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We argue that supersymmetric gluodynamics~theory of gluons and gluinos! has a condensate-free phase.
Unlike the standard phase, the discrete axial symmetry of the Lagrangian is unbroken in this phase, and the
gluino condensate does not develop. Extra unconventional vacua are supersymmetric and are characterized by
the presence of~bosonic and fermionic! massless bound states. A set of arguments in favor of the conjecture
includes~i! an analysis of the effective Lagrangian of the Veneziano-Yankielowicz-type which we amend to
properly incorporate all symmetries of the model,~ii ! consideration of an unsolved problem with the Witten
index, and~iii ! interpretation of a mismatch between the strong-coupling and weak-coupling instanton calcu-
lations of the gluino condensate detected previously. The impact on Seiberg’s results is briefly discussed.
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I. INTRODUCTION

In this work, supersymmetric gluodynamics, the theory of
gluons and gluinos with no matter, is reexamined. Our pri-
mary task is investigating the modes of realization of the
discrete chiral invariance in supersymmetric gluodynamics.
As is well known from the early days of supersymmetry, this
theory possesses a discrete symmetryZ2T(G) whereT(G) is
~one-half! of the Dynkin index for the given gauge groupG.
In SU(N) supersymmetric gluodynamicsT(G)5N. Since
the Z2T(G) invariance is the~nonanomalous! remnant of the
anomalous axial symmetry generated by the phase rotations
of the gluino field, the gluino condensate^ll& is the order
parameter.1 Usually it is believed that a nonvanishing gluino
condensate develops, spontaneously breakingZ2T(G) down to
Z2 . Then the space of vacua consists ofT(G) points. All
these vacua are physically equivalent and correspond to con-
fining dynamics qualitatively similar to that of nonsupersym-
metric gluodynamics. In particular, a mass gap develops, and
massless excitations present at the Lagrangian level disap-
pear from the physical spectrum.

The picture seems perfectly self-consistent; yet, two un-
solved issues have clouded it for over a decade. First, the
number of vacuaT(G) does not match the value of the Wit-
ten index@1# for orthogonal and exceptional groups.@Say,
for the O(N) groups with evenN the index is predicted@1# to
be (N/2)11 while T(G)5N22.# Second, the value of the
gluino condensate, calculated in the weak-coupling regime
and analytically continued to the strong-coupling regime by
using holomorphy@2# does not matcĥll& calculated di-
rectly in the strong-coupling regime@3#. More exactly, the
direct calculation refers to

^ll~x!ll~0!& @G5SU~2!#, ~1!

and is carried outvia instantons, plus cluster decomposition
@4#. The weak-coupling regime is achieved by adding extra
matter fields and working in the Higgs phase, with the sub-
sequent limitm→`, wherem is the matter mass term.

In this work we suggest a somewhat unexpected solution
which seems to eliminate both difficulties. We will argue
that extra vacuum states, with unbrokenZ2T(G) symmetry
and vanishing gluino condensate, exist. The gauge dynamics
in this unbroken phase is very peculiar. In particular, al-
though no symmetry is spontaneously broken, it should con-
tain massless excitations of both bosonic and fermionic type.

The above conclusion is based on two sets of arguments.
First, the existence of extra vacuum states follows from the
analysis of the so-called Veneziano-Yankielowicz~VY ! ef-
fective Lagrangian@5,6#. A technical problem one immedi-
ately encounters is the absence ofZ2T(G) degeneracy in the
original VY expression. We show that this expression is in-
complete, and explain how it must be amended to become
compatible with all symmetries of supersymmetric gluody-
namics. The corrected expression exhibitsT(G) minima of
the scalar potential corresponding toZ2T(G)→Z2 breaking,
plus an additional minimum at the origin where the gluino
condensate vanishes. We then discuss the occurrence of this
extra state in relation with the Witten-index problem. The
^ll&50 state presumably does not contribute to the Witten
index counting for the unitary gauge groups, since it is ac-
companied by a ‘‘fermion’’ zero energy state. It may con-
tribute, however, in the case of the orthogonal groups.

