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The string theory one-loop threshold corrections are studied in a background field approach due to Kiritsis
and Kounnas which uses space-time curvature as an infrared regulator. We review the conformal field theory
aspects of the method for the special case of the semiwormhole space-time solution. The comparison between
the string and effective field theories vacuum functionals is made for the low-derivative order, as well as for
certain higher-derivative, gauge and gravitational interactions. We study the dependence of string loop renor-
malization corrections on the infrared cutoff. Numerical applications are considered for a sample of four-
dimensional Abelian orbifold models with a view to deduce the systematic trends of the moduli-independent
threshold corrections. The implications on the perturbative string theory unification are examined. We present
numerical results for the gauge interactions coupling constants as well as for the quadratic order gravitational
(R2) and the quartic order gauge (F4) interactions.@S0556-2821~97!03616-3#

PACS number~s!: 11.25.Mj, 11.10.Hi, 12.10.Kt

I. INTRODUCTION

With a single dimensionful free parameter~the Regge
slopea8) and a handful of dynamical parameters~the moduli
fields vacuum expectation values! string theory must strive at
providing a unified description for all the known elementary
particles and their interactions. Weakly coupled solutions, in
spite of the runaway dilaton vacuum sickness, have the im-
portant advantage of calculability. Both the gauge symmetry
bosons and matter particles are then manifest as elementary
massless excitations, while the effective action can be con-
structed controllably using the string theory world sheet and
space-time loop expansions. The excellent good contact
achieved by the solvable perturbative string theory models
with particle physics phenomenology is surely an encourag-
ing sign.

As is well known, the matching of loop contributions to
the scattering amplitudes of a string theory to those of its low
energy,a8→0 limit, field theory descendant, induces finite
contributions to the local interactions coupling constants in
the effective action. These so-called heavy threshold correc-
tions, which reflect the decoupling of massive string modes,
are expected to relax the restrictive unification constraints
imposed on the various coupling constants at the tree level.
In particular, the departures from universal values of the
gauge interactions coupling constants could indeed be large
enough to have a phenomenological impact on the issue of
the high energy extrapolation of the standard model of the
electroweak gauge interactions.

Three main features distinguish the heavy threshold cor-
rections in string theories from their grand unification theo-
ries analogues:~i! The heavy modes decoupling in string
theory involves summations over infinite towers of massive
excitations;~ii ! for weakly coupled string solutions, where
the string mass scalea821/2 lies close to the Planck scale, it
is necessary to care about the back-reaction effects of gauge
interactions on gravitational interactions and conversely;~iii !

string theories have finite ultraviolet behavior but are subject
to infrared divergences associated with vacuum tadpoles of
the massless modes.

The first item in the above list suggests that, unless some
cancellation mechanism is at work, nothing prevents thresh-
old corrections from attaining large sizes. The second item
underscores the importance of having a description of the
world sheet theory consistent with conformal and modular
invariance. As to the last item, it clearly points out the need
of implementing a consistent infrared cutoff regularization
procedure.

Little attention was given so far to the issue of the infra-
red regularization scheme dependence. The original works
@1–3# mainly focused on the nonconstant, moduli or gauge
group factors dependent, parts where the infrared sensitivity
cancels away to some extent. The approach initiated in@2,3#,
and developed further in@4–12#, has served an important
purpose in testing the string theory dualities@13,14#. It has
also been applied in several phenomenological studies@15–
21#. Recently, a more complete approach was presented by
Kiritsis and Kounnas@22#. The idea is to use a curved space-
time as an infrared cutoff regulator, observing that such a
regularization scheme can be consistently and workably re-
alized for both string and field theories.

Curved gravitational and gauge backgrounds are defined
as the solutions of the string theory equations of motion, or
of the perturbatively equivalent equations expressing the
cancellation of the world sheet conformal Weyl anomaly.
The search for exact solutions of the classical theory has
been actively pursued in recent years, using the techniques of
unitary coset models@23# or of solution-generating duality
transformations@24#. Solutions of the quantum theory, exact
to all orders ofa8, have also been discussed in cosmology
@25# or particle physics@26# applications.~We have cited a
very small fraction of the extensive literature on this sub-
ject.! From the standpoint where a curved space time is
viewed primarily as a technical device, a convenient class of
solutions is provided by the models withN54 world sheet
supersymmetry@27#. Solvable, perturbatively stable solu-
tions, which depend on a free parameter associated to the*Electronic address: chemtob@spht.saclay.cea.fr
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space-time curvature, can be found here by assembling to-
gether suitable direct products of compact or noncompact
Wess-Zumino-Witten~WZW! current algebras models
@27–29#. The simplest solution of this kind, the so-called
semiwormhole space-time solution@30#, is associated with
the conformal theory,Wk

