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Systematics of string loop threshold corrections in orbifold models
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The string theory one-loop threshold corrections are studied in a background field approach due to Kiritsis
and Kounnas which uses space-time curvature as an infrared regulator. We review the conformal field theory
aspects of the method for the special case of the semiwormhole space-time solution. The comparison between
the string and effective field theories vacuum functionals is made for the low-derivative order, as well as for
certain higher-derivative, gauge and gravitational interactions. We study the dependence of string loop renor-
malization corrections on the infrared cutoff. Numerical applications are considered for a sample of four-
dimensional Abelian orbifold models with a view to deduce the systematic trends of the moduli-independent
threshold corrections. The implications on the perturbative string theory unification are examined. We present
numerical results for the gauge interactions coupling constants as well as for the quadratic order gravitational
(R?) and the quartic order gaug€{) interactions[S0556-282(97)03616-3

PACS numbes): 11.25.Mj, 11.10.Hi, 12.10.Kt

[. INTRODUCTION string theories have finite ultraviolet behavior but are subject
to infrared divergences associated with vacuum tadpoles of

With a single dimensionful free parametéhe Regge the massless modes.
slopea’) and a handful of dynamical parametéitse moduli The first item in the above list suggests that, unless some
fields vacuum expectation valyesdtring theory must strive at cancellation mechanism is at work, nothing prevents thresh-
providing a unified description for all the known elementaryold corrections from attaining large sizes. The second item
particles and their interactions. Weakly coupled solutions, irunderscores the importance of having a description of the
spite of the runaway dilaton vacuum sickness, have the imworld sheet theory consistent with conformal and modular
portant advantage of calculability. Both the gauge symmetnynvariance. As to the last item, it clearly points out the need
bosons and matter particles are then manifest as elementasy implementing a consistent infrared cutoff regularization
massless excitations, while the effective action can be corprocedure.
structed controllably using the string theory world sheet and Little attention was given so far to the issue of the infra-
space-time loop expansions. The excellent good contagked regularization scheme dependence. The original works
achieved by the solvable perturbative string theory model$1—3] mainly focused on the nonconstant, moduli or gauge
with particle physics phenomenology is surely an encouraggroup factors dependent, parts where the infrared sensitivity
ing sign. cancels away to some extent. The approach initiat¢d, ],

As is well known, the matching of loop contributions to and developed further ifp4—12), has served an important
the scattering amplitudes of a string theory to those of its lowpurpose in testing the string theory dualitigs,14. It has
energy,a’ —0 limit, field theory descendant, induces finite also been applied in several phenomenological stdigs
contributions to the local interactions coupling constants irR1]. Recently, a more complete approach was presented by
the effective action. These so-called heavy threshold corrediritsis and Kounna$22]. The idea is to use a curved space-
tions, which reflect the decoupling of massive string modestime as an infrared cutoff regulator, observing that such a
are expected to relax the restrictive unification constraintsegularization scheme can be consistently and workably re-
imposed on the various coupling constants at the tree levehlized for both string and field theories.

In particular, the departures from universal values of the Curved gravitational and gauge backgrounds are defined
gauge interactions coupling constants could indeed be larges the solutions of the string theory equations of motion, or
enough to have a phenomenological impact on the issue af the perturbatively equivalent equations expressing the
the high energy extrapolation of the standard model of theancellation of the world sheet conformal Weyl anomaly.

electroweak gauge interactions. The search for exact solutions of the classical theory has

Three main features distinguish the heavy threshold corbeen actively pursued in recent years, using the techniques of
rections in string theories from their grand unification theo-unitary coset model§23] or of solution-generating duality
ries analogues(i) The heavy modes decoupling in string transformation$24]. Solutions of the quantum theory, exact
theory involves summations over infinite towers of massiveto all orders ofa’, have also been discussed in cosmology
excitations;(ii) for weakly coupled string solutions, where [25] or particle physic§26] applications.(We have cited a
the string mass scale’ ~ 2 lies close to the Planck scale, it very small fraction of the extensive literature on this sub-
iS necessary to care about the back-reaction effects of gaugect) From the standpoint where a curved space time is
interactions on gravitational interactions and converdgly;  viewed primarily as a technical device, a convenient class of

solutions is provided by the models witi=4 world sheet
supersymmetn{27]. Solvable, perturbatively stable solu-
*Electronic address: chemtob@spht.saclay.cea.fr tions, which depend on a free parameter associated to the
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space-time curvature, can be found here by assembling t@ymmetry and an unbroken gauge symmetry, such as those
gether suitable direct products of compact or noncompaatbtained by toroidal compactification from the ten-
Wess-Zumino-Witten(WZW) current algebrac models  dimensional theory, the exact structure of the one-l&dp
[27-29. The simplest solution of this kind, the so-called interactions can be determing49,50, thanks to the super-
semiwormhole space-time solutigB0], is associated with Symmetry relationship with the Green-Schwarz anomaly
the conformal theoryW("=SU(2)xU(1), and has the Canceling counterterrBXs. These properties of the quartic
asymptotic(large levelk) geometry,S*XR*. A curvature- 9auge interactions _have bee_n recently exploited to test the
regularized heterotic string theory can then be constructed b§irong-weak coupling duality map between the four-
substituting for the world sheet coordinate and spin fields ofimensional toroidally compactified heterotic and type |
the uncompactified four-dimensional Minkowski space time,tN€ories[51]. _ o o
conformal (left-moving sector and superconformalright- Regarding the numerical applications, our motivations re-

moving sector blocks of appropriate central charge and main essentially unchgnged with respect to our previo_us
world sheet supersymmetry. work [20]. We shall mainly focus on the constant, moduli-

An important consequence in this approach of the solvindependent component of threshold corrections since this
ability of the space-time conformal block is the existence off€Mains the poorly understood part. We calculate threshold

marginal deformations of the theory which represent conforC0rTections for a sample of representative orbifold models
mally invariant perturbations by constant gravitational orCOVering arange of gauge symmetry groups and matter fields

gauge backgrounds. This makes the approach well suited fGontent, with a view to uncover possible systematic trends.
studies of the higher-derivative interactions in the effective! "€ updated results for the gauge coupling constants re-
action. String loop corrections to the effective actions of ten{0rt€d in the present work include the gravitational back-
dimensional string theories were discussed some time ag&action effects. , L ,
[31,37. Undertaking the analogous program for four- The present paper includes thrgg qddltlonal sections. In
dimensional string theories is a challenging task becausg®C- !, we review the approach of Kiritsis and Kounfi2a],
each compactification comes with its particular gauge sym@S applied to the semiwormhole space-time solution. The fol-

metry group and matter content. Moreover, the nonrenormaf©Wing items are discussed: Conformal field theory aspects
ization constraints are less restrictive in four dimensions. ©f the semiwormhole solution and identification of certain of

Since the initial proposal of the curvature regularizationitS Zero-mode deformations; matching of the string vacuum

approach, further developments were reported by Kiritsigunctional with the field theory effective action; effective ac-
and Kounnag33] and Petropoulos and Riz$34,35, inde-  tloN renormalization; extension to th®-term auxiliary
pendently and in collaboratidi86—34. In the present work fields. Proceeding next to the phenomenological part of the
we shall focus on similar issues. Our principal goal will be toPaPer, we present in Sec. |ll numerical results for the
perform a quantitative study of threshold corrections to thd0duli-independent threshold corrections in the gauge cou-
gauge and gravitational interactions, including certainP!ing constants, the quadratic gravitational interactions, and
higher-derivative terms, based on four-dimensional orbifoldth€ quartic order gauge interactions. A brief discussion of the
models. While some overlap between our presentation angioduli-dependent threshold corrections is given. Section IV
that of the above authors is unavoidable, in reviewing theiSUmmarizes our conclusions. Appendix Al provides techni-

approach, we shall try to bring out the essential points angal help for th_e partition fun_ction expansion in powers of the
emphasize certain complementary aspects. background fields; Appendix A2 for the action of zero-mode

Our discussion of the higher-derivative interactions fo-OP€rators; Appendix A3 for the approximate evaluation of

cuses on the quadratic terms in the curvature tensor fiel@€rtain modular integrals.
(R?) and the quartic terms in the gauge fiel@). Although

of academic interest for particle physics phenomenology, be- Il. INFRARED REGULARIZATION APPROACH
cause of the enormous suppression by one powet otla- OF KIRITSIS AND KOUNNAS

tive to the conventional linear gravity term, the quadratic

gravitational interactions have important implications on the A. Conformal field theory aspects

consistency of quantized gravifg9—41 and as a mecha-
nism to trigger supersymmetry breakipd]. The supergrav-
ity completion of quadratic gravity is discussed [#3,44] Consider the familiar way of constructing four-
and the constraints on its structure from mixednodel or  dimensional heterotic string solutions, consistently with the
Kahler and gravitational anomalies [#5]. The studies of two-dimensional world sheet Weyl conformal symmetry.
string loop corrections to the topological Gauss-BonnefOne assembles the coordinate and spinor fields describing
gravitational interaction, initiated if5], have been pursued the (uncompactified, compactified, gaygarget space into
further in[13,46,41. conformal (left-moving sector and superconformalright-

The quartic gauge interactions are affected at low energie®0ving sector blocks whose total central charges,
by an even larger factar’? suppression relative to the mini- ¢=26,c =15, cancel those of the conformal and supercon-
mal quadratic interactions. Nevertheless, their contributionformal ghosts systems. An infrared regularized theory can
could have some phenomenological impact at high energieghen be defined by replacing the groups of free field coordi-
particularly in the event that nature would have chosen thaates for the uncompactified Minkowski space-tiR& by
so-called weak scale string solutig@ks], characterized by a those of interacting conformal and superconformal theories
tension parameter close to the Fermi scale. For the class ebrresponding to &compact or noncompacturved space-
four-dimensional heterotic string vacua witki=4 super- time background. The background gravitational and gauge

1. Partition function
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fields are required to obey the conformal symmetry equa- L _ L L
(7, T)II_ZO 2™y (T X (12 +2akk( Ty (3)

tions of motion and to depend on at least one fmevature Zk[
parameter which monitors the decompactification limit.

a

B

A very convenient space-time background is that of the L — _
semiwormhole solution. This is the simplest choice among d/herer=ry+ir;, 7=71,—i7, denote the world sheet torus
large family of solutiong[28,29,27, having a world sheet modular parameter and, 8 are spin structure labels taking
N=4 superconformal algebra. The semiwormhole backthe values (G). The affine Lie group character amdfunc-
ground is described by an $2),XU(1)q nonlinear o  tions, defined generically as
model given by the direct product of a ledeMWZW model _
for the spatial coordinates, times a noncompaduville or X k(T W) =Tr(groe™?m"ls),
Feigin-Fuchg model with background chardg@ for the time
coordinate X°(z, z) = X%z) + X°(z). The levelk is a free S (rw)= S 7 12e 2mikwy
discrete integral parameter representing the space-time cur- e ye[M+(\/K)] '
vature, or mass gap, such that oo retrieves the decompac- ) _
tification limit. To fit the requisite central charge, WhereM is the group long root lattice and the representa-
c=[3k/(k+2)]+1+3Q%=4, one sets the background tion hlghest welght, are, for the' unitary rgpresentatlons of
Charge alQ=[2/(k+ 2)]1/2' The Ieft—moving sector Sg)k SU(2)k, Wlth |=2] € [O, S ,k] twice the spin of the repre-
current algebra is described by three current generatoR€Ntation, given by the familiar formulS3]
li(2)[i=1,2,3] obeying the operator product expansion
(OPB (roy = Zrrakr2(TW)

XLk, CiArw)

1 i i €kl (2)
@l =5 St T @ CLk(T.wW) =B k(7 W) = 9 k(7.W),

L
wherez,w are world sheet complex coordinates and we use ¥, x(7,w)= >, q[”*(L’ZK)]Zex;{ —2miK|n+ R)w}
the so-called field theory normalization convention for the nez
highest root vector-squared lengti=1. The right-moving )

sector includes, in addition to the 8),xU(1)q current \ynare the summation inden is twice the spin projection
algebra with generators;(z) and time coordinat&X®(z),  and g=e2™". The SL(2Z) modular group transformation
four free fermion fieldsy,(z) [a=0,1,2,3 which build up  laws of Z,[ ] are similar to those of [ %]/ 7)?:

an affine S@M) ;=SU(2),4+ X SU(2)4- level 1 algebra, with

enerators 1 . 1)
g S( ——— :Zk 2; _>e47rlkyézk[ },
T Y
1 s
S =2(= Yot + 2 €)= —0H+,e"2He"2H] _
V2 T(ro7+1):2, 5 Hezﬂ'kyzzk[ 51y}. ®)

[i=3,(1+i2),(1=12)], @ For k even, not multiple of 4, the S@);»,~SU(2)./Z, or-

Sbifold model partition function is constructed by means of

where the bosonic field counterparts of the fermion field the projection]53:

H=(z) take values on circleS! of (dimensionlessradii set
at t.he self-dual valuer.=R/\/?=1.. The combined a+|ge- Z5a3),,,0 T'T_):(“'S+TS)ZU(T’T_)_ZSU(2>|<(T'T_)
braic system of bosonic and fermionic operatots ,S")
can be embedded in ak=4,c =6 superconformal algebra,
whose[stress tensor, supersymmetry, (8Jgroup| genera-
tors (T,G2,S) are constructed by forming suitable products
of the elementary field operators| (,.S",S) [28,29,52. X — —
Aside from the global symmetry under &), the _,:20)('*(7))('*(7)
semiwormhole world sheet theory is symmetric under the
diagonal vector subgroup, $2Jy of SU2),- X SU(2), :}E o257
with generatorsN;=1;+S~ [i=1,2,3]. The unbroken dis- 25 K
crete symmetries of itd/=4 superconformal algebra include
theZ} parity described bg?™S" whereS" is the represen- Zy denoting theZ-singlet partition function of the un-
tation spin and, fork even, theZ, automorphism of twisted sector andsy ) that of the covering group.
SU(2),, denotedZ; , which acts on the generatdrs S, of We shall need to consider the class of compactified het-
SU(2) and SU?2),,-. Both of these parities play an essential erotic string modelsw(k“)x K with an internal space Kahler
role with respect to the space-time supersymmetry. To exmanifold K allowing for A/ conserved supercharges. One
pose theZ, parity, it is convenient to introduce the auxiliary must distinguish here the cases of maximal space-time super-
functions symmetry, V=4, from the nonmaximal cased/<2. The

k
(14S+T 3 X Dxix(7)

Y

SICXS) ®)
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maximal case, corresponding, say, Ko=T® or sz(k‘}) The following two representations of the functidtfu),
X T2, allows in principle for four conserved supersymmetry defining the semiwormhole partition function, E@), will
charges, even undé; : prove useful later:
i 1 . mlm—nr|?
N | , X - em(ernern)EXL{—(

9:(Z)ZGXF{E(H+iH M1, (w) 2M(m,n§):gzz 4p’r,

o i _ \/7—2 E 2 eiwnq[ZM{m—(n+l)/2}+n/2;/,]2

0.(z)=ex E(H*iH’*) , (7) (mn)yez

X@zﬂ{mf(nﬂ)/z}fn/zﬂ]{

whereH’ = are bosonic fields analoguesidf for the inter-

nal space fermions. However, since the two char@eéz) X(w)=[Zr(p) = Zx(2p)],

have nonlocal OPE with th&#V(*) superconformal algebra

generators and are hence unphysical, these models have only Z(u)=+r, > qAMmetnm?q@ame—nin? (g
N=2 supersymmetry. The halving of the space-time super- (mn)ez?