Finally, a mismatch between the direct instanton calcula-
tion of the gluino condensate and an indirect derivation
through the Higgs phase is interpreted as a signature of the
^ll&50 vacuum contribution in the instanton calculation. A
few remarks concerning infrared dynamics in the^ll&50
vacuum and the possible impact of the inclusion of light
matter conclude the paper.

*On leave of absence from PPARC.
1The gluino field is treated in the Weyl representation; note that

the condensate under discussion isl2 rather thanl̄l.
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II. VENEZIANO-YANKIELOWICZ EFFECTIVE
LAGRANGIAN

In this section we discuss effective Lagrangians and the
manifold of vacua in supersymmetric Yang-Mills theory
without matter.2 The Lagrangian of the model at the funda-
mental level is

L5
1

g0
2 F2

1

4
Gmn

a Gmn
a 1 ilȧ

†D ȧblbG1
q

32p2 Gmn
a G̃mn

a ,

~2!

where it is assumed, for simplicity, that the gauge groupG is
SU(N). This model possesses a discrete globalZ2N symme-
try, a residual nonanomalous subgroup of the anomalous chi-
ral U~1!.

One of the aspects of our consideration is based on the
effective Lagrangian approach. Some of the symmetries
present in the theory~2! at the classical level are anomalous.
It was suggested long ago that simple Lagrangians for some
effective fields can summarize all information on the anoma-
lous Ward identities.

Thus, in pure~nonsupersymmetric! Yang-Mills theory the
trace of the energy-momentum tensorumn has anomaly. Cor-
respondingly, one can write a Lagrangian for the dilaton field
~interpolating the operator of the trace of the energy-
momentum tensor! which codes alln-point functions implied
by this anomaly@7#. In supersymmetric gluodynamics the
anomalous operators areum

m , gmSm , and]mJm, whereSm is
the supercurrent andJm is the gluino current. They form a
supermultiplet. The Lagrangian realizing the anomalous
Ward identities can be naturally constructed@5# in terms of
the chiral superfield

S5
3

32p2 W2[
3

32p2 Tr W2, ~3!

where

Wa~xL ,u![
1

8
D̄2~e2VDaeV!,

and the color trace above is in the fundamental representa-
tion. The lowest component of the superfield2W2 is ll
while the F component is nothing but the original SUSY
Yang-Mills LagrangianG21 iGG̃1 ilȧ

†D ȧblb . The con-
struction was carried out3 in Ref. @5# ~see also@6#!; the cor-
responding Lagrangian is

L5~S̄S!1/3uD1@ 1
3 S ln~SN/sN!uF1H.c.#, ~4!

wheres is a numerical parameter,

s5eL3eiq/N.

L is the scale parameter, a positive number of dimension of
mass which we will set equal to unity in the following. Fi-
nally, q is the vacuum angle. Other numerical constants ir-
relevant for our purposes are set equal to unity.

The derivation of Eq.~4! is pretty straightforward. The
kinetic term is obviously invariant under the scale transfor-
mations and theR rotations:

S→Se2ib, u→ueib. ~5!

The potential term is not invariant, however. For instance,
under theR rotations,

dL}bS E d2uS2E d2ūS̄D , ~6!

which is exactly the anomalous Ward identity for the chiral
rotations. All other anomalies are then automatically repro-
duced because of the supersymmetry of the VY Lagrangian.

After an appropriate rescaling, making the kinetic term
canonical, one gets

L5~F̄F!uD1~F3 ln FNuF1H.c.!, S5F3. ~7!

Up to a redefenition of the superfield this seems to be the
only Lagrangian which faithfully represents the anomalous
Ward identities.

This topic was in a dormant state for over a decade. The
interest to this approach was revived recently in connection
with the so-called ‘‘integrating in’’ procedure in supersym-
metric gauge theories with matter~see, e.g., Ref.@8#!.

