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Questionable and unquestionable in the perturbation theory of non-Abelian models
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We show, by explicit computation, that bare lattice perturbation theory in the two-dimen€idnalnon-
linear o models with superinstanton boundary conditions is divergent in the limit of an infinite number of
points|A|. This is the analogue of David's statement that renormalized perturbation theory of these models is
infrared divergent in the limit where the physical size of the box tends to infinity. We also give arguments
which support the validity of the bare perturbative expansion of short-distance quantities obtained by taking the
limit |A]—c term by term in the theory with more conventional boundary conditions such as Dirichlet,
periodic, and free[S0556-282(97)01817-1

PACS numbeis): 11.15.Ha, 11.15.Bt

[. INTRODUCTION stant. In the lattice formulation one usually starts with a finite
number of lattice point$A| and the standard discretization
Quantum chromodynamicéQCD) is the presently fa- (2.1. The conventional picture is that the critical point at
vored candidate theory for strong interactions. However, tovhich the continuum limit forn>2 should be taken is
establish its esteemed status the theory must be able to r8c=. Patrascioiu and Seil¢L], on the other hand, conjec-
produce the low-lying spectrum and low-enetgynatrix el-  ture that there is a criticaB.<e (for all n>1) beyond
ements to a respectable precision. To accomplish this w#hich the theory is in a massless phase. It might then happen
require a nonperturbative definition of the theory—the mosthat although the continuum limit obtained by approaching
promising of which is lattice regularization. On the other B¢ from below has a mass gap and describes the expected
hand, many aspects of high-energy phenomena involvingpw-energy properties, the theory thus obtained is not asymp-
hadrons(e.g., jets, deep inelastic scattering, etare de- totically free at high energies. In particular, conventional
scribed successfully using renormalized perturbation theorperturbation theory in the infinite volume limit would then be
(PT), the rationale being the expected property of asymptotiavrong for two-dimensional2D) models with a non-Abelian
freedom, i.e., that the amplitudes can be expressed as a ser@@gbal symmetry. Their arguments are based on results from
in a coupling which depends on the energy of the procespercolation theonf2] and with analogy to the case of the
and goes to zero as the energy goes to infinity. The converfbelian modeln=2 (for which it is rigorously proven that
tional wisdom is that “in principle” one could justify this there is a phase transition at finjg2[3]). Numerical inves-
use of PT by showing that the coefficients of the convendigations can give useful hints but obviously cannot establish
tional perturbative series provide the true asymptotic expanwhich scenario is correct.
sion of the full theory defined nonperturbatively via the lat- Concerning the status of perturbation theory it is known
tice regularization. Confirming this proclaimed status of PTthat for a fixed number of lattice pointé|~L? and for a
is also essential in aiming at a criterion where to truncate itlarge class of boundary conditiofBC’s) observables have a
Without such a criterion PT produces sequences of prediovell-defined perturbative expansion in the bare coupling
tions, one for each order where one decides to truncate i3~ 1. We shall use the term “short-distance observable” to
anda priori none of them might be close to the true answer.denote O(n)-invariant correlation functions of some local
It must be emphasized, however, that the usual arguments ffield, where(in the bulk of the papérall arguments are fixed
the above scenario are far off a proof and Patrascioiu antittice sites, a distanc®(L) away from the boundary. The
Seiler repeatedly emphasized that also alternative scenarigsoblems now arise with the limit—oo. Let us first consider
can be imagined1,2]. the following question(Q1) Is the asymptotic expansion of
In full QCD a rigorous understanding of the status of PTshort-distance observables for fixedand 8— oo uniform in
is likely not to become amenable in the near future, so that it. ? Equivalently, can for such quantities the limits»« and
is sensible to address the question in a simpler context, e.d.,—« be exchanged in bare lattice PT?
the O(n) nonlinear ¢ models in two dimensions. These A major finding of[4] is that the answer t6Q1) actually
models are also perturbatively asymptotically free and arelepends on the choice of boundary conditigBE’s). The
thought to describe a multiplet of stable massive particlesteasoning can be illustrated with the computation of the en-
the mass scale being nonperturbative in the coupling corergy density€ at the center of the lattice. Althoughdoes
not have a continuum limit relevant to the physics, by appli-
cation of the Mermin-Wagner theoreff] it should be inde-
*On leave from the Institute of Theoretical PhysicSpMes Uni-  pendent of the boundary conditions in the limit of an infinite
versity, Budapest, Hungary. number of lattice points. Patrascioiu and Seiler invented
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boundary conditiongwhich they coined superinstant¢8l)  teger. The set of points surrounding the square,
boundary conditions; cf. Sec.]land computed the one-loop {|x;|=L/2, |x,|<L/2}U{|x,|<L/2, |x,|=L/2} will be re-
coefficient of £. They showed that it has a finite limit as ferred to as the boundagA of A. The O(n) spin field S,
L—c but the result was different from that with more con- defined onAUJA is an n-component field of unit length
ventional BC’s such as Dirichlet. Furthermore they claim ag?=1 . we restrict attention to the standard lattice action
similar result holds for the renormalization group
B—functions. The conclusion is that for at leaste of the
BC's involved the answer tgQ1) is negative. The authors
interpret their result as casting doubt on the validity of stan- A(S)=B2 (1-S¢ St ). (2.9
dard PT forall BC’s. They claim that the correct perturbative o
treatment in the limit of infinite volume must include expan-
sions around the so-called superinstanton(gasfigurations  Foy fixedL the perturbative expansion of the two-point func-
whose energy tends to zero las»»; see Sec. I\ tion is
We believe that such conclusions are too strong and we
set out to clarify some of the points raised. In the next sec-
tion we show that the SI BC’s are “sick” in the sense that N Crw
the limits in (Q1) cannot be interchanged. We do this by C (X’V;B’L)E<SX'Sy>:1_zfl B cr(xyiL),
showing that the perturbative coefficients&ivith SI BC's 2.2
diverge at two-loop order in the limit—o.> We have not
considered the particulg® functions defined irj4] but we
believe a similar result will be found. This infrared diver- Where the superscript indicates the dependence on the
gence of the PT with SI BC’'s was already suspected byoundary conditions under consideration. In this section we
David [6] but as his argument was formulated in the frame-will only consider two sorts of BC's, the Dirichlet boundary
work of (renormalizedl continuum PT his claims were open condition S;= 5, for xe JA and the so-called superinstan-
to a counterattack7] and the issue remained unsettled. Ourton (SI) boundary conditiong4]. The latter are Dirichlet
result can be viewed as the lattice analogue of David's stateBC’s with the additional constraint that the field at some
ment. point z, is also held fixed parallel to the fields at the bound-
Having identified the SI BC as “sick,” the next question ary.
is whether the conventional BC’s are “healthy.” Consider The purpose of this section is to show, by explicit com-
the bare lattice PT expansion of some short-distance obserputation, that PT with SI BC's is infraredR) divergent at
able on a finite latticel A|~L? with various BC’s. Let third order, while PT with Dirichlet or periodic BC's is IR

