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Maxwell theory can be studied in a gauge which is invariant under conformal rescalings of the metric, as
first proposed by Eastwood and Singer. This paper studies the corresponding quantization in flat Euclidean
four-space. The resulting ghost operator is a fourth-order elliptic operator, while the operatorP on perturba-
tions Am of the potential is a sixth-order elliptic operator. The operatorP may be reduced to a second-order
nonminimal operator if a gauge parameter tends to infinity. Gauge-invariant boundary conditions are obtained
by setting to zero at the boundary the whole set ofAm perturbations, jointly with ghost perturbations and their
normal derivatives. This is made possible by the fourth-order nature of the ghost operator. An analytic repre-
sentation of the ghost basis functions is also obtained.@S0556-2821~97!05716-0#

PACS number~s!: 04.60.Ds, 04.40.Nr, 11.15.Bt

The recent attempts to quantize Euclidean Maxwell
theory in quantum cosmological backgrounds have led to a
detailed investigation of the quantized Maxwell field in co-
variant and noncovariant gauges on manifolds with a bound-
ary @1–7#. The main emphasis has been on the use of ana-
lytic or geometric techniques to evaluate the one-loop
semiclassical approximation of the wave function of the uni-
verse, when magnetic or electric boundary conditions are
imposed. In the former case one sets to zero at the boundary
the tangential componentsAk of the potential~the back-
ground value ofAm is taken to vanish!, the real-valued ghost
fields v and c ~or, equivalently, a complex-valued ghost
zero-form«), and the gauge-averaging functionalF(A):

@Ak#]M50, ~1!

@«#]M50, ~2!

@F~A!#]M50. ~3!

In the electric scheme one sets instead to zero at the bound-
ary the normal component ofAm , jointly with the normal
derivative of the ghost and the normal derivative ofAk :

@A0#]M50, ~4!

@]«/]n#]M50, ~5!

@]Ak /]n#]M50. ~6!

One may check that the boundary conditions~1!–~3! and
~4!–~6! are invariant under infinitesimal gauge transforma-
tions on Am , as well as under Becchi-Rouet-Stora-Tyutin
~BRST! transformations@5#.

On the other hand, the gauge-averaging functionals stud-
ied in Refs.@1–7# were not conformally invariant, although a
conformally invariant choice of gauge was already known, at
the classicallevel, from the work of Ref.@8#. It is therefore
our aim to investigate thequantumcounterpart of the con-

formally invariant scheme proposed in Ref.@8#, to complete
the current work on quantized gauge fields. For this purpose,
we have studied a portion of flat Euclidean four-space
bounded by three-dimensional surfaces. The vanishing cur-
vature of the four-dimensional background is helpful to ob-
tain a preliminary understanding of the quantum operators,
which will be shown to have highly nontrivial properties. In
our scheme, all curvature effects result from the boundary
only.

In flat Euclidean four-space, the conformally invariant
gauge proposed in Ref.@8# reads~hereafterb,c50,1,2,3)

¹b¹b¹cAc5h¹cAc50. ~7!

If the classical potential is subject to an infinitesimal gauge
transformation

fAb5Ab1¹bf , ~8!

the gauge condition~7! is satisfied byfAb if and only if f
obeys the fourth-order equation

h2f 50, ~9!

where h2 is the h operator composed with itself, i.e.,
h2[gabgcd¹a¹b¹c¹d .

In quantum theory via path integrals, however, one per-
forms Gaussian averages over gauge functionalsF(A)
which ensure that well-defined Feynman Green’s functions
for theP operator onAb , and for the ghost operator, actually
exist @5,9#. This means that the left-hand side of Eq.~7! is no
longer set to zero. One defines instead a gauge-averaging
functional

F~A![h¹bAb , ~10!

and the gauge-averaging term 1/2a@F(A)#2, with a a pa-
rameter, is added to the Maxwell Lagrangian1

4 FabF
ab. A

double integration by parts is then necessary to express the
Euclidean Lagrangian in the form12 AbPbcAc , where*Electronic address: esposito@napoli.infn.it
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Pbc[2gbch1S 12
1

a
h2D¹b¹c. ~11!

The operatorPbc is a complicated sixth-order elliptic opera-
tor, and it is unclear how to deal properly with it for finite
values ofa. However, in the limit asa→`, it reduces to the
following second-order operator:

Pbc52gbch1¹b¹c. ~12!

This operator remains nonminimal, since the term¹b¹c sur-
vives. In this particular case, we still need to specify bound-
ary conditions onAb and ghost perturbations. For this pur-
pose, we put to zero at the boundary the whole set ofAb
perturbations:

@Ab#]M50;b50,1,2,3, ~13!

and we require invariance of Eq.~13! under infinitesimal
gauge transformations onAb . This leads to~hereaftert is a
radial coordinate@1–4#!

@«#]M50, ~14!

@]«/]t#]M50. ~15!

Condition ~14! results from the gauge invariance of the Di-
richlet condition onAk , ;k51,2,3, and condition~15! re-
sults from the gauge invariance of the Dirichlet condition on
A0. Note that it would be inconsistent to impose the bound-
ary conditions~13!–~15! when the Lorentz gauge-averaging
functional is chosen, since the corresponding ghost operator
is second order.

When two boundary three-surfaces occur, Eqs.~14! and
~15! lead to

@«#S1
5@«#S2

50, ~16!

