PHYSICAL REVIEW D VOLUME 56, NUMBER 4 15 AUGUST 1997
Cosmic strings in supergravity
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It is pointed out that various types of cosmic string solutions that exist in nonsupersymmetric and globally
supersymmetric theories, such@stype gauge strings;-type global and gauge strings, and superconducting
Witten strings, also exist in supergravity models. When Ehéerm and superpotential satisfy some simple
conditions allowing the determination of a set of vacuum states with nontrivial topology, the existence of a
string embedded within a supersymmetric vacuum with a vanishing cosmological constant can be inferred.
Supergravity also admits other string solutions, some of which have no counterparts in globally supersymmet-
ric theories[S0556-282(196)06116-4

PACS numbdss): 11.27+d, 04.65:+€, 98.80.Cq

I. INTRODUCTION ever, if these conditions on the superpotential are not met,
the two theories can yield quite different solutions. An ex-
It is now generally recognized that the early universe mayample can be seen for the case of a constant superpotential,
have undergone symmetry-breaking phase transitions whicihich is dynamically irrelevant in global SUSY, but can lead
spawned the production of topological defef@s?]. Cosmic 0 spontaneous symmetry breaking in supergravity. Since su-
strings, in particular, may have played an important role inPergravity can accommodate a negative cosmological con-
the subsequent evolution of the univef4e3]. Furthermore, stant and global SUSY cannot, there are some string solu-
some realization of supersymmetry, perhaps in the form ofions admitted by supergravity that have no counterparts in
supergravity, could present itself as an effective theory foglobal SUSY. This result can be viewed as arising from
the epochs of cosmic string formation. It is therefore naturapravitational effects that are included in supergravity, but not
to investigate cosmic string solutions in the context of superin global SUSY.
gravity. Studies of supergravity domain wall6,5] have in- We concern ourselves mostly with the situation where the
dicated that gravitational effects in supergravity can play arfosmological constam vanishes. For the case of a global
important role in the existence and structure of these defect§USY theory with a superpotentiaV, we conclude that a
and we can expect this to be true for cosmic strings, as welfopological string solution is admitted if the vacuum mani-
The bosonic sector of a theory with global supersymmetryfold, characterized by the field vacuum configuration
(SUSY) can have a more complicated form than that of a¢={¢'}, possesses a nontrivial topologguch as the topol-
nonsupersymmetric theorig], and this can lead to differ- ogy of S') and can be obtained from the conditiofi
ences between string solutions in the two different theories(D)=0 and(ii) (¢dW/d¢')=0. For the case of supergravity,
For example, supersymmetric cosmic string models may rea string solution is admitted if the same kind of vacuum
quire the participation of more fields than the nonsupersymeonfiguration can be obtained from the conditiofig
metric counterpar{7], so that the supersymmetry strings (D)=0, (ii) (dW/d¢')=0, and(iii) (W)=0. These condi-
have some features that are lacking in the nonsupersymmeions are seen to be necessary and sufficient to lotat®
ric versions. Also, string solutions can emerge from globallyvacuum states with unbroken supersymmetry. They can be
supersymmetric theories from a spontaneous symmetrguite useful since the functiori3 andW are much easier to
breaking due to either ® term (D-type string$ or anF  examine than is the scalar potential.
term (F-type string$ in the scalar potentidl8,7]. Since the In the next section we focus upon the bosonic sector and
scalar potential of a supergravity theory can be more comscalar potential of global SUSY theories, and recall some of
plicated and may take quite a different appearance than th#pe various types of string solutions that occur there. Specifi-
of a globally supersymmetric theory with the same form ofcally, we present examples of tiiz-type gauge string, the
superpotential, it may not be immediately obvious whether &-type global or gauge string, and the superconducting Wit-
given superpotential will generate scalar potentials in globaten string[9], each of which is surrounded by a supersym-
supersymmetry and supergravity models that will possess thmetric vacuum with zero cosmological constant0. The
same types of vacuum manifolds that have the same toposcalar potential of supergravity is presented in Sec. I, and
ogy. Therefore, attention is focused here on the scalar potemve show that the same types Af=0 string solutions exist
tial and vacuum manifold resulting from a given superpoten-here as well, along with\ # 0 strings. The minimal Kialer
tial in supergravity, and comparisons can then be made to theotential is extended to a general form in Sec. 1V, and a brief
corresponding vacuum manifold arising from the same susummary forms Sec. V.
perpotential in a globally supersymmetric theory containing
the_ same matter chiral superfields. Under certain sim_ple con- Il. GLOBAL SUPERSYMMETRY STRINGS
ditions for theD term potential and the superpotential, the
same type of string solution will be admitted by both the Let us consider a globally supersymmetric theory with
globally supersymmetric and supergravity theories. How-interacting chiral superfield®' and a U1) vector superfield
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56 COSMIC STRINGS IN SUPERGRAVITY 2379
A. The matter chiral supermultiplets can be represented ad that is involved with spontaneous symmetry breaking,
d'=(¢',¢',F') and the vector multiplet by A= along with other charged chiral superfiel@is avoid a gauge
(Al",)\a ')\_& 'D), Where Fi and D are the bosonic auxi"ary anomaly and pOSSibly neutral Chiral Supel’fie|dS. The VariOUS
fields, ¢/ is the matter fermion, anil,, is the photind: For  chiral superfields interact in such a way that only the one
the present we choose the minimal ter potential Ccomplex scalar fields with U(1) chargeQ develops an ex-
K= ¢ =3,4* ¢ which yields the diagonal Kder metric pectation value, wittW=0 andW;=0 in the vacuum st:—élte.
o . . o By including a Fayet-lliopoulos term, setti - ,
ir:azK/w'aqsl:a”:K'l and canonical kinetic terms. y g y b = 9Q

