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The generalization of the axial anomaly is considered. It is shown that bilocal axial quark operators on the
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I. INTRODUCTION

In the last years much effort was put, on both experimen-
tal and theoretical sides, into understanding the spin structure
of the proton@for reviews of the European Muon Collabora-
tion ~EMC! spin crisis, see@1##. New data for the polarized
deep inelastic scattering structure functiong1 from SLAC @2#
and the Spin Muon Collaboration@3# are consistent with the
previous EMC@4# result. Two different scenarios can explain
the data, large anomalous sea-quark or large anomalous
gluon interpretations@5–7#, which are connected with the
problem of the anomalous gluon contribution tog1. In fact, a
renormalization group transformation can shift the anoma-
lous contribution to the quark sector or to the gluon sector. In
this way, either the anomaly manifested in the matrix ele-
ment of the axial quark current is responsible for the large
polarization of the sea or it can be perturbatively taken into
account in the gluon coefficient function, while the quark
matrix element is anomaly-free. The dependence of this
renormalization group transformation on the gluon momen-
tum fractionx is still controversial.

From the physical point of view, it is more natural that the
anomaly is attributed to the gluons. The gluonic coefficient
function then absorbs only the short-distance contributions,
while the quark distribution corresponds to a conserved op-
erator and may be invoked in the low-energy description of
the proton. The corresponding picture of the nucleon spin
structure is most popular and the gluon polarization is con-
sidered to be its most important unknown ingredient. The
problem of itsx dependence is the ‘‘physical’’ counterpart of
the above-mentioned renormalization group transformation.

The accounting for the anomaly by the finite renormaliza-
tion transformation is effectively resulting in the substitution
in the partonic expression for the structure functiong1:

Dq→D q̃5Dq2
as

2p
Dg, ~1.1!

for the first moment of the spin-dependent quark distribution
for each flavor. The oversimplified ‘‘naive’’x-dependent
analogue is just

D q̃~x!5Dq~x!2
as

2p
DG~x!. ~1.2!

However, such an expression is not compatible, in principle,
with the fact that the gluon contribution starts at one-loop
level only. The simplest, consistent approach was explored
in Ref. @8# a few years ago, by taking the infrared~IR! finite
part EIR of the box diagram, responsible for the photon-
gluon interaction:

D q̃~x!5Dq~x!2
as

2pEx

1dz

z
EIRS x

zDDg~z!. ~1.3!

However, the choice of the finite part is ambiguous and
the specific role of the axial anomaly remains unclear. This is
why the attempt followed in Ref.@9# to perform the decom-
position of the box diagram, referring to its kinematical
structure. The anomaly then contributes to the singlet struc-
ture, associated with the spin structure functiongT5g11g2
of the photon-gluon scattering1:

gT
n5

1

2n~n11!
Dgn. ~1.4!

Attributing the anomalous gluon contribution to this
structure function resulted in its 12x dependence. Later, this
expression was obtained and exploited in different ap-
proaches@11,12#. However, both derivations and interpreta-
tions of this result seem incomplete and some more solid
ground is desirable.

The anomalous gluon contribution plays an exceptional
role in the general classification of perturbative QCD contri-
butions. Formally, it is a part of the next-to-leading order
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1The recent analysis@10# confirms that the zero first moment of
this structure function is manifested only for regularization
schemes, providing the zero moment ofg1 as well.
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~NLO! contribution. However, due to the well-known growth
of the first moment of the spin-dependent gluon distribution,
compensating one power ofas makes it essential also at
leading order. The recently calculated two-loop, spin-
dependent anomalous dimensions@13,14# make it now pos-
sible to perform the complete NLO analysis of the experi-
mental data @15–18#. These NLO calculations were
performed in the dimensional regularization using the ’t
Hooft–Veltman–Breitenlohner–Maison~HVBM ! scheme
@19# in which g5 does not anticommute in the unphysical
space-time dimensions. In this minimal subtraction~MS!
scheme both chiral invariance in the nonsinglet~NS! sector
and the one-loop character of the singlet axial anomaly are
explicitly broken and their restoration requires an additional
finite renormalization.

