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For the first time, we determine the complete spin- and momentum-dependent orderv2 corrections to the
static interquark potential from simulations of QCD in the valence quark approximation at inverse lattice
spacings of 2–3 GeV. A new flavor-dependent correction to the central potential is found. We report anr 22

contribution to the long range spin-orbit potentialV18 . The other spin-dependent potentials turn out to be short
ranged and can be well understood by means of perturbation theory. The momentum-dependent potentials
qualitatively agree with minimal area law expectations. In view of spectrum calculations, we discuss the
matching of the effective nonrelativistic theory to QCD as well as renormalization of lattice results. In a first
survey of the resulting bottomonia and charmonia spectra we reproduce the experimental levels within average
errors of 12.5 MeV and 22 MeV, respectively.@S0556-2821~97!04915-1#

PACS number~s!: 11.15.Ha, 12.38.Gc, 12.39.Pn, 14.40.Gx

I. INTRODUCTION

Quarkonia spectroscopy provides a wealth of information
and thus constitutes an important observational window to
the phenomenology of confining quark interactions. It has
been known for a long time that purely phenomenological or
QCD-inspired potential models offer a suitable heuristic
framework to understand the empirical charmonium (J/c)
and bottomonium~Y! spectra@1–4#.

On a more fundamental level, one would prefer to start
out from the basic QCD Lagrangian to solve the heavy
quarkonia bound state problem. Nonrelativistic QCD
~NRQCD! @5# offers a systematic way to solve this problem
by direct extraction of bound state masses fromeffective
nonrelativistic lattice Lagrangians, which approximate the
QCD Lagrangian to a given order in the quark velocityv.
Considerable success has been achieved recently in deter-
mining quarkonia spectra within this approximation to QCD
@6#.

Here, we follow a complementary strategy: instead of
separately computing the spectral properties of individual
mesonic states, we integrate out the gauge background and
directly determine the underlying quantum mechanical two-
particle Hamiltonian. Once QCD binding problems are recast
into this form, spectra, wave functions, and decay constants
for arbitrary ~sufficiently large! quark masses and quantum
numbers can easily be obtained. Results can either be con-
fronted with experiment or compared to predictions from
lattice NRQCD.

In the limit of infinite quark mass, the Born-Oppenheimer
approximation is applicable and, after integrating out the
gauge degrees of freedom, QCD binding problems become

nonrelativistic. The static interaction potential can be com-
puted directly from the QCD Lagrangian on the lattice.
Within the present study, we find the average velocity be-
tween the sources to bêv2&'0.27 and^v2&'0.08 for the
charmonium and bottomonium ground states, respectively.
This leads us to expect that the phenomenological potentials
within those models, which have been optimized to repro-
duce empirical spectra, should deviate by substantialO(v2)
corrections from the static potential as predicted by QCD; at
realistic quark masses such corrections, which are also re-
quired to obtain hyperfine splittings, cannot be neglected.
Therefore, we have to take corrections to the static limit into
account.

The Hamiltonian that we derive is equivalent to the QCD
Lagrangian up toO(v2). It includes the spin-dependent~SD!
terms derived by Eichten, Feinberg, and Gromes@7,8#, the
momentum-dependent~MD! corrections derived by Bar-
chielli, Brambilla, Montaldi, and Prosperi~BBMP! @9#, and
one-loop radiative corrections from matching the effective
theory to the full theory at a scalem that, in general, differs
from the heavy quark massm @10#. It can be parametrized in
terms of seven independent scalar functions of the quark
separation~the potentials!. These will be computed nonper-
turbatively on the lattice.

The static potential has been determined with high accu-
racy in the valence quark~quenched! approximation to QCD
@11–13# and, more recently, in full QCD with two dynamical
flavors of light Wilson sea quarks@14#. First attempts to
compute relativistic corrections have been made in the mid-
1980s for SU~2! and SU~3! gauge theory@15–18# and have
been extended to QCD with sea quarks in Refs.@19, 20#.

In view of the general interest in the Hamiltonian formu-
lation of the meson binding problem, renewed effort should
be made to unravel the structure of the SD potentials and
other O(v2) corrections. Recently, we presented improved
techniques for computation of SD corrections and tested
them successfully on SU~2! gauge theory@21#. Here, we
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shall apply these methods to the physically relevant SU~3!
gauge theory. We will extend the SU~2! investigation by
inclusion of MD potentials and relativistic corrections to the
central potential, and subsequently determine quarkonia lev-
els.

We wish to emphasize that the method presented does not
rely on any approximations other than truncating the QCD
Lagrangian at second order in the quark velocity~apart from
the valence quark approximation!. However, the
Schrödinger-Pauli approach to heavy quark binding prob-
lems suffers from the same difficulties as NRQCD, namely,
~a! the error involved in truncating the expansion at a finite
order inv, ~b! uncertainties in the matching of the effective
Hamiltonian to QCD, and~c! renormalization of lattice re-
sults. While we manage to solve the latter problem in a sat-
isfactory way, we have to rely on one-loop perturbation
theory for the matching of the nonrelativistic Hamiltonian to
QCD. Systematic errors from theO(v2) approximation as
well as from the uncertainty in the matching constants~that
can be reduced order by order in perturbation theory! are
estimated.

Since NRQCD to orderv2 ~or v4, depending on the la-
beling conventions used! is based on the same Lagrangian, it
is worthwhile to compare the two approaches. While
NRQCD can in principle be generalized to any order inv,
the Schro¨dinger-Pauli approach is only valid up to orderv2.
Also, we cannot treat heavy-light systems. In NRQCD the
zero point energy can be fixed by measuring the dispersion
relation while in our approach only properties of particles at
rest can be studied. The clear advantage of the method pre-
sented here is that with one simulation only we easily obtain
all spectral properties~including arbitrary excitations! for
any ~sufficiently heavy! quark mass. From a two-body
Hamiltonian formulation of the problem, the effect of indi-
vidual terms on the spectrum becomes immediately apparent,
and a transparent understanding of the anatomy of the under-
lying interaction mechanism is obtained. The potentials are
protected by the globalZ3 symmetry @22# from finite size
effects, contrary to NRQCD wave functions and masses,
such that we can determine the potentials for ther range
required, even for broad excited state wave functions, on
relatively small spatial lattice volumes.

The article is organized as follows. In Sec. II, we intro-
duce the Hamiltonian and present definitions of the poten-
tials that are suitable for lattice evaluation. Moreover, we
include theoretical expectations on the form of the potentials.
Section III contains simulation details and lattice specific
techniques wherever they differ from our SU~2! investigation
@21#. The renormalization of lattice operators and the match-
ing procedure between the effective nonrelativistic theory
and QCD are discussed in Sec. IV. The resulting SU~3! po-
tentials are presented in Sec. V. Promising results on char-
monium and bottomonium spectra are obtained and dis-
cussed in Sec. VI, before we conclude.

II. HEAVY QUARK POTENTIAL

A. Hamiltonian formulation of the meson binding problem

In Ref. @21#, we restricted ourselves to an evaluation of
SD corrections to the static potential. Since we are going to
include the completeO(v2) corrections into the present

study and aim to predict quarkonia properties, we find it
worthwhile to briefly sketch some details of the derivation of
the Hamiltonian. The SD and MD parts as well as relativistic
corrections to the central potential have been derived during
the 1980s@7–9#. The matching problem between QCD and
the effective Hamiltonian has been sorted out to one-loop
order for the SD terms recently@10# and we extend this to the
remaining corrections.

It is instructive to start atO(v0), before proceeding to the
O(v2) Hamiltonian. To this order, the heavy quark propaga-
tor S(x,y)5Q(x)Q* (y) of a quark with massm obeys the
evolution equation in an external gauge field1 Am :

2]4S~x,y!5S igA41m2
D2

2mDS~x,y!, ~1!

whereDm denotes the covariant derivative. ToO(v0), the
solution to the initial value problem,

S~x,y!ux45y4
5d3~x2y!, ~2!

is given by

S~x,y!5U~x;x4 ,y4!T expF2E
x4

y4
dtS m1

p2~ t !

2m D Gd3~x2y!,

~3!

whereT denotes the time ordering operator.U(x;x4 ,y4) is
the static propagator of a quark, traveling from the point
(x,x4) to (x,y4), and consists of the corresponding temporal
Schwinger line times the factor exp(2E0t), with t5y42x4 .
E0(m) represents the static quark self-energy that diverges
like m/ lnm with the cutoff scalem.

By combining two static propagators into a Wilson loop,
one can determine the potentialV0(r ) between two static
sources, separated by a distancer , in the limit of large Eu-
clidian times:

^W~r ,t!&}exp@2V0~r !t# ~t→`!. ~4!

Note that the potential contains the static quark self-energies.
In order to obtain the spectrum of mesonic heavy quark
bound states, the Schro¨dinger equation~in the c.m. frame!

Hcnlm~r !5Enlcnlm~r ! ~5!

can be solved, where the Hamiltonian

H52m1
p2

m
1V0~r ! ~6!

is determined from combining two heavy quark propagators
with each other.

We wish to study relativistic corrections to thev50 limit;
after a Foldy-Wouthuysen-Tani transformation, the Feynman

1Everything is consistently rotated to Euclidean space-time.
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propagator is expanded in terms of the heavy quark velocity2

v around the static solution, in order to determine the propa-
gatorK(x,y)5q(x)q†(y). To O(v2) the propagator is given
by

2]4K~x,y!5@ igA41m2dm~m,m!1O~x!#K~x,y!,
~7!

with the well-known terms

O52
D2

2m
1(

i 51

4

ci~m,m!Oi~m;m!, ~8!

O1~m;m!5
~D2!2

8m3 , ~9!

O2~m;m!5
gs~m!

2m
s•B, ~10!

O3~m;m!52 i
gs~m!

8m2 ~D•E2E•D!, ~11!

O4~m;m!5
gs~m!

8m2 s•~D3E2E3D!. ~12!

Ei andBi are color-electric and -magnetic field components.
The heavy quark two-spinorq(x) consists of the large com-
ponents of the original Dirac four-spinor after the Foldy-
Wouthuysen-Tani rotation.

Since we have truncated the expansion at a fixed power of
v, we have lost renormalizability and the ultraviolet behavior
is changed with respect to QCD.3 The theory is only effec-
tive and valid in the range of small gluon momentaq<m.
Whenever theOi are determined at a scalem that differs
from m, the couplingsci(m,m) ~that are unity at tree level!
have to be adjusted by matching the effective theory to QCD
at this scale; this guarantees the conditionci(m,m)51 to
hold. The zero point energy is shifted by
dm(m,m)5E0(m)2E0(m), with respect to QCD, where the
static quark self-energyE0(m) can be estimated from pertur-
bation theory@26–28#. Because of this self-energy, the pole
mass is shifted in respect tom2dm within the propagator:
mpole5m2dm1E0(m)5m1E0(m).

Note that the Hamiltonian which corresponds toK is
identical to that of NRQCD to orderv2 ~up to irrelevant
terms that are introduced to remove doublers and stabilize
the evolution of the propagator on a discrete lattice with

spacing a!. In the case of NRQCD, the effective lattice
theory is matched to continuum QCD in one step, such that
the coefficientsci do not only depend onm/m ~or ma! but
also on the lattice couplingg(a). We start from an effective
theory, formulated in the continuum, such that the matching
procedures~QCD-effective theory and continuum lattice!
will be treated in two separate steps.

In addition, the operator, acting onK in Eq. ~7!, has the
same structure to order 1/m2 as the Lagrangian of heavy
quark effective theory~HQET!. Therefore, the matching co-
efficients can be taken from Refs.@29–31#:4

c2~m,m!5S as~m!

as~m! D
2 9/25

, ~13!

c3~m,m!56S as~m!

as~m! D
2 8/25

25, ~14!

c4~m,m!52c2~m,m!21. ~15!

