
Osp„1z2… Chern-Simons gauge theory as 2DN51 induced supergravity

Kiyoshi Ezawa* and Atushi Ishikawa†

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan
~Received 14 January 1997!

We demonstrate the close relationship between Chern-Simons gauge theory with the gauge group Osp~1u2!
andN51 induced supergravity in two dimensions. More precisely, the inner product of the physical states in
the former yields the partition function of the latter evaluated in the Wess-Zumino supergauge. It is also shown
that the moduli space of flat Osp~1u2! connections naturally includes a super Teichmu¨ller space of super
Riemann surfaces.@S0556-2821~97!04516-5#
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It is important to quantize two-dimensional~2D! induced
~super!gravity because it describes the dynamics of a string
world sheet induced by the motion of~super!strings in the
background without critical dimensions@1#. A number of
interesting phenomena such as the fractal structure have been
clarified by vigorous works made in the light-cone gauge
@2,3# and in the conformal gauge@4,5#. A local expression of
the generally covariant action for 2D induced bosonic grav-
ity was obtained by Verlinde@6# in terms of the Beltrami
coefficients. More precisely, he showed that the partition
function of the induced 2D gravity is obtained from the inner
product of physical states in SL(2,R) Chern-Simons gauge
theory. He also showed explicitly how we can extract the
Teichmüller parameters of Riemann surfaces from the ho-
lonomy of flat SL(2,R) connections.

In this paper we extend Verlinde’s results to 2DN51
induced supergravity. Namely, starting from Osp(1u2)
Chern-Simons gauge theory, we obtain the supercovariant
action for 2D N51 induced supergravity in the Wess-
Zumino supergauge. We also demonstrate that the moduli
space of flat Osp~1u2! connections yields super Teichmu¨ller
space of DeWitt super Riemann surfaces with arbitrary spin
structures.

Let us begin by briefly reviewing the Beltrami parametri-
zation of supervielbeins in 2DN51 supergravity. A DeWitt
super Riemann surfaceSS @7# is a fiber bundle over a Rie-
mann surfaceS @with the coordinate reference frame
(z, z̄ )# whose fiber is a vector space parametrized by two
Grassmann odd coordinates (u, ū ). The supervielbein for the
rigid superspace is given by1 ez5dz1udu, eu5du, and
their complex conjugates. Their dual vectors are]5]/]z,
D5]/]u1u]/]z, and their complex conjugates. According
to Refs.@9,10#, any supervielbein$EA;A51,2,1̂,2̂% which
represents Howe’s superspace geometry@11# can be written
as

E15reZ, E25E1,

E1̂5Ar$eQ1 1
2 eZDQln~r r̄ !%, E2̂5E1̂, ~1!

where r is the superconformal factor.eZ[dZ1QdQ,
eQ[dQ, and their complex conjugates constitute a local ba-
sis of one-forms onSS. Their dual vectors are given by
]Z5]/]Z, DQ5]/]Q1Q]/]Z, and their complex conju-
gates.

Because (Z, Z̄) and (Q,Q̄) are smooth scalar functions of
coordinates (z, z̄ ,u, ū ) which are Grassmann even and odd,
respectively, we can expandeZ andeQ by the rigid basis

eZ5~ez1ez̄H z̄
z

1euHu
z1eūH ū

z
!L and c.c., ~2!

eQ5~ez1ez̄H z̄
z

1euHu
z1eūH ū

z
!t

1~euHu
u1ez̄H z̄

u
1eūH ū

u
!AL and c.c.

HereHM
N (M ,N5z, z̄ ,u, ū ) are called Beltrami coefficients

and L and t are called integrating factors. Owing to the
structure equationsdeZ52eQeQ and deQ50, not all of
these coefficients are independent. It turns out that the Bel-
trami coefficients are local functionals ofHu

z and H ū
z

~and
their complex conjugates! and thatt is locally expressed by
L andHu

z . Moreover, the integrating factorL is subject to
the equation

F D̄2S H ū
u

Hu
u D D2S H ū

z
2

H ū
u

Hu
u

Hu
zD ]G lnL5]H ū

z
2

H ū
u

Hu
u

]Hu
z .

