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We argue that supersymmetric gluodynamitteeory of gluons and gluingshas a condensate-free phase.
Unlike the standard phase, the discrete axial symmetry of the Lagrangian is unbroken in this phase, and the
gluino condensate does not develop. Extra unconventional vacua are supersymmetric and are characterized by
the presence afbosonic and fermionjcmassless bound states. A set of arguments in favor of the conjecture
includes(i) an analysis of the effective Lagrangian of the Veneziano-Yankielowicz-type which we amend to
properly incorporate all symmetries of the modél) consideration of an unsolved problem with the Witten
index, and(iii ) interpretation of a mismatch between the strong-coupling and weak-coupling instanton calcu-
lations of the gluino condensate detected previously. The impact on Seiberg’s results is briefly discussed.
[S0556-282197)05216-§
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I. INTRODUCTION (AN(X)AN(0)) [G=SU(2)], 1)

In this work, supersymmetric gluodynamics, the theory ofand is carried ouvia instantons, plus cluster decomposition
gluons and gluinos with no matter, is reexamined. Our pri{4]. The weak-coupling regime is achieved by adding extra
mary task is investigating the modes of realization of thematter fields and working in the Higgs phase, with the sub-
discrete chiral invariance in supersymmetric gluodynamicssequent limitm— -, wherem is the matter mass term.

As is well known from the early days of supersymmetry, this  In this work we suggest a somewhat unexpected solution
theory possesses a discrete symméty gy whereT(G) is  which seems to eliminate both difficulties. We will argue
(one-half of the Dynkin index for the given gauge gro®  that extra vacuum states, with unbrok®gr, symmetry

In SU(N) supersymmetric gluodynamics(G)=N. Since  and vanishing gluino condensate, exist. The gauge dynamics
the Z,y(g) invariance is thgnonanomalousremnant of the in this unbroken phase is very peculiar. In particular, al-
anomalous axial symmetry generated by the phase rotationsough no symmetry is spontaneously broken, it should con-
of the gluino field, the gluino condensate\) is the order tain massless excitations of both bosonic and fermionic type.
parametef.Usually it is believed that a nonvanishing gluino  The above conclusion is based on two sets of arguments.
condensate develops, spontaneously breakpgs) downto  First, the existence of extra vacuum states follows from the
Z,. Then the space of vacua consistsTqiG) points. All  analysis of the so-called Veneziano-Yankielow{a2Y) ef-
these vacua are physically equivalent and correspond to coffective Lagrangian5,6]. A technical problem one immedi-
fining dynamics qualitatively similar to that of nonsupersym-ately encounters is the absenceZgf g, degeneracy in the
metric gluodynamics. In particular, a mass gap develops, andriginal VY expression. We show that this expression is in-
massless excitations present at the Lagrangian level disapemplete, and explain how it must be amended to become
pear from the physical spectrum. compatible with all symmetries of supersymmetric gluody-

The picture seems perfectly self-consistent; yet, two unnamics. The corrected expression exhidi{$s) minima of
solved issues have clouded it for over a decade. First, ththe scalar potential corresponding Zgr(g)—Z, breaking,
number of vacud (G) does not match the value of the Wit- plus an additional minimum at the origin where the gluino
ten index[1] for orthogonal and exceptional grou$ay, condensate vanishes. We then discuss the occurrence of this
for the ON) groups with everN the index is predictefil] to  extra state in relation with the Witten-index problem. The
be (N/2)+1 while T(G)=N-2.] Second, the value of the (A\)=0 state presumably does not contribute to the Witten
gluino condensate, calculated in the weak-coupling regiméndex counting for the unitary gauge groups, since it is ac-
and analytically continued to the strong-coupling regime bycompanied by a “fermion” zero energy state. It may con-
using holomorphy{2] does not matchA\) calculated di- tribute, however, in the case of the orthogonal groups.
rectly in the strong-coupling regimi8]. More exactly, the Finally, a mismatch between the direct instanton calcula-
direct calculation refers to tion of the gluino condensate and an indirect derivation

through the Higgs phase is interpreted as a signature of the
(AN)=0 vacuum contribution in the instanton calculation. A

