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Generalized symmetries and invariant matter couplings in two-dimensional dilaton gravity
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New features of the generalized symmetries of generic two-dimensional dilaton models of gravity are
presented and invariant gravity-matter couplings are introduced. We show that there is a continuum set of
Noether symmetries, which contains half a DeWitt algebra. Two of these symmetries are area-preserving
transformations. We show that gravity-matter couplings which are invariant under area preserving transforma-
tions only contribute to the dynamics of the dilaton-gravity sector with a reshaping of the dilaton potential. The
interaction with matter by means of invariant metrics is also considered. We show in a constructive way that
there are metrics which are invariant under two of the symmetries. The most general metrics and minimal
couplings that satisfy this condition are foul®0556-282(197)01416-1

PACS numbgs): 11.30—j, 04.60.Kz, 04.50+h

[. INTRODUCTION As is well known, solvability is usually related to invari-
ances, this being the reason that classical solvability usually
Currently, one of the main objectives of theoretical phys-implies quantum solvability. New generalized symmetries
ics is to devise a quantum theory of gravity. The four-(we use the adjective “generalized” because they involve
dimensional Einstein-Hilbert gravity theory and, in general,derivatives of the fieldshave been recently uncovered for
four- and higher-dimensional models of gravity is unfortu- generic dilaton gravity which generalize those of the CGHS
nately very complex to handle. Toy models which share theifmodel[5,6]. Therefore, it is natural to study whether or not
most relevant features with Einstein’s gravity should, therethese symmetries can be used to find invariant gravity-matter
fore, play an important role here. Two-dimensiot2D) di-  interactions, thereby providing solvable models.
laton models of gravity are general covariant models which In the present paper, we shall consider two different ap-
in addition to the two-dimensional metric also involve a sca-Proaches to introduce symmetric gravity-matter couplings. In
lar (dilaton) field (for a review see Ref.1]). When coupled the first approackSec. IV), we consider couplings which are
to matter, these models have solutions describing the formdnvariant under area-preserving transformations of the met-
tion of two-dimensional black holes and Hawking radiationfic. In the second ongSec. V), we consider couplings which
[2,3]. Moreover, and unlike their four-dimensional counter- are constructed by means of an invariant metric. For the first
parts, these models are renormalizable. Thus they may beapproach, we show that, with regard to the gravity sector,
useful tool to explore the final fate of black holes and solveinteraction with general area-preserving couplings simply
the information puzzle. amounts to a reshaping of the dilaton potential. For the sec-
Unfortunately, in spite of their being much simpler than ond approach, we show that metrics and conformal couplings
their higher-dimensional cousins, only few of them, notablycan be constructed which are invariant under two of the sym-
the Callan-Giddings-Harvey-StromingefCGHS model, ~metries. The most general invariant metrics and conformal
have been shown to be solvable when interacting with matcouplings are constructed. In the last section, we briefly dis-
ter. This represents a serious drawback, as it is difficult t¢Uss several natural continuations of the present develop-
distinguish in the dynamics of these models which is due tdgnents.
a particular feature of the CGHS model and which corre- First, the CGHS model and the generalized symmetries of
sponds to general properties of gravity. These theoriethe generic 2D dilaton models are briefly reviewed and some
would, then, be far more useful if the developments whichfeatures are presented.
have been made with the CGHS model could be extended to
more general ones, especially spherically symmetric gravity. [l. TWO-DIMENSIONAL DILATON GRAVITIES
If this were the case, we could be more confident that the AND THE CGHS MODEL
experience gained from these two-dimensional toy models Th . dels of two-di ional dilat it
would actually be useful in the four-dimensional case. More- € generic models of two-cdimensional diiaton gravity
over, the quantum nature of the CGHS model remains ell@® defined by means of the action
sive (see, for instance, Ref4]). Other solvable models _ 1 o o
might not face the difficulties which have been found when  Sgpg(@. )= 5 — f d2x\—G [D()R+H()(V )2
trying to quantize this model.