A remark is in order here to explain in what sense Eq.~4!
is an effective Lagrangian. Clearly it is not a genuine low-
energy effective Lagrangian in the Wilsonian sense. There
are no Goldstone bosons corresponding to the anomalous
symmetries, and apart fromW2, other fields in the theory
may interpolate particles with masses of the same order of
magnitude as the ones retained in Eq.~4!. This Lagrangian,
therefore, does not arise after integrating out of the heavy
modes. Rather it is an effective Lagrangian in the sense that
it is a generating functional for vertex functions of the field
components ofW2. Of course, Eq.~4! should then be under-
stood only as the first two terms in the derivative expansion.
The higher derivative corrections to this expression should
be generically large, and therefore Eq.~4! cannot be ex-
pected to give a reasonable approximation to the~on-shell!
particle interaction vertices. The effective potential part of
this Lagrangian~namely, the Lagrangian evaluated on con-
stant field configurations!, however, should be exact since it
is determined unambiguously by all anomalous Ward identi-
ties of the theory~it includes all relevantn-point functions
evaluated at zero momenta!. Therefore, the Lagrangian is
suitable for examining the vacuum states of the theory.

In fact, the last remark requires some qualification. Al-
though the Lagrangian~4! has some appealing features, even
a brief examination shows that it cannot be complete. First,
the scalar potential following from Eq.~4! is not a single-
valued function of the field. If we start, say, atS5L3 and
travel continuously in the complexS plane, the value of the
scalar potential atS5e2p iL3 will be different from that at

2This theory is referred to as supersymmetric gluodynamics. The
theory where the light matter fields in the fundamental representa-
tion are included will be referred to as supersymmetric~SUSY!
QCD.

3The vacuum angleq in these works was set equal to zero, and
the q dependence was not discussed.
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S5L3. This is of course unacceptable.4 Second, the discrete
Z2N symmetry inherent to the original theory~2! is not re-
flected in Eq.~4!. These unsatisfactory features were pointed
out, e.g., in Ref.@9#.

Our task here is to provide a natural modification to this
Lagrangian, which will cure these two problems, while pre-
serving the correct transformation properties under the
anomalous symmetries. The key observation is as follows.
SinceS is supposed to be equivalent toW2, it must satisfy a
global constraint ensuring that the integral
(1/32p2)*d4xGG̃ ~in the Euclidean space! can only take
integer values. This constraint can be imposed in an explic-
itly supersymmetric manner at the Lagrangian level by intro-
ducing an integer-valued Lagrange multiplier variablen:

L5~S̄S!1/3uD1S 1

3
S ln~SN/sN!U

F

1H.c.D
1

2p in

3
~S2S̄!U

F

. ~8!

Note that the variablen takes only integer values and is not
a local field. It does not depend on the space-time coordi-
nates and, therefore, integration over it5 imposes only a glo-
bal constraint on the topological charge. It is easy to see that
~after the Euclidean rotation! the constraint does indeed take
the form

1

32p2 E d4xGG̃5Z.

Alternatively, one can say that, in calculating the correla-
tion functions through the functional integral with the action
~4!, one must sum over all branches of the logarithm. It is
perfectly clear that all anomalous Ward identities are kept
intact. Moreover, this prescription naturally restores the
equivalence of all branches of the logarithm lost in the origi-
nal construction@5#. The modification suggested is crucial.

The extra term we have added to the Lagrangian is clearly
supersymmetric and is also invariant under all global sym-
metries of the original theory. Now both the single valued-
ness of the potential and theZN invariance are restored. The
chiral phase rotation by the angle 2pk/N with integerk just
leads to the shift ofn by k units. Sincen is summed over in
the functional integral, the resulting Lagrangian forS is in-
deedZN invariant.6

Information we are interested in is contained in the scalar
potential that follows from the effective Lagrangian~8!,
since it is the minima of the scalar potential that determine

the vacua of the theory. It is instructive to see how the
change we propose is reflected in the scalar potential. The
chiral superfieldS for the purpose of calculating the effective
potential can be written as

S5f1u2
1

&
~A1 iB !. ~9!

For the spatially constant fields the Euclidean action takes
the form

AE5H 2
1

9
~ff* !22/3

1

2
~A22B2!2

N

3
&A lnufu

1
iN

3
&BaJ V, ~10!

wherea5Arg f and the quantization condition enforced by
the summation overn in Eq. ~8! is

&

3
BV5b, b5 integer. ~11!

Here V is the full space-time volume and we have set the
vacuum angleq50 for the time being. If the quantization
condition is ignored, elimination of the auxiliary fieldsA and
B leads to the original VY scalar potential

U~f!5N2~f* f!2/3 ln f ln f*

[N2~f* f!2/3~ ln2ufu1a2!. ~12!