As the HVBM scheme is used, a further renormalization
group transformation is performed@16,20# in order to make
the result compatible with the standard factorization pre-
scription and the low-energy intuitive description of the pro-
ton. However, only the value of the first moment was fixed in
that procedure, so that there remains an ambiguity in this
transformation. Note that the function 12x was also pro-
posed for this purpose@12#.

In the present article, we are suggesting the nonlocal gen-
eralization of the axial anomaly based on the canonical Ward
identities for light-ray operators. This allows us to give the
natural description of both anomaly-free singlet quark distri-
bution and anomalous gluon contribution, which fix thex
dependence of the renormalization group transformation.
The final result is a rigorous proof of the 12x behavior of
the anomalous contribution in NLO. Here, we do not address
the issue of higher loop corrections to the generalized axial
anomaly.

The paper is organized as follows. Section II discusses the
chiral invariance breaking of flavor nonsinglet light-ray op-
erators due to the renormalization, and their restoration by a
finite renormalization. Then we derive Ward identities for
light-ray operators and compute the nonlocal singlet axial
anomaly, which can be expressed as a divergence from a
generalized topological current. In Sec. III we use our results
to define the anomaly-free singlet quark distribution and
show the consequences for coefficient functions and evolu-
tion kernels in NLO approximation.

II. AXIAL ANOMALY OF LIGHT-RAY OPERATORS

As mentioned before, chiral invariance is broken in the
HVBM scheme; however, as it is known from the renormal-
ization of the axial current, it can be restored by a finite
renormalization, so that the nonsinglet Ward identity will be
satisfied. This finite renormalization constantzNS can be
computed for massless QCD from the requirement that the
anticommutativity ofg5 is effectively restored@21#: i.e.,

zNS^@ j m
5,a#cc̄&5^@ j m

a #cc̄&g5,

with

zNS512
as

p
CF1O~as

2!, ~2.1!

where j m
5,a5 1

2 c̄ @gm ,g5#lac with g55 ig0g1g2g3 and

j m
a 5 c̄gmlac are the axial vector and the vector current,

respectively,la is a flavor matrix, the square brackets denote
minimal subtraction, andCF5 4

3 is the usual QCD color fac-
tor. Flavor and color indices are suppressed for simplicity.

The one-loop character of the singlet~S! axial anomaly
can also be ensured by some finite renormalization of the
current. This required a two-loop calculation of the Ward
identities sandwiched between the two-gluon state. Theas
correction to the correspondingz factor, zS51
2(as /p)CF1O(as

2), coincides with the nonsinglet factor
zNS. Because of the appearance of so-called light-to-light
subdiagrams, this coincidence is spoiled beyond the one-loop
level. Note that the one-loop approximation ofzS can also be
calculated by the requirement that the singlet Ward identities
are satisfied for the two-quark state. Since at leading order
the axial anomaly does not appear in this Ward identity, it
follows that the finite renormalization factor is the same as
that for the nonsinglet channel.

The same problems as discussed above also occur for
composite operators on the light cone, which appear in the
definition of spin-dependent quark distribution functions. For
technical reasons we start with a more general definition of
bilocal operators, which are not necessarily on the light cone:

Om
5,a~x,y!5

1

2
c̄ ~x!Us~x,y!@gm ,g5#lac~y!,

FIG. 1. Diagrammatical representation for the LHS~a! and RHS
~b! of the nonlocal singlet Ward identity~2.8! in the one-loop ap-
proximation. The symbol dO refers to the divergence

(] (k1 x̃ )
m

1] (k2 x̃ )
m )Om

5,0(k1 x̃ ,k2 x̃ ) and OF denotes the operator

OF(k1 ,k2 ; x̃ ) defined in Eq.~2.9!.
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Us~x,y!5PexpH 2 igE
0

1

dtAk
m~xt1y@12t#!tk~xm2ym!J .

~2.2!

Here, Us(x,y) ensures gauge invariance, where the gauge
field Ak

m is path ordered along a straight line connecting the
fermion fields. For lightlike distances, i.e., (x2y)250, these
operators can be expanded in terms of local twist-two and
twist-three operators. We setx5k1 x̃ ,y5k2 x̃ , where x̃ is a
light-cone vector and, after contraction withx̃m, we get the
leading twist-two light-ray operators@22#2:

O5,a~k1 ,k2 ; x̃ !5 x̃mOm
5,a~k1 x̃ ,k2 x̃ !,

5 c̄ ~k1 x̃ !U~k1 x̃ ,k2 x̃ ! x”̃ g5lac~k2 x̃ !.