. . : and setting to zero the charged scalar fields with vanishing
_The bosonic sector of the theory is described by the Lagrang;,~.,um values, the scalar potential due to the symmetry-

an breaking field ¢ that arises from theD term s
Le=K'I (D, ¢) (D pi)* — L(F, )2—V, (1) Vp=13%0°Q%(p— 5?)?. This is the type of potential found
. g in the ordinary broken-symmetric Abelian-Higgs model,

with a sum over i implied, and where DMd;i which admits a Nielsen-Olesen cosmiq1l gauge string

=(9,+igQiA,) ¢' is the gauge covariant derivative of the [11]. In the vacuum state, outside the string|=|¢|=7
field ¢' with a U(1) chargeQ;, andF,,=d,A,—d,A,. The andD(¢)=0 with V(¢)=0, which implies that supersym-

scalar potential is metry is not broken in the vacuum, and the cosmological
) constant vanisheg\ =0. The structure of the vacuum mani-
: 1 JW|" 1 — 1?2 fold is determined entirely by th® term in the scalar po-
V=2 [FP45D%=2 |20 45l 6402 Qi¢'¢'} . tential
¢ @) F-type string An F-type string model can be built from

_ one neutral superfiel@=(Z, ¥, ,F;) and two charged chiral
where the holomorphic functiow=W(¢') is the superpo- superfieldsd.=(¢. ,¢. ,F.) with Q. +Q_=0=Qz. A
tential and the constarg comes from a Fayet-lliopoulos Fayet-lliopoulos term is not mcLuded and the superpotential
term [10] that has been included an&'=—dW/d¢', |sftzra]ker;]to be/\r/]=)\Z(<I>+<b,—7|; )BThiIOVr‘(’e)St energy state
—T i . of the theory that spontaneously breaks thg)ldymmetry is
D=-[£(+02Qi¢'¢']l. A superpotential of the form : :
W=Wo+ad+ by ¢ ¢+ ) & allows for renormal- a supersymmetric vacuum state with=0, determined by

L . . . . the conditions F'=0, D=0, and is characterized by
izability, and since the constaw, is dynamically irrelevant, (b =|¢+|=n, (Z)=0. Using the simplifying ansatz
we can set it equal to zero. = P11 ' 9 P g