As was mentioned, the result is neither single valued nor has
it correct periodicity ina. To calculate the corrected effec-
tive potential we have to take into account the quantization
condition ~11!. The variableA is unconstrained and can be
integrated over in the usual way, and for the variableB in-
tegration should be substituted by summation over integers:

E dB→
3

&
V21 (

b50,61•••
.

After the fieldA is eliminated, as before, we obtain the fol-
lowing expression for the effective potential:

U~f!52V21 lnF (
b50,61•••

expH 2VN2~f* f!2/3 ln2ufu

2
1

4
~f* f!22/3

b2

V
2 iNabJ G . ~13!

We pause here to discuss some general features of the
effective potential~13!. If b could be considered as a con-
tinuous variable and the summation overb could be replaced
by integration, we would recover the old potential of Eq.
~12!. For small phase angles,a!1/N, this is a valid approxi-
mation, since the coefficients ofb2 and b terms are small,
and the exponent is a function ofb which varies very slowly.
Therefore, in the vicinity of the real axis, the new effective

4Below the lowest component ofS is denoted byf. Sometimes,
when no confusion can arise, we will still use the letterS for the
lowest component of superfield.

5More exactly, one must sum overn in the partition function.
Similar integer-valued Lagrange multiplier appears in the bosonized
version of the Schwinger model@10#.

6The explicit invariance here isZN rather than the completeZ2N

of the original SUSY gluodynamics, since we have chosen to write
our effective Lagrangian for the superfield which is invariant under
l→2l.
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potential is close to the old one. In fact, ifa50, the cor-
rected potential coincides exactly with that of Veneziano and
Yankielowicz. It has a minimum atf51. However, unlike
the Veneziano-Yankielowicz potential,ZN invariance of Eq.
~13! is explicit: all pointsa52pk/N are obviously equiva-
lent and, in particular, there areN degenerate minima at

f5ei2p~k/N!, k50,1,. . . ,N21. ~14!

This means that away from the linea50, the potential~12!
gets corrections.

Expanding the exponent in Eq.~13! at smalla it is pos-
sible to conclude that the small-a expansion ofU(ufu,a)
coincides with Eq.~12!. This means that at smalla

U~ ufu,a!}@ ln2ufu1a21O„exp~2C/a2!…#.

Consider now the derivative of the potential with respect
to a at fixed valueufu andaÞ0:

]U

]a
5 iNV21

(b50,61•••b exp$2V~N2!~f* f!2/3 ln2ufu2~1/4!~f* f!22/3~b2/V!2 iNab%

(b50,61••• exp$2V~N2!~f* f!2/3 ln2ufu2~1/4!~f* f!22/3~b2/V!2 iNab%
. ~15!

This expression has the meaning of the average density of
instantons minus the average density of anti-instantons in the
Yang-Mills theory on the real axis but with the shifted value
of the vacuum angleq52Na @see Eq.~16! below#. Clearly,
this expression is finite for any value ofa. The effective
potential is therefore a continuos function of the field. Con-
sider now the raysa5(p/N)k wherek is odd. These rays
are exactly in the middle between the ‘‘valleys’’
a5(2p/N)k. For these values of the angle the weight in the
sum overb in the numerator of Eq.~15! is symmetric under
b→2b. The average in the numerator of Eq.~15!, therefore,
vanishes.7 Thus, along the directions Argf5(p/N)k,
wherek is odd, the effective potential has the topography of
a ridge.

We conclude this section by briefly discussing theq de-
pendence. From Eq.~4! it is clear thatq enters in the scalar
potential only through the combination

Uq~ ufu,a!5US ufu,a2
q

ND . ~16!

When q continuously varies from 0 to 2p, the ‘‘mountain
ridge’’ picture rotates by 2p/N: the first valley becomes the
second, and so on, cyclically. Such a picture was predicted
from a general consideration@2#.