~3!

The integrating factorL is therefore regarded as a nonlocal
functional of (Hu

z ,H ū
z ) which is uniquely determined up to

superconformal redefinitions of (Z,Q). In consequence, 2D
N51 induced supergravity is described by 20 local degrees
of freedom which are component fields of

(Hu
z ,H ū

z ,H ū
z̄ ,Hu

z̄) and of r r̄ . Instead ofr r̄ we will fre-

quently use the super Liouville fieldF[ ln(rr̄LL̄)
5f1ux1 ū x̄ 1u ū iF . Two-dimensionalN51 supergrav-
ity is invariant under graded local Lorentz transformations
r→eisr, r̄→e2 is r̄ (s is a real superfield!. The associated
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covariant derivative for a superfieldJ of Lorentz weight2 w
is given byDJ5dJ1 iwJV, whereV is the graded spin
connection

V52 ieZ]Zln r̄ 1 ieZ̄] Z̄lnr2 ieQDQln r̄ 1 ieQ̄DQ̄lnr.
~4!

From this graded spin connection we can calculate the super-
field whoseu ū component yields the scalar curvature@10#.
We will henceforth call this superfield the ‘‘supercurvature’’
R3:

R3522~r r̄ !21/2DQDQ̄ln~r r̄ !. ~5!

Because 2DN51 supergravity should have symmetry
under reparametrizations of the supercoordinates (z, z̄ ,u, ū ),
there are a large number of choices to fix a gauge. From now
on we will consider a particular gauge fixing called the
Wess-Zumino~WZ! supergauge:

Hu
z50, H ū

z
5 ū m1u ū ~2 ia!. ~6!

This gauge-fixing condition is equivalent to the condition

Z5Z0~z, z̄ !1uQ0A]Z01Q0]Q0 and c.c.,

Q5Q0~z, z̄ !1uA]Z01Q0]Q0 and c.c. ~7!

A merit of the WZ supergauge is that all the component
fields~except the auxiliary fieldF) appear in the lowest com-
ponent of the supervielbein. Thus it is convenient to intro-
duce the zweibeine6(z, z̄ ) and the gravitinoca(z, z̄ )
(a51̂,2̂):

e1[Em
1udxm5ew~dz1md z̄!, e25e1,

c 1̂[2Em
1̂ udxm5ew/2$x~dz1md z̄!1 iad z̄ %, c 2̂5c 1̂.

~8!

Here we have used the notation (xm)5(z, z̄ ) and the vertical
bar denotes theu5 ū 50 component. We have also usedw

to mean theu5 ū 50 component of ln(rL). We should note
the relationw1 w̄5f. The spin connection associated with
the local Lorentz symmetry is given by

v[Vu52 i ~dz1md z̄!

~]2m̄ ]̄ !w̄2 ]̄ m̄1
i

2
ā x̄

12mm̄
1c.c.

~9!

As a consequence of the torsion constraints@11,10# this spin
connection satisfies

De1[de11 ie1v52 1
4 c 1̂c 1̂ and c.c. ~10!

N51 supergravity in the WZ supergauge can be regarded
as a minimal superextention of the bosonic gravity in the
sense that the theory has residual gauge symmetry under
general coordinate transformations and local supersymmetry
~SUSY! transformations generated by the spinor field param-
eter (e, ē )

dSUSYe
15 1

2 ec 1̂ and c.c.,

dSUSYc
1̂5De1 1

2 ē ~ iFe2f/2!e1 and c.c. ~11!

We are now ready to demonstrate the relationship be-
tween Osp~1u2! Chern-Simons gauge theory and 2DN51
induced supergravity in the WZ supergauge. For this purpose
we first introduce the Osp~1u2! connection

A[2vJ32 ileaJa1caQa , ~12!

wherea51,2, and (Ji ,Qa) ( i 51,2,3 anda51̂,2̂) are gen-
erators of the Osp~1u2! algebra:

@Ji ,Jj #5e i jkJk , @Ji ,Qa#52S s i

2i D
a

b

Qb ,

$Qa ,Qb%5
i

2
lS s i

2i D
a

g

egb . ~13!