(4)5SU(2)k3U(1), and has the
asymptotic~large levelk) geometry,S33R1. A curvature-
regularized heterotic string theory can then be constructed by
substituting for the world sheet coordinate and spin fields of
the uncompactified four-dimensional Minkowski space time,
conformal ~left-moving sector! and superconformal~right-
moving sector! blocks of appropriate central charge and
world sheet supersymmetry.

An important consequence in this approach of the solv-
ability of the space-time conformal block is the existence of
marginal deformations of the theory which represent confor-
mally invariant perturbations by constant gravitational or
gauge backgrounds. This makes the approach well suited for
studies of the higher-derivative interactions in the effective
action. String loop corrections to the effective actions of ten-
dimensional string theories were discussed some time ago
@31,32#. Undertaking the analogous program for four-
dimensional string theories is a challenging task because
each compactification comes with its particular gauge sym-
metry group and matter content. Moreover, the nonrenormal-
ization constraints are less restrictive in four dimensions.

Since the initial proposal of the curvature regularization
approach, further developments were reported by Kiritsis
and Kounnas@33# and Petropoulos and Rizos@34,35#, inde-
pendently and in collaboration@36–38#. In the present work
we shall focus on similar issues. Our principal goal will be to
perform a quantitative study of threshold corrections to the
gauge and gravitational interactions, including certain
higher-derivative terms, based on four-dimensional orbifold
models. While some overlap between our presentation and
that of the above authors is unavoidable, in reviewing their
approach, we shall try to bring out the essential points and
emphasize certain complementary aspects.

Our discussion of the higher-derivative interactions fo-
cuses on the quadratic terms in the curvature tensor field
(R2) and the quartic terms in the gauge fields (F4). Although
of academic interest for particle physics phenomenology, be-
cause of the enormous suppression by one power ofa8 rela-
tive to the conventional linear gravity term, the quadratic
gravitational interactions have important implications on the
consistency of quantized gravity@39–41# and as a mecha-
nism to trigger supersymmetry breaking@42#. The supergrav-
ity completion of quadratic gravity is discussed in@43,44#
and the constraints on its structure from mixeds model or
Kahler and gravitational anomalies in@45#. The studies of
string loop corrections to the topological Gauss-Bonnet
gravitational interaction, initiated in@5#, have been pursued
further in @13,46,47#.

The quartic gauge interactions are affected at low energies
by an even larger factora82 suppression relative to the mini-
mal quadratic interactions. Nevertheless, their contributions
could have some phenomenological impact at high energies,
particularly in the event that nature would have chosen the
so-called weak scale string solutions@48#, characterized by a
tension parameter close to the Fermi scale. For the class of
four-dimensional heterotic string vacua withN54 super-

symmetry and an unbroken gauge symmetry, such as those
obtained by toroidal compactification from the ten-
dimensional theory, the exact structure of the one-loopF4

interactions can be determined@49,50#, thanks to the super-
symmetry relationship with the Green-Schwarz anomaly
canceling countertermBX8. These properties of the quartic
gauge interactions have been recently exploited to test the
strong-weak coupling duality map between the four-
dimensional toroidally compactified heterotic and type I
theories@51#.

Regarding the numerical applications, our motivations re-
main essentially unchanged with respect to our previous
work @20#. We shall mainly focus on the constant, moduli-
independent component of threshold corrections since this
remains the poorly understood part. We calculate threshold
corrections for a sample of representative orbifold models
covering a range of gauge symmetry groups and matter fields
content, with a view to uncover possible systematic trends.
The updated results for the gauge coupling constants re-
ported in the present work include the gravitational back-
reaction effects.

