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We show, by explicit computation, that bare lattice perturbation theory in the two-dimensionalO(n) non-
linear s models with superinstanton boundary conditions is divergent in the limit of an infinite number of
pointsuLu. This is the analogue of David’s statement that renormalized perturbation theory of these models is
infrared divergent in the limit where the physical size of the box tends to infinity. We also give arguments
which support the validity of the bare perturbative expansion of short-distance quantities obtained by taking the
limit uLu→` term by term in the theory with more conventional boundary conditions such as Dirichlet,
periodic, and free.@S0556-2821~97!01817-1#

PACS number~s!: 11.15.Ha, 11.15.Bt

I. INTRODUCTION

Quantum chromodynamics~QCD! is the presently fa-
vored candidate theory for strong interactions. However, to
establish its esteemed status the theory must be able to re-
produce the low-lying spectrum and low-energyS-matrix el-
ements to a respectable precision. To accomplish this we
require a nonperturbative definition of the theory—the most
promising of which is lattice regularization. On the other
hand, many aspects of high-energy phenomena involving
hadrons~e.g., jets, deep inelastic scattering, etc.! are de-
scribed successfully using renormalized perturbation theory
~PT!, the rationale being the expected property of asymptotic
freedom, i.e., that the amplitudes can be expressed as a series
in a coupling which depends on the energy of the process
and goes to zero as the energy goes to infinity. The conven-
tional wisdom is that ‘‘in principle’’ one could justify this
use of PT by showing that the coefficients of the conven-
tional perturbative series provide the true asymptotic expan-
sion of the full theory defined nonperturbatively via the lat-
tice regularization. Confirming this proclaimed status of PT
is also essential in aiming at a criterion where to truncate it.
Without such a criterion PT produces sequences of predic-
tions, one for each order where one decides to truncate it,
anda priori none of them might be close to the true answer.
It must be emphasized, however, that the usual arguments for
the above scenario are far off a proof and Patrascioiu and
Seiler repeatedly emphasized that also alternative scenarios
can be imagined@1,2#.

In full QCD a rigorous understanding of the status of PT
is likely not to become amenable in the near future, so that it
is sensible to address the question in a simpler context, e.g.,
the O(n) nonlinear s models in two dimensions. These
models are also perturbatively asymptotically free and are
thought to describe a multiplet of stable massive particles,
the mass scale being nonperturbative in the coupling con-

stant. In the lattice formulation one usually starts with a finite
number of lattice pointsuLu and the standard discretization
~2.1!. The conventional picture is that the critical point at
which the continuum limit forn.2 should be taken is
bc5`. Patrascioiu and Seiler@1#, on the other hand, conjec-
ture that there is a criticalbc,` ~for all n.1) beyond
which the theory is in a massless phase. It might then happen
that although the continuum limit obtained by approaching
bc from below has a mass gap and describes the expected
low-energy properties, the theory thus obtained is not asymp-
totically free at high energies. In particular, conventional
perturbation theory in the infinite volume limit would then be
wrong for two-dimensional~2D! models with a non-Abelian
global symmetry. Their arguments are based on results from
percolation theory@2# and with analogy to the case of the
Abelian modeln52 ~for which it is rigorously proven that
there is a phase transition at finiteb @3#!. Numerical inves-
tigations can give useful hints but obviously cannot establish
which scenario is correct.

Concerning the status of perturbation theory it is known
that for a fixed number of lattice pointsuLu;L2 and for a
large class of boundary conditions~BC’s! observables have a
well-defined perturbative expansion in the bare coupling
b21. We shall use the term ‘‘short-distance observable’’ to
denoteO(n)-invariant correlation functions of some local
field, where~in the bulk of the paper! all arguments are fixed
lattice sites, a distanceO(L) away from the boundary. The
problems now arise with the limitL→`. Let us first consider
the following question:~Q1! Is the asymptotic expansion of
short-distance observables for fixedL andb→` uniform in
L? Equivalently, can for such quantities the limitsb→` and
L→` be exchanged in bare lattice PT?

A major finding of@4# is that the answer to~Q1! actually
depends on the choice of boundary conditions~BC’s!. The
reasoning can be illustrated with the computation of the en-
ergy densityE at the center of the lattice. AlthoughE does
not have a continuum limit relevant to the physics, by appli-
cation of the Mermin-Wagner theorem@5# it should be inde-
pendent of the boundary conditions in the limit of an infinite
number of lattice points. Patrascioiu and Seiler invented
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boundary conditions@which they coined superinstanton~SI!
boundary conditions; cf. Sec. II# and computed the one-loop
coefficient of E. They showed that it has a finite limit as
L→` but the result was different from that with more con-
ventional BC’s such as Dirichlet. Furthermore they claim a
similar result holds for the renormalization group
b –functions. The conclusion is that for at leastone of the
BC’s involved the answer to~Q1! is negative. The authors
interpret their result as casting doubt on the validity of stan-
dard PT forall BC’s. They claim that the correct perturbative
treatment in the limit of infinite volume must include expan-
sions around the so-called superinstanton gas~configurations
whose energy tends to zero asL→`; see Sec. III!.

We believe that such conclusions are too strong and we
set out to clarify some of the points raised. In the next sec-
tion we show that the SI BC’s are ‘‘sick’’ in the sense that
the limits in ~Q1! cannot be interchanged. We do this by
showing that the perturbative coefficients ofE with SI BC’s
diverge at two-loop order in the limitL→`.1 We have not
considered the particularb functions defined in@4# but we
believe a similar result will be found. This infrared diver-
gence of the PT with SI BC’s was already suspected by
David @6# but as his argument was formulated in the frame-
work of ~renormalized! continuum PT his claims were open
to a counterattack@7# and the issue remained unsettled. Our
result can be viewed as the lattice analogue of David’s state-
ment.