In order to evaluate masses of heavy quarkonia, we have
to combine a propagator of a quarkq1 of massm1 with one
of an antiquarkq2 of massm2 . In following the steps of
Refs.@9, 10#, one can obtain the nonrelativistic Schro¨dinger-
Pauli Hamiltonian5 ~in the c.m. system, i.e.,p5p152p2
andL5L15L2!:

H5(
i 51

2 S mi2dmi1
p2

2mi
2c1~mi !

p4

8mi
3D 1V~r ,p,L ,S1 ,S2!,

~16!

where the potential

V~r ,p,L ,S1 ,S2!5V̄~r !1Vsd~r ,L ,S1 ,S2!1Vmd~r ,p!
~17!

consists of a central part, SD, and MD corrections.
Note that under renormalization group transformations the

spin-spin interaction term of the effective two-particle La-
grangian @*d4x(q1

†s•Bq1)(q2
†s•Bq2)# undergoes mixing

with two local dimension-6 color-singlet two-fermion terms

2Formally, this procedure is equivalent to expanding the Dirac
equation in powers of 1/c wherec denotes the speed of light. Note
that in some of the NRQCD literature ourO(v2) corrections are
counted asO(v4).

3This fact gave rise to a discussion on a supposed discrepancy
between the Eichten-Feinberg-Gromes results@7,8# and perturbative
expansions@23–25# in powers of the coupling,g, where additional
terms that depend logarithmically on the mass occur after regulating
loop diagrams. These terms are now understood to arise from
changes in the ordering of integrations, and the underlying problem
is resolved@10#.

4In Refs. @26,31,32#, it has been shown that the kinetic energy
term 2D2/(2m) does not undergo renormalization. Unlike in lat-
tice NRQCD, where the quark mass becomes multiplicatively
renormalized@27#, here the mass does not enter as a dynamical
variable of the simulation, but rather as an expansion parameter.
The correction to the kinetic energy, which contains the
dimension-7 operatorq†D4q, however, is accompanied by a non-
trivial coefficient c1(m,m). This coefficient as well as the mixing
matrix betweenO1(m;m) and lower dimensional operators has not
yet been determined. For this reason, for the time being, we assume
c1'1.

5The derivation of this expression from QCD is nontrivial@9#.
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that have to be included at order 1/m2 into the effective
heavy quark Lagrangian. This very fact gives rise to the ra-
diative correction term@10#6

dVsd52
1

3m1m2
S1•S2

3

4
c2~m2 ,m1!

3@12c2
2~m,m2!#V4~r !, ~18!

within the SD potential below.
The complete result on the potential to orderv2 with one-

loop matching coefficients turns out to be

V̄~r !5V0~r !1(
i 51

2
1

8mi
2 c3~mi !@¹2V0~r !1¹2Va

E~r !#

2(
i 51

2
1

8mi
2 c2

2~mi !¹
2Va

B~r !, ~19!

Vsd~r ,L ,S1 ,S2!

5S S1

m1
2 1

S2

m2
2DL

~2c121!V08~r !12c1V18~r !

2r

1
S11S2

m1m2
L

c1V28~r !

r
1

S1
i S2

j

m1m2
c2~m1!c2~m2!Ri j V3~r !

1
S1•S2

3m1m2
S c2~m1!c2~m2!

2
3

4
c2~m2 ,m1!@12c2

2~m2!# DV4~r !

1S S1

m1
2 2

S2

m2
2DL

c2@V08~r !1V18~r !#

r

1
S12S2

m1m2
L

c2V28~r !

r
~20!

and

Vmd~r ,p!52
1

m1m2
$pi ,pj ,@d i j Vb~r !2Ri j Vc~r !#%Weyl

1 (
k51

2
1

mk
2 $pi ,pj ,@d i j Vd~r !2Ri j Ve~r !#%Weyl ,

~21!

with

Ri j 5
r i r j

r 2 2
d i j

3
, ~22!

c65c6~m,m1 ,m2!5 1
2 @c2~m,m1!6c2~m,m2!#,

m1>m2 , ~23!

ci~m!5ci~m,m!. ~24!

The symbol$a,b,c%Weyl5
1
4 $a,$b,c%% denotes Weyl ordering

of the three arguments.V18 ,...,V4 are related to spin-orbit
and spin-spin interactions. The MD potential gives rise to
correction terms of the form

1

r
L2,

1

r 3 L2,
1

r
p2,

1

r
, and d3~r !.

The correction to the static potential includes, besides¹2Va
E

and ¹2Va
B , the expected Darwin term¹2V0 . Note that

V18 ,...,V4 as well as¹2Va
E and¹2Va

B depend on the match-
ing scale m while V0 as well as Vb ,...,Ve is scale
independent.7 In what follows, we will refer to the functions
V18 ,...,V4 as SD potentials,Vb ,...,Ve as MD potentials, and
¹2Va

E and¹2Va
B as corrections to the central potential.

In order to derive the Hamiltonian from one-particle
propagators, one has to assume that interactions between the
two quarks are functions of a single global time coordinate
~instantaneous approximation!. Unlike NRQCD, the above
Hamiltonian cannot be generalized to higher orders inv
since this would involve higher than first order temporal de-
rivatives of the quark momenta, which, on the quantum
level, cannot be reexpressed in terms of the canonical coor-
dinates.

V0 , ¹2Va
E , ¹2Va

B , V18 ,...,V4 , andVb ,...,Ve can be com-
puted from lattice correlation functions~in Euclidean time!
of Wilson looplike operators. Because of Lorentz invariance,
certain pairs of potentials are related to the static potential by
the Gromes@33# and BBMP@9# relations

V28~m;r !2V18~m;r !5V08~r !, ~25!

Vb~r !12Vd~r !5
r

6
V08~r !2

1

2
V0~r !, ~26!

Vc~r !12Ve~r !52
r

2
V08~r !, ~27!

such that three potentials, e.g.,V18 , Vd , and Ve , can be
eliminated from the Hamiltonian. From arguments, similar to
those of Ref. @9#, it is evident that the combination
V4(m;r )12¹2Va

B(m;r ) is a function of the static potential
and thus scale independent. Given this observation, the struc-
ture of the Hamiltonian@Eqs. ~16!–~20!# and the Gromes
relation @Eq. ~25!#, we can deduce the following one-loop
relations between potentials, evaluated at cutoff scalesm1
andm2 :

¹2Va
E~m2 ;r !5c3~m1 ,m2!¹2Va

E~m1 ;r !1@c3~m1 ,m2!21#

3¹2V0~r !1@12c2
2~m1 ,m2!#

3@¹2Va
B~m1 ;r !1 7

8 V4~m1 ;r !#, ~28!

¹2Va
B~m2 ;r !5¹2Va

B~m1 ;r !

1 7
8 @12c2

2~m1 ,m2!#V4~m1 ;r !, ~29!

6We have substituted the factor 8pCFas(m)d3(r ) of the refer-
ence by the potentialV4(r ), which is equivalent at this order inas .

7The latter potentials originate from perturbing a quark world line,
along which the fieldA4 of Eq. ~7! contributes to the propagator,
around the classical particle trajectory. Since an overall renormal-
ization of the gluon fields can be absorbed into the quark wave
function normalization,Vb , . . . ,Ve are scale independent~like
V0).
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V18~m2 ;r !5V18~m1 ;r !2@12c2~m1 ,m2!#V28~m1 ;r !,
~30!

V28~m2 ;r !5c2~m1 ,m2!V28~m1 ;r !, ~31!

V3~m2 ;r !5c2
2~m1 ,m2!V3~m1 ;r !, ~32!

V4~m2 ;r !5 1
4 @7c2

2~m1 ,m2!23#V4~m1 ;r !. ~33!

B. How to compute the potentials

In the Schro¨dinger-Pauli approach, introduced above, the
quarks interact through a potential that only depends on the
distance, spins, and momenta of the sources, Eqs.~17!–~21!.
The time dependence has been separated and is implicitly
included into coefficient functions of various interaction
terms, the central, SD, and MD potentials. These can be
computed by a nonperturbative integration over gluonic in-
teractions. Therefore, the potentials incorporate a summation
over all possible interaction timest. One obtains the follow-
ing expressions in terms of expectation values in presence of
a gauge field background for the corrections to the static
potential@9#:8

¹2V̂a
E~R!52 lim

t→`
E

0

t

dt^^E&~0,0!Ê~0,t !&&W
c , ~34!

¹2V̂a
B~R!52 lim

t→`
E

0

t

dt^^B̂~0,0!B̂~0,t !&&W , ~35!

where the superscriptc denotes the connected part,

^^Êi~n1,0!Êj~n2 ,t !&&W
c 5^^Êi~n1,0!Êj~n2 ,t !&&W

2 lim
t8→`

^^Êi~n1,0!Êj~n2 ,t8!&&W .

~36!

For the SD potentials one finds@7,8#

Rk

R
Ṽ18~R!52e i jk lim

t→`
E

0

t

dtt^^B̂i~0,0!Êj~0,t !&&W ,

~37!

Rk

R
Ṽ28~R!5e i jk lim

t→`
E

0

t

dtt^^B̂i~0,0!Êj~R,t !&&W ,

~38!

Ri j Ṽ3~R!52 lim
t→`

E
0

t

dtF ^^B̂i~0,0!B̂j~R,t !&&W

2
d i j

3
^^B̂~0,0!B̂~R,t !&&WG , ~39!

Ṽ4~R!52 lim
t→`

E
0

t

dt^^B̂~0,0!B̂~R,t !&&W . ~40!

Finally, the MD potentials are@9#

V̂b~R!52
1

3
lim
t→`

E
0

t

dtt2^^Ê~0,0!Ê~R,t !&&W
c , ~41!

Ri j V̂c~R!5 lim
t→`

E
0

t

dtt2F ^^Êi~0,0!Êj~R,t !&&W
c

2
d i j

3
^^Ê~0,0!Ê~R,t !&&W

c G , ~42!

V̂d~R!5
1

6
lim
t→`

E
0

t

dtt2^^Ê~0,0!Ê~0,t !&&W
c , ~43!

Ri j V̂e~R!52
1

2
lim
t→`

E
0

t

dtt2F ^^Êi~0,0!Êj~0,t !&&W
c

2
d i j

3
^^Ê~0,0!Ê~0,t !&&W

c G . ~44!

R denotes a lattice vector of lengthR5ra21. At small lat-
tice spacinga, the above potentials should approach their
continuum counterparts and rotational invariance is expected
to be restored, V̂0(R)5aV0(r ), Ṽ1,28 (R)5a2V1,28 (m;r ),
Ṽ3,4(R)5a3V3,4(m;r ), ¹2V̂a

E,B(R)5a3¹2Va
E,B(m;r ), and

V̂b,c,d,e(R)5aVb,c,d,e(r ), wherem5p/a.
Throughout the previous equations, the expectation value

^^F1F2&&W is defined as

^^F1F2&&W5
^TrP@exp~ ig*]WdxmAm!F1F2#&

^TrP@exp~ ig*]WdxmAm!#&
, ~45!

where]W represents a closed path@the contour of a Wilson
loop W(R,T)# andP denotes path ordering of the arguments.
Although we have chosen a lattice inspired notation for the
potentials@Eqs. ~35!–~44!#, so far everything is generally
applicable to lattice as well as continuum formulations of
QCD. In following Huntley and Michael~HM! @18#, we
implement the discretized version of Eq.~45!:

^^F̂1F̂2&&W52
^P@W~P12P1

†! tl~P22P2
†! tl#&^W&

^P@W~P11P1
†!#&^P@W~P21P2

†!#&
,

~46!

where the subscripti 51,2 represents the multi-index
(ni ,m i ,n i) andni are integer-valued four-vectors. The sub-
script ‘‘tl’’ indicates that only the traceless part is to be

taken: (A) tl5A2 1
3 TrA. F̂ i are related to the electric and

magnetic fields in the following way:

F̂mn5ga2Fmn , Êi5F̂ i4 , B̂i5
1
2 e i jk F̂ jk . ~47!

