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New features of the generalized symmetries of generic two-dimensional dilaton models of gravity are
presented and invariant gravity-matter couplings are introduced. We show that there is a continuum set of
Noether symmetries, which contains half a DeWitt algebra. Two of these symmetries are area-preserving
transformations. We show that gravity-matter couplings which are invariant under area preserving transforma-
tions only contribute to the dynamics of the dilaton-gravity sector with a reshaping of the dilaton potential. The
interaction with matter by means of invariant metrics is also considered. We show in a constructive way that
there are metrics which are invariant under two of the symmetries. The most general metrics and minimal
couplings that satisfy this condition are found.@S0556-2821~97!01416-1#

PACS number~s!: 11.30.2j, 04.60.Kz, 04.50.1h

I. INTRODUCTION

Currently, one of the main objectives of theoretical phys-
ics is to devise a quantum theory of gravity. The four-
dimensional Einstein-Hilbert gravity theory and, in general,
four- and higher-dimensional models of gravity is unfortu-
nately very complex to handle. Toy models which share their
most relevant features with Einstein’s gravity should, there-
fore, play an important role here. Two-dimensional~2D! di-
laton models of gravity are general covariant models which
in addition to the two-dimensional metric also involve a sca-
lar ~dilaton! field ~for a review see Ref.@1#!. When coupled
to matter, these models have solutions describing the forma-
tion of two-dimensional black holes and Hawking radiation
@2,3#. Moreover, and unlike their four-dimensional counter-
parts, these models are renormalizable. Thus they may be a
useful tool to explore the final fate of black holes and solve
the information puzzle.

Unfortunately, in spite of their being much simpler than
their higher-dimensional cousins, only few of them, notably
the Callan-Giddings-Harvey-Strominger~CGHS! model,
have been shown to be solvable when interacting with mat-
ter. This represents a serious drawback, as it is difficult to
distinguish in the dynamics of these models which is due to
a particular feature of the CGHS model and which corre-
sponds to general properties of gravity. These theories
would, then, be far more useful if the developments which
have been made with the CGHS model could be extended to
more general ones, especially spherically symmetric gravity.
If this were the case, we could be more confident that the
experience gained from these two-dimensional toy models
would actually be useful in the four-dimensional case. More-
over, the quantum nature of the CGHS model remains elu-
sive ~see, for instance, Ref.@4#!. Other solvable models
might not face the difficulties which have been found when
trying to quantize this model.

As is well known, solvability is usually related to invari-
ances, this being the reason that classical solvability usually
implies quantum solvability. New generalized symmetries
~we use the adjective ‘‘generalized’’ because they involve
derivatives of the fields! have been recently uncovered for
generic dilaton gravity which generalize those of the CGHS
model @5,6#. Therefore, it is natural to study whether or not
these symmetries can be used to find invariant gravity-matter
interactions, thereby providing solvable models.

In the present paper, we shall consider two different ap-
proaches to introduce symmetric gravity-matter couplings. In
the first approach~Sec. IV!, we consider couplings which are
invariant under area-preserving transformations of the met-
ric. In the second one~Sec. V!, we consider couplings which
are constructed by means of an invariant metric. For the first
approach, we show that, with regard to the gravity sector,
interaction with general area-preserving couplings simply
amounts to a reshaping of the dilaton potential. For the sec-
ond approach, we show that metrics and conformal couplings
can be constructed which are invariant under two of the sym-
metries. The most general invariant metrics and conformal
couplings are constructed. In the last section, we briefly dis-
cuss several natural continuations of the present develop-
ments.

First, the CGHS model and the generalized symmetries of
the generic 2D dilaton models are briefly reviewed and some
features are presented.

II. TWO-DIMENSIONAL DILATON GRAVITIES
AND THE CGHS MODEL

The generic models of two-dimensional dilaton gravity
are defined by means of the action

SGDG~ g̃,f̃ !5
1

2p E d2xA2g̃ @D~f̃ !R̃1H~f̃ !~¹f̃!2

1F~f̃ !#2SM , ~1!

whereD, H, and F are arbitrary functions, andSM is the
gravity-matter interaction term.
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A result which is particularly useful is that after suitable
redefinitions of the two-dimensional metricg̃mn→gmn and
the dilaton fieldf̃→f, any action can be brought to the
form @7,8#

S̃GDG5SV2SM , ~2!

where

SV5
1

2p E d2xA2g@Rf1V~f!#. ~3!