Let us use the derivative notationX;=dX/ae', b,.=¢, ¢_=¢, the D term vanishes and scalar potential
X7=aXlagl, Xy=oXIagl, Xij=a*Xlag'adl, XiXi reduces to
=3, X;X7, etc., for some functioiX( ¢, ¢), with a sum over e o
repeated indices unless otherwise stated. The vacuum expec- V=\2(pdp— 72)%+2\2ZZ( o). (4)

tation value(VEV) (¢')=¢' is located at the minimum of

V where . D .
For the case in whiclz is set equal to its vacuum value of

Vi:VVKWkiﬂLDDi:HF!(JFDDi 3) zero, the model r_e<_juces to a broker)-symmetr_ic Abe_lian-
Higgs model, admitting a (1) gauge string associated with

vanishes. We also note thdt=0 so that a negative cosmo- the field ¢. Since¢= ¢, =¢_, we see that the two fields
logical constant does not appear. The vacuum state is supep-. conspire to form thisF-type string. In this case the
symmetric ifV(¢)=0, but supersymmetry is spontaneously vacuum manifold for$ andZ is det_ermined entirely by the
broken by the vacuum i¥/(¢)>0. From Eq.(3) it is seen  F terms, whereF,=\Z¢_—\Zd, F_=NZd,—\Zo,
that a nonzero VEVp'#0 can develop from either thE Fo=N\(db, b — 7]2)_>)\($¢_ 72). Again, the vacuum is
term or theD term in V., resulting in elther_F-type or supersymmetric and =0. [Note that we could replace the
D-type stringq 8]. AbelianF-type andD-type strings in glo- U(1) gauge symmetry in this model with a globa{L) sym-
bal SUSY theories are described and discussed in[Bgfto metry, remove the vector supermultiplet, and take 0 to
which the reader is referred, and a global SUSY model of Yet a ’model of a global strink '

Ioc_al s_upg_rconducéir}g F\Q/Vit;enBstlring, WT_iCh is ﬁt}flpﬁ Superconducting Witten string§Ve can construct a model

string, Is discussed in e[_ | Be ow we list some of the ¢ 5 U(1)xU(1)" superconducting global string, with long

basic features of these string solutions, and in the next se ange gauge fields outside of the string, from two complex

tion these types of strings will be reexamined in the contextealar fieldso . transforming nontriviall;} under a global

of supergrav_lty. L . group U(1), two complex scalarg.. transforming nontrivi-
D-type string An example of &D-type string is given in Ily under a local group (1), and a neutral scalat. The

[8]. The model contains a primary charged chiral superfiel ields o. have U(1) ’global charges Q.  with

Q++Q_=O, and the fieldse.. have ul) Iocal_ charggs
. _ i ) ) ) g+ with q,+qg_=0. A Fayet-lliopoulos term is not in-
Aside from a Spafet'r:e metric W't: signature %'Ven bY cluded and the superpotential, in terms of the scalar fields, is
(.+,—,—,—), we use, for the most part., the notation an conven-
tions of Wess and Baggef6]. Units are chosen where
M=Mp/\/87=1, whereMp=G*? is the Planck mass. Factors

of M can be reintroduced by dimensional considerations. W=\NZ(o,0_— 772)+(CZ+ m)eo,¢_ . (5)

aken to be
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The scalar potential isV=3,|W,/?+3D? where D=  Symmetry breaking is given by;#0 or D+0 in global
QQ+(¢T+¢+—¢77¢7), and the individualW, terms are il(J)SY, in supergravity the signal is given ByW=+#0 or D
iven b : . : .
gw Y If we reinsert factors oM =M /+/87 by introducing the
OW constantk=M "1 with W— «3W, D,W— x2W,+ x*¢'W,
0. Ao, andV— k%Y, we can write the scalar potential as
W V=exp( K¢ ¢"){|W, + k2 W|?—3x?|W|?} + £ D2,
= + _
In the small « (large M) limit we could expand)V as
M:)\(U+U__ P)+ch. b . V~|W;|?+ 3D? with O(«?) corrections; i.e., the supergrav-
0z ity scalar potential should just be the global SUSY potential

, . with O(«?) corrections, which would presumably be small.