Having identified the SI BC as ‘‘sick,’’ the next question
is whether the conventional BC’s are ‘‘healthy.’’ Consider
the bare lattice PT expansion of some short-distance observ-
able on a finite latticeuLu;L2 with various BC’s. Let
cr

a(x1 , . . . ,xn ;L), r>1 be the coefficient ofb2r in an
asymptotic expansion with BC of typea, where the sites
x1 , . . . ,xn are fixed and a distanceO(L) away from the
boundary.~Q2! Which BC’s a can be anticipated to give
finite and coinciding answers for theL→` limits of their
perturbative coefficientscr

a(x1 , . . . ,xn ;L)? ~Q3! Do the in-
finite volume short-distance observables admit an asymptotic
expansion in b21? If ‘‘yes,’’ can their coefficients
cr

`(x1 , . . . ,xn), r>1 be obtained from PT via
limL→`cr

a(x1 , . . . ,xn ;L)5cr
`(x1 , . . . ,xn), wherea is one

of the BC’s meeting the conditions in~Q2!?
In Sec. III we shall consider these deeper questions raised

in @1,4# and argue in favor of the following picture:~i! All
BC’s involving only ferromagnetic couplings and leaving the
interior spins unconstrained meet the condition in~Q2!—
provided free and Dirichlet BC’s meet it.~ii ! Assuming the
latter also the answer to both parts of~Q3! is affirmative. We
do not have a rigorous theorem but our considerations may
constitute a strategy for a future proof thereof. Section IV is
devoted to some further discussion.

II. IR DIVERGENCE OF PT
WITH SUPERINSTANTON BC

We consider a two-dimensional square lattice
L5$(x1 ,x2);2L/211<xk<L/221%, L a positive even in-

teger. The set of points surrounding the square,
$ux1u5L/2, ux2u<L/2%ø$ux1u<L/2, ux2u5L/2% will be re-
ferred to as the boundary]L of L. The O(n) spin fieldSx
defined onLø]L is an n-component field of unit length
Sx

251. We restrict attention to the standard lattice action

A~S!5b(
x,m

~12Sx•Sx1m!. ~2.1!

For fixedL the perturbative expansion of the two-point func-
tion is

Ca~x,y;b,L ![^Sx•Sy&512(
r>1

b2rcr
a~x,y;L !,

~2.2!

where the superscripta indicates the dependence on the
boundary conditions under consideration. In this section we
will only consider two sorts of BC’s, the Dirichlet boundary
conditionSx

a5dan for xP]L and the so-called superinstan-
ton ~SI! boundary conditions@4#. The latter are Dirichlet
BC’s with the additional constraint that the field at some
point z0 is also held fixed parallel to the fields at the bound-
ary.

The purpose of this section is to show, by explicit com-
putation, that PT with SI BC’s is infrared~IR! divergent at
third order, while PT with Dirichlet or periodic BC’s is IR
finite at the same order. For completeness, and to introduce
the notations, we first reconsider the first and second
orders in some detail. Bare perturbation theory can be per-
formed by parametrizing the fields by2 Sx

a5b21/2px
a ,

a51, . . . ,N where N5n21, and Sx
n5(12b21pW x

2)1/2.
The measurePxPLdSxd(Sx

221) is then replaced by

exp(2Ameasure)PxPLdpW x with Ameasure51/2(xln(12

b21pW x
2). The Feynman diagrams contributing to the two-

point function are the same for the two BC’s, only the ex-
pression for the free propagator differs. We denote the free
Dirichlet propagator byD(x,y) and the free SI propagator
by G(x,y). One has

G~x,y!5D~x,y!2
D~x,z0!D~z0 ,y!

D~z0 ,z0!
. ~2.3!

In the following we will take the pointz0 to be the origin
z05(0,0). Also we denote byz1 the point (1,0). One easily
sees that eachcr

a(x,y;L) is a polynomial inN5n21 of
degreer or less, and we write

cr
a5(

j 51

r

cr ; j
a Nj . ~2.4!

1We have verified, however, that if we compute quantities well
away from the boundaries and the center then the same results are
obtained as for conventional BC.

2This is not indispensable, a parametrization independent defini-
tion could be given via the Schwinger-Dyson equations.
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A. First order

In first order we have, for the Dirichlet BC,

c1
Dir~x,y!5

1

2
N@D~x,x!1D~y,y!22D~x,y!#. ~2.5!

As mentioned above, for the SI BC one simply replacesD by
G. For the special case of the energy expectation value we
have

c1
Dir~z0 ,z1!5NS 1

4
2

1

2
n0D , ~2.6!

where

n05D~z0 ,z0!2D~z1 ,z1!.

c1
Dir approaches its asymptotic value with power corrections

sincen05O(1/L2) for L→`. On the other hand

c1
SI~z0 ,z1!5N

1

2
G~z1 ,z1! ~2.7!

approaches the same asymptotic value extremely slowly with
corrections 1/lnL since

G~z1 ,z1!5
1

2
2n02

1

16
Z21, ~2.8!

with

Z[D~z0 ,z0!;~2p!21lnL for L→`. ~2.9!

B. Second order

At the next order there are three contributions

c2
a~x,y!5(

r 51

3

c2
a ~r !~x,y! ~2.10!

corresponding to the diagrams depicted in Fig. 1~diagram 2
comes from the measure part of the action!. One has

c2
Dir ~1!~x,y!5

1

8
N2@D~x,x!2D~y,y!#2

1
1

4
N@D~x,x!21D~y,y!222D~x,y!2#,

~2.11a!

c2
Dir ~2!~x,y!5

1

2
N(

i
D̃~x,y; i !2, ~2.11b!

c2
Dir ~3!~x,y!52

1

4
N2(

^ i , j &
@D~ i ,i !2D~ j , j !#

3@D̃~x,y; i !22D̃~x,y; j !2#

2
1

2
N(

^ i , j &
$D̃~x,y; i !@D~ i ,i !D̃~x,y; i !