The present paper includes three additional sections. In
Sec. II, we review the approach of Kiritsis and Kounnas@22#,
as applied to the semiwormhole space-time solution. The fol-
lowing items are discussed: Conformal field theory aspects
of the semiwormhole solution and identification of certain of
its zero-mode deformations; matching of the string vacuum
functional with the field theory effective action; effective ac-
tion renormalization; extension to theD-term auxiliary
fields. Proceeding next to the phenomenological part of the
paper, we present in Sec. III numerical results for the
moduli-independent threshold corrections in the gauge cou-
pling constants, the quadratic gravitational interactions, and
the quartic order gauge interactions. A brief discussion of the
moduli-dependent threshold corrections is given. Section IV
summarizes our conclusions. Appendix A1 provides techni-
cal help for the partition function expansion in powers of the
background fields; Appendix A2 for the action of zero-mode
operators; Appendix A3 for the approximate evaluation of
certain modular integrals.

II. INFRARED REGULARIZATION APPROACH
OF KIRITSIS AND KOUNNAS

A. Conformal field theory aspects

1. Partition function

Consider the familiar way of constructing four-
dimensional heterotic string solutions, consistently with the
two-dimensional world sheet Weyl conformal symmetry.
One assembles the coordinate and spinor fields describing
the ~uncompactified, compactified, gauge! target space into
conformal ~left-moving sector! and superconformal~right-
moving sector! blocks whose total central charges,
c526,c̄ 515, cancel those of the conformal and supercon-
formal ghosts systems. An infrared regularized theory can
then be defined by replacing the groups of free field coordi-
nates for the uncompactified Minkowski space-timeR4 by
those of interacting conformal and superconformal theories
corresponding to a~compact or noncompact! curved space-
time background. The background gravitational and gauge
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fields are required to obey the conformal symmetry equa-
tions of motion and to depend on at least one free~curvature!
parameter which monitors the decompactification limit.

A very convenient space-time background is that of the
semiwormhole solution. This is the simplest choice among a
large family of solutions@28,29,27#, having a world sheet
N54 superconformal algebra. The semiwormhole back-
ground is described by an SU~2! k3U(1)Q nonlinear s
model given by the direct product of a levelk WZW model
for the spatial coordinates, times a noncompact~Liouville or
Feigin-Fuchs! model with background chargeQ for the time
coordinate,X0(z, z̄ )5X0(z)1 X̄0( z̄ ). The levelk is a free
discrete integral parameter representing the space-time cur-
vature, or mass gap, such thatk→` retrieves the decompac-
tification limit. To fit the requisite central charge,
c5@3k/(k12)]1113Q254, one sets the background
charge atQ5@2/(k12)#1/2. The left-moving sector SU~2! k
current algebra is described by three current generators
I i(z)@ i 51,2,3# obeying the operator product expansion
~OPE!

I i~z!I j~w!5
1

2

kd i j

~z2w!2
1

i e i jk I k~z!

z2w
1•••, ~1!

wherez,w are world sheet complex coordinates and we use
the so-called field theory normalization convention for the
highest root vector-squared lengthc251. The right-moving
sector includes, in addition to the SU~2! k3U(1)Q current
algebra with generatorsĪ i( z̄ ) and time coordinateX̄0( z̄ ),
four free fermion fieldsca( z̄ ) @a50,1,2,3# which build up
an affine SO~4! 1.SU(2)H13SU(2)H2 level 1 algebra, with
generators

Si
65 1

2 ~6c0c i1
1
2 e i jkc jck!5F 1

A2
]̄ H6,eiA2H6

e2 iA2H6G
@ i 53,~11 i2!,~12 i2!#, ~2!

where the bosonic field counterparts of the fermion fields
H6( z̄ ) take values on circlesS1 of ~dimensionless! radii set
at the self-dual value,r 5R/Aa851. The combined alge-
braic system of bosonic and fermionic operators (Ī i ,Si

6)

can be embedded in anN54,c̄ 56 superconformal algebra,
whose@stress tensor, supersymmetry, SU~2! group# genera-
tors (T,Ga,Si) are constructed by forming suitable products
of the elementary field operators, (Ī i ,Si

1 ,Si
2) @28,29,52#.