The supersymmetric vacuum state whth=0 that sponta-  This would lead us to believe that, for low symmetry-
neously breaks the U(1)symmetry but respects the(l)  preaking energy scales, any superpotential that gives rise to
symmetry is located wheM2/k=0 andD=0, i.e., where the  gying solutions in global SUSY will give rise to the same
fields take valuesr, o =17", ¢, =¢ =0, andZ=0. One  gting solutions in supergravity, and that if no strings are
can adopt the ansaiz,=o, o_=0, ¢, =¢, ¢_=¢, SO  predicted by global SUSY, then none will be predicted by
that the scalar potential can be written in terms of the fieldsupergravity either. This seems reasonable if all field vacuum
o, ¢, andZ, and a superconducting string solution can bevalues are small compared ¥, but this need not be the
inferred. Here, againA =0, since the vacuum is globally case, in general. Also, a more generahl&a potential could
supersymmetric. be used, to which global SUSY and supergravity can have

A point to be made here, which will be useful in the next different sensitivities. This situation is examined later, where
section, is that for each of the examples above A6r0  the minimal Kanler potential is replaced by a generaliter

strings, we have not onlw,(¢) =0, but alsoW(¢)=0. potential. However, we can use tea@actform of V to see
that under certain simple conditions involving tBe term
IIl. SUPERGRAVITY STRINGS potential and the superpotentialAa= 0 global SUSY string

with unbroken supersymmetry in the vacuum will also show
Now consider a supergravity theory accommodating matup in supergravity as A =0 supergravity string with unbro-
ter chiral superfield'=(¢',¢',F') and the vector multiplet ~ ken supersymmetry in the vacuunegardlessof the scale of
A=(A*\,,\,,D). We again choose the minimal Kiar  the symmetry breaking. This is not guaranteed to be the case,
potential K=¢'¢ so that Ki=¢', Ki=¢', and however, if these conditions are not met.

7=K'I'=4,. The bosonic sector of the theory is de-

scribed by A. Vacuum states
_ _ The vacuum states, labeled Kyp')=¢', are located
e 'Lg=— ;R+K;j(D,¢") (D p))* =3 F*'F,,—V, whereV,=9VId¢' vanishes. From Eq8),
(7 — .
Vi=eX(U+ d'U)+DoD/ o' (12)
wheree=(—deg,,)"2 Upon definingd;W=W; + K;W, the
scalar potential can be written as From Eq.(10) we can display/; as
V=e“u+ 3 D?, ®  U=(Wit g"W) Wi+ [ (| 44>~ 2)W+ S Wi W + W]
(13
where ) )
Solutions toV,=0 are given by
U=K' (D;W)(D;W)* — 3W* W=|D;W|?—3|W|?, (9) b
with an implied sum over the repeated indideand j, and Ut $U=0, DEZ( 9Qi¢")D=0. (14)

D=g3;Q; $'¢', as before. For the Wder potential _

K=¢'¢' we have the operatdd;=d/d¢'+ ¢', so that we We note that the field)' develops a nonzero VEV if the

can also writd{ in terms of W andW, as curvature ofV in the ¢' direction (i.e., the mass term for
@) is negative at the origin, e.g.,

=W, |2+ (| ¢'|2— 3) [W|2+ (' W,W+ W, W), (10) V(O) (0VIdp a¢ )|¢, 0<<0, where ¢ collectively repre-
sents the se{t¢k} Assuming a superpotential of the form
We notice that the supergravity scalar potential, having . o o

gravitational contributions, is more complicated than the sca- W=W,+a;¢'+bj;¢' ¢ +cjj @' ¢’ o+, (15

lar potential for global SUSY, and that can be positive,

negative, or zero. Whereas the signal of spontaneous supewe can calculate
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Vi(?_): 5ijw0)+ui(?_)+ %[02(D2)/a¢i§$]|0 ' 1. D-type string | |
L o o As in the global SUSY case, the superpotential for this
= 8ij(akax—2|Wo|®) —aja;+4byiby;+9Q 8 €, model satisfie$W)=0, (W;)=0. A Fayet-lliopoulos term is

included, and the scalar fielg that is nonvanishing in the
vacuum gives a nontrivial contribution to tieterm, so that
we can write, as in the case of global SUS¥here we again
set to zero the scalar fields with vanishing vacuum values
D=9gQ¢¢+E=gQ(dd— 5%). For the vacuum state where
VO _olw2=|a |2+ a2+ 4lbul2) + g0 £, l(#)|=|e|=7n, we have, as before{(D)=0, (W)=0,

. [Wol*~lai ; (I BlH+0Q¢ (W;)=0, indicating the existence of B-type string in the

(17)  supergravity theory. Also, sinc®;W=0 in the vacuum

state, supersymmetry is respected in the vacuum. Further-

The corresponding curvature for the case of global SUSY isnore, from Eq.(17), we see tha‘ﬁ%: —(gQn)2.

