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For the first time, we determine the complete spin- and momentum-dependent drctarections to the
static interquark potential from simulations of QCD in the valence quark approximation at inverse lattice
spacings of 2—3 GeV. A new flavor-dependent correction to the central potential is found. We repoft an
contribution to the long range spin-orbit potentiél. The other spin-dependent potentials turn out to be short
ranged and can be well understood by means of perturbation theory. The momentum-dependent potentials
qualitatively agree with minimal area law expectations. In view of spectrum calculations, we discuss the
matching of the effective nonrelativistic theory to QCD as well as renormalization of lattice results. In a first
survey of the resulting bottomonia and charmonia spectra we reproduce the experimental levels within average
errors of 12.5 MeV and 22 MeV, respective[\{60556-282(197)04915-1

PACS numbgs): 11.15.Ha, 12.38.Gc, 12.39.Pn, 14.40.Gx

[. INTRODUCTION nonrelativistic. The static interaction potential can be com-
puted directly from the QCD Lagrangian on the lattice.
Quarkonia spectroscopy provides a wealth of informationwithin the present study, we find the average velocity be-
and thus constitutes an important observational window tdaween the sources to b@?)~0.27 and(v?)~0.08 for the
the phenomenology of confining quark interactions. It hascharmonium and bottomonium ground states, respectively.
been known for a long time that purely phenomenological ofThis leads us to expect that the phenomenological potentials
QCD-inspired potential models offer a suitable heuristicwithin those models, which have been optimized to repro-
framework to understand the empirical charmoniudviy() duce empirical spectra, should deviate by substaft{al?)
and bottomonium(Y) spectrg1-4]. corrections from the static potential as predicted by QCD; at
On a more fundamental level, one would prefer to startrealistic quark masses such corrections, which are also re-
out from the basic QCD Lagrangian to solve the heavyguired to obtain hyperfine splittings, cannot be neglected.
guarkonia bound state problem. Nonrelativistic QCD Therefore, we have to take corrections to the static limit into
(NRQCD) [5] offers a systematic way to solve this problem account.
by direct extraction of bound state masses freffective The Hamiltonian that we derive is equivalent to the QCD
nonrelativistic lattice Lagrangians, which approximate the Lagrangian up t®(v?). It includes the spin-depende(8D)
QCD Lagrangian to a given order in the quark veloaity terms derived by Eichten, Feinberg, and Grorfig$§|, the
Considerable success has been achieved recently in detenomentum-dependentMD) corrections derived by Bar-
mining quarkonia spectra within this approximation to QCD chielli, Brambilla, Montaldi, and Prospe(BBMP) [9], and
[6]. one-loop radiative corrections from matching the effective
Here, we follow a complementary strategy: instead oftheory to the full theory at a scaje that, in general, differs
separately computing the spectral properties of individuafrom the heavy quark mass [10]. It can be parametrized in
mesonic states, we integrate out the gauge background amerms of seven independent scalar functions of the quark
directly determine the underlying quantum mechanical two-separationthe potentials These will be computed nonper-
particle Hamiltonian. Once QCD binding problems are recasturbatively on the lattice.
into this form, spectra, wave functions, and decay constants The static potential has been determined with high accu-
for arbitrary (sufficiently large quark masses and quantum racy in the valence gquarlquenchegapproximation to QCD
numbers can easily be obtained. Results can either be coft1-13 and, more recently, in full QCD with two dynamical
fronted with experiment or compared to predictions fromflavors of light Wilson sea quarkgl4]. First attempts to
lattice NRQCD. compute relativistic corrections have been made in the mid-
In the limit of infinite quark mass, the Born-Oppenheimer 1980s for SW2) and SU3) gauge theory15-18 and have
approximation is applicable and, after integrating out thebeen extended to QCD with sea quarks in REES, 20.
gauge degrees of freedom, QCD binding problems become In view of the general interest in the Hamiltonian formu-
lation of the meson binding problem, renewed effort should
be made to unravel the structure of the SD potentials and

*Electronic address: bali@hep.ph.soton.ac.uk other O(v?) corrections. Recently, we presented improved
"Electronic address: schillin@theorie.physik.uni-wuppertal.de  techniques for computation of SD corrections and tested
*Electronic address: wachter@hlrserv.hirz.kfa-juelich.de them successfully on S@) gauge theory{21]. Here, we
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shall apply these methods to the physically relevan{33U study and aim to predict quarkonia properties, we find it

gauge theory. We will extend the $) investigation by  worthwhile to briefly sketch some details of the derivation of

inclusion of MD potentials and relativistic corrections to the the Hamiltonian. The SD and MD parts as well as relativistic

central potential, and subsequently determine quarkonia lewcorrections to the central potential have been derived during

els. the 19809 7-9]. The matching problem between QCD and
We wish to emphasize that the method presented does ntite effective Hamiltonian has been sorted out to one-loop

rely on any approximations other than truncating the QCDorder for the SD terms recent]§0] and we extend this to the

Lagrangian at second order in the quark velo¢itpart from  remaining corrections.

the valence quark approximatipn However, the It is instructive to start a®(v°), before proceeding to the

Schralinger-Pauli approach to heavy quark binding prob-O(v?) Hamiltonian. To this order, the heavy quark propaga-

lems suffers from the same difficulties as NRQCD, namelytor S(x,y)=Q(x)Q*(y) of a quark with massn obeys the

(a) the error involved in truncating the expansion at a finiteevolution equation in an external gauge f?emuz

order inv, (b) uncertainties in the matching of the effective

Hamiltonian to QCD, andc) renormalization of lattice re-

sults. While we manage to solve the latter problem in a sat-

isfactory way, we have to rely on one-loop perturbation

theory for the matching of the nonrelativistic Hamiltonian to \yhere D, denotes the covariant derivative. Tv?), the

QCD. Systematic errors from th®(v?) approximation as sojytion ’fo the initial value problem,

well as from the uncertainty in the matching constatisit

can be reduced order by order in perturbation theamne _ _

ostimated SOGY) =y, = 8°(x=Y), @)
Since NRQCD to ordep? (or v*, depending on the la- =

beling conventions usgds based on the same Lagrangian, it 1S given by

is worthwhile to compare the two approaches. While

DZ
—4S(X,y) = igAs+m— ﬁ) S(X,Y), (1)

NRQCD can in principle be generalized to any ordewin _ _ Ya pA(t) 3
the Schidinger-Pauli approach is only valid up to ordgr. ~ S0%Y) =U(XiXs,ya)Texp — ‘e dtf m+ = =/ |8°(x=y),
Also, we cannot treat heavy-light systems. In NRQCD the 3)

zero point energy can be fixed by measuring the dispersion

relation while in our approach only properties of particles alyhere T denotes the time ordering operatbt(x;x,,Ys) is

rest can be studied. The clear advantage of the method Priie static propagator of a quark, traveling from the point

sented here is that \.Nith one .simulati.on only we e_asily Obtalrtx,x4) to (X,y4), and consists of the corresponding temporal
all spectral propertiegincluding arbitrary excitationsfor Schwinger line times the factor expE,7), with 7=y, —x,.

any (sufficiently heavy quark mass. From a two-body E ; :
N . 2 Eq(u) represents the static quark self-energy that diverges
Hamiltonian formulation of the problem, the effect of indi- I{ke /Ny with the cutoff scalew.

vidual terms on the spectrum pecomes immediately apparent, By combining two static propagators into a Wilson loop,
and a transparent understanding of the anatomy of the unde(g—ne can determine the potentidh(r) between two static

lying interaction mechanism is obtained. The potentials arg Jurces separated by a distancan the limit of large Eu-
protected by the globaZ; symmetry[22] from finite size clidian ti'meS'

effects, contrary to NRQCD wave functions and masses,
such that we can determine the potentials for theange
required, even for broad excited state wave functions, on
relatively small spatial lattice volumes.

The article is organized as follows. In Sec. II, we intro- Note that the potential contains the static quark self-energies.
duce the Hamiltonian and present definitions of the potenln order to obtain the spectrum of mesonic heavy quark
tials that are suitable for lattice evaluation. Moreover, webound states, the Scldimger equatior(in the c.m. framg
include theoretical expectations on the form of the potentials.

Section Il contains simulation details and lattice specific Him(r) =En tnim(r) (5)
techniques wherever they differ from our @YJinvestigation

[21]. The renormalization of lattice operators and the matchgan be solved, where the Hamiltonian

ing procedure between the effective nonrelativistic theory

and QCD are discussed in Sec. IV. The resulting3po- 2

tentials are presented in Sec. V. Promising results on char- H=2m+ p—+V0(r) (6)
monium and bottomonium spectra are obtained and dis- m

cussed in Sec. VI, before we conclude.

(W(r,m))xexd —Vo(r)7]  (7—). (4)

is determined from combining two heavy quark propagators
with each other.

We wish to study relativistic corrections to the=0 limit;
A. Hamiltonian formulation of the meson binding problem after a Foldy-Wouthuysen-Tani transformation, the Feynman

Il. HEAVY QUARK POTENTIAL

In Ref. [21], we restricted ourselves to an evaluation of
SD corrections to the static potential. Since we are going to
include the completeD(v?) corrections into the present !Everything is consistently rotated to Euclidean space-time.
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propagator is expanded in terms of the heavy quark vefocityspacinga). In the case of NRQCD, the effective lattice
v around the static solution, in order to determine the propatheory is matched to continuum QCD in one step, such that
gatorK (x,y)=q(x)q"(y). ToO(v?) the propagator is given the coefficient; do not only depend om/x (or ma) but
by also on the lattice coupling(a). We start from an effective
theory, formulated in the continuum, such that the matching
— d4K(X,y) =[igAz+m—om(u,m)+0O(x)JK(X,y), procedures(QCD-effective theory and continuum lattjce
(7)  will be treated in two separate steps.
In addition, the operator, acting df in Eq. (7), has the

with the well-known terms same structure to orderrif as the Lagrangian of heavy

2 4 guark effective theoryHQET). Therefore, the matching co-
o, 4
O=- ﬁJF;l Ci(u,mM)O;(p; M), @ efficients can be taken from Ref29-31:
— 9/25
(D?)2 _[as(w)
Ou(w;m) == ©) Calpm) ag(m) ' 9
o (M_m)_gs(ﬂ«) o B (10) (as(ﬂ) — 8125
2 ’ - ! Cc ,m =6 _51 14
2m (,m) as(m)) (14)
Oxmm=—i ¥ 5 E_Ep) (11)
S 8m? : Cale,m)=2¢,(,m)—1. (15)
O4(p;m)= le o-(DXE—EXD) (12) In order to evaluate masses of heavy quarkonia, we have
1 8m .

to combine a propagator of a quagk of massm,; with one

) o of an antiquarkg, of massm,. In following the steps of
E; andB; are color-electric and -magnetic field components.Refs [9, 10|, one can obtain the nonrelativistic Sttinger-
The heavy quark two-spinaj(x) consists of the large com-  pay|i Hamiltoniaf (in the c.m. system, i.ep=p,;=—p,
ponents of the original Dirac four-spinor after the Foldy- andL=L,=L,):
Wouthuysen-Tani rotation.

