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We discuss the origin of Yukawa textures in the string-inspired and string-derived models based on the
gauge group SU(4)̂ SU(2)L ^ SU(2)R supplemented by a U(1)X gauged family symmetry. The gauge sym-
metries are broken down to those of the minimal supersymmetric standard model which is the effective theory
below 1016 GeV. The combination of the U(1)X family symmetry and the Pati-Salam gauge group leads to a
successful and predictive set of Yukawa textures involving two kinds of texture zeros:horizontalandvertical
texture zeros. We discuss both symmetric and nonsymmetric textures in models of this kind, and in the second
case perform a detailed numerical fit to the charged fermion mass and mixing data. Two of the Yukawa
textures allow a low energy fit to the data with a totalx2 of 0.39 and 1.02, respectively, for three degrees of
freedom. We also make a first attempt at deriving the nonrenormalizable operators required for the Yukawa
textures from string theory.@S0556-2821~97!01617-2#

PACS number~s!: 12.15.Ff, 12.10.Kt

I. INTRODUCTION

Over recent years there has been a good deal of activity
concerned with understanding the pattern of fermion masses
and mixing angles within the framework of supersymmetry
and unification~see the next section for a review!. The start-
ing point of these analyses is the idea that at high energies
the Yukawa matrices exhibit a degree of simplicity, typically
involving texture zeros, which can be understood as resulting
from some symmetry. The types of symmetry which have
been considered include grand unified symmetry to account
for the vertical mass splittings within a family and family
symmetry to account for the horizontal mass splittings be-
tween families. In order to restrict the ratherad hocnature of
such models, one may appeal to a rigid theoretical structure
such as string theory in terms of which the high energy field
theory may be viewed as an effective low energy supergrav-
ity model valid just below the string scale. Viewed from this
perspective certain classes of unified gauge group and family
symmetry appear to be more promising than others, and in
addition one may hope to begin to derive the entries of the
Yukawa matrices as low energy nonrenormalizable operators
which arise from the string theory.

In this paper, guided by the principles outlined in the
previous paragraph, we investigate the origin of Yukawa tex-
tures in a class of models based on the Pati-Salam
SU(4)3SU(2)L3SU(2)R symmetry with gauged U~1! fam-
ily symmetries.

We shall follow both a bottom-up approach, in which the
successful textures may be extracted from the known quark
and lepton masses and quark mixing angles,anda top-down
approach in which we shall begin to see how the desired
operators may emerge from a particular superstring construc-
tion. This model involves both quark-lepton unification,
which leads to Clebsch relations to describe the mass rela-
tions within a particular family, and a U(1)X gauged family
symmetry which may account for family hierarchies. Thus

we are led tovertical andhorizontaltexture zeros which are
a feature of this model. In the earlier parts of the paper we
shall focus on something we call the string-inspired
SU(4)3O(4) @;SU(4)^ SU(2)L ^ SU(2)R# model which
contains many of the features of a realistic string model such
as small group representations and a U(1)X family symme-
try. Within this simplified model we shall relate the high
energy textures to the low energy quark and lepton masses
and quark mixing angles, and so determine by a bottom-up
procedure the operators which are likely to be relevant at
high energies. Later on we shall focus on a particular string
construction from which we learn how nonrenormalizable
operators may be generated from first principles.

The detailed layout of the paper is as follows. In Sec. II
we review some ideas concerning Yukawa textures and sum-
marize recent progress in this area. In Sec. III we briefly
review the string-inspired SU(4)3O(4) model. In Sec. IV
we discuss symmetric textures in the above model. In Sec. V
we discuss the nonsymmetric textures. In Sec. VI we per-
form a full numerical analysis of the nonsymmetric models.
In Sec. VII we review the U(1)X family symmetry approach
to the model and perform an analysis relevant for the full
~symmetric and nonsymmetric! model. In the subsequent two
sections we present a viable string construction of the model
and indicate how the nonrenormalizable operators may arise
in the specific string construction. Finally, Sec. X concludes
the paper.

II. YUKAWA TEXTURES

The pattern of quark and lepton masses and quark mixing
angles has for a long time been a subject of fascination for
particle physicists. In terms of the standard model, this pat-
tern arises from 333 complex Yukawa matrices~54 real
parameters! which result in 9 real eigenvalues plus 4 real
mixing parameters~13 real quantities! which can be mea-
sured experimentally. In recent years the quark and lepton
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masses and mixing angles have been measured with increas-
ing precision, and this trend is likely to continue in the future
as lattice QCD calculations provide increasingly accurate es-
timates andB factories come on line. Theoretical progress is
less certain, although there has been a steady input of theo-
retical ideas over the years and in recent times there has been
an explosion of activity in the area of supersymmetric unified
models. This approach presumes that at very high energies
close to the unification scale, the Yukawa matrices exhibit a
degree of simplicity, with simple relations at high energy
corrected by the effects of the renormalization group~RG!
running down to low energy. For example, the classic pre-
diction that the bottom andt Yukawa couplings are equal at
the unification scale can give the correct low energy bottom
andt masses, providing that one assumes the RG equations
of the minimal supersymmetric standard model~MSSM!
@1#.1 In the context of the MSSM it is even possible that the
top, bottom, andt Yukawa couplings are all approximately
equal near the unification scale@3#, since, although this re-
sults in the top and bottom Yukawa couplings being roughly
the same at low energy, one can account for the large top to
bottom mass ratio by invoking a large value of tanb defined
as the ratio of vacuum expectation values~VEV’s! of the two
Higgs doublets of the MSSM.

These successes with the third family relations are not
immediately generalizable to the lighter families. For the re-
mainder of the Yukawa matrices, additional ideas are re-
quired in order to understand the rest of the spectrum. One
such idea is that of texture zeros: the idea that the Yukawa
matrices at the unification scale are rather sparse, for ex-
ample, the Fritzsch ansatz@4#. Although the Fritzsch texture
does not work for supersymmetric unified models, there are
other textures which do, for example, the Georgi-Jarlskog
~GJ! texture@5# for down-type quark and lepton matrices:

lE5S 0 l12 0

l21 23l22 0

0 0 l33
D , lD5S 0 l12 0

l21 l22 0

0 0 l33
D .

~1!

After diagonalization this leads tolt5lb , lm53ls ,
le5ld/3 at the scaleMGUT which result in~approximately!
successful predictions at low energy. Actually the factor of 3
in the 22 element above arises from group theory: It is a
Clebsch factor coming from the choice of Higgs fields cou-
pling to this element.

It is observed that if we choose the upper 232 block of
the GJ texture to be symmetric,l125l21, and if we can
disregard contributions from the up-type quark matrix, then
we also have the successful mixing angle prediction

Vus5Ald /ls. ~2!

The data therefore support the idea of symmetric matrices
and a texture zero in the 11 position. Motivated by the desire
for maximal predictivity, Ramond, Roberts, and Ross~RRR!

@6# have made a survey of possible symmetric textures which
are both consistent with the data and involve the maximum
number of texture zeros. Assuming GJ relations for the lep-
tons, RRR tabulated five possible solutions for up-type and
down-type Yukawa matrices. We list them below for com-
pleteness.

Solution 1:

lU5S 0 A2l6 0

A2l6 l4 0

0 0 1
D , lD5S 0 2l4 0

2l4 2l3 4l3

0 4l3 1
D .

~3!

Solution 2:

lU5S 0 l6 0

l6 0 l2

0 l2 1
D , lD5S 0 2l4 0

2l4 2l3 2l3

0 2l3 1
D .

~4!

Solution 3:

lU5S 0 0 A2l4

0 l4 0

A2l4 0 1
D , lD5S 0 2l4 0

2l4 2l3 4l3

0 4l3 1
D .

~5!

Solution 4:

lU5S 0 A2l6 0

A2l6 A3l4 l2

0 l2 1
D , lD5S 0 2l4 0

2l4 2l3 0

0 0 1
D .

~6!

Solution 5:

lU5S 0 0 l4

0 A2l4 l2/A2

l4 l2/A2 1
D , lD5S 0 2l4 0

2l4 2l3 0

0 0 1
D .

~7!

Here l50.22, and the top and bottom Yukawa couplings
have been factored out for simplicity. These textures are
valid at the unification scale. All of the solutions involve
texture zeros in the 11 entry. Solutions 1, 2, and 4 involve
additional texture zeros in the 13531 positions which are
common to both up-type and down-type matrices. Solutions
3 and 5 have no texture zeros which are common to both
up-type and down-type matrices, apart from the 11 entry.
Thus solutions 1, 2, and 4 involve rather similar up-type and
down-type matrices, while solutions 3 and 5 involve very
different textures for the two matrices.

1The next-to-MSSM~NMSSM! with an additional low energy
gauge singlet works just as well@2#.
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Having identified successful textures,2 the obvious ques-
tions are, what is the origin of the texture zeros and what is
the origin of the hierarchies~powers of the expansion param-
eter l)? A natural answer to both these questions was pro-
vided early on by Froggatt and Nielsen~FN! @8#. The basic
idea involves a high energy scaleM , a family symmetry
group G, and some new heavy matter of massM which
transforms underG. The new heavy matter consists of some
Higgs fields which are singlets under the vertical gauge sym-
metry but nonsinglets underG. These break the symmetryG
by developing VEV’sV smaller than the high energy scale.
There are also some heavy fields which exist in vectorlike
representations of the standard gauge group. The vectorlike
matter couples to ordinary matter~quarks, leptons, Higgs
bosons! via the singlet Higgs boson, leading to ‘‘spaghetti-
like’’ tree-level diagrams. Below the scaleV the spaghetti
diagrams yield effective nonrenormalizable operators which
take the form of Yukawa couplings suppressed by powers of
l5V/M . In this way the hierarchies in the Yukawa matrices
may be explained and the texture zeros correspond to high
powers ofl.

A specific realization of the FN idea was provided by
Ibanez and Ross~IR! @9#, based on the MSSM extended by a
gauged family U(1)X symmetry withu and ū singlet fields
with oppositeX charges, plus new heavy Higgs fields in
vector representations.3 Anomaly cancellation occurs via a
Green-Schwarz-Witten~GSW! mechanism, and the U(1)X
symmetry is broken not far below the string scale@9#. By
making certain symmetric charge assignments, IR showed
that the RRR texture solution 2 could be approximately re-
produced. To be specific, for a certain choice of U(1)X
charge assignments, IR generated Yukawa matrices of the
form

lU5S e8 e3 e4

e3 e2 e

e4 e 1
D , lD5S ē 8 ē 3 ē 4

ē 3 ē 2 ē

ē 4 ē 1
D ,

lE5S ē 5 ē 3 0

ē 3 ē 0

0 0 1
D . ~8!

These are symmetric in the expansion parameterse and ē ,
which are regarded as independent parameters. This provides
a neat and predictive framework; however, there are some
open issues. Although the order of the entries is fixed by the
expansion parameters, there are additional parameters of or-
der unity multiplying each entry, making precise predictions
difficult. A way to address the problem of the unknown co-
efficients has been proposed in@11# where it has been shown

that the various coefficients may arise as a result of the in-
frared fixed-point structure of the theory beyond the standard
model.

Note that the textures for up-type and down-type matrices
are of similar form, although the expansion parameters dif-
fer. Also note that there are no true texture zeros in the quark
sector, merely high powers of the expansion parameter. Thus
this example most closely resembles RRR solution 2 with
approximate texture zeros in the 11 and 13531 positions.
However, without the inclusion of coefficients, the identifi-
cation is not exact. The best fit to RRR solution 2 is obtained
for the identificatione[l2, ē [l ~alternative identifications
like e[l2, ē [2l3 lead to larger deviations!. However even
this choice does not exactly correspond to RRR solution 2, as
can be shown by taking solution 2 and inserting the numeri-
cal values of the entries:

lU5S 0 131024 0

131024 0 531022

0 531022 1
D ,

lD5S 0 531023 0

531023 231022 231022

0 231022 1
D . ~9!

We compare these numbers to the order of magnitudes pre-
dicted by the symmetry argument, making the identifications
e[l2, ē [l:

lU5S 3310211 131024 531026

131024 231023 531022

531026 531022 1
D ,

lD5S 531026 131022 231023

131022 531022 231021

231023 231021 1
D . ~10!

Comparison of Eqs.~9! and ~10! shows that whilelU is in
good agreement,lD differs. In Eq.~10!, the 23532 element
is an order of magnitude too large. When the unknown cou-
plings and phases are inserted the scheme can be made to
work. However, some tuning of the unknown parameters is
implicit. This can be avoided by introducing a small param-
eterd into all the elements apart from the 33 renormalizable
element, so that Eq.~8! gets replaced by4

2Over the recent years, there has been an extensive study of fer-
mion mass matrices with zero textures@7#.

3The generalization to include neutrino masses is straightforward
@10#.

4In our scheme we will have a unified Yukawa matrix. This, as we
are going to see, will imply a common expansion parameter for the
up- and down-type mass matrices and the presence of a factord in
the up-quark mass matrix as well.
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lU5S e8 e3 e4

e3 e2 e

e4 e 1
D , lD5S d ē 8 d ē 3 d ē 4

d ē 3 d ē 2 d ē

d ē 4 d ē 1
D .

~11!