The CGHS or string-inspired model of two-dimensional
dilaton gravity@9,2#, with the action

SCGHS5
1

2p E d2xA2g@~Rf14l2!2 1
2 ~¹ f !2# ~4!

has attracted particular attention because it is exactly solv-
able at the classical as well as the semiclassical levels
@10,11#. Solvability of this model is due to the existence of a
sufficient number of free-field and Liouville equations, and
this, in turn, is related to the existence of symmetries. Let us
for the moment restrict our attention to the model without
cosmological constant, in which case the symmetries are par-
ticularly simple. It is easy to see that, in addition to the
familiar transformation of the matter sector,

d ff50, d fgmn50, d f f 5e, ~5!

the following two transformations are also symmetries of the
string-inspired model~4! with l50:

dRf5e, dRgmn50, dRf 50, ~6!

dff50, dfgmn5egmn , df f 50. ~7!

These symmetries correspond to the free-field equations

h f 50, R50, hf50. ~8!

In turn, these free-field equations imply classical solvability
for the model. This can be easily seen by choosing the con-
formal gauge for the metric:

ds252erdx1dx2 ~9!

in terms of which we haveR522e2r]1]2r and h

52e2r]1]2 .

III. NEW SYMMETRIES IN GENERIC 2D DILATON
GRAVITY

Now, let us go back to the general Lagrangian in Eq.~2!.
It can be shown that generic dilaton gravity without matter is
highly symmetric, also@5,6#. This provides a symmetry-
based explanation for the solvability of these models.

For the Lagrangian in Eq.~2! we have

dL5
A2g

2p
$@R1V8~f!2Tf#df1@gmnhf2 1

2 gmnV~f!2¹m¹nf2Tmn#dgmn1~E2L !Ad f A

1¹a@2f~gmn¹adgmn2gam¹ndgmn!2¹afgmndgmn1¹nfdgna1 j M
a #%. ~10!

Here, f A are the matter fields, (E2L)A50 are the Euler-
Lagrange equations of motions for these fields, andj M

m is the
matter contribution to the symplectic potential current of the
model.

The equations of motions are, therefore,

R1V8~f!5Tf ,

gmnhf2 1
2 gmnV~f!2¹m¹nf5Tmn ,

~E2L !A50. ~11!

In absence of matter, it is easy to show that the general
action for the 2D dilaton models~2! is invariant under the
following symmetries~note the change in notation with re-
spect to Refs.@5, 6#!:

daf50, dagmn5gmnas¹sf2 1
2 ~am¹nf1an¹mf!,

d1f50, d1gmn5e1S gmn

~¹f!2 22
¹mf¹nf

~¹f!4 D ,

d2f5e2 , d2gmn5e2VS gmn

~¹f!2 22
¹mf¹nf

~¹f!4 D , ~12!

wheream is any arbitrary constant bivector.
The Noether currents are, respectively,

Jmn5gmnE, j 1
m5

¹mf

~¹f!2 , j 2
m5 j R

m1V
¹mf

~¹f!2 , ~13!

where E5 1
2 @(¹f)22J(f)# with J(f) a primitive of

V(f): J8(f)5V(f).
Now, j 1

m and j 2
m2 j R

m satisfy the integrability condition

emn¹m~ j 1!n505emn¹m~ j 22 j R!n . ~14!

Thus, the conservation law for the currentsj 1
m , j 2

m turns out to
imply the existence of two free fields. The free-field equa-
tions are, respectively,

! j 150,

R1! j 250, ~15!
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where

j 15Ef dt

2E1J~t!
~16!

and

j 25 ln~2E1J!. ~17!

Now, Eqs.~15! lead directly to the general solution to the
equations of motion~11!. To show this, let us choose light-
cone coordinates and fix the residual conformal gauge as
follows:

j 15 1
2 ~x12x2!. ~18!

Then, the classical general solution of the theory can be~im-
plicity! given as

Ef dt

2E1J~t!
5

1

2
~x12x2!,

er52 1
2 @2E1J~f!#. ~19!

Moreover, because of the peculiar conservation law for
E,

]mE50, m51,2, ~20!

if j m is a conserved current, so isf (E) j m, for arbitrary func-
tion f . In the particular case ofj 1

m , these conserved currents
turn out to be the Noether current of local~generalized! sym-
metries:

d ff50,

d fgmn52e f 8~E!S gmn2
¹mf¹nf

~¹f!2 D
1e f ~E!S gmn

~¹f!2 22
¹mf¹nf

~¹f!4 D .