It is possible to represent this connectionA by a 333
matrix-valued one-form. If we definee652e26 ie1 ~and
J652J27 iJ1), the connectionA is written as

A5S i

2
v 2

il

2
e2 2Ail

8
c 2̂

il

2
e1 2

i

2
v Ail

8
c 1̂

Ail

8
c 1̂ Ail

8
c 2̂ 0

D . ~14!

We should remark that the bosonic part of this representation
yields the SL(2,R) @or SU~2!# connection if the parameterl
is real @or pure imaginary#,3 corresponding to the case of
genusg>2 ~or g50).

Next we calculate the curvature of the connection. We
find

2For example, the Lorentz weights ofE6, E1̂, and E2̂ are 61,
1

1
2, and2

1
2, respectively.

3Note that this is true in the algebraic sense but not literally.
Namely, we have to perform the unitary transformation
A→A85e2pJ1/2AepJ1/2 in order to make the bosonic part
SL(2,R) valued in its original sense. The whole connectionA8 then
becomes Osp~1u2;R) valued.

56 2363OSP~1u2! CHERN-SIMONS GAUGE THEORY AS 2D . . .



F[dA1AA~[FiJi1FaQa!

52S dv1
il2

2
e1e22

l

4
c 1̂c 2̂D J3

2
il

2 SDe11
1

4
c 1̂c 1̂D J12

il

2 SDe21
1

4
c 2̂c 2̂D J2

1SDc 1̂2
il

2
e1c 2̂DQ1̂1SDc 2̂1

il

2
e2c 1̂DQ2̂ . ~15!

From this expression we see immediately thatF650 is
equivalent to the torsion condition~10!. Moreover, after a
somewhat tedious calculation, it turns out that the equations
F 35F1̂5F 2̂50 together with the equationF5lef/2 yield
the condition that the supercurvature in the WZ supergauge
is constant: R352il.

Let us now consider the local gauge transformation

dzA52dz1@A,z#, z5z3J31zaJa1eaQa . ~16!

The result of the computation tells us thatz3 generates local
Lorentz transformations and that the transformations gener-
ated byea are nothing but local SUSY transformations~11!
if we setF5lef/2. As for the transformations generated by
za, it is closely related to diffeomorphisms. This is because
diffeomorphisms of the flat connection are generated by
gauge parameters of the formz5jmAm and because we are
only interested in the case where the zweibein is nondegen-
erate.

From the above considerations we expect that Osp~1u2!
Chern-Simons gauge theory~CSGT! on R3S describes dy-
namics of super Teichmu¨ller space of super Riemann sur-
facesSS in the WZ supergauge, because any supervielbein
is related to a supervielbein with a constant supercurvature
by a unique super Weyl transformation@12#. We will see in
the following that the dynamics is in fact equivalent to that
of 2D N51 induced supergravity. We will use the canonical
quantization.

The action of Osp~1u2! CSGT is given by

S5
k

4pER3S
STr~ Ãd̃Ã1 2

3 ÃÃÃ!, ~17!

whereÃ5dtAt1A and d̃5dt]/]t1d stand for the connec-
tion and the exterior derivative defined onR3S, respec-
tively. STr denotes the invariant bilinear form in Osp~1u2!:

STr~JiJj !5d i j , STr~QaQb!52
il

2
eab , STr~JiQa!50.

After a ~311!-decomposition the action becomes

S5
k

4pE dtE
S
STr@AȦ12AtF#[Skin1Scon, ~18!

where Ȧ[(]/]t)A. The second termScon yields the Gauss
law constraintF50 and from the first termSkin we can read
off the symplectic structure. In terms of the component fields
Skin is written as

Skin5
k

4pE dtE
S
~22v̇zdzv z̄d z̄1l2ė1e21 ilċ 1̂c 2̂!.