*On leave of absence from PPARC. few remarks concerning infrared dynamics in ex)=0
The gluino field is treated in the Weyl representation; note thatvacuum and the possible impact of the inclusion of light
the condensate under discussion fsrather tharn. matter conclude the paper.
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[l. VENEZIANO-YANKIELOWICZ EFFECTIVE A is the scale parameter, a positive number of dimension of
LAGRANGIAN mass which we will set equal to unity in the following. Fi-
nally, ¥ is the vacuum angle. Other numerical constants ir-
Felevant for our purposes are set equal to unity.
The derivation of Eq(4) is pretty straightforward. The
kinetic term is obviously invariant under the scale transfor-
mations and th& rotations:

In this section we discuss effective Lagrangians and th
manifold of vacua in supersymmetric Yang-Mills theory
without matter The Lagrangian of the model at the funda-
mental level is

1 1 . - v ~ ) )
L= —g 2 GZVGZV-I-I)\ZDH'BAB + 3072 GzVGiv, SHSeZ'ﬁ' 09— 0e'P, (5)
2

The potential term is not invariant, however. For instance,
where it is assumed, for simplicity, that the gauge grGuis  under theR rotations,
fdzos—f dZe‘s), (6)

SU(N). This model possesses a discrete gldha] symme-

try, a residual nonanomalous subgroup of the anomalous chi-
Which is exactly the anomalous Ward identity for the chiral
rotations. All other anomalies are then automatically repro-

ral U(1). oLxp
One of the aspects of our consideration is based on the
uced because of the supersymmetry of the VY Lagrangian.
After an appropriate rescaling, making the kinetic term

effective Lagrangian approach. Some of the symmetrie
canonical, one gets

present in the theor?2) at the classical level are anomalous.
It was suggested long ago that simple Lagrangians for som
effective fields can summarize all information on the anoma-
lous Ward identities.

Thus, in purgnonsupersymmetrjcYang-Mills theory the
trace of the energy-momentum tengy, has anomaly. Cor- — 3 N 3
respondingly, one can write a Lagrangian for the dilaton field L=(DP)|p+(P° In N[+ H.c), S=@° (7
(interpolating the operator of the trace of the energy-
momentum tensdmwhich codes alh-point functions implied Up to a redefenition of the superfield this seems to be the
by this anomaly[7]. In supersymmetric gluodynamics the only Lagrangian which faithfully represents the anomalous
anomalous operators ag , y*S,, andd,J*, whereS, is Ward identities.
the supercurrent and is the gluino current. They form a  This topic was in a dormant state for over a decade. The
supermultiplet. The Lagrangian realizing the anomaloudnterest to this approach was revived recently in connection

Ward identities can be naturally construc{&d in terms of ~ Wwith the so-called “integrating in” procedure in supersym-
the chiral superfield metric gauge theories with mattésee, e.g., Ref.8]).

A remark is in order here to explain in what sense .
3 ) 3 ) is an effective Lagrangian. Clearly it is not a genuine low-

~ 32,2 W= 3212 Trws, 3 energy effective Lagrangian in the Wilsonian sense. There

are no Goldstone bosons corresponding to the anomalous
where symmetries, and apart froWw?, other fields in the theory
may interpolate particles with masses of the same order of
magnitude as the ones retained in E4). This Lagrangian,
therefore, does not arise after integrating out of the heavy
modes. Rather it is an effective Lagrangian in the sense that
and the color trace above is in the fundamental representit-is a generating functional for vertex functions of the field
tion. The lowest component of the superfieldW? is AN components ofV2. Of course, Eq(4) should then be under-
while the F component is nothing but the original SUSY stood only as the first two terms in the derivative expansion.
Yang-Mills LagrangianG2+iGG+i)\ZD“ﬁ)\B. The con- The higher derivative corrections to this expression should
struction was carried otitn Ref.[5] (see alsd6]); the cor- be generically large, and therefore E¢) cannot be ex-