2D~ i , j !D̃~x,y; j !#1~ i↔ j !%, ~2.11c!

where the sums in the last equation are restricted to the case
when i and j are nearest neighbors and we have introduced
the notation

D̃~x,y; i !5D~x,i !2D~y,i !.

Let us just inspect the coefficient ofN2. Here diagram 2 does
not contribute and for diagram 1 one has simply

c2;2
SI ~1!~z0 ,z1!2c2;2

Dir ~1!~z0 ,z1!5
1

8
@G~z1 ,z1!22n0

2#

~2.12!

which by Eq.~2.8! tends to 1/32 asL→`. For diagram 3 we
find

c2;2
SI ~3!~z0 ,z1!2c2;2

Dir ~3!~z0 ,z1!

5
1

16
n01t1Z211t2Z221t3Z23, ~2.13!

with

t15
1

4 (
iÞz0

D̃~z0 ,z1 ; i !2E~ i !,

t252
1

64(iÞz0

D~z0 ,i !2F~ i !,

t35
1

64(iÞz0

D~z0 ,i !2E~ i !, ~2.14!

where

E~ i !5 (
j 5^ i &

@D~ i ,z0!22D~ j ,z0!2#,

F~ i !5 (
j 5^ i &

@D~ i ,i !2D~ j , j !#. ~2.15!

Here the sums are taken over sitesj which are nearest neigh-
bors to i . The decomposition in the form of Eq.~2.13! is
made in order to be able to extract the asymptotic behavior
reliably. Our ansatz~which we have not proven analytically!
is that the functionst i have an expansion of the form

t i~L !;(
r 50

Ri

t i
~r !@~2p!21lnL# r1O~1/L !, ~2.16!

with Ri finite. To obtain the leading behavior we have com-
puted t i(L) over a large range ofL ~up to L5220, using

FIG. 1. One-loop diagrams contributing to the spin-spin corre-
lation function.

56 2557QUESTIONABLE AND UNQUESTIONABLE IN THE . . .



extended precision arithmetics! and taken logarithmic de-
rivatives with respect toL. Our findings are that

R15R250, ~2.17!

and hence the contributions in Eq.~2.13! involving t1 ,t2
vanish in the limitL→`. However,

R353, t3
~3!52

1

96
. ~2.18!

One can in fact understand the result fort3 analytically in the
following way. Far from the origin and the boundary, i.e., for
1!u i u!L the Dirichlet propagator is well approximated by
its continuum behavior

D~z0 ,i !;~2p!21ln
L

u i u
, ~2.19!

and so

E~ i !;2h ~ i !@D~z0 ,i !2#;22~2p!22u i u22, ~2.20!

whereh ( i ) is the Laplacian in the variablei . Thus fort3 we
have

t3;2
1

32
~2p!24

1

L2 (
iÞz0

S L

u i u D
2

ln2
L

u i u

;2
1

32
~2p!24E

uxu.1/L

uxu51

d2xuxu22ln2uxu

52
1

96
~2p!23ln3L. ~2.21!

This is the same result as was guessed in@4#. These authors
were quite fortunate to get the correct result because initially
they just evaluated the full functionc2;2

SI (3) numerically and
then made a rather naive extrapolation. We stress that the
analysis has to be done extremely carefully on the lines out-
lined above to properly treat the appearance of polynomials
of logarithms in the denominators.3

The final result of this subsection is that

lim
L→`

@c2;2
SI ~z0 ,z1!2c2;2

Dir ~z0 ,z1!#5
1

48
~2.22!

@we also know limL→`c2;2
Dir (z0 ,z1)50#. The Mermin-Wagner

theorem implies that the perturbative expansion of the two-
point function is independent of the boundary conditions in
the infinite volume limit. Accepting this fact we must con-
clude that the interchange of the limitsb→` andL→` is
not permissible for at least one of the boundary conditions
involved. We now go on to show that this is indeed the case
for the SI BC because one encounters an infrared divergence.

C. Leading N contribution to the third order

For the purpose of showing an IR divergence at some
orderr , for genericn, it is sufficient to show that one of the
coefficients of this polynomial inN is IR divergent. We
claim that this is the case for the coefficient ofN3 in
c3

a(x,y;L) with the SI BC.
Out of 12 diagrams only the 5 shown in Fig. 2 have a

nonvanishingO(N3) coefficient. Explicitly

c3;3
SI ~x,y;L !5(

r 51

5

c3;3
SI ~r !~x,y;L !, ~2.23!

with

c3;3
SI ~1!5

1

16
@G~x,x!2G~y,y!#2 @G~x,x!1G~y,y!#,

~2.24a!

c3;3
SI ~2!52

1

8
@G~x,x!2G~y,y!#(

^ i , j &
@G~ i ,i !2G~ j , j !#

3@G~x,i !22G~y,i !22G~x, j !21G~y, j !2#,

~2.24b!

c3;3
SI ~3!5

1

8 (
^ i , j &^k,l &

$@G~ i ,i !2G~ j , j !#@G~k,k!2G~ l ,l !#

3G~ i ,k! G̃~x,y; i !G̃~x,y;k!1 3 perms%,

~2.24c!

c3;3
SI ~4!5

1

8 (
^ i , j &^k,l &

$@G̃~x,y; i !22G̃~x,y; j !2#

3@G~k,k!2G~ l ,l !# G~ i ,k!21 3 perms%,

~2.24d!

c3;3
SI ~5!52

1

16(^ i , j & $G̃~x,y; i !2 @G~ i ,i !2G~ j , j !#

3@3G~ i ,i !1G~ j , j !#1~ i↔ j !%. ~2.24e!

3Indeed,c2;2
SI (3) is not monotonic inL and has a minimum at a

large value ofL;120.

FIG. 2. Two-loop diagrams contributing to the spin-spin corre-
lation function with terms}N3.
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Here ‘‘1 3 perms’’ stands for three similar terms with sum-
mation indices permuted according to ‘‘1( i↔ j )1(k↔ l )1
( i↔ j , k↔ l ).’’