+F(¢)]—Swu, (1)
*URL address: /lwww.ugr.esfmnavarro: Electronic address: whereD, H, andF are arbitrary functions, an8,, is the
mnavarro@ugr.es gravity-matter interaction term.
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A result which is particularly useful is that after suitable the following two transformations are also symmetries of the
redefinitions of the two-dimensional metr@;,,—g,, and  string-inspired mode{4) with A =0:
the dilaton field¢— ¢, any action can be brought to the

form [7,8] Oor¢p=¢€, Or9,,=0, &Rrf=0, (6)
Scoc=Sv—Su ) 356=0, 648,,=€Q,,, B84i=0. )

where These symmetries correspond to the free-field equations
Sv:% f d?x\ = g[Rep+V(h)]. 3 0f=0, R=0, U¢=0. ®

In turn, these free-field equations imply classical solvability
for the model. This can be easily seen by choosing the con-
formal gauge for the metric:

The CGHS or string-inspired model of two-dimensional
dilaton gravity[9,2], with the action

1
Scens=5— f dxV=gl(Rp+4NH) = 3(VE)?] (4 ds?=2e/dx " dx" €]

has attracted particular attention because it is exactly solyD! terms of which we haveR=-2e"*3.4_p and [
able at the classical as well as the semiclassical levels2€ "d.d- .

[10,11]. Solvability of this model is due to the existence of a

sufficient number of free-field and Liouville equations, and |||, NEW SYMMETRIES IN GENERIC 2D DILATON

this, in turn, is related to the existence of symmetries. Let us GRAVITY

for the moment restrict our attention to the model without

cosmological constant, in which case the symmetries are par- NOW, let us go back to the general Lagrangian in &.
ticularly simple. It is easy to see that, in addition to the !t can be shown that generic dilaton gravity without matter is

familiar transformation of the matter sector, highly symmetric, alsd[5,6]. This provides a symmetry-
based explanation for the solvability of these models.

or¢=0, 6&9,,=0, &f=e¢, (5) For the Lagrangian in Eq2) we have

L= {[R+V'($)~T,16¢+[9,, 0639, V() —V,.V,¢—T,,]69""+(E-L)a5f*

+Vo[—#(g#'V939,,—9*V"8g,,) —V¢g,,09""+V ,¢569 "+ |y} (10)
|
Here, fA are the matter fields,§—L),=0 are the Euler- U V,.V.,¢
Lagrange equations of motions for these fields, gfds the O,0=¢€3, 0,9,,= €V Vo) -2 Vo | 12
matter contribution to the symplectic potential current of the
model. _ _ wherea,, is any arbitrary constant bivector.
The equations of motions are, therefore, The Noether currents are, respectively,
R+V'($)=T,, . V&é ) . V&g
J=gME, jh=——m, [h=(E+V =7, (13
g J1 (V¢)2 12=1R (V¢)2 ( )

g,uv|:|¢_%gp,vv((;b)_v,uvvqb:-rp,v!
where E= $ [(V¢)?—J(¢)] with J(¢) a primitive of
(E—L)5=0. (1) V(¢#): I (9)=V(9).

Now, j4 andj4— jk satisfy the integrability condition
In absence of matter, it is easy to show that the general

action for the 2D dilaton model€) is invariant under the €'V, (11),=0=€""V . (j2=]Rr)»- (14)
following symmetries(note the change in notation with re- i o
spect to Refs[5, 6]): Thus, the conservation law for the currepfsj4 turns out to

imply the existence of two free fields. The free-field equa-
826=0, 8:0,,=0,,3,V" ¢~ %(aﬂVVd)JrayVﬂgb), tions are, respectively,
D] 120,
V.oV, ¢
(Vo) )’ R+D0j,=0, (15

g,lLV

Vg2 2

01¢=0, 619,,=¢€1
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where We should emphasize that the transformations just de-
scribed are symmetries for generic dilaton models. For par-
. J‘f’ dr 16 ticular potentials, these symmetries present special features.
1= 2E+J(7) (16 Notably, it turns out that, although for a generic potential
none of these symmetries is conformal, fdr=4\? (the
and string-inspired modelor V=4\2e#? (the so-called expo-
. nential mode([5]), a linear combination of these symmetries
j2=In(2E+J). (17 is conformal. These conformal symmetries ate-4\25;
Now, Egs.(15) lead directly to the general solution to the ﬁqnatiteérz,tﬁggﬁrer,e:?:ggr\(/eelg- ”']I'igesycr?]ﬁqpelltrggl E)ov?/(:/];ortn:ﬁése
equations of motiori11). To show this, let us choose light- 4 models are the only ones for which a combination of the
cone coordinates and fix the residual conformal gauge aShove symmetries is conform@b]. Moreover, except for

follows: V=0, the interaction with conformal matter destroys the in-
- - variance under the other symmetries.
j1=3 (x"=x7). (18) y