~2.3!

To determine the finite nonsinglet renormalization con-
stant in the forward case, we require~for massless QCD!, in
analogy to Eq.~2.1!, the validity of

E
0

1

dxzNS~x!^@O5,a~0,kx; x̃ !#cc̄&5^@Oa~0,k; x̃ !#cc̄&g5,

~2.4!

whereOa is analogous to the definition ofO5,a in Eq. ~2.3!,
but withoutg5 matrix. In the dimensional regularization us-
ing the HVBM scheme, the leading-order result~restricted to
the forward case! is

zNS~x!5d~12x!2
as

p
2CF~12x!1O~as

2!, ~2.5!

while in the Pauli-Villars regularization, chiral invariance
holds true without finite renormalization.

As in the case of the axial current one expects, in leading
order, that the same finite renormalization as in Eq.~2.5! has
to be performed for the singlet light-ray operator. Beyond the
leading order this is no longer true and the question is: How
can we fix this finite renormalization constant?

After we have seen that the restoration of chiral invari-
ance requires anx-dependent finite renormalization, a second
question arises: Does the axial anomaly also depend onx?
To answer this question we use the equation of motion to
derive Ward identities for the divergence of the nonlocal
operators~2.2!. A straightforward calculation provides that
the divergence of this operator is

~]x
m1]y

m!Om
5,a~x,y!5VEOM~x,y!1 i c̄ ~x!Us~x,y!g5mac~y!2 igE

0

1

dtc̄~x!Us~x,xt!gaFab~xt1y@12t#!

3~xb2yb!Us~y@12t#,y!g5lac~y!, ~2.6!

VEOM~x,y!5 c̄ ~x!$@D” ~x!2 im#Us~x,y!1Us~x,y!@D” ~y!2 im#%g5lac~y!, ~2.7!

whereVEOM(x,y) denotes the equation of motion operators,
Fab5Fab

a ta is the field strength tensor, andmi j
a

5(mi1mj )l i j
a is a mass matrix.

For (x2y)2Þ0 the operator is ultraviolet finite and the
Ward identity~2.6! should be satisfied. However, the situa-
tion will be changed if we go to a lightlike~not only short, as
usually discussed! distance. Then the operator has to be
renormalized, and anomalous terms can occur. For instance,
if we naively anticommuteD” (y) with g5 in the second ex-
pression in the right-hand side~RHS! of Eq. ~2.7! then the
use of the equation of motion will provide only contact
terms. However, in the HVBM scheme the nonanticommu-
tativity of g5 gives an anomalous term, which should be
canceled by a finite renormalization~see the discussion in
@23#!, so that the anticommutativity ofg5 is effectively re-
stored as discussed above. We calculated this anomalous
term and after an appropriate definition of the appearing op-

erators the finite renormalization constant~2.5! was extracted
from the Ward identity. As discussed above for the local
case, because of the absence of the singlet axial anomaly in
the Ward identities for the Green functions of quark fields at
one-loop order, it follows thatzS(x) coincides withzNS(x) at
this order.

For the singlet case (a50,l i j
0 5d i j ,mi j

0 52mid i j ), we ex-
pect an anomalous term of the form
eabgdFab(•••)Fgd(•••), which can be computed from the
difference of the left-hand side~LHS! and RHS of the Ward
identity ~2.6! sandwiched between the two-gluon state~see
diagrams in Fig. 1!. We now setx5k1 x̃ ,y5k2 x̃ with
x̃250 and choose the light-cone gauge, i.e.,x̃A50. After a
straightforward calculation, it turns out that in both Pauli-
Villars regularization and HVBM scheme the same anomaly
appears, so that the singlet Ward identity is actually given by

~]
~k1 x̃ !

m
1]

~k2 x̃ !

m
!Om

5,0~k1 x̃ ,k2 x̃ !