~19!

Quantum commutation relations of the canonical operators
are obtained from the operator version ofi times the Poisson
brackets. We will choose the polarization in whichv
([vz), e1, and c 1̂ are diagonal. In this polarization the
wave functionals are holomorphic with respect to the com-
plex structure equipped with the space of super Riemann
surfaces. For our purpose it is more convenient to use the
parameters (v,w,m,x,a) as configuration variables. Their
canonical conjugate momenta are

pv52
k

2p
v z̄ ,

pw5
k

4pFl2ef~12mm̄!1
il

2
ef/2$x x̄ ~12mm̄!1 imxā

1 i m̄ x̄a2aā%G ,
pm52

k

4p
@l2efm̄1 ilef/2x~m̄ x̄ 2 i ā !#,

px5
ikl

4p
ef/2@ x̄ ~12mm̄!1 imā#,

pa52
kl

4p
~2m̄ x̄ 1 i ā !. ~20!

On quantization these conjugate momenta are represented by
2 i times the functional derivatives with respect to
the associated configuration variables:p f̂52 id/d f
( f 5v,w,m,x,a).

The physical wave functionalC@v,w,m,x,a# must sat-
isfy the Gauss law constraintsF̂•C50. Instead of solving
these constraints directly, we will solve a proper set of their
linear combinations which is classically equivalent to the set
of Gauss law constraints when the zweibein is nondegener-
ate. A convenient set is given by

d2zG3[2F3, d2zG1[
2i

l
e2wF1,

d2zG1̂[e2w/2F1̂2
x

2
G1,

d2zG2[2
kl

2p
~ewF21m̄ew̄F1!1

kl

4p
ef/2~ i ā2m̄ x̄ !G1̂

1xG2̂,

d2zG2̂[2
kl

4p
Few/2F2̂2

i ā2m̄ x̄

2
ef/2G1G . ~21!
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We adopt the ordering in which the momenta are put on the
right of the coordinates. Then the operator version of these
constraints are written as

Ĝ35 ]̄ v2
2p i

k
]S d

dv D1
2p

k

d

dw
,

Ĝ15~ ]̄ 2m]!w2]m2 ivm1
i

2
xa2

2p

k

d

dv
,

Ĝ152
ia

2
~]w1 iv!2 i ]a1S ]̄ 2m]2

1

2
]m Dx1

2p i

k

d

dx
,

Ĝ25~]w1 iv2]!
d

dw
2~ ]̄ m]22]m!

d

dm

1S 3

2
]a1

1

2
a] D d

da
1

1

2
~]x2x]!

d

dx
,

Ĝ25 i S ]̄ 2m]2
3

2
]m D d

da
1

ia

2

d

dm
1S 1

2
]w1

i

2
v2] D d

dx

1
x

2

d

dw
. ~22!

Now we can solve the constraint equationsĜI
•C50

(I 53,1,2,1̂,2̂). The procedure is almost parallel to that in
the bosonic case@6#. Namely, we first determine thev de-

pendence ofC by solvingĜ1
•C50 and then determine the

(w,x) dependence by solvingĜ3
•C5Ĝ1

•C50. The result
is

C@v,w,m,x,a#5expH ik

2p
~SO@v,w,m,x,a#

1SL@w,m,x,a#!J C@m,a#,

SO@v,w,m,x,a#5E
S
d2zF2

m

2
v22 ivH ~ ]̄ 2m]!w2]m

1
i

2
xaJ G ,

SL@w,m,x,a#5E
S
d2zF2

1

2
]w ]̄ w1mS 1

2
~]w!22]2w D

1
1

2
x~ ]̄ 2m]!x2

i

2
xa]w2 ix]a G .

~23!