Again we restrict attention to the energy expectation value
at the center of the lattice. First we note that for the analo-
gous Dirichlet expression one can show
limL→`c3;3

Dir (z0 ,z1)50. For the SI functions we again insert
the formula, Eq.~2.3!, for G and separate the coefficients of
Z2r .

Using the results in the last subsection together with the
knowledge that limL→`( iÞz0

D̃(z0 ,z1 ; i )2F( i )50 it is easy
to show that the contributions from diagrams 1 and 2 in Fig.
2 have finite limits asL→`. It turns out that all the remain-
ing diagrams 3–5 in Fig. 2 diverge logarithmically. Consider
first diagrams 3 and 4. Dropping all terms which have finite
L→` limits one obtains the decomposition

c3;3
SI ~3!~z0 ,z1!;s4Z24232t3

2Z25,

c3;3
SI ~4!~z0 ,z1!;s2Z221s3Z2312s4Z24

232t3~ t31t4Z2!Z25, ~2.25!

wheret4 is a one-loop sum

t45
1

4 (
iÞz0

D~z0 ,i !2H~ i !, ~2.26!

with

H~ i !5 (
j 5^ i &

@D̃~z0 ,z1 ; i !22D̃~z0 ,z1 ; j !2#. ~2.27!

The sr are more complicated two-loop sums:

s25
1

4 (
iÞz0

(
kÞz0

H~ i !E~k!D~ i ,k!D~z0 ,i !D~z0 ,k!,

s352
1

128(iÞz0
(

kÞz0

E~ i !E~k!D~ i ,k!2,

s45
1

128(iÞz0
(

kÞz0

E~ i !E~k!D~ i ,k!D~z0 ,i !D~z0 ,k!.

~2.28!

We have numerically computed all these sums over a large
range ofL ~up to L5210) and their asymptotic behavior as
L→` was determined using extrapolation techniques de-
scribed in the previous subsection. In all cases we found
results consistent with those obtained by substituting the be-
haviors of the functions at large separations:

t4;
1

32
Z, s2;2

1

96
Z3,

s3;2
1

192
Z4, s4;

1

240
Z5. ~2.29!

We do not give all the derivations but illustrate the proced-
ure again with the interesting case ofs4. Apart from the
approximations ~2.19! and ~2.20! we introduce D( i ,k)
;(1/2p!ln(L/ui2ku) so that

s4;
1

32
~2p!27 (

iÞz0
(

kÞz0

1

i 2k2 ln
L

u i u
ln

L

uku
ln

L

u i 2ku
.

~2.30!

Now by symmetry we can consideruku,u i u and averaging
first over the angle betweeni andk we obtain

s4;
1

16
~2p!27 (

iÞz0

1

i 2 ln
L

u i u Eu i u>uku>1
d2k

1

k2ln
L

uku
ln

L

u i 2ku

;
1

16
~2p!26 (

iÞz0

1

i 2 ln2
L

u i u E1

u i udr

r
ln

L

r

5
1

32
~2p!26 (

iÞz0

1

i 2 ln2
L

u i uF ln2L2 ln2
L

u i uG
;

1

32
~2p!25S 1

3
2

1

5D ln5L

5
1

240
~2p!25ln5L. ~2.31!

The corresponding numerical result is shown in Fig. 3. The
fifth logarithmic derivative ofs4 multiplied by (2p)5/5! is
shown as a function of 1/L. The definition of the lattice loga-
rithmic derivative used is

L
]

]L
f ~L !5

L

2
@ f ~L11!2 f ~L21!#.

The data are calculated for even values ofL in the ranges
8–60, 100–120, 200–210 using extended precision arith-
metic. The dotted line is the analytic result 1/240.

The coefficientc3;3
SI (5)(z0 ,z1) involves new sums but

can be treated similarly. Summarizing we find

FIG. 3. The fifth logarithmic derivative ofs4 multiplied by
(2p)5/5! plotted vs 1/L.
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c3;3
SI ~3!~z0 ,z1!;

1

1440
Z,

c3;3
SI ~4!~z0 ,z1!;2

1

2880
Z,

c3;3
SI ~5!~z0 ,z1!;

1

480
Z. ~2.32!

Thus the divergent contributions do not cancel and one ends
up with an overall logarithmic divergence c3;3SI(z0 ,z1)
;(7/2880)Z as L→`.

This shows that one cannot interchange the limitsb→`
andL→` for the SI BC because the perturbative coefficients
diverge at two-loop order. In particular, the SI BC’s do not
belong to the class of ‘‘healthy’’ ones alluded to in~Q2! and
~Q3! cannot even be addressed. Initially however, the SI ex-
ample was probably thought to discredit PT on internal
grounds, stemming from the apparent ambiguities in the PT
answers for the infinite lattice quantities@4#. As such, we
think, it is no longer valid. Of course one could still argue
that the divergent SI answer might even hit a point in signal-
ing that the quantities in question do not have an asymptotic
expansion inb21. However this possibility is not an argu-
ment by itself and has to be supported by external means,
see, e.g.,@2#. In the next section we shall leave this example
and try to develop criteria of what healthy BC’s should look
like and under what conditions an affirmative answer to~Q3!
should be expected.

III. ADDRESSING THE QUESTIONS „Q2… AND „Q3…

We start by comparing the correlator between two spins
for different boundary conditions. The discussion will be
based on the validity of the following conjecture: For a spin
system with ferromagnetic couplings the correlation function
C(x,y)5^Sx•Sy& increases if any of the ferromagnetic cou-
plings is increased. This conjecture is physically rather intui-
tive, nevertheless it has not been proven yet@8#. Consider a
spin system with a given ferromagnetic interaction on~1! a
finite lattice L with free boundary conditions,~2! the same
lattice with the Dirichlet BC, and~3! an infinite lattice. Va-
lidity of the above conjecture implies the following inequali-
ties between the corresponding correlators:

Cfree~x,y;b,L!<C`~x,y;b!<CDir~x,y;b,L!, ~3.1!

for any x,yPL. More generally, the conjecture also implies
that on any latticeL* containing Lø]L the correlator
C* (x,y;b,L* ) satisfies

Cfree~x,y;b,L!<C* ~x,y;b,L* !<CDir~x,y;b,L!.
~3.2!