Since we have truncated the expansion at a fixed power of
v, we have lost renormalizability and the ultraviolet behavior 2 p? p*
is changed with respect to QCDThe theory is only effec- H:; my—om+ 50— Ca(my) o3| FV(r.p.L.S1.S,),
tive and valid in the range of small gluon momeiroe 1. ' ' (16)
Whenever theO; are determined at a scajfe that differs
from m, the couplingsc;(w,m) (that are unity at tree level
have to be adjusted by matching the effective theory to QCDVhere the potential
at this scale; this guarantees the conditm(m,m)=1 to
hold. The zero point energy is shifted by V(r.pL.S, Sz)=V_(r)+V (1L,S1,8) +Vo(1.D)
om(u,m)=Eqy(u) —Eg(m), with respect to QCD, where the P.Lor sl md [P 17)
static quark self-energlfy(u) can be estimated from pertur-
bation theory{26—2§. Because of this self-energy, the pole
mass is shifted in respect th— ém within the propagator: consists of a central part, SD, and MD corrections.
mPYe=m— Sm+ Eq(u) = m+Eqo(m). Note that under renormalization group transformations the
Note that the Hamiltonian which corresponds Kois  spin-spin interaction term of the effective two-particle La-

identical to that of NRQCD to ordes? (up to irrelevant grangian [fd“x(qJ{a-Bql)(q;a‘qu)] undergoes mixing
terms that are introduced to remove doublers and stabilizevith two local dimension-6 color-singlet two-fermion terms
the evolution of the propagator on a discrete lattice with

4In Refs.[26,31,33, it has been shown that the kinetic energy

2Formally, this procedure is equivalent to expanding the Diracterm —D?/(2m) does not undergo renormalization. Unlike in lat-
equation in powers of t/wherec denotes the speed of light. Note tice NRQCD, where the quark mass becomes multiplicatively
that in some of the NRQCD literature om(vz) corrections are renormalized[27], here the mass does not enter as a dynamical
counted a(v?). variable of the simulation, but rather as an expansion parameter.

3This fact gave rise to a discussion on a supposed discrepancihe correction to the kinetic energy, which contains the
between the Eichten-Feinberg-Gromes redli8] and perturbative  dimension-7 operaton'D*q, however, is accompanied by a non-
expansion$23—25 in powers of the couplingg, where additional  trivial coefficientc,(x,m). This coefficient as well as the mixing
terms that depend logarithmically on the mass occur after regulatingatrix betweerO, (u;m) and lower dimensional operators has not
loop diagrams. These terms are now understood to arise froniet been determined. For this reason, for the time being, we assume
changes in the ordering of integrations, and the underlying problerﬁlwl'
is resolved 10]. 5The derivation of this expression from QCD is nontriviiel.



56 COMPLETEO(v?) CORRECTIONS TO THE STATC. . .

that have to be included at ordern® into the effective
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The symboka,b,c}ye,= 3{a.{b,c}} denotes Weyl ordering

heavy quark Lagrangian. This very fact gives rise to the rays the three argumentd/ ...V, are related to spin-orbit

diative correction ternj10]°®

1 3
ONVgg=— 3mm, Sy Cp(my,my)

X[1—c5(m,mp) IV4(r), (18

within the SD potential below.
The complete result on the potential to ord@érwith one-
loop matching coefficients turns out to be

2
— 1
V(N =Vo(r)+ 2 g ca(m)LV?Vo(r) + VAVE(1)]

1
-2, gz CHmM)VAVA(), (19
Vedr,L,S;1,S,)

(5L =) (2c, —1)Vo(r)+2c,Vy(r)
S\mi T mg 2r

+ c.Viy(r) S8
+ flnlmszz L r2 + miizz Co(My)Co(My) RijV5(r)

38:,1322 (c2<ml>c2<mz>

3
-3 c2<mz,m1)[1—c§<m2>])v4<r>

+(%_§2)Lc_[va<r>+vm>]
m; m; r
R A0

m;m, r

(20
and

1
Vind(r,p)=— m, 1Pi+P; [ 6 V(r) = Rij V(1) Thweyi

21
+ 2, 7 (PP L33 Vo) =Ry Vel Thwen
(21)
with

rrj &

Rij=—z 3 (22)
Ci:ci‘(lu”mllmZ): %[CZ(Mlml)iCZ(M,mz)],

m;=m,, (23
ci(m)=c;(u,m). (24)

5We have substituted the factorm®&rag(u)8%(r) of the refer-
ence by the potential,(r), which is equivalent at this order i, .

and spin-spin interactions. The MD potential gives rise to
correction terms of the form

1 1 1 1
2 2 2

R e e and 8%(r).
The correction to the static potential includes, besfg:
and V2VE, the expected Darwin ternV2V,. Note that
Vi,...,V, as well asV2VE andV2V2 depend on the match-
ing scale u while V, as well asVy,...,Ve is scale
independent.In what follows, we will refer to the functions
Vi,....V, as SD potentialsyy,,...,V, as MD potentials, and
V2VE andV2VE as corrections to the central potential.

In order to derive the Hamiltonian from one-particle
propagators, one has to assume that interactions between the
two quarks are functions of a single global time coordinate
(instantaneous approximatipnUnlike NRQCD, the above
Hamiltonian cannot be generalized to higher ordersyin
since this would involve higher than first order temporal de-
rivatives of the quark momenta, which, on the quantum
level, cannot be reexpressed in terms of the canonical coor-
dinates.

Vo, VAVE, V&VB Vi ... V,, andV,,...,V, can be com-
puted from lattice correlation functiong Euclidean time
of Wilson looplike operators. Because of Lorentz invariance,
certain pairs of potentials are related to the static potential by
the Gromeg33] and BBMP[9] relations

V(i) =Vi(p;r)=V(r), (25)

1
Vo(1)+2Vo()= € Vo) =5 Volr), (28
V() +2V,(1)= = 5 Vy(r), @)

such that three potentials, e.g/;, V4, and V., can be
eliminated from the Hamiltonian. From arguments, similar to
those of Ref.[9], it is evident that the combination
V4(,u;r)+2V2V§(,u;r) is a function of the static potential
and thus scale independent. Given this observation, the struc-
ture of the Hamiltonian Egs. (16)—(20)] and the Gromes
relation [Eq. (25)], we can deduce the following one-loop
relations between potentials, evaluated at cutoff scales
and u,:

VAVE(uair)=ca(q, i) VAVE(uq;r) +Ca( g, iep) — 1]
X V(1) +[ 121, 1t2)]
XIVAVE(py;0)+ £ Va0,

VAVE (i1 =VAVE(pyir)

(28)

+ & [1-c5(p1,pu2)Valpa;r), (29

"The latter potentials originate from perturbing a quark world line,
along which the fieldA, of Eq. (7) contributes to the propagator,
around the classical particle trajectory. Since an overall renormal-
ization of the gluon fields can be absorbed into the quark wave
function normalization,Vy, ...V, are scale independeritike
Vy).
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Vi(pair)=Vi(py;r)—[1=cCo( g, m2)IVo(py;r),

(30)
Vo(pait)=Co( g, ma)Vaolpy;r), (3D
Va(pair) =5 e, m2)Va(pir), (32

Va(pair)= 11765 (me,p2) —31Va(prir). (39

B. How to compute the potentials

In the Schrdinger-Pauli approach, introduced above, the
guarks interact through a potential that only depends on the
distance, spins, and momenta of the sources, B5-(21).

The time dependence has been separated and is implicitly
included into coefficient functions of various interaction
terms, the central, SD, and MD potentials. These can be
computed by a nonperturbative integration over gluonic in-
teractions. Therefore, the potentials incorporate a summation
over all possible interaction timés One obtains the follow-

ing expressions in terms of expectation values in presence of
a gauge field background for the corrections to the static

V4(R)=2 lim frdt((é(O,O)é(R,t)»W. (40)

T— 0

Finally, the MD potentials arg9]

\”/b(R):—%nm JOTdtt2(<I§(O,O)I§(R,t)))\c,\,, (41)

im f Tdtt{<<éi(o,0>é,»<R,t>>>6v

— 00 0

R;Ve(R)=|
Sii e e c

Vd(R)=%Iim fOTdttz«E(O,O)E(O,t))}f,\,, (43)

~ 1 . T ~ N
Ry Ve(R)= = lim fodttz[«Ei(o,O)Ej(o,t)»fN

potential[9]:®

V2VE(R)=2 lim JOTdt<(I§(O,0)I§(O,t)>)§V, (34)

V2UB(R)=2 lim ffdt«é(O,O)é(O,t)))W, (35)
roo JO

where the superscri denotes the connected part,

(Ei(nL,0)E;(ng, )%= ((Ei(ny, 0 E;(ny,H))w

— lim ((Ei(ny,0E;(Ng,t)))w-

t' —oo

(36)
For the SD potentials one findg,8]
Rq =, N S ~
(37
Re =, . T A ~
E VZ(R): €ijk JLlT; J'o dtt<<B|(0,0) EJ(R,t)>>W,
(39
R;V3(R)=2 lim fOTdt[<<éi(o,0)éj(R,t)>>W
Sj o~
-3 <<B<o,0>B<R,t>>>W}, (39

8We have recast all expressions into forms that are more suitable

: (44)

Sii - -
— 5 (E(QOE(0,1)

R denotes a lattice vector of lenglR=ra 1. At small lat-
tice spacinga, the above potentials should approach their
continuum counterparts and rotational invariance is expected
to be restored,Vo(R)=aVy(r), ViiR)=a’V](u:r),
Vs dR)=aVa(u;r), V2VZB(R)=a’VAVi®(u;r), and
Vb,c,d,e( R) = aVb’C’dve(l’), Whel’e,u= mla.

Throughout the previous equations, the expectation value
((F1F2))w is defined as

(TrPexp(igf jwdx, A, F1F,])
(TrPlexpligf wdx, AT

((FiF2)w= (45)

wheredW represents a closed pdtthe contour of a Wilson
loop W(R,T)] andP denotes path ordering of the arguments.
Although we have chosen a lattice inspired notation for the
potentials[Egs. (35)—(44)], so far everything is generally
applicable to lattice as well as continuum formulations of
QCD. In following Huntley and MichaelHM) [18], we
implement the discretized version of E45):

(PIW(IT, = TT])o(TT,— TT5)4 1) (W)

(PIW(IT,+ ) I PIW(IT,+ TT) ]
(46)

((F1F2))w=

where the subscripti=1,2 represents the multi-index
(n;,ui,v;) andn; are integer-valued four-vectors. The sub-
script “tI"” indicates that only the traceless part is to be
taken: A)y=A—3TrA. F, are related to the electric and
magnetic fields in the following way:

F.=9a%F,,, Ei=F4, Bi=3exFix. @7

for lattice simulations. Via spectral decompositions of the underly-
ing correlation functions, equality between our definitions and thoselhese conventions eliminate imaginary phases and factors

of Refs.[7-9] can easily be shown.

g?a* from Eqgs.(34)—(44).



56 COMPLETEO(v?) CORRECTIONS TO THE STATC. . . 2571

ments. We start from the standard assumption that the origin
At of the static potential is due to vectorlike and scalarlike
gluon exchange contributions. Given that a vectorlike ex-
change can grow at most logarithmically with[34], the
! nature of the linear part of the confining potential can only be
scalar. As we will seeY,(r) is short ranged, such that the
confining part only contributes t&;(r). This leads us to
expectV5(r) to be purely vector like. Under the additional
assumptions that pseudoscalar contributions can be neglected
and thatV; does not contain a vectorlike piece, one ends up
with the scenario of interrelatio83]:

V’
T Va(r)= 2(r)

L 3
*

*
L
p

= Va(r), (51

. . . V4(r)=2V2Vy(r), (52)
FIG. 1. Lattice definition of the nominator of E¢45) for the
example off, being an electric ear arid, being a magnetic ear.  \yhich of course has to be in agreement with leading order
perturbation theory. However, Eq&1) and (52) hold true
for any effective gluon propagator that transforms like a Lor-
entz vector. Unlike the Gromes relation, the above relations
cannot be exact, which is evident from E¢31)—(33).