The idea is that the suppression factord originates from
some flavor-independent physics, while the parameterse and
ē control the flavor structure of the matrices. For example,
suppose we takeē [l as in the previous example but scale
down the entries by a factor ofd50.2. Then we would have

lD5S 131026 231023 431024

231023 131022 431022

431024 431022 1
D , ~12!

which provides a better description of the numerical values
required by the RRR analysis for solution 2 in Eq.~9!, at the
expense of introducing the parameterd. This example indi-
cates that if family symmetries are to give the correct order
of magnitude understanding of Yukawa textures without any
tuning of parameters, then an extra parameterd needs to be
introduced as above.

Another aspect of the fermion mass spectrum that one
would like to understand is that of the mass splitting within a
particular family. For example the GJ texture in Eq.~1! pro-
vides an understanding of the relationship between the
charged lepton and down-type quark Yukawa couplings
within a given family, and in the simplest U(1)X scheme
such relations are either absent or accidental, as seen in Eq.
~8! where the form oflE has been fixed by a parameter
choice. Unless such parameters are predicted by the theory,
as in the extension of the initial IR scheme that is discussed
in @11#, the only antidote is extra unification. Then, the lep-
tons share a representation with the quarks, and the magic GJ
factors of 3 originate from the fact that the quarks have three
colors. For example, the SO~10! model of Andersonet al.
@12# ~with both low energy Higgs doublets unified into a
single10 representation! predicts Yukawa unification for the
third family, GJ relations for the charged leptons and down-
type masses, and other Clebsch relations involving up-type
quarks. As in the IR approach, the approach followed by
Andersonet al. is based on the FN ideas discussed above.
Thus, for example, only the third family is allowed to receive
mass from the renormalizable operators in the superpotential.
The remaining masses and mixings are generated from a
minimal set of just three specially chosen nonrenormalizable
operators whose coefficients are suppressed by a set of large
scales. The 12521 operator of Andersonet al. is suppressed
by the ratio (451 /M )6, while the 23532 and operators are
suppressed by (45B2L/451)2 and (45B2LS/451

2) where the
45’s are heavy Higgs representations. In a complicated mul-
tiscale model such as this, the hierarchies between different
families are not understood in terms of a family symmetry
such as the the U(1)X of IR. Indeed it is difficult to imple-
ment a family symmetry in this particular scheme, as the
latest attempts based on global U~2! @13# show. To be em-
bedded into a string model, grand unified theories~GUT’s!
such as SO~10! requirek.1 Kac-Moody levels. With these

higher Kac-Moody levels, simple orbifold compactifications
in which candidate gauge U(1)X family symmetries are
present do not easily emerge. Nevertheless, there has been
some progress in this direction and three-family SO~10! and
E6 string-derived models have recently been classified@14#.
Here we restrict our discussion to string constructions based
on the simplerk51 level of Kac-Moody algebras, which are
more ‘‘string friendly.’’

The SU(4)̂ O(4) string model can be viewed as the sim-
plest string-friendly unified extension of the standard model
which can lead to Clebsch relations of the kind we desire.
The Pati-Salam gauge group@15# may be broken without
adjoint representations and was considered as a unified string
model@16,17# some time ago. This model has recently been
the subject of renewed interest from the point of view of
fermion masses@18#, and an operator analysis has shown that
it is possible to obtain desirable features such as Yukawa
unification for the third family and GJ-type relations within
this simpler model. A particular feature of the published
scheme which we would like to emphasize here is the idea of
Clebsch texture zeroswhich arise from the group theory of
the Pati-Salam gauge group. These Clebsch zeros were used
to account for the lightness of the up quark compared to the
down quark, for example@18#. However, the operator analy-
sis of @18# did not address the question of the hierarchy be-
tween families~no family symmetry was introduced, for ex-
ample! or the question of the origin of the nonrenormalizable
operators. Here we shall introduce a U(1)X gauge symmetry
into the model and combine it with the Clebsch relations
previously used, to provide a predictive scheme of fermion
masses and mixing angles. We shall also ensure that we ob-
tain the correct order of magnitude for all the entries of the
Yukawa matrices from the symmetry-breaking parameter,
using structures like that of Eq.~11!. In our case the quantity
d will be identified with a bilinear of heavy Higgs fields
which are responsible for generating the Clebsch structures,
while the parameters such ase will have trivial Clebsch
structure~singlets under the vertical gauge group! but will
generate family hierarchies from the flavor symmetry. This
corresponds to there being two types of heavy Higgs fields:
Pati-Salam gauge singlets~corresponding to IRu and ū
fields! which break the U(1)X family gauge group but leave
the Pati-Salam group unbroken, andH,H̄ breaking fields
whose bilinear forms are U(1)X singlets but transform non-
trivially under the Pati-Salam gauge group, thereby giving
interesting Clebsch structures. The nonrenormalizable opera-
tors of interest must therefore involve both types of Higgs
fields simultaneously. In view of the unusual nature of such
operators, we shall provide a string-based discussion of the
origin of such operators.

It is worth emphasizing that the main features of the pre-
vious analysis@like the assumption of U~1! symmetries, the
introduction of singlet fields, etc.# appear naturally in most of
the recent string constructions. Therefore, in the final sec-
tions of this paper we will try to embed our analysis in the
context of realistic string models which are constructed
within the free fermionic formulation@19# of the heterotic
string. In doing so, we should keep in mind that, in realistic
string constructions@19–21# there are usually many con-
straints and in general the resulting field theory is quite com-

56 2635YUKAWA TEXTURES IN STRING UNIFIED MODELS . . .



plicated. Moreover~in the language of the fermionic strings
@21#!, within the same choice of boundary conditions on the
string basis vectors of the world-sheet fermions, there are
numerous consistent choices of the projection coefficients
which result in different Yukawa couplings multiplets and
the large number of singlet fields which are usually present.
For this reason we shall try to develop a ‘‘string-model’’-
independent approach and begin by considering a field
theory SU(4)3O(4) model, which possesses the salient fea-
tures of a realistic string model and at the same time is sim-
pler to work with.

III. STRING-INSPIRED SU „4…^ O„4… MODEL

Here we briefly summarize the parts of the model which
are relevant for our analysis. For a more complete discussion
see@16#. The gauge group is SU(4)̂O(4) or, equivalently,

SU~4!^ SU~2!L ^ SU~2!R . ~13!

The left-handed quarks and leptons are accommodated in the
representations

Fi aa
5~4,2,1!5S uR uB uG n

dR dB dG e2D i

, ~14!

F̄ xa
i 5~ 4̄ ,1,2̄!5S d̄R d̄B d̄G e1

ūR ūB ūG n̄
D i

, ~15!

where a51, . . . ,4 is an SU~4! index, a,x51,2 are
SU~2! L,R indices, andi 51,2,3 is a family index. The Higgs
fields are contained in the representations

ha
x5~1,2̄,2!5S h2

1 h1
0

h2
0 h1

2D ~16!

~whereh1 andh2 are the low energy Higgs superfields asso-
ciated with the MSSM!. The two heavy Higgs representa-
tions are

Hab5~4,1,2!5S uH
R uH

B uH
G nH

dH
R dH

B dH
G eH

2D ~17!

and

H̄ax5~ 4̄ ,1,2̄!5S d̄H
R d̄H

B d̄H
G eH

1

ūH
R ūH

B ūH
G n̄ H

D . ~18!

The Higgs fields are assumed to develop vacuum expectation
values~VEV’s!

^H&5^ ñ H&;MGUT, ^H̄&5^ ñ̄ H&;MGUT, ~19!

leading to the symmetry breaking atMGUT:

SU~4!^ SU~2!L ^ SU~2!R→SU~3!C^ SU~2!L ^ U~1!Y ,
~20!

in the usual notation. Under the symmetry breaking in Eq.
~20!, the bidoublet Higgs fieldh in Eq. ~16! splits into two

Higgs doubletsh1,h2 whose neutral components subse-
quently develop weak scale VEV’s,

^h1
0&5v1 , ^h2

0&5v2 , ~21!

with tanb[v2 /v1.
In addition to the Higgs fields in Eqs.~17! and ~18! the

model also involves an SU~4! sextet fieldD5(6,1,1) and
four singletsf0 andw i , i 51,2,3.f0 is going to acquire an
electroweak VEV in order to realize the electroweak Higgs
mixing, while w i will participate in an extended ‘‘seesaw’’
mechanism to obtain light Majorana masses for the left-
handed neutrinos. Under the symmetry property
w1,2,3→(21)3w1,2,3 and H(H̄)→(21)3H(H̄) the tree-
level mass terms of the superpotential of the model read@16#

W5l1
i j Fi F̄ jh1l2HHD1l3H̄H̄D1l4

i j HF̄ jw i1mw iw j

1mhh, ~22!

wherem5^f0&5O(mW). The last term generates the Higgs
mixing between the two SM Higgs doublets in order to pre-
vent the appearance of a massless electroweak axion. Note
that we have banned terms which might lead to unacceptably
large neutrino-Higgsino mixing@22#. The superpotential, Eq.
~22!, leads to the neutrino mass matrix@16#

Mn,Nc,w5S 0 mu
i j 0

mu
ji 0 MGUT

0 MGUT m
D ~23!

in the basis (n i , n̄ j ,wk). Diagonalization of the above gives
three light neutrinos with masses of the order (mu

i j )2/MGUT

as required and leaves right-handed Majorana masses of the
orderMGUT. Additional terms not included in Eq.~22! may
be forbidden by imposing suitable discrete or continuous
symmetries, the details of which need not concern us here.
The D field carries color and therefore does not develop a
VEV but the terms in Eq.~22!, HHD and H̄H̄D, combine
the color triplet parts ofH, H̄, andD into acceptable GUT-
scale mass terms@16#. When theH fields attain their VEV’s
at MGUT;1016 GeV, the superpotential of Eq.~22! reduces
to that of the MSSM augmented by neutrino masses. Below
MGUT the part of the superpotential involving matter super-
fields is just

W5lU
i j QiŪ jh21lD

i j QiD̄ jh11lE
i j Li Ē jh11lN

i j Li n̄ jh21•••.
~24!

The Yukawa couplings in Eq.~24! satisfy the boundary con-
ditions

l1
i j ~MGUT![lU

i j ~MGUT!5lD
i j ~MGUT!5lE

i j ~MGUT!

5lN
i j ~MGUT!. ~25!

Thus, Eq. ~25! retains the successful relationmt5mb at
MGUT. Moreover, from the relation lU

i j (MGUT)
5lN

i j (MGUT) and the fourth term in Eq.~22!, we obtain
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through the seesaw mechanism the light neutrino masses
5O(mu

2/MGUT) which satisfy the experimental limits.

IV. SYMMETRIC TEXTURES

In this section we briefly review the results of the operator
analysis of Ref.@18# and then introduce our new approach
based on new operators. We discuss the RRR textures as a
simple example of the new method.

The boundary conditions listed in Eq.~25! lead to unac-
ceptable mass relations for the light two families. Also, the
large family hierarchy in the Yukawa couplings appears to
be unnatural since one would naively expect the dimension-
less couplings all to be of the same order. This leads us to the
conclusion that thel1

i j in Eq. ~22! may not originate from the
usual renormalizable tree-level dimensionless coupling. We
allow a renormalizable Yukawa coupling in the 33 term only
and generate the rest of the effective Yukawa couplings by
nonrenormalizable operators that are suppressed by some
higher mass scale. This suppression provides an explanation
for the observed fermion mass hierarchy.

In Ref. @18# we restricted ourselves to all possible non-
renormalizable operators which can be constructed from dif-
ferent group theoretical contractions of the fields:

Oi j ;~Fi F̄ j !hS HH̄

M2 D n

1H.c., ~26!

where we have used the fieldsH andH̄ in Eqs.~17! and~18!
and M is the large scaleM.MX . The idea is that when
H,H̄ develop their VEV’s, such operators will become effec-
tive Yukawa couplings of the formhFF̄ with a small coef-
ficient of orderMGUT

2 /M2. We considered up ton52 opera-
tors. The motivation for usingn52 operators is simply that
such higher dimension operators are generally expected to
lead to smaller effective couplings more suited to the 12 and
21 Yukawa entries. However, in our field theory approach
we shall restrict ourselves to the simple case considering
only n51 operators with the required suppression factors
originating from a separate flavor sector. We will leave the
question of the definite origin of the operators for now. In-
stead we merely note that one could construct a FN sector to
motivate the operators or that one might expect such opera-
tors to come directly out of a string theory. In Sec. VII we
shall introduce a U(1)X family symmetry into the model,
which is broken at a scaleMX.MGUT by the VEV’s of the
Pati-Salam singlet fieldsu and ū . According to the ideas
discussed in Sec. II we shall henceforth consider operators of
the form

Oi j ;~Fi F̄ j !hS HH̄

M2 D S un ū m

M 8n1mD 1H.c., ~27!

whereM 8 represents a high scaleM 8.MGUT which may be
identified either with the U(1)X-breaking scaleMX or with
the string scale. We have further assumed the form of the
operators in Eq.~26! corresponding ton51 and glued onto
these operators arbitrary powers of the singlet fieldsu, ū .
Note that the single power of (HH̄) is present in every entry

of the matrix and plays the role of the factor ofd in Eq. ~11!.
However, unlike the previous factor ofd, the factor of (HH̄)
here carries important group theoretical Clebsch information.
In fact Eq.~27! amounts to assuming a sort offactorization
of the operators with the family hierarchies being completely
controlled by theu, ū fields as in IR, withm,n being depen-
dent oni , j , and the horizontal splittings being controlled by
the Clebsch factors in (HH̄). However, this factorization is
not complete since we shall assume that the Clebsch factors
have a family dependence, i.e., they depend oni , j . We select
the Clebsch factor in each entry from phenomenological ar-
guments.