Then, the classical general solution of the theory cafirhe IV. AREA-PRESERVING COUPLINGS

plicity) given as Conformal invariance provides little room to move in: it

¢ dr 1 does not serve for generic potentials but only for very par-
f ——=—(x"—x"), ticular ones. Therefore, to find solvable models for arbitrary
2E+J(7) 2 potentials, we should go beyond conformal symmetry and
consider interactions which are invariant un@®me of the
generalized symmetriesy; and 6,, which have been de-
Moreover, because of the peculiar conservation law forscnbe.d above.
' An important feature shared b andé, (but none of the
other symmetriesis that they are area-preserving transfor-
_ _ mations, that isg*” 8, ,9,,=0. Therefore, ifSy is invariant
9E=0. pn=12, 20 under area—preservingMtransformations, the whole action
if j# is a conserved current, sofiéE)j*, for arbitrary func-  Seoc Will be invariant unders; and 5,. _
tion f. In the particular case G#, these conserved currents  Invariance under area-preserving transformatighgTs)
turn out to be the Noether current of lo¢generalizegisym- ~ 'equires that the traceless part of the energy-momentum ten-

e’=—3[2E+J(¢)]. (19

Ea

metries: sor vanishes. Thus,
5f¢: 0, T,LLV: %gp,vTaaE%g,uvT' (24)
V oV Hence, when the coupling is to area-preserving matter, the
5 = —ef'(E _ uPV9 equations of motior{11) take the form
19u=— € (E)| 9,0 “Vo)Z
R+V/(¢)—T4=0,
+ef(E)( Juv —2V"¢V”¢)
(V¢)? (Vo)* | 9,,0¢-39,,V($)—V,V,¢—39,,T=0,
In particular, 5¢ is given by: (E—L)a=0. (25
€3 Uy A We can consider (1_/72)fd2x\/—gV(d>) to be part of the
Se¢=0, Ge9u,=~ % |GuvtJ V) -2 (Vo) gravity-matter interaction terrs,, . Therefore, without loss

(22) of generality and after a bit of algebra, we can write the
equations of motion as
These symmetries close the algebra

R:T¢,
[55.0g]=38(t1g—g't ) (22 O6=T,
If restricted to analytic functions, they define half a DeWitt L
algebra V,.V,$—-30,,0¢=0,
[0n+0m]=3Sn—m)- (23 (E—L)a=0. (26)
In particular,d;, 8z, and gz, close a sl(R) algebra. The next-to-last equation implies that the vector
In the limiting caseV =0, the symmetry, is the symme- v
try g of the string-inspired model with no cosmological ki = € V.o 27)

constant. Moreover;- 2 5 coincides withd,, . It is apparent, N
therefore, that we have generalized the symmetries of the
CGHS model to an arbitrary 2D dilaton gravity model. satisfies the Killing equatio¥ (, k,)=0 on shell.
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Now, invariance under diffeomorphisms &, implies Consider now a coupling
that on solutions of the equations of motion for the matter 1
fields we have Su=pe J A%\ gL . (35
0=T4V,¢+2V'T,,=TyV,¢+V,T. (29
with

Hence, we also have

Lu=W($)(V=9)°L, (36)

Therefore, on solutions of the equations of motion for theWhereL depends only on the matter fields. Most of the cou-

matter fields,T can be written as a function of the dilaton plings with gauge fields which have been considered in the

kev ,T=0. (29)

literature are of this form. For instance, in REt3], a cou-

field: pling of this form with an Abelian gauge field is considered
T=T(¢). (300 andin Ref[14] a similar coupling with a Yang-Mills field is
studied.
Moreover, Eq.(28) implies thatT ;=T ,(¢#) and In this case, invariance under diffeomorphisms implies
To(#)==T'(¢). (3D W()¥1+9)(\[=g)L= Q= const. 37

Therefore, we have shown that, with respect to theTherefore, the shift in the potential is nonconstant now but
dilaton-gravity sector, the interaction with area-preservinggiven by
matter simply amounts to a modification of the dilaton po- -
tential V() — V(¢) =V($)—T. V=V=V—(1+s)QW(¢) "9, (38)

As a matter of fact, as precise a result can also be ob-
tained with any interaction term in which the measure