By substituting this form of the wave functional, we can

reduce the remaining constraintsĜ2
•C5Ĝ2̂

•C50 to the
following equations for the functionalC@m,a#:

V̂•C@m,a#50,

V̂[2~ ]̄ 2m]22]m!
d

dm
1S 3

2
]a1

1

2
a] D d

da
1

ik

2p
]3m,

Ŝ•C@m,a#50,

Ŝ[S ]̄ 2m]2
3

2
]m D d

da
1

1

2
a

d

dm
1

ik

2p
]2a. ~24!

These equations are nothing but the Virasoro-Ward identities
for a superconformal field theory. These identities specify
the transformation laws of superconformal blocks under dif-
feomorphisms and local SUSY transformations@13#. A solu-
tion to these identities is known to be of the form@13#

C@m,a#5expS ik

2p
SV@m,a# D C̃@m,a#,

SV@m,a#52
1

2ES
d2zE d2uH ū

z
]D lnL

52
1

2ES
d2zE d2u

D̄Z2QD̄Q

]Z1Q]Q
DS ]2Z1Q]2Q

]Z1Q]Q D ,

~25!

where (Z,Q) are given by Eq.~7! and C̃@m,a# is a func-
tional of Beltrami differentials which is invariant under dif-
feomorphisms and local SUSY transformations. Thus we ob-
tain the physical state of Osp~1u2! CSGT in our polarization:

C@v,w,m,x,a#5expH ik

2p
~SO@v,w,m,x,a#

1SL@w,m,x,a#1SV@m,a#!J C̃@m,a#.

~26!

In order to discuss the dynamics of CSGT we have to
consider the inner product. Because the Hamiltonian in
CSGT is a linear combination of Gauss law constraints, the
transition amplitudes in CSGT reduce to the inner products
evaluated at a fixed time. In our polarization, the physically
relevant inner product which yields the correct Hermitian
conjugate condition is

^C1uC2&5E @dvde1de2dc 1̂dc 2̂#

3expS 2
ik

4pE ~22vzdzv z̄d z̄1l2e1e2

1 ilc 1̂c 2̂! DC1@vz ,e1,c 1̂#C2@vz ,e1,c 1̂#.

~27!

If we substitute Eq.~26! for C1 andC2, then thev integra-
tion is easily performed and we are left with
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^C1uC2&5E @de1de2dc 1̂dc 2̂#

3expS ik

2p
SGSC

~WZ!D C̃1@m,a#C̃2@m,a#, ~28!

where SGSC
(WZ)[SL1K@m,m̄#1SV@m,a#2SV@m,a#1Sl .

HereSL , K@m,m̄#, andSl stand for the super Liouville ac-
tion, the superextension of Verlinde’s local counterterm@14#,
and the cosmological term in the WZ supergauge, respec-
tively:

SL5E d2zF 21

2~12mm̄!
H ~]f2m̄ ]̄ f1 i ā x̄ !

3~ ]̄ f2m]f2 iax!2
1

2
~ax!~ ā x̄ !J

1
1

2
x~ ]̄ 2m]!x1

1

2
x̄ ~]2m̄ ]̄ ! x̄ 2 ix]a1 i x̄ ]̄ ā

1
]m2m ]̄ m̄

12mm̄
S ]f1

i

2
ā x̄ D

1
]̄ m̄2m̄]m

12mm̄
S ]̄ f2

i

2
ax D G ,

K@m,m̄#5E d2z
21

12mm̄
S ]m ]̄ m̄2

m̄

2
~]m!22

m

2
~ ]̄ m̄ !2D ,

Sl52
l2

2 E e1e22
il

2 E c 1̂c 2̂. ~29!

After a lengthy and tedious calculation we see that the inte-
grand in Eq.~28! is indeed invariant under diffeomorphisms
and local SUSY transformations~11!. The exponentSGSC

(WZ)

therefore yields a natural superextension of the generally co-
variant action for 2D induced bosonic gravity. Thus we can
conclude that the inner product of the physical states in
Osp~1u2! CSGT, Eq.~28!, gives rise to the partition function
~or transition amplitudes! of 2D N51 supergravity in the
WZ supergauge.