In particular,dE is given by:

dEf50, dEgmn52
e3

2 Fgmn1JS gmn

~¹f!2 22
¹mf¹nf

~¹f!4 D G .
~21!

These symmetries close the algebra

@d f ,dg#5 1
2 d~ f 8g2g8 f ! . ~22!

If restricted to analytic functions, they define half a DeWitt
algebra

@dn ,dm#5 1
2 d~n2m! . ~23!

In particular,d1 , dE , anddE2, close a sl(2,R) algebra.
In the limiting caseV50, the symmetryd2 is the symme-

try dR of the string-inspired model with no cosmological
constant. Moreover,22dE coincides withdf . It is apparent,
therefore, that we have generalized the symmetries of the
CGHS model to an arbitrary 2D dilaton gravity model.

We should emphasize that the transformations just de-
scribed are symmetries for generic dilaton models. For par-
ticular potentials, these symmetries present special features.
Notably, it turns out that, although for a generic potential
none of these symmetries is conformal, forV54l2 ~the
string-inspired model! or V54l2ebf ~the so-called expo-
nential model@5#!, a linear combination of these symmetries
is conformal. These conformal symmetries ared224l2d1
and d212bdE , respectively. The coupling to conformal
matter, therefore, preserves this symmetry. However, these
two models are the only ones for which a combination of the
above symmetries is conformal@5#. Moreover, except for
V50, the interaction with conformal matter destroys the in-
variance under the other symmetries.

IV. AREA-PRESERVING COUPLINGS

Conformal invariance provides little room to move in: it
does not serve for generic potentials but only for very par-
ticular ones. Therefore, to find solvable models for arbitrary
potentials, we should go beyond conformal symmetry and
consider interactions which are invariant under~some of! the
generalized symmetries,d f and d2 , which have been de-
scribed above.

An important feature shared byd1 andd2 ~but none of the
other symmetries! is that they are area-preserving transfor-
mations, that is,gmnd1,2gmn50. Therefore, ifSM is invariant
under area-preserving transformations, the whole action
SGDG will be invariant underd1 andd2 .

Invariance under area-preserving transformations~APTs!
requires that the traceless part of the energy-momentum ten-
sor vanishes. Thus,

Tmn5 1
2 gmnTa

a[ 1
2 gmnT. ~24!

Hence, when the coupling is to area-preserving matter, the
equations of motion~11! take the form

R1V8~f!2Tf50,

gmn!f2 1
2 gmnV~f!2¹m¹nf2 1

2 gmnT50,

~E2L !A50. ~25!

We can consider (1/2p)*d2xA2gV(f) to be part of the
gravity-matter interaction termSM . Therefore, without loss
of generality and after a bit of algebra, we can write the
equations of motion as

R5Tf ,

!f5T,

¹m¹nf2 1
2 gmn!f50,

~E2L !A50. ~26!

The next-to-last equation implies that the vector

km5
emn

A2g
¹nf ~27!

satisfies the Killing equation¹ (mkn)50 on shell.
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Now, invariance under diffeomorphisms ofSM implies
that on solutions of the equations of motion for the matter
fields we have

05Tf¹mf12¹nTmn5Tf¹mf1¹mT. ~28!

Hence, we also have

km¹mT50. ~29!

Therefore, on solutions of the equations of motion for the
matter fields,T can be written as a function of the dilaton
field:

T5T~f!. ~30!

Moreover, Eq.~28! implies thatTf[Tf(f) and

Tf~f!52T8~f!. ~31!

Therefore, we have shown that, with respect to the
dilaton-gravity sector, the interaction with area-preserving
matter simply amounts to a modification of the dilaton po-
tential V(f)→Ṽ(f)5V(f)2T.

A. Particular cases

For a theory to be invariant under area-preserving sym-
metries, it is a necessary and sufficient condition that its
action depends ongmn exclusively through the measureA2g
@12#.

Invariance under all area-preserving transformations im-
poses a severe restriction on the construction of interaction
terms. However, in two dimensions, there is a large class of
interactions, notably Yang-Mills and generalized gauge theo-
ries, which satisfies this requirement@12#. In fact, in two
dimensions any interaction term where the metric only raises
antisymmetrized indices is invariant under area-preserving
transformations. For instance, for a Yang-Mills theory in two
dimensions, we haveFmn5emnF̃. Therefore, the action has
the form

SYM5E d2xA2gTr FmnFmn522E d2x
Tr F̃2

A2g
. ~32!