As a first example of our new approach we shall consider
the RRR textures discussed in Sec. II. Our first observation is
that, restricting ourselves ton51 operators, there are no
large Clebsch ratios between the up-type and down-type
quarks for any of the operators. This means that it is very
difficult to reproduce RRR solutions such as solution 2
where the 12 element of the down-type matrix in Eq.~9!, for
example, is 50 times larger than its up-type counterpart. Of
course this can be achieved by requiring an accurate cancel-
lation between two operators, but such a tuning of coeffi-
cients looks ugly and unnatural, and we reject it. On the
other hand, then51 Clebsch coefficients in Table I include
examples ofzero Clebsch coefficients, where the contribu-
tion to the up-type matrix, for example, is precisely zero.

TABLE I. When the Higgs fields develop their VEV’s at
MGUT , the n51 operators utilized lead to the effective Yukawa
couplings with Clebsch coefficients as shown. We have included
the relative normalization for each of the operators. The full set of
n51 operators and Clebsch coefficients is given in Appendix A.
Thesen51 operators were used in the lower right-hand block of
the Yukawa matrices in the analysis of Ref.@18#.

QŪh2 QD̄h1 LĒh1 LN̄h2

OA 1 1 1 1

OB 1 21 21 1

OC 1

A5

1

A5

23

A5

23

A5

OD 1

A5

21

A5

3

A5

23

A5

OG 0
2

A5

4

A5
0

OH 4/5 2/5 4/5 8/5

OK 8/5 0 0 6/5

OM 0 A2 A2 0

ON 2 0 0 0

OR 0 8
5

6
5 0

OW 0 A 2
5 23A 2

5
0

OS 8

5A5

16

5A5

12

5A5

6

5A5
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Similarly there arezero Clebsch coefficientsfor the down-
type quarks~and charged leptons!. The existence of such
zero Clebsch coefficientsenables us to reproduce the RRR
texture solutions 3 and 5 without fine tuning. Interestingly
they are precisely the solutions which are not possible to
obtain by the standard IR symmetry approach, which favors
solutions 1, 2, and 4 and for which the up-type and down-
type structures are similar. Thus our approach is capable of
describing the RRR solutions which are complementary to
those described by the IR symmetry approach.5 To take a
specific example let us begin by ignoring the flavor-
dependent singlet fields, and consider the symmetricn51
operator texture

l5S 0 OM ON

OM OW1sd ON

ON ON O33
D , ~28!

whereO33 is the renormalizable operator and sd stands for a
subdominant operator with a suppression factor compared to
the other dominant operator in the same entry. Putting in the
Clebsch coefficients from Table I we arrive at the component
Yukawa matrices, at the GUT scale, of

lU5S 0 0 2l13
U

0 l22
U 2l23

U

2l13
U 2l23

U 1
D , ~29!

lD5S 0 A2l12
D 0

A2l12
D l22

D A2/A5 0

0 0 1
D , ~30!

lE5S 0 A2l12
D 0

A2l12
D 3l22

D A2/A5 0

0 0 1
D , ~31!

wherel22
D andl22

E arise from the dominantO22
W operator and

l22
U comes from a subdominant operator that is relevant be-

cause of the texture zero Clebsch in the up sector ofO22
W .

The zeros in the matrices correspond to those of the RRR
solution 5, but of course in our case they arise from the
Clebsch zeros rather than from a family symmetry reason.
The numerical values corresponding to RRR solution 5 with
the correct phenomenology are

lU5S 0 0 231023

0 331023 331022

231023 331022 1
D ,

lD5S 0 531023 0

531023 231022 0

0 0 1
D . ~32!

Thus, the hierarchyl22
U !l22

D is explained by a Clebsch zero
and a suppression factor of the subdominant operator. Using
Eq. ~32! we can read off the values of the couplings which
roughly correspond to a unified matrix of dominant cou-
plings

l5S 0 331023 131023

331023 231022 231022

131023 231022 1
D , ~33!

where we have extracted the Clebsch factors. We find it par-
ticularly elegant that the whole quark and lepton spectrum is
controlled by a unified Yukawa matrix such as in Eq.~33!
with all the vertical splittings controlled by Clebsch factors.

At this stage we could introduce a U(1)X symmetry of the
IR kind and the flavor-dependent singlet fields in order to
account for the horizontal family hierarchy of couplings in
Eq. ~33!. In the present case we must remember that there is
a small quantityd multiplying every nonrenormalizable en-
try as in Eq. ~11!, corresponding to then51 bilinear
d[v v̄ /M2 which we have required to be present in every
nonrenormalizable entry. Thus we can understand Eq.~33!
as resulting from a structure such as

l5S de8 de3 de4

de3 de2 de

de4 de 1
D , ~34!

where we identifye[l50.22 and setd'0.2 which gives
the correct orders of magnitude for the entries, rather similar
to the case we discussed in Eq.~12!. Here of course the
considerations apply to the unified Yukawa matrix, however,
not just the down-type quark matrix. The details of the
U(1)X family symmetry analysis are discussed in Sec. VII.
Here we simply note that such an analysis can lead to a
structure such as the one assumed in Eq.~34!.

A similar analysis could equally well be applied to RRR
solution 3. In both cases we are led to a pleasing scheme
which involves no unnatural tuning of elements and naturally
combines the effect of Clebsch coefficients with that of fam-
ily symmetry suppression, in a simple way. The existence of
the Clebsch texture zeros thus permits RRR solutions 3 and 5
which are impossible to obtain otherwise within the general
framework presented here.

5In @23#, two of us used an alternative approach in order to repro-
duce the structure of solutions 1 and 3 of RRR by the implementa-
tion of a symmetry. These solutions were found to lead to the op-
timal predictions for neutrino masses and mixings. This has been
achieved by a proper choice of charges~integer or half-integer! and
by imposing residualZ2 symmetries which forbid different entries
in the up- and down-quark mass matrices.
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V. NONSYMMETRIC TEXTURES

In this section we update the nonsymmetric textures based
on bothn51 andn52 operators introduced in Ref.@18# and
then extend the new approach introduced in the previous
section to the nonsymmetric domain. As in the previous sec-
tion, we shall begin by ignoring the effect of the singlet
fields, which will be discussed in Sec. VII.

As discussed in Appendix B we shall modify the analysis
of Ref. @18# to only include the lower 232 block Ansatz:

A15FO22
W1sd 0

O32
C O33G . ~35!

This is then combined with the upper 232 blocks consid-
ered in Ref.@18#:

B15F 0 O1

OAd X G , ~36!

B25F 0 O2

OAd X G , ~37!

B35F 0 O3

OAd X G , ~38!

B45F 0 O1

ODd X G , ~39!

B55F 0 O2

ODd X G , ~40!

B65F 0 O3

ODd X G , ~41!

B75F 0 O1

OMd X G , ~42!

B85F 0 O2

OMd X G , ~43!

whereX stands for whatever is left in the 22 position, after
the lower 232 submatrix has been diagonalized. The
Clebsch coefficients of then52 operators used in Eqs.~36!–
~43! are displayed in Table II but we refer the reader to Ref.
@18# for the explicit realization of these operators in terms of
the component fields for reasons of brevity. TheAnsätze
listed above present problems because of the breakdown of
matrix perturbation theory.6 For purposes of comparison
with the new scheme involving onlyn51 operators, we will
recalculate the predictions for each of the models from Ref.
@18# numerically in the next section.

We now turn our attention to the new approach intro-
duced in the previous section, based onn51 operators to-
gether with singlet fields which for the moment we shall
ignore. In this case the 21 operator used in Ref.@18# which
gave an up Clebsch coefficient 1/3 times smaller than the
down Clebsch coefficient is not available if we only use
n51 operators. We must therefore use a combination of two
operators in the 21 position that allow the up entry to be a bit
smaller than the down entry. We require that the combina-
tion provide a Clebsch relation betweenl21

D andl21
E for pre-

dictivity. The two operators cancel slightly in the up sector,
but as shown later this cancellation is;1 and therefore ac-
ceptable. The result of this is that the prediction ofVub is
lost; however, this prediction was almost excluded by experi-
ment anyway, and a more accurate numerical estimate which
does not rely on matrix perturbation theory confirms that
Vub in Ref. @18# is too large. So the loss of theVub prediction
is to be welcomed. The Clebsch effect of the 12 operator
~with a zero Clebsch effect for the up-type quarks! can easily
be reproduced at then51 level by the operatorOM, for
example.

To get some feel for the procedure we will follow, we first
discuss a simple example of a nonsymmetric texture, ignor-
ing complex phases for illustrative purposes. Restricting our-
selves ton51 operators, we consider the lower block to be
A1 and the upper block to be the modified texture as dis-
cussed in the previous paragraph. Thus we have

l5S 0 OM 0

OM1OA OW1sd 0

0 OC O33
D , ~44!

where O33 is the renormalizable operator. Putting in the
Clebsch coefficients from Table IV we arrive at the compo-
nent Yukawa matrices, at the GUT scale, of

6When the magnitudes ofH21, H12, andH22 are calculated they
are each of the same order in the down Yukawa matrix, thus vio-
lating the hierarchy in Eq.~B1! that was assumed in the calculation
of the predictions.

TABLE II. Clebsch coefficients ofn52 operators previously
utilized.

QŪh2 QD̄h1 LĒh1 LN̄h2

OAd 4A2

25

12A2

25

9A2

25

3A2

25

ODd 1

A5

3

A5

3

A5

1

A5

OMd
A2

5

3A2

5

6A2

5

2A2

5

O1 0 A2 A2 0

O2 0 8
5

6
5 0

O3 0
2

A5

4

A5
0
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lU5S 0 0 0

l21
U l22

U 0

0 A2l32
U /A5 1

D , ~45!

lD5S 0 A2l12
D 0

A2l21
D l22

D /A5 0

0 2A2l32
U /A5 1

D , ~46!

lE5S 0 A2l12
D 0

A2l21
D 3l22

D /A5 0

0 23A2l32
U /A5 1

D , ~47!

wherel22
U andl22

D arise from the difference and sum of two
operators whose normalization factor ofA5 has been explic-
itly inserted, and similarly forl21

U and l21
D . To obtain the

numerical values of the entries we use some typical GUT-
scale values of Yukawa couplings and Cabibbo-Kobayashi-
Maskawa~CKM! elements~see Ref.@18#! as follows:

l3351, lc50.002, ls50.013, lm50.04,

lu51026, ld50.0006, le50.0002, ~48!

Vcb50.05, Vus50.22, Vub50.004, ~49!

where we have assumed

as50.115, mb54.25, tanb555, mt5180 GeV. ~50!

The textures in Eqs.~45!, ~46!, and ~47! imply that the 22
eigenvalues are just equal to the 22 elements~assuming ma-
trix perturbation theory is valid—see later! and
l32

U 5Vcb/250.025. Thus we havel22
U 50.004, l22

D 50.03.
The remaining parameters are determined from the relations

lu50, ld53le5l21
D A2l12

D /ls ,

Vub5l21
U Vcb /lc . ~51!

Note that the up quark mass looks like it is zero, but in
practice we would expect some higher dimension operator to
be present which will give it a small nonzero value. We thus
have three equations and three unknowns, and solving we
find l21

U 5231024, l21
D 5231023, l12

D 5331023. The dif-
ference betweenl21

U and l21
D requires suppression ofOA

caused by the Clebsch zero in the dominant operatorOM.
Thus the unified Yukawa matrix involves operators with the
approximate numerical coefficients

l5S 0 331023 0

331023 1.531022 0

0 2.531022 1
D , ~52!

where we have extracted the Clebsch factors, and the 22 and
21 values in Eq.~52! refer to each of the two operators in this
position separately. The numerical values in Eq.~52! are not

dissimilar from those in Eq.~33!; in particular, the upper
232 block is symmetrical with the same values as before. In
this case the lower 232 block has a texture zero in the 23
position, as well as the 31 and 13 positions, but otherwise the
numerical values are very similar to those previously ob-
tained in Eq.~33!. Thus this particular nonsymmetric texture
can be described by a structure of the kind

l5S debig de3 debig

de3 de1 or 2 debig

debig de 1
D , ~53!

where we identifye[l50.22 and setd'0.1 as before. Can
such a structure for thee ’s be obtained from the U(1)X sym-
metry? This will be discussed in Sec. VII.

There is no reason to restrict ourselves to nonsymmetric
textures with a zero in the 13 and 31 positions, as assumed in
Ref. @18#. For example, the following texture is also viable,
amounting to a hybrid of the symmetric case considered in
Eq. ~28! and the nonsymmetric lower block just considered:

l5S 0 OM ON

OM OW 0

ON OC O33
D . ~54!