These conventions eliminate imaginary phases and factors
g2a4 from Eqs.~34!–~44!.

8We have recast all expressions into forms that are more suitable
for lattice simulations. Via spectral decompositions of the underly-
ing correlation functions, equality between our definitions and those
of Refs.@7–9# can easily be shown.

2570 56GUNNAR S. BALI, KLAUS SCHILLING, AND ARMIN WACHTER



We have takenPmn(n) to be the spatial average of the
four ~two! plaquettes, enclosing the lattice pointn for mag-
netic ~electric! fields:

P i j ~n!5 1
4 @Pi , j~n!1Pi ,2 j~n!1P2 i ,2 j~n!1P2 i , j~n!#

~48!

and

P i4~n1 1
2 4̂!5 1

2 @Pi ,4~n!1P2 i ,4~n!#, ~49!

with

Pm,n~n!5Um~n!Un~n1m̂ !Um
† ~n1 n̂ !Un

†~n! ~50!

andU2m(n)5Um
† (n2m̂). With this choice ofP, Eq. ~46! is

correct up toO(a2), the discretization error of the Wilson
action, used for generating the gauge field background. Note
that the electric fields are living at half-integer time coordi-
nates, in between two adjacent spatial lattice hyperplanes.
Um(n) is the SU~3! link variable, related to the fieldAm(x)

at x5(n1 1
2 m̂)a: Um(n)5P exp@iga*n

n1m̂dnn8An(n8a)#.
In practical computation, the temporal extentT of the

Wilson loopW @within Eqs.~34!–~44!# is adapted according
to the formulaT5t1Dt11Dt2 . Dt i , the separations of the
‘‘ears’’ F1 andF2 from the corresponding spatial closures of
the Wilson loop, are kept fixed throughout the simulation
while the interaction timet is varied. The discretized version
of the nominator of the correlation function, Eq.~45!, is vi-
sualized for the case of an electric and a magnetic ear in Fig.
1. Strictly speaking, Eqs.~34!–~44! apply in the limits
Dt i→` only. Dt1 (Dt2) represents the time the gluon field
has to decay into the ground state, after~before! creation
~annihilation! of the qq† state and is a control parameter of
the simulation.

C. Theoretical expectations

1. General considerations

In addition to the exact Gromes and BBMP constraints,
Eqs.~25!–~27!, some approximate relations between the SD
potentials are anticipated from exchange symmetry argu-

ments. We start from the standard assumption that the origin
of the static potential is due to vectorlike and scalarlike
gluon exchange contributions. Given that a vectorlike ex-
change can grow at most logarithmically withr @34#, the
nature of the linear part of the confining potential can only be
scalar. As we will see,V28(r ) is short ranged, such that the
confining part only contributes toV18(r ). This leads us to
expectV28(r ) to be purely vector like. Under the additional
assumptions that pseudoscalar contributions can be neglected
and thatV18 does not contain a vectorlike piece, one ends up
with the scenario of interrelations@33#:

V3~r !5
V28~r !

r
2V29~r !, ~51!

V4~r !52¹2V2~r !, ~52!

which of course has to be in agreement with leading order
perturbation theory. However, Eqs.~51! and ~52! hold true
for any effective gluon propagator that transforms like a Lor-
entz vector. Unlike the Gromes relation, the above relations
cannot be exact, which is evident from Eqs.~31!–~33!.

2. One-gluon-exchange potentials

In order to parameterize the short range behavior of the
potentials, it is useful to resort to weak coupling perturbation
theory. For modeling of lattice artifacts, we have calculated
the SD potentials to the tree level in Ref.@21#. Here, we
supplement these results by the remainingO(v2) potentials.

(a) Lattice potentials. In the following we will use the
conventions

GL~R!5
1

Ls
3 (

qÞ0

eiq•R

( i q̂i
2 , q̂i52 sinS qi

2 D ~53!

and

FL~R!5
2

Ls
3 (

qÞ0

eiq•R

~( i q̂i
2!2 , ~54!

with

qi5
2p

Ls
mi , mi52

Ls

2
11,...,

Ls

2
. ~55!

Ls denotes the number of lattice sites along a linear spatial
extent. Note that the above functions have the large-R be-
havior ~for Ls@R!

GL~R!→
1

4pR
, FL~R!→FL~0!2

1

4p
R, ~56!

whereFL(0) diverges linearly withLs .
We find

V̂0~R!52CFg2@GL~R!2GL~0!#, ~57!

Ṽ28~R!52
R

Rj
CFg2D jJ j

~' !GL~R!, ~58!

FIG. 1. Lattice definition of the nominator of Eq.~45! for the
example ofF1 being an electric ear andF2 being a magnetic ear.
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Ṽ3~R!5
R2

RjRk
CFg2D jDkJ iGL~R!, ~59!

for j Þk, iÞ j , iÞk, RjÞ0, and RkÞ0. Unless explicitly
stated, no summations over indices that appear twice are per-
formed. For 2Ri

2ÞRj
21Rk

2 , i , j , k as above, we can derive
the expression

Ṽ35
R2

2Ri
22Rj

22Rk
2 CFg2

1

2
@4D i

~2!J2D j
~2!~Jk1J!

2Dk
~2!~J j1J!#GL~R!. ~60!

The remaining potentials are given by

Ṽ4~R!522CFg2(
i

D i
~2!J i

~' !GL~R!, ~61!

V̂b~R!5
CFg2

6 S (
i

D i
~2!J iFL~R!16JGL~R! D , ~62!

V̂c~R!5
CFg2

2

R2

3RiRj2d i j R
2 F23D iD jFL~R!

1d i j S (
k

Dk
~2!JkFL~R!16~J2J i !GL~R! D G ,

~63!

V̂d~R!52
CFg2

4 FGL~0!1GL~1!1
1

2
FL~2!2

1

2
FL~0!G

52
CFg2

4
GL~0! ~Ls→`!, ~64!

¹2V̂a
E~R!523CFg2@GL~0!2GL~2!#'20.629 525CFg2,

~65!

¹2V̂a
B~R!56CFg2@GL~0!2GL~& !#'1.185 237CFg2,

~66!

with f (1)5 f (1̂), f (&)5 f (1̂12̂), and f (2)5 f (21̂). The
numerical values refer to the infinite volume limit. In this
limit, one obtainsGL(0)'0.252 731 0. The potentialsṼ18

and V̂e vanish to lowest order perturbation theory.
The Casimir factor of SU~3! gauge theory isCF54/3.

The D’s and J’s denote the finite difference and averaging
operators:

D i f ~n!5 1
2 @ f ~n1 î!2 f ~n2 î!#, ~67!

D i
~2! f ~n!5 f ~n1 î!22 f ~n!1 f ~n2 î!, ~68!

D~2!5(
i

D i
~2! , ~69!

J i f ~n!5 1
4 @ f ~n1 î!12 f ~n!1 f ~n2 î!#, ~70!

J i
~' !5

1

2 (
j Þ i

J j , J5
1

3 (
i

J i . ~71!

In Ref. @21#, we have proved that an exact lattice analogue
to the Gromes relation does not exist. However, the Gromes
as well as the BBMP relations will be retrieved in the con-
tinuum limit and approximately hold within the scaling re-
gion on the lattice forR@1.

(b) Continuum potentials. In continuum perturbation
theory, one obtains the tree-level expressions,

V0~r !52CFasE dq3

2p2

eiq•r

q2 52CF

2as

p E
0

`

dq
sinqr

qr
,

~72!

V28~r !52 iCFasE dq3

2p2

q•r

q2r
eiq•r

52CF

2as

p E
0

`

dqq2r j 1~qr !, ~73!

V3~r !52CFasE dq3

2p2

~q•r !2

q2r 2 eiq•r

52CF

2as

p E
0

`

dqq2 j 2~qr !, ~74!

V4~r !5CFasE dq3

2p2 eiq•r5CF

2as

p E
0

`

dqq2
sinqr

qr
,

~75!

with as5g2/(4p). Vb and Vc are given by22V0/3 and
V0/2, respectively. The self-energyCV5a21CFg2GL(0) has
been subtracted fromV0 . Ṽ18 and V̂e vanish to lowest order
perturbation theory while¹2V̂a

E , ¹2V̂a
B , andV̂d only contain

diverging self-energy contributions. A linear confining con-
tribution can be introduced by adding a21/q4 term toV0 in
momentum space. The integrals for the SD potentials are
suppressed in the infrared region likeq2 or q3, such that we
naively expect perturbation theory to be more reliable in this
case than for the static potential orVb andVc .

Equations~72!–~75! yield

V0~r !52CF

as

r
, ~76!

V28~r !5CF

as

r 2 , ~77!

V3~r !53CF

as

r 3 , ~78!

V4~r !58pCFasd
3~r !, ~79!

Vb~r !5
2

3
CF

as

r
, ~80!

Vc~r !52
1

2
CF

as

r
, ~81!

in agreement with the large-R ~i.e., r @a! expectations of
Eqs.~57!–~63! @cf. Eq. ~56!#.
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3. Large distance behavior

In combining the large-r behavior from the minimal area
law ~MAL ! of fluctuating world sheets@9# ~including a pe-
rimeter term! with the expectation from tree-level perturba-
tion theory, Eqs.~76!–~81!, one obtains

V0~r !5Vc2
e

r
1kr , ~82!

¹2Va
E~r !5Ca

E2
b

r
, ¹2Va

B~r !5Ca
B , ~83!

V18~r !52
h

r 2 2k, V28~r !5
e2h

r 2 , ~84!

V3~r !53
e2h

r 3 , V4~r !58p~e2h!d3~r !, ~85!

Vb~r !5Cb1
2

3

e

r
2

k

9
r , Vc~r !52

1

2

e

r
2

k

6
r , ~86!

Vd~r !5Cd2
k

9
r , Ve~r !52

k

6
r , ~87!

with e5CFas , in agreement with the Gromes and BBMP
relations, Eqs.~25!–~27!. From MAL ~including a perimeter
term! one obtainsCa

E5Ca
B5Cb50 and Cd52CV/4. In

tree-level perturbation theory, one finds a consistent infinite
volume resultCd52CV/4 @Eq. ~64!#, while Ca

E comes out to
be significantly smaller thanCa

B @Eqs.~65! and ~66!#. How-
ever, our numerical data showCa

E'Ca
B , in agreement with

the MAL result. From Eqs.~28!–~30!, it is obvious that the
tree-level perturbative expectations, Eqs.~76!–~81!, cannot
adequately describe the potentials at all scalesm. In general,
V18 and V28 will undergo mixing, such thatV18 will attain a
Coulomb-like contribution. For the same reason,¹2Va

E is
expected to include a 1/r piece. We have accounted for this
fact by allowing for two additional parametersb and h. In
principle, ¹2Va

E,B can also containd-like admixtures@Eqs.
~28! and ~29!#, which we have ignored in Eq.~83!.

III. LATTICE SIMULATIONS

In Ref. @21#, we have developed suitable techniques for a
lattice evaluation of the potentials and applied them to SU~2!
gauge theory. We investigated possible sources of systematic
errors such as finite size effects. In this section, we describe
details of our SU~3! simulations, insofar these differ from the
SU~2! study.

A. Simulation parameters

We analyze two sets of Monte Carlo configurations that
have been generated with the standard Wilson action on hy-
percubic lattices of volumesV5Ls

3Lt5164 at b56.0 and
V5324 at b56.2 ~Table I!. The above couplings correspond
to inverse lattice spacings a21'2.1 GeV and
a21'2.9 GeV, respectively. The scale has been determined
from the valueAk5468 MeV for the string tension that we
obtain from the fit to the bottomonium spectrum of Sec. VI.