Minimally coupling these gauge fields to matter fields de-
stroys these symmetries. Nevertheless, this does not rule out
that more general couplings might be found which are APT
invariant, or at least invariant under some of these symme-
tries ~see below, Sec. V!.

First of all, let us consider an interaction term which is
invariant under area-preserving transformations of the metric
and which does not depend on the dilaton fieldf. Then, we
have

¹nT50⇒T5const. ~33!

In this case, therefore, in as far as the gravity sector is
concerned, the interaction with matter simply amounts to a
constant shift of the potential

V→Ṽ5V2Q, ~34!

whereQ5Ta
a5const.

Consider now a coupling

SM5
1

2p E d2xA2gLM , ~35!

with

LM5W~f!~A2g!sL̃, ~36!

whereL̃ depends only on the matter fields. Most of the cou-
plings with gauge fields which have been considered in the
literature are of this form. For instance, in Ref.@13#, a cou-
pling of this form with an Abelian gauge field is considered
and in Ref.@14# a similar coupling with a Yang-Mills field is
studied.

In this case, invariance under diffeomorphisms implies

W~f!s/~11s!~A2g!sL̃5Q5const. ~37!

Therefore, the shift in the potential is nonconstant now but
given by

V→Ṽ5V2~11s!QW~f!1/~11s!. ~38!

As a matter of fact, as precise a result can also be ob-
tained with any interaction term in which the measure
A2g and the dilaton fieldf appear only through a product
U(f)A2g. Namely, letSM be a gravity-matter interaction
term such that the dependence of its scalar density
A2gLM with respect to the measureA2g and the dilaton
field f is of the form

A2gLM[~A2gLM !~y,A!, ~39!

with y5A2gU(f). Then, on matter fields which obey the
equations of motions, we have

d~A2gLM !

dy
5Q5const. ~40!

Therefore, the dynamics of the dilaton-gravity sector is the
same as that without matter fields but with a different poten-
tial Ṽ, with

Ṽ~f!5V~f!2QU~f!. ~41!

V. COUPLING BY MEANS OF AN INVARIANT METRIC

Another way of producing symmetric matter-gravity in-
teractions is by considering couplings which involve only an
invariant metricḡmn . That is, letḡmn be a metric which is
invariant under a transformationd which, in turn, is a sym-
metry of SV . Then,d is also a symmetry of the action

S5SV1E d2xA2ḡL~ ḡmn , f A!. ~42!

However, to demand strict invariance of the metric is in fact
too restrictive a requirement. A more relaxed but sufficient
condition is to requireA2ḡL(ḡ, f A) to be invariant. Con-
sider, for instance, a minimal coupling

A2ḡL5A2ḡḡmn¹̄m f ¹̄n f , ~43!
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where f is a scalar field. This interaction term is invariant
underd if ḡmn is conformally invariant:

dḡmn5Kḡmn , ~44!

with arbitrary scalar quantityK.
We shall restrict ourselves to metrics of the form

ḡmn5Agmn1B¹mf¹nf, ~45!

with A5A„(¹f)2,f… andB5B„(¹f)2,f…. We have

det g5A2 det gS 11
B

A
~¹f!2D ,

ḡmn5
1

A S gmn2
¹mf¹nf

A

B
1~¹f!2D ,

A2gḡmn5A2gS 11
B

A
~¹f!2D 1/2S gmn2

¹mf¹nf

A

B
1~¹f!2D .

~46!

Because of the transformation properties

d fE5
e

2
f ~E!, d ff50, ~47!

d2E50, d2f5e, ~48!

it is best to considerA5A(E,f) andB5B(E,f).
Invariance underd f andd2 requires, respectively,

1

2
f ~E!

dA

dE
1

f ~E!A

2E1J
1A f8~E!5K fA,

1

2
f ~E!

dB

dE
22

f ~E!A

~2E1J!2 2
f 8~E!A

2E1J
5K fB,

dA

df
1

AV

2E1J
5K2A,

dB

df
22

AV

~2E1J!2 5K2B.

With these premises, it is not difficult to show that the
most general conformally invariant or strictly invariant met-
rics ḡmn ~and invariant minimal couplingsA2ḡḡmn! are of
the following form~Af , A2 , A, l f , andl2 are functions of
their arguments andl is a constant!.

Conformally invariant underd f :

ḡmn5Af~E,f!S gmn1
l f

2~f!~¹f!4f 2~E!21

~¹f!2 ¹mf¹nf D .

~49!

Strictly invariant underd f :

ḡmn5
Af~f!