For a theory to be invariant under area-preserving sym</—g and the dilaton fieldp appear only through a product
metries, it is a necessary and sufficient condition that itsu(qg) \/__g Namely, letSy, be a gravity-matter interaction
action depends 0g,,, exclusively through the measuge-g  term such that the dependence of its scalar density

[12]. J—9gLyu with respect to the measuré—g and the dilaton
Invariance under all area-preserving transformations imfield ¢ is of the form

poses a severe restriction on the construction of interaction

terms. However, in two dimensions, there is a large class of \/—_gﬁME(\/—_gﬁM)(y,A), (39
interactions, notably Yang-Mills and generalized gauge theo-

ries, which satisfies this requiremefit2]. In fact, in two  With y=—gU(¢). Then, on matter fields which obey the
dimensions any interaction term where the metric only raise§quations of motions, we have

antisymmetrized indices is invariant under area-preserving

A. Particular cases

transformations. For instance, for a Yang-Mills theory in two 6(V—9Lwm) —Q=const (40)
dimensions, we haveé ,,=¢€,,F. Therefore, the action has oy
the form

Therefore, the dynamics of the dilaton-gravity sector is the
same as that without matter fields but with a different poten-

T ~
. (32 tial Vv, with

r F2
v—4
Minimally coupling these gauge fields to matter fields de-

stroys these symmetries. Nevertheless, this does not rule out
that more general couplings might be found which are APT V. COUPLING BY MEANS OF AN INVARIANT METRIC

invariant, or at least invariant under some of these symme- Another way of producing symmetric matter-gravity in-

melf'ite?)szlllovl\gtsesc.c)(\)/ns'der an interaction term which is teractions is by considering couplings which involve only an
: ’ u ! ' : WRICH 1S i1y ariant metricg,,,. That is, letg,, be a metric which is

invariant under area-preserving transformations of the metr'fhvariant under a transformatiadwhich, in turn, is a sym-

223ewhlch does not depend on the dilaton figldThen, we metry of S,. Then, s also a symmetry of the action

SYsz d?x+/—gTr F"”Fﬂvz—ZJ d?x
V($)=V(¢$)—QU(). (41)

V, T=0=T=const. (33 S:Sv+f d?x\—9gL(g,,.f"). (42

In this case, therefore, in as far as the gravity sector is o . o
concerned, the interaction with matter simply amounts to glowever, to demand strict invariance of the metric is in fact

constant shift of the potential too rg_stric.tive a rquirement._A Tore requed put sufficient
_ condition is to requirey—g£(g,f?) to be invariant. Con-
V—=V=V-Q, (34)  sider, for instance, a minimal coupling

whereQ=T?_,=const. V—gL= \/—W”V_va_yf, (43
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where f is a scalar field. This interaction term is invariant

under & if g_w is conformally invariant:
89,,=KJ,,, (44)

with arbitrary scalar quantitiK.
We shall restrict ourselves to metrics of the form

9uv=A0g,,+BV 4V, ¢, (45)

with A=A((V $)2,¢) andB=B((V ¢)?,$). We have

B
detg=A2? detg| 1+ A (V¢)2),

gL [ g TEOV'2
A A V)2
g7 (Vo)
_ B vz A
V-gg"'=y-g|1+ 3 (V¢)2> e —
- 2
5+ (Vo)
(46)
Because of the transformation properties
€
5E=5 f(E), 56=0, (47)
5,E=0, b6,p=c¢, (48

it is best to consideA=A(E, ¢) andB=B(E, ¢).
Invariance undep; and §, requires, respectively,

1fE oA HEA Af'(E)=K;A
le 5B ) f(E)A f’(E)A_KB
2 "B 5~ (2E+J)2 2E+J
SA AV koA
56 T2E+y

oB

\%

With these premises, it is not difficult to show that the

_ Aile)
9= (V) 2F2(E)

V,L¢VV¢)-
(50

X( N ($)(V ) *fA(E)—1
m (V)2

Conformally invariant undes,:

— N(E)(Vg)*-1
guvaZ(Ev¢)( g,u,l/+ Z(T V,LL¢VV¢) .