S

]_ _
W, (X ,0)= 5 D%(e VD eY),

responding Lagrangian is pected to give a reasonable approximation to (the-shel)
o particle interaction vertices. The effective potential part of
g:(ss)1/3|D+[%s In(SN/oN)|F+ H.c], (4) this Lagrangianinamely, the Lagrangian evaluated on con-
stant field configurationshowever, should be exact since it
whereo is a numerical parameter, is determined unambiguously by all anomalous Ward identi-
) ties of the theory(it includes all relevann-point functions
o=eA% "N, evaluated at zero momentarlherefore, the Lagrangian is

suitable for examining the vacuum states of the theory.
In fact, the last remark requires some qualification. Al-

2This theory is referred to as supersymmetric gluodynamics. Thdhough the Lagrangiaf#) has some appealing features, even
theory where the light matter fields in the fundamental representa@ brief examination shows that it cannot be complete. First,

tion are included will be referred to as supersymmet8t)SY)  the scalar potential following from Ed4) is not a single-
QCD. valued function of the field. If we start, say, &= A2 and

3The vacuum angle? in these works was set equal to zero, and travel continuously in the compleR plane, the value of the
the 9 dependence was not discussed. scalar potential aB=e?™ A® will be different from that at
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S=A3. This is of course unacceptalfi&econd, the discrete the vacua of the theory. It is instructive to see how the
Z,n Symmetry inherent to the original theofg) is not re- change we propose is reflected in the scalar potential. The
flected in Eq(4). These unsatisfactory features were pointedchiral superfields for the purpose of calculating the effective
out, e.g., in Ref[9]. potential can be written as

Our task here is to provide a natural modification to this
Lagrangian, which will cure these two problems, while pre- 1
serving the correct transformation properties under the S=¢+6° — (A+iB). 9
anomalous symmetries. The key observation is as follows. V2

SinceS is supposed to be equivalent\#, it must satisfy a ) , . .
global  constraint ensuring that the integral For the spatially constant fields the Euclidean action takes

(1/3272) [d*xGG (in the Euclidean spagecan only take the form

integer values. This constraint can be imposed in an explic-

itly supersymmetric manner at the Lagrangian level by intro- Ag= 1

(pp*) 2" % (A2-B2?)— 2 V2A In| ¢|

ducing an integer-valued Lagrange multiplier variable 9

— 1 iN

£=(S9)"Mp+| 3 SIn(SYa™)| +H.c. +5 V2BaV, (10)
F
2min ] wherea= Arg ¢ and the quantization condition enforced by
+t—3— (59 (8)  the summation oven in Eq. (8) is
F

Note that the variabla takes only integer values and is not — BV=b, b=integer. (12)
a local field. It does not depend on the space-time coordi- 3

nates and, therefore, integration ovériibposes only a glo-
bal constraint on the topological charge. It is easy to see thdtere V is the full space-time volume and we have set the
(after the Euclidean rotatigrihe constraint does indeed take vacuum angled=0 for the time being. If the quantization
the form condition is ignored, elimination of the auxiliary fieldsand

B leads to the original VY scalar potential

1 ~
4 _
272 f PXCE=2. U($)=N2($* $)2%In ¢ In ¢*
Alternatively, one can say that, in calculating the correla- =N*(¢* $)*(In? p| + a?). (12)

tion functions through the functional integral with the action ) ) ) )
(4), one must sum over all branches of the logarithm. It isAs was mentioned, the result is neither single valued nor has

perfectly clear that all anomalous Ward identities are kepit correct periodicity ina. To calculate the corrected effec-
intact. Moreover, this prescription naturally restores thefive potential we have to take into account the quantization
equivalence of all branches of the logarithm lost in the origi-condition (11). The variableA is unconstrained and can be
nal constructiorf5]. The modification suggested is crucial. integrated over in the usual way, and for the variablé-

The extra term we have added to the Lagrangian is clearl{egration should be substituted by summation over integers:
supersymmetric and is also invariant under all global sym-
metries of the original theory. Now both the single valued-
ness of the potential and tlfg, invariance are restored. The
chiral phase rotation by the anglerR/N with integerk just
leads to the shift ofi by k units. Sincen is summed over in
the functional integral, the resulting Lagrangian fois in-
deedzy, invariant®