symmetry(from N=4 to N=2) takes place because, in ad-

g:tcl)?j:Iatr(?in;[/geriaﬁ?nvr(e)netgir:)?: oisgtrﬁ]“ozsigtse ghg:jlzov:/li\:ﬁ re.use of the familiar conformal field theory methodoldd].
Proj 9 The representation given by the first line in @) is well

et r+ . .
spect toe?™(S "), one must also project with respect 10 gyjited to studying the decompactification limito. At
the Q|screte22 symmetry. The construction of partition fixed 7, one directly infers that i 0Zw
functions for the maximal supersymmetry case is dlscusseg1+o(e71m2 e 72/,}) The representation in the second
in [52,33. For the nonmaximal case, corresponding to ! X

4ine involves the partition functio@(x = 1/r) for the lattice
choice of internal space which preserves supersymmetr: P T(p )

N=2 (K=T4Z,5T%) of N=1 (K=T%G). the charges ¥(1,1) of radiusR=r+a'=a'/u. This is a modular-

-, ; 2 invariant function of r obeying the duality property,
6~ are not conserved. Since tIZ% ;ymmetry group then Z+(w)=Z+(1/x). The second representation in E§) can
cannot be embedded K, the projection need only involve e girectly used in the limit,— to derive an exponen-
the Conventionazg Symmetry[33] In particular, for both t|a||y Convergent asymptotic expansion

N=1,2 compactifications, the $8),,, partition function

These formulas were obtained[iB2] and can be derived by

factorizes out in the expression of the full partition function. . — 1 IX(p) (7-2)3/2[ Py
Thus, for models obtained through the substitution, T“mOOZW(T’ T)=- 20V(p) ou? V() |\ ©
R*XK—W®xK, the string one-loop amplitudes are de-
rived from those associated with a flat space-time by insert- 1 ()
ing the correction factor ——ze Tt = A(u—2u) |,
— T@EU2))  X'(w) (10)
2T =600~ 2aV
SU2  27V(w) valid for fixed 2. We observe that the limitg:—0 and
(\/T— )31 o T,—% do not commute, reflecting the nonuniform conver-
_ W20 - > e dimaBz 7 gence of the sums over momentum and winding integers
\Y, 2 B (7.7) i ; by
(w) ap=0(1/2) and n, respectively. Indeed, wheredsy—1 if the limit
— k u—0 is taken first, taking the limit,— o prior to u—0,
(r2mn)® — — -
= 2 xkDxik(n) yields Zy—0.
V(m) | 1=0(even

‘ 2. Marginal deformations

+ 2 kD xeer( T, €)) Consider the regularized zero-mode conformal generators
| =1(odd) for the heterotic string semiwormhole solutigyf”) with an

orbifold six-dimensional internal spa¢€

where the derivative is defined &€ (u)=(d/du?)X(w),
and the normalization factor V(SU(2))=1/87u®

=(k+2)%%87 corresponds to théstring theory-correctad j+ > 2

volume of the group space manifold, &Y,~ S with a Lo=—————+ >, —+N+E,—1,
dimensionless radial scale parameters (k+2)Y%=1/u. k+2 2 Ka

The prefactor (/7,7 7)% accounts for the determinant of the 5
free bosonic spatial coordinates. Furthermore, describing the
momentum modes in the time coordinat¢l), model by =
the continuous series of unitary representations 07 k42 2 &2
exdv2/a’ BX%(z,2)], [B=ipo—(Q/2)] will vyield for

X%(z,z) the same determinantal factor {#,7) as fora Where the S(P),XU(1)q conformal weights contribute
free bosonic coordinate. additively as [j(j+1)/(k+2)+Q?%8]=[j(j+1)+%]/

1 2
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(k+2), Eq is the vacuum energy shift from the internal spacestatement holds fo¥y in relation with a constant curvature
degrees of freedom, arld,N are the oscillator number op- gravitational field Rap) ., . With parameter$® andR inde-
erators. We have denoted the zero-mode charges for the Carendent ofz, z, the perturbed action depends then solely on

tan subalgebra of the fermionic $8), level 1, affine algebra the zero-mode operators,
(two-dimensional transverse space-time and six-dimensional

internal spaceby (Q,Q;,Q,,Qs) and those for the Cartan a o

subalgebra of the unbroken gauge symmetry grolys,, 0S=—2m(27,) mJ (Q+13)

of levelsk,, by J,. The normalization conventions are such a

Eat . Ja(1)Ip(0) = Sap(ka/2) + - - -, R » ) 14
= + e 1 I - + p—

Q.(1)Qu(0)=6,p No confusion should arise from us K(k+2) Q l'3

ing the same symbols to denote the current densifiesc-

tions ofz, ) and thelr associated zero modes. where we have accounted for the change of coordinate vari-

Let us focus on the space-timés(13,Q) and gaugel,  aples from the real(Euclidean metrl): orthogonal set
operators and rewrite the conformal generators succinctly as— (0y,05) [0,1]2 such thad 2= dcrl+d02, to the com-
2 12 2 2 plex setz= (o +7t)/2, z=(o+ rt)/2 usingfd2c = [d?z\/h
L0=7+ ?3+ cee Lozz k—a+ f’+ -, (12 —27-2fdzd z The zero-mode conformal generators of the
a a

perturbed theory,l(; ,L_(’,), can now be identified by compar-

where the ellipses in Eq12) stand for all the remaining ing the Lagrangian and Hamiltonian representations of the
contributions implicit in Eq.(11). Observing that the con- World sheet one-loop functional integral,

served charges 5 and | 3+Q tend, in the decompactifica-
tion limit k— 0, to the space orbital and angular momentum Z:J [DX][D e oS
helicity operators, one is led to describe the perturbations

due to finite gauge and gravitational background fields in

d2
terms of the conformal vertex operators, = ff —Tr(e2mm2(Lo* Lo>e2|wl(Lo Lo>)
F 72
F= 277J m J(D[13(2)+Q(2)], One can then describe the conformal perturbatiéBsas
a

deformations of the Cartan subalgebra tori for the conserved
fermionic and gauge symmetry groups by defining an asso-
ciated extended Narain orthogonal coset moduli space, with

\ f (D[ 13(2)+Q(2)], (13 -
R 2m \/ '3 a lattice of conserved chargds(r +1,r +1), wherer is the

rank of the gauge group ard that of the SO(2) group of
where Q(z) = (i/2) g $iy =iy, is the spatial helicity conserved fermionic charges. The one unit additions here
current density, havin@=Q, as the zero-mode component refer to thel, | 3 charges. The vertex operator parameters
of its Laurent series expanS|orQ(z) EnEan -n-1 F? R provide us with a local description of the moduli space
Added to the world sheet actioi®,, the extra action of deformations. A description of the global structure, incor-
8S=Vr+Z,V¢ is a conformal weight(1,1) marginal porating the back-reaction effects, is developed by acting
perturbation leaving the conformal symmetry of theon the zero-mode lattice with the orthogonal group
model intact. While the case of greatest practical interessO( + 1,r + 1,R). The transformations which reproduce the
of conformal operators with constant field strengthperturbations in Eq(14) decompose into three factor)
parameters exists only for nonflat theories, the flatThe right-moving sector rotation of angle 6’
space time limit is useful to set the constant normaliza-= cos [k/(k+2)]*? which introduces the total angular mo-
tion factors in Eqg.(13). In the o-model classical limit mentum projection and its orthogonal complement,
of large k, where the generators can be expanded with
respect to the space coordinaté¥(z,z)[a=1,2,3] as | , |_3 Q |_39, Q—e
=—iVKI2Tr(1,9"*9Q) = VKI2(0Xa— 3 €apX°IX°+ - ), e Kz
using,g(z, z) =27 we find thatv2 reproduces the ver-
tex operator for an uniform electromagnetic fiélg,,,

15+Q —215+kQ |
(k+2)Y2[2k(k+2)]4?)
(15

(i) the left-moving sector rotation of angke which mixes

a the space-time and gauge group charges,

Ost -
V(A;):%J dzaA;(axu.-.)—k,

a

Iy J I3 Jz) ETPIOR S
a/yy— _lpFa yv —,— | = ==, co sin ,sin
[ALC0==2FuX"], WK Vi) K K e Tk
with the identificationF2= \/EgstF’i‘z wheregsg; is the string J
theory coupling constant. The fermionic terms, indicated by +cosﬂ—a); (16)
ellipses, are reconstructed by supersymmetry. A similar \/—a
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(iii) the Lorentz boost of hyperbolic anglg2 which mixes B, ,(X), dilaton ®(X)] and gauge background fields

the rotated left sector and right sector generators, (AL:Asz) which appear as coupling constants in the
— — — space-time and gauge sectors of the world sheetodel
3/ 307y [/ ht,/_/ I action:
Jk _\/E coshz— sin 5 _\/E .
- = - 2 B Hy XY
fao || taw |\ ok costy | | L2 S~z | oo
Wk Wk K _ .
+1 lpgpavﬂlplg)eyv(x)—‘r&alz aBF ]
o v [
The induced conformal generators increments, Tle ﬂ[ﬁaxwﬁx BM,,(X)+(9aXfL‘(9,3F,AM(X)]
o2 T2 =2 T2 —a'VhRPD(X)}, (21)
5|__:% |39"/’ _Q_+b+...
0 2 2 k using familiar notations for the world sheet metric and anti-

k
o ) symmetric tensors, covariant derivative, and curvature,
N COShJ/—l[(QJr 1 5)? lg . J° h,e,V 3= dzX*D, ,R?). To deduce the semiwormhole solu-
B 2 { k+2 + CO$W+SII']9 Jk, tion background fields, it is convenient to write the @)}
WZW action in_ the realization [55] g(z z)
L = l12(2.2)02g(112)8(2.2) 71 g(1/2)a(z.2) 02 wjith the spatial coor-
cosf Jk +sing \/k—a) ' (18) dinates anglesye[0,27],8€[0,7],a<[0,27]. Including
the action for the 1) gauge coordinate fields,
obey level matchingdlL = L(’)— |_0:|__6—|_—OE 5|_—0, by con- d(2)= \/TkaFI(Z), such thatl,(z) = &(ﬁ@, and that for the
struction. Comparing the dependencesbf,, 5L, for infini- noncompact time coordinate fiel°(z, z), the total action
tesimal values of the parametedRsF? with that of the per- reads
turbed actionsS, Eq. (14), using the formal identification

. . . k _ _ _ _
6S=—A4mT1,6L o imposes the following connection formulas Soz—f dzz( dada+dBdB+dydy+2coBdady
between the two sets of parameteRsK?) and (9, ¢): 87

o Qtlg I3 :
+siny————
hlﬂ(k+2)1’2

F2=sinhy sind, R=sinhy cos, +2_ka(9¢% _LJ d2z i,aXOE(O
k 2 a
cosﬁ) 1 ( R) ,
| ., sinhy=(F32+R?)'2,
(sm& (F22+ R?)12 F2 hjr=( ) + ! JhR2QX?|. (22
(19 2\2a’
Using these relations, the conformal operator increments ca@ne can now represent the marginal perturbations associated
also be expressed in the alternate forms to a finite constant magnetic field and an infinitesimal
X constant gravitational field\ in terms. ofihe Cartan subal-
RI—3+Fa Jé gebra generators| ;= dy+cosBde, |3=da+cosBdy, by
o 1 (Q_+|_3)2 Jk \/Ea adding toS, the extra action
5L0:5L0:_C_ +
2 k+2 (F22+R?) Jkkq S K _
o 5s=2—Hf dzzl3(z)Ja(z)+5)\8—J d?z15(2)15(2)
(Q+15) R|3+FaJa) 4 4
vk+2 k k vkk,H — _
vk Vka = 2; f d%z( 9 a+cosBd y)dd
1 Q+1y 1 [ 1 32\ 2
:E‘/C+u+_ R_3+|:a ) KS\ s .
Vk+2 - Jc | vk VKa + ﬁf d?z( da+cosBdy)(dy+coBia). (23
(Q+ 1) _ o . .
T Tk (200 Since a,y are Killing (isometry coordinates of the semi-

wormhole manifold, this has an orthogonal coset moduli
whereC, = + 1+ (1+F22+R?)12 The additional terms, of SPace of vacua described bW e O(2,2Z)\0(2,2R)/
O(F?2,R?) and beyond, with respect to those in Ea4), O(2R)XO(2R), where M is a 4x4 matrix constructed
which are given by the term involving the factér_ in the from the metric and torsion tensors in the basis of Killing
first line of Eq.(20), are associated with the back-reaction ce0rdinates, 6..=(y= a)/2, which tran’sforms #mdevﬂ
corrections. e O(2,2R), to leadingO(1/k), asM—M'=QMQ "', along
The deformed theory can be represented in still anothewith the dilaton shift,®—®'=®+ 7In det(G'G™ ). The
parametrization by means of the generalized gravitationatase of a finite parametar can then be described by means
background fields [metric tensor G,,(X), two-form  of the so-called solution-generating transformation method
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[55,56]. Starting with the unperturbed background fields, de-malized with respect to the flat space-time limit,

notedG,B, one performs first the particular nonlinear trans-k—,A—1, such thae{® =gs=gy /2, the string theory

formation. M —QMQT loop expansion parameter, identifies with the four-
’ ' dimensional gauge coupling constant in the string theory

Gt G- 18 normalization(The relationship between the field and string
M=| . R theories normalized coupling constants and gauge potentials,
B'G™* G+B'G™'B characterized by a highest root of squared lengtk 1 and
Yy?=2, respectively, is described byg; =20,
_1/R+S R-S Ay=Aq\2, leaving the producAg invariant)
“2lR=S R+S [R.SeO(2R)]. The comparison of the dependence of the conformal

weights on the background fields, E@4), with the corre-
specialized to the casR=S', with R a two-dimensional sponding dependence of the mass spectrum for particle
rotation of anglea, followed by the variables rescalings, propagation in the same background fields, based on the
6, — 6, Icosa,0_— 0_/(coma—ksina), and a constant shift of mass-shell conditionsa( /4)M?2=L, can be usefi33] to es-
By g+ — By 4+ + cosma(kcosa+sina), corresponding to a total tablish the connection formulas between thenodel param-
derivative term. The deformed WZW model backgroundeters[H,\] and the vertex operators parametgts, R]:
fields depend on the rotation angle parametehrough the

two parameters [55] A\, =coga+(ki2)(ksirfa—sin2a), Fa R
\_=(k/2) (ksirfa—sin2a). Expressing the perturbed action = . Na=42C,, A_=\2—. (25
Sp+ 8S so as to achieve a matching with the generic form of V2c, o

the world sheet action in Eq21), gives us the following
background fields, solutions of the classical string equationhis yields the explicit formulas
of motion:

K " Fa/2
Gy=1, G'BBZZ’ Gpa=0, Gp,=0, 1+ (1+F2+RY?
Fa
k Ay —A_CcOB 8H2C052,8 :_[1_‘1_1Fa2_%R2+ %Fa2R2+%R4+O(Fa2R4,R6)],
Caa=7 5 P V2
G _k Ai—A_CcOB SHT 1+R+(1+FaZ+R2)1/2 12
- «~ T ) =
YYo4 S o 1—R+(1+F3+R2)12
_K[A cogs—\_  8H*coss =1+3(1- }F)R+5(1- EF3)R?+ O(F32R% R?),
ay— 4 - 2 ’
Y 4 S 5 (26)
B, =B,.=0, B :E m , where the second equations give the power expansions for
pa kY 4 o small deformation parameters.
1 G 1 _ .
O—-Py=— Z|n deg =— E|n§+ In(gy), B. String theory vacuum functional
0 and field theory effective action
VKA, 2k H The one-loop partition function for the deformed string
o3 =\/k—aAy=2\/@5 [6=\,+\_cos3]. theory,
(24) 1 dzT r—7
o . . Z(Fa,R)=—f —Tr(g"oq"0), (27)
Because of the invariance under a uniform constant rescaling 2)g 1

of A, ,NA_,H, one can group\.. in a single parametei
€[0], which is defined ash.=\*(1/\). The unper- definesZ(F%R) as the generating functional of one-loop
turbed space-time cas¢j=0A=1, is described by the vacuum-to-vacuum transition amplitudes with external line

gravitational background fields, insertions of the background field$? R. For four-
dimensional heterotic string orbifold models, one can write
Gu=1, Gau=GCps=G,,=k/4, the explicit formula
B.,=G.,=(ki4)cosB,
@y Gay= (KA COPB 2(F2 R)= AR fdzr 1 Zy
Do=—QX\2a" =~ X Ja' (k+2). T (am? Je 2005 [l*

The spatial coordinates are to be identified as

’ P —471o06L
La, B, v]=[X™ Ja’K][m=1,2,3]. The dilaton field is nor- X2 Zo(0,0)Zg(@)e” 2,
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.1 — —1 K,(k+2) R? ([ = —, k+2
__ _1\2a+2B_— _a . 2_
> 2%( 1) 22 x(@he(g ) B2 kx| | @19 gy
1 1 o , Kk k(k+2)
Xzazﬁ 20,% 7(g e e’ B), (28) LI ..
_ 8 B+h; 7 41)°Z, F
ST EL QLY o A (47 Zac
=ty =t 15L1/2+hi
16m? VR r  Zy o, —
=wf d?rry—=2," Zo(q,9)Za(q)
- a+tg, g ﬁa’-%—glr 3 a( + ) F nn
B+h B’ +hp,
zg(q)=11 I1 (29 o o
R x[<Q+ 1 5)*05+6[ka(Q+ 1 3)%+ (k+2) 3]
The factor 1#, in Eq. (27) arises from the ghost contribu-
tions. The internal and gauge spaces determinantal factors in Ka(k+2) 1
the partition function, Eq(29), are denoted by, andZg, {ﬁ— —(Q+ 1 3)2\]4
256r°7, 8w,

respectively. The summations over the right and left sector
spin structures ¢,8) and (@,8,a’,8’) and the left and 3
right sector orbifold spatial and gauge twists — O+ 12 272
(gi,h),(g,,h,,0,:,h,/) are represented by the primed sum- i 647727’2[ka(Q+ )"k 2) %] } (Y
mation symbol. The sums include the twisted subsector de-

generacy factorsy(g,h), the discrete torsion phase factor

€(g,h), and the phase factorg(g,h;a,8;a’,8’), which af-  The basic assumption of the background field approach con-
fect the extended GSO orbifold projection. More informationcerns the equivalence of the low energy string theory limit to
concerning these factors, the definition of Dedekinéunc-  an effective point field theory. Substituting in the corre-
tion 7(7) and Jacobif functions 9{”](7), especially the sponding effective action, denot&{;, the expressions for
phase conventions, is provided[iR0]. The space-time vol- the gauge and gravitational fields for the semiwormhole
ume V) appears through the integration over the flat limit background, we expect th8 will take the same functional

D=4 Minkowski space-time translations zero modes, form asZ with respect toF? and R. Specifically, we shall
proceed as follows: First, we write a general ansatz for the
dP L V(@) effective action, at the tree and one-loop levels, as a function
a'2v<D>f pe "2 P=—————. (300 of the bosonic components of the gravitational and gauge
(27) (4m°7p) fields G,,,,B,,,® A% of universal character. The motiva-

Bigns for including the two-form and dilaton fields are in-
épired partly from consideration of the underlying four-
dimensional string theory, partly from a possible embedding
in a ten-dimensional theory, where these fields are part of the
Z(F3,R)= E Z, F™R". gravitational supermultiplet. The structure &f; is strongly
(mmez2 constrained by the requirements of gauge symmetry, global
_ ) ~ (holomorphic couplings and local N=1 supersymmetry,
The power expansions &f(F? R) out to quartic orders in  ang of the combined axioniéB=dA and Peccei-Quinn
F%R are provided in Appendix Al. The first few terms, symmetries acting on the two-form and dilaton fields, which

The dependence on the background field parameters can
exposed by expanding the exponential factor inside the trac

relevant for our purposes here, read are bosonic partners in the dilaton four-dimensional chiral
superfield. Next, we substitute 8. the semiwormhole

v# d?r Zy , _ background field solutions. Finally, we make a term-by-term
Zog > Zo(0,9)Z6(), identification of powers ofF2 R between the string theory

- i "3 o3
2(2m)"JF T2 m functional Z and the corresponding field theory functional
formed by adding toS.; the contributions from the one-

(4m) [ Z, F3,Z0 R?] loop massless modes. The matching equations for the coef-
ficients of F?,R are further analyzed as functional relations
@) d’r Zy , — Fa2 with respect to the infrared cutoff K/
=4V LT_Z e 2 Zo(0,0)Z(q) ka(K+2) The N=1 supersymmetric four-dimensional effective

bosonic action, including the tree and one-loop level terms,
up to quadratiqquartig order in derivatives of the gravita-
tional (gauge fields, but omitting momentarily matter fields,
takes the general form

Ka

>< [ —
87y

S — k+2
(Q+13)%- %HJ ?-
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!
a

1 1 1 'k
seﬁ=?f d4X\/€[?ZA+(e‘2‘I’+ZR)R+(e‘2‘1’+Z¢)4(DM<I>)2—(e‘2‘1’+ZH)1—2(HWp)2— g 2 (e 2"+ Zpa)

a

121,312

X(Fiy)z—’_a,[(e_2¢+le)tl(RMVpa)2+(e_2¢+ZZR)t2(R,uV)2+(e_zq)—‘rZSR)tSRZ]_ 8 : ; (e™%?®

wv'vpt pp wvvpt palon

a/3
+Zora)r (F2 F2 F2 )_EE Ka[(e 2P+ Z1ra)y(F5 ) A(F po) 2+ (€7 2P+ Zpra)SoF 5 FO Fo,Fa, 1|+ - -,
a

(32

where the saturation of space-time indices employs the fahave been explicitly incorporated in E@2). The renormal-
miliar convention FW)Z=FWF’”, ..., using the metric ization constanZga in Eq. (32) identifies then with the one-
tensorG,,, to raise and lower indices. In terms of the differ- loop contribution to the inverse squared gauge coupling con-
ential form notations, withA=A ,dX*,w=w,dX* as the stant 162. For a shortcut derivation of the above tree-level
gauge and spin connections one-forms, matrices in the gaugelations, one can apply a dimensional reduction argument
and tangent space-time & group, A=A%T,,w starting with the ten-dimensional heterotic string effective
= wapJap, the field strength two-forms and space-covariantaction [59,60. This is a valid procedure in the heterotic
derivative are F=dA+A? R=dw+ »?,D=d+w, where string for the gravitational interactions and for those gauge

R=1Rap,,dX*/\dX". The alternate tensorial notation will interactions which arise from the gauge speazopposed to

also be used for the curvature scaReR*. and the Rie- the internal spadesector. The internal space coordinates
s contribute then through a volume factor which can be ab-

mann and Ricci curvature tensoR;LVpa,RW:RZM. The . . ; .
tree and one-loop level terms in E@2) can be recognized sprbed_by tra_nsform_mg the ten-dimensional into the four-
dimensional dilaton field.

by the specific coupling with the dilaton fiet?9~2)®, with , . S
the valuegy=0,1 for the genus parameter of the world sheet We shall also need information about the higher

surface. We have accounted for the fact that a cosmologic qerivative gauge and gravitational interactions at the tree
: . 9CTvel. Unfortunately, no systematic studies seem to exist for
constant termZ, is only present at one-loop level. The

o : ) : the gravitational coupling constants of naive dimension-four,
T e o e Ser, ssociled Wt 72 iz and euen lss for the gauge couplng constants o
! gaug dimension-six[, or dimension-eights, ,. The cubic gauge

gravitational - second = Chern-Simons - three-form termsinteraction termF23 in Eq. (32) has been included for com-

pleteness purposes only, since its projection onto the Cartan
subalgebra vanishes by virtue of the antisymmetry with re-
o spect to the space-time indices. We have considered only the

Hooo= B — =1 (@3y) o= (@3) urols subset of higher-derivative operators with a maximal number
prpm UleBel g e o of field strength factors, and disregarded the independent in-
teractions involving covariant derivatives, such as the naive

[(l)3y,(1)3|_, such thatd(l)gszr(F/\F),dng:Tr(R/\R)]
in the form familiar from ten-dimensional string theory,

(©3v) o= THALF L~ 3ALALAD, dimension-six interaction® ,F#*D*F% -+, which can be
expressed in terms of quartic order fermionic couplings by
(031) pvp=TH @R, — 30[,0,10,), use of the equations of motion. We have also omitted writing

a large number of dimension-four generalized gravitational
(33) interactions, involving the two-form and dilaton fields,

given schematically ag59] 8S.=/G[(DH)?+RHH
While the structure oH in the ten-dimensional case is mo- +R(D®)?+ (D®)?(D2®)+H(DH)(D®)+- - -].
tivated by considerations of supergravity and anomalies can- At this point we should recall that a subset of the coupling
cellation, the analogous structure for the four-dimensionatonstants infSy; are ambiguous due to the freedom of field
case rather relies on the fact that the sti@matrix elements  redefinition. These inherent limitations of the first-quantized
for the three-point functionBGG,BAA, ... are insensitive on-shell formalism of string theory afflict the description of
to the internal space sector. Moreover, since the vertethe four-dimensional effective action in the same manner as
BAA is not renormalized by string loop effedis7], no in-  they do in the ten-dimensional case, at the tree |g3@)60
ternal renormalization constant is needed in the definitioras well as the one-loop levé47]. Thus, the metric tensor
of H. redefinitionséG ,,= a'(b;R,,,+b3RG,,+ - - -), with field-

The familiar unification relation$58] for the tree-level independent constant coefficiertts leave the structure of

coupling constants of thginstein-Hilberj gravitational and Sy unaffected, except for the following shifts in the qua-

1,p]zo-"uB,,p_O-',/B J,B

91,B up~ 9pPwvu-

(Yang-Mills) gauge interactions, dratic interactionsst,= — by, 8tg= [ b, + (D —2)bs]. More
5 ) ) generally, the consideration of both metric and dilaton field
2¢" 167Gy, 9x _ k03 redefinitions is known to leave one with only two so-called

a’ a’ gSt:2 T2 essential gravitational constants at order’ [60],
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SeﬁNf\/§e*2¢>[(RMpG)2+pl((yﬂq))ﬂ_ For the gravita- dimensional reduction prescription lacks generality here
tional interactions, a convenient, physically motivated choicesince compactification partially breaks the ten-dimensional
is to set the values of the two, so-callacpriori ambiguous ~ gauge symmetry. Nevertheless, for orientation purposes, let
Coup”ng Constantiz,ts in Eq (32), in such a way that the US rewrite in our present notations the gauge interactions for
tree-level quadratic gravitation interactions become proporthe ten-dimensionakgx Eg heterotic string theory, as given
tional to the so-called Gauss-Bonritg, topological term:  in [59],

T(GB) = (R,uvpa')z_ 4( R;LV)Z—'_ R2

=(C 2= 2(R,,)2+ 2R2 L1o= VGie™ 219 ; — 3tr(FaF®)
mvpo nv
1 4 (1,2
X(M)=35 | d*X\GTiee + iy [BU(FEFUFYFD) + A FFOFRF?)
1 d
:16#ZJMT“R/\R ) (34 —tr(FAF3)tr(FPFP) — 2tr(FAFO)tr(F2FP)] |,
whereC,,,,, is the conformal invariant Weyl curvature ten- (36

sor anngb= % €apcdRcq 1S the dual curvature two-form. The

formula in _the second Ii_ne summarizes the Gau_ss—Bonn%here the group indices,b run over all the grougicharged
theorem, withy(M) denoting the Euler characteristic of the ang unchargedgenerators and we use an operator notation
four-dimensional manifoldv. In order to fix now the abso- \yhere the trace symbol refers to a sum over the space-time

lute size of the quadratic gravitation terms, one can apply &,gices trE2FP) =F2 Fb ... Identifying the part of the

dimensional reduction procedl_Jre sta_rting With. the k”O‘{V” re'dimensionally redugédwiLr{t.eraction diagonal in the Cartan
sults for the tree-level ten-dimensional actifB9]. This

subalgebra generators with E@2), gives us the following
yields the resultst; = §,t,= — 3,t3=3. qualitative estimates for the four-dimensional tree-level cou-
The local and global supersymmetry transformations inpling constantss; = — (s,/4)=3/2"= 3.
Set provide useful information on certain additional bosonic  The dependence on the three independent constagts
interactions. Thus, the necessity of quadratic gravitationatould possibly be resolved by considering background fields
interactions arises from the fact that these are related by temtepending on two deformation parameters in additioR4o
dimensional supergravity to the gravitational Chern-SimonsThere is no guarantee, however, that such a procedure would
term inH. More directly, the four-dimensional supersymme-be successful, due to the field redefinition ambiguities. We
try constraints on the quadratic derivative order interactionsare led, at a preliminary stage, to restrict consideration to the
impose the following supersymmetry completion in the tree-specific, but unknown, linear combinations of the higher-
level action, derivative interactions which are singled out by the structure
of the string theory background fields. Before discussing this
point, we need to express the effective act®pin terms of
the parameterE?,R. For this purpose, we substitute the so-
lutions (24) for the gravitational and gauge field backgrounds
rpeRATP7 T, (85 in the effective actior(32), perform the integration over the
space-time manifold by using

1
OSe= J d4x\/az{R(S)[(FZV)2+ Tcel
+1(S)[F, F*+R

whereS(X) = 3{e " 2*X +i[a(X)/87?]} is the dilaton chiral

superfield combining the dilaton with the real scalar field K372

dual to the two-form,dB=xda, such that(a) is the f d4X\/G=——(1—2H?2)12
#-vacuum angle. The one-loop contributions are strongly 4
constrained by consideration of supersymmetry in combina- . . - sing
tion with the duality symmetrie§8,45]. Of course, a fixed % f dxof daf dyf dg——
T(cp) interaction at the tree level does not imply that the 0 0 0 g
same combination should also occur in the one-loop interac-

1
tion, excluding there the so-called nake(B?M(,p[,)2 or :V<4>(1_2H2)1/2f d(coss) ,
(CLu00)? terms. -1, 1 1
KVpo . . . . . . ANt —+|N——|coB
An analogous situation arises with the cubic and quartic A I

order gauge interactions. The terms appearing in (B8)
comprise the set of independent space-time structures, con-
sistent with the use of equations of motion and neglect ofVere
fermionic terms. However, the decomposition with respect to

the gauge symmetry group dependence in(Bg), where we NG
have ignored the charged generators and the cross terms be-

tween the Cartan subalgebra generators, will bring more in- f dx°
dependent terms depending on the gauge group. Also, the

1
=— f d¥XGo=m?k*?= (2m)3V(pe), (37)
a
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and expand the integrals in powers RfF2. To perform

2333

where the coefficients, , are associated with the omitted

these tasks we have used the symbolic calculationkigher-derivative interactions angi with the uncalculated
MATHEMATICA software package. The leading terms in theo-model loop corrections. The dependencekan the string

power expansion of the one-loop part of the action read:

F*2 R? 4/3 F** 3R?
sty 2, 1- - vz - 5+ T

4 a2 2 4
- 0 | = _ a2 2
+zq,k(1 5|~ Zup (B F2+R?)