5OF~k1 ,k2 ; x̃ !1
as

4p
NfE

0

1

dx

3E
0

12x

dy2Fmn
a $@k1~12x!1k2x# x̃ %

2Since x̃ is an external four-vector that can be kept four dimen-
sional in the dimensional-regularized operator vertex, it follows that

in the HVBM scheme the relation@ x”̃ ,g5#52x”̃ g5 is valid, so that
indeed Eq.~2.3! comes from the definition~2.2!.
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3F̃amn$@k2~12y!1k1y# x̃ %, ~2.8!

where

OF~k1 ,k2 ; x̃ !52 igE
k1

k2
dtc̄~k1 x̃ !gaFab~t x̃ !

3 x̃bg5c~k2 x̃ !. ~2.9!

Here, F̃amn5 1
2 emnabFab

a , with e0123511, as5g2/4p, and
Nf is the number of flavors. Here, we applied the equation of
motion and neglected the quark masses. In the local case,
which follows from setting k15k25k, the operator
Om

5,0(k x̃ ,k x̃ ) coincides with the local singlet axial current

j m
5,0(k x̃ ) and from Eq. ~2.8! we recover the well-known

expression for the local anomaly:

as

4p
NfFmn

a ~k x̃ !F̃amn~k x̃ !.

Finally, we introduce a nonlocal generalization of the topo-
logical current

Km~x,y!5
as

4p
Nfe

mabgFAa
a~x!]bAg

a~y!

2
g

3
f abcAa

a~x!Ab
b~y!Ag

c~y!1$x↔y%G , ~2.10!

with x5k1 x̃ and y5k2 x̃ , so that the anomaly in Eq.~2.8!
can be written as a divergence

~]
~k1 x̃ !

m
1]

~k2 x̃ !

m
!Km~k1 x̃ ,k2 x̃ !5

as

4p
NfFmn

a ~k1 x̃ !

3F̃amn~k2 x̃ !. ~2.11!

We are now able to define the anomaly-free operator

Õm
5,0~k1 x̃ ,k2 x̃ !5Om

5,0~k1 x̃ ,k2 x̃ !22E
0

1

dxE
0

12x

dy

3Km$@k1~12x!1k2x# x̃ ,

@k2~12y!1k1y# x̃ %. ~2.12!

III. CONSEQUENCES FOR POLARIZED
DISTRIBUTION FUNCTIONS

As shown in the previous section, light-ray operators pos-
sess anomalous contributions. For the nonsinglet case these
anomalies are a pure artefact of choosing a noninvariant chi-
ral renormalization scheme. The polarized quark distribution
functions should be defined in a chiral-invariant manner, so
that in a general renormalization scheme an additional finite
renormalization is necessary:

DqNS~x,Q2!5E
x

1dy

y
z5

NS~y!E dk

2p~ x̃S!

3^P,Su@O5,NS~0,k; x̃ !#uP,S&ei ~x/y!k~ x̃ P!,

~3.1!

whereSr denotes the polarization vector of the nucleon and
the renormalization point squarem2 is set equal to the mo-
mentum transfer squaredQ2. The leading-order approxima-
tion of z5

NS(y) in the HVBM scheme is given in Eq.~2.5!.
This finite renormalization affects the NLO approximation of
both quark coefficient functions and splitting kernels and
agrees with the additional renormalization group transforma-
tion performed in the NLO calculation@13,14#.

Because of the anomaly, the naive definition of the singlet
distribution function

DS̃~x,Q2!5 (
i 5u,d, . . .

Dqi~x,Q2!1D q̄ i~x,Q2!,

5E
x

1dy

y
z5

S~y!E dk

2p~ x̃S!
^P,Su@O5,0~0,k; x̃ !#

1$k→2k%uP,S&ei ~x/y!k~ x̃ P!, ~3.2!

with D q̄ i(x,Q2)5Dqi(2x,Q2)~please note thatDS̃ is de-
fined in terms of the operatorO5,0) cannot be interpreted as
probability for finding a polarized quark flavor singlet con-
figuration with given longitudinal momentum fractionx. In
addition to the finite multiplicative renormalization,3 it is
also necessary to remove the axial anomaly from the defini-
tion of this function@5–7#. Thus, one has to define the singlet
distribution function in terms of the anomaly-free operator
~2.12!, which provides

DS~x,Q2!5DS̃~x,Q2!2k~x,Q2!, ~3.3!

where

k~x,Q2!52E
x

1dy

y
~12y!E dk

2p~ x̃S!
^P,Su x̃mKm~0,k x̃ !

