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Quantized Maxwell theory in a conformally invariant gauge
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Maxwell theory can be studied in a gauge which is invariant under conformal rescalings of the metric, as
first proposed by Eastwood and Singer. This paper studies the corresponding quantization in flat Euclidean
four-space. The resulting ghost operator is a fourth-order elliptic operator, while the oeratoperturba-
tions A, of the potential is a sixth-order elliptic operator. The operdanay be reduced to a second-order
nonminimal operator if a gauge parameter tends to infinity. Gauge-invariant boundary conditions are obtained
by setting to zero at the boundary the whole sefgfperturbations, jointly with ghost perturbations and their
normal derivatives. This is made possible by the fourth-order nature of the ghost operator. An analytic repre-
sentation of the ghost basis functions is also obtaifi80556-282(197)05716-0
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The recent attempts to quantize Euclidean Maxwellformally invariant scheme proposed in RE8), to complete
theory in quantum cosmological backgrounds have led to ¢he current work on quantized gauge fields. For this purpose,
detailed investigation of the quantized Maxwell field in co-we have studied a portion of flat Euclidean four-space
variant and noncovariant gauges on manifolds with a boundbounded by three-dimensional surfaces. The vanishing cur-
ary [1-7]. The main emphasis has been on the use of anarature of the four-dimensional background is helpful to ob-
Iytic or geometric techniques to evaluate the one-looptain a preliminary understanding of the quantum operators,
semiclassical approximation of the wave function of the uni-which will be shown to have highly nontrivial properties. In
verse, when magnetic or electric boundary conditions areur scheme, all curvature effects result from the boundary
imposed. In the former case one sets to zero at the boundaonly.
the tangential components, of the potential(the back- In flat Euclidean four-space, the conformally invariant
ground value oA, is taken to vanish the real-valued ghost gauge proposed in Ref8] reads(hereaftetb,c=0,1,2,3)
fields w and ¢ (or, equivalently, a complex-valued ghost

zero-forme), and the gauge-averaging functior{A): V,VPVCA.=0V°A.=0. (7)
[Adm=0, (@) If the classical potential is subject to an infinitesimal gauge
transformation
[elsm=0, )

[®(A)];m=0. 3) "Ap=Ap+ Vi, ®)

In the electric scheme one sets instead to zero at the bounthe gauge conditiorf7) is satisfied by'A, if and only if f
ary the normal component @&, , jointly with the normal obeys the fourth-order equation
derivative of the ghost and the normal derivative/gf.

02f=0, 9
[Aolsm=0, 4
_ where 02 is the 0 operator composed with itself, i.e.,
[ﬁs/ﬁn]aM_oy (5) DzzgabngVaVchVd-
[9A/IN] =0 ©6) In quantum theory via path integrals, however, one per-
k oM Y-

forms Gaussian averages over gauge functiornB(&)

One may check that the boundary conditioii$—(3) and which ensure that well-defined Feynman Green’s functions

(4)—(6) are invariant under infinitesimal gauge transforma-for the> operator oM, and for the ghost operator, actually

tions onA,, as well as under Becchi-Rouet-Stora-Tyutin €Xist[5,9]. This means that the left-hand side of Efjisno

(BRST) transformationg5]. longer set to zero. One defines instead a gauge-averaging

On the other hand, the gauge-averaging functionals studunctional

ied in Refs[1-7] were not conformally invariant, although a

conformally invariant choice of gauge was already known, at O (A)=0VP A, (10

the classicallevel, from the work of Ref[8]. It is therefore

our aim to investigate thguantumcounterpart of the con- and the gauge-averaging term &[#(A)]?, with « a pa-
rameter, is added to the Maxwell Lagrangi&f,,F2°. A
double integration by parts is then necessary to express the

*Electronic address: esposito@napoli.infn.it Euclidean Lagrangian in the forfiA,P°°A., where
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1 ditions (13) are also very important since they ensure the
1- ;Dz) veve, (1)) vanishing of all boundary terms resulting from integration by
parts in the Faddeev-Popov action. In the particular case
The operatofP°° is a complicated sixth-order elliptic opera- When the three-surfack; shrinks to a point, which is rel-
tor, and it is unclear how to deal properly with it for finite €vant for(one-loop quantum cosmology5], the boundary
values ofa. However, in the limit asr—c, it reduces to the ~conditions readhereX. is the bounding three-surface
following second-order operator:

PPe=—gPO+

[Ap]ly=0 Vb=0,1,2,3, (20
PPe= — g0+ VPV© (12)
This operator remains nonminimal, since the t&RV° sur- Le]x=0, (2)
vives. In this particular case, we still need to specify bound- [delar]s=0 (22)
ary conditions onA, and ghost perturbations. For this pur- ’
pose, we put to zero at the boundary the whole sefpf

perturbations: jointly with regularity at7=0 of Ay, &, andde/dr. Many

fascinating problems arise now. They are as follows.
[A,],=0Vb=0,1,2,3 (13) (i) To prove the uniqueness of the solution of the classical
blaM e boundary-value problem,

and we require invariance of E@13) under infinitesimal

gauge transformations ok, . This leads tahereafterr is a 0% =0, (23
radial coordinatg1—4])
[fls,=[f]s,=0, (24)
[e]m=0, (14 o
[078/15'7'](;M=0. (15) [&f/&T]El:[ﬂflaT]zzzo. (25)