Information we are interested in is contained in the scalar
potential that follows from the effective Lagrangid8), U(¢p)=—V 1ln
since it is the minima of the scalar potential that determine

3
f dB— — v1! )
V2 b=0=1--

After the fieldA is eliminated, as before, we obtain the fol-
lowing expression for the effective potential:

> ex4 —VN2(¢* $)2° In?| |

b=0%1-

. (13

1 b?
— Z (¢*¢)—2/3 v —INab]
“Below the lowest component & is denoted byp. Sometimes,

when no confusion can arise, we will still use the letgefor the W h to di | feat fth
lowest component of superfield. e pause here to discuss some general features of the

5More exactly, one must sum over in the partition function. effective p(_)tential(13). If b couldl be considered as a con-
Similar integer-valued Lagrange multiplier appears in the bosonizedinUous variable and the summation otecould be replaced
version of the Schwinger modgL0]. by integration, we would recover the old potential of Eq.

®The explicit invariance here &, rather than the comple®,,  (12). For small phase anglea<1/N, this is a valid approxi-
of the original SUSY gluodynamics, since we have chosen to writgnation, since the coefficients & andb terms are small,
our effective Lagrangian for the superfield which is invariant underand the exponent is a function bfwhich varies very slowly.
A——NX\. Therefore, in the vicinity of the real axis, the new effective
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potential is close to the old one. In fact, 4f=0, the cor- Expanding the exponent in EQL3) at small« it is pos-
rected potential coincides exactly with that of Veneziano andible to conclude that the small-expansion ofU(|¢|,«)
Yankielowicz. It has a minimum ap=1. However, unlike coincides with Eq(12). This means that at small

the Veneziano-Yankielowicz potentidy invariance of Eqg.
(13) is explicit: all pointsa=2wk/N are obviously equiva-

lent and, in particular, there ai¢ degenerate minima at U(| |, @)=<[In?| |+ a?+ O(exp(— Cla?))].
¢p=e27N) = k=01,.. N—1. (14)
This means that away from the line=0, the potential12) Cons?der now the derivative of the potential with respect
gets corrections. to « at fixed Value|¢| anda#0:
|
U\t Sb=osab exp{ — V(N?)(¢* ¢)? In?| ¢| — (114 (¢* )~ ?(b%/V) —iNab} 15
i _ _ _
da Sp—ox1-- OXP[— V(N (¢* )% I §| — (1/4)(¢* $) " (b*IV) —iNab}

This expression has the meaning of the average density abrresponds to the vanishing gluino condensate, and its in-
instantons minus the average density of anti-instantons in thierpretation has been never discussed previously. This zero
Yang-Mills theory on the real axis but with the shifted value energy state at®)=0 reflects a phase of the supersymmet-
of the vacuum angléd= — Na [see Eq(16) below]. Clearly, ric gluodynamics with no breaking of th&,,, symmetry and
this expression is finite for any value ef The effective vanishing gluino condensate.
potential is therefore a continuos function of the field. Con- The occurrence of the condensate-free phase may sound
sider now the raysy=(7/N)k wherek is odd. These rays suspicious, since superficially this statement contradicts the
are exactly in the middle between the “valleys” Witten-index argumenitl]. Indeed, the Witten index for the
a=(2w/N)k. For these values of the angle the weight in theSU(N) group isN, which is exactly equal to the number of
sum overb in the numerator of Eq(15) is symmetric under the(\\)#0 states of vanishing energy one obtains from Eq.
b— —b. The average in the numerator of Efj5), therefore, (14). So, the only way to reconcile the existence of the extra
vanishes. Thus, along the directions Arg=(m/N)k, state at¢p=0 with this result is that it should not contribute
wherek is odd, the effective potential has the topography ofto the Witten index.
a ridge. Surprisingly, it is very difficult to rule out this possibility,
We conclude this section by briefly discussing thele- and this may indeed be the case. For this to happen there
pendence. From Ed4) it is clear thatd enters in the scalar must exist an equal number Bf=even and-=o0dd states at
potential only through the combination ®=0. The Lagrangian8) does imply the existence of the
massless fermion mode in the condensate-free regime. Usu-
ally, in the Wess-Zumino-type models one can always intro-
duce the mass term to the chiral superfield considered, all
massless modes are eliminated, and the zero-energy states
When ¢ continuously varies from 0 to72 the “mountain  concentrated near the zeros of the superpotential are all of
ridge” picture rotates by 2/N: the first valley becomes the the bosonic type. In which case, they certainly contribute to
second, and so on, cyclically. Such a picture was predicte¢he Witten index. That is not true for the effective Lagrang-

