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Nonlocal generalization of the axial anomaly andk dependence
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The generalization of the axial anomaly is considered. It is shown that bilocal axial quark operators on the
light cone possess, in addition to the pointlike anomaly, also a lightlike anomaly. The consequences for the
definition of anomaly-free quark distribution functions and the effect of both the gluon coefficient function and
splitting kernels in polarized deep inelastic scattering are discugS6856-282(197)03615-1

PACS numbegps): 11.40.Ha, 13.88-¢e

[. INTRODUCTION for the first moment of the spin-dependent quark distribution
for each flavor. The oversimplified “naive’x-dependent

In the last years much effort was put, on both experimenanalogue is just
tal and theoretical sides, into understanding the spin structure
of the proton[for reviews of the European Muon Collabora- ~ Qs
tion (EMC) spin crisis, se¢1]]. New data for the polarized A900=40900 = 57 AG(X). (1.2
deep inelastic scattering structure functgynfrom SLAC|[2]
and the Spin Muon Collaboratidi3] are consistent with the However, such an expression is not compatible, in principle,
previous EM([4] result. Two different scenarios can explain With the fact that the gluon contribution starts at one-loop
the data, large anomalous sea-quark or large anomalol@vel only. The simplest, consistent approach was explored
gluon interpretationg5—7], which are connected with the in Ref.[8] a few years ago, by taking the infrar@®) finite
problem of the anomalous gluon contributiongto In fact, a  part Er of the box diagram, responsible for the photon-
renormalization group transformation can shift the anomagluon interaction:
lous contribution to the quark sector or to the gluon sector. In
this way, either the anomaly manifested in the matrix ele- Aa(x)=Aq(x)—§fld—zE (f
ment of the axial quark current is responsible for the large 2m)x z Rz
polarization of the sea or it can be perturbatively taken into
account in the gluon coefficient function, while the quark However, the choice of the finite part is ambiguous and
matrix element is anomaly-free. The dependence of thighe specific role of the axial anomaly remains unclear. This is
renormalization group transformation on the gluon momenwhy the attempt followed in Ref9] to perform the decom-
tum fractionx is still controversial. position of the box diagram, referring to its kinematical

From the physical point of view, it is more natural that the structure. The anomaly then contributes to the singlet struc-
anomaly is attributed to the gluons. The gluonic coefficientture, associated with the spin structure functigr=g;+9,
function then absorbs only the short-distance contributionspf the photon-gluon scatterifig
while the quark distribution corresponds to a conserved op-
erator and may be invoked in the low-energy description of n_ 1 AQ"
the proton. The corresponding picture of the nucleon spin gT_Zn(n+ 1) g
structure is most popular and the gluon polarization is con-
sidered to be its most important unknown ingredient. The Attributing the anomalous gluon contribution to this
problem of itsx dependence is the “physical” counterpart of Structure function resulted in its-1x dependence. Later, this
the above-mentioned renormalization group transformation.expression was obtained and exploited in different ap-

The accounting for the anomaly by the finite renormaliza-proacheq11,12. However, both derivations and interpreta-
tion transformation is effectively resulting in the substitution tions of this result seem incomplete and some more solid

in the partonic expression for the structure functign ground is desirable.
The anomalous gluon contribution plays an exceptional

role in the general classification of perturbative QCD contri-
butions. Formally, it is a part of the next-to-leading order

Ag(2). (1.3

1.9

~ o
AqHquAq—ﬁAg, (1.9

1The recent analysigL0] confirms that the zero first moment of
*On leave from the Institut fuTheoretische Physik, Universita this structure function is manifested only for regularization
Leipzig, 04109 Leipzig, Germany. schemes, providing the zero momentgfas well.
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(NLO) contribution. However, due to the well-known growth dO dO
of the first moment of the spin-dependent gluon distribution,

compensating one power afs; makes it essential also at

leading order. The recently calculated two-loop, spin-

dependent anomalous dimensiqi8,14 make it now pos-

sible to perform the complete NLO analysis of the experi-

mental data [15-18. These NLO calculations were

performed in the dimensional regularization using the 't

Hooft—Veltman—Breitenlohner—MaisorfHVBM) scheme

[19] in which y° does not anticommute in the unphysical

space-time dimensions. In this minimal subtractidvS)

scheme both chiral invariance in the nonsinds) sector @

and the one-loop character of the singlet axial anomaly are
explicitly broken and their restoration requires an additional
finite renormalization.