From here it follows thatCfree(x,y;b,L* ) increases while
CDir(x,y;b,L* ) decreases with increasing sizeuL* u. Fur-
ther the systems with periodic BC’s onL* will satisfy Eq.
~3.2!. Note that the SI BC withz0PL ~wherez0 is the site
where the extra spin is fixed! does not belong to the class
considered in Eq.~3.2!, the considerations apply, however,
whenz0 is outsideL.

In the following we shall argue that if the correlation
functions of the systems 1 and 2 have well-behaved pertur-
bative expansions—in a sense to be specified below—then
~i! the infinite system 3 has an asymptotic expansion with
coefficients given by the formalL→` limit of the perturba-
tive coefficients of systems 1 and 2, and~ii ! all systems
considered under Eq.~3.2! have similarly well-behaved per-
turbative expansions.

For this purpose we have to make some natural and veri-
fiable assumptions on the perturbative series with free and
Dirichlet BC’s. To simplify the notation we shall return to
the square lattice of Sec. II and writeCa(b,L) for
Ca(x,y;b,L). The distance of the fixed sitesx,y from the
boundary is taken to be O(L), so thatCa(b,L) qualifies as a
short-distance observable, as defined in the Introduction.

Let us elucidate on what we mean by a ‘‘well-behaved’’
perturbative expansion. For fixedL and given boundary con-
ditionsa5 free or Dirichlet, one can calculateCa in PT as a
power series in 1/b to some arbitrary orderk:

Ca~b,L !512(
r 51

k

cr
a~L !b2r1Rk

a~b,L !. ~3.3!

There is perhaps no doubt that for fixedL these are
asymptotic series: i.e.,

Rk
a~b,L !5o~b2k!. ~3.4!

Consider now the formalL→` limit of the coefficients
cr

a(L). On the grounds of~the lattice counterpart of! David’s
analysis@9# one expects that for the case of the free, Dirichlet
~and periodic! BC’s there are no infrared singularities and
that the convergence to theL→` limit is of O(1/L) @up to
logarithms, i.e.,O(1/L lnkL)#. We shall assume that the per-
turbative coefficients obtained actually coincide in the infi-
nite volume limit:

cr
a~L !5 c̄ r1OS 1

L D , a5free, Dirichlet, ~3.5!

provided the distance of the fixed sitesx,y from the bound-
ary isO(L). One has good reason to trust Eq.~3.5!. The free
propagator for these and other conventional BC’s has a size
dependence ofO(1/L2) in contrast to the SI case with an
O(1/lnL) dependence. Thus conventional boundary condi-
tions should not produce such peculiar behavior as observed
in the one-loop order for the SI BC’s. Assumption~3.5! can
in principle be verified order by order. It could also be re-
laxed @8# ~see note added!, but we expect Eq.~3.5! to de-
scribe the form of the actual finite size corrections. For
r 51,2 we have verified this numerically. Note thatr 52 is
already the source of troubles in the SI case.

Clearly, the problem of establishing the claims~i! and~ii !
amounts to controlling the remainders in an ansatz for an
asymptotic expansion ofC`(b) or for the correlators in Eq.
~3.2!. Let us first consider claim~i! and define

Rk
`~b!5C`~b!211(

r 51

k

c̄ rb
2k. ~3.6!
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This definition is chosen such that claim~i! is equivalent to
the statementRk

`(b)5o(b2k), k>1. That isC`(b) has an
asymptotic expansion in powers ofb21 and its coefficients
coincide with c̄ r . For later use let us also introduce

Ak
a~b,L !5(

r 51

k

@cr
a~L !2 c̄ r # b2r ~3.7!

and note that one can now rewrite Eq.~3.1! in the form

Ak
free~b,L !1Rk

free~b,L !<Rk
`~b!<Ak

Dir~b,L !1Rk
Dir~b,L !.

~3.8!

The naive strategy to establish~i! would be to first try to
show that uRk

a(b,L)u, a5free, Dir are bounded by some
L-independent function ofo(b2k) and then conclude from
Eq. ~3.8! that Rk

`(b)5o(b2k). Our main technical observa-
tion is that one can reach the same conclusion using a bound
on uRk

a(b,L)u which is much less stringent, and which needs
to be established only in some part of theL-b plane. In
detail, we assume that the bound

uRk
a~b,L !u<Bk

~ lnL !p~k!

bk11
, ~3.9!

with some finiteBk andp(k)>0 has been established in the
following region of theL-b plane;

L<L1~b! , b.b0 ,

where @ lnL1~b!#p~k!/b→0 as b→`, ~3.10!

and b0 is some (L-independent! constant. Convenient
choices for the functionL1(b) will be given below. Simi-
larly define another region of theL-b plane by

L0~b!<L b.b0 , where bk21/L0~b!→0.
~3.11!

Choosing now any unbounded pathL(b) in the intersection
of both regions~3.10! and~3.11!, the desired conclusion can
be reached immediately: One hasAk

a@b,L(b)#5o(b2k) by
Eq. ~3.5! and the condition onL0(b). Similarly from Eq.
~3.9! and the condition on L1(b) it follows that
Rk

a@b,L(b)#5o(b2k). Then the inequalities~3.8! imply

Rk
`~b!5o~b2k!, ~3.12!

which is basically the required result. Strictly speaking, one
should for a fixedk refer to the numbersc̄ r , r<k as the
~unique! candidates for the coefficients in an asymptotic ex-
pansion ofC`(b) in b21. Only after Eq.~3.9! and hence Eq.
~3.12! has been shown for allk, the existence of the
asymptotic expansion follows and the numbersc̄ r can prop-
erly be referred to as the coefficents of this expansion, so that
claim ~i! follows. It is also easy to see that starting with Eq.
~3.2! the same strategy applies and Eq.~3.9! also implies
claim ~ii !.