3F2? 263R2)
9+ —+

Zarila| 9% —g—F o

Zears (F2) 4+
- Fak—ka( )tz

2

24

+ ZZR2t2 3+

+O(F32))

2

3+ o7

+ Zletl

+O(Fa2))]

1 S,
T S12apit 5 Zort

Fad4 ... | (38)

theory functionsZ,, ., appears explicitly through the powers
of k andk+2 and implicitly through the zero-mode opera-
tors and the partition function factat, . The identification
for the quadraticF3? term, retaining the leading order at
k—, involves a specific linear combination of the gauge
and gravitational field one-loop renormalization constants,
denoted byg:

2
(4772) 5(477)2

1 kg kK,
7" 3 (220t Zet 1620+ 572,

a

4k d?r

(k+2) FT_ZZW

)5

a2__ a _ ka(k+2) _ﬁ
87T, (87Ty)? \VON

20 =

= W(Zz,o—

ZoZ
x> =8

7’ n?
k

x| J (40)

The cubic gauge interaction®® cancel out, as already We have used an explicit representation of the zero-mode
pointed out. The renormalization constants associated Witbpﬁrators discussed in Appendix A2. The action 5(
the interactions of increasing derivative order are accompas.|,)2 gives rise to the terms involving the derivative:

nied by increasing powers ofkl/as follows simply from the  The free derivative operator, in EGt0), is understood to act
fact thatk/«" is the s-model loop expansion parameter. We gy on the factorX’ (). The discussion greatly simplifies

have only displayed in Eq38) the leading powers of k/for

each interaction. The omitted dimension-four interactions

(DH)?, ..., enter atO(1/k?). Higher powers in X should
also be present, since the background fields in (B4 are
solutions of the tree-level actiorsy truncated to the

dimension-four interactions, or equivalently, prior to the con-
sideration of o-model loop contributions. Accounting for
these effects will induce, for each of the interactions, correc

tion factors of the form [1+(1/k)(a;+a,R?
+agF32+ .. .)+0(1/k?)], which multiply the renormaliza-
tion constantsZ, ,Zg, ..
terms in 1k will appear explicitly in the following.

While the coefficients oF2™R" in S.;; stand for 1P(one-

particle irreduciblgé amplitudes with respect to the massless

modes, the corresponding coefficientZirstand for the full

amplitudes, including massless and massive modes. One ¢

match the two expansions, Eq®8) and (31), only after

adding toS. (or subtracting fron¥Z) the one-loop massless
denote
Z(F®R) =2 (mn)c 22ZmnF?"R". The leading order constant

mode contributions, which we shall

term yields the functional equality, as a functionkof

. 4 12
V@ Zyt  (BZr+ Zo=8Zy+X1Zy) + 17 (3Zgrets

+Zoroty+ Zigety + X2 +Y) + - - [ =20~ 200,

(39

.. Theneed for these subleading

in the supersymmetric case, since the only nonvanishing con-
tributions there are those arising from tQ& operator inser-
tions. The functional relationg, =0, z c=0, in EqQ.(39),
imply then, Z, =0, corresponding to a vanishing one-loop
cosmological constant. If one accepts the fact @abn the
right-hand side of Eq40) contributes taZga only, then one
easily infers from theO(k°) term the equality, (Zo+Zg
+16Z,)=0. Since a derivation based on tBematrix ap-
proach for the heterotic string, provides us with the equalities
[36] Zg=0 (nonrenormalized Newton constanand Z

=0, one deduce¥Z4=0, so that the absence of wave-
function renormalization for the two-form field entails its
absence for the dilation field. These relations are consistent
with the matching of theD(1/k) terms in Eq.(39). It also
gollows that, for supersymmetric vacua, the right-hand side
3 Eq. (40) gives us the entire one-loop corrections to the
gauge coupling constang;;z. We shall continue using the
primed coupling constant notation to remind ourselves of the
general case.

The quadratic order gravitational constants appear first in
the quadratic ordeR? terms, where they are mixed with the
renormalization constants of the gravitational multiplet,
Zg. ... . It would be desirable, of course, to be able to
separate the various constants here. The consideration of
higher-order or mixed term®(F#?R?) or O(R*), not pro-
vided in Eq.(38), could possibly give us other independent
linear combinations. However, these relations would involve
still higher-order interactions. Resolving the dependence on
the three independent coupling constafis.t; is probably
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beyond the possibilities of the present formalism, because of (4)?

the field redefinition ambiguities. Also, for the quartic gauge ng =

interactions, resolving the dependence on the two coupling R?
constantss; and unfolding their group theory substructure,

raises technical complications beyond the scope of this work.

As stated above, we shall restrict ourselves in this work to

the specific linear combinations arising from the string
theory perturbationR® andF2. This leads us to introduce two
effective quadratic gravitational and quartic gauge coupling
constantgyg2 and OFs defined as linear combinations of the

independent coupling constants by the equality

(4)

Sl loop__ 4k2 (26I3R2t3+ 10122R2t2+ 14]ZlR2tl) R2

56
1k k2
R
1
W(Zo,z_zo,z)
2k d2 zozG
ZwX
(k+2) |:7'2
i{ { e} ka2 ]
X| = IN—| + —d,]
T ” 6
i k+2 k(k+2)| zg,
X\ BT T T Rary?| Ty 42

The formulas in Eqsi40) and(42) essentially agree with the
results reported b}36], up to a few minor modifications due

to different conventions. The derivativés, 9-in Eq. (42)

V(4) S2 a4
k2k2 Slzl|:4+ 222|:4 F
B \/(4)2R2 1 4VWR* 1 41
k* g2 k&2 gl
a- 1 loop

do not act on any of the factors other than the space-time
partition functionX’(u). In the limit x—0, their action is
simply given bydtnX'(w)=—(1/4i 75), with 4, obtained by
complex conjugation. For supersymmetric vacua, the vanish-

ing of the constant&, ¢ r  give us in principle the equality

The tree-level value ofggz may be obtained indirectly
through a comparison with the results from tBenatrix ap-

proach[5,45,44. We findgr2=gyx. For the gauge case, the
tree-level value ogFg is unknown. If one could only retain

the constans;, say, then a comparison with E6) would
give graa=(yx. In the foIIowmg, we shall parametrize the g ot -
tree-level value anga4 gx/sa, where s, are group-

g(?z:ng. This would seem to imply that no terms Gf(k)
can be present on the right-hand side of E®), in contra-
diction to what is actually found by a careful analysis of the
k dependencésee Eq(60) below]. The reason for the mis-
match in Eq.(42) is due to our omission of the higher-
derivative interactionsRH?,(DH)?, . ..

in constructing

The identification of Eq(321) for the string theory quartic

dependent unknown quantities which are expected, howeveorder F3* term, with the corresponding field theory term in

to be of order unity.
The identification between Eq&31) and (38) for the R?

Eq. (38), gives us an equation for a linear combination of the
quartic gauge interaction coupling constag];a4 and the

term gives an equation for a linear combination, denoteqenormalization constants of the lower-order interactions.

1/ng, of the gravitational coupling constant and the otherDenoting the uncalculated coefficients &g,Xg, ..., we
renormalization constants, have
(4m)? 2 2,2 2 , 2 : ,
2 E(4’77) +k kaXAZA+kka(XRZR+Xq)Zq)+XHZH+XAZA)+kkaXF(ZFa+X,IAZA)+ka E XiRZZiR2+y1
g,|:4a g,:4a =1
wk2 [ d?r 3k
_ TR ~74 ayd_ a 2
V(4)(240 Z40= 3 L 72| |4E ZoZg| £Q ( (Q%) 7TTZQa"' 4#275)
{304 3 3 3 z
72 a 2 2 40
+§Q (8777'2 87T27'§ Qa 4 +k 2567T2 2Qa 4 37_% Qa” V(4)
=—12de LS 2424 160723 52+—3
3 e 7'7'2| 7]|4 04G a 277,
12 - — 1 3 1 240
_ " 1a2nyr2 12 12 12 _ +
’7T7'2J Q (Q 4777'2) 47727'22Q ( T, > (k)} V! v’ (43
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where we use the convenient abbreviati@is=Q+ | ; and  Wherey denotes the space-time helicity. The dependence on
Q§=(8/ka)J§, such that TrQ§)=2. In the linear combina- q,q which appears in the low, q expansions, may be writ-
tion, denoted byg.., the unspecified coefficients of type ten schematically as

XA ,XRr, - - . correspond to the easily calculable higher-order 72

terms in the expansion & #"™2%0, The coefficients of type ZoZo — — a

X\,Y1, - .. arise from the omitted higher-derivative interac- E' W(QJr I 5)2 1

tions and from theo-model loop corrections to the back- 7 Eu(7)

ground fields which we have not calculated. It is advisable to

refrain from expanding the right-hand side in powerskof J2

until one exhibits th& dependence of the modular integrals. (= DF(E—y?) 1

This is the reason for introducing the auxiliary quantities, =X 1 209+ 0(c?)
- q

{=[k/(k+2)]?=1—(4/k)+O(1k?), |
71 RN
X | —=+1o+0(g™) | (ro+0(qM)), 45
£=—K2[2(k+2)]=— (k/2)+1—(2/k)+ O(1k?). g TlotO@ et O@™). (49
The last equation in Eq43) provides a useful simplified Where the power N of the next-to-leading order terms is
formula for the loop correction to the?* interaction, where ~determined for orbifold models by the order of the orbifold
we retained theD(k®) term only, while dropping th@©(k)  Point symmetry group. The string theory trace sums include

andO(1/Kk") terms. the contributions from the physical, on-shell modes,
(Lo—Lg)=0, as well as from the non-level-matched modes,
C. Renormalized effective action (Lo—Lo) € Z. The modular invariance constraints are essen-

tial to ensure the convergence in the projected sums of the
modular integrals at,—cc. While the massless mode con-
We proceed now to the final stage of the discussiontributions to thel2 and 1 operators involve then the product
which consists in identifying the string vacuum functional | r, those of E,(r) enter with the combination
integral Z with the effective actionSy, after subtracting |, —24 _;r,,.
from Z the one-loop field theory contributions induced by  Since we keep the infrared cutoff fixed, the low energy
St~ For this purpose, we shall need to expose, on the ongheory must be defined accordingly as a finite curvature field
hand, the string theory “massless mode” contributions andtheory with respect to the same set of space-time background
on the other hand, the field theory high energy mode contrifields as in the string theory. Fortunately, there is no need to
butions. We use quotes here to remind ourselves that, beedo a new calculation for this case, since the result can be
cause of the finite mass gap, set py the finite curvature obtained by applying the’ —0 limit and using the familiar
theory has no massless modes as such, but instead a towergghrespondence formulas between the string theory modular

momentum and winding massive modes whose masses djitegral and the field theory heat kerr&chwinger proper-
sent to zero at the four-dimensional decompactification limittime) representations,

The contributions of the would-be massless modes are iso-

1. Gauge interaction coupling constants

lated by taking the limitg— 0, inside the integrand of Eq. , 1 , 1 i , oty

(40), individually for the different terms associated with the W =G THeT e TT it inmIn=l g
power factors 1) for all the factors excepf,,. As long as

one works with a finite infrared cutojfk, the limitq—0 can d?r » dty o drs

be taken safely. The various terms in the partition function c1, J ity f A2 Ty (46)

reduce, atg—0, to appropriate supertradéermion parity
(—1)F-weighted sums over the would-be massless modes ased on the identificatiom—tP°~e~7¢' 2P The field
The connection fo_rmulas can be obtained by using the resul eory-truncated space-time partition function factor is ob-
describing the action of the zero-mode operators on the statg

. ; o Zined by removing the winding mode terms in the sum rep-
oron the determma'nt'al factors, which are detailed in A.ppen'resentation, which corresponds to performing the substitu-
dix A2. Theg—0 limit for the angular momentum projec-

tion operator is given by tions
5 2

e a T e Z, & T
(Q+1 3)2—>2qd—_1n:ﬁ =

a 7 L .

= \/7_2‘93(i 7'2:“5) = _03(_.—2) ,
»  oan i d;02 e | Tope
= _i_l_ ) 2 ng + I_ TH X
12 "=11-qn 7 ﬂ% X( )= X(pe) = Nl O3(i ou2) — O3(4i mu2)]. (47)
B

The ultraviolet finiteness of closed strings, which follows
from the restriction to a fundamental domain of the modular

+0(a), (44 group, so thatty=ma’7,=(y/3/2)7a’, indicates that the

1
:(_1)F(_1_2+X2
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parameter ' actually plays the role of a string theory ul- Recapitulating our procedure, we consider for the low-
traviolet cutoff. In order to separate out the divergent contri-order interaction coupling constantsZnand Sy« the sum of
butions arising from the effective field theory high energythe tree-level and one-loop level contributions to &
modes, this must be equipped with an ultraviolet cutoff,term, rewrite the string theory one-loop contributions as
which will be represented by a dimensional mass parametez, 0—2,3 di=22,0-19+=2 1?7, by subtracting and
A. A convenient ultraviolet regularization within the heat adding the massless mode contributiqdssignated below
kernel formalism is by imposing a lower bound on the inte-py the quantitied? with a suffix 0) and rewrite the field

grals in the manner exhibited in EC#G) The IOgar|thm|C theory one- |00p Contnbu“ons denotegvo_ |:1L| , after
andn%ovr\l/er &ﬁﬁr?ﬁncﬁna;]m \rN”:jSp?earrl In Cliﬁst?] Cci)rrl?re , %ading the bare coupling constant for the {d&hormalized
spondence € string theory divergences € inirare oupling constant. Equating the total tree and one-loop string

cutoff at u— 0. As required by naive dimensional analysis, . ; :
) and field theory unrenormalized coupling constants as
the cutoff dependence must involve the prodic’ —0 y piing

Since the limita’ —0 must precede tha — o limit, by the 2 3
very definition of the string theory effective action, there is (47)%Ka 2
no need worrying about the positive power divergences in g>2< i=1
A2a’, which will simply cancel away in the limit:'—0.

