=1 OPERATORS
bal fit to the fermion mass spectrum with three DF IS = pp 4 operators are by definition all of those operators
described, in which three models in Table Il are singled out ) SR
with x?/Npe<1.12 At this level of difference ofy? between which can be construqted_ from the five f_|eIE$:hHH by _
models, they? test is subject to large statistical fluctuations. cOntracting the group indices in all possible ways, as dis-
Therefore, we do not statistically distinguish between the fit€ussed in this appendix. After the Higgs fieltls and H
in Tables Il and IV since both contain good fits to the datadevelop VEV's atMgyr of the form (H*)=(H*) =y,
with x?/Npe<1. However, we have a theoretical preference(H ,)=(H4)= vy, the operators listed in this appendix
for the models in Table Ill since these models result from theyield effective low energy Yukawa couplings with small co-
operators in Eq(27) where the family hierarchies are ac- efficients of ordeM2 ;/M2. However, as in the simple ex-
counted for by the U(1) symmetry, as explained in Sec. ample discussed previously, there will be precise Clebsch
VII. By contrast, the models in Table IV result from the relations between the coefficients of the various quark and
operators in Eq(26) and are essentially an updated versionjepton component fields. These Clebsch relations are sum-
of those previously considered in R18]. marized in Table VII, where relative normalization factor has

The string analysis performed in the later sections of theheen applied to each. The table identifies which8land
paper lends some support to the approach followed in thigu(2) structures have been used to construct each individual

model. In the string model, the(l) family symmetries are a operator by reference to Eq#\3) and (A4).
consequence of the string construction, but there are four of The n=1 operators are formed from different group-

them, with one being anomalous. There are several singletpeoretical contractions of the indices in

(charged under the family groupo take the role of thed L

fields and then=1 operators involving a factor dfiH are OghYy =F“3F ghiH HY. (A1)
clearly expected in the effective theory below the string . i ) )

scale. We have shown that operators sucB@svhich were It i useful to define some S@)-invariant tensor<C and
simply pulled out of thin air in the earlier parts of the paper SU(2) g-invariant tensork as

may in fact originate from string theory. As an example we (Cy)%= 5

constructed explicitly the lower 22 block in Eq. (100 Ve T
which has the characteristic asymmetric structure of the ap_ sy ep_ 1 s
Yukawa textures considered earlier. It will be noted, how- (Cas)ghy= 50— 959,

ever, that the lower 2 block in Eq.(100) does not corre-
(CG)’;‘;}: eaﬂwxepywxy

2By comparison a recent pap@9] performed a globat? analy- (C10) ?5: 5;0;55"' 5(;55'
sis for some SCL0) models, including the mass and mixing data. « o
With three DF, they obtain a®/Npe~1/3 for the best model. (Rl)y:5y'
While our fit to model 3 in Table lll, for example, has a smaller
x*INpg than this, it is difficult to make a comparison as in H&g] (Ra)yy =836, — %5;5‘)’,", (A2)

quark mass correlations from the data, as well as the effect of large

tan3 on m,, have been included. Also note that these involve theWhere(S‘é, €apoy 5;, €y, are the usual invariant tensors of
soft terms, and thus a larger number of parameters are involved iBU(4), SU2)g. The SU4) indices onC, g 1015 are con-
the fit. tracted with the S(#) indices on two fields to combine them
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TABLE VII. When the Higgs fields develop their VEV's, the= 1 operators lead to the effective Yukawa couplings with Clebsch coefficients as shown.

