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Osp(1]2) Chern-Simons gauge theory as 2IN=1 induced supergravity
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We demonstrate the close relationship between Chern-Simons gauge theory with the gauge gi@@p Osp
andN=1 induced supergravity in two dimensions. More precisely, the inner product of the physical states in
the former yields the partition function of the latter evaluated in the Wess-Zumino supergauge. It is also shown
that the moduli space of flat O&2) connections naturally includes a super TeicHaruspace of super
Riemann surface$S0556-282(197)04516-3

PACS numbegps): 11.25.Pm, 04.60.Kz, 04.65e, 11.15--q

It is important to quantize two-dimension@D) induced i_ 0, 1.7 — 51
(supergravity because it describes the dynamics of a string E= \/;{e T28Deln(pp)},  BT=E @
world sheet induced by the motion @upejstrings in the
background without critical dimensiorid]. A number of
interesting phenomena such as the fractal structure have be
clarified by vigorous works made in the light-cone gauge X )
[2,3] and in the conformal gaudé5]. A local expression of 9z~ 9/9Z, De=3d/d®+®4d/JZ, and their complex conju-
the generally covariant action for 2D induced bosonic grav-Jates- _ _
ity was obtained by Verlind¢6] in terms of the Beltrami BecauseZ,Z) and (©,0) are smooth scalar functions of
coefficients. More precisely, he showed that the partitiorcoordinates £, z, 6, ) which are Grassmann even and odd,
function of the induced 2D gravity is obtained from the innerrespectively, we can exparef ande® by the rigid basis
product of physical states in SLE), Chern-Simons gauge
the_ory."He also showed exp_licitly how we can extract the ez=(ez+eZ_Hzﬁe"HZg+e7HzﬁA and c.c., )
Teichmuler parameters of Riemann surfaces from the ho- z 0

where p is the superconformal factore’=dz+0d0,
gﬂzd& and their complex conjugates constitute a local ba-
sis of one-forms onSY. Their dual vectors are given by

lonomy of flat SL(2R) connections.

In this paper we extend Verlinde’s results to 2D=1 e¥=(e?+ eZHZ;+ e’H5+ e"HZHﬁT
induced supergravity. Namely, starting from OsfRL 0 T8 T
Chern-Simons gauge theory, we obtain the supercovariant +(e’Hy+e’H + e"Hﬁﬁ\/K and c.c.

action for 2D N=1 induced supergravity in the Wess-

Zumino supergauge. We also demonstrate that the mOdUMereH,’)',, (M,sz,z_,e,e_) are called Beltrami coefficients

space of flat O.imz) connections yields Super Teighl‘rw .and A and 7 are called integrating factors. Owing to the
space of DeWitt super Riemann surfaces with arbitrary SPIRtructure equationsle?= —e®e® and de®=0, not all of

Strt(;ttu:jesst.)e " by brieflv reviewing the Beltrami naramegi. eS¢ coefficients are independent. It turs out that the Bel-
gin by y 9 P trami coefficients are local functionals &f; and H%(and

zation of supervielbeins in 2Dl=1 supergravity. A DeWitt X X X
super Riemann surfacgS, [7] is a fiber bundle over a Rie- their complex conjugatg¢snd thatr is locally expressed by

mann surfaceS [with the coordinate reference frame /A @ndHj. Moreover, the integrating factok is subject to

(z,z_)] whose fiber is a vector space parametrized by t\Nothe equation

Grassmann odd coordinate&@. The supervielbein for the ( 0

[
rigid superspace is given bye?=dz+ 6d¢, e’=de, and I~ E D— HLH_7HZ alinA = aH:— —2 sH2
their complex conjugates. Their dual vectors ared/dz, 0 Qo ? 4 HY o
D=4dld60+ 6l 9z, and their complex conjugates. According 3
to Refs.[9,10], any supervielbeifEA;A=+,—,1,2} which
represents Howe’s superspace geomgtdy can be written  The integrating factor\ is therefore regarded as a nonlocal
as functional of (HZH,HZ;) which is uniquely determined up to
_ superconformal redefinitions oZ(®). In consequence, 2D