Special care is needed for the logarithmic dependence ofe matching equation, with string and field theory terms

cutoff. This must be absorbed inside the bare coupling conplaced on the left-hand and right-hand sides, respectively, is
stants in the process of defining the renormalized, cutoffgiven by

independent coupling constant. A convenient super-
symmetry-preserving renormalization is the so-called modi-(4 )2

_(4mka <
9'3(A) et

fied dimensional reduction (DRprescription[61]. This is —+2> (i—1)+ 2 1}

defined by performing an analytic continuation in the space- X =t =1

time dimensionD =4— ¢, only for the integration measure, (41)2 A 3

while evaluating all algebraic expression®at 4. Once the =———+Dby| —yet2in-|+ Z L, (49
DR-renormalized scheme constant is defined, the conversion 9a"(P) P/ i=t

to other schemes is straightforward.

For the gauge interactions case, the relationship between i 2k d27' X' (M) 5@ o
the DRrenormalized coupling constant, denoted dy(p), ll:W() «+2) ). = —In| =£|24(q,9)
and the bardor unrenormalizedfield theory coupling con- - F72 p? 77 oT 7
stantg,=g.(A), using, for convenience, a Gaussian factor
cutoff, in place of the sharp cutoff in E¢46), is described at x| J32— 8 2 Zs(q),
one-loop order by the formula T2

(4m? (4m? f 4 (A% | ik [draX W) 0D
T -z q.9
2A) gdp) o e e I3V e
2 €
_nllP 1 a2_
_ba,(P> F(e)—;} x|J 871-7-2 Z(q),
2
p 2 ’
=b,| — ye—Ini7 __ Kk fd_TXW )
| A I3 327V () e B Zo(9,9)Zg(a). (50)
_ [ 1/p2dtH
=Dg) —ye+ a2 ty | (48) No confusion should arise from the fact that the definition

94 (P) = 9a “(P) + (Ka/4) (2Zgy+ Zr+ 16Zyy) + (kka/8)Z,
where b, identifies with the B-function slope parameter, uses a mixed notation involving the BfieRnormalized gauge
,Ba(g)=(9ga/alnp=—bag§/(47r)2+---. If so required, coupling constant along with the unrenormalized
momentum-dependent coupling constants could also be irR,(D®)?, ... interactions coupling constants. The
troduced for the other low-order interactior® (D®)?,  would-be massless string mode contributions are obtained by
(H)? in an analogous way. However, since no logarithmictaking the limit 7,— o,
divergences will arise from these interactions, there is no
need in considering the renormalized coupling constants as-
sociated withZ, ¢ gr . In order to account for the general 1=~ (k+2)
case, including the nonsupersymmetric solutions where these
renormalization constants are nonvanishing, we shall con- a .
sider the primed coupling constam$,ggz2 ,ras - It will also - g_W[JZStr(E_XZ)I]
prove unnecessary to consider the tree-level values of the
R,(D®)2,(H)? interaction coupling constants since these __ Kk J_lb +@h}
will cancel between the left-hand and right-hand sides. mk+2)22 87 |

31STH (13— x*)3%]
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9= K ssuma - K s Ko(po)= o [ S0
2= " Toq2) %2 MJ%) — g JaStl) n(:ue)_v(ﬂe) Vmar n2TT T2
L O
T 2477 %% B ) X [ og(itud) - 95(4itud)}]|. (53
0 a KokJs The divergent dependencelat: oo in the formulas given by
l3=— WSTf(l)Ja: ~ 54,37 Egs. (50), (51), and(53) originates from the explicit power

factors ofk or (k+2) and from the contributions to the
1 d?r modular integrals in the cusp regiom—o0. The ultraviolet
Jn(p)= V() ij'(#) [n=l,2,3]}, (51 divergences at —c in the field theory integrals, Eq53),
2 arise in close correspondence with the infrared divergences
of the string and field theory modular integralsatt— o.
where the (-1)7 (space-time fermion number signatire The dependence on these cutoff parameters can be easily
weighted supertraces over massless modes are defined asjsolated through the simple estimates

-n+1

A2
2
Me

d?r X’ 2dt X’
ba=—4ST{I3(&~x?)] j dr VWN 2y f gt (ke
FTy V() a2t V(ue)

Ka
=~ LNsC(Re)+2neC(Re) —1Inve(Ry)], where for the case=1, one must substitute for the right-

hand sides, In and InA/u,, respectively. In order to analyti-
cally evaluate the modular integrdl$,L?, so as to expose

h=2ST{ (55— x*)I]1=3[ns+2ne—11n,], the dependence on the infrared and ultraviolet cutoffs, it is
convenient to use an approximate expression for the space-
c,=2STH32), z=2STI). (52) time partition function factor corresponding to a truncation

which leaves only the momentum modes, analogously to Eq.
(47). We follow an approximate procedure, due [t22],
The symboll stands for the notation ST==(—1)"I,r,,  Which is detailed in Appendix A3. Useful formulas for the
using Eq.(45). The normalization of the gauge charges isintegralsJ,, ,K,,, accurate tcO(e‘(l/Mz)) and O(e—(AZ/uz)),
such that Tr02) = (k,/2) Tr(32) = (ko/4)c(R), with ¢(R) the  are
Dynkin index of the groupG, representatiorR, andngsg v
denote the numbers of real scalar, chiral, or Majorana fer- 27 2 2
mion, vector massless modes. Note thais the 8-function Ji=2m| ye=3+In—g— |, Jp=— 3= (1+2u%,
slope parameter introduced earlier in E48). The proper
massive threshold corrections are isolated in the differences
Al=32 61;=1,—12, which are defined by the same inte- Jog=—m
grals as the;, Eq.(50), with the massless limit pag— 0 of
the integrands subtracted out. These subtracted integrals are

n3 287724
ﬂ+15M,

2 2
infrared finite, so one can safely take the limit-0 and, K,=27 ),E_2+|n'“_ez}, K,=—2m2A2 1+ 2_'“3)
therefore, se”Z,,— 1. The quantities corresponding tﬁ in 4A 3A
the field theory case, which appear 8% in Eq. (49), are .
i 28
defined as Ka= — A% 1+ 15;:3 . (54)
2 k
L2=——[Klstr[(ﬁ—)(z)\]az]——aKZStr[(ﬁ—XZ)I]} Substituting in Eqg.(49 yields the final formula for the
T 8w . . .
DR-renormalized field theory coupling constant,
1K, kaKs
A2 e ) (4m” (4m)? +ka(22 +Zg+16Z,) + K,
= s —_— — JE—
9.4(p) ga(py) 4 T TRITERIT g A
2 1 k 2
0_ _ a2py_ <& (4m)%k 2m\27
L2 gg 1+ ﬁ){KZSU(J |) 87TK38U(| )} = > a +baln( p2 m Aaa
Ox s
1 1+ k K kaKs
T 8a?| T 3)|N%T gy 2 _[_hka ca(kt2)) 5
A= B + 36 (1-3A%a’)
2(k+2)k (k+2)k,K; zky(k+2)( In3
o__<c\""<Pa —_ T e/ans _fha\ e T 2 12 ]
Ls 673 Str(1)K; 6a%  Z 9% . +(A%a') | +AL, (55
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where we have reinstated the string scale through the substi- ﬁ%
tutionsp?— o' p?=4p?/M3,A?— A2a’, while choosing the R L C 2 PR
following convention for the string mass scalé=4/M3. ( g{) =— J_T (i) "
We have exhibited the\>-dependent terms, although these l2) mV(p) k+2]em 292 | 1 ,
cancel away in the relevant limit’ —0, fixed A. The loga- G—quo"ﬁnx
rithmic dependence on the infrared and ultraviolet cutoffs
e andA has canceled away, leaving the familiar running ~ i(k+2) S —
scale dependence with an improved string unification scale, 20 24r, Z0(6,4)Za(a),
281*7E 8177E IR k2 dZTX’(/J’)Er z ( _)Z ( )
M2= =M?2 . 56 35643 3 o old,9)4c(q
X 01’77\/2—7 3277\/2—7 (56) 64m>V(u) JE T 5ty
] . o . — i 3
Interestingly, our result for the effective unification scale is Ey(7)= - Ex(7)— P
2

equal to that of Kaplunovsky2], although his derivation
employed a sharp infrared cutoff on the modular integral. i i nq" i
The coincidence of the two results reflects an infrared insen- =4Inyp— P =1—2( 1—242 ﬁ) - 4—} (57)
sitivity of the unification scale. 2 n>0 179 2

The positive powers ok present inA, arise from the

massless supertracegs,z and the corresponding massive su- Next, one separates out the contributions of would-be mass-
pertraces included insidé;. The term of O(k) in the |ess modes by taking the limif—0 in the various terms in

matching equatior(55), relates the cosmological constant the integrands with fixed &} powers, for all factors except
Z, to the linear terms ifk in A,, arising with the massless 7, The integrald R reduce then to

tracesc,,z and their massive mode counterpartsiif). The
implication here is that the potentially divergent string loop
divergences can be absorbed inside the conZanEquiva- RO _
lently said, the infrared divergences signal instabilities asso- ! 247 (k+2)
ciated with tadpolegone-point functionsof the dilaton and
trace of the graviton fields, which can be removed by con-
sidering a loop-corrected effective acti®i with a finite RO_ _
cosmological constant term. This is the familiar Fischler- 2 576m2
Susskind mechanisi62] of cancellation of string loop di-
e e s caomar *92197% her, aredenea n Est The coespondingone-o
can be interpreted as string loop effect corrections to thé'(ald theory integrals, entering @,fZ!:lLi , are given
conformal invariance constraints, it is natural to find that the?Y @nalogous formulas to those ift?, with the substitution
renormalization constants accompany the divergent deperfi-’Ki. and the insertion of an overall factpt + (k/3)] in
dence in the infrared parameter L5"-. The proper massive threshold corrections are isolated in
The supersymmetric case should be immune to a dilatofhe quantityAp=S7_, (1717, given by the same integrals
tadpole instability, as indeed follows from the fact that theas Eilf with the asymptotiog— 0 limit removed out. The
massless supertrace&g,z and the corresponding massive divergent dependence on the infrared cutoff parameter is in-
ones inA} have canceling contributions from bosons andterpreted along similar lines as in the gauge interaction case,
fermions within each of thémassless and massjveuper- by matching the functional dependenceloaof the string and
multiplets. The massless supertratgsh are nonvanishing field theory amplitudes, including tree and one-loop contri-
helicity-weighted sums, which induce finite corrections inbutions. The logarithmic divergences are handled by intro-
the gauge coupling constants. ducing a renormalized coupling constant. The matching
equation for the quantityg’g2(p), corresponding to the

DR-renormalized quadratic gravitation coupling constant

o combined with the lower dimension-unrenormalized cou-
The above derivation can be repeated word by word fohing constants, reads

the quadratic gravitational interaction coupling constant, de-
noted gr2=ggr2(A). Again, one decomposes the string
theory one-loop contribution into the sum of three integrals (4m)°? _(477)2

hedot %0
RY1 ? 2|

3,454, i
ZRJy —7723

R
5 I

3O:W\33, (58)

2. Quadratic gravitational interactions

3 2

A
RO RO ’
IR and writes the matching equation as g’éz(p_) ) 2 (77 =Li) —bg 75“"”32) +Ag.
(59

4m)2 3 4m2 3

(47) +> IR= (4) + > LFO, Substituting the expressions for the massless mode contribu-

2 2 1 12 - 1
Ox =1 Ora(A) 1=1 tions yields the final formula
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(4)2 1 K K2 ML— M, With corresponding integrals, [n=-1,0,1,7. A
,2 =(4m)? — + 5(22¢+32R—162H)— EBZA renormalized running coupling constant is introduced within
9're(P) 9ra(P) a DR scheme, using the relationship with the bare coupling
(472 constant gria(p) — gra(A) = (47)?bealn(p?e’™8/A?). The
=T+len(p2a’wm +AR, matching equation, including the singular dependence at
X k—oo, reads
P —£(|<—4)(1—3A2 = (k+2) (4m)?* | (4m)?
R 4 18 @ g’—ZE gz +k2k§XAZA+ kkezl(XRZR'f‘Xq)Zq)"‘XHZH)
4a 4a
Z(1-3A%") 2(k-4) I3, ] ]
% 216 288 | a2t
7T + kkaXFZF + ngRZZRZ
z(k+2)2(—ln3+(A2 ne| ]+ a: 60
7 a ,
32 2 R _(477)2k§sa+1(§h 2¢b +k2I )
where g>2< 8 ? a2
2my27) 1 (K
hg=—12bg=2ST{ (55— x> (Iof o= 24 _11¢)], P Z
XIn >el 7E + @2 2 c,t+¢éh

Zr=2STi(lgrg— 241 _1rp), z=STrlyrg). 61
R 2STHolo™ 24 alo) Uofo)- (60 X (3o~ Kp)+(£f 2~ £€2) (Jo—Ko)
The B-function slope parametdsy is related to the confor- o
mal anomaly{45,63,64. In the expression oAz, Eq. (60), +—da(J_1—K_)+T}, (63)
the terms involving the massless supertrdtgszy ,z origi- 3
nate fromI R, 15,15, respectively. Botlzg,z and their mas-

sive counterparts it  vanish for supersymmetric solutions, Wheres=—(k/2)+1—=(2k)+---,{=1-(4k)+ .-, as de-
because of the bosonic and fermionic mode cancellationé'ned previously. The proper massive one-loop contributions,

The vanishing of the term®(k?) and a subset of the(k)  denoted byl';, are given by the same integral as in E4p)
terms inAg is consistent with the vanishing of the renormal- With the asymptoticr,— < limit removed. To complete the

ization constant&, s .1 ¢ for that case, as already encoun- ISt Of formulas for theJ, integrals given in Eq(54), we
tered in discussing the quadratic gauge interactions. Howduote the results for the two other needed integrals, valid up
ever, since the helicity supertracdgz,h are finite, in to the same exponential accuracy

general, the infrared-divergent term 6f(k), which origi-
nates in the termi(+2)/24r, in I? seems to remain un-
matched by a corresponding term in the effective action. We
attribute this discrepancy to the higher-derivative interac-

155 37«
S - P \/5772#2"'0(#4)},

tions, such aRH? (DH)?, ..., which we have discarded 21 3w u? .

from the effective action. Thus, a subset of these interactions Jo=| ~ 242 + 3= 2 +O(u%) .

should acquire one-loop renormalization corrections in order

to ensure a consistent infrared finite theory. We have used the same approximate representation as for

J; in Eq. (A12). The corresponding field theory integrals

K_;1,Kg can also be evaluated by using the analogue of the
We shall use an analogous procedure to describe the onepproximate representation in E#13),

loop corrections in the quartie®* gauge coupling constants.

3. Quartic gauge interactions

The separation of massless modes, by subtraction of the _ A2 1
it 1 [ K J e te 2/A2
To— o0 limit, introduces the following massless mode super 0\ _y,2 1+ ullA?]| —o 2
. K = Me 3 e (me—2pue) |,
traces: -1 e pue e
e

h=—2ST[(Q+ 13)2], h,=2ST[(Q+ 13)%],
HQ+15)7] 2 HQ+15)] which indicates that the integrag), K _; vanish in the limit

A?a’—0, finite u. The field theory dependence &rin Eq.