Let us add a number of comments. First one should check
that choices forL0(b) and L1(b) exist such that the inter-
section of the regions~3.10! and ~3.11! is non-empty for
each sufficiently large b. A simple example is

L0(b)5L1(b)5bk, which is moreover the choice with
about the minimal growth that allows one to draw conclu-
sions about the firstk coefficients of the expansion. Of
course any choice forL0(b) andL1(b) growing faster than
bk @and such that the intersection of the regions~3.10! and
~3.11! is nonempty# is also sufficient. For example a region
containing the path

L~b!5exp~ ln2b! ~3.13!

would be convenient, because it allows one to cover allk
simultaneously in the above argument. However one should
keep in mind that the faster the upper boundaryL1(b)
grows, the more difficult it may be to establish the bound
~3.9! within the region~3.10!.

A second comment concerns the relation to David’s theo-
rem. According to~the lattice counterpart! of this result one
expects that the infrared divergent terms cancel in the per-
turbative coefficients. However, to directly prove such can-
cellations in the remainderRk

a(b,L) @e.g., p(k)50 in Eq.
~3.9!# is probably a more difficult task. The point of using the
correlation inequalities is twofold: First, the claim~i! can be
established without assuming the IR finiteness of the remain-
ders for fixedb, as described before. And second, once claim
~i! is established, the IR finiteness of the remainders actually
follows from the correlation inequality~3.2!. To see the latter
let L(b) be an unbounded path in the intersection of the
regions~3.10! and ~3.11! and let (b,L8) be any point in the
region$(b,L9) u b.b0 , L9.L(b)%. Then, by Eq.~3.2!,

Ak
free
„b,L~b!…1Rk

free
„b,L~b!…

<Ak
free~b,L8!1Rk

free~b,L8!<Rk
`~b!

<Ak
Dir~b,L8!1Rk

Dir~b,L8!

<Ak
Dir
„b,L~b!…1Rk

Dir
„b,L~b!…. ~3.14!

Since, given Eq.~3.9!, we know the behavioro(b2k) for the
terms withL(b) and by Eq.~3.5! also forAk

a(b,L8), it fol-
lows that Rk

a(b,L8)5o(b2k) is valid ‘‘uniformly’’ in the
region L8>L(b). @In other words, the statement is true for
arbitrary pathL8(b).L(b) with a bound onRk

a
„b,L8(b)…

which is independent on how fastL8(b) grows. Note that
this is not uniformity in the usual sense where one would
require a regionL8>L08 with L08 independent ofb.# In a
sense this supplements~the expected lattice counterpart of!
David’s argument on the IR finiteness of the PT coefficients.

It remains to establish Eq.~3.9!. Since we have not man-
aged to prove this, the proof of~i! and ~ii ! remains incom-
plete. However, we find the strategy outlined promising and
for the rest of this section we shall give a plausibility argu-
ment that Eq.~3.9! indeed holds. To explain the argument let
us follow the expectation of Patrascioiu and Seiler that PT
breaks down for large lattice sizesL since the spins at large
relative distances become strongly decorrelated. Conse-
quently, one can question the validity of the bound~3.9! in
the wholeL-b plane, in particular forb fixed,L→`. Recall,
however, that in the strategy we used to establish claim~i!
exclusively lattice sizes of type~3.13! enter which grow with
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b only in lattice units—the physical size of these lattices
L(b)/j(b) decreases asb→`. @Herej(b) is the correlation
length growing exponentially in the standard scenario.# Con-
sequently, in our stratgey it is sufficient to establish the
bound ~3.9! in the region~3.10! of the L-b plane. As it is
shown below, for such mildly growing volumes the spins
become increasingly ordered with growingb—hence the
above objection does not apply. Roughly speaking, the argu-
ment estimates the probability of having fluctuations
pW x

2>d2 at least at one of the sites and finds that such fluc-
tuations are exponentially suppressed by a factor
; exp(2pd2b/lnL).

We begin by considering the effect of constraining the
fluctuations in an auxiliary system. Let us calculate the prob-
ability that in a massless free theory the fluctuation exceeds
some given thresholdd. We shall use again theLø]L
square lattice of Sec. II and the action

A0~f!5
1

2(x,m
~¹mfx!

2. ~3.15!

In the case of the Dirichlet BC the field at the boundary is
fixed to zero, while for the free BC we use the remaining
global translational symmetry to fix, sayf0[f(x50)50.
~For this BC the sitex50 is assumed to be left out in the
sums and products appearing in the expressions below.! Con-
sider now the constrained model described by the partition
function

Z~b,d!5E
2d

d

)
xPL

dfxe
2bA0~f!. ~3.16!

Here the field values are restricted toufxu<d. Define the
correction termR̄(b,d) as

Z~b,d!5Z~b!@12R̄~b,d!#, ~3.17!

whereZ(b)5Z(b,`) is the corresponding partition function
for the unrestricted case. The termR̄(b,d) can be interpreted
as the probability to haveufxu.d, for at least one of the sites
x. It satisfies the inequality

0<R̄~b,d!<
1

Z~b! (xPL
E

ufxu>d
dfxE

2`

`

)
yÞx

dfye
2bA0~f!

5
1

Z~b! (xPL

1

2p i E2`

`

daS eiad

a1 i0
2

e2 iad

a2 i0D E
2`

`

)
y

dfye
iafx2bA0~f!