We have takerl ,,(n) to be the spatial average of the
four (two) plaquettes, enclosing the lattice pomtfor mag-
netic (electrig fields:

ITj(n)= z[P; j(N)+P; _j(n)+P_; _j(n)+P_;;(n)] 2. One-gluon-exchange potentials
“8) In order to parameterize the short range behavior of the
and potentials, it is useful to resort to weak coupling perturbation
theory. For modeling of lattice artifacts, we have calculated
Mis(n+ 18 =1[P (n)+P_ (N)], (49) the SD potentials to the tree level in RR1]. Here, we
' ' supplement these results by the remaindi@?) potentials.
with (a) Lattice potentialsIn the following we will use the
conventions
Puo(M=U,(MU,(n+m)U}(n+»Ujn) (50 . o
e N { di
andU_,(n)=U"(n— 7). With this choice ofl1, Eq. (46) is Gﬁi):pq;&0 S qi=23“'<§) (53
correct up toO(a?), the discretization error of the Wilson 7 o
action, used for generating the gauge field background. Notgnq
that the electric fields are living at half-integer time coordi-
nates, in between two adjacent spatial lattice hyperplanes. 2 gld'R
U ,(n) is the SU3) link variable, related to the fielé ,(x) FL(R)= 3 Z:o =02 (54)
atx=(n+3zp)a: U,(n)="P exdigaly “dnA,(n'a)]. o4 i
In practical computation, the temporal exteéhtof the  ith
Wilson loopW [within Egs.(34)—(44)] is adapted according
to the formulaT=t+ At,+ At,. At;, the separations of the 27 - L,
“ears” F, andF, from the corresponding spatial closures of G=y—m, m=-> +1,... o (55)

the Wilson loop, are kept fixed throughout the simulation
while the interaction time is varied. The discretized version | genotes the number of lattice sites along a linear spatial
of the nominator of the correlation function, E¢5), is vi- e;tent. Note that the above functions have the l&gee-
sualized for the case of an electric and a magnetic ear in Fighavior(for L. >R)

1. Strictly speaking, Eqs(34)—(44) apply in the limits 7

At;— only. At; (At,) represents the time the gluon field 1 1

has to decay into the ground state, aftbefore creation GL(R)eﬁ, FL(R)—>FL(O)—4— R, (56)
(annihilation of the qq" state and is a control parameter of ™ .

the simulation. whereF | (0) diverges linearly withL_ ;.

C. Theoretical expectations We find
1. General considerations \A/O(R) == Cng[GL(R) -G (0)], (57)
In addition to the exact Gromes anq BBMP constraints, _ R
Egs.(25—-(27), some approximate relations between the SD Vi(R)=— ﬁ, Cpng,-EJ(“GL(R), (58)

potentials are anticipated from exchange symmetry argu-
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R2 In Ref.[21], we have proved that an exact lattice analogue

CFQ AjAEGL(R), (59 to the Gromes relation does not exist. However, the Gromes
as well as the BBMP relations will be retrieved in the con-

for j#k, i#j, i#k, Rj#0, andR#0. Unless explicitly tinuum limit and approximately hold within the scaling re-

stated, no summations over indices that appear twice are pegion on the lattice foR> 1. _ _

Vi(R)=

the expression theory, one obtains the tree-level expressions,
- R2 1 dg® e'd’ 2a, foc singr
- 2 — =z _ A= 4= = . —
V3— ZRIZ—RJZ—Ri CFg 2 [4A| =1 A] (‘-’k+‘-‘) VO(r) CFan 277_2 q2 CF T 0 dq qr '
2 (72
—AP(Ej+E)IGL(R). (60)
) _ dg® g-r .
The remaining potentials are given by V5(r)=—iCras P 52? e'ar
- _ 2 (2)~(L) 2a i .
V4(R)=—2Ceg E Al GL(R), (61 =—Ce 75 fo dq?rj(qr), (73
-~ _Cng (2)= — d 3 r)2
Vp(R) = > APEF (R+6EG(R)|, (62 B q (@ .
6 ! Va(r)==Cras| 5277 ©
T q°r
- Crg? R? 25 ,
ViR~ =5 grr g |~ INAFUR) - fo dqefi (), (74
s (25 +6(E—E. dg® . 25 (= singr
5IJ ; A kFL(R) 6( I)GL(R))} V4(r):CFaSJ _q2 eIQ-r:CF s d q2 ™ ,
2 T
(63 (75
Crg? with as=g%/(4m). V, and V. are given by—2V,/3 and

Vy(R)=—

1 1
4 [GL(O)“LGL(lH 5 FL@)—3 FL(O)} Vo/2, respectively. The self-ener@y,=a~'Crg°G,(0) has
) been subtracted frond,. V3 andV, vanish to lowest order
__Cro GL(0) (L, —), (64)  Pperturbation theory whil@z\(g, VZVS, andV, only contain
4 diverging self-energy contributions. A linear confining con-
- tribution can be introduced by adding-al/g* term toV, in
V2VE(R)=—3Cg’[ G (0)~ G (2)]~ —0.629 52E¢g?, momentum space. The integrals for the SD potentials are
(65  suppressed in the infrared region ligé or g°, such that we
naively expect perturbation theory to be more reliable in this

V2VE(R)=6Crg? G, (0)— G| (v2)]~1.185 23T¢g?, case than for the static potential @ and V.
(66) Equations(72)—(75) yield
with f(1)=f(1), f(v2)=f(1+2), and f(2)=f(21). The a
numerical values refer to the infinite volume limit. In this Vo(r)=-Ce¢ —, (76)
limit, one obtainsG (0)~0.252 731 0. The potential¥ ;
andV, vanish to lowest order perturbation theory. o
The Casimir factor of S(B) gauge theory iSCr=4/3. Va(r)=Ce —2 (77
The A’'s and E’s denote the finite difference and averaging
operators: a
. . V4(r)=3Cg —3, (78)
Aif(n)=z[f(n+i)—f(n—D)], (67) '
> - V4(r)=8mCrasd(r), 79
APf(n)=f(n+i)—2f(n)+f(n—i), (68) 4a(r)=8mCrasd(r) (79)
2 ag
:Z Ai(Z)’ (69) Vb(r)_§ CF Tv (80)
I
— 1 - 2 1 Qg
Eif(n)=z[f(n+i)+2f(n)+f(n—i)], (70) Vc(r)=—§ Ce = (81
E-(”=E E = E=l 2 = (71) in agreement with the large-(i.e., r>a) expectations of
bo2FE T 34 Egs.(57)—(63) [cf. Eq. (56)].
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3. Large distance behavior TABLE I. Simulation parameters. The physical scale has been

In combining the large-behavior from the minimal area obtained fromyk=468 MeV.

law (MAL) of fluctuating world sheetf9] (including a pe-

rimeter term with the expectation from tree-level perturba- p=6.0 p=62
tion theory, Eqs(76)—(81), one obtains v=L3L, 16* 32
al fm 0.092 0.067
Vo(r)=V,— €. KT (82 @ YGev 2.14 2.94
r L,/ fm 1.47 2.15
Neont 420 116

b
VAVE()=CE-—, VAVR(n)=Cf, (83

The number of independent Monte Carlo configurations,
h e—h o ;
VI =———k, V)= —, (84) Neonf» generated at each set of parameters, is mclu_de_d into
the table. Based on previous experience, we expect finite size
effects to be below statistical accuracy at these volumes
[11,12,2]. For the updating of the gauge fields, a hybrid of
Fabricius-Haan heat bafl85] and an overrelaxation algo-
rithm has been implementd®6]. Within both procedures,
2e « K we successively update the three diagona(2$\dubgroups
Vp(N=Cptzo—gr VN=—5-=5T 88  of a given link[37]. The heat bath sweeps have been ran-
domly mixed with overrelaxation steps with probability 1/7.
K The links have been visited in lexicographical ordering
5 r, (87)  within hypercubes of 2 lattice sites: i.e., within each such
hypercube, first all links pointing into directionare visited
with e=Crag, in agreement with the Gromes and BBMP site by site, then all links in direction, 2etc. After 2000
relations, Egqs(25—(27). From MAL (including a perimeter initial heat bath thermalization sweeps in either case, mea-
term) one obtainsCE=CE=Cy=0 and C4=—C\/4. In  surements are taken every 100 sweeps to ensure decorrela-
tree-level perturbation theory, one finds a consistent infinitdion. We find no evidence for any autocorrelation effects
volume resulCy= — C\/4 [Eq. (64)], while CE comes outto  between these configurations.
be significantly smaller thaﬁlg [Egs.(65) and(66)]. How-
ever, our numerical data sho@5~C?, in agreement with B. Noise reduction

the MAL result. From Eqs(28)—(30), it is obvious that the Statistical fluctuations have been reduced by “integrating
tree-level perturbative expectations, E¢86)—(81), cannot oyt temporal links that appear within the Wilson loops and
adequately describe the potentials at all scaleB1 general,  the electric ears analytically, wherever possible. By “link
Vi and V, will undergo mixing, such thaV; will attain a integration” we mean the substitutidi3g]

Coulomb-like contribution. For the same reas&ifV; is

expected to include a Lpiece. We have accounted for this U W _ E iz fsu<3)dUUeS”"‘(U)

fact by allowing for two additional parametebsandh. In 4N = Wa(n)=7 JFL(N)  [syzdUenaV)
principle, V2VE® can also contains-like admixtures[Egs. (89)
(28) and(29)], which we have ignored in Eq83).

e—h
Vs(r)=3r—3, Vy(r)=8m(e—h)&%r), (85

Va(r)=Cq— Ve(r)=

K
9"

IIl. LATTICE SIMULATIONS with
In Ref.[21], we have developed suitable techniques for a

lattice evaluation of the potentials and applied them t¢23U Sn . (U)=TIF,(mUT+UF](n)], (89

gauge theory. We investigated possible sources of systematic

errors such as finite size effects. In this section, we describe

details of our SWB) simulations, insofar these differ from the and

SU(2) study.

A. Simulation parameters Fu(”)—g 2 (n)U n+ v)UT(n+,u) B= Ez
We analyze two sets of Monte Carlo configurations that s g (90)
have been generated with the standard Wilson action on hy-
percubic lattices of volume¥=L3L ,=16" at 3=6.0 and
V=32 at =6.2(Table ). The above couplings correspond W,(n) is in general no longer an $8) element. In this way,
to inverse lattice spacings a '~2.1 GeV and timelike links are replaced by the mean value they take in the
a~1~2.9 GeV, respectively. The scale has been determinedeighborhood of the enclosing staplEs(n). Only those
from the value\x=468 MeV for the string tension that we links that do not share a common plaquette can be integrated
obtain from the fit to the bottomonium spectrum of Sec. VI.independently, without changing expectation values.
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We have attempted to compuié,(n) analytically for the

case of SWB) gauge theory. Based on the character expan-

sion of SUN) matrices of Ref[39], the following expres-
sion can be obtainey:

Z(F)= f dU exgd Tr(FUT+UFT")] (91)
su3)
(x)
ﬁ — ex;{xQ+y+ X_y>
(92)
with
Q=del(F)+de(F"), (93
P(x)=1+Tr(FFhx+ 3 [Tr3(FFT) = Tr(FFT)2]x2
+de( FFT)x3. (94)
From
B dx — e¥
Jn_ ﬁ X R(X) |1(2R(X)), (95)
Kq[0]= ji—oX pog |2@ROD. (99
where |,, denote the modified Bessel functions aR@x)

= JP(x)/x, one obtaing40]

0z 9Q oP
Z:Jo, &_Ff \]l_Ff"‘KO OF (97)

such that

1
T 131G+ K F + KF[Tr(F'F) ~ F'F]+ Kade(F) G},
0
(98)
where K =K, [1], and G;;= 3 €jjx€imnF mFk,. Note that

J, andK,, are real numbers. For the computation of Besse
functions we use the asymptotic expansion

In(z>=F2 (—1)) A( ) (99)
with
2_12 2_7Q2y... 2_ H 2
Aj(n):(4n 1%)(4n 31)-| [4n%— (2] 1)],
8lj!
(100

up to fifth order inj. The above expansion is valid for argu-
mentsz=2R(x), with large modulus. A circular integration
path with radiugx|=0.015 turns out to be appropriafé1]

at B~6. A Gaussian quadrature algorithm with 64 abscissa:
is used. By exploiting the symmetry of the contour integrals
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FIG. 2. Corrected static potentiaVy .o at 8=6.0 and
B=6.2. The fit curve corresponds to the parametrization(ELj),
with the parameter values listed in the last column of Table IV.