E*=pe?, E =EY, N=1 induced supergravity is described by 20 local degrees
of freedom which are component fields of
(H5,H3HZH}) and of pp. Instead ofpp we will fre-

quently use the super Liouville fieldb=In(ppAA)
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'We will use the convention of Ref8] for differential forms. As =@+ Ox+ Ox + 6 6iF . Two-dimensionalN=1 supergrav-
for the complex conjugation of the product of two Grassmann oddty IS Invariant un%r graded local Lorentz transformations
variables, we adopt the rulgen) = x 7. p—¢€p, p—e '"“p (o is areal superfield The associated
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covariant derivative for a superfiel of Lorentz weight w N=1 supergravity in the WZ supergauge can be regarded
is given byDE =dE +iwEQ, whereQ is the graded spin as a minimal superextention of the bosonic gravity in the
connection sense that the theory has residual gauge symmetry under
R I general coordinate transformations and local supersymmetry
Q=—ie?dzInp +ie?ozinp—ie®Dglnp +ie®Dginp. (SUSY) transformations generated by the spinor field param-

4 eter e, €)

From this graded spin connection we can calculate the super- X

field whosef# 6 component yields the scalar curvatyif]. Ssusye =3eyt and c.c.,

We will henceforth call this superfield the “supercurvature”

Rj: - _
B - Ssusy/'=De+ 3 e(iFe %2 e’ andc.c. (11

Ry=—2(pp) *DeDain(pp). (5)

B . We are now ready to demonstrate the relationship be-
Because 2DN=1 supergravity should have_sym_metry tween Osfl2) Chern-Simons gauge theory and 201

under reparametrizations of the supercoordinates,, ),  induced supergravity in the WZ supergauge. For this purpose
there are a large number of choices to fix a gauge. From noye first introduce the O$f|2) connection

on we will consider a particular gauge fixing called the
Wess-ZuminaWZ) supergauge:
=—wl;—iNetd,+ ¥°Q,, 12
H=0, Hi=0u+00(-ia). (6)

wherea=1,2, and 0,,Q,) (i=1,2,3 anda=1,2) are gen-

This gauge-fixing condition is equivalent to the condition erators of the Os[2) algebra:

Z=270(2,2)+ 00y\JdZy+0y30, and c.c.,
B
- __[a
O=0y(2,2)+ 0iZy+ 0,90, and c.c. (7) (3 9i1=€ipedic, - [3,Qal= <2i ) aQ'B’

A merit of the WZ supergauge is that all the component
fields (except the auxiliary fieléF) appear in the lowest com- i i\
ponent of the supervielbein. Thus it is convenient to intro- {Qa.Qpt= SM 5| € (13
duce the zweibeine™(z,z) and the gravitino*(z,z) “
(a=1,2): . . . .
It is possible to represent this connectién by a 3x3
_ e . T S|
e =E}|dx"=e*(dz+udz), e T matrix-valued one-form. If we define™=—e“*+ie* (and
m ' J.=-J,%iJ;), the connectiorA is written as

Y= 2E;1n|dxm= e’ x(dz+pudz)+iadz }, ¢'§:E-

i iA in
- ? 7o e ¥
Here we have use(ﬂhe notatiax) = (z, z) and the vertical i i .
bar denotes thé= ¢=0 component. We have also used A= ?e+ —50 \/;lﬂl ) (14)
to mean thed= =0 component of IndA). We should note
the relationg+ ¢ = ¢. The spin connection associated with \/Elﬂi \/El/; 0
the local Lorentz symmetry is given by 8 8
(0—ud)p—du+ Izax We should remark that the bosonic part of this representation
w=0|=—i(dz+udz) _ +c.c. yields the SL(ZR) [or SU2)] connection if the parametar
1-pp is real [or pure imaginary® corresponding to the case of