@]«/]t#S1
5@]«/]t#S2

50. ~17!

When Eq.~10! is used, and the ghost operator is henceh2,
the four boundary conditions~16! and ~17! provide enough
conditions to determine completely the coefficients
C1 , . . . ,C4 in the linear combination

«~l!5(
i 51

4

Cir i ~l!
, ~18!

wherer1 , . . . ,r4 are four linearly independent solutions of
the fourth-order eigenvalue equation

h2«~l!5l«~l! . ~19!

We therefore find that, when the conformally invariant gauge
functionals ~10! are used, the admissible boundary condi-
tions differ substantially from the magnetic and electric
schemes outlined in Eqs.~1!–~3! and ~4!–~6!, and are con-
formally invariant by construction@with the exception of Eq.
~15!#.

Had we set to zero at the boundaryAk (k51,2,3) and the
functional~10!, we would not have obtained enough bound-
ary conditions for ghost perturbations, since both choices
lead to Dirichlet conditions on the ghost. The boundary con-

ditions ~13! are also very important since they ensure the
vanishing of all boundary terms resulting from integration by
parts in the Faddeev-Popov action. In the particular case
when the three-surfaceS1 shrinks to a point, which is rel-
evant for ~one-loop! quantum cosmology@5#, the boundary
conditions read~hereS is the bounding three-surface!

@Ab#S50 ;b50,1,2,3, ~20!

@«#S50, ~21!

@]«/]t#S50, ~22!

jointly with regularity att50 of Ab , «, and ]«/]t. Many
fascinating problems arise now. They are as follows.

~i! To prove the uniqueness of the solution of the classical
boundary-value problem,

h2f 50, ~23!

@ f #S1
5@ f #S2

50, ~24!

@] f /]t#S1
5@] f /]t#S2

50. ~25!

~ii ! To study the quantum theory resulting from the opera-
tor ~11! for finite values ofa. Interestingly, the Feynman
choicea51 does not get rid of the sixth-order nature of the
operatorPbc.

~iii ! To evaluate the one-loop semiclassical approxima-
tion, at least whenPbc reduces to the form~12! in the pres-
ence of three-sphere boundaries. The ghost operator is then
found to take the form

h25
]4

]t4
1

6

t

]3

]t3
1

3

t2

]2

]t2
2

3

t3

]

]t
1

2

t2S ]2

]t2
1

1

t

]

]t D
u i

u i

1
1

t4
~ u i

u i !2. ~26!

With standard notation, we denote by a vertical bar the op-
eration of covariant differentiation tangentially with respect
to the three-dimensional Levi-Civita connection of the
boundary. If one expands the ghost perturbations on a family
of three-spheres centered on the origin as@1#

«~x,t!5 (
n51

`

«n~t!Q~n!~x!,

the operator~26!, jointly with the properties of scalar har-
monics, leads to the eigenvalue equation@cf. Eq. ~19!#

d4«n

dt4
1

6

t

d3«n

dt3
2

~2n225!

t2

d2«n

dt2
2

~2n211!

t3

d«n

dt

1S ~n221!2

t4
2lnD «n50. ~27!

This equation admits a power-series solution in the form
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«n~t!5tr(
k50

`

bn,k~n,k,ln!tk. ~28!

The values ofr are found by solving the fourth-order alge-
braic equation

r422~n211!r21~n221!250 ~29!

which has the four real roots6(n61). Moreover, the only
nonvanishing bn,k coefficients are of the formbn,4k ,
;k50,1,2, . . . , and aregiven by ~assuming thatbn,0 has
been fixed!

bn,l5
lnbn,l 24

F~ l ,n,r!
, ; l 54,8,12,. . . , ~30!

where we have defined (;k50,1,2, . . . )

F~k,n,r![~r1k!~r1k21!~r1k22!~r1k23!

16~r1k!~r1k21!~r1k22!2~2n225!

3~r1k!~r1k21!2~2n211!~r1k!

1~n221!2. ~31!

As far as we can see, the solution~28! can be expressed in
terms of Bessel functions~cf. Sec. 3.5 of Ref.@10#!.

~iv! To include the effects of curvature. As shown in Ref.
@8#, if the background four-geometry is curved, with Rie-
mann tensor Ra

bcd, the conformally invariant gauge-
averaging functional reads@cf. Eq. ~10!#

F~A![h¹bAb1¹cF S 22Rbc1
2

3
RgbcDAbG . ~32!

It would be interesting to study the~one-loop! quantum
theory, at least whena→`, on curved backgrounds such as
S4, which is relevant for inflation@5#, or S23S2, which is
relevant for the bubbles picture in Euclidean quantum grav-
ity, as proposed in Ref.@11#.

To our knowledge, the form~11! of the differential opera-
tor on perturbations of the electromagnetic potential in quan-
tum theory, the boundary conditions~13!–~15!, and the ana-
lytic solution ~28!–~31! for ghost basis functions are entirely
new. Thus, quantization via path integrals in conformally
invariant gauges possesses some new peculiar properties,
which are now under investigation for the first time. This, in
turn, seems to add evidence in favor of Euclidean quantum
gravity having a deep influence on current developments in
quantum field theory@5#.

The author is indebted to A. Yu. Kamenshchik and G.
Pollifrone for scientific collaboration on Euclidean Maxwell
theory and Euclidean quantum gravity over many years.
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