ci(X1, - - - Xn;L), r=1 be the coefficient of8™" in an finite at the same order. For completeness, and to introduce
asymptotic expansion with BC of type, where the sites the notations, we first reconsider the first and second
X1, ... X, are fixed and a distanc®@(L) away from the orders in some detail. Bare perturbation theory can be per-

boundary.(Q2) Which BC's a can be anticipated to give formed by parametrizing the fields bySi=pg""?x{,
finite and coinciding answers for the—o limits of their a=1,...N where N=n—1, and S!=(1-p8 1722
perturbative coefficientsy'(xy, ... X,;L)?(Q3) Do the in-  The measureIl, ,dS,8(SS—1) is then replaced by
finite volume short-distance observables admit an asymptotig, ay) M. .dm with A —1/25 In(1—
expansion in 81?7 If “yes,” can their coefficients P Ameasudllie nd measure xIn(

,1"2 . . . _
C*(xy, ... %), =1 be obtained from PT via B~ *my). The Feynman diagrams contributing to the two

i o Y= c” h . point function are the same for the two BC’s, only the ex-
My oCr(Xe, - .- X L)=Cr (X, ... Xn), Wherea is one pression for the free propagator differs. We denote the free

of the BC’s meeting the conditions iiQ2)? e
In Sec. Il we shall consider these deeper questions rais wgr(li(ety)pr%pnaegag)sr byD(x.y) and the free Sl propagator

in [1,4] and argue in favor of the following picturéi) All

BC's involving only ferromagnetic couplings and leaving the

interior spins unconstrained meet the condition(@2)— D(X,29)D(zg.,Y)

provided free and Dirichlet BC’s meet iii) Assuming the G(x,y)=D(x,y)— Dz 2.3

latter also the answer to both parts(§f3) is affirmative. We 050

do not have a rigorous theorem but our considerations may

constitute a strategy for a future proof thereof. Section IV isin the following we will take the pointz, to be the origin

devoted to some further discussion. z,=(0,0). Also we denote by, the point (1,0). One easily
sees that eacls/(x,y;L) is a polynomial inN=n—1 of

II. IR DIVERGENCE OF PT degreer or less, and we write

WITH SUPERINSTANTON BC

We consider a two-dimensional square lattice r
A={(Xq,Xp); —LI2+1<x,<L/2—1}, L a positive even in- o= 2 c;";ij. (2.4)

We have verified, however, that if we compute quantities well
away from the boundaries and the center then the same results aréThis is not indispensable, a parametrization independent defini-
obtained as for conventional BC. tion could be given via the Schwinger-Dyson equations.
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O ( ) c" <3><x.y>=—%Nz<i2’j> [D(i,i)=D(j.j)]
1 2 3 X[D(x,y;i)?=D(xyi})?]
Iati(l):rl]Gf.uiétigrr]l.e-loop diagrams contributing to the spin-spin corre- B %N(% {ﬁ(x,y;i)[D(i i )B(X,y;i)
A. First order -D(i,j)D(x,y;))]+ (=]}, (2.119
In first order we have, for the Dirichlet BC, where the sums in the last equation are restricted to the case

1 wheni andj are nearest neighbors and we have introduced
cPr(x,y)= SN[D(x,x)+D(y,y)=2D(x.y)]. (2.5  the notation

As mentioned above, for the SI BC one simply replabesy DY) =D =By i).
G. For the special case of the energy expectation value Weet s just inspect the coefficient B2, Here diagram 2 does

have not contribute and for diagram 1 one has simply
cDir N 1_ EA (2.6) sl (1) D|r (1) 1 2 2
(ZO Zl) 4 2 0. . CZ; (ZO Z ) C (Zo,zl): §[G(Zl,zl) _Ao]
(2.12
where
which by Eq.(2.8) tends to 1/32 ak— <. For diagram 3 we
Ao=D(2z9,25) —D(z4,27). find

c?" approaches its asymptotic value with power correctiong$!, )(zy,z;)—c5% )(z,2;)
smcer O(1/L?) for L—o. On the other hand