As the HVBM scheme is used, a further renormalization
group transformation is performdd6,2( in order to make
the result compatible with the standard factorization pre-
scription and the low-energy intuitive description of the pro-
ton. However, only the value of the first moment was fixed in
that procedure, so that there remains an ambiguity in this
transformation. Note that the function—Xx was also pro-
posed for this purposgl2].

In the present article, we are suggesting the nonlocal gen- . (b)
eralization of the axial anomaly based on the canonical Ward
identities for light-ray operators. This allows us to give the
natural description of both anomaly-free singlet quark distri-
bution and anomalous gluon contribution, which fix tke
dependence of the renormalization group transformatio P
The final result is a rigorous proof of the-Ix behavior of (r2X) * T(K2x)
the anomalous contribution in NLO. Here, we do not addres®r(«1.x2;x) defined in Eq(2.9).
the issue of higher loop corrections to the generalized axial
anomaly. 5a_ 1 ,r 51y a ; 5_:.0.1.2.3

The paper is organized as follows. Section Il discusses th\_éVheE =2y ])\_ yowith y*=iyly?y’y" and
chiral invariance breaking of flavor nonsinglet light-ray op- iz =#7v,\% are the axial vector and the vector current,
erators due to the renormalization, and their restoration by gspectively\® is a flavor matrix, the square brackets denote
finite renormalization. Then we derive Ward identities for minimal subtraction, an€g= 3 is the usual QCD color fac-
light-ray operators and compute the nonlocal singlet axiator. Flavor and color indices are suppressed for simplicity.
anomaly, which can be expressed as a divergence from a The one-loop character of the singl@®) axial anomaly
generalized topological current. In Sec. Il we use our result€an also be ensured by some finite renormalization of the
to define the anomaly-free singlet quark distribution andcurrent. This required a two-loop calculation of the Ward
show the consequences for coefficient functions and evoludentities sandwiched between the two-gluon state. &he
tion kernels in NLO approximation. correction to the correspondingz factor, z°=1
—(ag/ ) Ce+0(a?), coincides with the nonsinglet factor
ZNS. Because of the appearance of so-called light-to-light
subdiagrams, this coincidence is spoiled beyond the one-loop

As mentioned before, chiral invariance is broken in thelevel. Note that the one-loop approximationzsfcan also be
HVBM scheme: however, as it is known from the renormal-calculated by the requirement that the singlet Ward identities
ization of the axial current, it can be restored by a finiteare satisfied for the two-quark state. Since at leading order
renormalization, so that the nonsinglet Ward identity will bethe axial anomaly does not appear in this Ward identity, it
satisfied. This finite renormalization constarit® can be follows that the finite renormalization factor is the same as
computed for massless QCD from the requirement that théhat for the nonsinglet channel.
anticommutativity ofy® is effectively restored21]: i.e., The same problems as discussed above also occur for

composite operators on the light cone, which appear in the

Ba1 v sriad o~ definition of spin-dependent quark distribution functions. For
ZNS<[JM ]lﬂlﬂ)—([lﬂ]lﬂ@ 7 technical reagons V\I/Oe start V\(;lith a more general definition of
bilocal operators, which are not necessarily on the light cone:

OF OF

FIG. 1. Diagrammatical representation for the Lt#and RHS
(b) of the nonlocal singlet Ward identit§2.8) in the one-loop ap-
rrproximation. The symbol dO refers to the divergence