(51
Strictly invariant unders,:
— AyE) N(E) (V)1
g’”:(VZW (g,u,v Z(T VM¢VV¢)-
(52

Conformally invariant undes; and 8, :

_ N(V)*2(E)—1
g,u,v:A(Eld))(g/u;—’_ (V¢)2 VMQZSV,,(,ZS)

(53
Strictly invariant underd; and d,:
— 1 NV ) *H2(E)—1
(54)

The most general minimal couplings which are invariant
under &; are of the form

V=997"= =g\ (#)(V ¢)?(E)

( o M(D)(V)*F2(E) -1
O T TN (4) (V) STHE)

V“(;SV”(;&).
(55

The most general minimal couplings which are invariant
under 8, are of the form

V=907 == g\o(E)(V $)?
A(E)(Vo)*—1
\E)(V)*FA(E)

x| g~ V”¢V”¢).

(56)

The most general minimal couplings which are invariant

most general conformally invariant or strictly invariant met- under é; and 8, are of the form

rics g_w (and invariant minimal couplingg—gg*") are of
the following form(A;, A,, A, ¢, and\, are functions of
their arguments andl is a constant

Conformally invariant unde#; :

M) (V) H3(E)—1
(V)2

VM¢VV¢)-
(49

g_,u.V:Af(EIQS) g,u.v+

Strictly invariant unders; :

V=09*"=\-g(V¢)?f(E)

o qur AN(Ve)*—1 V”qﬁV"qﬁ) 57
9 TNV e)TE) '
Therefore, metrics and conformal couplings exist which
are invariant under boths; and §,, for any function
f=f(E). However, it also follows that no metric or confor-
mal coupling can be found which is invariant undgrand
oy unlessf andg are proportional to one another.
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The metrics which are conformally invariant undgrand  ance of the theory. Therefore, as there is not enough
8, turn out to be of the form symmetry, no quantum solvability should be expected. In

L ANV p)4—1 fact, the quantum nature of Liouville theory has remained
9, =A(E,®)| 9.+ TVor VM¢VV¢). (58  elusive(see, for instance, Reff16]) and much the same can
be said about the quantum nature of the CGHS m¢sles,
Strict invariance undes; and &, requiresAx1/(V ¢)?. for instance, Refl4]). _ _
Moreover, the only minimal couplings to a scalar field  Unlike the CGHS and the exponential models, which are
which are invariant unde$, and 8, are proportional to invariant with respect to one symmetry orily this respect,
i ) the model withV=0 is somewhat special as it is invariant
J=9(Vi)2=J-g(V¢) under two symmetrigs we have constructed “minimal”

couplings which are invariant under two symmetries. There-
V”¢V”¢>Vﬂfvvf. fore, we expect that this additional invariance of the models
will imply quantum as well as classical solvability. The
(59 analysis in Ref[15] does not apply to our models and a

) _ different analysis should be made. A detailed discussion of
Thus, save for a constant parameter, there is only one mingyis question deserves a separate study.

( o M(Ve)i-1
T

mal coupling which is invariant undef; and J,. Finally, we would like to mention that, for more than two
decades now, it has been known that Einstein’s gravity,
VI. DISCUSSION when restricted to metrics with twocommutingKilling vec-

: . . tor fields, acquires a large number of non-Abelian symme-

cose sl st B s e v e e socalled Geroeh GrouT) 1L s lar ht o

P o results may have some relationship with, or be a generaliza-
under a conformal transformation but not the same transfor- . . .
. - tion of, Geroch’s group. We hope to establish that relation-
mation. The CGHS model coupled to conformal matter is_, . ? L S
) : 2 . ship and communicate it in a future publication.
invariant underé,—4A“61, whereas the exponential model
is invariant with respect t&,+ 2846 . Moreover, the cou-
pling to matter does not preserve any of the other symmetries
that have been discussed in the present paper. As has beenThe author is grateful to J. Cruz, J. Navarro-Salas, and C.
shown in Ref[15], invariance ofo models, as the CGHS or F. Talavera for helpful discussions, and to G. Mena-Manuga
exponential models minimally coupled to matter, impliesfor calling the author’'s attention to the Geroch group. He
that these models contain a free field as well as a field whiclacknowledges the Spanish MEC, CSIC, and IMAFF
obeys a Liouville equation. However, as the Liouville equa-(Madrid) for a research contract. This work was partially
tion does not appear as the conservation equation of a Noesupported by the Comisiointerministerial de Ciencia y Tec-

her current, this equation is not directly related to an invari-nologia and DGICYT.
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