Egs.(95 and(96), under the transformatiox— —x, we are
able to reduce the computational effort by a factor of 2.

C. Ground-state enhancement

In this section, we will discuss the control of excited state
contributions at finite deexcitation timeAt;. We found
At=2 to be appropriate for magnetic ears ak=3/2 for
electric earqsee Fig. 1 The spatial transporters within the
Wilson loops have been smeared to suppress excited state
pollutions from the very beginning. Our smearing procedure
[22,42 consists of iteratively replacing each spatial link
U;(n) within the Wilson loop by a “fat” link,

Ui(n)—>A/< al;(n)+>, uj(n)ui(n+j)u}(n+i)>,
J#FI
(101

with free parameter. A denotes an operator that projects
the argument back into the $8 group: U=MN(A)
e SU(3) with Re T{ATU} =max. Within this procedure, the
(spatia) links are visited in the same lexicographical order-
ing as within the Monte Carlo updating of gauge configura-
tions. We find satisfactory ground-state enhancement with
the parameter choice,,,= 100 anda=2.

From expectation values of Wilson loops, the static inter-
quark potential can be determined in the limit of lafe

e AV, T

(WRT)=Coe™ T 143, & c :
0

n>0

(102

whereAV,=V,—V, denotes the gap between the ground-
state anchth excited statéhybrid) potentials. TheR depen-
dence has been omitted from the overlap coefficients
0=<C,<1 and potentlaltvn, AV The smearing procedure
results in an increased weigB (with respect taC,,, n=1).

n Fig. 2 the resulting static interquark potentialsgat 6.0
'and 8=6.2 are displayed. All ground-state overlaps turn out

to be well above 0.8.
Previous authorkl6,17,19,20have replaced the integrals

SFor simplicity, we suppress spatial coordinates and Dirac indice@Ver interaction times by discrete sums. This results in cutoff

of U, F, andW.

errors due to the finiteness of the integration bourj&qgs.
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(34)—(44)] as well asO(a?) integration errors. Both sources . w . Dﬁf

of systematic uncertainties can be studied and reduced by Vapcg* E f dttzDrlnze‘AVmE 2 3
exploiting transfer matrix techniques. In the following, we m=0Jo m=0 (AVm)

will briefly summarize some of the results we have already (106)
presented in Ref21]. The ratio of correlation functions be-
tween eared Wilson loops, E¢6), is given by®°

The parameter®;? andAV,, can be fixed from fits of the
data to Eq.(103). The hybrid potential&/,, can in principle
also be determined independeni§4]. We leave this for

<<|El|52>>W=2 Dr1n2e*A\A/mt[1+ E#Ze*AVlAt+...]_ future high precision studies on anisotropic lattices. For the
m time being, we evaluate the integrals E(&)—(44) numeri-
(103 cally. The interpolation method used for this purpose is in-
spired by the multiexponential result of the spectral decom-
All constants are understood to dependRunFor details on  position, Eq.(103).
D} andE}?, which are functions of the spatial positions and
the color-electric or -magnetic componeifitg andF,, see D. Integration errors

[21]. The unwanted excited state contributions are sup- The O(v2) potentials are extracted from integrals over

pressed by factorfE;]</C,/C, as well as b_ye_Alet- correlation functiongsee Eqs(34)—(44)] that depend on the
The smallest value okt that appears within an integral over interaction timet in a multiexponential way. In the follow-
interaction times will determine the reliability of the result. ing, C;(t) will denote the two-point function which has to be
The bosonic string picture yields the largeexpectation integrated out in order to determine a potentialat a given
AV, (R)=m/R [43] for the lowest-lying hybrid potential, value ofR. Fori=1,2, C;(t) will be weighted by an addi-
which has been qualitatively confirmed in numerical studiesional factort [Egs. (37)—(38)], for i=b,c,d,e by t? [Egs.
[44,45. (41)—(44)]. Two different methods of interpolating;(t) in
The cylindrically symmetric creation operator that we usepetween the discretevalues have been adopted.
only projects onto states within th# 4 representation of the (1) We perform local exponential interpolations, which

appropriate symmetry grou,, [46]. The lowest con- are expected to yield the most reliable results:
tinuum angular momentum to which it coupledis-0. The

hybrid (L=1) stateE, is the next excitatioi44]. The op- C(t)=Cy(t)eBOT D B (t)=In Ci(t)
erators used as magnetic ears have no overlap withtpe ' | v Ci(t+1)
state, such that all correlation functions that involve a mag- (107
netic ear decay exponentially with Euclidean time. This does
not hold true for some of the correlators within the MD po- for t<t’<t+1 andC;(t)C;(t+ 1)>0. Because of the multi-
tentials anoVZ\E; those electric ears which are not orthogo- €xponential character of the correlation functian statisti-
nal toR have a nonvanishing overlap with 4, such that the cal fluctuationy the sign might change within the given in-
disconnected part in E4103), D22, does not vanish and has terval- Thus, forCi(t)Ci(t+1)<0, we interpolate linearly,
to be explicitly subtracted in Eq$34) and (41)—(44). L ,

Note that theD 2 are not normalized and can be negative. C)=COFCGA+D =GO ~y. (108

However, as a result oiinvarigrllce under time inversion, thg-, ¢ (1) andC,(t) quadratical interpolations are performed
correlation functions fow/; andV; [Egs.(37) and(38)] have  \ithin the interval O<t'<} to account for C,(0)

to vanish att=0, such thatt ,D?=0 in this case. In com- =C,(0)=0, where we demand continuity of the interpolat-
bining Eq.(103) with Eqgs.(34) and(35) or (39) and(40), we ing function and its derivative dt=%.
obtain
1-04 1 ) 1 1 I
R _ - . D12
V2VEB Vg > f dtD%e AVet= > I 10B5fF o o o o © © ® o T §-
" m>0Jo m>0 AV A 2 a4 a4 a4 A =& & =® ® &
(104 1.03 s
. ) . - 1.025 -
with appropriate color field positions, ,n, and components
M1,V1,M0,V,. Equations(37) and (38) yield o t02r BZZrapr ——
1.015 |- par S
_ . R D1m2 perp —a—
V) dttD%e~AVm'= —— (10 i i
1,2 mE>0 . m m2>0 (AV.)? (109 1.01
1.005 | « w w g E]
while from Eqgs.(41)—(44) we obtain, 1 T~ T X T * . . .
0 2 4 6 8 10
t
0The formula applies to the cagg=At;=At,. It remains valid FIG. 3. The ratio of tadpole and HM renormalization constants

on a qualitative level foAt,# At, with At=min{At;,At,}. Q [Eg. (110] as a function ot atR=4, =6.2.
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1-045 b4 T T T T 1 1 2 T T T T 1 1
B ] =6.0 H—
1.04 | g=.6.2 —
1.035 [ © e o . 1.5 [ expectation —
- & & ® ® & O
1.03 b ()
* o
1.025 . = ]
C =
1.02 Bpar —_— E
erp =
1.015 par —— - N i
perp F—2— <
1.01 ]
1.005 ]
¥ L] * * » » » ' ‘ | | . |
1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 0.1 0.2 0.3 /?.4 0.5 0.6 0.7
R r/fm
FIG. 4. The ratioQ as a function oR at 5=6.2 (for larget). FIG. 5. Test of the Gromes relation, E&5). The combination

V;,—V] is compared to the static force as obtained from the param-

(2) In order to estimate systematic integration errors,etrization, Eq(117).
simple linear interpolations of the data have been performed.

Al statistical errors have been bootstrapped. For each pdhat the electric and magnetic ears explicitly depend on the
tential V;, numerical integration has been performed up to dattice scalea and, thus, discretization.
value t=7;, with 7, chosen such that the result is stable As in the low energy regime of interest the renormaliza-
(within ~statistical accurady under the replacement tion constants are likely to receive relevant corrections be-
7—7,—1 for all R. Systematic cutoff errors have been esti-yond one-loop perturbation theory, we apply the nonpertur-
mated from the exponential tail of fits to largetata points ~ bative HM renormalization prescriptidii8] [cf. Eq. (46)].
and have been found to be negligible in all cases when comthe HM procedure is similar to the mean-field-inspired tad-
pared to the statistical error from the numerical integrationPole improvement program, advocated in Ref7]. How-
Typically, ; came out to be 6-8 lattice unit41]. For some €ver, instead of just dividing correlators of eared Wilson
of the correlation functions, the disconnected part had to b&0Ps by the square of the average plaquette,
subtracted. Its value has been estimated by averaging data 1
points within a range of values,t= 7", under variation of Uo=5v MEN 3 ReTiP, ,(n) ), (109
7 until a plateau was reached. Subsequently, the resulting '
value has been subtracted from the correlator, before pra more sophisticated combination is chosen; the various ori-
ceeding to interpolation method4) and (2). In all cases, entations of ears are taken into account, such that the remain-
i —1<r=<17" was found, in support of the self-consistency ing renormalization constants will only differ from identity
of the method. on a three-loog1+0(g®)] or two-loop[1+0O(g*)] level

In what follows, we always state the result from the ex-for operators involving magnetic and electric ears, respec-
ponential interpolation method with the bootstrapped statistively. Details are discussed in R¢R1].
tical error and a systematic error that corresponds to the dif- In the case of tadpole improvement, each electric or mag-
ference between the results obtained from the two methodsetic fieldgE or gB, appearing within the correlators of Eqs.
We find the systematic error to be the dominant source of34)—(44), is multiplied by a constanZ,qpqe=1/Ur. The
uncertainty, which can only be reduced by decreasing thelifference between this procedure and the HM scheme can

temporal lattice spacing. be parametrized in terms of a ratio
_(AIW(IT +1TH])
IV. MATCHING PROBLEM T 2wWu, (110

A. Renormalization of lattice operators . . . .
which depends on the orientation of the daras well asR
The relativistic corrections to the static potential are com-gndt. In Fig. 3 we display this ratio for all independent

puted from amplitudes of correlation functions rather thancolor-electric and -magnetic components R=4 and
from eigenvalues of the transfer matrix. Therefore, they ung=6.2 as a function ot. No significantt dependence is
dergo renormalization. This is in accordance with the fachhserved, such that the renormalization constants within in-

tegrals, Eqs(34)—(44), factorize!! all Q factors saturate into
TABLE II. Renormalization constants for magnetic and electric

ears, compared to their tadpole estimaggyoe— /U .