(16)

whereé comes from a Fayet-lliopoulos term, giving

ViP=43 bl +9Q. (19 2 Fypesting
For this model we hav®=gQ, (¢, ¢, —¢_¢_) and

) the superpotential i&/=\Z(¢. é_— 7). TheW, are given
We can therefore see that whereas the constant Yegns by W,=\ (¢, ¢_— 7]2), W. =\Z¢- , so thatW,=0 is sat-

innocuous in global SUSY, in a supergravity model it con-isfied byZ=0, ¢, ¢ =77, and consequenti=0. The
tributes toward a destabilization of the normal vacuum state . qition (D);O implies éhat|(¢+>|=|(¢,>|z|(¢>| in

(¢')=0, so that for a large enough value|¥o|, spontane-  zccordance with the ansatz implemented previously. Since
ous symmetry breaking is induced. Therefore, although ®'W|¢ =W,(¢)+ ¢"W(¢)=0, we have arF-type string
—0 ,

particular superpotential may not lead to a symmetry breakédrrounded by supersymmetric vacuum.
ing in global SUSY, due to an invisibility ofV,, the same

superpotential can lead to a symmetry breaking in supergrav-
ity. However, we will see that when the cosmological con-
stant vanishes and th2 term and superpotential satisfy cer-  The superpotential is given by E¢p), and by Eq.(6) we

tain simple conditions, the vacuum states in global SUSYhaveo,o_=1%?, ¢.=0,Z=0 as solutions of\,=0, and

will coincide with those in supergravity. consequentlyW(¢)=0. Requiring (D)=0 gives ()|
=|(¢_)| as in our ansatzD;W=0 in the vacuum, so that
the supergravity theory admits a solution describing a super-

conducting string embedded in supersymmetric vacuum.
From Eq.(8), we can note that for a spontaneously broken

symmetry the cosmological constant will vanish, i.e.,
(Vy=A=0, provided tha{l/y=(D)=0. In this case, by Eq. C. Anti—de Sitter (A<0) strings

(14), the conditiinvi=0 is satisfied when the conditions Global SUSY can not accommodate a negative cosmo-
uii:O and @Qi¢')D=0 are simultaneously satisfied. For |ogical constantanti—de Sitter spacetimesinceV=|W,|2
(4')#0, (D) can vanish either because of symmetry orbe-, 1n2_ 4t supergravity can, and consequently super-

cause of a symmetry-breaking Fayet-lliopoulos term. As. ravity can admitA <O string solutions describing strings

suming this to be the case, we are left with the condition? . . ] .
U;=0. This condition will be met automatically if the field embedded in anti—de Sitter spacetime that have no counter

. o . parts in global SUSY. As a simple example we take a model
expectation value¢4') = ¢' can be obtained from the con- with a single chiral superfieldd invariant under a global
ditions W=0 andW,=0 when{¢*}={¢X}. Therefore, if a g b g

globally supersymmetric theory possesses a nontriviaglﬁDers):)Temnﬁ;%_s\?vthaBD:EO'S \(/g;a acnhdo(olsO(; t%eres&::la(lz;rnsim
vacuum configuratiop ={¢'} that can be extracted from the perp ~ Wo. BY QS P

o tential takes the form
conditions

(i) (D)=0, (i) (Wi)=Wi(¢)=0,

3. Superconducting Witten string

B. A=0 strings

V=W3e (| |?—3). (20)