(99 genusg=2 (or g=0).
_ ) _ Next we calculate the curvature of the connection. We
As a consequence of the torsion constrajits 10 this spin  fing

connection satisfies

Det=de" +ie"w=—;y'y' andc.c. (10 3Note that this is true in the algebraic sense but not literally.
Namely, we have to perform the unitary transformation
) ) A—A'=e ™12Ae™1? in order to make the bosonic part
2For example, the Lorentz weights &, E, andE? are =1, SL(2R) valued in its original sense. The whole connecidnthen
+ 3, and— 3, respectively. becomes Og|2;R) valued.
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F=dA+AA(=F I+ FQ, k - — 2 1,5
( Q) San=7- dtJ (—20,dzw dz+N\2%e" e +inyty?).
3

in2 N s os
do+ 7e*e—z¢1¢2>J3 (19

in 1 . . in 1 . . Quantum commutation relations of the canonical operators
——{Det+ = ytyt |, — | De + = PyY?|I_ are obtained from the operator versioni gimes the Poisson
2 4 2 4 . R ;
brackets. We will choose the polarization in whiah
5 IN s (=w,), e*, and y* are diagonal. In this polarization the
Dy*+—e ¢ |Qs. (19 i ic wi -
2 wave functionals are holomorphic with respect to the com
plex structure equipped with the space of super Riemann
From this expression we see immediately tifat=0 is  surfaces. For our purpose it is more convenient to use the
equivalent to the torsion conditiofL0). Moreover, after a parameters &, ¢,u,x,a) as configuration variables. Their
somewhat tedious calculation, it turns out that the equationéanonical conjugate momenta are
F3=Ft=F2=0 together with the equatiofi=\e?? yield
the condition that the supercurvature in the WZ supergauge L _
is constant: Rz=2i\.
Let us now consider the local gauge transformation

~ 1IN A
+ Dlﬂl—?e+¢2 Qi+

3 a a k 2.0 — A b2 7 . -
OA=—d{+[AL], (=330, €e"Q,. (16) Te=7 N € (1= ppu)+ e xx(1-pp) +ipxa

4

The result of the computation tells us thigtgenerates local - _
Lorentz transformations and that the transformations gener- tipxya—aal
ated bye® are nothing but local SUSY transformatio¢isl)
if we setF=\e??. As for the transformations generated by ‘
Z3, it is closely related to diffeomorphisms. This is because e IN20d i ad 2 (Y i
diffeomorphisms of the flat connection are generated by Tu 477[)\ etutine®x(ux—ia)l,
gauge parameters of the foréw= £MA,,, and because we are
only interested in the case where the zweibein is nondegen- ik\ o — -
erate. er:Ee‘/’ [X(1=pp)tipal,
From the above considerations we expect that(0O2p
Chern-Simons gauge theof@€SGT) on RX 2, describes dy-
namics of super Teichnfier space of super Riemann sur-
facesS2, in the WZ supergauge, because any supervielbein
is related to a supervielbein with a constant supercurvature
by a unique super Weyl transformatiph?]. We will see in  On quantization these conjugate momenta are represented by
the following that the dynamics is in fact equivalent to that—i times the functional derivatives with respect to

R e 20
o=~ g (Tuxtia). (20

of 2D_N =_1 induced supergravity. We will use the canonicalthe associated configuration variablesmr;=—i &/ 5f
quantization. (f=w,0,u,x ).
The action of Osfi[2) CSGT is given by The physical wave functional’[ w, ¢, u,x,a] must sat-
K isfy the Gauss law constrainta- ¥ =0. Instead of solving
S=_— STHAJA+2AAR), (17)  these constraints directly, we will solve a proper set of their
47 Jrxs linear combinations which is classically equivalent to the set

of Gauss law constraints when the zweibein is nondegener-
whereA=dtA+ A andd =dtd/Jt+d stand for the connec- ate. A convenient set is given by
tion and the exterior derivative defined X3, respec-

tively. STr denotes the invariant bilinear form in @%2): 2i
y Q |Q) dZZQSE _Jf:'3’ dZZg+E Te—<pj:+,

iA
ST(II) =38y, STHQUQW =5 €up, STIIQ)=O.

dZZgiE e <p/2fj._£g+
After a (3+1)-decomposition the action becomes 2

K ' dzzg’=—k—)\(e‘”}“+_e;]—‘+)+k—)\e‘f”2(ia_— )Gt
S:E dt ESTT[AA-FZAtf]ESkm—FScon, (18 T ox H A ~X

2
where A=(d/dt)A. The second tern$,,, yields the Gauss X9
law constraintF=0 and from the first terng,;, we can read JR—
off the symplectic structure. In terms of the component fields dzzgés _ k_’\ el2 2 la—puy 912G+ 21)
Siin IS written as A 2 '
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We adopt the ordering in which the momenta are put on thq%\lf[,u a]=0
right of the coordinates. Then the operator version of these ’ ’
constraints are written as