The number of independent Monte Carlo configurations,
nconf, generated at each set of parameters, is included into
the table. Based on previous experience, we expect finite size
effects to be below statistical accuracy at these volumes
@11,12,21#. For the updating of the gauge fields, a hybrid of
Fabricius-Haan heat bath@35# and an overrelaxation algo-
rithm has been implemented@36#. Within both procedures,
we successively update the three diagonal SU~2! subgroups
of a given link @37#. The heat bath sweeps have been ran-
domly mixed with overrelaxation steps with probability 1/7.
The links have been visited in lexicographical ordering
within hypercubes of 24 lattice sites: i.e., within each such
hypercube, first all links pointing into direction 1ˆ are visited
site by site, then all links in direction 2ˆ , etc. After 2000
initial heat bath thermalization sweeps in either case, mea-
surements are taken every 100 sweeps to ensure decorrela-
tion. We find no evidence for any autocorrelation effects
between these configurations.

B. Noise reduction

Statistical fluctuations have been reduced by ‘‘integrating
out’’ temporal links that appear within the Wilson loops and
the electric ears analytically, wherever possible. By ‘‘link
integration’’ we mean the substitution@38#

U4~n!→W4~n!5
1

Z

]Z

]Fm
† ~n!

5
*SU~3!dUUeSn,4~U !

*SU~3!dUeSn,4~U ! ,

~88!

with

Sn,m~U !5Tr@Fm~n!U†1UFm
† ~n!#, ~89!

and

Fm~n!5
b

6 (
nÞm

Un~n!Um~n1 n̂ !Un
†~n1m̂ !, b5

6

g2 .

~90!

W4(n) is in general no longer an SU~3! element. In this way,
timelike links are replaced by the mean value they take in the
neighborhood of the enclosing staplesF4(n). Only those
links that do not share a common plaquette can be integrated
independently, without changing expectation values.

TABLE I. Simulation parameters. The physical scale has been
obtained fromAk5468 MeV.

b56.0 b56.2

V5Ls
3Lt 164 324

a/ fm 0.092 0.067
a21/ GeV 2.14 2.94
Ls / fm 1.47 2.15
nconf 420 116
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We have attempted to computeW4(n) analytically for the
case of SU~3! gauge theory. Based on the character expan-
sion of SU(N) matrices of Ref.@39#, the following expres-
sion can be obtained:9

Z~F !5E
SU~3!

dU exp@Tr~FU†1UF†!# ~91!

5 R dx

2p i R dy

2p i
expS xQ1y1

P~x!

xy D ,

~92!

with

Q5det~F !1det~F†!, ~93!

P~x!511Tr~FF†!x1 1
2 @Tr2~FF†!2Tr~FF†!2#x2

1det~FF†!x3. ~94!

From

Jn5 R dx

2p i
xn

eQx

R~x!
I 1„2R~x!…, ~95!

Kn@O#5 R dx

2p i
Oxn

eQx

P~x!
I 2„2R~x!…, ~96!

where I n denote the modified Bessel functions andR(x)
5AP(x)/x, one obtains@40#

Z5J0 ,
]Z

]F† 5J1

]Q

]F† 1K0F ]P

]F†G , ~97!

such that

W5
1

J0
$J1G1K1F1K2F@Tr~F†F !2F†F#1K3det~F !G%,

~98!

where Kn5Kn @1#, and Gil 5
1
2 e i jke lmnF jm* Fkn* . Note that

Jn andKn are real numbers. For the computation of Bessel
functions we use the asymptotic expansion

I n~z!5
ez

A2pz
(
j 50

`

~21! j
Aj~n!

zj , ~99!

with

Aj~n!5
~4n2212!~4n2232!•••@4n22~2 j 21!2#

8 j j !
,

~100!

up to fifth order inj . The above expansion is valid for argu-
mentsz52R(x), with large modulus. A circular integration
path with radiusuxu50.015 turns out to be appropriate@41#
at b'6. A Gaussian quadrature algorithm with 64 abscissas
is used. By exploiting the symmetry of the contour integrals,

Eqs.~95! and~96!, under the transformationx→2x, we are
able to reduce the computational effort by a factor of 2.

C. Ground-state enhancement

In this section, we will discuss the control of excited state
contributions at finite deexcitation timesDt i . We found
Dt52 to be appropriate for magnetic ears andDt53/2 for
electric ears~see Fig. 1!. The spatial transporters within the
Wilson loops have been smeared to suppress excited state
pollutions from the very beginning. Our smearing procedure
@22,42# consists of iteratively replacing each spatial link
Ui(n) within the Wilson loop by a ‘‘fat’’ link,

Ui~n!→NS aUi~n!1(
j Þ i

U j~n!Ui~n1 ĵ !U j
†~n1 î ! D ,

~101!

with free parametera. N denotes an operator that projects
the argument back into the SU~3! group: U5N(A)
PSU(3) with Re Tr$A†U%5max. Within this procedure, the
~spatial! links are visited in the same lexicographical order-
ing as within the Monte Carlo updating of gauge configura-
tions. We find satisfactory ground-state enhancement with
the parameter choiceniter5100 anda52.

From expectation values of Wilson loops, the static inter-
quark potential can be determined in the limit of largeT,

^W~R,T!&5C0e2V̂0TS 11 (
n.0

Cn

C0
e2DV̂nTD , ~102!

whereDV̂n5V̂n2V̂0 denotes the gap between the ground-
state andnth excited state~hybrid! potentials. TheR depen-
dence has been omitted from the overlap coefficients
0<Cn<1 and potentialsV̂n , DV̂n . The smearing procedure
results in an increased weightC0 ~with respect toCn , n>1!.
In Fig. 2 the resulting static interquark potentials atb56.0
andb56.2 are displayed. All ground-state overlaps turn out
to be well above 0.8.

Previous authors@16,17,19,20# have replaced the integrals
over interaction times by discrete sums. This results in cutoff
errors due to the finiteness of the integration boundt @Eqs.

9For simplicity, we suppress spatial coordinates and Dirac indices
of U, F, andW.

FIG. 2. Corrected static potentialV0, cont at b56.0 and
b56.2. The fit curve corresponds to the parametrization, Eq.~117!,
with the parameter values listed in the last column of Table IV.
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~34!–~44!# as well asO(a2) integration errors. Both sources
of systematic uncertainties can be studied and reduced by
exploiting transfer matrix techniques. In the following, we
will briefly summarize some of the results we have already
presented in Ref.@21#. The ratio of correlation functions be-
tween eared Wilson loops, Eq.~46!, is given by10

^^F̂1F̂2&&W5(
m

Dm
12e2DV̂mt@11Em

12e2DV̂1Dt1•••#.

~103!

All constants are understood to depend onR. For details on
Dm

12 andEm
12, which are functions of the spatial positions and

the color-electric or -magnetic componentsF1 and F2 , see
@21#. The unwanted excited state contributions are sup-

pressed by factorsuEm
12u<AC1 /C0 as well as bye2DV̂1Dt.

The smallest value ofDt that appears within an integral over
interaction times will determine the reliability of the result.
The bosonic string picture yields the large-R expectation
DV̂1(R)5p/R @43# for the lowest-lying hybrid potential,
which has been qualitatively confirmed in numerical studies
@44,45#.

The cylindrically symmetric creation operator that we use
only projects onto states within theA1g representation of the
appropriate symmetry groupD4h @46#. The lowest con-
tinuum angular momentum to which it couples isL50. The
hybrid (L51) stateEu is the next excitation@44#. The op-
erators used as magnetic ears have no overlap with theA1g
state, such that all correlation functions that involve a mag-
netic ear decay exponentially with Euclidean time. This does
not hold true for some of the correlators within the MD po-
tentials and¹2V̂a

E ; those electric ears which are not orthogo-
nal toR have a nonvanishing overlap withA1g , such that the
disconnected part in Eq.~103!, D0

12, does not vanish and has
to be explicitly subtracted in Eqs.~34! and ~41!–~44!.

Note that theDm
12 are not normalized and can be negative.

However, as a result of invariance under time inversion, the
correlation functions forṼ18 andṼ28 @Eqs.~37! and~38!# have
to vanish att50, such that(mDm

1250 in this case. In com-
bining Eq.~103! with Eqs.~34! and~35! or ~39! and~40!, we
obtain

¹2V̂a
E,B ,Ṽ3,4} (

m.0
E

0

`

dtDm
12e2DV̂mt5 (

m.0

Dm
12

DV̂m

,

~104!

with appropriate color field positionsn1 ,n2 and components
m1 ,n1 ,m2 ,n2 . Equations~37! and ~38! yield

Ṽ1,28 } (
m.0

E
0

`

dttDm
12e2DV̂mt5 (

m.0

Dm
12

~DV̂m!2 , ~105!

while from Eqs.~41!–~44! we obtain,

V̂a,b,c,d} (
m.0

E
0

`

dtt2Dm
12e2DV̂mt5 (

m.0

Dm
12

~DV̂m!3 .

~106!

The parametersDm
12 andDV̂m can be fixed from fits of the

data to Eq.~103!. The hybrid potentialsV̂m can in principle
also be determined independently@44#. We leave this for
future high precision studies on anisotropic lattices. For the
time being, we evaluate the integrals Eqs.~34!–~44! numeri-
cally. The interpolation method used for this purpose is in-
spired by the multiexponential result of the spectral decom-
position, Eq.~103!.

D. Integration errors

The O(v2) potentials are extracted from integrals over
correlation functions@see Eqs.~34!–~44!# that depend on the
interaction timet in a multiexponential way. In the follow-
ing, Ci(t) will denote the two-point function which has to be
integrated out in order to determine a potentialV̂i at a given
value of R. For i 51,2, Ci(t) will be weighted by an addi-
tional factor t @Eqs. ~37!–~38!#, for i 5b,c,d,e by t2 @Eqs.
~41!–~44!#. Two different methods of interpolatingCi(t) in
between the discretet values have been adopted.

~1! We perform local exponential interpolations, which
are expected to yield the most reliable results:

Ci~ t8!5Ci~ t !e2Bi ~ t !~ t82t !, Bi~ t !5 lnF Ci~ t !

Ci~ t11!G ,
~107!

for t<t8,t11 andCi(t)Ci(t11).0. Because of the multi-
exponential character of the correlation function~or statisti-
cal fluctuations!, the sign might change within the given in-
terval. Thus, forCi(t)Ci(t11)<0, we interpolate linearly,

Ci~ t8!5Ci~ t !1@Ci~ t11!2Ci~ t !#~ t82t !. ~108!

For C1(t) andC2(t) quadratical interpolations are performed
within the interval 0<t8, 1

2 to account for C1(0)
5C2(0)50, where we demand continuity of the interpolat-

ing function and its derivative att5 1
2 .

10The formula applies to the caseDt5Dt15Dt2 . It remains valid
on a qualitative level forDt1ÞDt2 with Dt5min$Dt1,Dt2%.

FIG. 3. The ratio of tadpole and HM renormalization constants
Q @Eq. ~110!# as a function oft at R54, b56.2.
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~2! In order to estimate systematic integration errors,
simple linear interpolations of the data have been performed.

All statistical errors have been bootstrapped. For each po-
tential V̂i , numerical integration has been performed up to a
value t5t i , with t i chosen such that the result is stable
~within statistical accuracy! under the replacement
t i→t i21 for all R. Systematic cutoff errors have been esti-
mated from the exponential tail of fits to large-t data points
and have been found to be negligible in all cases when com-
pared to the statistical error from the numerical integration.
Typically, t i came out to be 6–8 lattice units@41#. For some
of the correlation functions, the disconnected part had to be
subtracted. Its value has been estimated by averaging data
points within a range oft values,t>t i

a , under variation of
t i

a until a plateau was reached. Subsequently, the resulting
value has been subtracted from the correlator, before pro-
ceeding to interpolation methods~1! and ~2!. In all cases,
t i

a21<t i<t i
a was found, in support of the self-consistency

of the method.
In what follows, we always state the result from the ex-

ponential interpolation method with the bootstrapped statis-
tical error and a systematic error that corresponds to the dif-
ference between the results obtained from the two methods.
We find the systematic error to be the dominant source of
uncertainty, which can only be reduced by decreasing the
temporal lattice spacing.