(i) (W)=W(¢)=0, (19  The vacuum state is located thp|= 2. The global W1)
symmetry is broken, and a global string solut{dr?] is ad-

and as a result admits a string solution, then the sammitted. SinceD ,W= ¢W, does not vanish in the vacuum,
vacuum configuratiorp appears in the supergravity theory supersymmetry is also broken. However, in the core of the
and hence a string solution appears there, although, due string where¢$—0, supersymmetry is apparently restored.
differences in the forms of the scalar potentials and fermi-This seems to be the opposite of the case with Ake0

onic couplings, the two string solutions will in general be strings above, where the vacuum is supersymmetric and su-
quantitatively different. We can briefly look at tH2-type  persymmetry is broken in the string core. For this supermas-
string, the F-type string, and the superconducting Witten sive anti—de Sitter strind{¢)|~M, and gravity is expected
string of the previous section for specific examples. to play an important role.
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IV. GENERAL KA HLER POTENTIAL AND A=0 persymmetric vacuum states of a theory. If this set of

STRINGS vacuum states has a vacuum manifold characterized by a

topology where the first homotopy group is nontrivial, then a
topological string solution must exist. However, if the con-
ditions (ii) and (iii) do not hold simultaneously, then the
vacuum states of the theory do not simultaneously have un-
broken supersymmetry anid= 0. String solutions may exist,
but they will not beA =0 strings embedded within super-
symmetric vacuum.

Of course, we expect that if the global SUSY or super-
gravity theory possesses /=0 string solution, then the
- - oD Kahler-transformed theory will also have a string solution,
Vk=(Kii)kWiWT+ KiJWiij—+ D— (220  since the bosonic Lagrangians are invariant undehlét

Pk transformations. l.e., for global SUSY; andV are invariant
under the Kaler transformatioh K(¢,d)— G(¢,d)
=K+ F(¢)+F(¢$) andW—W, whereF(¢) is an analytic
function of theg'. For supergravity, however,z and) are
invariant under the transformatiok—G provided that
W—W=e FW. If (D) remains zero under a Ker trans-
where DiW=W,;+K;W. This scalar potential is minimized formation, and ifW(¢)=0, W;(¢)=0, thenW;(¢)=0 and
when W(¢)=0, provided that~;(¢) is finite, so that the condi-

JD tions forW are also satisfied fdiV. However, if we consider
V=X U+ KkU)+D—k (24)  the Kahler inequivalenttheories generated by the replace-
d¢ mentsk —G, W—W, or K—K, W—W, then we see that
the conditions on the superpotential can still be maintained,
since W(p)=e "W(¢)=0 and Wi(¢)=e "[Wi(¢)

For a general Kaler potentialK(¢,E the scalar poten-
tial for global SUSY is

V=KIWW+ 1D?, (21)
whereK'i = (K17 andD=(g=;QiK;¢'+ ). This poten-

tial is minimized by a set of field configurations={¢'}
when

vanishes. The scalar potential for supergravity is

V=eXi/+ % D?=eX[K'T (D;W)(D;W)* —3|W|2] + § D2,
(23

vanishes, with

_ iy iir —FiW(¢)]=0. In other wordsdifferenttheories that have
= (K" )(D;W)(D;W)* + K" [(9,D;W)(D;W)* i . . . .
Ue= (0K DW)(D;W) L(ADW)(D;W) the samesuperpotential, butlifferent Kahler potentials, or
+(DiW)&k(DjW)*]—3WWk, (25)  different theories that have trleame KéhIeL potential but
differentsuperpotential¥V andW related byW=e~ "W can
whered,= al dpX. yield the same type of string solution, provided that the con-

Now let us assume thabD vanishes in the vacuum, ditions (i)—(iii) above hold. For example, for d@mtype glo-
(D)=0, and that the cosmological constant vanisies,0.  bal string model with a superpotentll=\Z($, ¢_— 5?),
For global SUSY,A=0 requires thatW; vanish in the with [(¢.)|=7, (Z)=0, conditions(i)—(iii) are satisfied,
vacuum; i.e., the vacuum valuég') = ¢' can be determined with D=0, so that any other theory generated by a superpo-
from the conditionW;(¢)=0. If we furthermore require that (antial W= exd —F(Z,4. ,¢_)]W should also yield a global
W(¢)=0, then we see thal;W)|,=0, and thereforé/=0  gring solution, assuming thdF;) is finite. SinceF(¢) is
andl4=0, so thaty is minimized by the vacuum field con-  arhjtrary, we see that there are an infinite number of super-
figuratione. We therefore conclude that if the superpotentialpgtentials that can generate the same type of string solution.
W possesses a global or loca{l) symmetry which is spon-  (Renormalizability considerations in global SUSY, however,

taneously broken by the vacuum, afid (D)=0 and (i)  can reduce the spectrum of acceptable superpoteptials.
W,(¢)=0, then aA =0 string solution exists in the global