5 (
xPL

1

2p i E2`

`

daS eiad

a1 i0
2

e2 iad

a2 i0DexpS 2
Dxxa

2

2b D
5 (

xPL
expS 2

bd2

2Dxx
DFS dA b

Dxx
D .

HereDxx5^fx
2&. The functionF is given by

F~d!5
1

pE2`

`

du e2u2 d

u21d2
,

and has the propertiesF(0)51, F(d)<1, and F(`)50.
Finally, one has

0<R̄~b,d!<uLuexpS 2
bd2

2Dmax
D , ~3.18!

where Dmax5maxxDxx. In two dimensions Dmax
;(2p)21lnL hence

0<R̄~b,d!<L2expS 2
pbd2

lnL D . ~3.19!

In fact, d2/2Dxx is the minimal value of the action under the
condition thatfx5d. To show this consider the configura-
tion

fy5
Dxy

Dxx
d for any y. ~3.20!

Obviously,fx5d and it satisfies the lattice equations of mo-
tion, Dfy50 for anyyÞx. The corresponding action value
is given by

2
1

2(y
fy~Df!y5

d2

2Dxx
, ~3.21!

as stated above. It is also easy to show that then-point func-
tions in the constrained model will differ from those in the
unconstrained one also by exponentially small terms of the
form ~3.19!.

We now return to theO(n) s model. Again, for the case
of the free BC we use the globalO(n) symmetry to fix

S05(0W ,1). Using the parametrizationSx5(pW x ,6A12pW x
2) it

is easy to verify the following inequality:4

4Note that forSn.0 the parametrizationS5(fW ,1)/A11fW 2 gives

an upper bound, 12Sx•Sy<1/2(fW x2fW y)
2, which also might be

useful.
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12Sx•Sy>
1

2
~pW x2pW y!2. ~3.22!

As a consequence of Eq.~3.22!, the standard action of the
s model is bounded from below by the corresponding free
field action,A(S)>A0(pW ) and

A~S!>
d2

2Dxx
for upW xu>d. ~3.23!

From here it follows that the probability to haveupW xu.d at
least at one sitex is suppressed by the exponential factor
given in Eqs.~3.18! and ~3.19!. Once again, the constraint
influences the correlation functions only by an exponentially
small amount asb→`. As anticipated, increasing the lattice
size not too fast, for example, as in Eq.~3.13!, the correlation
functions of the constrained and unconstrained systems will
differ by correction terms which decrease faster than any
inverse power ofb. Further the bound~3.19! allows one to
choose a constraintd which decreases with increasingb not
too fast, say asd(b)2; ln3blnL/b. In this case the bound still
vanishes faster than any inverse power ofb, while the quan-
tity bpW 4, the leading perturbative term inbA(S), goes to
zero asb→`.

By comparing the constrained and unconstrained systems
one concludes that the fluctuations in the unconstrained sys-
tem are essentially bounded aspW x

2<const lnL/b. In other
words a system of mildly growing sizeL(b) @e.g., as in Eq.
~3.13!# becomes increasingly ordered asb→`. As shown
before, within our strategy it is sufficient to prove the exis-
tence of the bound~3.9! for such mildly growingL(b). By
the above reasoning this should be a simpler task, but still
remains to be done.

IV. DISCUSSION

Let us first discuss the physical picture behind the argu-
ments of the previous section in more detail. In@4# the so-
called superinstanton confgurations are introduced. In anal-
ogy with the free field case one considers the configuration
with minimal action under the condition that the spin at the
middle ~at x5z0) is rotated by an arbitrary angle relative to
the spins at the boundary~fixed by the Dirichlet BC!. The
action value of these configurations isO(1/lnL) in two di-
mensions, so that they can be viewed as saturating the bound
~3.23!. They play a crucial role in disordering the system in
the infinite volume. As the authors note, the fact that the
energy of superinstantons goes to zero asL→` implies that,
in an infinite volume, they are present at arbitrarily largeb
and disorder the spins forbidding a spontaneous magnetiza-
tion in two dimensions. With the assumptions made we have
shown, however, that for establishing the correctness of the
perturbative expansion it is enough to consider a mildly
growing size withL(b) given, e.g., by Eq.~3.13!. Under
such circumstances the superinstantons withupW xu.d are ex-
ponentially suppressed and the error made by restricting the
integration region toupW xu<d is exponentially small.~After
the standard PT steps—rescalingpW x and expanding the Bolt-
zmann factor with only the quadratic part kept in the
exponent—the dependence ond is again exponentially sup-

pressed, as expected.! For the correlation function̂Sx•Sy&
only superinstantons with size smaller thanux2yu contribute
significantly, larger ones will rotate the two spins simulta-
neously. This contribution is responsible for the leading or-
der bare PT result

^~Sx2S0!2&;
1

b

N

2p
lnuxu.

This also explains why theO(n) invariant quantities are in-
frared finite in PT, as opposed to the noninvariant ones
which diverge as some power of lnL. However the form of
the finite size corrections is incorrectly given by PT, Eq.
~3.5!. Indeed, due to the nonperturbatively generated mass
the corrections should be exponentially small forL@j(b).

In d51 dimensions the status of PT is quite different. In
one dimensionDmax}L and the correction term is of the
form exp(2cbd2/L). Consequently, theO(1/L) corrections
in Eq. ~3.5! are not negligible compared to higher order
terms in 1/b even for such large sizes when the perturbative
expansion breaks down, i.e.,L(b)}b. This is in accordance
with the observation by Hasenfratz@10# that the limits
b→` and L→` in d51 are not interchangeable. As
pointed out in@11#, starting from orderb23 the coefficients
are infrared divergent.

The case of the SI BC ind52 is very similar to the
d51 case with the usual BC. Indeed, already the tree level
result has a finite size correctionO(1/lnL) which is compa-
rable to higher order terms even for exponentially large
L(b) where PT breaks down. The correlation inequalities for
this case read

C`~x,y;b!<CDir~x,y;b,L !<CSI~x,y;b,L !. ~4.1!