IV. MATCHING PROBLEM

A. Renormalization of lattice operators

The relativistic corrections to the static potential are com-
puted from amplitudes of correlation functions rather than
from eigenvalues of the transfer matrix. Therefore, they un-
dergo renormalization. This is in accordance with the fact

that the electric and magnetic ears explicitly depend on the
lattice scalea and, thus, discretization.

As in the low energy regime of interest the renormaliza-
tion constants are likely to receive relevant corrections be-
yond one-loop perturbation theory, we apply the nonpertur-
bative HM renormalization prescription@18# @cf. Eq. ~46!#.
The HM procedure is similar to the mean-field-inspired tad-
pole improvement program, advocated in Ref.@47#. How-
ever, instead of just dividing correlators of eared Wilson
loops by the square of the average plaquette,

Uh5
1

6V K (
n,m.n

1

3
ReTrPm,n~n!L , ~109!

a more sophisticated combination is chosen; the various ori-
entations of ears are taken into account, such that the remain-
ing renormalization constants will only differ from identity
on a three-loop@11O(g6)# or two-loop @11O(g4)# level
for operators involving magnetic and electric ears, respec-
tively. Details are discussed in Ref.@21#.

In the case of tadpole improvement, each electric or mag-
netic fieldgE or gB, appearing within the correlators of Eqs.
~34!–~44!, is multiplied by a constantZtadpole51/Uh . The
difference between this procedure and the HM scheme can
be parametrized in terms of a ratio

Q5
^P@W~P i1P i

†!#&
2^W&Uh

, ~110!

which depends on the orientation of the ear,i , as well asR
and t. In Fig. 3 we display this ratio for all independent
color-electric and -magnetic components atR54 and
b56.2 as a function oft. No significant t dependence is
observed, such that the renormalization constants within in-
tegrals, Eqs.~34!–~44!, factorize;11 all Q factors saturate into

11This behavior is expected from the spectral decomposition of
the correlation function@21#, where the renormalization factor cor-
responds to a constant 1/g00

i that only depends onR and the speci-
fications of the eari . Any residual time dependence has to be at-
tributed to the finiteness ofDt i .

FIG. 4. The ratioQ as a function ofR at b56.2 ~for large t). FIG. 5. Test of the Gromes relation, Eq.~25!. The combination
V282V18 is compared to the static force as obtained from the param-
etrization, Eq.~117!.

TABLE II. Renormalization constants for magnetic and electric
ears, compared to their tadpole estimatesZtadpole51/Uh .

b Uh Ztadpole ZB ZE

6.0 0.593682~5! 1.6844 1.6777~2! 1.6216~4!

6.2 0.613631~3! 1.6296 1.6249~1! 1.5782~1!

2576 56GUNNAR S. BALI, KLAUS SCHILLING, AND ARMIN WACHTER



asymptotic values fort>4, within statistical errors of
O(1024). In Fig. 4, theR dependence ofQ is depicted for
on-axis separations. In the case of magnetic ears, the result
appears to be rather insensitive to the component andR. For
electric ears,Q changes significantly withR as well as the
component. However, at large separations, the electric com-
ponents approach a common value too. We call these plateau
valuesQB and QE , respectively. In Table II, we compare
Ztadpole with the HM constants ZB5Ztadpole/QB and
ZE5Ztadpole/QE for the two b values. The magnetic renor-
malization constant differs only by less than 1% from the
tadpole value while for the electric fields this difference
amounts to 3–4 %. As expected, the disagreement decreases
with the lattice spacinga. We find it interesting to notice that
the factorsQ are smaller than ratios of nonperturbative val-
ues @48# of the coefficient of the clover term within the
Sheikholeslami-Wohlert fermion action@49# and its tadpole
guesses. Also, the correction goes opposite in the present
case;ZB and ZE turn out to be smaller than the tadpole
estimateZtadpole.

Direct numerical checks of the accuracy of the HM ap-
proach are possible in two ways, namely,~i! by varying the
lattice resolutiona and a scaling test of the results12 and~ii !
by comparing the data with predictions from the exact
Gromes and BBMP relations, Eqs.~25!–~27!, between SD or
MD potentials and the static potential~which does not un-
dergo renormalization!,

V2,ren8 ~p/a;r !2V1,ren8 ~p/a;r !5V08~r !, ~111!

Vb,ren~r !12Vd,ren~r !5
r

6
V08~r !2

1

2
V0~r !, ~112!

Vc,ren~r !12Ve,ren~r !52
r

2
V08~r !. ~113!

In Fig. 5 we check our data onV282V18 against the force,
obtained from fits to the static potential,V0(r ) according to
the parametrization Eq.~117! below. As can be seen, the two
data sets scale onto each other and reproduce the static force.
The BBMP relations are only satisfied on a qualitative level
as Figs. 6 and 7 demonstrate; substantial lattice artifacts are
responsible for deviations from the expectations in the region
of small R.

B. Matching constants

In order to calculate the matching constants between the
effective nonrelativistic Hamiltonian of Eqs.~16!–~21! and
QCD, we require values for the strong coupling constant at
scalesq5p/a and q5mb , mc in a given renormalization
scheme. We decide to use the ‘‘V’’ scheme of Ref.@50#, and
compute the running coupling from the average plaquette as
suggested in Ref.@47#,

aV
21~q!524pF c1

ln Uh

12b0lnS p

aqD10.1058G ,
~114!

wherec151/3 andb0511/(16p2) for SU~3! gauge theory.
We use the plaquette values of Table II and Eqs.~13!–

~15! to obtain the matching constantsc2(m,m) and
c3(m,m) at b56.0 andb56.2, listed in Table III. We have
assumedmb54.7 GeV andmc51.3 GeV for the bottom and
charm quark masses, respectively. The value

12Because of the running of the matching constants to the full
theory with the lattice scale, residual scaling violations for the SD
potentials are expected from Eqs.~30! and ~31!.

FIG. 6. Test of the BBMP relation, Eq.~26!. The combination
Vb12Vd is compared to its expectation as obtained from the pa-
rametrization, Eq.~117!, of the static potential.

FIG. 7. Test of the BBMP relation, Eq.~27!. The combination
Vc12Ve is compared to its expectation as obtained from the pa-
rametrization, Eq.~117!, of the static potential.

TABLE III. Matching constants between QCD and the effective
Hamiltonian, Eqs.~16!–~21!, for bottom and charm quark masses at
b56.0 andb56.2.

c2 c3

mb , b56.0 1.034 1.181
mb , b56.2 1.065 1.344
mc , b56.0 1.220 2.159
mc , b56.2 1.257 2.353
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Ak5468 MeV has been used to fix the lattice scale. These
values are obtained from the quarkonia spectroscopy below.
Since aV(q) depends only logarithmically onq, accurate
values fora, mc , andmb are not required.

In the case of bottomonium all constants turn out to be
reasonably close to 1, such that one-loop perturbation theory
appears to be trustworthy. However, form5mc , the size of
the constants indicates that higher order corrections cannot
be neglected at present lattice spacingsa!p/mc . Increasing
the lattice spacing would result in increased lattice artifacts
as well as a larger uncertainty in the renormalization factors
ZB andZE that relate the lattice potentials to their continuum
counterparts. In order to achieve a reasonable balance be-
tween the uncertainties involved in both matching proce-
dures for the charmonium family, improved lattice actions
@51# would have to be considered.

V. RESULTS ON THE POTENTIALS

We present numerical results and parametrizations on the
static potential, the relativistic corrections to the central po-
tential, and the SD and MD potentials. We compare the short
range SD potentialsV28 , V3 , andV4 and the MD potential
V̂c to lattice perturbation theory. The short range SD poten-
tials might provide another access to the determination of the
QCD couplingaV(p/a), quite in the spirit of the role of the
fine structure constant in the analysis of atomic level split-
tings.

A. Static potential

The lattice potentialV̂0(R) has been computed from
smeared Wilson loops by use of the method described in Ref.
@22#. Our general strategy is to derive interpolating param-
etrizations of the lattice data points which will enable us to
compare the results to continuum expectations. Weak cou-
pling continuum and lattice predictions on the potentials
have been presented in Sec. II@Eqs. ~76!–~81! and Eqs.
~57!–~66!, respectively#, such that we can correct the lattice
data for the differences between both tree-level forms before
attempting to fit them to a continuous parametrization. Let

V̂0,cont~R!5V̂0~R!2gdV̂0~R!2ĈV , ~115!

with

dV̂0~R!524pGL~R!1
1

R
, ~116!

be the tree-level corrected static potential.GL(R) is the lat-
tice gluon propagator of Eq.~53!. The static lattice potential
is fitted to the five-parameterAnsatz@including g andĈV of
Eq. ~115! as fit parameters#,

V̂0,cont~R!5KR2
e

R
1

f̂

R2 , ~117!

with string tensionK5ka2 and Coulomb coefficiente. The
1/R2 correction, which accounts for the running of the cou-
pling, is not meant to be physical but has been introduced to
effectively parametrize the data within the given range ofr
values. The resulting parameter values are displayed in Table
IV.13 For technical reasons related to the link integration
procedure, only potential values forR>& have been ob-
tained, such that the fits do not includeR51.

In Fig. 2, the potentialV0,cont from both b values is dis-
played in physical units~as obtained fromAk5468 MeV!,
together with a fit curve that corresponds to the~averaged!
values of fit parameters e50.321(6) and f 5a f̂
50.0082(8)/Ak. As can be seen, the two data sets scale
nicely onto each other. Violations of rotational invariance are
removed by the correction method, even at very small values
of R, and the data are well described by the parametrization
over the entirer range.

13The reducedx2 values stated in the table do not take account of
correlations between data points obtained at differentR.

FIG. 8. The potential¹2Va
E , together with a fit curve of the

form ¹2Va
E(r )52b/r , with b5(0.8660.05 GeV)2. The constants

Ca
E have been subtracted from the data points.

TABLE IV. Fit parameters to the static potential, Eqs.~115!–
~117!.

Parameter b56.0 b56.2 Average value

K 0.0479~12! 0.02536~35! K
e 0.324~17! 0.321~7! 0.321~6!

f̂ 0.042~12! 0.051~5! 0.0082(8)/AK

ĈV 0.6648~78! 0.6404~26! —

g 0.301~4! 0.252~2! —
x2/NDF 0.4 0.6 —

TABLE V. Parameter values from fits to relativistic corrections
to the static potential that are relevant for spectroscopy@Eqs.~118!
and ~119!#. The error in square brackets is the systematic uncer-
tainty. Where not stated separately, it has been included.

Parameter b56.0 b56.2 Average value

b̂ 0.150~21!@01# 0.097~13!@03# 3.36(36)K

h 0.071~5!@11# 0.065~3!@8# 0.067~9!

e2h 0.253~6!@11# 0.256~7!@8# 0.255~10!
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B. Corrections to the central potential

Fits of ¹2V̂a
E to the parametrization of Eq.~83!,

¹2V̂a
E5Ĉa

E2
b̂

R
, ~118!

with parametersĈa
E and b̂ have been performed. The result-

ing potential¹2Va
E2Ca

E is shown in Fig. 8. Results onb are
displayed in the first row of Table V. Systematic errors from
the integration procedure are included in square brackets. We
find the valuesx2/NDF50.5 andx2/NDF52.0 atb56.0 and
b56.2, respectively, for the fit rangeR>&. Thesex2 val-
ues refer only to the statistical errors. The fitted curve that
corresponds to the averaged valueb5(0.8660.05 GeV)2 is
included in the figure. From Eq.~28! and the matching con-
stants of Table III, we expect scaling violations of about 10%
between the two data sets. Apart from the region
r ,0.15 fm, which is polluted by lattice artifacts, this effect
cannot be resolved within statistical accuracy.