SU2) SU(4) QUh, QDh;  LEh, LNh, SU©2) SU4) QUh, QDh, LEh; LNh,
OA | | 1 1 1 1 OS VI VI i 16 12 6
5/5 5Y5 55 55
B _ _
oc | | 1 1 -3 -3 5 5 5 5
BB BBy | 222 22 2
oP I [ ! 1 3 3 ° > ° °
—= = - = v |
5 ® & 6 ° R
OF I I 0 2 0 o o% I I 0 z Jz 0
oF Il 1] 2 =2 0 0 5
2 4 ol \Y; I 2y2 V2 __Bﬁ __Gﬁ
(o I \Y; 0 i i 0 '5 5 5 5
5 5
o W I 45 25 45 85 O Vi I 222 62 —3\2
o' Vv Vv 0 0 0 2 ] ° 5 5 5
J A , O Vv I JEoo 0 -32
0 VI \Y; 0 0 — —  o0? | 1 J2 J2 0 0
V5 5
oK v Vi 85 0 0 65 o° v 42 0
. 16 6 12 V5 V5
o) \Y v ) 4
55 56 55 55 Q° VI I Bl = 0 0
oM I | 0 2 2 0 V5 V5
oN Vv Il 2 0 0 o o | \% NN N NE
© v v Z o o Lo o v i g L7 2
G G £
oP | Vi a2 42 32 32 Of Vi \Y ) g g :
5 5 5 5 (ol | v 0 0 2 V2
o" I Y% 0 0 -2 2
o vi A2 45 sz 32 o Il \ 0 0 2 0
5 @ —— —— 5
5 5 .
OR 1l VI 0 ¢ ¢ 0 o v v 0 0 2 2
V5 5
into 1, 6, 10, 15 representations of SY), respectively. Simi- and the SW2) structures are
larly, the SU2)r indices on R;3; are contracted with , .
SU(2) r indices on two of the fields to combine them irito (D (R)w(R1y,
3 representations of SB) k.
The SU4) structures in Table VIl are (I (Rg)wi(Ra)yg.
(N (Cl)g(Cl)y. (nr) eXZEyW,
(1) (C19)5%(C19)]7, (V) ews€(Re)SUARS)?,
wx(C.)B
(1) (Ce)ap(Coliy s (V) (R)Y(Rw,
o B
(V) (Cro)ap(Crouy (V1) (Re)2ARa)y. (Ad)
(V) (CohCy, The operators are then given explicitly by contracting Eq.

fo (A1) with the invariant tensors of EqA2) given by Table
(V1) (C15)5(C19),y s (A3) VIl and Egs.(A3) and (A4).
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APPENDIX B: REVIEW OF ANALYSIS OF REF. [18] small change in p ,(m,), which are the quantities that re-
quire a high tap through the relations in Eq61). Another
possibility would be to includ®©%,0%; which would allow
arbitrary tar8 (in particular intermediate tg@r10-20.
O(€?) 0O(e?) 0 However, this would reduce the predictivity of the scheme as
2 tanB would become an input. One might also be skeptical
\UDEN_| O(e7)  O(e)  O(e) | (B1)  about whether a parameterl could be generated by a non-
0 O(e) 0O(1) renormalizable operator in a perturbative scheme. It would
certainly require the heavy mass scdlédo be very close to

wheree<1 and some of the elements may have approximatée VEV'sH,H, 6, 6 and we might therefore naively expect

or exact texture zeros in them. First, we examine closer thé&rge corrections to any calculation based on this model. We
assumption that the operator in the 33 position of thethus abandon these ideas and continue with the usual renor-
Yukawa matrices is the renormalizable one. It has been sudghalizable operator in the 33 position of the Yukawa matrices

gested in the past that the large value ofdaaquired by the that leads to Eq(B2). We note in any case that a recent
constraint analysis [36] explains that in gauge-mediated

supersymmetry-breaking models, the radiative mechanism of
M (Mgur) =Np(Mgur) =N (MgyT), (B2)  electroweak symmetry breaking can be such that no fine-

tuning occurs for large tgh In these models high tghad-
such as is predicted by the renormalizable operator, leads #its solutions of the hot dark matter problem in which the
some phenomenological problems. One such problem is thatykawa couplings unifyf32].
a moderate fine-tuning mechanism is required to radiatively The hierarchy assumed in E@®1) allows us to consider
break the electroweak symmetry in order to produce the neghe lower 2x 2 block of the Yukawa matrices first. In diago-
essary hierarchy of Higgs VEV's;/v,~mi/m, [30,31.  palizing the lower X 2 block separately, we introduce cor-
One could set about trying to extend the present model in gections of ordek? and so the procedure is consistent to first
manner that would lead to an arbitrary choice of@afor  order ine. We found several maximally predictinsaze
example, by introducing extra Higgs bidoublets. This routethat were constructed out of the operators whose Clebsch
has its disadvantages in that a low value ofdms been coefficients are listed in Table IV for the=1 operators. The
shown [32] in most schemes to be inconsistent with explicit n=1 operators in component form are listed in Ap-

Ap(Mgur) =M (Mgyr) unification if the 7 neutrino mass  pendix A. We label the successful lowek2 Ansaze A :
constitutes the hot dark matter requiring the Majorana mass