1
N 1 = TglottiZ” Tt,272+15278, (2.13
Cl(zoazl):NEG(Zl,Zl) (2.7

with
approaches the same asymptotic value extremely slowly with
corrections 1/lh since

t1=12 D(zg,21;i)%E(i),

4i#zo
G = 1— 1 z 1 (2.9
(z1,21)= 5= Do 75 ' 1 o
to=— gz D(z0.)°F(),
with “
_ 1
Z=D(25,29)~(2m)~YnL  for L—oo. (2.9 t3=a‘2 D(zg,i)%E(i), (2.14
i # 20
B. Second order where
At the next order there are three contributions
3 E(i)=2<_> [D(i,20)%~D(j,z0)?],
=(i
<>§“(x,y)=;1 cd MI(x,y) (2.10 J
F(i)= D(i,i)=D(j,j)]. (2.15
corresponding to the diagrams depicted in Figdiagram 2 ® J—EO D (1.0

comes from the measure part of the actidBne has i i i
Here the sums are taken over sifeshich are nearest neigh-

. 1 bors toi. The decomposition in the form of E@2.13 is
cor (1)(x,y)=§N2[D(x,x)— D(y,y)]? made in order to be able to extract the asymptotic behavior
reliably. Our ansatgwhich we have not proven analytically
1 is that the functiong; have an expansion of the form
+ ZN[D(X,X)2+ D(y.y)?>—2D(x,y)?],

R
(2.113 ti(L)~§Oti(r)[(27r)_1lnL]r+O(1/L), (2.16
) 1 _ . - . . .
Dir (2) _- 52 with R; finite. To obtain the leading behavior we have com-
C Y)==N D(x,y;i)-, 2.11 | .
2 (x.y) 2 Z (xyib) ( b putedt;(L) over a large range of (up to L=220, using
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extended precision arithmeticand taken logarithmic de-
rivatives with respect td.. Our findings are that

R1:R2:0, (217) @

1 2
and hence the contributions in EQ.13 involving t;,t,
vanish in the limitL —. However

1
Re=3, =55 218 XQQ_X xﬁx

One can in fact understand the resulttfpanalytically in the
following way. Far from the origin and the boundary, i.e., for 5
1<|i|<L the Dirichlet propagator is well approximated by

its continuum behavior FIG. 2. Two-loop diagrams contributing to the spin-spin corre-

lation function with terms=<N3.

D(zo,i)w(zﬂ-)—lmﬁ, (2.19 C. Leading N contribution to the third order
i
For the purpose of showing an IR divergence at some
orderr, for genericn, it is sufficient to show that one of the
coefficients of this polynomial irN is IR divergent. We
E(i)~—D(i)[D(zo,i)2]~—2(277)‘2|i|‘2, (2.20 cljlim that t-his is the case for the coefficient Bf in
c3(x,y;L) with the SI BC.
Out of 12 diagrams only the 5 shown in Fig. 2 have a

nonvanishingd(N?®) coefficient. Explicitly

and so

wherel[; is the Laplacian in the variable Thus fort; we

have
5
1 2 L cS(x,y;L) =E 5s V(x,y;L), (2.23
e gen 53 () & ;
1 [x|=1 with
~— -4 2 2|2
32(271-) J 1/|_d X| x| ~4In?| x|
1
Sl ()" — 2
:_56(2#)73"_]3'_. (22]) C33 16[G(X1X) G(yyy)] [G(X1X)+G(y1y)]:

(2.243

This is the same result as was guessefflin These authors 1
were quite fortunate to get the correct result because initially ey P=— “[G(x,x)—G(Y,y)]1> [G(i,i)—G(j.})]
they just evaluated the full functiorp!, ) numerically and 8 i

then made a rather naive extrapolation. We stress that the X[G(x,1)2=G(y,i)2—G(x,}) 2+ G(Y,j)?]
analysis has to be done extremely carefully on the lines out- ’ ’ ’ e
lined above to properly treat the appearance of polynomials (2.240

of logarithms in the denominatofs.
The final result of this subsection is that . 1 o o
csls <3>—8< %kw{[G(l.I)—G(J-J)][G(k,k)—G(H)]
i

m[e3a(20.20) = C2lz0.2)1= 25 (222 X G(i,k) Bx,yi)B(x,y;k)+ 3 perm,
, (2.249
[we also know lim _,..c5'5(2y,2;) = 0]. The Mermin-Wagner
theorem implies that the perturbative expansion of the two- 1
point function is independent of the boundary conditions i~ c§l, @== > {[G(x,y;i)2=G(x,y;j)?]
the infinite volume limit. Accepting this fact we must con- ' 8(i )kl
clude tha_t the interchange of the limig—«~ andL—» is” X[G(k,K)—G(I,1)] G(i,k)2+ 3 perms,
not permissible for at least one of the boundary conditions
involved. We now go on to show that this is indeed the case (2.249

for the SI BC because one encounters an infrared divergence.