III. THE VACUUM STATE
WITHOUT GLUINO CONDENSATE

The following feature of the scalar potential~13! is im-
portant for our consideration. In addition toN minima of Eq.
~14! it exhibits an unexpected solution atf50. To reveal the
extra solution it may be convenient to proceed from the su-
perfield S to the superfieldF, whose kinetic term has the
canonical form. These superfields are related,S5F3; the
same relation holds for the lowest componentsf5w3,
wherew is the lowest component ofF. The zerô F& solution

corresponds to the vanishing gluino condensate, and its in-
terpretation has been never discussed previously. This zero
energy state at̂F&50 reflects a phase of the supersymmet-
ric gluodynamics with no breaking of theZ2N symmetry and
vanishing gluino condensate.

The occurrence of the condensate-free phase may sound
suspicious, since superficially this statement contradicts the
Witten-index argument@1#. Indeed, the Witten index for the
SU(N) group isN, which is exactly equal to the number of
the ^ll&Þ0 states of vanishing energy one obtains from Eq.
~14!. So, the only way to reconcile the existence of the extra
state atf50 with this result is that it should not contribute
to the Witten index.

Surprisingly, it is very difficult to rule out this possibility,
and this may indeed be the case. For this to happen there
must exist an equal number ofF5even andF5odd states at
F50. The Lagrangian~8! does imply the existence of the
massless fermion mode in the condensate-free regime. Usu-
ally, in the Wess-Zumino-type models one can always intro-
duce the mass term to the chiral superfield considered, all
massless modes are eliminated, and the zero-energy states
concentrated near the zeros of the superpotential are all of
the bosonic type. In which case, they certainly contribute to
the Witten index. That is not true for the effective Lagrang-
ian ~8!. Here its form is rigid, since it merely reflects the
anomalous Ward identities as well as the discrete nonanoma-
lous symmetries of the underlying theory. The mass term is
forbidden—it would explicitly violate the Ward identities,
and the vacuum structure obtained in this way will have
nothing to do with that of the underlying SUSY gluodynam-
ics. For instance, it would break explicitly theZ2N symmetry
and eliminate allZ2N breaking vacua in Eq.~14!.

If the excitation modes are strictly massless, in general it
is very difficult to decide which state isF even and which is
F odd in the case of the unbroken supersymmetry, when the
supercharge acts trivially on the vacuum. Therefore on the
basis of the effective potential alone we are unable to deter-
mine what is the contribution of thef50 states to the Wit-
ten index. We will argue later that, in fact, the (21)F count-
ing of the zero-energy states may depend strongly on the
nature of higher derivative terms in the effective action,
which we have neglected so far and which are not deter-

7There can be no ‘‘spontaneous breaking’’ of the symmetry
b→2b since Eq.~15! is a simple sum overb rather than a func-
tional integral.
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mined by the anomalous Ward identities.
Having argued that the problem with the Witten index

need not be an obstruction, let us present now a positive,
although subtle, argument in favor of the existence of the
additional ^ll&50 vacuum state in SUSY gluodynamics.
To this end we need to make a digression and recall a puzzle
with the dynamical calculation of the gluino condensate.

Calculation of the gluino condensate@4# was the first ap-
plication of instantons in supersymmetric gluodynamics in
the strong-coupling regime. Consider for simplicity the
SU~2! gluodynamics. In this case there are four gluino zero
modes in the instanton field and, hence, there is no direct
instanton contribution to the gluino condensate^ll&. At the
same time the instanton does contribute to the correlation
function

^la
a~x!laa~x!,lb

b~0!lbb~0!&. ~17!

Herea,b51,2,3 are the color indices anda,b51,2 are the
spinor ones. An explicit instanton calculation@4# shows that
the correlation function~17! is equal to a nonvanishing con-
stant.

At first sight this result might seem similar to supersym-
metry breaking since the instanton does not generate any
boson analogue of Eq.~17!. Supersymmetry does not forbid,
however, a nonvanishing result for Eq.~17! provided that
this two-point function is actually anx-independent constant.

Three elements are crucial for the proof of the above as-

sertion: ~i! the superchargeQ̄ḃ acting on the vacuum state

annihilates it,~ii ! Q̄ḃ commutes withll, and~iii ! the deriva-

tive ]aḃ(ll) is representable as the anticommutator ofQ̄ḃ

andlbGba . The second and the third point follow from the
fact thatll is the lowest component of the chiral superfield
W2, while lbGba is its middle component.