Us(|#l,a)=U

0
ooy 19

from a general consideratid@]. ian (8). Here its form is rigid, since it merely reflects the
anomalous Ward identities as well as the discrete nonanoma-
Ill. THE VACUUM STATE lous symmetries of the underlying theory. The mass term is

WITHOUT GLUINO CONDENSATE forbidden—it would explicitly violate the Ward identities,

. ) . and the vacuum structure obtained in this way will have
The following feature of the scalar potentid3) is im-  nthing to do with that of the underlying SUSY gluodynam-

portant for our consideration. In ad_dition fominima of Eq. o5 For instance, it would break explicitly tia, symmetry
(14) it exhibits an unexpected solution &4t=0. To reveal the  5n4 eliminate alz,y, breaking vacua in Eq14).

extra solution it may be convenient to proceed from the su- |t the excitation modes are strictly massless, in general it
perfield S to the superfieldP, whose kinetic term ?as the s very difficult to decide which state & even and which is
canonical form. These superfields are relate, e~ tr;e F odd in the case of the unbroken supersymmetry, when the
same relation holds for the lowest componeris-¢°,  gypercharge acts trivially on the vacuum. Therefore on the
whereg is the lowest component db. The zero(®) solution  pagis of the effective potential alone we are unable to deter-
mine what is the contribution of thé¢=0 states to the Wit-
ten index. We will argue later that, in fact, the ()7 count-
"There can be no “spontaneous breaking” of the symmetrying of the zero-energy states may depend strongly on the
b— —b since Eq.(15) is a simple sum oveb rather than a func- nature of higher derivative terms in the effective action,
tional integral. which we have neglected so far and which are not deter-
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mined by the anomalous Ward identities. 5 4 )
Having argued that the problem with the Witten index (M)ser=g (M)wcr (18)
need not be an obstruction, let us present now a positive,

although subtle, argument in favor of the existence of thgyhere the subscripts SCR and WCR mark the strong- and
additional (\\)=0 vacuum state in SUSY gluodynamics. \yeak-coupling regime calculations. Since the weak-coupling
To this end we need to make a digression and recall a puzzlggime calculation seems to be flawless, suspicion naturally
with the dynamical calculation of the gluino condensate.  ty)is on the strong-coupling analysis. But where concretely is
Calculation of the gluino condensdi] was the first ap- ¢ loophole?

plication of instantons in supersymmetric gluodynamics in A tentative answer might be found in the hypothesis put
the strong-coupling regime. Consider for simplicity the fonyard by Amatiet al.[11]. It was assumed that, instead of
SU(2) gl_uodyngmics. In this case there are four gluino Zeryroviding us with the expectation value &k in the given
modes in the instanton field and, hence, there is no direGfacyum, instantons in the strong-coupling regime yield an
instanton contribution to the gluino condenséta). At the average value of\\) in all possible vacuum states. In the

same time the instanton does contribute to the CorrelatiOWeak—coupIing regime, we have a marker: a large classical