SUSY theory. If, in addition, we have théiii) W(¢)=0,

then aA=O. string solution exist§ in the supergravity theory. V. SUMMARY

(However, it does not necessarily follow that\a=0 super-

gravity string solution doesot exist if these conditions are Cosmic strings may have been produced during

not satisfied. We note that although these conditions aresymmetry-breaking phase transitions in the early universe. It

stated for a general Kder potential, the conditioD)=0 is also possible that supersymmetry, perhaps in the form of

may constrain the form df when a local Y1) symmetry is  supergravity, was effectively realized at early epochs. It is

present. then natural to examine cosmic strings in supersymmetric
Actually, the conditiongi)—(iii) above arenecessaryand  theories. To determine whether a field theory will yield a

sufficientconditions to locate thd =0 vacuum states of the topological string solution, it is necessary to have informa-

theory with unbroken supersymmetryrhis can be easily tion about the topology of the vacuum manifold. This infor-

seen by noticing that unbroken supersymmetry requires thanation is embedded within the scalar potential, and so it is

(D)=0 and(D;W)=0. Then, from Eq(9), it follows that  sufficient to focus attention upon this function. The scalar

(Uy=-3(|W|?), and therefore A=0 implies that

(W)=W(¢)=0. SinceD;W=W,;+K;W=0 in the vacuum,

it follows that (W;)=0. If conditions (i)—(iii) are simulta-  ?We avoid a Kaler gauge wher& (¢, ¢) =K (de) +InW-+Inw,

neously satisfied, then they necessarily locateAle0 su-  sinceG becomes undefined whati=0.
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potential in a supersymmetric theory is constructed fromin supergravity may be important.
terms that depend upon the functiobs W, andK, where From an examination of the structure of scalar potentials
W is the superpotential and is the Kanler potential. The the following conclusions have been drawn for the situation
functionsD and W can yield useful information about the where the cosmological constant vanishes. If a vacuum
vacuum states of the theory if these functions satisfy certaimanifold with nontrivial topology(nontrivial first homotopy
simple conditions. This can be advantageous, since the fungroup can be determined from the conditiofis(D)=0 and
tions D andW are generally much simpler in structure than (ii) (?W/d¢')=0, then a topological string solution is admit-
is the scalar potential. The existence of cosmic string soluted in a globally supersymmetric theory. This will be a
tions in a supersymmetric theory can be inferred when a\ =0 string embedded within supersymmetric vacuum. If, in
topologically nontrivial vacuum manifold can be extractedaddition, the conditioriii) (W)=0 is satisfied, then the ex-
directly from these functions. istence of a topological string solution in a supergravity
The scalar potentials of global SUSY and supergravitytheory can be inferred. Therefore, when conditi¢nsiii )
have different forms for a given superpotential, with the su-are satisfied, a\=0 string solution(which asymptotically
pergravity version being generally more complicated tharrelaxes into a vacuum with unbroken supersymmetinat
the global SUSY one. Therefore, it is not immediately obvi-emerges from the global SUSY theory is expected to be ac-
ous whether the existence of a string solution in a globatommodated by a string solution of the same type in the
SUSY theory implies the existence of a string solution in thecorresponding supergravity theory, and vice versa, although
supergravity theory or vice versa. In fact, because supergrawhe two solutions are expected to be quantitatively different,
ity can support a negative cosmological constant and globalue to the different structures of the scalar potentials. Using
SUSY cannot, there can be string solutions in supergravityhese conditions, it has been shown that several types of
that have no counterparts in global SUSY. Also, even in thestring solutions, such a®-type strings,F-type strings, and
case ofA =0, if the energy scale of the symmetry breaking superconducting Witten strings, exist in gauge-invariant su-
is large(say, ¢~M), then the gravitational effects inherent pergravity models.
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