Here,O33 is the renormalizable operator. We now perform a
general operator analysis of the nonsymmetric case, assum-
ing n51 operators for all nonzero entries~apart from the 33
renormalizable entry!. In this general analysis there are two
classes of texture: those with universal texture zeros in the 13
and 31 positions~essentiallyn51 versions of the textures
considered in Ref.@18#! and new textures with nonzero en-
tries in the 13 and/or 31 position. For now we will not con-
sider the cases with operators in the 13 or 31 positions for
reasons of brevity. In the general analysis we repeat the
above procedure, being careful about phases, and obtain
some numerical estimates of the magnitude of each entry
which will be explained in terms of the U(1)X family sym-
metry as discussed in the next section.

With the above discussion in mind, we consider the new
scheme in which the dominant operators in the Yukawa ma-
trix are O33, O32

C , O22
W , O21,Õ21, andO12, where the last

three operators are left general and will be specified later.
We are aware from the analysis in Ref.@18# that O12 must
have a zero Clebsch coefficient in the up sector. A combina-
tion of two operators must then provide a nonzeroO21 entry
to provide a large enoughVub , and an additional, much
more suppressed operator elsewhere in the Yukawa matrix
gives the up quark a small mass. AtMGUT therefore, the
Yukawa matrices are of the form

l I5F 0 H12e
if12x12

I 0

H21x21
I eif211H̃21x̃ 21

I ei f̃21 H22x22
I eif22 0

0 H32x32
I eif32 H33e

if33
G ,

~55!
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where only the dominant operators are listed. TheI super-
script labels the charge sector andxi j

I refers to the Clebsch
coefficient relevant to the charge sectorI in the i j th position.
f i j are unknown phases andHi j is the magnitude of the
effective dimensionless Yukawa coupling in thei j th posi-
tion. Any subdominant operators that we introduce will be
denoted below by a prime and it should be borne in mind
that these will only affect the up matrix. So far, the known
Clebsch coefficients are

x12
U 50,

x22
U 50, x22

D 51, x22
E 523,

x32
U 51, x32

D 521, x32
E 523. ~56!

We have just enough freedom in rotating the phases of
F1,2,3 and F̄1,2,3 to get rid of all but one of the phases in Eq.
~55!. When the subdominant operator is added, the Yukawa
matrices are

lU5F 0 0 0

H21
U eif21

U
H228 eif228 0

0 H32x32
U H33

G ,

lD5F 0 H12x12
D 0

H21
D H22x22

D 0

0 H32x32
D H33

G ,

lE5F 0 H12x12
E 0

H21
E H22x22

E 0

0 H32x32
E H33

G , ~57!

where we have defined

H21
U eif21

U
[H21x21

U eif211H̃21x̃21
U ei f̃21,

H21
D,E[H21x21

D,Eeif211H̃21x̃21
D,Eei f̃21. ~58!

We may now removef228 by phase transformations upon

F̄1,2,3 but f21
U may only be removed by a phase redefinition

of F1,2,3, which would alter the prediction of the CKM ma-
trix VCKM . Thus,f21

U is a physical phase; that is, it cannot be
completely removed by phase rotations upon the fields. Once
the operatorsO21,Õ21,O12 have been chosen, the Yukawa
matrices atMGUT including the phase in the CKM matrix are
therefore identified withHi j ,H228 ,f21

U .

VI. NUMERICAL ANALYSIS OF MASSES AND MIXING
ANGLES FROM NONSYMMETRIC TEXTURES

In this section we discuss the numerical procedure used to
analyze the nonsymmetric cases introduced in the previous
section. We shall perform an analysis on the new approach
based onn51 operators only, and also reanalyze and update
the original scheme of Ref.@18# for comparison.

The basic idea is to do a global fit of each considered
Ansatz to me ,mm , mu , mc , mt , md , ms , mb , aS(MZ),
uVubu, uVcbu, and uVusu usingmt as a constraint. We use the
approximation that the whole supersymmetry~SUSY! spec-
trum of the MSSM lies atMSUSY5mt and that the MSSM
remains a valid effective theory until the scaleMGUT51016

GeV. Not wishing to include neutrino masses in this analy-
sis, we simply set the right-handed Majorana neutrino mass
of each family to be 1016 GeV so that the neutrinos are
approximately massless and hence their masses do not affect
the renormalization group equations~RGE’s! below MGUT.
Recall the parameters introduced in Eq.~57!: f21

U [f,
H21

U [H218 , H21
D [H21, H228 ,H22,H12,H32,H33. The values

of these eight parameters plusaS at the GUT scale are de-
termined by the fit.

The matrices l I are diagonalized numerically and
uVub(MGUT)u,uVus(MGUT)u are determined by

VCKM5VUL
VD

L
† , ~59!

where VUL
and VDL

are the matrices that act upon the

(u,c,t)L and (d,s,b)L column vectors, respectively, to trans-
form from the weak eigenstates to the mass eigenstates of the
quarks. We use the boundary conditions
a1(MGUT)5a2(MGUT)50.708, motivated by previous
analyses based on gauge unification in SUSY GUT models
@24#. lu,c,t,d,s,b,e,m,t , uVusu, and uVubu are then run7 from
MGUT to 170 GeV'mt using the RGE’s for the MSSM.
Below MGUT the effective field theory of the standard model
allows the couplings in the different charge sectors to split
and run differently. Thel i are then evolved to their empiri-
cally derived running masses using three-loop QCD
^ one-loop QED@18#. mt

e andlt
p(mt) then8 fix tanb through

the relation@12#

cosb5
A2mt

e~mt!

vlt
p~lt!

, ~60!

where v5246.22 GeV is the VEV of the standard model
Higgs field. Predictions of the other fermion masses then
come from

mc,t
p 'lc,t

p ~mc,t!
vsinb

A2
,

md,s,b
p 'ld,s,b~m1,1,b

e !
vcosb

A2
,

7All renormalization running in this paper is one loop and in the
modified minimal subtraction (M S) scheme. The relevant renor-
malization group equations are listed in Ref.@18#.

8The superscripte upon masses, mixing angles, or diagonal
Yukawa couplings denotes an empirically derived value, whereas
the superscriptp denotes the prediction of the model for the par-
ticular fit parameters being tested.
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me,m
p 'le,m~m1,m

e !
vcosb

A2
, ~61!

wherem1[ 1 GeV. There are 12 data points and 9 param-
eters, and so we have three degrees of freedom~DF!. The
parameters are all varied until the globalx2/NDF is mini-
mized. The data used~with 1s errors quoted! are @25#

me50.510 999 MeV,

mm5105.658 MeV,

mt51.7771 GeV,

mc51.360.3 GeV,

mt
phys5180612 GeV,

md51065 MeV,

ms52006100 MeV,

mb54.2560.1 GeV,

uVubu5~3.5060.91!31023,

uVusu50.221560.0030,

aS~MZ!50.11760.005. ~62!

uVcbu is fixed by H32 which does not influence the other
predictions to a good approximation and souVcbu and H32
effectively decouple from the fit. We merely note that in all

cases, to predict the measured value ofuVcbu, H32;0.03.
Note that no errors are quoted upon the lepton masses be-
causemt is used as a constraint on the data and because
me ,mm were required to be satisfied to 0.1% by the fit. In
this way we merely use the lepton masses as three con-
straints, using up three DF. We did not perform the fit with
smaller empirical errors on the lepton masses because of the
numerical roundoff and minimization errors associated with
high x2 values generated by them. Also, 0.1% is a possible
estimate of higher loop radiative corrections involved in the
predictions. Note that no other theoretical errors were taken
into account in the fit. The largest ones may occur in deriva-
tions of mb due to the largelb coupling @26# and the non-
perturbative effects of QCD near 1 GeV. It is not clear how
to estimate these errors since the error onmb depends upon
soft parameters which depend on the SUSY-breaking mecha-
nism in a very model-dependent way and nonperturbative
QCD is an unsolved problem. The correlations between the
empirical estimations of the current quark masses are also
not included. A potentially large error could occur if the
Ansätze considered are not exact but are subject to correc-
tions by higher dimension operators. We discuss this point
further in Sec. VII.

The results obtained from this analysis are given in Table
III. Out of 16 possible models that fit the texture required by
Eqs. ~56! and ~55!, 11 models fit the data withx2/NDF,3.
Out of these 11 models, 5 fit the data withx2/NDF,2 and
these are displayed in Table III. The operators listed as
O12,O21,Õ21 describe the structure of the models and the
entriesH22,H12,H21,cosf,H33,H228 ,H218 are the GUT-scale
input parameters of the best-fit values of the model. The
estimated 1s deviation inaS(MZ) from the fits is60.003

TABLE III. Results of best-fit analysis on models withn51 operators only. Note that the input param-
etersHi j ,Hi j 8,cosf shown are evaluated at the scaleMGUT . All of the mass predictions shown are running
masses, apart from the pole mass of the top quark,mt

phys[mt@114aS(mt)/3p#. The CKM matrix element
predictions are atMZ .

Model 1 2 3 4 5

O12 OM OW OR OR OR

O211Õ21
OM1OA OG1OH OM1OA OG1OH OR1OS

H22/1022 2.88 2.64 2.69 2.67 6.15
H12/1023 2.81 4.41 2.13 0.70 1.21
H21/1023 1.30 5.97 1.76 4.33 1.91
cosf 0.87 1.00 0.20 1.00 0.61
H33 1.18 1.05 1.05 1.07 4.6
H228 /1023 1.91 1.87 1.87 1.87 2.87
H218 /1023 1.94 1.62 1.63 1.66 0.76
aS(MZ) 0.119 0.118 0.118 0.118 0.126
md/MeV 6.25 1.03 8.07 4.14 11.9
ms/MeV 158 150 154 152 228
mc/GeV 1.30 1.30 1.30 1.30 1.30
mb/GeV 4.24 4.25 4.25 4.25 4.13
mt

phys/GeV 182 180 180 180 192
uVusu 0.2211 0.2215 0.2215 0.2215 0.2215
uVubu/1023 3.71 3.51 3.50 3.52 3.50
tanb 59.5 58.3 58.3 58.5 65.7
x2/NDF 0.34 1.16 0.13 0.55 1.84
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and the other parameters are constrained to better than 1%
apart from cosf, whose 1s fit errors often cover the whole
possible range. Out of the predictions shown in Table III,
md discriminates between the models the widest.aS(MZ)
takes roughly central values, apart from model 5 for which
the best fit is outside the 1s errors quoted in Eq.~62! on
aS(MZ). ms ,uVubu are within 1s of the data point and
mc ,uVusu are approximately on the central value for all 5
models. Models 3, 1, and 4 are very satisfactory fits to the
data withx2/NDF,1. We conclude that thex2 test has some
discriminatory power in this case since, if all of the models
were equally good, we would statistically expect to have 11
models withx2/NDF,1, 3 models withx2/NDF51 –2, and 2
models withx252 –3 out of the 16 tested.

We now briefly return to the original models with upper
blocks given byB1 –8 in Eqs. ~36!–~43! @18#. After again
isolating the only physical phase tol21

U , a numerical fit
analogous to the above was performed using the same data in
Eq. ~62!. The main difference in the fit with these models is
that there are now four degrees of freedom in the fit~since
there is one less parameter!. All eight models in question fit
the data withx2,2 and these are displayed in Table IV. We
do not display the best-fit input parameters because they are
largely irrelevant for the discussion here. 1s fit deviations of
aS(MZ) are again 0.003 forB1 –8. Note that whereas these
models are able to fituVusu,ms ,md ,mb ,mc fairly well, their
predictions ofaS(MZ) are high and outside the 1s empirical
error bounds.uVubu is naturally high in these models~as
found in Ref. @18#! and this forcesaS(MZ) to be large,
whereuVubu may decrease somewhat. To fitmb with a high
aS(MZ) requires a largeH33 element and this is roughly
speaking whymt

phys is predicted to be quite high. In each
model the high value ofaS(MZ) required is the dominant
source ofx2 apart fromB7, wheremc is low.

In comparison to the new scheme withn51 operators
only, the old scheme withn52 operators fits the data pretty
well, although not quite as well as models 1,3,4. The old
scheme also has one more prediction than the new one. How-
ever, the preferred models are the ones incorporating the
U(1)X symmetry since they go deeper into the reasons for
the zeros and hierarchies in the Yukawa matrices.

VII. U „1…X FAMILY SYMMETRY
IN THE SU „4…3O„4… MODEL

In our discussion of the symmetric textures, we assumed
that we could obtain the same structure as IR. Of course, as
we have already mentioned, the case we are examining is
different in two aspects:~a! The fermion mass matrices of
the different charge sectors have the same origin, and thus
the same expansion parameter, and~b! all differences be-
tween these sectors arise from Clebsch factors. As a starting
point, we will therefore briefly repeat the IR analysis for
symmetric mass matrices in our framework; we then go on to
consider the nonsymmetric case, with the goal of being able
to reproduce the numerical values~at least to an order of
magnitude! of the successfulAnsätze given in the previous
section.