2 2 Sa 2w

- — 1) 3 1 o ik ,
VE—(a—,U«(?—Zé’,u)a-l— sdat zad|—+—3du,

Ry 2qi (9( 1) ) 27 O
= w— —— _— vl R

= (7 1) oo i +i 27w 6 3=l 3 5+1 5+ik2 04

= — — —lw —Xa— —/— —/—, = — - = —~—— T ——T — .
HO) QT ORTIOMT ZX X 4 50 Impi= o) s tgas T o e (24
. - o 1 omi S These equations are nothing but the Virasoro-Ward identities
Gl=— 7((9<p+iw)—iaa+ 9—pd— Ea'“ X+ o v for a superconformal field theory. These identities specify
X

the transformation laws of superconformal blocks under dif-
feomorphisms and local SUSY transformati¢t8]. A solu-

- _ 5 — o tion to these identities is known to be of the fofaS]
g_=((9qp+lw—r7)5—go—(r9,u(9—219,u,)$

ik -
wm,a]=exp(Z'—st[u.a])wm,a],

3 1 V6 1 )
+ E&a+§a& 54- E(&x—x&)a—x,
: : Sv[,u,a]=—EJ' dzzf d2gH%oDInA
GP=i a_—,ua—E(m>i+l—ai+(£a¢+l—w—a)i 20 '
2 foa 2w 122X 1 [, Dz-ODO _[#7+070
+)2_(5i. 22 :_ELd ZfdaaZJrG)a@ ( az+®a®)’
¢

(25

Now we can solve the constraint equatiods ¥=0  \yhere @,0) are given by Eq(7) and W[ u,«a] is a func-
(I=3,+,—,1,2). The procedure is almost parallel to that in tional of Beltrami differentials which is invariant under dif-
the bosonic casgs]. Namely, we first determine the de-  feomorphisms and local SUSY transformations. Thus we ob-

pendence off’ by solvingG* - ¥ =0 and then determine the tain the physical state of O&42) CSGT in our polarization:

(¢,x) dependence by solvin§3-\1f=&1-\1'=0. The result ik
is ‘P[w,qo,,uyx.a]=exp{ﬂ(so[w,¢>,u,x,a]

" —
‘P[w.%ﬂ,x,a]=eXD[2|—7T(So[w,<P,M,X,a] +S e, u,x,a]+S[u,a]) [ Y[y, al.

(26)

+5L[<P,M,X,a])}‘1’[/f«,a], _ _
In order to discuss the dynamics of CSGT we have to
consider the inner product. Because the Hamiltonian in
e CSGT is a linear combination of Gauss law constraints, the
—Se Tle (d-pd)e—dn transition amplitudes in CSGT reduce to the inner products
evaluated at a fixed time. In our polarization, the physically
relevant inner product which yields the correct Hermitian

' conjugate condition is

So[wxp.,u,x.a]:szzZ

<qf1|«1f2>:J [dode"de dyldy?]

1 - 1 y
E&Mso M§(5<p) ¢

Slemxal= [ %
ik —
1 i X ex —EJ(—ZdeZw?dZ-F)\ ete”
+§)(((9—,uo7))(—§)(a(9¢—i)(o7a

(23 +iwit/fé))‘l’l[wz,e*,dli]%[wz,e*,zpi].

By substituting this form of the wave functional, we can (27)

reduce the remaining constrain@h?-‘lfzééﬂlfzo to the If we substitute Eq(26) for ¥, andV,, then thew integra-
following equations for the functional’[ w,a]: tion is easily performed and we are left with
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(Wilw)= | [de*de-dyiay?