1 ~ . . .
cfls ®'=—1e2 {GxyiD)? [G(1.i)=G(j.))]
3ndeed,c3!, ® is not monotonic in_ and has a minimum at a 1)
large value ofl. ~120. X[3G(i,i)+G(j,))]+ (i)}  (2.248
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Here “+ 3 perms” stands for three similar terms with sum- .
mation indices permuted according tot{i«j) +(k—1)+
(i—=j, k1) :
Again we restrict attention to the energy expectation value 0.00426 - 1
at the center of the lattice. First we note that for the analo- g gg424 |- _ x|
gous Dirichlet expression one can show
lim, _...c3%5(20,2,) =0. For the Sl functions we again insert %42 | x ]
the formula, Eq(2.3), for G and separate the coefficients of 0.00420 - .
L . . . . 0.00418 *
Using the results in the last subsection together with the x

knowledge that lim_...3., D(2,21:i)?F(i)=0 it is easy =~ 000416 | x 1
to show that the contributions from diagrams 1 and 2 in Fig. 0.00414 - ]
2 have finite limits a — . It turns out that all the remain- ;0415
ing diagrams 3-5 in Fig. 2 diverge logarithmically. Consider

first diagrams 3 and 4. Dropping all terms which have finite 0.00410 5 0.02 0.04 0.06 0.08
L—oo limits one obtains the decomposition 1L

0.00428

T
I

csls z9,21)~5,274-32327, FIG. 3. The fifth logarithmic derivative o, multiplied by
(2m)5/5! plotted vs 1L.

5y N(20,21)~$Z 2+ 32 3+ 25,27 . L .
’ We do not give all the derivations but illustrate the proced-

—325(t3+1,22)Z27°, (2.25  ure again with the interesting case sf. Apart from the
approximations (2.19 and (2.20 we introduce D(i,k)
wheret, is a one-loop sum ~(1/2m)In(L/|i—k]|) so that
1 L L L
= iV2H (i 2m) 7 —In— In——.
=33 DizodH(), 220 503, 2, e R TR
(2.30

ith . . .
w Now by symmetry we can considék|<|i| and averaging
first over the angle betwednandk we obtain

H(u)—E [D(z9,21;1)2-D(20,21:)4.  (2.27)

=0 1 - 1 L
s 162m 2 F'”m e 5 TR
The s, are more complicated two-loop sums: 0
Mdr L
(277) > 2|n
s > H()E(K)D(i K)D(20,)D(20,K), % "'
4i¢zo k#zq L L
(277) 62 In?L —In? —
1 i#zg ! | | i
$3=~ 1552 X E()E(KD(,k)?,
1283520 k?tZO 1 1
(277) Slo—= In5L
E(i)E(K)D(i,k)D(zq,i)D(zg,k). 1
S4= 128;0 ;ZO ()E(K)D(i,K)D(20,1)D(Zg,) L oSl (2.3

(2.29 ~ 240

he corresponding numerical result is shown in Fig. 3. The

ifth logarithmic derivative ofs, multiplied by (27)°/5! is
shown as a function of IL/ The definition of the lattice loga-
ithmic derivative used is

We have numerically computed all these sums over a larg
range ofL (up toL=210) and their asymptotic behavior as
L—o was determined using extrapolation techniques de=
scribed in the previous subsection. In all cases we found
results consistent with those obtained by substituting the be-

haviors of the functions at large separations: Lif(L):E[f(L+l)_f(L_ 1)].
1 1
ty~ 3—22, So~ — %23, The data are calculated for even valuesLoin the ranges

8-60, 100-120, 200—210 using extended precision arith-
metic. The dotted line is the analytic result 1/240.
1_, 1 _. The coefficientc3'; ®)(zg,2;) involves new sums but
S3~— =32, Sa~ 520 (2.29 L3 - X
can be treated similarly. Summarizing we find
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s (3 In the following we shall argue that if the correlation
sz P(z0,20)~ 1420 functions of the systems 1 and 2 have well-behaved pertur-
bative expansions—in a sense to be specified below—then
(i) the infinite system 3 has an asymptotic expansion with
Z, coefficients given by the formadl— <o limit of the perturba-
tive coefficients of systems 1 and 2, afid) all systems
1 considered under E¢3.2) have similarly well-behaved per-
Sl (5 . turbative expansions.
€33 P(z0.21) 4802' 2.32 For this purpose we have to make some natural and veri-
fiable assumptions on the perturbative series with free and
Thus the divergent contributions do not cancel and one endsirichlet BC’s. To simplify the notation we shall return to
up with an overall logarithmic divergence c3;38)(z1) the square lattice of Sec. Il and writ€*(B,L) for
~(7/2880¢ as L—e. C*(x,y;B,A). The distance of the fixed sitesy from the
This shows that one cannot interchange the lingits  boundary is taken to be @QJ, so thatC*(3,L) qualifies as a
andL — for the SI BC because the perturbative coefficientsshort-distance observable, as defined in the Introduction.
diverge at two-loop order. In particular, the SI BC's do not  Let us elucidate on what we mean by a “well-behaved”
belong to the class of “healthy” ones alluded to(l@2) and  perturbative expansion. For fixédand given boundary con-
(Q3) cannot even be addressed. Initially however, the Sl exditionsa= free or Dirichlet, one can calcula@® in PT as a
ample was probably thought to discredit PT on interﬂa|power series in 13 to some arbitrary ordek:
grounds, stemming from the apparent ambiguities in the PT
answers for the infinite lattice quantiti¢d]. As such, we k
think, it is no longer valid. Of course one could still argue CYB,L)=1-2, cf(L)B™"+RE(B,L). (3.3
that the divergent Sl answer might even hit a point in signal- r=1
ing that the quantities in question do not have an asymptotic
expansion in3~1. However this possibility is not an argu- There is perhaps no doubt that for fixdd these are
ment by itself and has to be supported by external mean@symptotic series: I.e.,
see, e.g9.[2]. In the next section we shall leave this example

csls W(z0,21)~— 288C

and try to develop criteria of what healthy BC’s should look “(B,L)=0(B75). (3.9
like and under what conditions an affirmative answe(Q®g)
should be expected. Consider now the formalL—-co limit of the coefficients
¢/ (L). On the grounds ofthe lattice counterpart pDavid’s
Ill. ADDRESSING THE QUESTIONS (Q2) AND (Q3) analysiq 9] one expects that for the case of the free, Dirichlet