The structure of the mass matrices is determined by a
family symmetry U(1)X , with the charge assignment of the
various states given in Table V. The need to preserve
SU(2)L invariance requires left-handed up and down quarks
~leptons! to have the same charge. This, plus the additional
requirement of symmetric matrices, indicates that all quarks
~leptons! of the samei th generation transform with the same
charge a i . Finally, lepton-quark unification under
SU(4)^ SU(2)L ^ SU(2)R indicates that quarks and leptons
of the same family have the same charge~this is a different
feature as compared to IR, where quarks and leptons of the
two lower generations have different charges under the flavor
symmetry!. The full anomaly-free Abelian group involves an
additional family-independent component U(1)FI , and with
this freedom U(1)X is made traceless without any loss of
generality.9 Thus we seta152(a21a3). Here we consider
the simplest case where the combinationHH̄ is taken to have
zero charge. This is consistent with our requirement that it
play no role in the mass hierarchies, other than leading to a
common factord for all nonrenormalizable entries.

If the light Higgsh2,h1, responsible for the up and down

9Since we assume that the 33 operator is renormalizable, the re-
laxation of the tracelessness condition does not change the charge
matrix since any additional FI charges can always be absorbed into
the Higgshi charges.

TABLE IV. Predictions of best-fit analysis on models from Ref.@18# with n52 operators included. All
of the mass predictions shown are running masses, apart from the pole mass of the top quark. The CKM
matrix element predictions are atMZ .

Model B1 B2 B3 B4 B5 B6 B7 B8

aS(MZ) 0.123 0.123 0.123 0.124 0.123 0.124 0.125 0.124
md/MeV 7.58 9.12 4.64 6.18 7.49 3.63 3.53 4.53
ms/MeV 215 240 179 210 217 179 200 187
mc/GeV 1.29 1.38 1.35 1.16 1.29 1.32 0.86 1.31
mb/GeV 4.19 4.17 4.19 4.19 4.19 4.18 4.20 4.19
mt

phys/GeV 188 189 189 189 188 189 190 189
uVusu 0.2212 0.2213 0.2214 0.2212 0.2212 0.2215 0.2212 0.2214
uVubu/1023 4.52 4.37 4.05 4.22 4.56 3.74 3.85 3.98
tanb 63.2 63.6 63.4 63.7 63.2 63.8 64.3 63.6
x2/NDF 0.95 0.96 1.00 1.05 0.97 1.16 1.87 1.04
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quark masses, respectively, arise from the same bidoublet
h5(1,2,2), then they have the same U(1)X charge so that
only the 33 renormalizable Yukawa coupling toh2,h1 is al-
lowed, and only the 33 element of the associated mass matrix
will be nonzero. The remaining entries are generated when
the U(1)X symmetry is broken. This breaking is taken to be
spontaneous, via standard model singlet fields, which can be
either chiral or vector ones; in the latter case, which is the
one studied in IR, two fieldsu and ū , with U(1)X charge
21 and11, respectively, and equal VEV’s are introduced.
When these fields get a VEV, the mass matrix acquires its
structure. For example, the 32 entry in the up quark mass
matrix appears atO(e) because U~1! charge conservation
only allows the termccth2(u/M2)a22a3 for a2.a3 or
ccth2( ū /M2)a32a2 for a3.a2. Here e5(^u&/M2) ua22a3u

where M2 is the unification mass scale which governs the
higher dimension operators. In IR, a different scale,M1, is
expected for the down quark and lepton mass matrices.

In our case, however, all charge and mass matrices have
the same structure under the U(1)X symmetry, since all
known fermions are accommodated in the same multiplets of
the gauge group. The charge matrix is of the form

S 22a224a3 23a3 2a222a3

23a3 2~a22a3! a22a3

2a222a3 a22a3 0
D . ~63!

Then, including the common factord which multiplies all
nonrenormalizable entries, the following pattern of masses is
obtained~for vectorlike singlets!:

lu,d,l 'S de u216au de u3au de u113au

de u3au de2 de

de u113au de 1
D , ~64!

where10 a5a3 /(a22a3). We emphasize that the entries in
Eq. ~64! describe the magnitudes of the dominant operators,
and do not take the Clebsch zeros of the different charge
sectors into account. Note the existence of a single expansion
parameter, for all three matrices. Another interesting point is
that a unique charge combinationa appears in the exponents
of all matrices, as a result of quark-lepton unification. Actu-

ally, unlike what appears here, in most schemes the lepton
mass matrix is described in the generic case by two param-
eters. Fora51, one generates the structure in Eq.~34! for
the unified fermion mass matrices.

Before passing to the nonsymmetric case, let us make a
few comments on the possibility of having chiral or vector
singlets, as well as on the charge of the Higgs fields. Suppose
first that u is a chiral field. From the form of the charge
matrix, we observe that if the 22 and 23 entries have a posi-
tive charge,a3 is negative~for all these entries to be nonva-
nishing at the same time!. Moreover, the hierarchy 1:3 be-
tween the 23 and 12 elements indicates thata2 would have
to be zero in the chiral case, and thus the 13 element would
tend to be larger than desired. We can say therefore that the
symmetric case with vector fields generates the mass hierar-
chies in a more natural way.

Concerning theh1,h2 Higgs fields, there are two kinds
originating from free fermionic string models: those coming
from Neveu-Schwarz sector, which in general have integer
~including zero! U(1)X charges, and those arising from
twisted sectors, which usually carry fractional U(1)X
charges. Which of these cases acquire VEV’s is decided
from the phenomenological analysis. For example, to obtain
the structure of Eq.~34! we see that the charges ofh1,2 may
not be zero, since in such a case the 12 element which is
proportional to the Higgs charge would be unacceptably
large. For the nonsymmetric case of course this feature does
not necessarily hold. Finally, theH,H̄ fields @the SU~4!
Higgs fields# tend to be nonsinglets under extra U(1)X sym-
metries. We now proceed to discuss thenonsymmetric case,
which in the framework of U(1)X symmetries has been ex-
tensively studied in@27#. Here, we will examine what con-
straints one may put on the various possibilities for nonsym-
metric textures, in the model under study.

The charge assignment for this case appears in Table VI.
Fields that belong to the same representation of
SU(4)^ SU(2)L ^ SU(2)R are taken to have the same
charge. Again, it is clear that all fermion mass matrices will
have the same structure. With this charge assignment we
may proceed as in the symmetric case, and calculate the
possible mass matrices that may arise. The charge matrix is
now

S 2a222a32b222b3 a22a32b222b3 2b222b3

2a222a31b22b3 a22a31b22b3 b22b3

2a222a3 a22a3 0
D . ~65!

10In this simplest~and more predictive! realization,hb'ht and therefore we are in the large tanb regime of the parameter space of the
MSSM.

TABLE V. U(1)X charges assuming symmetric textures.

Qi ui
c di

c Li ei
c n i

c h1 h2 H H̄

U(1)X a i a i a i a i a i a i 22a3 22a3 x 2x

TABLE VI. U(1) X charges for nonsymmetric textures.

Qi ui
c di

c Li ei
c n i

c h1 h2 H H̄

U(1)X b i a i a i b i a i a i 2b32a3 2b32a3 x 2x
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We now want to find which charge assignments may gener-
ate a mass matrix as close as possible to the form in Eq.~53!,
keeping in mind that there is no reason to restrict ourselves
to nonsymmetric textures with a zero in the 13 and 31 posi-
tions.

In what follows, we will check whether it is possible to
generate the hierarchies in the effective low energy Yukawa
couplings required by ourAnsätzeand the data. The required
couplings are detailed in Table III. Initially, we determine if
we can obtain the correct structure by chiral singlet fields.
We assume for a starting point that for the 32 entry we have
a22a3.0 ~without a loss of generality since we can always
choose the sign of one entry in the charge matrix!. The 23
entry has to be small@it is assumed to be zero in theAnsätze
in Eq. ~55!#, indicating that ~a! either b22b3,0 or ~b!
b22b3 is positive and large (>2). Case~b! is excluded,
since it would indicate that the 22 charge, which is always
the sum of the 23 and 32 charges, would be unacceptably
large as well~which implies thatH22,H32 , in contradic-
tion to the fits in Table III!. What about case~a!? A negative
number must not dominate the 22 entry in the chiral case,
and thusub22b3u would have to be smaller thanua22a3u.
This clearly contradicts the required hierarchy between the
22 and 32 elements and so the required couplings can not be
naturally described by a model with only a chiral U~1! X
Higgs u.

For this reason we are going to look for solutions in the
case of vector singlets, where it is the absolute value of the
charges that matters. Here, the important difference from the
previous case is that a solution with a small and positive
a22a3 and a large negativeb22b3 is allowed. The 23 and
32 elements have the correct hierarchy, while the 22 element
can also be sufficiently small, as a result of a cancellation
between terms of opposite sign, with the negative contribu-
tion being dominant. What can we say about the rest of the
structure and how restrictive should we be when looking for
solutions? We could allow for a small asymmetry between
the 12 and 21 entries. Actually,l12

D can be slightly larger
than l21

D . This, combined with the fact that there are un-
known coefficients of order unity, indicates that we can have
an asymmetry of ordere between the 12 and 21 entries. We
will discuss solutions with such an asymmetry, even in the
case thatl12

D ,l21
D , due to this coefficient ambiguity as well

as the ambiguity in the experimental value of the up and
down quarks. We also need not drop solutions with a large
13 or 31 entry, if they are compatible with the numerics.

On this basis, we have looked for solutions in the follow-
ing way: For the charges of the elements 12-21-22-32 we
made all possible charge assignments~such that lead to a
maximum fourth power in terms of the expansion parameter
for the resulting mass matrices, for the 12 and 21 entries!.
This fixes all chargesa2,a3,b2,b3 each time. We then
looked at what the charges of the other entries are and
whether the generated hierarchies are consistent with the
phenomenology.

The restrictions we require in order to identify a viable
solution are~in addition to of course that the only renormal-
izable term is in the 33 position!

ucharge~11!u.ucharge~12!u,

ucharge~11!u.ucharge~21!u,

ucharge~21!u.ucharge~22!u,

ucharge~12!u.ucharge~22!u,

ucharge~13!u.ucharge~22!u,

ucharge~31!u.ucharge~22!u,

ucharge~32!u<ucharge~22!uO~e!,

ucharge~12!u'ucharge~21!uO~e!,

ucharge~23!u.ucharge~22!u. ~66!

Then, we end up with the following possibilities:
Case 1:

a2522/3, a3525/3, b2522, b350,

Yu,d,l 5S de6 de3 de2

de2 de de2

de4 de 1
D . ~67!

Case 2:

a2521, a3522, b2522, b350,

Yu,d,l 5S de7 de3 de2

de3 de de2

de5 de 1
D . ~68!

Case 3:

a2524/3, a3527/3, b2522, b350,

Yu,d,l 5S de8 de3 de2

de4 de de2

de6 de 1
D . ~69!

Case 4:

a2524/3, a3521/3, b250, b3522,

Yu,d,l 5S de6 de3 de4

de4 de de2

de2 de 1
D . ~70!

Case 5:

a2524/3, a3527/3, b2523, b350,
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Yu,d,l 5S de9 de4 de3

de3 de2 de3

de6 de 1
D . ~71!

Case 6:

a2521, a3522, b2527/3, b3521/3,

Yu,d,l 5S de8 de4 de3

de3 de de2

de5 de 1
D . ~72!

Case 7:

a2525/3, a3528/3, b2523, b350,

Yu,d,l 5S de10 de4 de3

de4 de2 de3

de7 de 1
D . ~73!

Case 8:

a2524/3, a3527/3, b2527/3, b3521/3,

Yu,d,l 5S de9 de4 de3

de4 de de2

de6 de 1
D . ~74!

Case 9:

a2524/3, a3521/3, b2521/3, b3527/3,

Yu,d,l 5S de7 de4 de5

de4 de de2

de2 de 1
D . ~75!

Let us also list for completeness a few cases with a larger
splitting between the 21 and 12 entries@up to O(e2)#:

Case 10:

a2524/3, a3521/3, b251/3, b3525/3,

Yu,d,l 5S de5 de2 de3

de4 de de2

de2 de 1
D . ~76!

Case 11:

a2522/3, a3525/3, b2527/3, b3521/3,

Yu,d,l 5S de7 de4 de3

de2 de de2

de4 de 1
D . ~77!

Of course, here we also have the cases with the opposite
charge assignment.11 Among the various choices, we see that
the charge of the Higgs fieldsh1,2 is always different from
zero and there are cases where the 13 and 31 elements are
large. We may now examine the results of Table III in the
context of the U~1! X symmetry discussion above. We take
all models that fit the data withx2/NDF,1, i.e., models 1, 3,
and 4. We define in each of these modelsHi j

emp as being the
dimensionless and dominant effective coupling constants in
the SU~4!^ SU~2! L ^ SU~2! R unified Yukawa matrix for the
best fit parameters.

Then, model 1 has

Hi j
emp;F 0 0.003 0

0.001 0.03 0

0 0.03 1
G . ~78!