X ex;{ e
swz) —

where  Sgsc=S +K[u, wl+Sm.al-Sp,al+S,.
HereS , K[ u,u], andS, stand for the super Liouville ac-
tion, the superextension of Verlinde’s local countert¢im,

gW2)
Sesc

1[M al¥ e, (28)

and the cosmological term in the WZ supergauge, respe

tively:

s- ) o

_ 1 —
x(a¢—u&¢—iaxr—§(axﬂaxﬂ

] dp+i
2& MMJ(¢ wdd+iay)

1 1
+§X(6‘—,u<9))(+ E)((&—,u&))(—i)(&a-i-i)(aa

J Em
LT P j

1-pp

J 14 [
+M( 79— s ax

1-pp

—<3M3;;-§%3M)L—g(5;32

K[,u,ﬁ= f d221
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strained to be flat, and only global objects such as Wilson
loops or holonomies are relevant. In the following we will
demonstrate that the space of holonomies constructed from
the flat Osi1|2) connectionsA is closely related to super
Teichmiller space of DeWitt super Riemann surfaces. We
restrict our discussion to the case of geges2 (i.e., \ real).

According to the uniformization theorem for super Rie-
mann surfacefl5], any genugg=2 super Riemann surface
of Dewitt type[7] (with a constant supercurvatyns repre-
Csented as a quotient of the super-upper-half pl&te
equipped with the super Poincageometry by a discrete
hyperbolic subgroup of O$p2;R). This implies that super
Teichmiuler space is represented as the set of homomor-
phisms ofw,(2) into Osp(12;R) modulo overall conjuga-
tions. What we have to examine is whether the holonomy of
a flat Osp(12;R) connection directly yields such a homo-
morphism. This is achieved by extending the result of the
bosonic cas¢6] to the case of supergravity.

We first note that the canonical supervielbein with the
constant supercurvatuRy=2i\, i.e., the super Poincage-
ometry, is characterized by the conformal factor

2 @ 122,0,0)

_—— (30)
P"Nz-Z-00

Wherey(z,z_,a,e_) is an arbitrary phase factor which is real.
In the WZ supergauge the corresponding zweibein, gravitino,
and spin connection are

— iv0(2,2)
2 e
et=———¢€% and c.c.,
A Zo
A2 iN[ s
%=——fe%<——wa? (29
2 2 ivo(z, Z) 1/2]
~ 2 e'7
1_5| = z
. . . =2 = e’0—e 00— andc.c
After a lengthy and tedious calculation we see that the inte- = Eo
grand in Eq.(28) is indeed invariant under diffeomorphisms
and local SUSY transformationd1). The exponenS{2)
therefore yields a natural superextension of the generally co- [
w= :0(d20+d20+ ®0d®0+ 0d®0) d’yO(Z Z)

variant action for 2D induced bosonic gravity. Thus we can

conclude that the inner product of the physical states in (32
Osp(1/|2) CSGT, Eq.(28), gives rise to the partition function

(or transition amplitudesof 2D N=1 supergravity in the where we have used the notatidBy=2Zy— @o@)o,
WZ supergauge. e?0=dZy+0,d0,, e®=d0, and y,=7|. Subsututmg

Next we consider the observables. In CSGT on a manifoldhese into Eq(14), we find that the Osp(2;R) connection
with topologyRXx 2, the connectiorA on 2, is always con- A is locally expressed as a pure gauje —g~ dg with

Py P—

Wo

I'y i — T
7+ 4IZO\/ -1 “TZ Byt (00Zo—00Zo)(Eg)
Iy s iy e - — N\ —
0=| ezt TE, ! e 7 4'\/_ 1 (B-00)(Ey) ! (32
i i iy [y — —
ezt *TOuE, ! e T 4|®0\/ "1 1-0¢0¢(Eg) !
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Because the connectioh does not have to be pure gauge identity because the former yields the spin structure which is

g|oba”y, the Osp(HZ)_VEuued f|e|®(2,z_) is not necessar”y d|St|nCt from that of the latter. OW|ng to thIS propert.y, a
single valued or®.. When one goes around any noncontract-choice of Osp(12;R) holonomy naturally specifies a unique

ible loop B on the surface, g(z, z) in general transforms spin structure..
as PA €.9(z2)ing To summarize the results we have seen that Q2)(1

Chern-Simons gauge theory describes the dynamics of 2D
N=1 induced supergravity in the Wess-Zumino supergauge.

a b bétae Physical inner products of Osp@) CSGT vyield the parti-
g—h[B]-g,h[B]=[ ¢ d dé+ce], (33)  tion function(or transition amplitudgsof 2D N=1 quantum
S —e 145e supergravity. From the holonomy of the Ost)l connec-

tion we can extract the spin structure and the super Teich-
muller parameters of the super Riemann surf&2e