function vacuum expectaxtion valu€¥EV) of the Higgs field tells us
in what particular vacuum we do our instanton calculation.
<)\2(X))\aa(x),)\Z(O))\bﬂ(o)>_ (17) In the_ strong-cou_pling _regime, such a marker is absent.
This hypothesis by itself, however, does not explain the
discrepancy(18), if there are only two vacua characterized
Herea,b=1,2,3 are the color indices and 8=1,2 are the by (A\\)==+A3. The gluino condensate is not affected by
spinor ones. An explicit instanton calculatipfil shows that  the averaging over these two vacuum states, since the con-
the correlation functior17) is equal to a nonvanishing con- tributions of these two vacua to E€(L7) are equal. If, how-
stant. ever, there exist extra zero-energy states wii\)=0
At first sight this result might seem similar to supersym-which are involved in the averaging, the final result in the
metry breaking since the instanton does not generate amtrong-coupling regime is naturally different from that ob-
boson analogue of E¢17). Supersymmetry does not forbid, tained in the weak-coupling regime in ttgiven vacuum.
however, a nonvanishing result for E(L7) provided that Moreover, the value of the condensate calculated in the
this two-point function is actually ax-independent constant. strong-coupling approach should be smaller, consistently
Three elements are crucial for the proof of the above aswith Eq. (18).

sertion: (i) the su_perchargé?e acting on the vacuum state ~ Note that the approach of Reff2] has nothing to say

annihilates it(ii) Qf commutes witl\\, and(iii ) the deriva- about ppsslble states ".’It the origin. If thgre IS a minimum at
— the vanishing expectation value of the Higgs fiéahd van-

tive d,5(AN) is representable as the ant!commutatoQﬁr ishing gluino condensakehe theory is always in the strong-
and\fGg, - The second and the third point follow from the ¢ pling regime near this minimum. Introduction of the mat-
fact thapM is the .onvest pomponent of the chiral superfield {o fields does not help to push the theory in the weak-
W2, while NG, is its middle component. coupling regime.

_Now, we differentiate Eq(17), substituted,z(A\) by Now it is in order to return to the Witten-index argument,
{QB,)\EGM} and obtain zero. Thus, supersymmetry requiresn a bid to use it in a positive aspect. The existence of extra
the x derivative of Eq.(17) to vanish[4]. This is exactly vacua can potentially resolve another long-standing paradox
what happens if the correlat¢t?) is a constant. in SUSY gauge theories. It has been known for a long time

If so, one can compute the result at short distances wherthat in SOM) SUSY gauge theories the Witten index does

it is presumably saturated by small-size instantons and, themot coincide with the number of differei\)#0 states of
the very same constant is predicted at large distancesanishing energy one obtains from the instanton calculations
x—o0, On the other hand, due to the cluster decompositionn the weak-coupling regimg2]. The former is rank+1
property, which must be valid in any reasonable theory, thevhile the latter isM—2 for the orthogonal groups. The
correlation function17) atx—  reduces tg\\)2. Extract- anomalous and nonanomalous symmetry structure of these
ing the square root we arrive atdouble-valuegiprediction  models is similar to that of SUN) gauge theories. The ef-
for the gluino condensate. fective potential would, therefore, have the same form as Eq.

Instead of exploiting strong-coupling calculatiofwhich  (13) with the parameteN substituted byM —2. It would,

is always suspegtone can use a fully controllable approach therefore, still exhibit a minimum ap=0. It is possible that
in the weak-coupling regimg2]. Namely, one extends the for orthogonal groups the number of fermionic states at this
theory by adding one flavditwo chiral matter superfields, point is larger than the number of bosonic ones, and the
doublets with respect to the gauge @), carries out the difference precisely makes up for the difference between the
calculation in the weakly coupled Higgs phase., assum-  Witten index(rank + 1) and the number oE,,_,-breaking
ing a large value of the Higgs figldand then returns back to bosonic minima with the nonvanishing gluino condensate.
SUSY gluodynamics by exploiting the holomorphy of the

condensate in the mass _paraméﬂir _ _ IV. DYNAMICAL CONSEQUENCES
The result fok\\) obtained in the strong coupling regime
[i.e., by following the program outlined after EQL7)] does In this section we present some speculations as to the