We see that case 1 above does not fit this pattern very well if
all dimensionless couplings are;1 because, in case 1,H21 is
suppressed in comparison toH12. Cases 4 and 9 do not
possess approximate texture zeros in the 31 position and this
would affectuVubu strongly. Similar objections can be raised
about other cases, except for cases 2, 7, and 8. Case 2 with
e50.21,d50.14 yields

F 231026 0.001 631023

0.001 0.03 631023

631025 0.03 1
G , ~79!

which fits Eq.~78! well apart from a factor of;3 in the 12
position. The next subdominant operator in the 22 position
needs to be 231023 according to Table III. The values of
e and d used in Eq.~79! give the subdominant operator in
the 22 position to be;631023. This is acceptable, but a
closer match occurs for the next higher dimension operator,
which has magnitude;1023. An ambiguity occurs in that
we have not set the normalization of the subdominant opera-
tor due to its numerous possibilities and so the original dis-
crepancy factor of;3 could easily be explained. Below, we
do not consider the numerical size of the subdominant op-
erator because it is clear that some operator can be chosen
that will fit the required number well. If the charge assign-
ments under the U~1! X symmetry were the same as in this
case, we would have succeeded in explaining why the as-
sumption of texture zeros was valid. For example, the 13
element in Eq.~79! being 631023 instead of zero only af-
fects mixing angle and mass predictions by a small amount.
We have also explained the hierarchies between the elements

11The presence of fractional charges implies the existence of re-
sidual discrete symmetries after the breaking of the Abelian sym-
metry.
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in terms of the different mass scales involved in the non-
renormalizable operators by not having to choose dimension-
less parameters of less than 1/3~or greater than 3!. Case 7
with e50.36,d50.08 gives

F 231026 0.001 431023

0.001 0.01 431023

631025 0.03 1
G . ~80!

We should note that at this level we may naively expect 8%
corrections to the constraint in Eq.~80! through the next
order of d operators in each element. We could have at-
tempted to include these possible errors in the numerical fits
but we did not due to the fact that they are very model
dependent. Deeper model building in terms of constructing
the nonrenormalizable operators out of extra fields or exam-
ining underlying string models would be required to explain
why this should not be the case. It should also be borne in
mind that explanations for exact texture zeros can be made in
this context by setting fractional U(1)X charges on the heavy
fields in the operators or by leaving certain heavy fields out
of the FN model. Case 8 withe50.36,d50.08 gives the
same results as in Eq.~80!, except with the 22 element as
0.03.

From Table III we see that model 3~the model that fits the
data the best! has

Hi j
emp;F 0 0.002 0

0.002 0.03 0

0 0.03 1
G . ~81!

Choosinge50.26,d50.12 in case 2 gives a good match to
Eq. ~81!:

F 931028 0.002 831023

0.002 0.03 831023

631025 0.03 1
G . ~82!

Case 7 withe50.40,d50.07 or case 8 with the samee and
d both give a fairly good match as well.

Model 4 is different in the sense that it possesses a hier-
archy between the 12 and 21 entries of the effective Yukawa
couplings:

Hi j
emp;F 0 0.0007 0

0.004 0.03 0

0 0.03 1
G . ~83!

Here, case 1 withd50.2,e50.15 predicts

F 331027 0.0007 431023

0.004 0.03 431023

1025 0.03 1
G , ~84!

an extremely good match to Eq.~83!. Case 6 with
e50.28,d50.11 provides a good match also.

Thus we see that we can explain the hierarchies and tex-
ture zero structures of the models that fit the data best. In
general, it seems likely that we have enough freedom in set-
ting charges to attain the required hierarchies for the Yukawa
matrices.

VIII. STRING MODEL

In the following, we will present a semirealistic string
model which provides an existence proof of how previously
described nonrenormalizable operators may be generated
from first principles using string theory. Before this, let us
briefly comment on how the basic features of the U(1)X
symmetries that we have discussed arise in string construc-
tions.

In realistic free fermionic string models@19,17# there are
some general features: At a scaleM string;5gstring31017

GeV, one obtains an effectiveN51 supergravity model with
a gauge symmetry structure which is usually a product of
non-Abelian groups times several U(1) factors. The non-
Abelian symmetry contains an observable and a hidden sec-
tor. The massless superfields accommodating the Higgs and
known chiral fields transform nontrivially under the observ-
able part and usually carry nonzero charges under the surplus
U~1! factors. The latter act as family symmetries in the way
described above. Some of them are anomalous, but it turns
out that one can usually define new linear U~1! combinations
where all but one are anomaly free. The anomalous U~1! is
broken by the Dine-Seiberg-Witten mechanism@28#, in
which a potentially large Fayet-IliopoulosD term is gener-
ated by the VEV of the dilaton field. AD term, however,
breaks supersymmetry and destabilizes the string vacuum,
unless there is a direction in the scalar potential which isD
flat andF flat with respect to the nonanomalous gauge sym-
metries. If such a direction exists, some of the singlet fields
will acquire a VEV, canceling the anomalousD term, so that
supersymmetry is restored. Since the fields corresponding to
such a flat direction typically also carry charges for the nona-
nomalousD terms, they break all U~1! symmetries sponta-
neously. For the string model in Ref.@17#, the expected order
of magnitude for the VEV of the singlet fields is
^F i&;(0.1–0.3)3M string. Thus, their magnitude is of the
right order to produce the required mass entries in the mass
matrices via nonrenormalizable operators.

As an application of the above procedure, we will make a
first attempt to derive the relevant operators for the mass
matrices of the model based on the work in Ref.@17#. The
string model is defined in terms of nine basis vectors
$S,b1 ,b2 ,b3 ,b4 ,b5 ,b6 ,a,z% and a suitable choice of the
Gliozz-Scherk-Olive ~GSO! projection coefficient matrix.
The resulting gauge group has a Pati-Salam
@SU(4)3SU(2)L3SU(2)R# non-Abelian observable part,
accompanied by four U~1! Abelian factors and a hidden
SU(8)3U(1) symmetry.

In the following, for convenience, we denote a set of com-
plex right fermions with the letters

$C̄1•••5,w̄1•••6,h̄123, z̄12% and real right fermions with

$ ȳ 1•••6,v̄1•••6%. Now, a specific model is defined in terms of
a set of boundary conditions on the phases picked up by the
fermions when parallel transported around noncontractible
loops. The model is derived from the basis@17#
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S5$cm,x12•••6;0•••0%,

b15$cm,x12,y3456ȳ 3456;C̄1•••5h̄1%,

b25$cm,x34,y12ȳ 12v56v̄56;C̄1•••5h̄2%,

b35$cm,x56,v1234v̄1234;C̄1•••5h̄3%,

b45$cm,x12,y36ȳ 36,v45v̄45;C̄1•••5h̄1%,

b55$cm,x34,y26ȳ 26,v15v̄15;C̄1•••5h̄2%,

b65$0,0,y6 ȳ 6,v15v̄15;C̄1•••5h̄123w̄123z̄1%,

z5$0,•••0; z̄12w̄1•••6%,

a5$y46ȳ 46,v46v̄46;C̄123h̄12z̄12%.

All world-sheet fermions appearing in the basis are assumed
to have periodic boundary conditions, while those not ap-
pearing are antiperiodic. An immediate consequence of using
only periodic and antiperiodic boundary conditions is that
the resulting gauge symmetry is in general a product of
SO(n) groups. Thus, in the above basis, for example, the

complex world sheet fermionsC̄1•••5 define an SO(10) sym-
metry which is broken by the last vectora into
SO(6)̂ O(4). Now, bearing in mind that this part will be
interpreted as the observable gauge symmetry, we observe
the isomorphies SO(6);SU(4), O(4);SU(2)^ SU(2).
The two SU~2!’s are going to accommodate the left and right
components of the matter fields. Thus, the resulting gauge
symmetry is isomorphic to the Pati-Salam~PS! gauge group.
Thus the complete symmetry of the model under the above
choice is

@SU~4!3SU~2!3SU~2!3U~1!3#o3@SU~8!3U~1!#h ,
~85!

where the subscripts (o,h) denote the observable and hidden
parts, respectively. With the specific choice of the projection
coefficient matrix in@17#, one obtains three chiral families in
the (4,2,1)1( 4̄ ,1,2) representations of the PS symmetry
and two Higgs pairs transforming as (4,1,2)1( 4̄ ,1,2), all
arising from the sectorsb1,2,3 andb4 ,b5.

In particular, the massless spectrum contains three
(F1,3,4)L5(4,2,1) representations obtained from the sectors
b1,3,4, which accommodate the left-handed fermion fields.
There are five ( 4̄,1,2) representations (F̄1,4,5,F̄2 ,F̄28)R

named after the corresponding sectors and two
H4,55(4,1,2) arising from the sectorsb4,5. Thus, two linear
combinations of theF̄ i will play the role of the GUT Higgs
H̄, while the remaining threeF̄ ’s accommodate the right-
handed fermions. The spectrum includes also bidoublets
hi5(1,2,2)i , sextetsDi5(6,1,1)i , and a sufficient number
of singlet fieldsF i j ,j j ,zk . A certain number of singlets
should develop VEV’s in order to satisfy the flatness condi-
tions and give masses to unwanted color triplets and exotic
states.

In addition, one obtains fractionally charged states which
arise in nonstandard representations of the Pati-Salam~PS!
symmetry, namely, ~1,1,2! and ~1,2,1! and one pair
(4,1,1)1( 4̄ ,1,1). Finally, under the hidden gauge group,
one obtains ten irreducible representationsZi ,Zī sitting in
the 8 of SU~8! while carrying quantum numbers under all
five U~1! symmetries of the model. All states are divided to
those arising from the Neveu-Schwarz~NS! and Ramond~R!
sectors. In particular the NS sector gives the graviton mul-
tiplet as well as the singlet fieldsF i ,F i j , sextets and the
bidoubletsh3 , h̄3.

IX. CALCULATION OF TREE-LEVEL
AND NONRENORMALIZABLE OPERATORS

IN THE STRING MODEL

To calculate the superpotential of the model, one needs to
obtain vertex operators for all physical states of the theory.
To construct vertex operators for the states of a given model,
every world-sheet fermion has to be represented by a confor-
mal field. In the case that a representation of the model can
be fully factorized in a left- and a right-moving piece, one
can pair them up to bosonized fields. Now, according to the
definition of the supersymmetry generatorS in the above
basis of our model, one can conclude that the left-moving
fields x i can be bosonized (x16ıx2)/A25exp$6ıS12% and
similarly for the x3,4 and x5,6 pairs. N51 supersymmetry
implies the existence of an extra current, which is expressed
in terms ofSi j as @37#

J~q!5ı]q~S121S341S56! ~86!

and which is extended to three U~1!’s generated by
S12,S34,S56.

The Yukawa couplings in four-dimensional superstring
models correspond to expectation values of the form

K E d2q1E d2q2E d2q3V1
F~q1!V2

F~q2!V3
B~q3!L , ~87!

where theVi
F,B are the vertex operators for the fermionic

(F) and the bosonic (B) states, whileq1,2,3 are the two-
dimensional coordinates. Thus, a vertex operator for any
physical state is a collection of conformal fields that repre-
sent the quantum numbers of the state under all symmetries
of the model. The piece of the vertex operators involving the
bosonized left-moving fieldsx i is given for the bosons by
V21

B ;exp$aS12%exp$bS34%exp$gS56%. Similarly, for the fer-
mions, V21/2

F ;exp$(a21/2)S12%exp$(b21/2)S34%exp$(g
21/2)S56%. The subscripts21,21/2 refer to the correspond-
ing ghost numbers. The total ghost number should add up to
22, and thus in trilinear terms the nonvanishing couplings
are proportional to the correlator^VFVFVB&. In nonrenor-
malizable contributions, the remaining vertex operators
V4

B
•••Vn

B have to be ‘‘picture changed’’ in the zero picture
@37#. In general, a particular correlator is nonvanishing, only
if it is invariant under the three U~1!’s. In addition it has to
respect the usual~right-moving! gauge invariance and other
global symmetries. For example, pure NS couplings are pos-
sible only at the tree level. The same is true for higher order
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couplings involving only Ramond fields, and so on. A com-
plete list of rules is found in@37#.

If we imply the well-defined set of rules to calculate the
Yukawa interactions in the present string model, we obtain
the following tree-level terms that are relevant to our discus-
sion:

W→F4LF̄5Rh121
1

A2
F4RF̄5R z̄ 21 F̄3RF3Lh31 j̄ 1h3h12

1j4h3 h̄121F̄12h12h121F3 h̄12h121j1 h̄3 h̄12

1 j̄ 4 h̄3h121F12h̄12h̄121F̄3h12h̄121•••, ~88!

where the ellipsis stands for terms involving exotic and hid-
den fields and other couplings irrelevant for our purpose. The
F-flatness conditions are derived for the complete tree-level
superpotential, which is given in@17# and involves in total 18
singlet fields. Five of these fields, namely,F1, . . . ,5, have
zero quantum numbers under the U~1! groups, while the rest
of the fields~denoted byj1,2,3,4, j̄ 1,2,3,4, z1,2, z̄ 1,2, F12,

F̄12, F12̄, F̄12̄) have nontrivial quantum numbers.
From the above, it is clear that only a few Yukawa cou-

plings are available for fermion mass generation at the tree
level. The missing terms are expected to be obtained from
nonrenormalizable~NR! terms. In the case of the PS symme-
try we expect NR terms of the form

F̄Fh
H̄HF iF j

M string
4

, etc., ~89!

which act as effective mass operators once the fieldsH, H̄,
andF i , j get VEV’s. The scale where the Higgs fieldsH,H̄
obtain their VEV’s is determined from phenomenological
requirements and renormalization group analysis@38# of the
particular model. Moreover, the singlet VEV’s are not com-
pletely arbitrary since they should satisfy theD- and
F-flatness conditions. In general, theD-flatness conditions
read

(
i

QX
i u^F i&u21

g2

192p2
Tr $QU~1!X

%MPl
2 50, ~90!