Yol

)O3%x1X,k,X) and Og denotes the operator

II. AXIAL ANOMALY OF LIGHT-RAY OPERATORS

with

NS_q_ s 2 5a 1 51y @
z=1- ;CF—’_O(as)! (21) O/_L’ (Xay)_ Elp(x)us(xvy)[’)/,uv’y ])\ lﬂ(y),
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! whereO? is analogous to the definition @°2 in Eq. (2.3),
Us(X,y)= PGXW’ - '9f0 drAL(XT+y[1- T])tk(xﬂ—yﬂ)]. but without y° matrix. In the dimensional regularization us-
(2.2) ing the HYBM scheme, the leading-order requéistricted to
the forward caseis
Here, U4(X,y) ensures gauge invariance, where the gauge
field A{ is path ordered along a straight line connecting the
fermion fields. For lightlike distances, i.ex€y)2=0, these NS Qs )
operators can be expanded in terms of local twist-two and z3(x)=8(1=x)— —2Cp(1-x)+O(ag), (2.9
twist-three operators. We set k; X,y =k, X, whereX is a
light-cone vector and, after contraction wik, we get the

leading twist-two light-ray operatof@2]*: while in the Pauli-Villars regularization, chiral invariance
o o holds true without finite renormalization.
O%3(kq,K2;X)= X“Ofga(le.sz), As in the case of the axial current one expects, in leading
_ — - order, that the same finite renormalization as in ¢p) has
= (k1 X)U(K1X, kX)X YN P ( ko X). to be performed for the singlet light-ray operator. Beyond the

2.3 leading order this is no longer true and the question is: How
can we fix this finite renormalization constant?

To determine the finite nonsinglet renormalization con- After we have seen that the restoration of chiral invari-
stant in the forward case, we requifer massless QCRin ance requires ax-dependent finite renormalization, a second
analogy to Eq(2.1), the validity of question arises: Does the axial anomaly also depeng?on

To answer this question we use the equation of motion to
fldXZNS(X)<[O5'a(OKX';)]¢I>:<[Oa(OK';)]l/II> 5 derive Ward identities for the divergence of the nonlocal

0 Y n v operators(2.2). A straightforward calculation provides that

(2.4  the divergence of this operator is

(+ ) 032 (x,y) = AEM(x,y) +i B U(x,y) YPMmPy(y) —ig foldrﬁst(x,xﬂyaF“ﬂ<xT+y[1—r])

X (Xg=Yp)Us(Y[1=71,y) ¥°N2(y), (2.6

QEM(x,y) = YLD () —im]U(x,y) + U(x,y)[D(y) = im}y*\2y(y), 2.7)

whereQ EM(x,y) denotes the equation of motion operators,erators the finite renormalization consté2i5) was extracted

Fup= Faﬁta is the field strength tensor, andqqié} from the Ward identity. As discussed above for the local
=(m +mJ))\ is a mass matrix. ;:r?s%vb%c%usit(.)f tr}e atlﬁsegce offthe t;ingletfaxial lflrf]_oEalytin
For (x— y) #0 the operator is ultraviolet finite and the € Ward identities tor the Lreen functions of quark helds a

. i S e ity NS
Ward identity (2.6) should be satisfied. However, the situa- ?hr;g (I)(;ggrorder, itfollows that™(x) coincides withz™(x) at
tion will bg changed_|f we go to a lightlikenot only short, as For the singlet caseal= 0)\ =5, ,m =2m;5;), we ex-
usually discusseddistance. Then the operator has to bep ct an anomalous term of the form
renormalized, and anomalous terms can occur. For instancgesysg s(-+-)F,s(- ), which can be computed from the
if we naively anticommutdd(y) with 75 in the second ex- difference of the left-hand sidéHS) and RHS of the Ward
pression in the right-hand sid®HS) of Eq. (2.7) then the identity (2.6) sandwiched between the two- gluon steee
use of the equation of motion will provide only contact dlagrams in Fig. 1 We now setx= le y=rK,X With
terms. However in the HVBM scheme the nonanticommu-32_q and choose the light-cone gauge, eA=0. After a
tativity of y° gives an anomalous term, which should bestralghtforward calculation, it turns out that in both Pauli-
canceled by a finite renormalizatigsee the discussion in Villars regularization and HVBM scheme the same anomaly
[23]), so that the anticommutativity of® is effectively re-  appears, so that the singlet Ward identity is actually given by
stored as discussed above. We calculated this anomalousﬂ
term and after an appropriate definition of the appearing optd(,,x)* ¢ (K %) 0% U k1X,K2X)