not match(A\) calculated in this indirect but fully control- nature of thezZ,y-symmetric vacuum. First, the energy of
lable way. As a matter of fact, as was shown in R&{, this state vanishes and therefore supersymmetry is unbroken.
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Second, the effective Lagrangian indicates the existence a$ generated through the gluino condensation in the unbroken
massless fermions. This, as noted before, is a necessary catrongly coupled SW.— N) gluodynamics. If the latter has
dition to avoid the contradiction with the Witten-index cal- the condensate-free phase, the original SUSY QCD will have
culation. The scalar fiele also is massless near this point, a branch with no superpotential generated. Previously, a
and obviously is the superpartner of the massless fermiorsimilar phenomenoitan additional branch with no superpo-
The existence of strictly massless particles in this phase dentia) was observed[14] in the SOWN) theories with
supersymmetric gluodynamics is remarkable since they arfl;=N—4, ForM{';&O the gauge symmetry is broken down
not Goldstone modes associated with the spontaneous break-SU2) x SU(2). It was noted 14] that the gaugino conden-
ing of some symmetry. As a matter of fact, no symmetry issates corresponding to different &Js can have opposite
spontaneously broken, and still the massless modes aktgns, so that the sum vanishes, implying vanishing superpo-
present. The situation is somewhat reminiscent of confortential.
mally invariant phases of some other SUSY gauge theories The existence of two inequivalent branches can be argued
(with mattey which figure so prominently in recent work on from a different perspective. Assume we introduce the mass
electric-magnetic duality12]. In fact the similarity may well  term
be even closer.

Taken at its face value, the effective potentit®) would ALyee=m Tr M| (21
lead one to conclude that the scalar quartic self-coupling near
=0 diverges logarithmically at zero momentum. However,t0 the superpotential of the theory. For simplicity, the mass
as pointed out earlier, one cannot use this effective potentidtarameters for all flavors are equal. Then the matter mass
to reliably establish interactions between the particles. Thi¢erm breaks U(1y explicitly, but the discreteZ,y remains
is especially true near the poipt=0. The reason is obvious. unbroken at the Lagrangian level. Whenis very large, we
For nonconstant fields one has to take into account highg€turn back to supersymmetric gluodynamics, with the
derivative terms in the effective action. The anomalous Warolution$
identities, while unable to determine these higher derivative
terms completely, do impose some restrictions on their form.
In particular, to preserve the Ward identity following from . . ~
the dilatational symmetry, every extra derivative should be (M])~ Sl m(Ni=Ne/Ne p (SNe=Np/Ny (22)
accompanied roughly by the factod®$) V. An example of
this type of terms is

<)\)\>~ me /NCA(chiNf)/Nf,

for the first branch and

B (M\)=0, (M)=0, (23
(oqlusl/?:o-'lusllfs’)
s (19 for the second. The functionah dependence is actually

(SS) known exactly, for alim [2] (see alsd16]), due to its holo-

morphic nature. This allows one to analytically continue the

Near the point¢=0, starting already at this low order in results to smalm. Two solutions indicated in Eq$22) and
derivatives, the corrections explode. The derivative expan¢23) correspond to two different branches of SUSY QCD.
sion is not valid even for very low momenta. This suggests In the massless limit, i.e.,m—0, at the origin
that the Green’s functions of the fiel@&and S will have  ((AN\)=M!=0), the theory possesses an unbroken chiral
nonanalytic behavior in momentum. With the knowledge ofsymmetry, theR symmetry. Therefore, the anomalous AVV
the existence of massless excitations, we are lead to conjetriangles must be matched—they must be the same at the
ture that atp=0 at low momenta, the theory is conformal. fundamental and composite levgl$5]. The matching im-

The precise nature of this conformal theggnomalous plies the existence of a rich spectrum of massless baryons,
dimensions, etg.cannot be determined on the basis of thewhich goes far beyond one massless fermion residing in the
effective potential alone. It is natural to expect that countingsuperfieldW? in the condensate-free phase of supersymmet-
of the number of fermionic and bosonic vacua at zero wouldic gluodynamics. Another possibility is that tResymmetry
depend heavily on the properties of the conformal theoryis spontaneously broken, implying the existence of the mass-
For example, for SQY) and SUN—2) gauge theories, the less “7»'” and its fermion superpartner. The problem with
effective potentials would be the same, but the conformathe Iatter scenario is that no appropriate order parameter for
theories at zero could be completely different. That couldthe R symmetry breaking can be immediately found, since
explain the difference in the number of the fermionic andthe obvious candidate@\) and MJ vanish. It is possible,
bosonic vacua in the two cases needed to comply with théhat a nonchiral field condenses, for instance the lowest com-
Witten-index calculation. _ ponent of W2M! . This expectation value would break both