Now, we differentiate Eq.~17!, substitute]aḃ(ll) by

$Q̄ḃ,lbGba% and obtain zero. Thus, supersymmetry requires
the x derivative of Eq.~17! to vanish @4#. This is exactly
what happens if the correlator~17! is a constant.

If so, one can compute the result at short distances where
it is presumably saturated by small-size instantons and, then,
the very same constant is predicted at large distances,
x→`. On the other hand, due to the cluster decomposition
property, which must be valid in any reasonable theory, the
correlation function~17! at x→` reduces tô ll&2. Extract-
ing the square root we arrive at a~double-valued! prediction
for the gluino condensate.

Instead of exploiting strong-coupling calculations~which
is always suspect!, one can use a fully controllable approach
in the weak-coupling regime@2#. Namely, one extends the
theory by adding one flavor@two chiral matter superfields,
doublets with respect to the gauge SU~2!#, carries out the
calculation in the weakly coupled Higgs phase~i.e., assum-
ing a large value of the Higgs field!, and then returns back to
SUSY gluodynamics by exploiting the holomorphy of the
condensate in the mass parameter@2#.

The result for̂ ll& obtained in the strong coupling regime
@i.e., by following the program outlined after Eq.~17!# does
not match ^ll& calculated in this indirect but fully control-
lable way. As a matter of fact, as was shown in Ref.@3#,

^ll&SCR
2 5

4

5
^ll&WCR

2 , ~18!

where the subscripts SCR and WCR mark the strong- and
weak-coupling regime calculations. Since the weak-coupling
regime calculation seems to be flawless, suspicion naturally
falls on the strong-coupling analysis. But where concretely is
the loophole?

A tentative answer might be found in the hypothesis put
forward by Amatiet al. @11#. It was assumed that, instead of
providing us with the expectation value ofll in the given
vacuum, instantons in the strong-coupling regime yield an
average value of̂ll& in all possible vacuum states. In the
weak-coupling regime, we have a marker: a large classical
vacuum expectaxtion values~VEV! of the Higgs field tells us
in what particular vacuum we do our instanton calculation.
In the strong-coupling regime, such a marker is absent.

This hypothesis by itself, however, does not explain the
discrepancy~18!, if there are only two vacua characterized
by ^ll&56L3. The gluino condensate is not affected by
the averaging over these two vacuum states, since the con-
tributions of these two vacua to Eq.~17! are equal. If, how-
ever, there exist extra zero-energy states with^ll&50
which are involved in the averaging, the final result in the
strong-coupling regime is naturally different from that ob-
tained in the weak-coupling regime in thegiven vacuum.
Moreover, the value of the condensate calculated in the
strong-coupling approach should be smaller, consistently
with Eq. ~18!.

Note that the approach of Ref.@2# has nothing to say
about possible states at the origin. If there is a minimum at
the vanishing expectation value of the Higgs field~and van-
ishing gluino condensate! the theory is always in the strong-
coupling regime near this minimum. Introduction of the mat-
ter fields does not help to push the theory in the weak-
coupling regime.

Now it is in order to return to the Witten-index argument,
in a bid to use it in a positive aspect. The existence of extra
vacua can potentially resolve another long-standing paradox
in SUSY gauge theories. It has been known for a long time
that in SO(M ) SUSY gauge theories the Witten index does
not coincide with the number of different^ll&Þ0 states of
vanishing energy one obtains from the instanton calculations
in the weak-coupling regime@2#. The former is rank11
while the latter isM22 for the orthogonal groups. The
anomalous and nonanomalous symmetry structure of these
models is similar to that of SU(N) gauge theories. The ef-
fective potential would, therefore, have the same form as Eq.
~13! with the parameterN substituted byM22. It would,
therefore, still exhibit a minimum atf50. It is possible that
for orthogonal groups the number of fermionic states at this
point is larger than the number of bosonic ones, and the
difference precisely makes up for the difference between the
Witten index~rank 11! and the number ofZM22-breaking
bosonic minima with the nonvanishing gluino condensate.