8 U z 7 7 This behavior is expected from the spectral decomposition of
O tadpole B E . . . .
the correlation functioh21], where the renormalization factor cor-
6.0 0.5936815) 1.6844 1.677®) 1.62164) responds to a constantgl) that only depends oR and the speci-
6.2 0.61363(3) 1.6296 1.6244) 1.57821) fications of the ear. Any residual time dependence has to be at-

tributed to the finiteness aft; .
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TABLE lll. Matching constants between QCD and the effective 1.5 T T T T
Hamiltonian, Eqs(16)—(21), for bottom and charm quark masses at B
B=6.0 andB=6.2. 1k -
C2 C3 >
9
m,, 8=6.0 1.034 1.181 =
my,, B=6.2 1.065 1.344 g
me, B=6.0 1.220 2.159 x
= = =6.0 H— I
m,, 8=6.2 1.257 2.353 = qL gﬂz H |
expectation —
asymptotic values fort=4, within statistical errors of 15T ’
O(10™4). In Fig. 4, theR dependence of) is depicted for 2 L ! L L L
on-axis separations. In the case of magnetic ears, the resul 0.1 0.2 0.3 0.4 0.5 0.6
appears to be rather insensitive to the componeniRarfebor r/fm

electric earsQ changes significantly witiR as well as the FIG. 6. Test of the BBMP relation, E426). The combination
component. However, at large separations, the electric cOny, 1 sy, is compared to its expectation as obtained from the pa-
ponents approach a common value too. We call these plategimetrization, Eq(117), of the static potential.

valuesQg and Qg, respectively. In Table Il, we compare
Ziagpole With the HM  constants Zg=Z 4,0/ Qg and
Zg=Ziagpoid Qe for the two g values. The magnetic renor-
malization constant differs only by less than 1% from the
tadpole value while for the electric fields this difference
amounts to 3—4%. As expected, the disagreement decrea
with the lattice spacing. We find it interesting to notice that

the factorsQ are smaller than ratios of nonperturbative val- scheme. We decide to use th¥™ scheme of Ref[50], and

ues [48] of the coefficient of the clover term within the : ;
. . ) g . compute the running coupling from the average plaquette as
Sheikholeslami-Wohlert fermion actidd9] and its tadpole suggpested in Re[47%l Ping ge paq
t o

guesses. Also, the correction goes opposite in the presen

case;Zg and Zg turn out to be smaller than the tadpole c

estimateZ ,gpole: ay(q)=— 477[ 1
Direct numerical checks of the accuracy of the HM ap- In Up

proach are possible in two ways, namely,by varying the (114

lattice resolutiora and a scaling test of the resdftand ii)

by comparing the data with predictions from the exact

Gromes and BBMP relations, Eq@5)—(27), between SD or  Wherec;=1/3 andby=11/(16w?) for SU(3) gauge theory.

MD potentials and the static potentiakhich does not un- ~ We use the plaquette values of Table Il and H4S)—

dergo renormalization (15 to obtain the matching constants,(x,m) and

c3(u,m) at 3=6.0 andB=6.2, listed in Table Ill. We have

B. Matching constants

In order to calculate the matching constants between the
effective nonrelativistic Hamiltonian of Eq$16)—(21) and
TD, we require values for the strong coupling constant at
scalesg=m/a andq=m,, m, in a given renormalization

T
+2boln<—
aqg

+0.105%,

Vé,rer(w/a;r)—vi,rer{ mla;r)=V(r), (111 assumedn,=4.7 GeV andn.=1.3 GeV for the bottom and
charm quark masses, respectively. The value
r 1
Vb,rer(r)+2Vd,rer1(r):€ V(I)(r)_ 2 Vo(r), (112 8 T T T T T
r °r Be3 e 1 |
, =62 e
Ve redT)+2Ve red 1) =— > V(r). (113 4 | expectation — } | T 4

In Fig. 5 we check our data oW;—V; against the force,
obtained from fits to the static potentialy(r) according to
the parametrization Eq117) below. As can be seen, the two i
data sets scale onto each other and reproduce the static forces 2 + T]
The BBMP relations are only satisfied on a qualitative level =~
as Figs. 6 and 7 demonstrate; substantial lattice artifacts are

el
N '
+ : ;
1

e

)42V, (n)/GeV

responsible for deviations from the expectations in the region
of smallR.

6 e

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r/fm

2Because of the running of the matching constants to the full FIG. 7. Test of the BBMP relation, E427). The combination
theory with the lattice scale, residual scaling violations for the SDV.+ 2V, is compared to its expectation as obtained from the pa-
potentials are expected from Eq80) and(31). rametrization, Eq(117), of the static potential.
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TABLE IV. Fit parameters to the static potential, Eq%15— TABLE V. Parameter values from fits to relativistic corrections

(117). to the static potential that are relevant for spectrosdéms. (118
and (119]. The error in square brackets is the systematic uncer-

Parameter B=6.0 B=6.2 Average value tainty. Where not stated separately, it has been included.
K 0.047912) 0.0253635) K Parameter B=6.0 B=6.2 Average value
e 0.32417) 0.32%17) 0.3216) —
i 0.04212) 0.0515) 0.00828)/\K b 0.15021[01] 0.09713)[03] 3.36(36K
Cy 0.664878)  0.640426) — h 0.0715)[11]  0.0653)[8] 0.0679)
X*INpe 0.4 0.6 —

A. Static potential

Jk=468 MeV has been used to fix the lattice scale. These The lattice potentialVo(R) has been computed from
values are obtained from the quarkonia spectroscopy belovgmeared Wilson loops by use of the method described in Ref.
Since ay(q) depends only logarithmically on, accurate [22]. Our general strategy is to derive interpolating param-
values fora, me, and m, are not required. etrizations of the lattice data pOintS which will enable us to
In the case of bottomonium all constants turn out to becompare the results to continuum expectations. Weak cou-
reasonably close to 1, such that one-loop perturbation theorﬁ”ng continuum and lattice predictions on the potentials
appears to be trustworthy. However, for=m,, the size of have been presented in Sec.[Egs. (76)—(81) and Egs.
the constants indicates that higher order corrections canné®?)—(66), respectively, such that we can correct the lattice
be neglected at present lattice spaciagsm/m, . Increasing data for_the dlﬁ_‘erences betwee_n both tree-level_forr_ns before
the lattice spacing would result in increased lattice artifact&ttémpting to fit them to a continuous parametrization. Let
as well as a larger uncertainty in the renormalization factors

Zg andZg that relate the lattice potentials to their continuum Voconl R) =Vo(R) =g8Vo(R)—Cy, (119
counterparts. In order to achieve a reasonable balance be-
tween the uncertainties involved in both matching proce—W't
dures for the charmonium family, improved lattice actions 1
[51] would have to be considered. Y __ il
Vo(R)=—47mGL(R)+ &, (116
V. RESULTS ON THE POTENTIALS be the tree-level corrected static potentfa].(R) is the lat-

We present numerical results and parametrizations on thic® gluon propagator of Eq53). The static lattice potential
static potential, the relativistic corrections to the central pods fitted to the five-parametéknsatz]includingg andCy of
tential, and the SD and MD potentials. We compare the shorfed. (119 as fit parametets
range SD potential¥/;, V5, andV, and the MD potential
V. to lattice perturbation theory. The short range SD poten-
tials might provide another access to the determination of the
QCD couplingay(/a), quite in the spirit of the role of the
fine structure constant in the analysis of atomic level split-with string tensiork = ka® and Coulomb coefficier¢. The
tings. 1/R? correction, which accounts for the running of the cou-
pling, is not meant to be physical but has been introduced to
effectively parametrize the data within the given range of
values. The resulting parameter values are displayed in Table
IV.13 For technical reasons related to the link integration
procedure, only potential values f&=v2 have been ob-
tained, such that the fits do not incluée=1.

In Fig. 2, the potentiaV; ., from both 8 values is dis-
played in physical unit$as obtained from/x=468 Me\),
together with a fit curve that corresponds to taeerageg
values of fit parameterse=0.321(6) and f=af
=0.00828)/\/k. As can be seen, the two data sets scale
nicely onto each other. Violations of rotational invariance are
removed by the correction method, even at very small values
25 Lu . . . . , . . of R, and the data are well described by the parametrization

01 015 02 025 0.3 035 04 045 05 over the entireg range.
t/fm

- e f
VO,con( R)=KR— ﬁ + @: (117)

AV E(n/Gev®

FIG. 8. The potentiaIVZVE, together with a fit curve of the
form V2VE(r)=—b/r, with b=(0.86+0.05 GeV}. The constants  *The reduced? values stated in the table do not take account of
CE have been subtracted from the data points. correlations between data points obtained at diffeRent
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-0.915 T T T T T T T T T T T T T
-0.92 |- B [ tr B=6.0 —+— - T
-0.925 - R B=6.2 —x— |
L 0.8 | expectation E
093, = I I T
- -0.935 F L% }% =71 I J \- :\% -
E 004 1 ][ iy 3 % T
© —_
> -0.945 | > _ i
< T -
-0.95 - : > 35 fﬂl TI%I { ll
-0.955 |- L 4 : o il %H Jll LT
-096 | p=6.2 —+— - 1
0 ek il
-0.965 | . +
_0.97 1 1 1 1 ] 1 1 _02 L] 1 1 1 1 1
2 3 4 5 6 7 8 0.1 02 03 04 05 06 07
R r/fm
FIG. 9. The potentiaV2V® at =6.2 in lattice unitg(statistical FIG. 10. The spin-orbit potential; , together with a fit curve of
errors only. the form —V/(r)=«+h/r2, with h=0.0679).
B. Corrections to the central potential C. Spin-dependent potentials
Fits of V2VE to the parametrization of E483) Our results on the first spin-orbit potentisl; are dis-
é ' played in Fig. 10. The two data sets show approximate scal-
A b ing behavior. In addition to a constant long range contribu-
V2V§=C§— R’ (118 tion —K, we find an attractive short range contribution that
can be fitted to the Coulomb-likensatzof Eq. (84),
with parameter€E andb have been performed. The result- Vi(n=-zz-K, (119

ing potentialV2V5 — CE is shown in Fig. 8. Results dn are

displayed in the first row of Table V. Systematic errors fromin agreement with our S@) investigation[21]. For these
the integration procedure are included in square brackets. Wene-parameter fits we have constrained the constant long
find the valuesy®/Npg=0.5 andy?/Npe=2.0 atB=6.0 and  range part to the value of the string tension, as obtained from
B=6.2, respectively, for the fit range@=v2. Thesey? val-  the static potential. We find the valués=0.071(12) and
ues refer only to the statistical errors. The fitted curve thah=0.065(9) for 3=6.0 and 3=6.2, respectively. As ex-
corresponds to the averaged vahse (0.86+0.05 GeVY is  pected from Eq(30), h tends to decrease with.
included in the figure. From Eq28) and the matching con- Taking the Gromes relation and the running coupling im-
stants of Table I, we expect scaling violations of about 10%proved effective parametrization of E(L17) into account,
between the two data sets. Apart from the regionwe expect
r<0.15 fm, which is polluted by lattice artifacts, this effect
cannot be resolved within statistical accuracy. , e—h 2f

In Fig. 9, we displayV?V® in lattice units at3=6.2, Vo) =—2 13- (120
where the error bars of this plot refer to the statistical uncer-

behavior. The larg® data can be parametrized by a con-(g4), which accounts for a weakening of the effective cou-
stant. Deviations from this constant at Sm"/alues, which p||ng with decreasing source Separation. From 61) we

are hidden within the systematic uncertainty of the integrapxpect the parametrization

tion, can be due either to lattice artifacts or to a titike

admixture that one might expect from E9). The numeri- 3(e—h) 8f
cal values (with statistical and systematic errprsare Vi(r)= - = (1271
CB=-1.021)(27) andC8=—-0.931)(24) atB=6.0 and
B=6.2, respectively. These values have to be related t

E_ _ E_ _
C,=-1.002)(8) and C;=-0.921)(8), such that Prior to comparing the data to the above continuum pa-

B_ cE withi o . ;
Ca=C, within errors. _ _ rametrizations, we attempt to correct for lattice artifacts. For
We conclude that the corrections to the central potentiajis purpose we define

agree reasonably well with the expectations of (83), with
a parameteb~4x~0.9 Ge\2. The strength of the effec- A 4
tive Coulomb coupling is increased by about 2% in the case SVy(R)=

of the Y family and 35-40 % ford/ ¢ states, due to these Crg
correction terms. The self-energy-type contribution?f&'ﬁ
andV?2V® cancel each other at the present level of statistical
accuracy.

r3 r

o approximateVs.