The first few terms of the perturbative expansion for the
nearest neighbors are given by@4#

CSI~z0 ,z1 ;b,L !512
N

b F1

4
2

p

16lnL
1OS 1

ln2L D G
2

N

b2F N

48
1

1

96
1OS 1

lnL D G1•••

~4.2!

while the corresponding piece ofC` is

C`512
N

4b
2

N

32b2 1•••. ~4.3!

Clearly, Eq.~4.2! is inconsistent with the correlation inequal-
ity ~4.1! for N.1 ~i.e., n5N11.2) when the formal
L→` limit is taken. In the regime lnL(b)<lnj(b)}b, how-
ever, the 1/lnL correction term in the tree level contribution
restores the inequality.

What is the origin of the anomalously large finite size
correction for the SI BC? Consider a general SI BC where
the spinSz0

is fixed to a direction which is not necessarily
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parallel to the spins on the boundary]L. Denoting the cor-
responding expectation value by^O&Sz0

, the following rela-

tion holds:

^O&Dir5
1

Z~b!
E dSz0

^O&Sz0
e2bF~Sz0

!, ~4.4!

whereF(Sz0
) is the free energy of a superinstanton andZ(b)

is the partition function for Dirichlet BC.5 In the lowest order
in 1/b and for upW z0

u!1 the free energy is up to a~for our
purposes irrelevant! additive constant given by@cf. Eq.
~3.21!#

F~Sz0
!5

1

2D~z0 ,z0!
pW z0

2 . ~4.5!

The SI solution gives@cf. Eq. ~3.20!#

pW z0
2pW z1

'
1

4D~z0 ,z0!
pW z0

. ~4.6!

Then the integration over the SI solutions~still without the
contribution from the fluctuations! introduces a nontrivial ex-
pectation value forSz0

•Sz1
given by

12
Np

16b lnL
1OS 1

b ln2L D . ~4.7!

The analogous correction term in Eq.~4.2! — which is a
result of the fluctuations for the case whenSz0

is fixed —
compensates the large finite size correction in Eq.~4.7!, as it
should, since no such term appears for the Dirichlet BC, Eq.
~2.6!. As Eq. ~4.5! shows, the natural expansion parameter
by integrating over the SI directions is lnL/b, and it is easy to
see that in generic O(N11) models the higher order contri-
butions in Eq.~4.7! will be of the form 1/ln2L•(lnL/b)k. As a
consequence, a logarithmic divergence in order 1/b3 is ex-
pected also in the perturbative result with the SI BC, in
agreement with the explicit computation of Sec. II. Since
only the coefficient of the leading power inN has been com-
puted one cannot exclude that for a specificN the divergence
is cancelled against one from a subleading power inN. In
particular it would be interesting to see what happens in the
O(2) model.

So far we mainly considered bare lattice PT in volumes
whose physical size goes to zero in the continuum limit,
L(b)/j(b)→0 asb→`. However, this was sufficient, to-
gether with the correlation inequalities, to argue that the
standard bare PT provides the correct asymptotic expansion
for the system in an infinite lattice. The physically more
relevant question is whether the renormalized PT provides an
asymptotic expansion for the correlation function at short
physical distances,xphys5eaj, 0,e!1. A positive answer
to this question is not an automatic consequence of the pro-
posed validity of the bare lattice PT.

Our considerations did not make use of the ‘‘integrabil-
ity’’ of the O(n) models. Assuming asymptotic freedom one
can establish the existence of a Yangian algebra of nonlocal
conserved charges and the absence of particle production
@12,13#. TheO(n) symmetry then basically determines theS
matrix amplitudes@14#. This bootstrapS-matrix has been
tested~at low energies! in lattice studies@15# and used as an
input for the thermodynamic Bethe ansatz to compute the
exactm/L ratio @16#. The results are also consistent with the
1/n expansions@17#. Finally one can use the bootstrapS
matrix as an input for the form factor approach@18,19#
which provides an alternative nonperturbative definition of
the theory. For theO(3) model the results in@20# strongly
indicate that the model thus constructed coincides with the
continuum limit of the lattice theory at least at low energies.
At intermediate energies the results coincide with renormal-
ized PT and at high energies they are consistent with
asymptotic freedom. Two nonperturbative constants deter-
mined exactly in this approach@21# are again consistent with
Monte Carlo data@21,22#. One cannot help feeling that the
most natural way to reconcile these facts is the conventional
wisdom. That is the continuum limit of the lattice theory
coincides with the model described by the bootstrap ap-
proach, which is in turn correctly described by an asymptoti-
cally free PT at high energies.

Note added. A concise alternative to our first exposition is
also contained in a recent work by Sokal@8#. In particular he
observes that the assumption~3.5! on the finite size depen-
dence of the coefficients can be relaxed as follows: Assume
that there exist coefficients$ c̄ r%r 51

k and powerse(r ).0
such that

ucr
a~L !2 c̄ r u<O~L2e~r !!, a5free, Dir

for r 51, . . . ,k. Further replace the condition onL0(b) in
Eq. ~3.10! by bk2rL0(b)2e(r )→0 for r 51, . . . ,k. He as-
sumes that the bound~3.9! has been established in the whole
L-b plane, but this could also be weakened along the lines
described in Sec. III. Thus assuming that the bound~3.9! has
been established for at least one unbounded path contained in
the new region ~3.10! he shows thatC`(b) has an
asymptotic expansion with the coefficientsc̄ r . The proof
remains essentially the same: One takes anL(b) for which
both Ak

a and Rk
a are o(b2k) under the assumptions stated

and concludesRk
`(b)5o(b2k) from the correlation inequal-

ity ~3.1!.
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5A curious point in the terminology is that the SI BC with

Sz0
5(0W ,1) is the one whichexcludessuperinstantons centered atz0.

Rather the ordinary BC takes care ofall superinstantons.
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