Next we consider the observables. In CSGT on a manifold
with topologyR3S, the connectionA on S is always con-

strained to be flat, and only global objects such as Wilson
loops or holonomies are relevant. In the following we will
demonstrate that the space of holonomies constructed from
the flat Osp~1u2! connectionsA is closely related to super
Teichmüller space of DeWitt super Riemann surfaces. We
restrict our discussion to the case of genusg>2 ~i.e.,l real!.

According to the uniformization theorem for super Rie-
mann surfaces@15#, any genusg>2 super Riemann surface
of Dewitt type @7# ~with a constant supercurvature! is repre-
sented as a quotient of the super-upper-half planeSH
equipped with the super Poincare´ geometry by a discrete
hyperbolic subgroup of Osp~1u2;R). This implies that super
Teichmüller space is represented as the set of homomor-
phisms ofp1(S) into Osp(1u2;R) modulo overall conjuga-
tions. What we have to examine is whether the holonomy of
a flat Osp(1u2;R) connection directly yields such a homo-
morphism. This is achieved by extending the result of the
bosonic case@6# to the case of supergravity.

We first note that the canonical supervielbein with the
constant supercurvatureR352il, i.e., the super Poincare´ ge-
ometry, is characterized by the conformal factor

r5
2

l

eig~z, z̄ ,u, ū !

Z2 Z̄2QQ̄
, ~30!

whereg(z, z̄ ,u, ū ) is an arbitrary phase factor which is real.
In the WZ supergauge the corresponding zweibein, gravitino,
and spin connection are

e15
2

l

eig0~z, z̄ !

J0
eZ0 and c.c.,

c 1̂52S 2

l

eig0~z, z̄ !

J0
D 1/2FeQ02eZ0

Q02Q̄0

J0
G and c.c. ,

v5
i

J0
~dZ01d Z̄01Q̄0dQ01Q0dQ̄0!2dg0~z, z̄ !,

~31!

where we have used the notationJ05Z02 Z̄02Q0Q̄0,
eZ05dZ01Q0dQ0, eQ05dQ0, and g0[gu. Substituting
these into Eq.~14!, we find that the Osp(1u2;R) connection
A is locally expressed as a pure gaugeA52g21dg with

g5S e
ig0

2 1
p i
4 Z0AJ0

21 e2
ig0

2 2
p i
4 Z̄0AJ0

21 ~Q̄0Z02Q0Z̄0!~J0!21

e
ig0

2 1
p i
4 AJ0

21 e2
ig0

2 2
p i
4 AJ0

21 ~Q̄02Q0!~J0!21

2e
ig0

2 1
p i
4 Q0AJ0

21 2e2
ig0

2 2
p i
4 Q̄0AJ0

21 12Q0Q̄0~J0!21
D . ~32!
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Because the connectionA does not have to be pure gauge
globally, the Osp(1u2)-valued fieldg(z, z̄ ) is not necessarily
single valued onS. When one goes around any noncontract-
ible loop b on the surfaceS, g(z, z̄ ) in general transforms
as

g→h@b#•g,h@b#5S a b bd1ae

c d dd1ce

d 2e 11de
D , ~33!

wherea,b,c,dPR are Grassmann even constants,d̄ 5d and
ē 5e are Grassmann odd constants, and the relation
ad2bc512de holds. This h@b# is nothing but the ho-
lonomy of the Osp(1u2;R) connectionA around the loopb.
This left multiplication induces the following transformation
of (Z0 , Z̄0 ,Q0 ,Q̄0 ,g0):

Z0→
aZ01b

cZ01d
1

Q0~2dZ01e!

~cZ01d!2
and c.c. ,

Q0→
2dZ01e

cZ01d
1

Q0

cZ01d
and c.c. ,

g0→g02 i lnS cZ01d1Q0~dd1ce!

c Z̄01d1Q̄0~dd1ce!
D . ~34!

In the WZ supergauge, the transformation of (Z, Z̄,Q,Q̄)
can be read off from that of (Z0 , Z̄0 ,Q0 ,Q̄0). In the present
case both transformations coincide. Namely, we find

Z→
aZ1b

cZ1d
1

Q~2dZ1e!