Di = . =OF(K1aK2a f dx
Since x is an external four-vector that can be kept four dimen-

sional in the dimensional-regularized operator vertex, it follows that

in the HVBM scheme the relatiopX, y°]=2% y° is valid, so that % flixdyZFa ([r1(1— %)+ rex] X}
indeed Eq.(2.3) comes from the definitiol2.2). 0 i
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XF [ k(1Y) + K1y]1X}, (2.9

where

OF(Kl-Kz;;):_iQJszTWKlri)YaFaﬂ(T;)
XX gY (ko X). (2.9

Here, Fa#"=1e**PF2 ; With €gip5= +1, as=g%/4m, and
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NS o 2y [FDY ns
AGTX.Q )_L y 5 (y)f 27(XS)

i(x1y) k(XP)

(3.9

whereS? denotes the polarization vector of the nucleon and
the renormalization point squage? is set equal to the mo-
mentum transfer square@®. The leading-order approxima-
tion of z3>(y) in the HVBM scheme is given in Eq2.5).

N; is the number of flavors Here, we applied the equation ofThis finite renormalization affects the NLO approximation of
motion and neglected the quark masses. In the local caskpth quark coefficient functions and splitting kernels and

which follows from setting «;=k,=k,

expressmn for the local anomaly:

TINFR (kX) B (kX).
P

Finally, we introduce a nonlocal generalization of the topo-

logical current
KH(X,y) = Ny eheB?| A3(x) 3 AR
(x,y)=7-Nre «(X)dA%(Y)

— ST ASOANYAYY) +Hxoy) |, (210

with x=k,X andy= «,X, so that the anomaly in Eq¢2.9)
can be written as a divergence

(o ~+o"

~ o~ ag -
(le) Kz;))K/—"(le’KZX):ENfFiv(le)

(2.11

XFa¥(k,X ).
We are now able to define the anomaly-free operator
~ ~ ~ _ _ 1 1-x
oivO(le,sz)=of;~°(,<1x,,<2x)—2f dxf dy
0 0
XK ALK (1=X) + koX] X,
(2.12

[Kka(1—Y)+ K1y]X}.

Ill. CONSEQUENCES FOR POLARIZED
DISTRIBUTION FUNCTIONS

the operator
O5 >%kx,xx) coincides with the local singlet axial curren
(Kx) and from Eq.(2.8) we recover the well-known dis

agrees with the additional renormalization group transforma-

¢ tion performed in the NLO calculatiofi3,14].

Because of the anomaly, the naive definition of the singlet
tribution function

AS(x,QY)= ; AGi(x,Q?)+Aq;(x,Q?),

d
—f ys(y)f2 = S<I°S|[o-”°of<x>]

+{k— — k}|P,S)el KI(xP), (3.2
with A q;(x,Q%)=Aq;(—x,Q?)(please note thad is de-
fined in terms of the operat®®9 cannot be interpreted as
probability for finding a polarized quark flavor singlet con-
figuration with given longitudinal momentum fraction In
addition to the finite multiplicative renormalizatidnit is
also necessary to remove the axial anomaly from the defini-
tion of this function[5—7]. Thus, one has to define the singlet
distribution function in terms of the anomaly-free operator
(2.12), which provides

A3 (x,Q%) =A% (x,Q%) —k(x,Q?), (3.3

where

(x@=2 3 Yoy [

+{k—— K}|P,S>ei(X/y)K(XP),

(P SIX*K ,(0,6X)
277(

(3.9

and the generalized topological curré®yf is defined in Eq.
(2.10.