IV. DYNAMICAL CONSEQUENCES

In this section we present some speculations as to the
nature of theZ2N-symmetric vacuum. First, the energy of
this state vanishes and therefore supersymmetry is unbroken.
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Second, the effective Lagrangian indicates the existence of
massless fermions. This, as noted before, is a necessary con-
dition to avoid the contradiction with the Witten-index cal-
culation. The scalar fieldw also is massless near this point,
and obviously is the superpartner of the massless fermion.
The existence of strictly massless particles in this phase of
supersymmetric gluodynamics is remarkable since they are
not Goldstone modes associated with the spontaneous break-
ing of some symmetry. As a matter of fact, no symmetry is
spontaneously broken, and still the massless modes are
present. The situation is somewhat reminiscent of confor-
mally invariant phases of some other SUSY gauge theories
~with matter! which figure so prominently in recent work on
electric-magnetic duality@12#. In fact the similarity may well
be even closer.

Taken at its face value, the effective potential~13! would
lead one to conclude that the scalar quartic self-coupling near
w50 diverges logarithmically at zero momentum. However,
as pointed out earlier, one cannot use this effective potential
to reliably establish interactions between the particles. This
is especially true near the pointw50. The reason is obvious.
For nonconstant fields one has to take into account higher
derivative terms in the effective action. The anomalous Ward
identities, while unable to determine these higher derivative
terms completely, do impose some restrictions on their form.
In particular, to preserve the Ward identity following from
the dilatational symmetry, every extra derivative should be
accompanied roughly by the factor (S̄S)21/6. An example of
this type of terms is

~]mS̄1/3]mS1/3!

~S̄S!1/3
. ~19!

Near the pointf50, starting already at this low order in
derivatives, the corrections explode. The derivative expan-
sion is not valid even for very low momenta. This suggests
that the Green’s functions of the fieldsS and S̄ will have
nonanalytic behavior in momentum. With the knowledge of
the existence of massless excitations, we are lead to conjec-
ture that atw50 at low momenta, the theory is conformal.

The precise nature of this conformal theory~anomalous
dimensions, etc.! cannot be determined on the basis of the
effective potential alone. It is natural to expect that counting
of the number of fermionic and bosonic vacua at zero would
depend heavily on the properties of the conformal theory.
For example, for SO(N) and SU(N22) gauge theories, the
effective potentials would be the same, but the conformal
theories at zero could be completely different. That could
explain the difference in the number of the fermionic and
bosonic vacua in the two cases needed to comply with the
Witten-index calculation.

If the chirally invariant phase of pure gluodynamics does
indeed exist, it has drastic consequences for supersymmetric
theories with massless~or light! matter. Indeed, at
Nf,Nc21, the Affleck-Dine-Seiberg~ADS! superpotential
@13# ~see also Ref.@6#; Mi

j is anNf3Nf moduli matrix!

W}S L3Nc2Nf

det M D 1/~Nc2Nf !

~20!

is generated through the gluino condensation in the unbroken
strongly coupled SU(Nc2Nf) gluodynamics. If the latter has
the condensate-free phase, the original SUSY QCD will have
a branch with no superpotential generated. Previously, a
similar phenomenon~an additional branch with no superpo-
tential! was observed@14# in the SO(N) theories with
Nf5N24. For Mi

jÞ0 the gauge symmetry is broken down
to SU~2!3SU~2!. It was noted@14# that the gaugino conden-
sates corresponding to different SU~2!’s can have opposite
signs, so that the sum vanishes, implying vanishing superpo-
tential.

The existence of two inequivalent branches can be argued
from a different perspective. Assume we introduce the mass
term

DLtree5m Tr M uF ~21!

to the superpotential of the theory. For simplicity, the mass
parameters for all flavors are equal. Then the matter mass
term breaks U(1)R explicitly, but the discreteZ2N remains
unbroken at the Lagrangian level. Whenm is very large, we
return back to supersymmetric gluodynamics, with the
solutions8

^ll&;mNf /NcL~3Nc2Nf !/Nf ,

^Mi
j&;d i

jm~Nf2Nc!/NcL~3Nc2Nf !/Nf , ~22!

for the first branch and

^ll&50, ^Mi
j&50, ~23!

for the second. The functionalm dependence is actually
known exactly, for allm @2# ~see also@16#!, due to its holo-
morphic nature. This allows one to analytically continue the
results to smallm. Two solutions indicated in Eqs.~22! and
~23! correspond to two different branches of SUSY QCD.