~cZ1d!2
,

Q→
2dZ1e

cZ1d
1

Q

cZ1d
and c.c. ~35!

This is the super Mo¨bius transformation which plays the es-
sential role in the uniformization theorem. If we regard
(Z, Z̄,Q,Q̄) as a complex coordinate system which maps the
super Riemann surfaceSS into the super-upper-half plane
SH, the holonomy group of the flat Osp(1u2;R) connection
A turns out to be identical to the discrete group by whichSH
is divided out. Thus we have explicitly shown the close re-
lationship between the moduli space of flat Osp(1u2;R) con-
nections and super Teichmu¨ller space.

Here we comment on spin structures. A spin structure
specifies whether or not the fermionic coordinateQ flips its
sign when one goes around each cycleb on S. This is de-
termined by the signature ofd ~or c if d50) in the
Osp(1u2;R) holonomyh@b#. In the bosonic case, we cannot
distinguish the difference between the identity (a5d51,
b5c5d5e50) and the inversion (a5d521 and
b5c5d5e50) and thus a Mo¨bius transformation is iso-
morphic to an element of PSL(2,R). In the super case, on the
other hand, the inversion is essentially different from the

identity because the former yields the spin structure which is
distinct from that of the latter. Owing to this property, a
choice of Osp(1u2;R) holonomy naturally specifies a unique
spin structure.

To summarize the results we have seen that Osp(1u2)
Chern-Simons gauge theory describes the dynamics of 2D
N51 induced supergravity in the Wess-Zumino supergauge.
Physical inner products of Osp(1u2) CSGT yield the parti-
tion function~or transition amplitudes! of 2D N51 quantum
supergravity. From the holonomy of the Osp(1u2) connec-
tion we can extract the spin structure and the super Teich-
müller parameters of the super Riemann surfaceSS.

Is there any possibility of exploiting these consequences?
In this paper we have used the polarization in which
(vz ,e1,c 1̂) are diagonal and obtained the partition function
of 2D N51 induced supergravity. On the other hand, in the
holomorphic polarization in whichAz is diagonal, it is well
known that the physical wave functional is given by the ex-
ponential of the Osp(1u2) WZ-Novikov-Witten ~WZNW!
action @16# in the case of a trivial topology.4 Using the
Polyakov-Wiegmann identity@17#, the inner product in the
holomorphic polarization reduces to the partition function of
the twisted Osp(1u2;C)/Osp(1u2;R) WZNW model. Be-
cause theGC/G WZNW model is a conformal field theory
which is well studied@19#, this may help the description of
2D induced~super!gravity. Before using such a description,
however, we will have to establish the direct relationship
between theGC/G WZNW model @with G5SL(2,R) or
Osp(1u2;R)# and 2D induced~super!gravity. This is not so
easy and is left to the future investigation.

As a by-product, we have obtained the generally super
covariant actionSGSC

(WZ) in the WZ supergauge. Actually this
action can be obtained from the expression

SGSC5E d2Zd2QF2
1

2
DQln~r r̄ !DQ̄ln~r r̄ !12ilAr r̄ G ,

~36!

which is manifestly invariant under reparametrizations of su-
percoordinates: (z, z̄ ,u, ū )→(z8, z̄8,u8, ū 8). This SGSC is
therefore regarded as a local expression of the generally su-
percovariant action for 2DN51 induced supergravity. Us-
ing this SGSC as a starting point, we can obtain the action in
an arbitrary gauge simply by fixing the gauge. This may
open a way to make a further breakthrough in 2D quantum
supergravity.
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4Exploiting this fact we can show that the light-cone gauge action
for N5

1
2 supergravity„SV@m,a# in Eq. ~25!… is related with the

Borel gaugedOsp(1u2) WZNW action through a Legendre trans-
form. This establishes the result obtained in Ref.@18# from a dif-
ferent viewpoint.
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