1$k→2k%uP,S&ei ~x/y!k~ x̃ P!, ~3.4!

and the generalized topological currentKm is defined in Eq.
~2.10!.

The problem thatKm is gauge variant, and thus that
k(x,Q2) contains also unphysical components, can somehow
be resolved by the choice of a physical gauge. In the light-
cone gauge, the gauge-invariant twist-two gluon operator

G~k1 ,k2 ; x̃ !5 i x̃ aF̃aab~k1 x̃ !Fa
bg~k2 x̃ ! x̃g ~3.5!

can be expressed in the forward case by

3This renormalization is due to the diagrams without two-gluon
intermediate states, which are the same for the nonsinglet and the
singlet case, so thatz5

S(y)5z5
NS(y), as discussed in Sec. II.
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G~0,k; x̃ !52S as

2p
Nf D 21

i x̃ ]k x̃mKm~0,k x̃ !. ~3.6!

Furthermore, from the definition of the gluon distribution
function

Dg~x,Q2!5
1

x~ x̃ P!
E dk

2p~ x̃S!

3^P,SuG~0,k; x̃ !1$k→2k%uP,S&eixk~ x̃ P!,

~3.7!

and from Eqs.~3.4! and~3.6!, and after performing a partial
integration, we find thatk(x,Q2) is actually given in terms of
the gauge-invariant gluon distribution function. Thus, to re-
move the axial anomaly of the polarized quark distribution
function it is sufficient to subtract a certain amount of the
gluon distribution function:

DS~x,Q2!5DS̃~x,Q2!2K~x! ^ Dg~x,Q2!,

K~x!52
as

p
Nf~12x!, ~3.8!

where the convolution is defined as

A~x! ^ B~x!5E
0

1

dyE
0

1

dzd~x2yz!A~y!B~z!. ~3.9!

Indeed, removing the axial anomaly is equivalent to the
following ~additive! renormalization group transformation:

DCg~x!5DC̃g~x!1K ^ DC̃q~x!, DCq~x!5DC̃q~x!,

DPgg~x!5D P̃gg~x!1K ^ D P̃gq~x!, DPgq~x!5D P̃gq~x!,

DPqq~x!5D P̃qq~x!2K ^ D P̃gq~x!,

DPqg~x!5D P̃qg~x!2
b

g
K~x!1K ^ @D P̃qq2D P̃gg

2D P̃gq^ K#~x!, ~3.10!

whereDCi are the coefficient functions,DPi j are the spin-
dependent splitting kernels, andb5m(d/dm)g(m) is the
renormalization group coefficient of the running coupling
constant.

Because of gauge invariance the operator product analysis
suggests that the zero moment ofDCg vanishes. After the
transformation~3.10! is performed, the gauge-variant axial
anomaly contributes to the gluonic sector, so that the zero
moment is now given by

E
0

1

dxDCg~x!5E
0

1

dxK~x!1O~as
2!52

as

2p
Nf1O~as

2!.

~3.11!

For completeness we give the difference of the splitting ker-
nels in NLO:

DPgg~x!2D P̃gg~x!52@DPqq~x!2D P̃qq~x!#

5S as

2p D 2

2CFNF@3~12x!

1~21x!lnx#,

DPqg~x!2D P̃qg~x!5S as

2p D 2

Nf$CF@~12x!„124ln~12x!

12lnx…#1CA@~12x!„21614

3 ln~12x!…24~21x!lnx#%, ~3.12!

where the Casimir operatorCA is equal to the number of
colors. Note, that these differences will vanish in the limit
x→1. For smallx they contribute only to the subleading
behavior of the NLO result~the leading terms are given by
ln2x).