3

~ 1
Vé,treé R) - ﬁia (122)

4
Fd

3

~ 3
OV3(R)= VaredR)~ =3 (123

O
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TABLE VI. Fit parameters for the SD potential, and V 8 T T T T T

[EqS-(12‘D—(127)]- 7k B=6-0 —_— -
B=6.2 <
Parameter B=6.0 B=6.2 8 expectation 7
c, 0.27434[17] 0.23916)[58] E i
f, 0.02332)[07] 0.061(15)[05] g 4 T
(0P 0.13840)[01] 0.13319)[06] ‘g 3 J
x5/ Npe 1.0 1.1 S, i
C3 0.25315)[33] 0.23045)[28]
fa 0.05411)[41] 0.04736)[36] 1 T
g3 0.16521)[34] 0.17107)[29] 0 T i T
X5/ Npe 0.4 1.0 4 L ! L ! ! !
0.1 0.2 0.3 0.4 0.5 0.6 0.7
r/fm
The lattice tree-level potentia@éytreeandvgytree are defined FIG. 12. The spin-spin potentials ¢ in comparison to the
in Egs.(58)—(60). We then correct for lattice artifacts, continuum expectation from E¢121).
Vé,con( R) :Vé(R) - gzﬁvé(R), (124

expectation and the two data sets from the diffey@ralues
- - - scale nicely onto each other, after we have corrected for
V3.con R)=V3(R)—9g36V3(R), (129  tree-level lattice artifacts. N
In Fig. 13, the spin-spin potenti®, is displayed in lattice
units for the twog values. An oscillatory behavior is ob-
served which is similar to that of the latticefunction, ex-
(126 pected at the tree level, E@1). Moreover, the two data sets
nearly coincide with each other, in distinct violation of scal-
ing. Corrections to th& function, which might scale with an
— 3¢, 8?‘3 appropriate dimension, should account for the differences
VaconlR)= 75— R (127 petween the two data sets at snfall

and fit the potentials to the followingnsdze

~, (o) Zfz
V2,con£R): ﬁz_ E’?'

whereg;, ¢;, andf; are fit parameters. The resulting param-
eter values are shown in Table VI. Again, th&values refer
to the statistical errors only. We intend to compare the MD potentials to E(#6) and

The fitted values, and f5 are in agreement witli as  (87)- Since, in accordance with these expectations, the MD
extracted from the static potential. Alsn, andc, agree with ~ Potentials are rather small, compared to the SD potentials,
e—h as computed fronﬁlo andr/l reasonably well. Only the the data suffer more from statistical noise, and we do not

coefficients of the correction terngs andgs turn out to be attelmptt rtonrﬁ)ire]rform fllijrl]ly "f]]fje?e?r?etn; 1:|/ts.b|n r?ddlrtlorr?, t\r/;/ze d
about a factor of 2 smaller than in the case of the staticgeg ectru g coupling efiects that have been parametrize

potential. The spin-orbit potentiar o and the spin-spin y f in the case oW, V;, andV3. We have to subtract. the
potential Vg ., are displayed in Figs. 11 and 12, respec_self:energy:related constartg andC, from the data points
tively, together with the theoretical expectations. In bothon Vi, and Vy, respectively, prior to scaling the data sets
cases, we observe reasonable agreement between data and

D. Momentum-dependent potentials

1.2 T T T T T T 015 _E ﬁ=6'0 —— 7
] % B=6.2 r—i
1 B=6.0 —+—
B=6.2 —>x—
0.8 [\ expectation . 0.1 J
o “\“ I
2 06 % . _ X
o €
S - N _ -1 N 005 I =
g 0.4 N >
S 02r A e . {
Xyt Xt LT I RN . I -+ T % _________ L.
0 ﬂ-:ﬁd TITXT 0 £ X & ﬁx i % T
02 | -
_04 1 1 1 1 I 1 _005 1 1 1 1 1 |
0.1 02 03 04 05 06 07 2 3 4 5 6 7
rifm R
FIG. 11. The spin-orbit potentia¥; .., in comparison to the FIG. 13. The spin-spin potentizid}’4 for the two B values in

continuum expectation from E¢120). lattice units.
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TABLE VII. Fit parameters for the MD potentialg,,, V., and 1.5 — T T T T T T
Vq [Egs.(120 and(132)]. B=6.0 ++—i
f=6.2 <
Parameter B=6.0 B=6.2 1 expectation — T
Cy —0.0824(71)2] —0.0681(38)1]
>  05px % 1 .
Ob 0.19649)2] 0.15641)[1] 2 { } B % -
X2/ Npg 3.0 5.9 g; ; 1 ] 21 Ll 1
gc 0.30435)[4] 0.21912)[2] = 0 T il 1
X2/Npg 2.4 1.9
Cq —0.116(4]37] —0.122(2]32] 05 F i
X/ Npe 0.5 1.2
-1 1 1 1 1 1 1 L
R - 01 015 02 025 03 035 04
onto each other. We also correét, and V. for tree-level r/fm

lattice artifacts. For this purpose we define

SVp(R)=

Aqr
~ 2 Vb tree( R) (128)
Crg

1
(R) gz Vc red R)+ 55 SR’ (129

The tree-level lattice expectations 1\}55 and\A/C can be com-
puted from Eqs(62) and (63).
We fit the data to the parametrizations

2e 1
Vo(R)= 55— 5 KR+CotgpdVy(R), (130
~ e 1 ~
Ve(R)=— 55— 5 KR+09:0V(R), (13D
- 1 -
Vo(R)=~ 5 KR+Cq, (132

where we have constrained the parameteend K to the
values, obtained from the fit to the static potential.
The resulting parameter values are listed in Table VII. In

1 T T T T I 1

0.5

FIG. 15. The MD potential-V, onin comparison to the con-
tinuum expectation from Ed86).

accordance with the BBMP relation, E¢26), we find

—2C,—4C4=Cy (within errorg for both 8 values. The cor-
rected potentials
Vb, conf R) =Vp(R) = 9p6Vp(R) = Cy, (133

Vc,con( R):VC(R)_gcévc( R),
as well asvy— C,4 andV,, are displayed in Figs. 14-17. The
expectations, Eq:{86) and(87), are included as welisolid
curves. TheX INpe values of the above fits are larger than

1 for V, andV, which means that the correction for lattice
artifacts of these potentials is not as successful as it has been
in the case ofV;, and V3. This can be understood from the
fact that the MD potentials are more strongly affected by the
infrared behavior of the gluon propagator, such that higher
order corrections might be important, shows substantial
lattice artifacts toqFig. 17). In the case oW/, the smallR

data lie below the curve, indicating that the Toefficient

2e/3 might have been overestimated. This effect cannot be
understood in terms of the tinfyr? correction that has been
omitted. However, by allowing for a dterm with a coeffi-

(134

0.8 T T T T

0.6 | B=6.0 H— T 7
[3=§,2 4

04 - expectation — ]

T E 0.2 % A
< M B i
2 I F 0[S T
=
> -0.5 H 02 | ]
B=6.0 +H—
1l B=6.2 +x— 04 y
expectation —-
-0.6 1 ] | 1 1
0.1 0.2 0.3 0.4 0.5 0.6
A5 ] ] ! 1 1 r/fm
0.1 0.2 0.3 0.4 0.5 0.6
r/fm

FIG. 14. The MD potentiaVy, ¢ in comparison to the con-
tinuum expectation from Eq86).

FIG. 16. The MD potential-Vy in comparison to the con-

tinuum expectation from Eq(87). The constantC4 have been
subtracted from the data points.
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08 T T I T T 014 1 1 1 1 1 T
] data ——
06 [ 012 | tree level o A
] oneloop e
01 .
> ] 0.08 | .
8 e A T —_
= 1 . % I } i:a 0.06 | .
= .
X RET -
0.4 B=6.0 —H— 114 0.04
2 P -
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08 | _ 3 S— *8 85 o ] .00/
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FIG. 17. The MD potential-V, in comparison to the con- FIG. 19. Same as Fig. 18 f0~1‘3 [Egs. (59 and (60)].
tinuum expectation from Eq87).

asV., agreement is only achieved on a qualitative level. The
fit parameters are displayed in Table VIII.

From the analysis of the static potential, we expect
cfze—h~025, compared to the tree-level lattice expecta-
Nonsc=0.106 anct=0.102 for3=6.0 andB=6.2, respec-
ively, determined from the lattice couplings=3/(278).

n agreement with the perturbative expectation, all fitted

' decrease with increasing We findc, to be about 5 times as
large as the naive tree-level value; this factor reduces to 2.4
in the case o¥; and 1.9 forV; andV, as the relevant gluon
momenta within these potentials are larger and thus more

. . erturbative.

In F|gs._ 1%:,21' we focus on the smﬁdlpghawor of the P In order to investigate if remaining differences between
SD potentials/y, ...V, and the MD potential/c. We show a5 points and renormalized tree-level expectations can be
only the 8=6.2 results, which are in qualitative agreementeyplained in terms of higher order perturbative corrections,
with those obtained a8=6.0. Besides the data points, the \ye attempt to model running coupling effect. The only addi-
figures include the tree-level perturbative expressions of Eqgional diagrams that contribute ¥, at O(g*) on the lattice
(58-(61) and Eq. (63. The normalization constants (and in the continuuinare one-loop corrections to the gluon
c=Cras have been obtained from fits to the first seven dataself-energy. The renormalization of the coupling, emanating
points.V, andV; are well described by these one-parameteffrom these diagrams, has been computed on the lattice for
fits and deviations of the data from a continuous curve can ben-axis separations of the sourdé®,53. One can account
understood in terms of this lattice expectation. ¥gras well  for this correction by building in a running coupling constant
a(q) into the gluon propagator of Ed53), in momentum
space. Instead of attempting to compute the correct lattice

cient of abou®/8 in V4, the expectation can be brought into
agreement with the data. Within V. the 1f coefficiente/2
appears to be slightly underestimated.

We conclude that the data are in qualitative agreeme
with the expectations, Eq$36) and(87), although a quanti-
tative comparison fails as there are indirect indications tha}
V4 andV, might contain small Coulomb-like contributions
in addition to the linear term.

E. Comparison with perturbation theory

0.14 T T T T T T
data H—
0.12 - tree level o - 0.14 - , , , . T T T
oneloop I data i
01 ] 0121 tree level © ]
- oneloop e
0.08 | 0.1 P
T ] 0.08 5 -
S ool °*8 i
= 0.06 | ¢ -
0.04 | § . o L J
55 > 0.04
0.02 - 2 §S - 0.02 | ~
2 8
R @é % 5 é 0 T L) & ; I 8g G o
o * 5
-0.02 |- I E
-0.02 L 1 1 1 1 1
2 3 4 5 6 7 -0.04 | 4
R -0.06 ] ? 1 1 1 ] 1 ]
FIG. 18. Comparison of the lattice potentid}, at 3=6.2 to 5 2 25 3R 35 4 45 5
tree-level lattice perturbation theofiq. (58)] and to the one-loop _
model of Eq.(135). FIG. 20. Same as Fig. 18 faf, [Eq. (61)].
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0.3 T T T T T TABLE IX. A parameters from the one-loop running coupling
analysis.
0.2 | x _
° Potential B Ak X?INpg
o1f =3 2p 33 i { g
? % io A 6.0 0.18"3 1.25
- of- ;o1 1 6.2 0.20°% 0.93
3 1 45
3 Vs 6.0 0.090°3¢ 0.59
- 0.1 | . +30
6.2 0.091"32 1.15
02 sat V, 6.0 0.087°33 45
0.2 ata H— - 16
tree level © 6.2 0.056' 13 12.7
03 -
0.4 ! ! ! . ! scale parametera; (for V(")) can differ from each other.
2 3 4 5 6 However, one finds\,= A, [24,55,50Q.