~¹f!2f 2~E!

3 S gmn1
l f

2~f!~¹f!4f 2~E!21

~¹f!2 ¹mf¹nf D .

~50!

Conformally invariant underd2 :

ḡmn5A2~E,f!S gmn1
l2

2~E!~¹f!421

~¹f!2 ¹mf¹nf D .

~51!

Strictly invariant underd2 :

ḡmn5
A2~E!

~¹f!2 S gmn1
l2

2~E!~¹f!421

~¹f!2 ¹mf¹nf D .

~52!

Conformally invariant underd f andd2 :

ḡmn5A~E,f!S gmn1
l2~¹f!4f 2~E!21

~¹f!2 ¹mf¹nf D .

~53!

Strictly invariant underd f andd2 :

ḡmn5
1

~¹f!2f 2~E! S gmn1
l2~¹f!4f 2~E!21

~¹f!2 ¹mf¹nf D .

~54!

The most general minimal couplings which are invariant
underd f are of the form

A2ḡḡmn5A2gl f~f!~¹f!2f ~E!

3S gmn2
l f

2~f!~¹f!4f 2~E!21

l f
2~f!~¹f!6f 2~E!

¹mf¹nf D .

~55!

The most general minimal couplings which are invariant
underd2 are of the form

A2ḡḡmn5A2gl2~E!~¹f!2

3S gmn2
l2

2~E!~¹f!421

l2
2~E!~¹f!6f 2~E!

¹mf¹nf D .

~56!

The most general minimal couplings which are invariant
underd f andd2 are of the form

A2ḡḡmn5A2g~¹f!2f ~E!

3S gmn2
l2~¹f!421

l2~¹f!6f 2~E!
¹mf¹nf D . ~57!

Therefore, metrics and conformal couplings exist which
are invariant under bothd f and d2 , for any function
f 5 f (E). However, it also follows that no metric or confor-
mal coupling can be found which is invariant underd f and
dg unlessf andg are proportional to one another.
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The metrics which are conformally invariant underd1 and
d2 turn out to be of the form

ḡmn5A~E,f!S gmn1
l2~¹f!421

~¹f!2 ¹mf¹nf D . ~58!

Strict invariance underd1 andd2 requiresA}1/(¹f)2.
Moreover, the only minimal couplings to a scalar field

which are invariant underd1 andd2 are proportional to

A2ḡ~¹̄ f !25A2g~¹f!2

3S gmn2
l2~¹f!421

l2~¹f!6 ¹mf¹nf D¹m f ¹n f .

~59!

Thus, save for a constant parameter, there is only one mini-
mal coupling which is invariant underd1 andd2 .

VI. DISCUSSION

Consider again the CGHS and the exponential models
coupled to conformal matter. Both these models are invariant
under a conformal transformation but not the same transfor-
mation. The CGHS model coupled to conformal matter is
invariant underd224l2d1 , whereas the exponential model
is invariant with respect tod212bdE . Moreover, the cou-
pling to matter does not preserve any of the other symmetries
that have been discussed in the present paper. As has been
shown in Ref.@15#, invariance ofs models, as the CGHS or
exponential models minimally coupled to matter, implies
that these models contain a free field as well as a field which
obeys a Liouville equation. However, as the Liouville equa-
tion does not appear as the conservation equation of a Noet-
her current, this equation is not directly related to an invari-

ance of the theory. Therefore, as there is not enough
symmetry, no quantum solvability should be expected. In
fact, the quantum nature of Liouville theory has remained
elusive~see, for instance, Ref.@16#! and much the same can
be said about the quantum nature of the CGHS model~see,
for instance, Ref.@4#!.

Unlike the CGHS and the exponential models, which are
invariant with respect to one symmetry only~in this respect,
the model withV50 is somewhat special as it is invariant
under two symmetries!, we have constructed ‘‘minimal’’
couplings which are invariant under two symmetries. There-
fore, we expect that this additional invariance of the models
will imply quantum as well as classical solvability. The
analysis in Ref.@15# does not apply to our models and a
different analysis should be made. A detailed discussion of
this question deserves a separate study.

Finally, we would like to mention that, for more than two
decades now, it has been known that Einstein’s gravity,
when restricted to metrics with twocommutingKilling vec-
tor fields, acquires a large number of non-Abelian symme-
tries, the so-called Geroch group@17#. It is clear that our
results may have some relationship with, or be a generaliza-
tion of, Geroch’s group. We hope to establish that relation-
ship and communicate it in a future publication.
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