(63) involves several unknown coefficients , . ... For in-

) 4 — — 44 teractions of increasing derivative order, the matching rela-

Ca=2STi(J;), 1,=4STKJ,), d=4STE(Q+13)"J3],  tions impose nontrivial relations among wider subsets of the
o o renormalization constants. The identification for the

€.=2STI(Q+ 15)%32], f,=4ST{(Q+13)234]. (62  0O(k?),0(k),0(k% terms, respectively, yields the equations

ba=4ST{(Q+ I 5)232],

Modular integrals], [n=—1,0,1,3 are introduced by using A A f a
the same defining equation, EG1). The field theory one- Zr=|Cajor+1,Inp?— Z—ijo+ Ezaj_l +oen,
loop contributions are obtained through the substitution kO
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(XRZR+ X Zgp + XuZy + XpZga)

o ba 2 fa. da.
—{—hjﬁ g NP+ Lot (i1

J(z)=i3aH, QSUSY(Z—):eXI{ii\?H),

+ ...
KO

Et(Z_): eti(Hit+HatHg)

1
H=-—(H;+H,+Hs3)
\/§( 1 2 3

1
2_ + XRZZRZ
OF4a TheD-term vertex operator for a gauge group fadgrmay
then be written a$65]

h,—2b,

Inp?+Faj o+ daj 3

+---, (69

KO [

D( )= ,—6kaJ( )J%(2) (65
where the eIIipses stand for the corresponding massive con-

tributions included inT',. We use the abbreviations whereJ,(z) is the U1) gauge charge density. Starting from
[Ca.h]=112(4m)%][ca,h], 1= 1,/16d,= 27/3[1— (4/K)] the conformal generators known dependence on the fermi-
xdy, Fa=[1—(k/I2)]f;—€4,in=Jn—K,. Forthe supersym- onic and gauge charges Lo=3>_,(Q%2)+-- -,
metric case, where,=1,=0, with the other supertraces Lo=(J%/k,)+---, a D-term deformation of the associated
fa,da, ..., nonvanishing in general, tf@(k?) equation for  zero-mode lattice can be induced by performing an orthogo-
Z, seems to contradict the expectation of a vanishing onenal transformation to the basis,

loop cosmological constanZ,=0. A similar mismatch

arises with theO(k) equation, since we expeéi, r y=0. 01+ 0,+ 0,

As already observed, these discrepancies probably originate [Q_va_ZrQ—a]_){Q_(O):l—H’

in our neglect of the higher-derivative gravitational interac- J6

tions. A detailed analysis of these matching equations is be-

yond the scope of this work. Th@(k®) equation indicates —_ = — — —

that the string theoryO(F3%) amplitude involves an un- ~ :Q1+Q2_2Q3 Q. :Ql_Q2 (66)

known combination of the quartic gauge and quadratic gravi- (8) J12 ' @) 2 '

tational interactions. We shall not attempt here to separate

these two couplings. with Lo=Qf,+Qfg)+ Qfs)+ - -+, followed by a Lorentz
transformation of hyperbolic anglew acting on the

D. D-term auxiliary fields component§ Q oy ,J% vka]. The deformed theory one-loop

The background field approach can also be applied to peracuum _functional in  Hamiltonian  formalism Z
turbations involving the subset of conserved internal spaceTr(q-oq-oe™*7"2%0), with the conformal weight operator
fermionic currentsQ; [i=1,2,3]. In cases where all of the increment5L0=[(.]a/\Fa)coshquQ(O)sinhm]z—(\J""/\/k_a)2 is
world sheet fermions are free, as in orbifold models, all threg¢o be compared with that obtained in the Lagrangian func-
currentsQ; [i=1,2,3] are conserved and contribute directly tional integral formalism by adding the perturbed action,
to the right-moving sector conformal weight operators. Since
the conformal vertex operators associated with the auxiliary D2 ) D? _

D terms are constructed with the linear combination 0S= ﬁf d O-\/HVDa:E(ZTZ)J dzd 2Vpa
E?=1Qi(z), along with the gauge sector currertg(z), a
D-term perturbation can be represented as a deformation of — = =
the extended lattice for the corresponding charg&similar =—4nr, W(Qﬁ Q2+ Q5)J% (67)
extension, involving the space-time fermionic curredfs a

and the internal space currerigX', can be made for the o ] ) .
auxiliary F terms) Identifying 6S with —4mr7,L, yieldsD ,= sinh2w. Proceed-

The discussion for the auxilia-term field was initiated g Next to the field theory description, one considers the part
by Petropoulog35], and we review the main arguments Of the four-dimensional supersymmetric Lagrangian depend-
here. Let us introduce the world sheet fieldsing on the auxiliary field,,

Hi(z) [i=1,2,3], corresponding to the bosonic counterparts
of the internal space fermion fieldg:' =e*™i, which de-
scribe the S@®) affine algebra, with the Cartan subalgebra
generator®;(z)=iy' i =i dH; . In terms of the field$; ,
one can express the conservedlUcurrent J(z) of the  where ¢; denotes the charged matter fields in the gauge
N=2 superconformal algebra of the nght-mgvmg_sector, thegroup representation with generat&rasand ¢, Stands for a
space-time supersymmet(gUSY) currentsQgys(z), and  Fayet-lliopoulos interaction coupling constant. We can now
the antiholomorphic three-form field_i(z_) as matchL g to the string theory vacuum functional,

a

D2 .
Leff:_zgaz+Da¢r(Ja)ij¢j+CaDa+ e (69)
a
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v4  d2r Z constantGy=1/M3, by a factor 400. Reasoning in terms of
W ’ . L . . .

Z= —‘J TWZ ZoZg the underlying compactified ten-dimensional string theory,

2(2m) T2 17 would even turn this estimate into a lower bound

, — L Gn= a3 /M2, ;. This problem has motivated recent pro-
><exp[—4777-2[smh2wQ(o)(Ja/\/k—a)+ 2 (coshan—1) posals to examine the alternative option of a strongly
><(62 + 32k )} coupled string theory68,4§. Remaining, however, within
(0 aiTalll the perturbative framework, three main known effects could
; ; ; possibly cure this discrepancy: adjustable Kac-Moody levels;
ﬁl:]tg;re;ﬁgn(f&r;%rt:t?cizer?]gelgt;aéSgtg;,lr:ep)s%vgsaﬁ;The intermediate thresholds; heavy thresholds. Of these three
items, the last one, on which we shall concentrate in this
1 4?7 Zy - section, appears as the most controllable_one. Consider the
—TZ—WE’ ZoZg(Q1+Qu+Q3)J? general splitting of threshold correctiong57], A,
F 72

Ca=

16y3k 7 =—b,A+k,Y+R,, involving two components of universal
1 character,A and Y, whose contributions can be absorbed
=—2Tr(f]a), into redefinitions of the unification scale and gauge coupling
48m constant,
(4m)? _ 4f d’r < ZoZs RVIVISTV RS SN S 70
P ! —My=Mye?s ———=—"+—7,
ga 3JFm | 7(7)] XXX 92 g2 ¢2 (4m?

X

- k
(Q1+ Q2+ Qs)z(Jaz— #” (690 along with a nonuniversal residual componé&qt. Several

2 studies of threshold corrections using solvable models of
string vacua have attempted to justify a decomposition of
fhis type [21]. In this section, we shall pursue the effort
started in our previous papg20] with the purpose of updat-
ing the numerical results reported there for the gauge cou-

"Biin i
: ' g constants by use of the more complete formalism pre-
and for massless supermultiplets combines-tb. Thus,c, sented in the previous section. We perform numerical

is proportional to the trace over the massless fermions of thSaIcuIations for the following selection of 16 Abelian orbi-

charge generatod, [normalized as Td3)=3], which is  fold models:(i) the seven standard embeddifig orbifolds
nonvanishing only for (1) gauge group factors. This ex- described for N=3,4,6, by the internal shift vectors,
pectedly reproduces the known rej@b] that an apparently Nv;=(1,1-2); for N=7,8, by Nv;=(1,2,—3); and for
anomalous (L) can indeed arise in string theory with a one- N=12 by Nv;=(1,4-5); (i) four nonstandard
loop order finite, universal coefficiefi66]. embedding models described by the gauge sector shifts,

The quadratic term irD, gives us an equation for the (NV)(NV'')=(1120)(1120)", (116)(207)’, (1%20%)
one-loop correction to the gauge coupling constant. The forX(ZOY)I, for Z, and (1128)(220F)’, for Z,; (iii) three non-
mula in Eq.(69) is, of course, valid in the supersymmetric standard embedding; models with two discrete Wilson
case only. The comparison with the corresponding result obines due to Fonet al.[69] and Kim and Kim[70]; (iv) two
tained with a constant magnetic background field, as given iR gnstandard embeddiry models with one discrete Wilson
Eqg. (31), would show agreement if one had the operatoline due to Katsukiet al. [71] and Casat al. [72]. The
identity (Q;+Q,+Q3)2=-3Q? noting that here inputs and gauge group factors for these models are de-
(Q+ 1 3)2=Q?2, since the tern#-tn» vanishes for supersym- scribed in[20]. The affine algebra levels for the models con-
metric solutions. This identity can indeed be established fosidered here ar&,=1 for non-Abelian group factors and
orbifold models by use of the generalized Riemann-Jacobk,=231¢,3!2 for the Abelian U1) factors.

To obtain the second equation for the linear tecg we
have used the property which identifies the world shee

identity, as was first shown if85]. Let us refer to the two contributions in E@0), which are
associated with the squared gauge charge tﬁmnd the
Ill. NUMERICAL RESULTS modular anomaly compensating term(k,/8w7,), as the

zero-mode(or charge and anomaly(or back-reactioncon-
tributions, respectively. The following general trends for the
The grand desert scenario for the minimal supersymmetzero-mode contributions were found in the results quoted in
ric standard model is knowp67] to favor an unification our previous pap€r20]. The Z; orbifolds show marked uni-
scale, Mgur=2x10% GeV, with a grand unified theory versal features, with=0.068Y=3.4R,=0. Larger values
(GUT) gauge coupling constantggyr=(4magyr)Y®  for the universal components appear for the orbifolds,
=(47/25)"?=0.71. Transposed to a string theory frame-A=0.20-0.40y=15, along withR,#0. For the nonprime
work, where the unification scale is determined at the tre&, orbifolds, the situation is less clear-cut since the universal
level in terms of the Planck mad8, and string constargy ~ components cover wider ranged,=—0.2—+0.6)Y=10-
as My=[et" 1247 (27)Y4]gyM p=0y X 5.27x 10'" GeV,  40.
the same type of scenario seems to overestimate the unifica- Turning now to the contributions from the back-reaction
tion scaleMgyr by a factor 20. If one insisted on setting component, we find that this brings a large negative contri-
Myx=Mgyr, this would lead to an overestimate of Newton bution toY. (We draw attention to a factor 1/2 discrepancy

A. Quadratic order gauge and gravitational interactions
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FIG. 1. (@) The one-loop-normalized thresh-
old correctionsA , /k, to the gauge coupling con-
_ stants are plotted as a function of the orbifold
order N for the 16 orbifold models described in
. the text. The triangles and squares plotting sym-
] bols give the totalA,/k, for the various gauge
group factors. The back-reaction contributions to
3 6 9 12 A, /k, are shown by points joined by continuous

N lines. The full gravitational correctiom\y is
' I ' [ shown by points joined by dashed linéb) The
v (b) ] one-loop-normalized threshold corrections are
0« | plotted as a function of the normalized slope pa-
O _ rameter — (b, /k,) . We denote results for the
v A . gauge group factors df; orbifolds by open tri-
A<><<>v M a . angles;Z, by open squareg by filled triangles
1 pointing up;Z- by filled triangles pointing down;
AANAiA?@ANAM N A _ Zg by open parallelograms; arith, by filled tri-
| , L angles pointing leftwards.
-100 -50 0 50 100 150 200

-b 7k,

with the results for the back-reaction component reported inegime, say, 4/g%~ 1, or at the self-dual point & duality,

[38], making ourY twice larger in absolute valueThe com- S—(4m)?/S, to the empirical value, #/gr§(~25, would re-
ponentA is clearly unaffected. The numerical results for the uire Y~300. It appears then that the predicted moduli-
back-reaction correction alone, as well as for the total corindependent corrections are much too small, and even of
rection, are shown in Fig. 1. We see on the g@tof Fig. 1 \rong sign forA andY, with respect to a naive perturbative

thag ttkr:et ;tpr?agtlbgtween the \_/tahn%us gkr)(_)fu? dfactors Its SM3ring theory unification scenario. Nevertheless, viable sce-
and that it slightly Increases wi € orbrfold symmetry Of- 505 can be found in association with the other expected
der N. The back-reaction term dominates and partially can-

cels the zero-mode term. It is the largest contribution in ab_mechanlsms of an anomaloug¢Ithreshold and small affine
solute value for th&; orbifolds, where it reacheg= — 26 level for U(L)y [20]. . . o
. 3 ' : . - The threshold corrections for the quadratic gravitational
independently of the gauge embedding and Wilson line , o ~ i
twists. The largest contribution to the modular integral herdnteéractions arising from the teré,(7) in Eq. (42) are also
arises from ther, o tail, which is determined by the shoyvn in plpt(a) of Fig. 1. The zero-mode contrlputlon is
helicity-weighted massless mode supertrace tertrk,/12.  @d9an dominated by the anomaly-compensating back-
Sinceh takes different signs for chiral and vector supermul-ré&ction contribution from the-(3/m7,) term, which nu-
tiplets, the untwisted sector contributes with an opposite sigf€rically coincides with that of the gauge interactions case.
to that of the twisted sectors. One indeed finds large cancellN€ N€t correction tdg shows some model dependence for
lations between the untwisted and twisted sectors, the twistegfPifold ordersN=6 and smoothly increases from16 for
part being the larger. Z3to +8 for le‘ orbifolds. Thus, egpressed as a shift in the

The results for the orbifolds other thafy indicate the (rée-level coupling constani(4/gy) = Ag/4m, the thresh-
presence of a residual componeRy. This appears in a old correction represents a tiny few percent effect.
clearer way on plotb) in Fig. 1. The signature for a decom-
position of A, in terms of only two universal components
would appear in this plot as a clustering of the points along a
single straight line whose intercept and slope identify With In this section we present a comparison with the moduli-
and A, respectively. The conclusion from Fig. 1 is that no dependent threshold corrections in the quadratic gauge and
clear systematic trend towards such a universal behavior igravitational interactions. We apply the methods initiated in
visible on the results. However, for a fixed orbifold ordér  [3] and further developed ifil4] to the curved space-time
the deviationsR, are quite small and alignments along regularization approach of Sec. Il. The one-loop contribu-
straight lines are observed. The purest case is thaf;of tions from the N'=2 supersymmetric suborbifoldsvith an
orbifolds. For the higher-order orbifolds, common trends dounrotated two-dimensional torubave a simple representa-
appear, such as a positie (negativeY) which increases tion in terms of a summation involving the right-moving
(decreas@swith increasingN. sector massive BPS(Bogomol'nyi-Prasad-Sommerfield

It is interesting to contrast the predictions for the gaugestates, along with an unrestricted sum over the left-moving
coupling constants with the phenomenologically favoredsector states. The so-called perturbative BPS states are the
ones. Naively, a reduction ofM;~10"® down to stable string modes which saturate the mass bound
M gyt~ 10'® would requireA=—10, while a shift from a («'/4)M3=p3a/2, where the\'=2 central charg@g identi-
dilaton vacuum expectation value set at a strongly couplefies with the zero-mode momentum of the unrotated two-