Condition (14) results from the gauge invariance of the Di-  (ii) To study the quantum theory resulting from the opera-
richlet condition onA,, Vk=1,2,3, and conditior{15) re-  tor (11) for finite values ofa. Interestingly, the Feynman
sults from the gauge invariance of the Dirichlet condition onchoicea=1 does not get rid of the sixth-order nature of the
Ao. Note that it would be inconsistent to impose the bound-operatorP°°.

ary conditions(13)—(15) when the Lorentz gauge-averaging (i) To evaluate the one-loop semiclassical approxima-
functional is chosen, since the corresponding ghost operataion, at least wherP°¢ reduces to the fornil2) in the pres-

is second order. ence of three-sphere boundaries. The ghost operator is then
When two boundary three-surfaces occur, H4d) and  found to take the form
(15) lead to

[e]s,=[e]s,=0, (16) 02=— + e — +—

# 68 3# 309 2(# 14"
It Toar? P2 oar? 20T 2 I

92 ToT|
[(98/(97]21:[(98/(97']22:0. (17)

1
(.12
When Eq.(10) is used, and the ghost operator is hefitg + 74(\. )% (26)

the four boundary conditionél6) and (17) provide enough
conditions to determine completely the coefficients\yith standard notation, we denote by a vertical bar the op-

Ci,...,Cqin the linear combination eration of covariant differentiation tangentially with respect
4 to the three-dimensional Levi-Civita connection of the
£0)= 2 Cip; . (18) boundary. If one expands the ghost _pgrturbatlons on a family
i=1 ™) of three-spheres centered on the origirf Hs
wherep4, ... ,p4 are four linearly independent solutions of o
the fourth-order eigenvalue equation e(x,7)= > e,(1QM(x),
n=1
DZS()\):)\S(}\). (19)

the operaton(26), jointly with the properties of scalar har-
We therefore find that, when the conformally invariant gaugemonics, leads to the eigenvalue equation Eq. (19)]
functionals (10) are used, the admissible boundary condi-
tions differ substantially from the magnetic and electric d*s, 6d3%, (2n?—5)d%, (2n2+1) de,
schemes outlined in Eq$l)—(3) and (4)—(6), and are con- — - - —

2 3
formally invariant by constructiofwith the exception of Eq. dr* 7 dr? T dr? T dz
(15]. (n?—1)2
Had we set to zero at the boundaky (k=1,2,3) and the 4 _)\n) e,=0. (27)
functional (10), we would not have obtained enough bound- 7

ary conditions for ghost perturbations, since both choices
lead to Dirichlet conditions on the ghost. The boundary con-This equation admits a power-series solution in the form
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en(7)= TPKZO b (N, kN ) 7. (28)

The values ofp are found by solving the fourth-order alge-
braic equation

pt=2(n%+1)p2+(n®>-1)%2=0 (29

which has the four real roots (n+1). Moreover, the only
nonvanishing b, coefficients are of the formb, 4,
Vk=0,1,2..., and aregiven by (assuming thab, , has
been fixed

_ )\nbn,lf4

bn,l_m, V1i=48,12, ..,

(30

where we have defined&Wk=0,1,2...)
F(k,n,p)=(p+k)(p+k=1)(p+k=2)(p+k=3)
+6(p+k) (p+k—1)(p+k—2)—(2n?-5)
X(p+k)(ptk—1)—(2n%+1)(p+k)
+(n?-=1)2. (31)

As far as we can see, the soluti@@8) can be expressed in
terms of Bessel function&f. Sec. 3.5 of Ref[10]).
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(iv) To include the effects of curvature. As shown in Ref.
[8], if the background four-geometry is curved, with Rie-
mann tensor R%,.4, the conformally invariant gauge-
averaging functional readsf. Eq. (10)]

O(A)=0VPA,+V,

bc 2 bc
— 2R+ ZRA|A, . (32

It would be interesting to study théone-loop quantum
theory, at least when—, on curved backgrounds such as
S*, which is relevant for inflatiof5], or S?x S?, which is
relevant for the bubbles picture in Euclidean quantum grav-
ity, as proposed in Refl1].

To our knowledge, the forrfiL1) of the differential opera-
tor on perturbations of the electromagnetic potential in quan-
tum theory, the boundary conditioi$3)—(15), and the ana-
lytic solution (28)—(31) for ghost basis functions are entirely
new. Thus, quantization via path integrals in conformally
invariant gauges possesses some new peculiar properties,
which are now under investigation for the first time. This, in
turn, seems to add evidence in favor of Euclidean quantum
gravity having a deep influence on current developments in
guantum field theory5].

The author is indebted to A. Yu. Kamenshchik and G.
Pollifrone for scientific collaboration on Euclidean Maxwell
theory and Euclidean quantum gravity over many years.
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