. . (and periodi¢ BC's there are no infrared singularities and
We start by comparing the correlator between two SPINShat the convergence to the—c limit is of O(1/L) [up to

for different boundary conditions. The discussion will be logarithms, i.e.O(1/LINKL)]. We shall assume that the per-
based on the validity of the following conjecture: For a spiny i aiive coefficients obtained actually coincide in the infi-
system with ferromagnetic couplings the correlation functlonnite volume limit:

C(x,y)=(S«S)) increases if any of the ferromagnetic cou-

plings is increased. This conjecture is physically rather intui- 1

tive, nevertheless it has not been proven [yt Consider a cf‘(L)=c_r+ O(—), a=free, Dirichlet, (3.5
spin system with a given ferromagnetic interaction(@ha L

finite lattice A with free boundary conditiong2) the same _ _ _ _

lattice with the Dirichlet BC, and3) an infinite lattice. Va-  provided the distance of the fixed sites/ from the bound-

lidity of the above conjecture implies the following inequali- ary isO(L). One has good reason to trust E8.5. The free
ties between the corresponding correlators: propagator for these and other conventional BC'’s has a size

' dependence 0O(1/L?) in contrast to the S| case with an
Cc™(x,y; B,A)<C”(x,y;8)<C "(x,y;8,A), (3.1)  O(1/InL) dependence. Thus conventional boundary condi-
tions should not produce such peculiar behavior as observed
for anyx,y € A. More generally, the conjecture also implies in the one-loop order for the SI BC’s. Assumptith5) can
that on any latticeA* containing AUJA the correlator in principle be verified order by order. It could also be re-

C*(x,y; B,A*) satisfies laxed [8] (see note addedbut we expect Eq(3.5) to de-
e . . o scribe the form of the actual finite size corrections. For
C™X,y; B,A)<C*(X,y; 8,A*)<C”"(x,y; B,A). r=1,2 we have verified this numerically. Note that 2 is

3.2 already the source of troubles in the SI case.

Clearly, the problem of establishing the claisand (ii)
amounts to controlling the remainders in an ansatz for an
asymptotic expansion &€ (8) or for the correlators in Eq.
(3.2). Let us first consider claini) and define

From here it follows thaC™¥x,y; 8,A*) increases while
CPr(x,y; 8,A*) decreases with increasing siz&*|. Fur-
ther the systems with periodic BC's ob* will satisfy Eq.
(3.2). Note that the SI BC witlzge A (Wherez, is the site
where the extra spin is fixedloes not belong to the class K
considered in Eq(3.2), the considerations apply, however, RC(B)=C™(B)—1+ S ¢.Bk (3.6
whenz, is outsideA. r=1
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This definition is chosen such that claim is equivalent to
the statemenR; (8)=0(B8¥), k=1. ThatisC*(8) has an
asymptotic expansion in powers gf 1 and its coefficients
coincide withc, . For later use let us also introduce

k
Aﬁ’(ﬁ,L)=21 [cX(L)—c,] B" (3.7)

and note that one can now rewrite E§.1) in the form

AI(B,L)+ RE(B,L) <R{(B)=<A"(B,L)+ RE”(ﬂ(L% )
3.8

The naive strategy to establigh would be to first try to
show that|Rg(B,L)|, a=free, Dir are bounded by some
L-independent function o6(8~%) and then conclude from
Eq. (3.8) that Ry (8) =0(8 ). Our main technical observa-

tion is that one can reach the same conclusion using a bou
on |Rg(B,L)| which is much less stringent, and which needsy,,

to be established only in some part of theB plane. In
detail, we assume that the bound

(InL)Pt0

|RE(B'L)|$BkW, (3.9

with some finiteB,, andp(k)=0 has been established in the
following region of theL -8 plane;

L<Li(B), B>Po,
where [InL(B8)]?¥/B—0 (3.10

and By is some (-independent constant. Convenient
choices for the functiorL;(8) will be given below. Simi-
larly define another region of the-8 plane by

Lo(B)<L  B>po,

as B—x,

where ¥ Y/Ly(B)—0.
(3.11)

Choosing now any unbounded patlg) in the intersection
of both regiong3.10 and(3.11), the desired conclusion can
be reached immediately: One hag[B,L(B)]1=0(8"¥) by
Eq. (3.5 and the condition orLy(B). Similarly from Eq.
(3.9 and the condition onL.(B) it follows that
RZ[B,L(B)]=0(B%). Then the inequalitiet3.8) imply

Re(B)=0(B875), (3.12

which is basically the required result. Strictly speaking, on
should for a fixedk refer to the numberg,, r<k as the