B. Moduli-dependent threshold corrections
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dimensional torug73]. The one-loop contributions in the group, of weight 0 forF,,F$, and —2 for F,, except for

gauge and gravitational coupling constants read modular anomalies of the same form as for,1ivhich can-
cel exactly in the relevant modular-invariant combinations
(4m)? (47)2 1 d?r _ _ [F1+(Fy/mry),Fi+(F,/mr,)]. These functions exhibit
k—gg;g—z =- ZL?ZW(T’ ) 72Zr(y,y)] simple universality properties for the class of nonpridg
ada SR 2 orbifold models associated with decomposable  six-
F.(q) F.(Q) dimensional toriT®=T*/Ga T2. For the subclass of standard
x| Fq(q)+ o F(a)+ | gauge embedding orbifolds, we find, by explicit calculation,

71
71 11 (Eg—EE4Es

11088 A
=c(0)(1+330+26 40@>+881 10@°+ - - -),

1+

where the partition function for the zero-mode lattice of the Fi(q)=c(0) +720)

internal  space-fixed two-dimensional torus, denoted

Zr(y,y) =Eqpf’2q PR2, depends on the two complex moduli
fields, y=[y,=T=T,+iT,,y_=U=U;+iU,], param-
etrizing the coset space, SO(RY,SO(2R) XSO(2R). A 4
similar procedure to that of Sec. ($eparation of the mass- F2(Q)=— mEeEzt
less modes at the,—o degeneration limit, subtraction of

the field theory one-loop contribution, and introduction of 4

1
—_— | —_— 2 RS
the DRrenormalized constanis used to define the threshold - |G|( q +240+ 141 444+8 529 28Q°+

correctionsA,,Ag. The string theory contributions involve
the following periodic Ramond sector traces associated with
the so-called new supersymmetry index:

9 =
Fl(Q) 3|G|A E6E4E2

[Fa(a).Fi(q),Fa(a)] 1
1 ( —264-13575@|—5 11744@42—...),

i [ Ex(7) . ~3Gllq
— _ i 2 2\ H-H
—277 2TrR(JOe 0/ 8J3, 3 1}q qj (73
- §: Ce(m),c¥(m),&(m)1g" 72 where A(7)=7?4(7) and E,(7) are the Eisenstein series

st functions, normalized a&,(i)=1. The model depen-
dence in Eq(793) resides only in the slope parameter coeffi-

which are meromorphic functions of with at most simple  cientsb,=c(0)/4bg=c9(0)/4= — &(N,—Ny+24), and in
pples at the cusp point= i_OO, and Laurent series expansions the orbifold order|G|. (Ny,Ny are the numbers af\’=2
given by the second line of Eq(72. The zero-mode pyper and vector supermultiplets, including the dilaton and
component], of the U1) currentJ(z), is related to the graviphoton, respectively Substituting in Eq(71) and car-
fermion ‘number operator F such that, rying the modular integrals by means of familiar methods
(i/2) Tr(Jge' ™o- - ) =Trr((—1)F- - -). All three functions [3,14,27, one finds the following formula for the threshold
F,,F{,F, are modular functions for the SL@), modular corrections in the gauge coupling constants:

_c(9) 77 T D 2mix c(0) ( 2 3)
Aa=—47|IN(2TU) ~ 7 Up+K' | = 5To0(0) ~24e(~ D] +R 2, c(kDin(1-e )_4WZUZT2 {3+ —L(4U;

T_ A ~ S ¢
- 7—2T2[C(0)—480(—1)]— WUszRr>o c(kl)P(x), (79

where K' = In(4me>%%€/9{3) = K + In[e?®=79/3],  functions. To translate the automorphic fields notation used
£(3)=1.2020%9..., {(4)=7"90, ye=0.577 25 6. .. here into the string fields notation, one must apply the trans-
(Euler-Mascheroni constant = (—1,—k) is the lattice vec- formation y.—iy. (T—iT, U—iU). As functions of
tor of the fixed two-dimensional torus, such that the scalaiT,U, the A, are invariant under the modular group,
product r-y=Kky,+ly_, with the special definition 0(2,22)~SL(2Z)xSL(2Z), which includes the inter-
x=r-y=|R(kT+IU)|+i[l(kT+IU)|, whereR,| mean real changeT« U. The representation in E¢74), which is only
and imaginary parts;r>0 means k>0JleZ;) or valid in the domainT,>U,, is transformed when passing
(k=0l>0); P(x) =(x)Liy(Q) +(1/2m)Li5(Q), through the wall aif,=U,, by the substitutiorT«— U.
[Q=e*""], with Li;(Q) =X p~o(QP/p'), the polylogarithm The formula corresponding to E§74) for the gravita-



2344 M. CHEMTOB 56

FIG. 2. The one-loop threshold corrections for
decomposable tori models, specialized to e
orbifold case, are plotted as a function of
T=T,+iT,,U=U;+iU, at T;=U;=0, with
the variablesT,,U, along the horizontal axes.
The three plots from left to right show the uni-
versal componentd,Y for the gauge interactions
and A for the quadratic gravitational interac-
tions.
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tional correction Az is obtained by simply changing are associated with the contribution from the subset of states
c(n)—c9(n), keeping the coefficients(m) unchanged. (k>0leZz) in Eq. (74). Based on the represen-
The only discrepancy between our result and those founétion  j(7) —744=(1/q) + 196 884 +21 493 76Q“+ - - -
in the approach of3,14 resides in a shift of the constant =Zm=-1¢' (M)q™, and the Borcherds product formutbd],
term corresponding to the numerically small differencethe term involvingj(7) yields a contribution toA, pro-
K'—K =K'-In(me!™"/\27) =2—-2yg—In3=-0.253.  portional to Imy Mo, (1—g%qL)®* ) =In[j(T)—j(U)],
The effective unification scale, incorporating the constantwhere qT’U=e2’T'[T'U]. The singularity at the submanifold
term from the N=2  sector M;(ZZM)Z(E—/C’ T=U mod SL(2Z) is a reflection of the stringy Higgs
=3/(a' €21 79272 )=6M%/[e2(177E)(47)?] is then a fac- Mechanism responsible for the enhanced symmetry
tor 3e~2(1~7e)~1.29 larger than that given {i8]. The mis- U(1) +xXU(1),—SU(3) in the gauge group associated with
match originates from the use there of the simple-minde&he internal space coordinates of the fixed two-dimensional
infrared regularization factor (2e~N/72)(N/r,)¢, with the torus[73]. The absence of singularities in the threshold cor-
limits N—o, e—0. In contrast with our curvature infrared "€ctionsA,, associated with gauge symmetries from the

regularization, which is realized by the partition function fac-92Ug€ sector space, is due to the compensation by a corre-
tor, sponding singular IA{—U) contribution from the remaining

terms inF(q). For the gravitational case, the compensation
. of the singularity alf =U in AR takes place upon adding the
Zy(7, 7)=[1+2¢(u)— d(21)], contributions fromF§ andF,(q).
A related discussion of the universality properties for the
. (75) subclass of\'=2 models obtained by toroidal compactifica-
tion of /=1 models in six dimensions is given [84,37).
Another interesting class ok/=2 compactification models
the regularization prescription i8] clashes with modular with nonuniversal behavior is discussed[86]
We shall now present results for the class of models de-

invariance. .
. . scribed by Eq(73). In terms of the two-component decom-
The constanO(q°) term in the decomposition d¥,(q) .positionAizibaA+kaY, the quantities\,Y zfre then iden-

in Eq. (.73) gi\_/es rise to the gauge grogp-dgpendent. CoNtMlifiad with the zero-mode and back-reaction contributions
bution involving c(0) in Eg. (74), which is associated

: o associated withr,(q) andF,(q), respectively. The numeri-
V\{('tfothle ;ubset ko;(;h?_l?;)PS T.;t'ates W'm_ot’ namely, cal results are shown in Fig. 2. The relationship between
(k=0,1e2) or ( 4L ),' IS sums up t0 Xa)p T,U and the representations of the metric and torsion tensors
=Dy IN{2T,Us| (T 7/(U)[} + K'], which identifies with the in the zero-mode lattice basis is given by
total correction initially discussed by Dixon, Kaplunovsky,

and Louis(DKL) [3]. The nonconstant terms iR(q) of T=2(B.itideG)=(b+i ino
O(q") [n>0], which arise from the combination (Biz#1deG) =(b+irrzsing),

& 2, 2
= 1—u— e—7Tm Ity
d(w) ( M(m>n§0

. ) i
EE(T)_Ez(T)E4(T)E6(T) U:(G12+| \/deG)/GH:ae 0, (76)

A +720

where 2G11,G5,,G12,B15]=[r,r3,r r,cos,b] such that
—j(r)— Ea(7)E4(7)Es(7) 1008 T,b,ri2 are expressed in unit@’=1. Close to the self-dual
: A(7) ' pointsT=U=i, the moduli-dependent corrections are com-
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FIG. 3. (&) The one-loop threshold corrections
to the quartid:g gauge interactions coupling con-
stants are plotted as a function of the orbifold

60 B v ] orderN for the 16 orbifolds described in the text.
A v ¢ < The triangles and squares plotting symbols give
-80 L : : L . 1 L . . L the normalized quantitieE ,/k2 for the various
3 6 s 12 gauge group factors in each model. The points
N joined by continuous lines give the contributions
2o fF T ' : ' ' ' L of the two gauge group-independent terrs).
r : Xe O b 1 The one-loop-normalized threshold corrections
= (b) ) :
or - ‘d T 'v_lj B AP - 7] are plotted as a function of the normalized slope
~NOa L X %o GA““ZA!&%/ 2 A§§ A ] parameters— (b, /k,) . We denoteZ; orbifolds
<, A /N o - | by open trianglesZ, by open squaresZq by
& 0 | ! A . filled triangles pointing upZ; by filled triangles
! v . pointing down;Zg by open parallelograms; and
60~ ! 04 . Z4, by filled triangles pointing leftwards.
-80 | | M 1 s ‘ | ]
-100 -50 0 50 100 150 200

-b_/k
a a

parable in size with the moduli-independent corrections, but The results for the moduli-independent threshold correc-
with an opposite negative sign foh. For example, at tions obtained for our sample of 16 orbifold models are
T,=3U,=4, one hasA=-217Y=-60Ag=16. The shown in plot(a) of Fig. 3. For a given orbifold order, the
variations are rather smooth and have a linear power laworrectiond’, are rather widely spread, somewhat more than
increase at larg& or U. At fixed U, say,U=4i ori/4, one  for A,. They cover an interval ranging from 10 080. The
finds A=—0.66T|,Y=—12.7T|,Ag=10.9T|. The depen- contributions from the back-reaction(gauge group-
dence on the real parts is weak. Recall thadg, andY are  jndependentterms lie near—20 and significantly cancel
symmetric undeil U and that their values fof,U below  {n0se of the zero modes.

and abovei are connected by the duality transformations e correctiond”, include a sizable part independent of

T——1/T,U——1/J. For large compactification volumes, he narticular gauge group factor. A dependence on the factor
the correctionA has the right sign for a reduced unification group is also present, as is seen on the fittin Fig. 3.

scale, and the right magnitude provided that10. The cor-  \ypije 4 correlation betweeRi, and the slope parameters is

rchonY, ?"th"“gh. of sizable magnitude, .also has a WIONG, ot immediately apparent in the figure, there appears a sys-
sign to shift the dilaton vacuum expectation value towardstematic trend for an increase of the corrections with

weak coupling. The total correctiofig in the gravitational “(b,/k,). For a comparison with the tree-level coupling

case is of opposite sign t@nd same magnitude )athat in T
PP gn « 9 i onstant, we make the bold approximation that one structure

the gauge case. The associated unification scal , . . :
M R=e~3r/RM is enhancedreduced for negative(posi- only is present, say, that associated véith The total contri-
X buton would read then, Su/F2*~s,(e 2%+ Zra)

tive) bg.
Izochomparison with the work of Kiritsis, Kounnas, _:(51/277)[(47’/9)2()+(ra/27751)]- ForI';~10 ands, = o

Petropoulos, and Rizo&KPR) [37], where theZ,xZ, or- it appears that the one-loop threshold corrections correspond

bifold was considered, we observe that, whereas their fund© @ large, almost one order of magnitude effect.

tion F,(q) has the same formal structure as in our class of

models, the decompositiak, = (b A — k,Y)kkpr there iden- IV. DISCUSSION AND CONCLUSIONS

tifies the gauge-dependent term, Q) kpr, With our term

denoted A,)pk. and the universal term- (K,Y)kkpr, With

the remainder contributions frofy (q) andF,(q). Our total

results are compatible with those [i84,37).

The need for an infrared scale parameter which separates
the low and high energy theories mass spectra is an inevi-
table auxiliary item in any description of threshold correc-
tions. Of course, it is always possible to circumvent the in-
frared regularization by restricting oneself to the
consideration ofmoduli or matter fieldsderivatives of the

The numerical calculations for thE2* interactions are coupling constantgG/dy . [G=g§,g§z], as in the calcula-
more intricate than those of the lower-order interactionstions of[5,6], or to gauge group and moduli-dependent com-
Larger number of contributing terms are involved, as can bgonents, as ifi3]. In so doing, however, one gives up useful
seen in Eq(43). The various terms contribute more or lessinformation on the absolute size of threshold corrections.
equally. We have simply subtracted out the large- tails In point quantum field theories, a standard choice for the
for all terms, except for the tw@(llrg) terms, whose con- infrared parameter is the floating off-shell momentum scale
tribution to the modular integral is finite. used in the renormalization group method. The description

C. Quartic order gauge interactions
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here proceeds by equating the summed tree-level and1/(k+2), while the corresponding parameter on the effec-
ultraviolet-divergent loop contributions to the unrenormal-tive field theory side,ﬂgzllk, identifies with the spatial
ized coupling constants in the low and high energy theoriesmanifold S® radial scale factor. Since all dimensions are set

after expressing these in terms of the renormalized runningy the string theory tension, the analogue of the dimensional
coupling constants at the infrared scéle The threshold floating scale here iM2= w2/’ In fact, by exploiting the

corrections emerge then as the boundary condition terms
the ultraviolet decoupling scal y [74], as is exhibited on
the formal equation,

"f‘épresentation of the semiwormhole partition function in

terms of al'(1,1) lattice partition function, the analogy can

be extended at a deeper level by deriving an infrared renor-
M 1 M malization group flow equation for the string theory vacuum

———+bln—+A=——+Dbln—. functional[22].