In Fig. 9, we display¹2V̂a
B in lattice units atb56.2,

where the error bars of this plot refer to the statistical uncer-
tainty only. Theb56.0 data exhibit the same qualitative
behavior. The large-R data can be parametrized by a con-
stant. Deviations from this constant at smallR values, which
are hidden within the systematic uncertainty of the integra-
tion, can be due either to lattice artifacts or to a tinyd-like
admixture that one might expect from Eq.~29!. The numeri-
cal values ~with statistical and systematic errors! are
Ĉa

B521.02(1)(27) andĈa
B520.93(1)(24) atb56.0 and

b56.2, respectively. These values have to be related to
Ĉa

E521.00(2)(8) and Ĉa
E520.92(1)(8), such that

Ca
B5Ca

E within errors.
We conclude that the corrections to the central potential

agree reasonably well with the expectations of Eq.~83!, with
a parameterb'4k'0.92 GeV2. The strength of the effec-
tive Coulomb coupling is increased by about 2% in the case
of the Y family and 35–40 % forJ/c states, due to these
correction terms. The self-energy-type contributions to¹2Va

E

and¹2Va
B cancel each other at the present level of statistical

accuracy.

C. Spin-dependent potentials

Our results on the first spin-orbit potentialV18 are dis-
played in Fig. 10. The two data sets show approximate scal-
ing behavior. In addition to a constant long range contribu-
tion 2K, we find an attractive short range contribution that
can be fitted to the Coulomb-likeAnsatzof Eq. ~84!,

Ṽ18~r !52
h

R2 2K, ~119!

in agreement with our SU~2! investigation@21#. For these
one-parameter fits we have constrained the constant long
range part to the value of the string tension, as obtained from
the static potential. We find the valuesh50.071(12) and
h50.065(9) for b56.0 andb56.2, respectively. As ex-
pected from Eq.~30!, h tends to decrease withb.

Taking the Gromes relation and the running coupling im-
proved effective parametrization of Eq.~117! into account,
we expect

V28~r !5
e2h

r 2 2
2 f

r 3 . ~120!

Note that we have added a 1/r 3 term to the expectation, Eq.
~84!, which accounts for a weakening of the effective cou-
pling with decreasing source separation. From Eq.~51! we
expect the parametrization

V3~r !5
3~e2h!

r 3 2
8 f

r 4 ~121!

to approximateV3 .
Prior to comparing the data to the above continuum pa-

rametrizations, we attempt to correct for lattice artifacts. For
this purpose we define

dV̂28~R!5
4p

CFg2 Ṽ2,tree8 ~R!2
1

R2 , ~122!

dṼ3~R!5
4p

CFg2 Ṽ3,tree~R!2
3

R3 . ~123!

FIG. 9. The potential¹2Va
B at b56.2 in lattice units~statistical

errors only!.
FIG. 10. The spin-orbit potentialV18 , together with a fit curve of

the form2V18(r )5k1h/r 2, with h50.067(9).
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The lattice tree-level potentialsṼ2,tree8 and Ṽ3,tree are defined
in Eqs.~58!–~60!. We then correct for lattice artifacts,

Ṽ2,cont8 ~R!5Ṽ28~R!2g2dṼ28~R!, ~124!

Ṽ3,cont~R!5Ṽ3~R!2g3dṼ3~R!, ~125!

and fit the potentials to the followingAnsätze:

Ṽ2,cont8 ~R!5
c2

R2 2
2 f̂ 2

R3 , ~126!

Ṽ3,cont~R!5
3c3

R3 2
8 f̂ 3

R4 , ~127!

wheregi , ci , and f̂ i are fit parameters. The resulting param-
eter values are shown in Table VI. Again, thex2 values refer
to the statistical errors only.

The fitted valuesf̂ 2 and f̂ 3 are in agreement withf̂ as
extracted from the static potential. Also,c2 andc3 agree with
e2h as computed fromV̂0 andṼ1 reasonably well. Only the
coefficients of the correction termsg2 andg3 turn out to be
about a factor of 2 smaller than in the case of the static
potential. The spin-orbit potentialV2,cont8 and the spin-spin
potential V3,cont are displayed in Figs. 11 and 12, respec-
tively, together with the theoretical expectations. In both
cases, we observe reasonable agreement between data and

expectation and the two data sets from the differentb values
scale nicely onto each other, after we have corrected for
tree-level lattice artifacts.

In Fig. 13, the spin-spin potentialṼ4 is displayed in lattice
units for the twob values. An oscillatory behavior is ob-
served which is similar to that of the latticed function, ex-
pected at the tree level, Eq.~61!. Moreover, the two data sets
nearly coincide with each other, in distinct violation of scal-
ing. Corrections to thed function, which might scale with an
appropriate dimension, should account for the differences
between the two data sets at smallR.

D. Momentum-dependent potentials

We intend to compare the MD potentials to Eqs.~86! and
~87!. Since, in accordance with these expectations, the MD
potentials are rather small, compared to the SD potentials,
the data suffer more from statistical noise, and we do not
attempt to perform fully independent fits. In addition, we
neglect running coupling effects that have been parametrized
by f in the case ofV0 , V28 , andV3 . We have to subtract the
self-energy-related constantsĈb andĈd from the data points
on V̂b and V̂d , respectively, prior to scaling the data sets

TABLE VI. Fit parameters for the SD potentialsV28 and V3

@Eqs.~124!–~127!#.

Parameter b56.0 b56.2

c2 0.274~34!@17# 0.239~16!@58#

f̂ 2 0.023~32!@07# 0.061~15!@05#

g2 0.138~40!@01# 0.133~19!@06#

x2
2/NDF 1.0 1.1

c3 0.253~15!@33# 0.230~45!@28#

f̂ 3 0.054~11!@41# 0.047~36!@36#

g3 0.165~21!@34# 0.171~07!@29#

x3
2/NDF 0.4 1.0

FIG. 11. The spin-orbit potentialV2, cont8 in comparison to the
continuum expectation from Eq.~120!.

FIG. 12. The spin-spin potentialV3, cont in comparison to the
continuum expectation from Eq.~121!.

FIG. 13. The spin-spin potentialṼ4 for the two b values in
lattice units.
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onto each other. We also correctV̂b and V̂c for tree-level
lattice artifacts. For this purpose we define

dV̂b~R!5
4p

CFg2 V̂b,tree~R!2
2

3R
, ~128!

dV̂c~R!5
4p

CFg2 V̂c,tree~R!1
1

2R
. ~129!

The tree-level lattice expectations forV̂b andV̂c can be com-
puted from Eqs.~62! and ~63!.

We fit the data to the parametrizations

V̂b~R!5
2e

3R
2

1

9
KR1Ĉb1gbdV̂b~R!, ~130!

V̂c~R!52
e

2R
2

1

6
KR1gcdV̂c~R!, ~131!

V̂d~R!52
1

9
KR1Ĉd , ~132!

where we have constrained the parameterse and K to the
values, obtained from the fit to the static potential.

The resulting parameter values are listed in Table VII. In

accordance with the BBMP relation, Eq.~26!, we find
22Ĉb24Ĉd5ĈV ~within errors! for bothb values. The cor-
rected potentials

V̂b,cont~R!5V̂b~R!2gbdV̂b~R!2Ĉb , ~133!

V̂c,cont~R!5V̂c~R!2gcdV̂c~R!, ~134!

as well asV̂d2Ĉd andV̂e , are displayed in Figs. 14–17. The
expectations, Eqs.~86! and ~87!, are included as well~solid
curves!. Thex2/NDF values of the above fits are larger than
1 for V̂b andV̂c , which means that the correction for lattice
artifacts of these potentials is not as successful as it has been
in the case ofṼ28 and Ṽ3 . This can be understood from the
fact that the MD potentials are more strongly affected by the
infrared behavior of the gluon propagator, such that higher
order corrections might be important.V̂e shows substantial
lattice artifacts too~Fig. 17!. In the case ofVb the small-R
data lie below the curve, indicating that the 1/r coefficient
2e/3 might have been overestimated. This effect cannot be
understood in terms of the tinyf /r 2 correction that has been
omitted. However, by allowing for a 1/r term with a coeffi-

FIG. 14. The MD potentialVb, cont in comparison to the con-
tinuum expectation from Eq.~86!.

FIG. 15. The MD potential2Vc, cont in comparison to the con-
tinuum expectation from Eq.~86!.

TABLE VII. Fit parameters for the MD potentialsVb , Vc , and
Vd @Eqs.~120! and ~132!#.

Parameter b56.0 b56.2

Ĉb 20.0824(71)@2# 20.0681(38)@1#

gb 0.196~49!@2# 0.156~41!@1#

xb
2/NDF 3.0 5.9

gc 0.304~35!@4# 0.219~12!@2#

xc
2/NDF 2.4 1.9

Ĉd 20.116(4)@37# 20.122(2)@32#

xd
2/NDF 0.5 1.2

FIG. 16. The MD potential2Vd in comparison to the con-
tinuum expectation from Eq.~87!. The constantsCd have been
subtracted from the data points.
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cient of aboute/8 in Vd , the expectation can be brought into
agreement with the data. Within2Vc the 1/r coefficiente/2
appears to be slightly underestimated.

We conclude that the data are in qualitative agreement
with the expectations, Eqs.~86! and~87!, although a quanti-
tative comparison fails as there are indirect indications that
Vd andVe might contain small Coulomb-like contributions,
in addition to the linear term.

E. Comparison with perturbation theory

In Figs. 18–21, we focus on the small-R behavior of the
SD potentialsṼ28 ,...,Ṽ4 and the MD potentialV̂c . We show
only the b56.2 results, which are in qualitative agreement
with those obtained atb56.0. Besides the data points, the
figures include the tree-level perturbative expressions of Eqs.
~58!–~61! and Eq. ~63!. The normalization constants
c5CFas have been obtained from fits to the first seven data
points.Ṽ28 andṼ3 are well described by these one-parameter
fits and deviations of the data from a continuous curve can be
understood in terms of this lattice expectation. ForṼ4 as well

asV̂c , agreement is only achieved on a qualitative level. The
fit parameters are displayed in Table VIII.

From the analysis of the static potential, we expect
c5e2h'0.25, compared to the tree-level lattice expecta-
tionsc50.106 andc50.102 forb56.0 andb56.2, respec-
tively, determined from the lattice couplingas53/(2pb).
In agreement with the perturbative expectation, all fittedci
decrease with increasingb. We findcc to be about 5 times as
large as the naive tree-level value; this factor reduces to 2.4
in the case ofṼ28 and 1.9 forṼ3 andṼ4 as the relevant gluon
momenta within these potentials are larger and thus more
perturbative.

In order to investigate if remaining differences between
data points and renormalized tree-level expectations can be
explained in terms of higher order perturbative corrections,
we attempt to model running coupling effect. The only addi-
tional diagrams that contribute toV0 at O(g4) on the lattice
~and in the continuum! are one-loop corrections to the gluon
self-energy. The renormalization of the coupling, emanating
from these diagrams, has been computed on the lattice for
on-axis separations of the sources@52,53#. One can account
for this correction by building in a running coupling constant
a~q! into the gluon propagator of Eq.~53!, in momentum
space. Instead of attempting to compute the correct lattice

FIG. 17. The MD potential2Ve in comparison to the con-
tinuum expectation from Eq.~87!.

FIG. 18. Comparison of the lattice potentialṼ28 at b56.2 to
tree-level lattice perturbation theory@Eq. ~58!# and to the one-loop
model of Eq.~135!.