In the massless limit, i.e.,m→0, at the origin
(^ll&5Mi

j50), the theory possesses an unbroken chiral
symmetry, theR symmetry. Therefore, the anomalous AVV
triangles must be matched—they must be the same at the
fundamental and composite levels@15#. The matching im-
plies the existence of a rich spectrum of massless baryons,
which goes far beyond one massless fermion residing in the
superfieldW2 in the condensate-free phase of supersymmet-
ric gluodynamics. Another possibility is that theR symmetry
is spontaneously broken, implying the existence of the mass-
less ‘‘h8’’ and its fermion superpartner. The problem with
the latter scenario is that no appropriate order parameter for
the R symmetry breaking can be immediately found, since
the obvious candidateŝll& and Mi

j vanish. It is possible,
that a nonchiral field condenses, for instance the lowest com-
ponent ofW̄2Mi

j . This expectation value would break both
the R symmetry and the axial SU(Nf).

If Nf5Nc21, the ADS superpotential is generated by in-
stantons. If detMÞ0 one can carry out calculation of the
superpotential in the weak-coupling regime, where the result

8Note that at largem the combinationmNf /NcL (3Nc2Nf )/Nf is a
proper scale parameter of supersymmetric gluodynamics.
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is unambiguous~and coincides, of course, with that of Af-
fleck et al.!. In this way one arrives at the standard picture of
a run-away vacuum, with the zero energy state at detM5`.
The superpotential, however, is not defined at detM50. The
condensate-free phase of supersymmetric gluodynamics im-
plies a supersymmetric vacuum solution of SUSY QCD at
detM50.

Finally, at Nf5Nc the superpotential is not generated. A
continuous manifold of degenerate vacua exists@17#:

det M2BB̃5L2N. ~24!

At large detM the gauge symmetry is completely broken, the
theory is in the weak-coupling regime, the instanton calcula-
tion is unambiguous, and one can explicitly check, by doing
the instanton calculation, that the quantum moduli space is
indeed described by Eq.~24!. We suggest that there is an
extra point in the vacuum manifold, characterized by

det M50, B5B̃50, ~25!

that cannot be continuously reached from the weak-coupling
regime.

To illustrate this, we again switch on the matter mass term
~21!, with the intention of continuing analytically from the
limit of the large mass~pure gluodynamics! to the limit of
the zero mass~massless SUSY QCD!. The holomorphy in
mass implies in this theory that the gluino condensate is
proportional tom while Mi

j andB,B̃ are proportional tom0.
As a result, the conventional Seiberg solution corresponds to
the pointB5B̃50 and detM5L2N on the manifold~24!. If
a branch of gluodynamics with the vanishing gluino conden-
sate exists, thenB5B̃50 and detM50 on this branch. Con-
tinuing analytically inm to the massless limit we observe the
extra point~25! on the vacuum manifold, disconnected from
Seiberg’s solution.

V. CONCLUSIONS

An elegant picture of supersymmetric gauge dynamics
which was gradually evolving in the 1980’s and took a much
more complete form after a recent breakthrough@17#, is still
not free from questions. We suggest an unorthodox solution
eliminating all of them, completely. The key element of our
consideration is the existence of the condensate-free phase of
supersymmetric gluodynamics, with the unbrokenZ2T(G)
symmetry. This additional vacuum is supersymmetric, and
can be compatible with other known aspects of SUSY gauge
dynamics only provided that massless excitation modes,
bosonic and fermionic, are present in this vacuum. Corre-
sponding modifications must also take place in the theories
with massless matter~SUSY QCD!.

Although our conjecture seems compelling, keeping in
mind the nontrivial nature of our consideration, which cannot
be tested in the weak-coupling regime, it is natural to be
cautious. Independent confirmation and a more thorough un-
derstanding of the dynamics of unconventional massless
bound states characteristic of the condensate-free phase is
highly desirable. In particular, it is desirable to learn how to
calculate the number of theF-even andF-odd zero-energy
states in the extra minimum. A simpler task would be to
detect a mismatch between the strong-coupling and weak-
coupling calculations for gauge groups other than SU~2!.
Studying this mismatch as a function of the group constants
may reveal a pattern of ‘‘leakage’’ in theZ2T(G) unbroken
phase.
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