G(Mx) Mx G(p) P The motivations for the finite curvature approach of Kir-

Things differ for string theories because the first—quantizedtSi'_S and K_ounna{_22] bear a rer_not_e analogy with those
(Polyakov or operatorformalisms are on-shef-matrix ap- which inspired earlier proposals in field thedr§8]. These

proaches, where théadpoles, mass shiftglivergences in appligations 'ra_ther aime_d at _form.ulations.of scale-invariant
the modular variable integrals arise through 0/0 ill-definegth€ories exhibiting manifest invariance with respect to the
expressionssee Chap. 8 i75]). What is most specific conformal transformations group,(@1) or O(5). Negative
about string theory is that infinities are of infrared rather tharfurvature space-time, in particular, was argued to have ben-
ultraviolet origin. In particular, the notion of renormalized €ficial effects on the dynamics, for example, by suppressing
string theory coupling constants is pointless. Several propogertain nonperturbative effectg9]. The full implementation
als of off-shell formalismg76], and of extensions of the of a curvature-regularized theory would run into significant
space-time dimensional continuation proced{ir&], have technical complications if one needed an explicit construc-
been made in the literature. No simple satisfactory methodion of the world sheet correlators, as this would entail solv-
has emerged so far. Thus, to extract the infrared scale logéng an interacting two-dimensionat model. Fortunately,
rithmic dependence of the gauge coupling constant, Minahawith threshold corrections, one is only concerned with the
[1] had to evaluate the world sheet correlator for three gaugspectrum of would-be massless states and their degeneracy,
bosons, using a prescription for going off the energy shelbn information which is encoded in the partition function.
consistent with conformal and modular invariance. The The use of curved space-time string theory solutions
background field approach stands as one promising alternéermed from N=4 superconformal field theory building
tive approach. In the approximate treatment of Kaplunovskyblocks has desirable features listed #2]: a free curvature
[2], an infrared cutoff was introduced implicitly, as can be parameter to monitor the decompactification limit; a well-
seen by writing his matching formula in the notations of theidentified classical field theory limit; preservation of the
present paper, space-time supersymmetry properties; solvable marginal de-
formations to represent covariantly constant gauge and gravi-

(4m)?% (4m)%k, p? o 10 tational background fields. The simplest models of type
> ——z—bamp_Aa:E (17 =Ly) M®)x K, where theN'=4 block M is substituted for the
ga(p) 9x ' flat space-timeR*, allows one to explore the class of phe-
d?7 redt nomenologically viable orbifold compactification models for
=-b ( . TCA(t)) the internal spaceK. The semiwormhole solution
e 0 M (4)=Wf<4) presents the enormous advantage of the partition
2 function factorizability. The consideration of the other
=—b, 1—75+|HW : (77 known solutions[27,28,52, M®=A(" or C(¥, may in-

volve a less transparent formalism which has not been devel-
. . . oped so far.
The cho&:ze Of_ the ultravplet cutoff funchor_CA_(t) The combination of a conformal algebra structure along
=(1—e"'""), which characterizeg,(p) as the Pauli-Villars  \ith a geometricat--model description is the main attraction
renormalized field theory coupling constant, yields the samgys the approach of22]. This completes the approach [&]
answer as the DRrescription. The infrared divergences at by a consistent account for the back-reaction terms, which
large values ofr, andt=mwa'7r,, when regularized by a are essential for ensuring the modular invariance. While the
sharp cutoffr,<(MZ2a’) "%, mutually cancel out, so that one form of these terms for the gauge coupling constants could
is led to an effective unification scaMy which coincides have been guessed on the basis of modular invariance, a
with ours in Eq.(56). On the other hand, as we already systematic procedure is clearly needed for the higher-
pointed out after Eq(74), for the moduli-dependent thresh- derivative interactions.
old corrections, the use of a similar technically inspired cut- The reason that only the knowledge of the space-time
off in the modular integral§3] leads to a different constant block partition function is needed in calculating the threshold
term. corrections rests on the conjectured equivalence between the
The crucial advantage of the infrared regularization by dow energy limit of the string theory vacuum functional and
space-time curvature is that it can be implemented for bothhe effective action encoding the world sheet conformal sym-
the string and field theories using well-defined corresponmetry constraint§80]. The dependence on the background
dence rules. The infrared cutoff on the string theory siddields must then be identical in the string and field theory
is the dimensionless Kac-Moody level parametg?  functionals, up to appropriate field redefinitions. The term-
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by-term identification of powers of the background fieldssolely due to heavy threshold corrections, is ruled out. The
uses in an essential way the connection formulas between theew revised results leave the initial conclusi$gg,21 un-
vertex operators and the-model deformation parameters. changed. The scenarios for perturbative string theory unifi-
These matching equations provide sets of relations betweesation appealing to the combined effects of affine algebra
the string one-loop contributions and the renormalizatiorievels, anomalous (1) factor, and enhanced threshold cor-
constants. They can also be interpreted as corrections to thections from large compactification volumes should con-
string theory equations of motion involving renormalization tinue to provide a viable alternative. However, the last item
contributions to the various interactions. The matching ashere may prove less effective, since considerations from
sumption can be viewed as an implementation of thestring duality indicate the existence of an upper bound on the
Fischler-Susskind mechanisf62], where the world sheet compactification radiuf81], R<1l/axMp.
infrared regulator associated with the size of the world sheet The one-loop threshold corrections to the higher-
torus handle is replaced by the space-time curvature paranderivativeR? gravitational interactions could possibly inform
eter. us about the existence of higher-derivative interactions
The connection formulas between the string theory andvhich are not reducible to the topological Gauss-Bonnet
o-model deformation parameters follow from a consider-combination. Unfortunately, we have been unable to answer
ation of the mass spectra. However, once the semiwormholéis question, because of the technical difficulties in disen-
solution is deformed or tensored with a nontrivial internaltangling the three invariant structures. For the quartic order
space, as irW(k“)x K, the dependence of the effective action F34 gauge interactions, we also had to restrict consideration
on the background fields is only valid in the classical limit, to a linear combination of the invariant couplings which re-
corresponding to the leading powers ok fér a given inter- mains unknown. Our treatment is also qualitative with re-
action. The semiwormhole would be an exact quantum soluspect to the group theory factors and the unresolved mixing
tion only for the special modeN(k4)>< R, also known as the With the quadratic gravitational interactions. However, the
five-brane solitor{30]. Thus, unlike the string theory func- pumerical results here indicate.the presence of large moduli-
tional dependence dn which is exactly known thanks to the mdepgndent threshold corrections relative to the tree-level
conformal and modular symmetry constraints, the informa£oupling constants.
tion on thek dependence of the effective action is only lim-
ited to the leading powers. This fact is responsible for the
restricted predictive power of the approach. The higher or- ACKNOWLEDGMENTS
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beyond reach.

The implication of our numerical results for the moduli-
independent threshold corrections is that these represent We consider the expansion of the deformed theory parti-
small effects for the quadratic order interactions, correspondion functionZ(F?,R), Eqg. (27), in powers of the gauge and
ing to a few percent corrections on the improved couplinggravitational field strength paramete¥$,R, using Eq.(20)
constant or scale. Thus, a simple-minded explanation for thto describe the perturbed conformal weights. The power ex-
standard model gauge coupling constant unification, as beingansion up to quartic order is

1. Expansion of partition function in background fields

'3atR+ —(lét)_athr'%Q’ztz , [ 13Q'¢ . Q%2 13Q7°¢° o
2 Kk 8k 8K ~ 8Kk 16 VKK 16Kk 48K

e 4mryélg— 1—

+<I§t Q’Zt |§1t2 |§azt2 Q’4t2 pglazts |§a4t3 |431§4t4) ,

32k "32K T128k2 T BaKK ' 128KZ 6AKK®Z B64KZK & 384KZK2

(—(Jgt) Q'2t J§§2t2) , [ BQre? 1,0% 3o o
8k, 8K = 8Kk, | 2 |16 Kk 2 16Kk, 48K¥%, 7| 2

Jgt +azt N Jgtz +J§azt2 . Q"‘tz _Jgazts _3564»{3 . 3264,[4
32k, 32K 128k,2 64Kk, 128K? 64Kk, 64K%k, 384K%k,”

Fa+O(R)°+O(F,)®.
(A1)
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O(F R™), and used the following abbreviatior®' =Q
+1 3,K—k+2,t—8777'2.

We have omitted, for simplicity, the mixed power terms< K, ) 16
2 |
a

87TT2 I=1

ka 12 J (92
2. Zero-mode operators 72 §|: Ja 244y +2 J ata 3(2i)%9v,0v,
Let us first recall our normalization conventions for the 16
SU2), and U1) K, affine algebras, - H ﬁu(vl|7_)|y|:0_ (A4)
Li(2)1 (o)~_, Ja(2)Jp(0)= kaaab, The fermionic S@) Cartan subalgebra helicity generators
27 (Q Q) [i=1,2,3] contribute to the conformal weight

as LO a(Qa/2) so that their action on the spinor fields

— Oap #-function factors reads
Qu(2)Qu(0)= =3, (A2) e
2q- _lm? Q229 _1 ar g'
and the definition of the conformal weight operators in Eq. q : q
(12). The zero-mode operators for the Cartan subalgebra of (A5)

commuting generators act essentially by inserting the charge
component as a factor inside the sum representation of thEhe space-time orbital helicity generators, I 5, fogut?e
correspondingd function or character function. This state- SU(2), factor, enter the conformal weight akj 2k

ment can be schematlcally expressed %H’B” —FZ/(k+ 2), which implies that [|2 IZ]—>(k+ 2)
~3p2qP*2 Q% 909~ phgP ’2 \with derivatives operat- X[Lo,Lol=[(k+2)/2][2q(d/dq),2q(d/dq)], operating
ing on 9 ,4(v|7)~ Eqp ?12g2ivp asa/(Zmav) More specifi-  on the corresponding character function factgrg, x; « in
cally, the action can be expressed as a logarithmic derivativthe partition functionX’ (), namely, on the factoX, in the
with respect toag or q acting on the corresponding determi- decomposition, X'(u)=X;X,, [X;=(m7(7) 7(7))%],
nantal factor which occurs in the partition function Tr whereX; comprises the flat space limit contributions from
(qLOq Lo) For the gauge operator zero mode, usingthe zero modes and oscillator excitations. Simultaneously,
Lgau9e= 32/k, , the component decomposition of the world We must subtract the free coordinate contributions

sheet current operatal, = Vk/23,(2),J,(2) = =18, 3li oF, 3—>(k/2)2q(d/dq)(1/77) It is convenient to express the ac-
tion of |2 5. 15 dlrectly as derivatives acting od’(w), so as
to exploit the known properties of this function at the various
limits. For this purpose, as just stated, we need to correct for

) k, d ka 12 d ka " 9 2 the contributions arising from the explicit action of the de-
Ja—Kalo= 2qd 2 (qu ) > <2wi¢9v ) rivatives on the flat space and oscillator terms<ijy and to

q d ! subtract out the action on the free coordinate oscillator con-
(A3) tribution. Using the group symmetry propertie{i;?p”)

one derives the general formula, =0,12)=1(I?), and writing,

normalized as Td2= ¢%/2= 1, and the schematic correspon-
dence,

|2X' k+2 d . 1 12 dI X+kx,2 dI
4 %) 77 161°%dq) T 8ar, 2 %%Gq/ ") 25| *9ag) "
B k-|-22 d '+ k+2X 1 X'2 | AG
6 qdq 8w, 7 qdq n7, (AB)

we find the explicit formulas

2 2 o
(Q+ 3)—? (n)= QEH

N 1 k+2_ d S
('3_ )X(M)— _ZQEMU(Q)ﬁLmﬁLTZ dq X(M)— Ex(1)— ——d,|X" (1)

87,
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i 1 ) i 3
Ex(7)=0 |n77(7)——=—r7 In[ 7 (T)lm(T)]— Ez( ——|,

)

0

12
Ey(7)= F(9T|n77=1—24n§1 a1(n)q" (A7)

In the sum representation of tifefunction-regularized Eisenstein function(n) =X ,d denotes the sum of the divisors rof
The antiholomorphic quantities are deduced by complex conjugation.
The treatment of higher powers of the zero-mode operators follows from similar considerations. One finds

X' k+2)® 1| 2 d 2X K 2X' 2 2|
I3 ]— ) Xl 29gg) X271z () U4q) M7
k+2 12 " 1 i ’ 3k2 " 12
= (92_’_3 7]__7]__ + __77_) ; _ 7]__7’_ X’(/J')
S 5x2| 2 T 2 7 8n 4, 7 4\ n 52
3X, ) ZI 3X’ r/ 77/2 A8
—~5 A4q) "= 5.2 ——?, (A8)

wheren’ =d,7(7) and we expressed the angle averaging by means of the classical fdérml@/S. The result appearing on
the last line in Eq(A8) is obtained by selecting th@(k®) term and dropping all terms proportional to powerskair (k+ 2).
The corresponding formula for the total angular momentum projection is

. . 5“” &gl —d 3( —d\%2
(Q+ 15)4=Q%+ 1 2+6Q% 2> =2 == (Zq _ln;)——<2q % In7. (A9)
af ﬁaﬁ dq dq

The gauge zero-mode operators action is given by

2420 IR+ 2 (BIFPIFa] 3, 43730500, 05) + BIFPIRAN5+  2 IRBFRI Nk,  (AL0)
| 1#J 1#J#K | #J#K#L

where the derivative®,=d/2widv, operate on theEgX Eg Cartan subalgebra components of the fermionic gauge fields
determinantal factorﬁ[ﬁ](v, |7).

3. Modular integrals

To evaluate the modular integrals in the lipit-0, it is convenient to use the representatdofu) =Z(u) —Z+(2u),
while truncating the winding modes summation to the0 term,

2

. n
Zipw)=\m 2 ezf'm“flexx{—ww(mzm;

mn)eZ

1 1
=1, 03(i pu?) = ;ﬂs(ﬁ)a

I Top

where the equation in the last step is deduced by means of the duality transformatiod/7. An important observation is
that in the differenc&(u) — Z1(2u), the contribution from then=0 term in the momentum modes sum cancels out, so that

there occurs an overall damping facm‘r”ﬂ‘z, as required by the regularization. If one simply factored outeh&*’"
dependence, this would prevent one from simplifying the integrands by using the duality transformation. Nevertheless, a

convenient approximation for the integrals, K, valid up to small correction®(e~ ¥#%),0(e~**#%), can be obtained by
using the two truncations detailed in the following steps:

X(p)=\rge ™" 3, e 7™ = (s 2p),

2 1 1
= e A%(_iwz)—l}ﬂwzm

1
=& T = (u2p), (A1)
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where the first truncation amounts to the substitutio£ 1)—m?, and the second to retain the leading term in the limit
pn—0. One can now evaluate the integral analytically,

7,

) dr
J1:47T,LL @ T

1J1/2 4 Joc ) ) :
il r ekt (D
wlowz t Ji-72 T2 (w2

4 2 7
= — 4l
P o

1 (12
=" anEi- mnt1- - (w2
MmJ 172

=2m| yg—3+In , (A12)

V27,
g M
where Ei is the exponential integral function and we have u$é’@,2dxln(1—x2)=(3In3—2—2|n2),Ei(oc)HO,Ei(z)
=vye+1Inz+0O(2). A similar approximation applies to the corresponding field theory integral,

Ky=amu2— ir Ee—mz—( 2ue)|=2 —2+|n—2Mg (A13)
1= W/Le(;#e ol umaz 1 Me—cle) | =T YE AN2|

A useful approximation for the integrald, ,K,, for (n=2,3), is again to truncate the winding modes 0, but to retain all
the momentum modes e Z, while extending the range of the modular integral fier-0 to the entire upper half-strip. The
procedure, valid up to the same exponential accuracy as quoted above, can be described as

dzTZ ( ) 1 d27'+j1/2 d deTz[ﬁ ( 1 1] 1[f 40,202 1_nr( 1)§(2 2)]
— = | — T — —_—| = = — T n— n—
FTS T M FTg —1m2 Yo 7'2 3 —szMZ wo " #
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