(unique candidates for the coefficients in an asymptotic ex-

pansion ofC”(B) in B8~ 1. Only after Eq.(3.9 and hence Eq.
(3.12 has been shown for alk, the existence of the

asymptotic expansion follows and the numbe_pscan prop-
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Lo(B)=L1(B)=pB¥, which is moreover the choice with
about the minimal growth that allows one to draw conclu-
sions about the firsk coefficients of the expansion. Of
course any choice fdry(8) andL,(8) growing faster than
B¥ [and such that the intersection of the regi¢8sL0 and
(3.11) is nonempty is also sufficient. For example a region
containing the path

L(B)=expInB) (3.13
would be convenient, because it allows one to coverkall
simultaneously in the above argument. However one should
keep in mind that the faster the upper boundanryB)
grows, the more difficult it may be to establish the bound
(3.9 within the region(3.10.

A second comment concerns the relation to David’s theo-
rem. According ta(the lattice counterpgrof this result one
pects that the infrared divergent terms cancel in the per-
rbative coefficients. However, to directly prove such can-
cellations in the remaindeR(8,L) [e.g., p(k)=0 in Eq.
(3.9]is probably a more difficult task. The point of using the
correlation inequalities is twofold: First, the claifi) can be
established without assuming the IR finiteness of the remain-
ders for fixedB, as described before. And second, once claim
(i) is established, the IR finiteness of the remainders actually
follows from the correlation inequalit{8.2). To see the latter
let L(B) be an unbounded path in the intersection of the
regions(3.10 and(3.11) and let (3,L") be any point in the
region{(B,L") | B> By, L">L(B)}. Then, by Eq(3.2),

Alle(8,L(B))+RI*(B,L(B))

<AB,.L)+RI(BL)<R(B)
<AY(BL)TRY(BL)

=A"(B.L(B)+RY(B.L(B)). (3.14
Since, given Eq(3.9), we know the behavion(3 ) for the
terms withL(B) and by Eq.(3.5) also forAg(B,L"), it fol-
lows thatRg(B8,L")=0(8¥) is valid “uniformly” in the
regionL’=L(B). [In other words, the statement is true for
arbitrary pathL’(8)>L(B) with a bound onRg(B,L'(B))
which is independent on how fakt' (8) grows. Note that
this is not uniformity in the usual sense where one would
require a regionL’=L} with L} independent of3.] In a
sense this supplementthe expected lattice counterpart) of
David's argument on the IR finiteness of the PT coefficients.
It remains to establish E¢3.9). Since we have not man-
aged to prove this, the proof @f) and (ii) remains incom-
plete. However, we find the strategy outlined promising and
for the rest of this section we shall give a plausibility argu-

erly be referred to as the coefficents of this expansion, so thament that Eq(3.9) indeed holds. To explain the argument let

claim (i) follows. It is also easy to see that starting with Eq.

(3.2) the same strategy applies and E§.9) also implies
claim (ii).

us follow the expectation of Patrascioiu and Seiler that PT
breaks down for large lattice sizéssince the spins at large
relative distances become strongly decorrelated. Conse-

Let us add a number of comments. First one should checiuently, one can question the validity of the bouBd) in

that choices foly(B8) andL(B) exist such that the inter-
section of the region$3.10 and (3.11) is non-empty for
each sufficiently large 8. A simple example is

the wholeL-g plane, in particular fog fixed, L—o. Recall,
however, that in the strategy we used to establish cl@m
exclusively lattice sizes of typ@.13 enter which grow with
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B only in lattice units—the physical size of these latticesIn the case of the Dirichlet BC the field at the boundary is
L(B)/&(B) decreases g— . [Here&(B) is the correlation  fixed to zero, while for the free BC we use the remaining
length growing exponentially in the standard scend@mn-  global translational symmetry to fix, sajy=¢(x=0)=0.
sequently, in our stratgey it is sufficient to establish the(For this BC the sitex=0 is assumed to be left out in the
bound (3.9 in the region(3.10 of the L-B plane. As it is  sums and products appearing in the expressions bet@on-
shown below, for such mildly growing volumes the spinssider now the constrained model described by the partition
become increasingly ordered with growing—hence the function

above objection does not apply. Roughly speaking, the argu-

rpzent 2estlmates the probabll_|ty of h_avmg fluctuations 2(B,5)= H depe Phol(®), (3.16
=0 at least at one of the sites and finds that such fluc- —SxeA

tuations are exponentially suppressed by a factor ) ) .

~ exp(=&B/nL). Here the field values are restricted |ip,|< 5. Define the

We begin by considering the effect of constraining thecorrection terrrR(,B S) as
fluctuations in an auxiliary system. Let us calculate the prob-

ability that in a massless free theory the fluctuation exceeds Z(B,6)=Z(B)[1-R(B,0)], 3.19
some given threshold. We shall use again thd UJA
square lattice of Sec. Il and the action whereZ(B)=Z(B,») is the corresponding partition function
for the unrestricted case. The te®(3, 5) can be interpreted
Aol ) = EE (V)2 3.15 as the probability to havies,| > &, for at least one of the sites

X. It satisfies the inequality

0<R(B,8)<=—

2], dobxfx [] dg,e ol
by|=06

Z(B xeA —oy#X

Ia$

e Iaﬁ) . )
T1 depel@bxBAo)
“Na+i0 a—i0))_. y y

Z(B)xeA ZWIJ

1 . eia5 e—ia5 Dxxa2
L8 ario w—io)¥R T 28

xeA 27
= ex ﬂaZ)F 5\/£)
xeA 2Dxx Dxx .