Is there any possibility of exploiting these consequences?
this paper we have used the polarization in which

(w,,e",yt) are diagonal and obtained the partition function
of 2D N=1 induced supergravity. On the other hand, in the
holomorphic polarization in whicl, is diagonal, it is well
known that the physical wave functional is given by the ex-
ponential of the Osp(R2) WZ-Novikov-Witten (WZNW)
aZytb Oy(—6Zp+e) action [16] in the case of a trivial topology.Using the
0— cZo+d (cZo+d)2 dcc., Polyakov-Wiegmann identity17], the inner product in the
0 holomorphic polarization reduces to the partition function of
the twisted Osp([2;C)/Osp(12;R) WZNW model. Be-

wherea,b,c,d e R are Grassmann even constaris; § and
e=¢€¢ are Grassmann odd constants, and the relatior|1n
ad—bc=1- e holds. Thish[B] is nothing but the ho-
lonomy of the Osp(}l2;R) connectionA around the loogs.
This left multiplication induces the following transformation

of (ZOIZ_()IG)OV@_O!’YO):

—8Zy+e€ (ON cause theG/G WZNW model is a conformal field theory
07 Zo+d + cZo+d andc.c. which is well studied 19], this may help the description of
2D induced(supejgravity. Before using such a description,
however, we will have to establish the direct relationship
[ cZo+d+0Oy(dS+ce) between theG¢/G WZNW model [with G=SL(2R) or
Yo— Yo~ iln (34)

Osp(12;R)] and 2D inducedsupejgravity. This is not so
easy and is left to the future investigation.

As a by-product, we have obtained the generally super
covariant actiorsg’gzc) in the WZ supergauge. Actually this

action can be obtained from the expression

cZy+d+0Oy(dé+ce)/

In the WZ supergauge, the transformation &, Z,0,0)

can be read off from that onQ),Zo,®0,®_o). In the present
case both transformations coincide. Namely, we find

az+b O(-b6Z+e) 1 -
2= czvd " (cZ+d)? ' Sesc=fddez@[—§D®|n(pp)D@ﬂn(pp)+2”\Vp4}
(36)
—6Z+¢€ Q]
00— 7+d +cZ+d and c.c. (35

which is manifestly invariant under reparametrizations of su-
This is the super Mhius transformation which plays the es- Percoordinates: 7, z,6, 0)—(z',z",6',6"). This Sgsc is
sential role in the uniformization theorem. If we regard therefore regarded as a local expression of the generally su-

(2,Z,0,0) as a complex coordinate system which maps thé?€rcovariant action for 2IN=1 induced supergravity. Us-
super Riemann surfac8S into the super-upper-half plane "9 this Sgsc @s a starting point, we can obtain the action in

SH, the holonomy group of the flat Osp@;R) connection an arbitrary gauge simply by fixing the gauge. This may
A turns out to be identical to the discrete group by whidd open a way to make a further breakthrough in 2D quantum

is divided out. Thus we have explicitly shown the close re_supergravny.
lationship between the m_(_)duli space of flat O§@(R) con- We would like to thank Professor M. Ninomiya and Pro-
nections and super Teichfler space. fessor Y. Matsuo for warm encouragements and careful read-

Here we comment on spin structures. A spin structuréngs of the manuscript. We are also grateful to Dr. K. Sug-
specifies whether or not the fermionic coordin@dlips its  iyama for useful discussions. The authors were supported by
sign when one goes around each cyglen 3. This is de- JSPS.
termined by the signature ofl (or ¢ if d=0) in the
Osp(12;R) holonomyh[ B]. In the bosonic case, we cannot
distinguish the difference between the identig=d=1, “4Exploiting this fact we can show that the light-cone gauge action
b=c=6=€=0) and the inversion g=d=-1 and for N=3 supergravity(S,[x, a] in Eq. (25) is related with the
b=c=6=€=0) and thus a Mbius transformation is iso- Borel gaugedOsp(12) WZNW action through a Legendre trans-
morphic to an element of PSL®). In the super case, on the form. This establishes the result obtained in R&8] from a dif-
other hand, the inversion is essentially different from theferent viewpoint.
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