FIG. 19. Same as Fig. 18 forṼ3 @Eqs.~59! and ~60!#.

FIG. 20. Same as Fig. 18 forṼ4 @Eq. ~61!#.
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sum, we model this effect by the corresponding continuum
expression

a~ t !5
1

4pb0t F11
b

t
ln tS 11

b

t D G
21

, ~135!

with t5 ln(q̂2/L2), b5b1 /b0
2, b0511/(16p2), and b1

5102/(16p2)2, where we replaceq2 by its lattice counter-
part q̂254( isin2(qi/2) @18,54#. L is a QCD scale parameter
that can be related to the usual schemes via perturbation
theory @24,55,56#. The difference between the correct one-
loop lattice expression of Ref.@53# and Eq.~135! with b50
is small.

In the continuum, contributions that appear in addition to
a pure renormalization of the gluon propagator can be re-
summed into a single running coupling, using renormaliza-
tion group arguments. On the lattice rotational invariance is
broken and the direction ofq enters in addition to its abso-
lute value; hence, such arguments do not apply. Bearing this
in mind, we will nonetheless attempt to model higher order
perturbative effects by the continuum running coupling of
Eq. ~135!.

In the case of the SD potentialsV28 ,...,V4 , not only the
gluon self-energy contributes toO(g4), but also exchange
diagrams between the ears, incorporating a three-gluon ver-
tex. In the continuum, these can be resummed into an effec-
tive running coupling. As a result of this resummation, the

scale parametersL i ~for Vi
(8)! can differ from each other.

However, one findsL25LV @24,55,50#.
To remove the unphysical pole atq5L, an infrared pro-

tection can be built into the propagator by substitutingt by
td5 ln(q2/L21d2) with a constantd. The smallest momen-
tum on the lattice is q5p/(aLs). We choose
d25max„0,e2p2/(aLsL)2

…, wheree is the Euler constant,
to guaranteet>1; d2 is negligible at large momentaq'1/a.
Notice that within the SD potentials the infrared region is
suppressed by powers ofq, such that the results are rather
robust with respect to the choice ofd or other specific details
of the protection scheme.

Fits of the one- and two-loop running coupling improved
expressions to the first four to eight data points of each po-
tential have been performed.L is the only free parameter
within these fits. The results of the one-loop fits to seven data
points are included in Figs. 18–20~solid circles!. The L
parameters remain stable against the variation of the fit range
within errors. Since the data are described by the tree-level
formulas equally well, we are unable to decide at present
whether the deviations between expectation and data forV̂4
can be explained entirely in terms of such higher order per-
turbative corrections.

In Tables IX and Tables X, results on one- and two-loop
estimates ofL parameters are presented. We observe scaling
between the two sets ofL parameters obtained atb56.0 and
b56.2. The two-loop values are about twice as large as the
corresponding one-loop values. However, the~one- and two-
loop! a i(q) values at a scaleq5p/a are consistent with
each other. We conclude that the one-loopL values should
be considered as effective and not physically meaningful.

From our one-loop fits to V28 , we obtain
aV(p/a6.0)50.13124

17 and aV(p/a6.2)50.12424
15 at b56.0

and b56.2, respectively. The corresponding two-loop re-
sultsaV(p/a6.0)50.12828

16 andaV(p/a6.2)50.12125
15 are in

FIG. 21. Comparison of the lattice potential2V̂c at b56.2 to
tree-level lattice perturbation theory, Eq.~63!.

TABLE VIII. The constantc5CFas from the weak coupling
analysis.

Potential b c x2/NDF

Vc 6.0 0.58~9! 4.1
6.2 0.48~4! 5.2

V28 6.0 0.251~19! 0.84
6.2 0.238~12! 1.30

V3 6.0 0.192~22! 0.34
6.2 0.182~15! 0.46

V4 6.0 0.217~17! 10.3
6.2 0.199~13! 12.0

TABLE IX. L parameters from the one-loop running coupling
analysis.

Potential b L/Ak x2/NDF

V28 6.0 0.1824
15 1.25

6.2 0.2023
14 0.93

V3 6.0 0.090236
145 0.59

6.2 0.091225
130 1.15

V4 6.0 0.087221
123 4.5

6.2 0.056213
116 12.7

TABLE X. L parameters from the two-loop running coupling
analysis.

Potential b L/Ak x2/NDF

V28 6.0 0.4129
19 1.32

6.2 0.4527
18 0.96

V3 6.0 0.2226
19 0.59

6.2 0.2225
17 1.15

V4 6.0 0.1924
15 5.5

6.2 0.1323
13 14.2
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nice agreement with these numbers, while from the average
plaquette @47# we obtain aV(p/a6.0)50.149 and
aV(p/a6.2)50.138. We conclude that higher order perturba-
tive corrections as well asO(a2) discretization errors, under
which localized quantities like the plaquette are more likely
to suffer, are responsible for the 2s–3s deviations between
the aV values, determined from two different observables.

VI. APPLICATION TO QUARKONIA SPECTRA

With the potentials derived from quenched QCD we
would now like to predict experimental quarkonia levels.
The spectrum will be computed numerically from the two-
body Hamiltonian, the structure of which will be summa-
rized in the next subsection.

A. Hamiltonian

Within the spectroscopy study, we restrict ourselves to the
equal mass casem5m15m2 . The starting point is the
Hamiltonian

H52~m2dm!1H01dHkin1dHcc1dHSD1dHMD ,
~136!

where

H05
p2

m
1@V̄~r !2dHcc~r !# ~137!

contains the Coulomb-like part within the relativistic correc-
tion to the central potential. We numerically solve the radial
Schrödinger equation forH0 , and treat

dHkin52
p4

4m3 , dHcc5
c3~m!

m
ped3~r !,

dHSD5VSD, dHMD5VMD ~138!

as perturbations@41#.
For the particular parametrizations, Eqs.~82! and ~83!,

one obtains the central potential@Eq. ~19!#

V̄~r !5kr 2
e

r
1

1

8 S c3~m1!

m1
1

c3~m2!

m2
D

3F ~2k2b!
1

r
14ped3~r !G . ~139!

The perturbationdHcc is due to the last term within this
equation. We have omitted the constantsCV , Ca

B , and Ca
E

from the above formula. The latter two of these contributions
cancel each other within the statistical accuracy of our lattice
results while, as we shall see below,CV can be absorbed into
a redefinition of the quark masses. Thek/r andd3(r ) terms
have their origin in the Darwin interaction while theb/r term
is due to¹2Va

E . The mass-dependent correction terms ex-
plain the phenomenological flavor dependence of the central
quarkonium potential, as obtained from fits to the spin-
averaged charmonia and bottomonia spectra@57,4#.

Two-particle bound states can be classified by a radial
excitationn, the orbital angular momentumL, the total spin
S50,1 (S5S11S2), and a total angular momentum

J5L2S,L,L1S(J5L1S). Conventionally, the states are
labeled byn2S11LJ where the lettersS, P, D, F are used for
L50,1,2,3, respectively. From parametrizations, Eqs.~82!,
~84!, and~85!, we find ~for equal masses!

VSD~r !5
1

m2 F S 2
k

r
1

4c2~m!~e2h!2e

r 3 DL•S

2

13c2
2~m!

~e2h!

r 3 T1
1

4
@7c2

2~m!23#

38p~e2h!d3~r !
S1•S2

3 G , ~140!

with

S1•S2

3
5

1

6 S S~S11!2
3

2D , ~141!

L•S5
1

2
@J~J11!2L~L11!2S~S11!#, ~142!

T5Ri j S1
i S2

j 52
6~L•S!213L•S22S~S11!L~L11!

6~2L21!~2L13!
.

~143!

The one-loop values of the coefficientsc2(m) andc3(m) for
m5mb and m5mc at our lattice spacings can be found in
Table III. The values of the parameterse, h, andb are listed
in Tables IV and V.

Based on the parametrizations, Eqs.~86! and~87!, we find
the MD correction@Eq. ~21!#

VMD~r !52
K
6r

2
E
r

p22SK6 2
E

2r 2D 1

r
L22

E
r 3 i r•p,

~144!

where

K5kS 1

m1
2 1

1

m2
2 2

1

m1m2
D , E5

e

m1m2
: ~145!

i.e., K is a dimensionless parameter whileE carries the di-
mensionm22. Note that a string of constant longitudinal
electric field with energy densityk @58#, connecting two
pointlike particles with massesm1 andm2 , gives rise to the
classical correction term

2
K
6

1

r
L2,

which appears in the aboveVMD . One obtains the expecta-
tion value,

2 K 1

r 3 i r•pL 52p^d3~r !&, ~146!

such that Eq.~144! can readily be treated as a perturbation.
We have neglected the constantsCd andCb of Vd andVb

from Eq. ~144!. Inclusion of these terms would result in a
correction
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DVMD52
1

4 F S 1

m1
2 1

1

m2
2DCV12S 1

m1
1

1

m2
D 2

CbGp2,

~147!

where we have exploited the relationCV522Cb24Cd
from the BBMP constraint, Eq.~27!. Under the assumption
that uCbu!2uCdu ~which is supported by our numerical re-
sults, the MAL picture, and tree-level perturbation theory!,
the above shift in the MD potential can be absorbed into a
redefinition of the quark masses of Eq.~16! at the given
order of the Hamiltonian:mi→mi1CV/2. Notice that the
parameterm of Eq. ~136! differs from that of Eq.~16! by this
constant. If we interpret the fit parameterĈV , obtained at a
lattice spacinga, as the self-energy of a static quark,
E0

`(m5p/a)'a21ĈV/2, the combinationm2dm within
Eq. ~136! should approach the heavy quark pole mass.

B. Spectroscopy results

The physical scale, the quark massm, and the energy
shift dm have to be fixed from experiment, before predic-
tions can be made. Note that the parameterm within the
Hamiltonian Eqs.~136!–~145! is not the bare quark mass,
but contains the static quark self-energy. The value of the
dimensionful parameterk determines the scale. We attempt
to estimate the~presumably small! impact of the parameter
dm on our results. Therefore, we follow two strategies: we
minimize the squared differences between our predictions
and experimental levels under the assumptiondm50, with
respect tom andk @method~1!#. Alternatively, we determine
m and k from minimizing deviations from the splittings
M (n2S11LJ)2M (13S1). Subsequently,dm is tuned to re-
produce the 13S1 experimental state@method~2!#. The latter
method results in the ratiosdmb /mb,2'0.04 and
dmc /mc,2'0.22. However, for ratios of the scales, deter-

mined by use of the two methods, we obtain
(k2 /k1)1/2'1.0025 and (k2 /k1)1/2'1.035 for bottomonia
and charmonia states, respectively. The tiny size of the de-
viations of these ratios from unity can be understood from
the fact that a simple rescaling of the mass works rather well
as the following ratios indicate: (m22dm)/m1'1.0015 and
1.012, again for bottomonia and charmonia, respectively.
This illustrates that althoughdm can be quite substantial, and
thus the uncertainty in the quark mass can be large, the im-
pact of this parameter on the predicted spectrum is negli-
gible. Hence, we adopt method 1: i.e., we setdm50 and
allow for two free parametersm andk.

In the case of bottomonia, ten states have been observed
and we minimize our data with respect to all these states.
TheBB̄ threshold is at about 10.55 GeV. For charmonia, we
chose to optimize the spectrum only with respect to the
seven states below theDD̄ threshold at about 3.7 GeV. The
results forb56.0 andb56.2 are displayed in Tables XI and
Tables XII for bottomonia and charmonia, respectively.14

We find agreement on the level of about 2–3 MeV between
the results obtained at these two lattice spacings for botto-
monia, compared to about 10 MeV for charmonia. The dif-
ferences are likely to reflect the uncertainties in the matching
coefficientsc2(m) and c3(m) which increase with decreas-
ing quark mass.