In Ref.[18] we assumed that the Yukawa matricedvgt
are all of the form

of the right-handed- neutrino to beM ;7~ 10?2 GeV. To a 0%,-05, 0
very good approximation, the largest diagonalized Yukawa Ar= 002 O’ (BS)
coupling in\' is equal to its 33 entr)x'gg. (One may obtain s )
small tarB solutions consistent witim,-m,. unification and [0 0508
an intermediate neutrino scale, in specific models: Either A= o , (B6)
large mixing in theu-7 charged leptonic sector has to occur | Oz2 Oss
[33] or the Dirac-type Yukawa coupling of the neutrino has i c b
to be very suppressd@4].) A 0 0Oz 03 -
To force things to work in a generic scheme, one solution e 05, Os |
could be to use a nonrenormalizable operator in the 33 posi-
tion which has some Clebsch factor-1 such that [0 0S|
Ar=| A B , (B8)
A(Mgur) =X p(Mgyr) = XN (M gur). (B3) | O3~ O3, Ogg)
Equation(B3) would preserve the bottom-Yukawa unifica- [ 0 0/2'\3'
tion, but lower the prediction of tghdue to the larger con- As= 0S—0P Oul’ (B9)
tribution to the top Yukawa coupling. It may only be reason- [~32 ~32 a3
able to examinen=1 operators in this context since we K c
know that the third family 18] Yukawa coupling is~1 and = ©2 Oz (B10)
higher dimension operators could be expected to provide a 6 og"z O’
large suppression factor. Systematically examiningrtiel
operators we find that only the operatbgs, which leads to 052 O§3
icti A;= , B11
the prediction 08, 0u (B1y
AM(Meur) =2Mp(Mgur) = 2N (Mgur), (B4) 0 or
23
‘e mini Ag= . B12
can decrease t@gh The change is minimal, from 56.35 to 8 ng_ ng Oas (B12)

55.19 for ag(Mz)=0.117 andM "~10" GeV. The reason

that the change is minimal is due to the fact that the YukawaVe now note that solution®A\,_g require a parameter
couplings are approximately at their quasifixed poir&5] H23~0(1) to attain the correct,, andV,. Any calculation
and so even a large change X, (M) produces only a based on the hierarchy assumed in E{) is therefore in-
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consistent and so we discard _th_ese solutions. We also_ note 2®E§_2+%¢’3§2+‘1’4§1=0-
that O3, only has the effect of fixing/,, to a good approxi-
mation and so can consist of any operator in Table VII that B pfst LD E,=0
has a different Clebsch coefficient for up quark and down 12647 2 F3517
guark Yukawa couplings. The precise operator responsible —
for V., has no bearing on the rest of the calculation and we P1o€at 2 P36,=0,
therefore just make an arbitrary choiceC()f2 for the rest of — . —
this paper. We also note that for the phenomenologically P1p8st s P3é,=0,
desirable and predictive relation .
. DEs+ 3 P3€,=0,

oA Mgur) _

N5A M) B Piztat 2 P850,
to hold, we may replac®5,—OS, in A; with O+ OS,, iyt ; P3és=0,
O%,+ 0D, or any other combination of two operators which _ _
preserves Eq(B13) and allows\}, to be smaller and inde- Pyoby+ 3 P3é4=0,
pendent of\D;F. In fact, the preferred solution is that the _
dominant operator in that position k@3 which does not Dp¢1+ 7 P3€4=0. (C2

give a contribution to the up quark mass. Then, a subdomiz . . . , _ )
nant operator would be responsible for the em& and Now, a possible choice of nonzero singlet VEV’s which sat

would therefore be suppressed naturally by one or morIeS]cy the system(C2) is

powers ofe. (D1 (D) (E1),(€2)#0, (€3

APPENDIX C: FLATNESS CONDITIONS
IN THE STRING MODEL

We give here the constraints on the various singlet VEV's
obtained from thd=- and D-flatness conditions in the string

spectrum of the model in Sec. VIIl. From the flatness of
the superpotential one derives 18 conditions, which are

accompanied by nonzero VEV's of the two hiddgctets
under SU(8)] fields
(Zs)(Z3)#0. (C4

Taking all other singlet and hidden field VEV's equal to
zero, theD-flatness conditions red@®9]

£1£4=0. 222D e [E+ ot =0,  (cH
£:6,=0, _
. 31251~ &,/>=0, (C6)
E263+ 5+ (5=0, (C1) . _
- 2|&12— | £,12—2|D )%+ 3| Z5|2+|Zs|?=0, (CY)
£oba+ (54 (5=0, =
2|® 42+ &4]%— 3 |25)%=0. (C8

Gidite1dat{aln=0, The scale of the nonzero singlet VEV's is determined by the

above conditions. There are five equations to determine four
parameters, and thus one has the freedom to fix one of the
nonzero VEV's in Eqs(C3) and(C4) from phenomenologi-

cal requirements. In any case, from the above equations it
turns out that the natural scale of the nonzero VEV's are of
the order @, /7)Mp. For a,~10"1 one can see that their
magnitude is of the required order to contribute in the mass
operators.

{18+ (18.=0,
2475514‘ 1Dyl +D,L,=0,
2035 1+ 3 P3ly+P,4L,=0,

20750, + 3 D3+ P, L,=0,
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