To remove the unphysical pole g&= A, an infrared pro-
FIG. 21. Comparison of the lattice potential/, at 8=6.2 to  tection can be built into the propagator by substitutirigy
tree-level lattice perturbation theory, E§3). ty=In(g%A%+d? with a constanid. The smallest momen-
tum on the lattice is g==/(aL,). We choose
sum, we model this effect by the corresponding continuunfi’=max0,e—7?/(aL,A)?), wheree is the Euler constant,
expression to guarante¢=1; d? is negligible at large momentg= 1/a.
Notice that within the SD potentials the infrared region is
suppressed by powers gf such that the results are rather
' (139 robust with respect to the choice @for other specific details
of the protection scheme.
- (A2 A2 _ 2 _ 2 Fits of the one- and two-loop running coupling improved
with t=In(q7A%), b=b,/bg, bo=11/(16m"), and by expressions to the first four to eight data points of each po-

=102/(16°)°, where we replace” by its lattice counter- tential have been performed is the only free parameter
o s o ;
partq®=4;sirr(q/2) [18,54. A is a QCD scale parameter within these fits. The results of the one-loop fits to seven data

that can be related to the usual schemes via perturbation

. “points are included in Figs. 18-2@olid circles. The A
rgggrlé Etzisss)’(?)?é;?gndcl)i‘fg:ﬂg%? :ne;\'\gqe&;%ev\?i?r:rgci (;) ne parameters remain stable against the variation of the fit range

) within errors. Since the data are described by the tree-level
is small. _
. I . . formulas equally well, we are unable to decide at present
In the continuum, contributions that appear in addition to - . ~
whether the deviations between expectation and dat& for

a pure renormalization of the gluon propagator can be re-

summed into a single running coupling, using renormalizaSa" Pe explained entirely in terms of such higher order per-
urbative corrections.

tion group arguments. On the lattice rotational invariance i§
grotp arg In Tables IX and Tables X, results on one- and two-loop

broken and the direction af enters in addition to its abso- . .
gstimates of\ parameters are presented. We observe scaling

lute value; hence, such arguments do not apply. Bearing th )
in mind, we will nonetheless attempt to model higher orderPetween the two sets of parameters obtained At=6.0 and

perturbative effects by the continuum running coupling of3=6-2. The two-loop values are about twice as large as the
Eq. (135 corresponding one-loop values. However, toee- and two-

loop) «i(q) values at a scalg=mw/a are consistent with
each other. We conclude that the one-labwalues should

-1
a(t)=

1+b
t

b
1+? Int

47Tb0t

In the case of the SD potentials,,...,V4, not only the

luon self-energy contributes 1©(g?#), but also exchange : . : ;
giagrams betvveggn the ears, inco(r%grating a three-gluo?w veP—e considered as effective and not physically meaningful.

: , .

tex. In the continuum, these can be resummed into an effec- oM our 3”79400'0 fits  to Va, we obtain

tive running coupling. As a result of this resummation, the@v(7/860 =0.13174 _and av(7'r/a6.2)=0.124_“:4 at g=6.0
and B=6.2, respectively. The corresponding two-loop re-

_ 6 _ +5 ,
TABLE ViIl. The constantc=Cras from the weak coupling  SUltS ay(mlagd=0.128"g and ay(m/as ) =0.121¢ are in
analysis.

TABLE X. A parameters from the two-loop running coupling

Potential B c X?/Npe analysis.
V. 6.0 0.589) 4.1 : 2
oo 0.454) s Potential B Ak x?/Npg
A 6.0 0.25119) 0.84 A 6.0 0.4173 1.32
6.2 0.23812) 1.30 6.2 0.45'8 0.96
Vs 6.0 0.19222) 0.34 Vs 6.0 0.22°2 0.59
6.2 0.18215) 0.46 6.2 0.22"! 1.15
V, 6.0 0.21717) 10.3 V, 6.0 0.19'% 55

6.2 0.19913) 12.0 6.2 0.13'3 14.2
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nice agreement with these numbers, while from the averagg= — S L,L+S(J=L+S). Conventionally, the states are

plaquette [47] we obtain ay(m/agd=0.149 and |abeled byn?S*1L; where the letterS, P, D, F are used for
ay(m/ag ;) =0.138. We conclude that higher order perturba-|. =0,1,2,3, respectively. From parametrizations, E§®),
tive corrections as well a®(a?) discretization errors, under (84), and(85), we find (for equal masses

which localized quantities like the plaquette are more likely

to suffer, are responsible for ther230 deviations between 1 k 4cy(m)(e—h)—e\L-S
the ay values, determined from two different observables. Vs == || = 3 -
e—h 1
VI. APPLICATION TO QUARKONIA SPECTRA +3¢2(m) ( = ) T+ 2 [7¢3(m)—3]
With the potentials derived from quenched QCD we
would now like to predict experimental quarkonia levels. S-S,
The spectrum will be computed numerically from the two- X 8m(e—h)s%(r) : (140
body Hamiltonian, the structure of which will be summa-
rized in the next subsection. with
A. Hamiltoni . 1 3
amiltonian S-S _Llsse1)- _) ' (141
Within the spectroscopy study, we restrict ourselves to the 3 6 2
equal mass casen=m;=m,. The starting point is the 1
Hamiltonian L-8=5 [+ D-L(L+D-S(S+1)], (142
H=2(m—ém)+Hg+ 6Hjn+ SH e+ SHep+ SHyp »
(136 g 6(L-S)?+3L-S—2S(S+1)L(L+1)
where ~Ri=%s 6(2L-1)(2L+3)
(143
PP
Ho="5 +[V(r) = dHcd(r)] (137 The one-loop values of the coefficierts(m) andcs(m) for

m=m, and m=m, at our lattice spacings can be found in
contains the Coulomb-like part within the relativistic correc- Table lll. The values of the parametersh, andb are listed
tion to the central potential. We numerically solve the radialin Tables IV and V.

Schralinger equation foH,, and treat Based on the parametrizations, E@6) and(87), we find
the MD correction Eq. (21)]

p* Cc3(m) 3
OHin=— 73, OHee=— — med(r), K € K €)1 £
Vip(1)=— === p?~| == 53| = L2~ ir-p,
6r r 6 2r)r r
0Hsp=Vsp, SHwp=Vmp (138 (144
as perturbationf41]. where
For the particular parametrizations, Eq82) and (83),
one obtains the central potent[&q. (19)] o i+ 1 1 PR (145
mi  m; mymy)’ mym,"’
Vi) = _§+1 Cc3(my) + C3(my)
()= w1 r 8\ m m, i.e., K is a dimensionless parameter whifecarries the di-
mensionm™ 2. Note that a string of constant longitudinal
x| (2k—b) 1+47Teé\3>(r) (139 electric field with energy densitk [58], connecting two
r ' pointlike particles with masse®s; andm,, gives rise to the

classical correction term
The perturbationéH. is due to the last term within this
equation. We have omitted the constaftg, C2, andCE K1,
from the above formula. The latter two of these contributions "6 r L%
cancel each other within the statistical accuracy of our lattice
results while, as we shall see belo®, can be absorbed into which appears in the abowé,,. One obtains the expecta-
a redefinition of the quark masses. Tkl and 5%(r) terms  tion value,

have their origin in the Darwin interaction while thér term

is due toV2VE. The mass-dependent correction terms ex- . _

plain the phenomenological flavor dependence of the central “\p3rP =2m(&%(n), (148
quarkonium potential, as obtained from fits to the spin-

averaged charmonia and bottomonia spel@ia4]. such that Eq(144) can readily be treated as a perturbation.

Two-particle bound states can be classified by a radial We have neglected the constaftgandC,, of V4 andV,
excitationn, the orbital angular momentuin, the total spin  from Eq. (144). Inclusion of these terms would result in a
S=0,1 (5=S,+S,), and a total angular momentum correction
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TABLE XI. The bottomonium spectrum. TABLE XII. The charmonium spectrum. Only the states that are
identified by an asterisk lie below tH2D threshold and have been
n @STHL, B=6.0  p=62  e=0.40 Experiment  used to fix the scale and quark massn, .
1;80 9.477 9.476 9.415 n ST, =60 B=62 e=0.40 Experiment
1°S, 9.521 9.526 9.504 9.460
21s, 9.980 9.980 9.961 11s, 3.010 3.001 2.966 2.980*
233, 10.007 10.010 10.008 10.023 13S; 3.134 3.143 3.175 3.097*
31s, 10.328 10.328 10.311 21s, 3.501 3.582 3.560 3.594*
33, 10.351 10.354 10.348 10.355 23S, 3.685 3.688 3.705 3.686*
4's, 10.619 10.619 10.597 315, 4.017 4.004 3.978
433, 10.640 10.642 10.630 10580 33S; 4.102 4.098 4.106 4.040
1P,y 9.879 9.879 9.889 41s, 4.371 4.354 4.324
1%P, 9.866 9.866 9.867 9.860 43s, 4.452 4.442 4.442 4.415
13P, 9.878 9.878 9.886 9.892 1P, 3.468 3.472 3.486
1%P, 9.882 9.883 9.895 9.913 13p, 3.452 3.451 3.442 3.415*
2P, 10.238 10.238 10.243 13p, 3.479 3.482 3.490 3.511*
23P, 10.226 10.225 10.223 10232 1°P, 3.465 3.471 3.491 3.556*
23p, 10.237 10.237 10.240 10.255 2'P; 3.915 3.913 3.916
23p, 10.241 10.242 10.249 10.269  2°3P, 3.893 3.886 3.870
1D, 10.120 10.121 10.136 23p, 3.922 3.919 3.917
1°D, 10.121 10.121 10.134 23p, 3.916 3.914 3.924
1°D, 10.121 10.122 10.137 11D, 3.764 3.767 3.782 3.770
13D, 10.119 10.120 10.137 13D, 3.791 3.790 3.796
13D, 3.777 3.778 3.792
13D, 3.744 3.748 3.770
1 11\,
AVyp= 4[ mi+m§ Cyt2 m1+m2) Cb}p ,

(147) mined by use of the two methods, we obtain
(ko/k1)Y?~1.0025 and k,/x;)?>~1.035 for bottomonia
and charmonia states, respectively. The tiny size of the de-
viations of these ratios from unity can be understood from
the fact that a simple rescaling of the mass works rather well
as the following ratios indicatenf,— ém)/m;~1.0015 and
a1.012, again for bottomonia and charmonia, respectively.
This illustrates that althoughm can be quite substantial, and
thus the uncertainty in the quark mass can be large, the im-
pact of this parameter on the predicted spectrum is negli-
K gible. Hence, we adopt method 1: i.e., we $at=0 and
' allow for two free parametens and .