HereD,,=(¢2). The functionF is given by Dyy
by= D, 6 foranyy. (3.20
1 ([~ 2 o . . o . .
F(o)= ;j du e > o Obviously, ¢,= 6 and it satisfies the lattice equations of mo-
’°° us+s tion, A¢,=0 for anyy+x. The corresponding action value
is given by
and has the propertieB(0)=1, F(5)<1, and F(«»)=0. 1 52
Finally, one has - = =— .
y 22 by(84)y= 55—, (3.20
_ B2 as stated above. It is also easy to show thantpeint func-
0<R(B,0)=<|Alexp — D M) (3.189  tions in the constrained model will differ from those in the
m unconstrained one also by exponentially small terms of the
. ) form (3.19.
where _Dma=maxDy.  In two dimensions  Dpax We now return to th@(n) o model. Again, for the case
~(2m) " “InL hence of the free BC we use the glob&(n) symmetry to fix
52 S,=(0,1). Using the parametrizatic®,= (1, = V1— wx) it
O$E(,8,5)$L2ex;{ _ WIfL ) (3.19 is easy to verify the following inequalit}:

In fact, 62/2D,, is the minimal value of the action under the “Note that forS">0 the parametrizatio= (,1)/\'1+ §? gives
condition that¢,= 8. To show this consider the configura- an upper bound, % S,-S,<1/2(¢,— ¢,)2, which also might be
tion useful.
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1 . . pressed, as expectgdror the correlation functiogsS,-S,)
1-S¢§=5(m— my)°. (322 only superinstantons with size smaller tHan-y| contribute
significantly, larger ones will rotate the two spins simulta-
As a consequence of E¢3.22), the standard action of the neously. This contribution is responsible for the leading or-
o model is bounded from below by the corresponding freeder bare PT result

field action, A(S)=A,(m) and
1

N
& (8—S)*)~ 7 5=Inlx|.

A(S)= for |m,|=6. (3.23 B 2
2D,

From here it follows that the probability to ha‘{/éx|> sat This also explains why th®(n) invariant quantities are in-

least at one sitex is suppressed by the exponential factorfrared finite in PT, as opposed to the noninvariant ones
given in Egs.(3.18 and (3.19. Once again, the constraint Which diverge as some power oflinHowever the form of
influences the correlation functions only by an exponentiallyin€ finite size corrections is incorrectly given by PT, Eq.
small amount ag— . As anticipated, increasing the lattice (3.5). Indegd, due to the nonpertur_batlvely generated mass
size not too fast, for example, as in £8.13, the correlation € coriecthns should be exponentially small for £(5).
functions of the constrained and unconstrained systems will " d=1 dimensions the status of PT is quite different. In
differ by correction terms which decrease faster than anPn€ dimensiorD.,<L and the correction term is of the
inverse power of. Further the bound3.19 allows one to 0™ exp(-cp&IL). Consequently, thé©(1/L) corrections
choose a constraint which decreases with increasigignot 1" Ed. (3.5 are not negligible compared to higher order
too fast, say as(8)2~In3gInL/B. In this case the bound still terms in 13 even for such large sizes vyhgn_ the perturbative
vanishes faster than any inverse powegofvhile the quan-  €Xpansion breaks down, i.&.(B)=B. This is in accordance

. - . . . with the observation by HasenfrafZlO] that the limits
tity 8=, the leading perturbative term if.A(S), goes to B and Lo in dzyl o notl[in%erchangeable <
zero asB— . .

. . . ointed out in[11], starting from orde 2 the coefficients
By comparing the constrained and unconstrained systen{;%re infrared divergent,

one concludes that the fluctuations in the unconstrained sys- The case of the SI BC il=2 is very similar to the

tem are essentially bounded ag<const In/A. In other 41 case with the usual BC. Indeed, already the tree level
words a system of mildly growing side() [e.g., as in EQ.  result has a finite size correctiad(1/InL) which is compa-
(3.13] becomes increasingly ordered fs-. As shown rapje to higher order terms even for exponentially large

before, within our strategy it is sufficient to prove the exis-L(B) where PT breaks down. The correlation inequalities for

tence of the bound3.9) for such mildly growingL(8). BY  this case read

the above reasoning this should be a simpler task, but still
ins to be done. :

remains To be done C*(x,y: B =Co(x,y;BL)=CS(xy;BL). (4.

IV. DISCUSSION

_ _ _ _ ) The first few terms of the perturbative expansion for the
Let us first discuss the physical picture behind the argunegrest neighbors are given pyj

ments of the previous section in more detail.[#] the so-
called superinstanton confgurations are introduced. In anal-

ogy WiFh.the free field case one co_n_siders the configuration CS\(z0,2,: B,L) = 1__[__ T +0 %)

with minimal action under the condition that the spin at the B4 16InL In“L

middle (at x=z;) is rotated by an arbitrary angle relative to NIN 1 1

the spins at the boundas§ixed by the Dirichlet BG. The — ==+ —+O(— +.n
action value of these configurations @&(1/InL) in two di- B°148 96 InL

mensions, so that they can be viewed as saturating the bound (4.2

(3.23. They play a crucial role in disordering the system in
the infinite volume. As the authors note, the fact that the | . . . .
energy of superinstantons goes to zerd ase implies that, while the corresponding piece af is