(
i

Qn
i u^F i&u250, ~91!

where^F i& are the singlet VEV’s andg stands for the uni-
fied gauge coupling atM string. U(1)X in Eq. ~90! is the
anomalous U~1! combination andQX

i the corresponding
U(1)X charge of the singletF i . Equation~91! holds for all
the nonanomalous U~1! symmetries of the particular model.
From relations~90! and ~91!, it is clear that the order of
magnitude of the VEV’s of the singlet fields is determined
by the Tr term. Thus, we expect that

^F&25OS g2 Tr~QX!

192p2 D MPl
2 . ~92!

In particular, for the string model in Ref.@17#,
Tr@QX#572, and therefore the order of magnitude for the
singlet fields iŝ F i&;(0.1–0.3)3M string. ~See also Appen-
dix C for the details.! This indicates that the singlet VEV’s
have the correct magnitude, in order to produce the required
mass entries in the mass matrices via the nonrenormalizable
operators of Eq.~89!. We also note here that the spontaneous
breaking of the anomalous U~1! symmetry introduces one
more mass scaleMX in the theory, which is characterized by
the magnitude of the related singlet VEV’s. Thus, one natu-
rally expects the hierarchyM string>MX>MGUT.

One possible choice of nonzero VEV’s is

^F̄12
2 &,^F12&,^j1&,^ j̄ 2&, ~93!

and ^Z5&,^Z88&Þ0 of the hidden fields. Solving the flatness
conditions~Appendix C!, one finds that the order of magni-
tude of the singlet VEV’s isAau /p in Planck units. It is easy
to see that the choice~93! satisfies trivially theF-flatness
conditions. We should point out, however, that this choice is
not unique. There are other cases which also satisfy condi-
tions ~90! and~91!, and hopefully a solution which meets the
phenomenological requirements does exist. The nonzero
VEV’s in Eq. ~93! provide all dangerous color triplets with
masses from tree-level superpotential terms. Here we would
like to investigate if they are also capable of producing the
relevant operators for the fermion masses. This computation
will prove to be a rather hard task mainly due to the rapidly
increasing number of NR operators as the calculation pro-
ceeds to higher orders. We will see, however, that the pattern
of the fermion mass matrices described in the previous sec-
tions is basically obtained.

We will first start the examination of the tree-level super-
potential. Because of the string symmetries and the U~1!
charges of the superfields, as can be seen from Eq.~88! only
three terms relevant to the fermion masses exist at the three
level:

W→F4LF̄5Rh121
1

A2
F4RF̄5R z̄ 21 F̄3RF3Lh3 . ~94!

Here, h12,h3 are bidoublets andz̄ 2 is a singlet, while the
FL,R chiral fields have been presented previously. We may
give a nonzero VEV to one of the two bidoublet Higgs fields
~or to a linear combination cosuh121sinuh3) and support one
generation with masses at the tree level. Since there are more
than one doublets in the spectrum, first, we should determine
the massless state along the chosen flat direction. At the tree
level, the bidoublet Higgs mass matrix obtained from the
relevant terms is

~h3 ,h12, h̄3 , h̄12!S 0 j̄ 1 0 j4

j̄ 1 F̄12 j̄ 4 w3

0 j̄ 4 0 j1

j4 w3 j1 F12

D S h3

h12

h̄3

h̄12

D ,

~95!

with w5F3/2. In order to have at least one nonzero eigen-
value we impose det@mh#[(j1 j̄ 42 j̄ 1j4)250, which is sat-
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isfied for any value of theF3 ,F12,F̄12
2 VEV’s, provided

j1 j̄ 45 j̄ 1j4. The choice~93! is consistent with these re-
quirements. Moreover, it leavesh3 ,h12 massless at three
level. We then leth12 develop a VEV and give masses to the
top, bottom, andt particles living in theF4L ,F̄5R represen-
tations. Theh3 bidoublet is expected to receive a mass from
a NR term. Thus, to proceed further, we need the contribu-
tions of the nonrenormalizable terms. As in the tree-level
case, a nonvanishing NR term of the superpotential must
obey all the string selection rules@37# and be invariant under
all the gauge and global symmetries. Since here we discuss
the fermion masses, we are primarily interested in those op-
erators contributing to the corresponding matrices. At fourth
order, we find no relevant terms. At fifth order, there are
several operators which in principle could contribute to the
fermion mass matrices. We list them here:

F̄3RF3Lh3j1 j̄ 2 , F̄3RF3Lh3F3,4,5
2 , ~96!

F̄1RF1L h̄12z̄ 2F2 , F̄5RF4Lh12F1,2
2 , ~97!

F5RF4LF̄2RF̄2R8 h12 ~98!

~scaled with the proper powers ofM string). Let us analyze the
above contributions in terms of the particular flat direction
chosen here. It is clear that, irrespective of the choice of the
singlet VEV’s, the terms~96! do not add a new contribution
since they constitute small corrections to the already existing
tree-level termF̄3F3h3. Moreover, within the given choice
of our flat direction,̂ F i&5^ z̄ 2&50, the terms~97! do not
also generate any new fermion mass term. Thus, there is only
one term which contributes to the fermion mass matrices,
namely, the operator of Eq.~98!. This is an51 operator
according to our classification in the previous sections. We
have already interpretedF̄5R and F4L as the left and right
components of the third fermion generation. Up to now we
have not determined which ofF̄2R , F̄2R8 is going to play the
role of the second family. The fifth order operator still leaves
this undetermined since both fields enter in the operator in a
symmetric way. Thus there are two options. Either we set

^ F̄2R&50, or we have to rename the fields so thatF3L ,F̄3R
are the third generation fermions andh3 the massless Higgs
boson. In the first case we retain the fifth order contribution
to the mass matrix, while in the second we have a unique
choice for the second family and the Higgs boson; i.e.,
H̄5 F̄2R8 and F̄2R accommodates the right-handed fields of
the second generation.

In order to calculate the contribution of the operator in
Eq. ~98! to the mass matrices, we should properly contract
the various fields involved in the NR term. In principle, the
numerical coefficient in front of the desired operator is a
linear combination of the Clebsch-Gordan coefficients pre-
sented in Table I, each of them multiplied by a different
phase factor. Our ignorance about the numerical coefficients
of the mass matrix entries has been minimized in the un-
known phase factors. However, we can make a natural as-
sumption that the largest contributions come from contrac-
tions occurring first for the fields belonging to the same

sector. Recalling now thatF̄2R and H̄[ F̄2R8 originate from
the same sectorb2, while F4L , H[F5R andh12 are obtained
from b4,5. We find that

~F4LH !~ F̄2RH̄ !h12→OG→H 2

A5
Qdchd ,

4

A5
l echdJ ,

~99!

i.e., this operator contributes to down quark and charged lep-
ton mass matrices. Since this contribution is the second larg-
est after the tree-level termF4LF̄5Rh12, we identify Eq.~99!
with the 23 entry of the corresponding mass matrices. It is
clear, therefore, that in this pictureF5R ,F̄2R accommodate
the right components of the third and second generations,
respectively, whereasF4L contains the left fermions of the
heavy generation. In order to obtain nonzeros-quark andm
masses, we need to fill in the 32 entry of the down and
charged lepton mass matrices with a higher order operator,
so that the 232 lower block of the corresponding mass ma-
trices exhibits a structure of the asymmetric type considered
in the previous section,

FRMd,eFL5~ F̄2R ,F̄5R!S h22 ^HH̄&

h32 1
D h12S FiL

F4L
D ,

~100!

whereh i j stand for higher order NR contributions, whileFiL
represents in general one of the two remaining left-handed
fourpletsF (1,3)L . To determine which of the latter will ac-
commodate the second generation and calculateh ’s, one has
to proceed above the fifth order and find the relevant nonva-
nishing correlators. For example, choosing a new flat direc-
tion in which z̄ 2 ,F2 singlets develop nonzero VEV’s while
interpretingF3L ,F̄3R as the third generation,h22 may arise
from the fifth order NR operatorF1LF̄1Rh̄12z̄ 2F2 in Eq.
~96!. Interestingly, this is ann50 operator according to our
classification; however, it is suppressed compared to a tree-
level term due to the presence of the ‘‘effective’’ flavor fac-
tor d25^ z̄ 2F2&/M string

2 . Furthermore, higher NR terms will
certainly involven52, 3, etc., operators. Thus, it is clear
that the above procedure will requiren>2 operators and the
analysis will be more involved than the field theory model
described in the our earlier sections.

As a matter of fact, a detailed analysis requires also the
examination of all possible flat directions as well as calcula-
tion of the nonrenormalizable contributions to even higher
orders, since one has to ensure that the necessary Weinberg-
Salam doublets living in some combination of ourh3 ,h12
bidoublets remain massless up to this order. For the moment,
in our first approach to this model, we have been able to
show that the rather complicated string construction stays in
close analogy with the field theory approach presented in the
early sections.

X. CONCLUSIONS

We have examined Yukawa textures within a string-
inspired SU(4)3O(4) model extended by a gauged U(1)X
family symmetry and nonrenormalizable operators above the
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unification scale of the form in Eq.~27!. These operators

factorize into a factor (HH̄) and a factor involving the sin-

glet fieldsu, ū . The singlet fieldsu, ū break the U(1)X sym-
metry and provide the horizontal family hierarchies while the

H,H̄ fields break the SU~4!^ SU~2! L ^ SU~2! R symmetry
and give the vertical splittings arising from group-theoretic
Clebsch relations between different charge sectors. The fac-
tor (HH̄) also provides an additional flavor-independent sup-
pression factord which helps the fit. The quark and lepton
masses and quark mixing angles are thus described at high
energies by a single unified Yukawa matrix whose flavor
structure is controlled by a broken U(1)X family symmetry,
and all vertical splittings controlled Clebsch factors. An im-
portant feature of the scheme is the existence of Clebsch
zeros which allow an entirely new class of textures to be
obtained. For example, the RRR solutions 3 and 5 may be
reproduced by this scheme which are complementary to the
RRR solution 2 favored by the IR approach.

In addition to the symmetric textures we have also per-
formed a completely new analysis of the nonsymmetric tex-
tures which are motivated by the string construction. A glo-
bal fit to the fermion mass spectrum with three DF is
described, in which three models in Table III are singled out
with x2/NDF,1.12 At this level of difference ofx2 between
models, thex2 test is subject to large statistical fluctuations.
Therefore, we do not statistically distinguish between the fits
in Tables III and IV since both contain good fits to the data
with x2/NDF,1. However, we have a theoretical preference
for the models in Table III since these models result from the
operators in Eq.~27! where the family hierarchies are ac-
counted for by the U(1)X symmetry, as explained in Sec.
VII. By contrast, the models in Table IV result from the
operators in Eq.~26! and are essentially an updated version
of those previously considered in Ref.@18#.

The string analysis performed in the later sections of the
paper lends some support to the approach followed in this
model. In the string model, the U~1! family symmetries are a
consequence of the string construction, but there are four of
them, with one being anomalous. There are several singlets
~charged under the family group! to take the role of theu
fields and then51 operators involving a factor ofHH̄ are
clearly expected in the effective theory below the string
scale. We have shown that operators such asOG which were
simply pulled out of thin air in the earlier parts of the paper
may in fact originate from string theory. As an example we
constructed explicitly the lower 232 block in Eq. ~100!
which has the characteristic asymmetric structure of the
Yukawa textures considered earlier. It will be noted, how-
ever, that the lower 232 block in Eq.~100! does not corre-

spond precisely to theAnsatzin Eq. ~35!. Within the given
string construction, such anAnsatzdoes not appear to be
possible. The reason is the extra U~1! symmetries and the
other discretelike symmetries~selection rules! left over in the
low energy model. A new string construction with a new
boundary condition on the string basis is required in order to
make contact with the phenomenologically preferredAn-
sätze. This will be the subject of future work.
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APPENDIX A: n51 OPERATORS

Then51 operators are by definition all of those operators
which can be constructed from the five fieldsFF̄hHH̄ by
contracting the group indices in all possible ways, as dis-
cussed in this appendix. After the Higgs fieldsH and H̄
develop VEV’s atMGUT of the form ^Hab&5^H41&5nH ,

^H̄ax&5^H̄41&5 n̄ H , the operators listed in this appendix
yield effective low energy Yukawa couplings with small co-
efficients of orderMGUT

2 /M2. However, as in the simple ex-
ample discussed previously, there will be precise Clebsch
relations between the coefficients of the various quark and
lepton component fields. These Clebsch relations are sum-
marized in Table VII, where relative normalization factor has
been applied to each. The table identifies which SU~4! and
SU~2! structures have been used to construct each individual
operator by reference to Eqs.~A3! and ~A4!.