14The effect of the statistical errors of the fit parameters on the
spectrum is negligible, in comparison to the systematic uncertain-
ties of the approximation, particularly those of the matching con-
stantsci(m,m). For this reason, we do not attempt to include any
errors into the tables.

TABLE XI. The bottomonium spectrum.

n (2S11)LJ b56.0 b56.2 e50.40 Experiment

1 1S0 9.477 9.476 9.415
1 3S1 9.521 9.526 9.504 9.460
2 1S0 9.980 9.980 9.961
2 3S1 10.007 10.010 10.008 10.023
3 1S0 10.328 10.328 10.311
3 3S1 10.351 10.354 10.348 10.355
4 1S0 10.619 10.619 10.597
4 3S1 10.640 10.642 10.630 10.580
1 1P1 9.879 9.879 9.889
1 3P0 9.866 9.866 9.867 9.860
1 3P1 9.878 9.878 9.886 9.892
1 3P2 9.882 9.883 9.895 9.913
2 1P1 10.238 10.238 10.243
2 3P0 10.226 10.225 10.223 10.232
2 3P1 10.237 10.237 10.240 10.255
2 3P2 10.241 10.242 10.249 10.269
1 1D2 10.120 10.121 10.136
1 3D1 10.121 10.121 10.134
1 3D2 10.121 10.122 10.137
1 3D3 10.119 10.120 10.137

TABLE XII. The charmonium spectrum. Only the states that are
identified by an asterisk lie below theDD̄ threshold and have been
used to fix the scalek and quark massmc .

n (2S11)LJ b56.0 b56.2 e50.40 Experiment

1 1S0 3.010 3.001 2.966 2.980*
1 3S1 3.134 3.143 3.175 3.097*
2 1S0 3.591 3.582 3.560 3.594*
2 3S1 3.685 3.688 3.705 3.686*
3 1S0 4.017 4.004 3.978
3 3S1 4.102 4.098 4.106 4.040
4 1S0 4.371 4.354 4.324
4 3S1 4.452 4.442 4.442 4.415
1 1P1 3.468 3.472 3.486
1 3P0 3.452 3.451 3.442 3.415*
1 3P1 3.479 3.482 3.490 3.511*
1 3P2 3.465 3.471 3.491 3.556*
2 1P1 3.915 3.913 3.916
2 3P0 3.893 3.886 3.870
2 3P1 3.922 3.919 3.917
2 3P2 3.916 3.914 3.924
1 1D2 3.764 3.767 3.782 3.770
1 3D1 3.791 3.790 3.796
1 3D2 3.777 3.778 3.792
1 3D3 3.744 3.748 3.770
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The b56.2 results are compared to experiment in Figs.
22 and 23. In order to estimate the effect of quenching, we
have included the results obtained for the parameter value
e50.40, which is our estimate, based on Ref.@14#, of the
value one might obtain with three active flavors of sea
quarks. In the case of bottomonia states, an average deviation
between prediction and experiment of 12.4 MeV atb56.0
and 12.8 MeV atb56.2 is observed. With a valuee50.40,
this deviation is reduced to 9.5 MeV. For charmonia, we
obtain an average deviation of 22.0 MeV for bothb values.
The parameter choicee50.40 changes this to 23.0 MeV,
indicating that the charmonium spectrum is rather insensitive
towards quenching effects on the running of the QCD cou-
pling. This can be understood from the fact that the wave
functions are broader, such that the spectrum is less affected
by short distance physics.

From our fit to the bottomonium spectrum, we obtain the
following parameter values, both atb56.0 andb56.2:

Ak5468 MeV, mb54.68 GeV. ~148!

The above string tension value yields a Sommer scale@59#
r 0'0.49 fm. r 0 denotes the distance at which the condition

r 2dV0 /dr51.65 is satisfied. With e50.40, we find
Ak5452 MeV andmb54.72 GeV. The scaler 0 remains
unaffected under this change ine. From the charmonium
spectrum, we find

Ak5450~4! MeV, mc51.33~1! GeV. ~149!

The errors correspond to the variation between the results
obtained at the twob values. In comparison, the sea quark
model with e50.40 yields Ak'440 MeV and
mc'1.38 GeV. The above results are consistent with pole
massesmb

pole54.7(2) andmc
pole51.4(2) GeV, where the er-

rors are estimated from thedm/m ratios.
From the fit to ten bottomonium states, we find lattice

spacingsa21'2.1 GeV anda21'2.9 GeV for the twob
values, respectively, which are in reasonable agreement with
estimates from the light hadron spectrum. If we forced the
average of the 23S-1 3S and the1 3P-1 3S splittings to co-
incide with the experimental counterpart, as is normally done
in NRQCD studies, we obtaina21'2.5 GeV and
a21'3.4 GeV, respectively, which is in agreement with
NRQCD estimates@6#. As a result, however, the 23P masses
would come out to be significantly heavier than in experi-
ment.

In order to investigate the reliability of the nonrelativistic
approximation, we have computed average radii and veloci-
ties of various quarkonia states. The results are displayed in

FIG. 22. The bottomonium spectrum. Thee50.32 results are
from theb56.2 analysis.

FIG. 23. The charmonium spectrum. Thee50.32 results are
from theb56.2 analysis.
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Table XIII. The heavy quark velocities within bottomonia
range from^vb

2&50.07 to ^vb
2&50.11, while for charmonia

we obtain the interval 0.27,^vc
2&,0.52. The radial botto-

monia wave functions gnl(r ) @cnlm(r ,V)
5@gnl(r )/r #Ylm(V)] are shown in Fig. 24.

We attempt to estimate the approximate size ofO(v4)
corrections, using the ratioR5^v4&/^v2&, and findRb'0.1
and Rc'0.4. Under the assumption that the coefficients of
such corrections have the same size as those of theO(v2)
corrections, we estimate an uncertainty of 4 and 15 MeV for
bottomonia and charmonia, respectively, due to neglecting
higher order terms inv. The uncertainty of the matching
coefficients between QCD and the effective nonrelativistic
theory is another source of systematic biases. We have as-
sumed that the coefficientc1(m), in front of the correction to
the kinetic energy, equals 1. As can be seen from Table III,
such coefficients can easily differ by as much as 20% from
this tree-level value in the case of bottomonia and by a factor
of 2 for charmonia. Such an effect onc1(m) would result in
shifts of certain bottomonia states by about 4 MeV and char-
monia states of up to 50 MeV. Higher order corrections to
c2(m) andc3(m) will also have an effect but at present the
value ofc1(m) constitutes the dominant uncertainty.

We conclude that the deviations between experiment and
prediction can be explained in terms of quenching and higher
order relativistic corrections, i.e.,O(v4) terms as well as
O(lnm/m) andO(m/m lnm/m) uncertainties in the matching
coefficients of theO(v2) terms. Inclusion of sea quarks
seems to improve agreement with experiment but is unlikely
to reduce deviations by more than an average of 4–5 MeV
per state. In the case of bottomonia, we estimate the impact
of higher order correction terms to be about twice as large.
For charmonia the effect ofO(v4) corrections might be as
large as 10–20 MeV while the impact of the matching con-
stants of theO(v2) terms is even larger. Thus the agreement
on a 20 MeV level appears to be somewhat fortuitous. How-
ever, this outcome is not a complete surprise since many
effects seem to affect the spectrum as a whole, rather than
individual splittings, and can compensate each other.

In this first glimpse at the spectrum, we have not yet
included a running coupling into the parametrization of the
potentials. The SD and MD corrections as well as the cor-
rection to the kinetic energy have so far been treated as first
order perturbations only. We will improve on these two
points in a detailed spectroscopy study@60#, in which we are
going to elaborate on the effect of higher order relativistic
uncertainties on individual states in a more systematic man-
ner.

VII. CONCLUSIONS AND OUTLOOK

We have determined the completeO(v2) relativistic cor-
rections to the static interquark potential in SU~3! gauge
theory. We find reliable renormalized potentials with good
scaling behavior. As in our SU~2! study@21# we report clear
evidence for a 1/r 2 scalar exchange contribution in the long-
range spin-orbit potentialV18 at the level of 20% of the Cou-
lomb part of the static potential at inverse lattice spacings of
2–3 GeV. The other SD potentials are found to be short
ranged and are well understood by means of perturbation
theory. From V28 , we obtain the result aV

nf50(m)
50.12460.00560.003 atm'9.2 GeV, where the first error
is statistical and the second one accounts for the differences
between one- and two-loop estimates. This value is signifi-
cantly smaller than the estimateaV(m)50.138, obtained
from the average plaquette.

All MD potentials contain contributions that are linear in
the quark separation and are in qualitative agreement with
minimal area law expectations. The potential¹2Va

E , which
modifies the central force, is found to be Coulomb like and
has a significant effect on spectroscopy since it increases the
effective Coulomb force by 2% in the case of bottomonia
and by as much as 35–40 % for charmonia. A similar behav-
ior is expected from dual QCD@61#.

As an application, quarkonia spectra are determined. We
are able to reproduce the experimental levels with an average
error of 12.5 MeV forY states and 22 MeV forJ/c states. A
reduction of these deviations should be achieved by incorpo-
rating improved parametrizations of the lattice potentials that
account for a weakening of the effective QCD coupling at
small separations into the spectroscopy. Such a refined
analysis is in progress@60#. We estimate a further improve-
ment of up to 4 MeV per state if dynamical sea quarks are
included, while higher order relativistic corrections and un-FIG. 24. Bottomonium wave functions.

TABLE XIII. Average velocities and quark separations in bot-
tomonia and charmonia. The values correspond to the parameter
choicee50.40, which has been used to model the effect of dynami-
cal sea quarks.

nL ^vb
2& ^vc

2& A^r b
2&/fm A^r c

2&/fm

1S 0.080 0.27 0.24 0.43
2S 0.081 0.35 0.51 0.85
3S 0.096 0.44 0.73 1.18
4S 0.112 0.52 0.93 1.47
1P 0.068 0.29 0.41 0.67
2P 0.085 0.39 0.65 1.04
1D 0.075 0.34 0.54 0.87
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certainties in the perturbative matching constants might shift
certain levels by as much as 5–10 MeV for bottomonia and
up to 50 MeV for charmonia states. Uncertainties in the~per-
turbative! matching constants between QCD and the effec-
tive nonrelativistic theory are likely to have a larger impact
than O(v4) corrections, and should be reduced. Our results
are compatible with heavy quark pole masses
mb

pole54.7(2) GeV andmc
pole51.4(2) GeV.

The approach presented in this article can be used to ob-
tain optimized wave functions for creation of a quarkonium
state with particular quantum numbers within the comple-
mentary lattice NRQCD method@62#. We intend to extend
this application to discrete finite boxes with periodic bound-
ary conditions, in order to shape even better basis states and
to simulate finite size effects that one might expect in lattice
NRQCD studies. From Fig. 24, it is obvious that on volumes
with a spatial extent of typically less than 2 fm, excited state
wave functions become squeezed, and the corresponding en-
ergy eigenvalues might be significantly affected.

Application of the Schro¨dinger-Pauli approach to the
spectrum ofBc states as well as a determination of quarkonia
decay constants is in progress. It appears worthwhile to con-
sider calculations on anisotropic lattices, to reduce system-
atic uncertainties on the potentials, arising from the temporal
discretization of the lattice. In order to keep uncertainties in
the perturbative matching constants between the effective

theory at a scalem5p/a and QCD small, one would like to
operate at spacingsa'p/m where m might be either the
bottom or the charm quark mass. The latter would require an
improved lattice action.

Note added in proof.After completion of this article we
became aware of a publication by Brambilla and Vairo@63#,
summarizing theoretical expectations on the potentials from
the stochastic vacuum model, dual QCD, and MAL.
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