in an infinite volume, they are present at arbitrarily lagge

and disorder the spins forbidding a spontaneous magnetiza- " N N

tion in two dimensions. With the assumptions made we have Cc=1- 45 32_132jL T
shown, however, that for establishing the correctness of the

perturbative expansion it is enough to consider a mildly . : . L

- : : ; Clearly, Eq.(4.2) is inconsistent with the correlation inequal-
growmg size withL () glven,.e.g., by Eq£3.13). Under ity (4.1) for N>1 (i.e., n=N+1>2) when the formal
such Clll’CUmStanceS the Superlnstantons W>5 arg e-X' L —co limit is taken. In the regime uﬁ)glng(lg)o(lg' how-
ponentially suppressed and the error made by restricting thgyer the 1/1h correction term in the tree level contribution
integration region td,| <4 is exponentially small(After  restores the inequality.

the standard PT steps—rescal'rﬁgand expanding the Bolt- What is the origin of the anomalously large finite size
zmann factor with only the quadratic part kept in the correction for the SI BC? Consider a general SI BC where
exponent—the dependence 6ris again exponentially sup- the spinS, is fixed to a direction which is not necessarily

4.3
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parallel to the spins on the boundatt. Denoting the cor-
responding expectation value I()(D)SZ , the following rela-
0

tion holds:
(Ooi=575 | dS,(O)s e #5040
D"_Z(ﬂ) 0 SZO 07y .
WhereF(SZO) is the free energy of a superinstanton aifg)
is the partition function for Dirichlet BC.In the lowest order

in 1/8 and for|7?20|<1 the free energy is up to @or our
purposes irrelevaptadditive constant given bycf. Eq.

(3.21]

-2

F(S)= 2D (29,29 ™20 (4.5
The Sl solution givesct. Eq. (3.20]
- - 1 -
7720_7721~ m’ﬂzo. (46)

Then the integration over the Sl solutiofstill without the
contribution from the fluctuationsntroduces a nontrivial ex-
pectation value foSzO- SZl given by

NT_ o
168InL

1 4.7

ol
BIn?L /"

The analogous correction term in E@.2) — which is a
result of the fluctuations for the case whSQ) is fixed —

compensates the large finite size correction in @di), as it

should, since no such term appears for the Dirichlet BC, Eq.
(2.6). As Eq. (4.5 shows, the natural expansion parameter

by integrating over the Sl directions isLli{B, and it is easy to
see that in generic Q(+ 1) models the higher order contri-
butions in Eq.(4.7) will be of the form 1/IfL-(InL/B)X. As a
consequence, a logarithmic divergence in ordgd*lis ex-
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Our considerations did not make use of the “integrabil-
ity” of the O(n) models. Assuming asymptotic freedom one
can establish the existence of a Yangian algebra of nonlocal
conserved charges and the absence of particle production
[12,13. TheO(n) symmetry then basically determines the
matrix amplitudes[14]. This bootstrapS-matrix has been
tested(at low energiekin lattice studieg15] and used as an
input for the thermodynamic Bethe ansatz to compute the
exactm/A ratio[16]. The results are also consistent with the
1/n expansiong17]. Finally one can use the bootstr&
matrix as an input for the form factor approa¢h8,19
which provides an alternative nonperturbative definition of
the theory. For théd(3) model the results ifi20] strongly
indicate that the model thus constructed coincides with the
continuum limit of the lattice theory at least at low energies.
At intermediate energies the results coincide with renormal-
ized PT and at high energies they are consistent with
asymptotic freedom. Two nonperturbative constants deter-
mined exactly in this approadR1] are again consistent with
Monte Carlo datd21,22. One cannot help feeling that the
most natural way to reconcile these facts is the conventional
wisdom. That is the continuum limit of the lattice theory
coincides with the model described by the bootstrap ap-
proach, which is in turn correctly described by an asymptoti-
cally free PT at high energies.

Note addedA concise alternative to our first exposition is
also contained in a recent work by Sok8]. In particular he
observes that the assumpti@®5) on the finite size depen-
dence of the coefficients can be relaxed as follows: Assume

that there exist coefficientf{;c_r}‘r‘=l and powerse(r)>0
such that
lc¥(L)—c,|<=O(L™¢"), a=free, Dir

for r=1,... k. Further replace the condition dm,(B) in

Eqg. (3.10 by B "Lo(B) <"—0 for r=1,... k. He as-
sumes that the boun@®.9) has been established in the whole

pected also in the perturbative result with the SI BC, inL-3 plane, but this could also be weakened along the lines
agreement with the explicit computation of Sec. Il. Sincedescribed in Sec. lll. Thus assuming that the bo(®16) has

only the coefficient of the leading power kh has been com-
puted one cannot exclude that for a spedifithe divergence
is cancelled against one from a subleading poweNinn

been established for at least one unbounded path contained in
the new region(3.10 he shows thatC”(B8) has an

asymptotic expansion with the coefficients. The proof

particular it would be interesting to see what happens in theemains essentially the same: One taked 68) for which

0O(2) model.

both Af and R¢ are o(8~%) under the assumptions stated

So far we mainly considered bare lattice PT in volumesand concludeﬁiff(ﬁ):o(ﬂ"‘) from the correlation inequal-
whose physical size goes to zero in the continuum limitjity (3.1).

L(B)/&(B)—0 asB—o. However, this was sufficient, to-

gether with the correlation inequalities, to argue that the
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