If the chirally invariant phase of pure gluodynamics doest he R symmetry and the axial SB).
indeed exist, it has drastic consequences for supersymmetric If N;=N,— 1, the ADS superpotential is generated by in-

theories with massless(or light) matter. Indeed, at stantons. If deM+#0 one can carry out calculation of the

N¢<N.—1, the Affleck-Dine-SeiberdADS) superpotential g, o otential in the weak-coupling regime, where the result
[13] (see also Ref.6]; M! is anN;x N; moduli matrix

(20) 8Note that at largem the combinationm™f/NeA GNe=ND/Nt g

A3N07Nf l/(NC*Nf)
) proper scale parameter of supersymmetric gluodynamics.

Woc( detM
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is unambiguougand coincides, of course, with that of Af- V. CONCLUSIONS

fleck et al.). In this way one arrives at the standard picture of

%:un-away vacu_u:n,hwnh the zero ecrjlefr_gydstat& al(\)M?_b;. which was gradually evolving in the 1980’s and took a much
e superpotential, however, is not defined atMet0. The ¢ complete form after a recent breakthrofigyf], is still

condensate-free phase of supersymmetric gluodynamics inst free from questions. We suggest an unorthodox solution
plies a supersymmetric vacuum solution of SUSY QCD afg|iminating all of them, completely. The key element of our

An elegant picture of supersymmetric gauge dynamics

detM =0. o consideration is the existence of the condensate-free phase of
Finally, atN;=N, the superpotential is not generated. A supersymmetric gluodynamics, with the unbrok&gr g,
continuous manifold of degenerate vacua exi$@: symmetry. This additional vacuum is supersymmetric, and
_ can be compatible with other known aspects of SUSY gauge
detM —BB=A%". (24)  dynamics only provided that massless excitation modes,

. bosonic and fermionic, are present in this vacuum. Corre-
Atlarge detM the gauge symmetry is completely broken, theg;onding modifications must also take place in the theories
theory is in the weak-coupling regime, the instanton calculayith massless mattéSUSY QCD.
tion is unambiguous, and one can explicitly check, by doing  Although our conjecture seems compelling, keeping in
the instanton calculation, that the quantum moduli space ifind the nontrivial nature of our consideration, which cannot
indeed described by Eq24). We suggest that there is an be tested in the weak-coupling regime, it is natural to be

extra point in the vacuum manifold, characterized by cautious. Independent confirmation and a more thorough un-
~ derstanding of the dynamics of unconventional massless
detM=0, B=B=0, (25  bound states characteristic of the condensate-free phase is

. . highly desirable. In particular, it is desirable to learn how to
that cannot be continuously reached from the weak-couplingg|cylate the number of the-even andF-odd zero-energy
regime. . ) . states in the extra minimum. A simpler task would be to

To illustrate this, we again switch on the matter mass ternyetect a mismatch between the strong-coupling and weak-
(21), with the intention of continuing analytically from the coupling calculations for gauge groups other than(ZU
limit of the large masgpure gluodynamigsto the limit of  Studying this mismatch as a function of the group constants
the zero mas¢massless SUSY QQODThe holomorphy in may reveal a pattern of “leakage” in th&,r.s, unbroken
mass implies in this theory that the gluino condensate iphase.
proportional tom while M! andB,B are proportional tan®.

As a result, the conventional Seiberg solution corresponds to

the pointB=B=0 and deM=A? on the manifold(24). If One of the authoréM.S) is grateful to G. Veneziano for
a branch of gluodynamics with the vanishing gluino conden-timulating discussions of the VY effective Lagrangian. We
sate exists, theB=B=0 and deM=0 on this branch. Con- would like to thank I. Kogan, S. Rudaz, A. Smilga, M. Vo-
tinuing analytically inm to the massless limit we observe the loshin and S. Yankielowicz for useful comments. This work
extra point(25) on the vacuum manifold, disconnected from was supported in part by the U.S. DOE under Grant No.
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