In the case of bottomonia, ten states have been observed

where we have exploited the relatioy,=—2C,—4Cy
from the BBMP constraint, Eq27). Under the assumption
that |Cp|<2|C4| (which is supported by our numerical re-
sults, the MAL picture, and tree-level perturbation theory
the above shift in the MD potential can be absorbed into
redefinition of the quark masses of E@.6) at the given
order of the Hamiltonianm,—m;+ C,/2. Notice that the
parametem of Eq. (136) differs from that of Eq(16) by this
constant. If we interpret the fit paramet@y, obtained at a
lattice spacinga, as the self-energy of a static quar
Eg(u=mla)~a 1C\/2, the combinationm—3&m within

Eq. (136 should approach the heavy quark pole mass.  and we minimize our data with respect to all these states.
The BB threshold is at about 10.55 GeV. For charmonia, we
B. Spectroscopy results chose to optimize the spectrum only with respect to the

The physical scale, the quark mass and the energy Seven states below tH2D threshold at about 3.7 GeV. The
shift m have to be fixed from experiment, before predic-results for3=6.0 andg=6.2 are displayed in Tables Xl and
tions can be made. Note that the parametewithin the  Tables XII for bottomonia and charmonia, respectivély.
Hamiltonian Eqs.(136)—(145) is not the bare quark mass, We find agreement on the level of about 2—3 MeV between
but contains the static quark self-energy. The value of théhe results obtained at these two lattice spacings for botto-
dimensionful parametex determines the scale. We attempt monia, compared to about 10 MeV for charmonia. The dif-
to estimate thépresumably smallimpact of the parameter ferences are likely to reflect the uncertainties in the matching
5m on our results. Therefore, we follow two strategies: wecoefficientsc,(m) andcg(m) which increase with decreas-
minimize the squared differences between our prediction#g quark mass.
and experimental levels under the assumptbom= 0, with
respect tan and « [method(1)]. Alternatively, we determine

m agg K from minimizing deviations from the splittings  14the effect of the statistical errors of the fit parameters on the
M(n?>"1L;)—M(1°S;). Subsequentlygm is tuned to re- spectrum is negligible, in comparison to the systematic uncertain-
produce the 1S; experimental statfmethod(2)]. The latter ties of the approximation, particularly those of the matching con-
method results in the ratiosém,/m,,~0.04 and stantsc;(x,m). For this reason, we do not attempt to include any
om./m,~0.22. However, for ratios of the scales, deter-errors into the tables.
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n's, n®s; n'P, n®p, n®P, npP 2 : C g ' )
(o} 1 1 0 1 2 r<dVo/dr=1.65 is satisfied. Withe=0.40, we find

Jk=452 MeV andm,=4.72 GeV. The scale, remains
unaffected under this change & From the charmonium
spectrum, we find

FIG. 22. The bottomonium spectrum. Tlee=0.32 results are
from the 3=6.2 analysis.

The 8=6.2 results are compared to experiment in Figs.
22 and 23. In order to estimate the effect of quenching, we

have included the results obtained for the parameter Valu‘Ia'he errors correspond to the variation between the results

e=0.40, Wh'c.h IS our estimate, hased on Ridfd], of the obtained at the twgs values. In comparison, the sea quark
value one might obtain with three active flavors of sea

quarks. In the case of bottomonia states, an average deviaticrf}]lc’deI with ~ €=0.40 yields ik~440 _MeV gnd
between prediction and experiment of 12.4 MeVgat 6.0 mc“1-38p§|3eev- The abovimgesults are consistent with pole
and 12.8 MeV aj3=6.2 is observed. With a value=0.40, massesn, _:4'7(2) andme :1'4(.2) GeV, where the er-
this deviation is reduced to 9.5 MeV. For charmonia, we0"s ar¢ esnmlated from thém/m ratios. ' :
obtain an average deviation of 22.0 MeV for b@values. From th_el fit to ten bottonlcinlum states, we find lattice
The parameter choice=0.40 changes this to 23.0 Mey, SPacingsa “~2.1 GeV anda "~2.9 GeV for the twop

indicating that the charmonium spectrum is rather insensitivé/2/U€s: respectively, which are in reasonable agreement with

towards quenching effects on the running of the QCD COu_estimates from the light hadron spectrum. If we forced the

pling. This can be understood from the fact that the waveverage of the 25-1°S and thel °P-1°S splittings to co-
functions are broader, such that the spectrum is less affectd@cide with the experimental counterpart, as is normally done

Jk=4504) MeV, m,=1.331) GeV. (149

by short distance physics. in NRQCD studies, we obtaina '~2.5GeV and
From our fit to the bottomonium spectrum, we obtain the@ - ~3-4 GeV, respectively, which is in agreement with
following parameter values, both gt=6.0 and3=6.2: NRQCD estimatef6]. As a result, however, the®P masses
would come out to be significantly heavier than in experi-
Jk=468 MeV, m,=4.68 GeV. (148  ment.

In order to investigate the reliability of the nonrelativistic
The above string tension value yields a Sommer sfa8%  approximation, we have computed average radii and veloci-
ro~0.49 fm.r, denotes the distance at which the conditionties of various quarkonia states. The results are displayed in
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TABLE XIII. Average velocities and quark separations in bot-  We conclude that the deviations between experiment and

tomonia and charmonia. The values correspond to the parametgrediction can be explained in terms of quenching and higher
choicee=0.40, which has been used to model the effect of dynamigrder relativistic corrections, i_eo(v4) terms as well as

cal sea quarks. O(Inm/) andO(m/ 1 Inm/) uncertainties in the matching
coefficients of theO(v?) terms. Inclusion of sea quarks
2 2

nL (vb) (ve) V(rp)/fm V(re)/fm seems to improve agreement with experiment but is unlikely
1S 0.080 0.27 0.24 0.43 to reduce deviations by more than an average of 4-5 MeV
25 0.081 0.35 0.51 0.85 per state. In the case of bottomonia, we estimate the impact
3s 0.096 0.44 0.73 118 of higher order correction terms to be about twice as large.

' ' ' ' For charmonia the effect d(v?) corrections might be as
4S 0.112 0.52 0.93 1.47 . : 9 .
1p 0.068 0.99 0.41 0.67 large as 10—-20 MeV while the impact of the matching con-
op 0'085 0'39 0'65 1'04 stants of theD(v?) terms is even larger. Thus the agreement
1D 0'075 0'34 0'54 0.87 on a 20 MeV level appears to be somewhat fortuitous. How-

ever, this outcome is not a complete surprise since many
effects seem to affect the spectrum as a whole, rather than
individual splittings, and can compensate each other.
Table XIlll. The heavy quark velocities within bottomonia In this first glimpse at the spectrum, we have not yet
range from(v2)=0.07 to(v2)=0.11, while for charmonia included a running coupling into the parametrization of the
we obtain the interval 0.27(v2)<0.52. The radial botto- potentials. The SD and MD corrections as well as the cor-
monia wave functions  g,,(r) [ Wnim(r, Q) rection to the kinetic energy have so far been treated as first
=[gn(r)/r]Y|m(Q)] are shown in Fig. 24. order perturbations only. We will improve on these two
We attempt to estimate the approximate sizeQd*) points in a detailed spectroscopy styég], in which we are
corrections, using the ratiB=(v*)/(v?), and findR,~0.1  going to elaborate on the effect of higher order relativistic
and R.~0.4. Under the assumption that the coefficients ofuncertainties on individual states in a more systematic man-
such corrections have the same size as those 0O(e) ner.
corrections, we estimate an uncertainty of 4 and 15 MeV for
bottomonia and charmonia, respectively, due to neglecting VII. CONCLUSIONS AND OUTLOOK
higher order terms irv. The uncertainty of the matching . ) L
coefficients between QCD and the effective nonrelativistic e have determined the complef§v ) relativistic cor-
theory is another source of systematic biases. We have afctions to the static interquark potential in @ gauge
sumed that the coefficient(m), in front of the correction to theory. We find reliable renormalized potentials with good
the kinetic energy, equals 1. As can be seen from Table 115¢@ling behavior. As in our SQ) study[21] we report clear
such coefficients can easily differ by as much as 20% frorﬁewdence_ for a_I/2 scala_lr exchange contribution in the long-
this tree-level value in the case of bottomonia and by a factofange spin-orbit potential; at the level of 20% of the Cou-
of 2 for charmonia. Such an effect @p(m) would result in lomb part of the static potential at inverse lattice spacings of
shifts of certain bottomonia states by about 4 MeV and char2—3 GeV. The other SD potentials are found to be short
monia states of up to 50 MeV. Higher order corrections toranged and are well understood by means of perturbation
c,(m) andcg(m) will also have an effect but at present the theory. From V,, we obtain the result ac,f_o(u)

value ofc,(m) constitutes the dominant uncertainty. =0.124+0.005+0.003 atu=~9.2 GeV, where the first error
is statistical and the second one accounts for the differences
T between one- and two-loop estimates. This value is signifi-
' | | JS cantly smaller than the estimate,(u)=0.138, obtained

from the average plaquette.

All MD potentials contain contributions that are linear in
the quark separation and are in qualitative agreement with
minimal area law expectations. The poten¥&VE, which
modifies the central force, is found to be Coulomb like and
has a significant effect on spectroscopy since it increases the
effective Coulomb force by 2% in the case of bottomonia
and by as much as 35-40 % for charmonia. A similar behav-
ior is expected from dual QCID61].

As an application, quarkonia spectra are determined. We
are able to reproduce the experimental levels with an average
error of 12.5 MeV forY states and 22 MeV fal/ s states. A
reduction of these deviations should be achieved by incorpo-
rating improved parametrizations of the lattice potentials that

—_
e
A
|
|

g(r)/Gev'/?
I (] 1 1 |

-1.0 44— PP VI B account for a weakening of the effective QCD coupling at
0.0 0.5 1.0 1.5 2.0 small separations into the spectroscopy. Such a refined
r/tm analysis is in progred$0]. We estimate a further improve-

ment of up to 4 MeV per state if dynamical sea quarks are
FIG. 24. Bottomonium wave functions. included, while higher order relativistic corrections and un-
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certainties in the perturbative matching constants might shiftheory at a scale.= #/a and QCD small, one would like to
certain levels by as much as 5-10 MeV for bottomonia andperate at spacingg~ 7/m where m might be either the

up to 50 MeV for charmonia states. Uncertainties in(®r-  bottom or the charm quark mass. The latter would require an
turbative matching constants between QCD and the effecimproved lattice action.

tive nonrelativistic theory are likely to have a larger impact Note added in proofAfter completion of this article we
than O(v*) corrections, and should be reduced. Our resultecame aware of a publication by Brambilla and V488,

are compatible  with | heavy quark pole massessymmarizing theoretical expectations on the potentials from
mp**=4.7(2) GeV andng®*=1.4(2) GeV. the stochastic vacuum model, dual QCD, and MAL.

The approach presented in this article can be used to ob-
tain optimized wave functions for creation of a quarkonium
state with particular quantum numbers within the comple-
mentary lattice NRQCD methob2]. We intend to extend
this application to discrete finite boxes with periodic bound- G.S.B. thanks the Physics Department of the University
ary conditions, in order to shape even better basis states awd Glasgow for hospitality during part of this work. During
to simulate finite size effects that one might expect in latticehis visit he enjoyed fruitful discussions with Sara Collins and
NRQCD studies. From Fig. 24, it is obvious that on volumesChristine Davies. He also acknowledges inspiring discus-
with a spatial extent of typically less than 2 fm, excited statesions with Nora Brambilla and Marshall Baker. G.S.B. has
wave functions become squeezed, and the corresponding doeen supported by EU Grant No. ERB CHBG CT94-0665
ergy eigenvalues might be significantly affected. and PPARC Grant No. GR/K55738. We appreciate support

Application of the Schrdinger-Pauli approach to the from the EU (Grant Nos. SCi-CT91-0642 and CHRX-
spectrum o3, states as well as a determination of quarkoniaCT92-0055) and the Deutsche Forschungsgemeinschaft
decay constants is in progress. It appears worthwhile to corfDFG Grant Nos. Schi 257/1-4 and Schi 257)3-Qomputa-
sider calculations on anisotropic lattices, to reduce systentions have been performed on the Connection Machines
atic uncertainties on the potentials, arising from the temporaCM-5 of the Institut fu Angewandte Informatik in Wupper-
discretization of the lattice. In order to keep uncertainties intal and the GMD in St. Augustin. We thank Dr. R. Mel for
the perturbative matching constants between the effectivbis support.
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