Another opportunity to perform the evolution coincides
with the one proposed by Cheng@12#. Namely, one should
perform the evolution in the gauge-invariant~say, the modi-
fied minimal subtraction! scheme andafterwardsrestore the
anomaly-free distribution by applying Eq.~3.8!. The 12x
behavior in this approach is actually coming from the mass
term in the box graph. The contact with our derivation may
be achieved by noting that the cancellation of normal and
anomalous divergence, resulting in the effective conservation
of axial current in the limit of infinite quark mass, is valid for
the nonlocal anomaly as well. It is especially clear for the
Pauli-Villars regularization, when the contribution of regula-
tor fermions~calculated in Sec. II! is looking, up to the sign,
precisely such as that of the quark masses, which is the start-
ing point of the approach of Cheng.

For practical purposes, irrespective of the used evolution
scheme, it is possible to define an effective gluon distribu-
tion, which is just the combination appearing ing1, i.e., the
convolution of (12x) with Dg(x):

Dgeff~x,Q2!52~12x! ^ Dg~x,Q2!, ~3.13!

so that the first moments of effective gluon distribution co-
incide with the ‘‘original’’ one, while the structure function
g1 has at leading order the simple partonic form, suitable for
the extraction of partonic distributions from the experimental
data@24#:

g1~x,Q2!5
1

2
DS̃~x,Q2!

5
1

2FDS~x,Q2!2
as

2p
NfDgeff~x,Q2!G . ~3.14!

It is convenient to have the evolution equation directly for
effective distribution functions. While the diagonal kernels
are not changed, the moments of the off-diagonal kernels are
changed in a straightforward manner:

DPgq
eff~n!5

2

n~n11!
DPgq~n!,

DPqg
eff~n!5

n~n11!

2
DPqg~n!. ~3.15!

Note, especially, that the influence of the effective gluon
distribution to the quark evolution, governed byDPqg

eff , ap-
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pears to be much less singular inn. We are not presenting
the explicit form for effective NLO anomalous dimensions,
which are rather lengthy. At leading order, when thex de-
pendence is easily restored, Eq.~3.15! results in the equa-
tions

DPgq
eff~x!5

as

p
CF@3~x21!2~x12!lnx#,

DPqg
eff52

as

4p
Nf

d

dx
d~12x!. ~3.16!

The first moments of the splitting kernels provide an im-
portant check for the normalization of the nonlocal contribu-
tion and determine the evolution in the corresponding sum-
rules. So we summarize the consequences for the zero
moment of the splitting kernels, which come from general
renormalization arguments of the axial vector current and the
topological current, which are verified up to two- and three-
loop order, respectively@25#. From current conservation of
j m

5,05 j̃ m
5,02km ~here, j̃ m

5,0 refers to the original definition in
terms of quark fields!, the Adler-Bardeen theorem, and the
renormalization properties of gauge-invariant operators, it
follows that

E
0

1

dxDPgg~x!5E
0

1

dxD P̃gg~x!1g j52
b

g
1g j ,

E
0

1

dxDPgq~x!5E
0

1

dxD P̃gq~x!52
g j

Nf@as /~2p!#
,

E
0

1

dxDPqg~x!5E
0

1

dxD P̃qg~x!50,

E
0

1

dxDPqq~x!5E
0

1

dxD P̃qq~x!2g j50, ~3.17!

where the three-loop order approximation for the anomalous
dimension of the axial vector currentg j and for theb func-
tion are known4 @25,26#:

g j52S as

4p D 2

6CFNf1S as

4p D 3S 2
142

3
CA1

4

3
NF

118CFDCFNf , ~3.18!

b

g
52

as

4pS 11

3
CA2

2

3
Nf D2S as

4p D 2S 34

3
CA

222CfNf

2
10

3
CANf D2S as

4p D 3S 2857

54
CA

31CF
2Nf2

205

18
CFCANf

2
1415

54
CA

2Nf1
11

9
CFNf

21
79

54
CANf

2D . ~3.19!

These results allow@27# the extraction of the anomaly
equation renormalization for a number of loops exceeding
that of g j by 1. For the leading three-loop contribution, this
coincides with the calculation of Anselm and Johansen@28#,
while the four-loop correction require a one-loop finite cor-
rection to the gluon matrix element of the topological current
@29#. As a result, the four-loop correction takes the form

Zj52S as

4p D 3

6CFNf
21S as

4p D 4S 2
214

3
CA1

4

3
NF

118CFDCFNf . ~3.20!
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