The problem thatk, is gauge variant, and thus that
k(x,Q?) contains also unphysmal components, can somehow
be resolved by the choice of a physical gauge. In the light-
cone gauge, the gauge-invariant twist-two gluon operator

G(k1,k2;X) =X Faup(k1X)FE (kX)X (3.5
As shown in the previous section, light-ray operators pos-

sess anomalous contributions. For the nonsinglet case thesan be expressed in the forward case by

anomalies are a pure artefact of choosing a noninvariant chi-

ral renormalization scheme. The polarized quark distribution—

functions should be defined in a chiral-invariant manner, so *This renormalization is due to the diagrams without two-gluon

that in a general renormalization scheme an additional finiténtermediate states, which are the same for the nonsinglet and the

renormalization is necessary: singlet case, so that(y)=zy(y), as discussed in Sec. Il.
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_1 —~ —~
G(o,x;i)z—(:—;Nf) iX0,XMK (04%). (3.6 APgg(X) = APgg(X) = ~[APqq(x) = APgq(x)]
2
as
=|=—| 2CeNg[3(1—
Furthermore, from the definition of the gluon distribution 2T FNE[3(1 =)
function 240,
Mg Q%)= [ 5 ef )
X, == = — == — _ _
J x(xP)J 2m(x9) APqg(X) = APqg(X) 277) NH{Cr[(1=x)(1—4In(1—x)
X(P,S|G(0,k;X) +{x— — k}| P, S)e*<(xP) +2Inx) ]+ Ca[(1-X)(—16+4

(3.7 XIn(1-x))—4(2+x)Inx]}, (3.12

and from Eqs(3.4) and(3.6), and after performing a partial Where the Casimir operatdZ, is equal to the number of
integration, we find thak(x,Q?) is actually given in terms of colors. Note, that these dlffe_rences will vanish in the I_|m|t
the gauge-invariant gluon distribution function. Thus, to re—)t()_k’ll' For fstrﬂallﬁl_tohey ccl)nrt1r|b|utedpnlyt to the sub.Iead|Bg
move the axial anomaly of the polarized quark distribution ehavior of the resulfthe leading terms are given by

- Uik c - : In%x).
functlon_ it is s_uff|C|ent _to .subtract a certain amount of the Another opportunity to perform the evolution coincides
gluon distribution function:

with the one proposed by Chefg2]. Namely, one should
) - ) ) perform the evolution in the gauge-invarigsay, the modi-
AZ(x,Q9) =A% (x,Q%) —K(X)®Ag(x,Q7), fied minimal subtractionscheme anafterwardsrestore the
anomaly-free distribution by applying E@3.8. The 1—-x
behavior in this approach is actually coming from the mass
term in the box graph. The contact with our derivation may
be achieved by noting that the cancellation of normal and
where the convolution is defined as anomalous divergence, resulting in the effective conservation
of axial current in the limit of infinite quark mass, is valid for
1 1 the nonlocal anomaly as well. It is especially clear for the
A(X)®B(X):f dYJ dzé(x—y2)A(y)B(z). (3.9  Pauli-Villars regularization, when the contribution of regula-
o Jo tor fermions(calculated in Sec. Jlis looking, up to the sign,

K(x):—%Nf(l—x), 3.8

. . : . recisely such as that of the quark masses, which is the start-
Indeed, removing the axial anomaly is equivalent to theip y 9

) - N .~ 7Ming point of the approach of Cheng.
following (additive renormalization group transformation: For practical purposes, irrespective of the used evolution

scheme, it is possible to define an effective gluon distribu-

ACy(x)=AC4(x) +K®AC(X), AC4(X)=ACq(x), tion, which is just the combination appearinggp), i.e., the
_ _ _ convolution of (1—x) with Ag(x):
APgg(X)=APgg(X) + K®APG4(X),  APga(X)=APg4(X), AGef(x,Q%) = 2(1—x) @ Ag(x,Q?), (3.13
AP(X)=APo(x) K@ APyy(X), so that the first moments of effective gluon distribution co-

incide with the “original” one, while the structure function

_ B _ _ 0, has at leading order the simple partonic form, suitable for
APgg(X)=APgg(x) = —K(X) + K&[APyq— APgyq the extraction of partonic distributions from the experimental
9 data[24]:
— APy @KI(x), (3.10

2 1 = 2
0:(x,Q) =54%(x,Q%)
whereAC; are the coefficient functiongy P;; are the spin-

dependent splitting kernels, an@l= w(d/du)g(w) is the 1 Qg
renormalization group coefficient of the running coupling =3 AE(X,QZ)_ﬁNngeﬁ(X-QZ) . (314
constant.