The n51 operators are formed from different group-
theoretical contractions of the indices in

Obgxz
aryw[FaaF̄bxha

yH̄gzH
rw. ~A1!

It is useful to define some SU~4!-invariant tensorsC and
SU~2! R-invariant tensorsR as

~C1!b
a5db

a ,

~C15!bg
ar5db

gda
r 2 1

4 db
adg

r ,

~C6!ab
rg 5eabvxergvx,

~C10!rg
ab5dr

adg
b1dg

adr
b,

~R1!y
x5dy

x ,

~R3!yz
wx5dy

xdz
w2 1

2 dz
xdy

w , ~A2!

wheredb
a , eabvx , dy

x , ewz are the usual invariant tensors of
SU~4!, SU~2! R . The SU~4! indices onC1,6,10,15 are con-
tracted with the SU~4! indices on two fields to combine them

12By comparison a recent paper@29# performed a globalx2 analy-
sis for some SO~10! models, including the mass and mixing data.
With three DF, they obtain ax2/NDF;1/3 for the best model.
While our fit to model 3 in Table III, for example, has a smaller
x2/NDF than this, it is difficult to make a comparison as in Ref.@29#
quark mass correlations from the data, as well as the effect of large
tanb on mb , have been included. Also note that these involve the
soft terms, and thus a larger number of parameters are involved in
the fit.
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TABLE VII. When the Higgs fields develop their VEV’s, then51 operators lead to the effective Yukawa couplings with Clebsch coefficients as shown.

SU~2! SU~4! QŪh2 QD̄h1 LĒh1 LN̄h2 SU~2! SU~4! QŪh2 QD̄h1 LĒh1 LN̄h2

OA I I 1 1 1 1

OB II I 1 21 21 1

OC I II
1

A5

1

A5

23

A5

23

A5

OD II II
1

A5

21

A5

3

A5

23

A5
OE III III 0 2 0 0
OF II III A2 2A2 0 0

OG III IV 0
2

A5

4

A5
0

OH IV IV 4/5 2/5 4/5 8/5
OI V V 0 0 0 2

OJ VI V 0 0
4

A5

2

A5
OK V VI 8/5 0 0 6/5

OL IV VI
16

5A5

8

5A5

6

5A5

12

5A5
OM III I 0 A2 A2 0
ON V III 2 0 0 0

OO V IV
2

A5
0 0

4

A5

OP I VI
4A2

5

4A2

5

3A2

5

3A2

5

OQ II VI
4A2

5 2
4A2

5
2

3A2

5

3A2

5

OR III VI 0 8
5

6
5 0

OS VI VI
8

5A5

16

5A5

12

5A5

6

5A5

OT IV I
2A2

5

A2

5

A2

5

2A2

5

OU VI I
A2

5

2A2

5

2A2

5

A2

5
OV V I A2 0 0 A2

OW III II 0 A 2
5

23
A 2

5

0

OX IV II
2A2

5

A2

5

23A2

5

26A2

5

OY VI II
A2

5

2A2

5

26A2

5

23A2

5

OZ V II A 2
5

0 0 23A 2
5

Oa I III A2 A2 0 0

Ob IV III
4

A5

2

A5
0 0

Oc VI III
2

A5

4

A5
0 0

Od I IV A 2
5 A 2

5 2A 2
5 2A 2

5

Oe II IV A 2
5

2

A 2
5

2

2A 2
5

2A 2
5

Of VI IV 2
5

4
5

8
5

4
5

Og I V 0 0 A2 A2
Oh II V 0 0 2A2 A2
Oi III V 0 0 2 0

Oj IV V 0 0
2

A5

4

A5

into 1, 6, 10, 15 representations of SU~4!, respectively. Simi-
larly, the SU~2! R indices on R1,3 are contracted with
SU~2! R indices on two of the fields to combine them into1,
3 representations of SU~2! R .

The SU~4! structures in Table VII are

~ I! ~C1!a
b~C1!r

g ,

~ II ! ~C15!as
bx~C15!rx

gs ,

~ III ! ~C6!ar
vx~C6!vx

bg ,

~ IV ! ~C10!ar
vx~C10!vx

bg ,

~V! ~C1!r
b~C1!a

g ,

~VI ! ~C15!as
gx ~C15!rx

bs , ~A3!

and the SU~2! structures are

~ I! ~R1!w
z ~R1!y

x ,

~ II ! ~R3!wr
zq~R3!yq

xr ,

~ III ! exzeyw ,

~ IV ! ewse
xt~R3!yr

sq~R3! tq
zr ,

~V! ~R1!y
z~R1!w

x ,

~VI ! ~R3!yr
zq~R3!wq

xr . ~A4!

The operators are then given explicitly by contracting Eq.
~A1! with the invariant tensors of Eq.~A2! given by Table
VII and Eqs.~A3! and ~A4!.
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APPENDIX B: REVIEW OF ANALYSIS OF REF. †18‡

In Ref. @18# we assumed that the Yukawa matrices atMX
are all of the form

lU,D,E,N5S O~e2! O~e2! 0

O~e2! O~e! O~e!

0 O~e! O~1!
D , ~B1!

wheree!1 and some of the elements may have approximate
or exact texture zeros in them. First, we examine closer the
assumption that the operator in the 33 position of the
Yukawa matrices is the renormalizable one. It has been sug-
gested in the past that the large value of tanb required by the
constraint

l t~MGUT!5lb~MGUT!5lt~MGUT!, ~B2!

such as is predicted by the renormalizable operator, leads to
some phenomenological problems. One such problem is that
a moderate fine-tuning mechanism is required to radiatively
break the electroweak symmetry in order to produce the nec-
essary hierarchy of Higgs VEV’sv1 /v2'mt /mb @30,31#.
One could set about trying to extend the present model in a
manner that would lead to an arbitrary choice of tanb, for
example, by introducing extra Higgs bidoublets. This route
has its disadvantages in that a low value of tanb has been
shown @32# in most schemes to be inconsistent with
lb(MGUT)5lt(MGUT) unification if the t neutrino mass
constitutes the hot dark matter requiring the Majorana mass
of the right-handedt neutrino to beMR

nt;1012 GeV. To a
very good approximation, the largest diagonalized Yukawa
coupling inl I is equal to its 33 entryl33

I . ~One may obtain
small tanb solutions consistent withmb-mt unification and
an intermediate neutrino scale, in specific models: Either
large mixing in them-t charged leptonic sector has to occur
@33# or the Dirac-type Yukawa coupling of the neutrino has
to be very suppressed@34#.!

To force things to work in a generic scheme, one solution
could be to use a nonrenormalizable operator in the 33 posi-
tion which has some Clebsch factorx.1 such that

l t~MGUT!5xlb~MGUT!5xlt~MGUT!. ~B3!

Equation~B3! would preserve the bottom-t Yukawa unifica-
tion, but lower the prediction of tanb due to the larger con-
tribution to the top Yukawa coupling. It may only be reason-
able to examinen51 operators in this context since we
know that the third family@18# Yukawa coupling is;1 and
higher dimension operators could be expected to provide a
large suppression factor. Systematically examining then51
operators we find that only the operatorO33

U , which leads to
the prediction

l t~MGUT!52lb~MGUT!52lt~MGUT!, ~B4!

can decrease tanb. The change is minimal, from 56.35 to
55.19 foraS(MZ)50.117 andMR

nt;1012 GeV. The reason
that the change is minimal is due to the fact that the Yukawa
couplings are approximately at their quasifixed points@35#
and so even a large change tol t,b,t(MX) produces only a

small change inl t,b,t(mt), which are the quantities that re-
quire a high tanb through the relations in Eq.~61!. Another
possibility would be to includeO33

M ,O33
V which would allow

arbitrary tanb ~in particular intermediate tanb;10–20!.
However, this would reduce the predictivity of the scheme as
tanb would become an input. One might also be skeptical
about whether a parameter;1 could be generated by a non-
renormalizable operator in a perturbative scheme. It would
certainly require the heavy mass scalesM to be very close to
the VEV’s H,H̄,u, ū and we might therefore naively expect
large corrections to any calculation based on this model. We
thus abandon these ideas and continue with the usual renor-
malizable operator in the 33 position of the Yukawa matrices
that leads to Eq.~B2!. We note in any case that a recent
analysis @36# explains that in gauge-mediated
supersymmetry-breaking models, the radiative mechanism of
electroweak symmetry breaking can be such that no fine-
tuning occurs for large tanb. In these models high tanb ad-
mits solutions of the hot dark matter problem in which the
Yukawa couplings unify@32#.

The hierarchy assumed in Eq.~B1! allows us to consider
the lower 232 block of the Yukawa matrices first. In diago-
nalizing the lower 232 block separately, we introduce cor-
rections of ordere2 and so the procedure is consistent to first
order in e. We found several maximally predictiveAnsätze
that were constructed out of the operators whose Clebsch
coefficients are listed in Table IV for then51 operators. The
explicit n51 operators in component form are listed in Ap-
pendix A. We label the successful lower 232 Ansätze Ai :

A15FO22
D 2O22

C 0

O32
C O33

G , ~B5!

A25F 0 O23
A 2O23

B

O32
D O33

G , ~B6!

A35F 0 O23
C 2O23

D

O32
B O33

G , ~B7!

A45F 0 O23
C

O32
A 2O32

B O33
G , ~B8!

A55F 0 O23
A

O32
C 2O32

D O33
G , ~B9!

A65FO22
K O23

C

O32
M O33

G , ~B10!

A75FO22
K O23

G

O32
G O33

G , ~B11!

A85F 0 O23
H

O32
G 2O32

K O33
G . ~B12!

We now note that solutionsA2 –8 require a parameter
H23;O(1) to attain the correctlm andVcb . Any calculation
based on the hierarchy assumed in Eq.~B1! is therefore in-
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consistent and so we discard these solutions. We also note
that O32 only has the effect of fixingVcb to a good approxi-
mation and so can consist of any operator in Table VII that
has a different Clebsch coefficient for up quark and down
quark Yukawa couplings. The precise operator responsible
for Vcb has no bearing on the rest of the calculation and we
therefore just make an arbitrary choice ofO32

C for the rest of
this paper. We also note that for the phenomenologically
desirable and predictive relation

l22
D ~MGUT!

l22
E ~MGUT!

53 ~B13!

to hold, we may replaceO22
D 2O22

C in A1 with O22
W1O22

C ,
O22

X 1O22
D or any other combination of two operators which

preserves Eq.~B13! and allowsl22
U to be smaller and inde-

pendent ofl22
D,E . In fact, the preferred solution is that the

dominant operator in that position beO22
W which does not

give a contribution to the up quark mass. Then, a subdomi-
nant operator would be responsible for the entryl22

U and
would therefore be suppressed naturally by one or more
powers ofe.

APPENDIX C: FLATNESS CONDITIONS
IN THE STRING MODEL

We give here the constraints on the various singlet VEV’s
obtained from theF- andD-flatness conditions in the string
spectrum of the model in Sec. VIII. From theF flatness of
the superpotential one derives 18 conditions, which are

j̄ 1 j̄ 450,

j1j450,

j2 j̄ 31z1
21z2

250, ~C1!

j̄ 2j31 z̄ 1
21 z̄ 2

250,

j i j̄ i1z1 z̄ 11z2 z̄ 250,

z1 z̄ 21 z̄ 1z250,

2F̄12̄z11 1
2 F3 z̄ 11F4 z̄ 250,

2F12̄z̄ 11 1
2 F3z11F4z250,

2F̄12̄z21 1
2 F3 z̄ 21F4 z̄ 150,

2F12̄z̄ 21 1
2 F3z21F4z150,

F̄12j41 1
2 F3 j̄ 150,

F12j̄ 41 1
2 F3j150,

F̄12̄j̄ 31 1
2 F3 j̄ 250,

F12̄j31 1
2 F3j250,

F12̄j̄ 21 1
2 F3 j̄ 350,

F̄12̄j21 1
2 F3j350,

F̄12j11 1
2 F3 j̄ 450,

F12j̄ 11 1
2 F3j450. ~C2!

Now, a possible choice of nonzero singlet VEV’s which sat-
isfy the system~C2! is

^F12&,^F̄12
2 &,^j1&,^ j̄ 2&5” 0, ~C3!

accompanied by nonzero VEV’s of the two hidden@octets
under SU(8)h# fields

^Z5&,^ Z̄38&5” 0. ~C4!

Taking all other singlet and hidden field VEV’s equal to
zero, theD-flatness conditions read@39#

uZ5u222uF̄12
2 u22uj1u22u j̄ 2u21

3au

2p
50, ~C5!

1
2 uZ5u22u j̄ 2u250, ~C6!

2uj1u22u j̄ 2u222uF̄12
2 u21 3

2 u Z̄38u
21uZ5u250, ~C7!

2uF12u21uj1u22 1
2 u Z̄38u

250. ~C8!

The scale of the nonzero singlet VEV’s is determined by the
above conditions. There are five equations to determine four
parameters, and thus one has the freedom to fix one of the
nonzero VEV’s in Eqs.~C3! and~C4! from phenomenologi-
cal requirements. In any case, from the above equations it
turns out that the natural scale of the nonzero VEV’s are of
the order (au /p)MPl . For au;1021 one can see that their
magnitude is of the required order to contribute in the mass
operators.
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