Because of gauge invariance the operator product analysis It is convenient to have the evolution equation directly for
suggests that the zero moment ®€, vanishes. After the effective distribution functions. While the diagonal kernels
transformation(3.10) is performed, the gauge-variant axial aré not changed, the moments of the off-diagonal kernels are
anomaly contributes to the gluonic sector, so that the zer§hanged in a straightforward manner:
moment is now given by

APS(n)= APyy(n),

n(n+1)

o n(n+1)
(3.1D APGg(n)= —

o
—N;+0(a?d).

1 1 )
fo dxACy(x)= fo dxK(x)+O(ag)=— o

APgq(N). (3.19

For completeness we give the difference of the splitting kerNote, especially, that the influence of the effective gluon
nels in NLO: distribution to the quark evolution, governed mng, ap-
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pears to be much less singularin We are not presenting g ag(11 2 as\?(34 )
the explicit form for effective NLO anomalous dimensions, 5=~ E(?CA_ Nt/ =1 75] | 37 Ca=2CiN;
which are rather lengthy. At leading order, when théele-
pendence is easily restored, H8.195 results in the equa- 10 ag\ 32857 3 o 205
IIOHS - ?CANf - E HCA"F CFNf_l_SCFCANf
o 1415 , 11 5 79 5
APgH(x) = —Ce[3(x— 1)~ (x+2)Inx], " T5g CANrtg CeNit 52 CaNG . (319

o d These results allow27] the extraction of the anomaly
Apggz——SNf—é(l—x). (3.16 equation renormalization for a number of loops exceeding
4 dx that of y; by 1. For the leading three-loop contribution, this
The first moments of the splitting kernels provide an im—Co'.nCIdes with the calculan_on of An_selm and JO“’C‘F‘EZB]'
while the four-loop correction require a one-loop finite cor-

portant check for the normalization of the nonlocal con'[ribu-rection 1o the aluon matrix element of the topolodical current
tion and determine the evolution in the corresponding sum: 9 polog

rules. So we summarize the consequences for the zel[gg]' As a result, the four-loop correction takes the form

moment of the splitting kernels, which come from general a\4 214 4
. . . S

renormalization arguments of the axial vector current and the Zj= —( E) ( —Cat =

o
. K 3N
topological current, which are verified up to two- and three-

3
E) GCFN?+<

loop order, respectively25]. From current conservation of
i.0=T 2%k, (here,] O refers to the original definition in + 18CF> CeNg. (320
terms of quark fields the Adler-Bardeen theorem, and the
renormalization properties of gauge-invariant operators, it ACKNOWLEDGMENTS
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1 1
f dXAPq4(X)= f dXAﬁqq(X) —y;=0, (3.17) _4Recently, the four-loop approximations for tieunction and for
0 0 y; were calculated. Herey; denotes the anomalous dimension in

. . the MS scheme and the finite renormalization constaig known
where the three-loop order approximation for the anomalouap to the orderx?. To obtain ¥; and, therefore, also the first mo-

dimension of the axial vector currenf and for theg func- o0 o6a Pgyq(X) at three-loop order it is necessary to knaup

tion are knowfi [25,26; to the ordera>. As proposed above, thia? correction can be
as 2 as 3 142 4 obtained by the requirement thz?lt t.he singlet Ward identities for pure
Yi=— (E) 6CENs+ (E) ( — TCA+ §NF quark Green. functions arg satisfied at threg-loop.order. The four-
loop calculation of both sides of the Ward identities for the two-
gluon state gives then the consistency check for the Adler-Bardeen
+18CF>CFNf, (3.18  theorem.
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