Aside from the global symmetry under SU~2! H1, the
semiwormhole world sheet theory is symmetric under the
diagonal vector subgroup, SU~2! N of SU~2! H23SU(2)k ,
with generatorsNi5I i1Si

2 @ i 51,2,3#. The unbroken dis-
crete symmetries of itsN54 superconformal algebra include
theZ2

1 parity described bye2p iS1
, whereS1 is the represen-

tation spin and, fork even, the Z2 automorphism of
SU~2! k , denotedZ2

2 , which acts on the generatorsI i ,Si
2 of

SU~2! k and SU~2! H2. Both of these parities play an essential
role with respect to the space-time supersymmetry. To ex-
pose theZ2

2 parity, it is convenient to introduce the auxiliary
functions

ZkFab G~t, t̄ !5(
l 50

k

e2ipb lx l ,k~t! x̄ ~124a!l 12ak,k~ t̄ !, ~3!

wheret5t11 i t2 , t̄ 5t12 i t2 denote the world sheet torus
modular parameter anda,b are spin structure labels taking

the values (0,12 ). The affine Lie group character andu func-
tions, defined generically as

xl,k~t,w!5Tr~qL0e22p iwI 3!,

qn,k~t,w!5 (
gP@M1~l/k!#

qg2/2e22p ikwg,

whereM is the group long root lattice andl the representa-
tion highest weight, are, for the unitary representations of
SU~2! k , with l 52 j P@0, . . . ,k# twice the spin of the repre-
sentation, given by the familiar formulas@53#

x l ,k~t,w!5
Cl 11,k12~t,w!

C1,2~t,w!
,

CL,K~t,w!5qL,K~t,w!2q2L,K~t,w!,

qL,K~t,w!5 (
nPZ

q@n1~L/2K !#2
expF22p iK S n1

L

2K DwG ,
~4!

where the summation indexn is twice the spin projection
and q5e2p i t. The SL(2,Z) modular group transformation
laws of Zk@d

g# are similar to those of (q@d
g#/h)2:

SS t→2
1

t D :ZkFgd G→e4p ikgdZkFd
g G ,

T~t→t11!:ZkFgd G→e22p ikg2
ZkF g

d1g G . ~5!

For k even, not multiple of 4, the SO~3! k/2;SU(2)k /Z2 or-
bifold model partition function is constructed by means of
the projection@53#:

ZSO~3!k/2
~t, t̄ !5~11S1TS!ZU~t, t̄ !2ZSU~2!k

~t, t̄ !

5F ~11S1TS! (
l 50~even!

k

x l ,k~t! x̄ l ,k~ t̄ !

2(
l 50

k

x l ,k~t! x̄ l ,k~ t̄ !G
5

1

2(g,d
e22ipgdZkFgd G~t, t̄ !, ~6!

ZU denoting theZ2-singlet partition function of the un-
twisted sector andZSU(2)k

that of the covering group.
We shall need to consider the class of compactified het-

erotic string modelsWk
(4)3K with an internal space Kahler

manifold K allowing for N conserved supercharges. One
must distinguish here the cases of maximal space-time super-
symmetry,N54, from the nonmaximal cases,N<2. The
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maximal case, corresponding, say, toK5T6 or K5Wk8
(4)

3T2, allows in principle for four conserved supersymmetry
charges, even underZ2

1 :

u6~ z̄ !5expF i

A2
~H16H81!G ,

ũ 6~ z̄ !5expF i

A2
~H26H82!G , ~7!

whereH86 are bosonic fields analogues ofH6 for the inter-
nal space fermions. However, since the two chargesũ 6( z̄ )
have nonlocal OPE with theWk

(4) superconformal algebra
generators and are hence unphysical, these models have only
N52 supersymmetry. The halving of the space-time super-
symmetry~from N54 toN52) takes place because, in ad-
dition to the conventional GSO~Gliozzi-Scherk-Olive!
modular-invariant projection on string states odd with re-
spect toe2p i (S11S81), one must also project with respect to
the discreteZ2

2 symmetry. The construction of partition
functions for the maximal supersymmetry case is discussed
in @52,33#. For the nonmaximal case, corresponding to a
choice of internal space which preserves supersymmetry
N52 (K5T4/Z2% T2) or N51 (K5T6/G), the charges
ũ 6 are not conserved. Since theZ2

2 symmetry group then
cannot be embedded inK, the projection need only involve
the conventionalZ2

1 symmetry@33#. In particular, for both
N51,2 compactifications, the SO~3! k/2 partition function
factorizes out in the expression of the full partition function.
Thus, for models obtained through the substitution,
R43K→Wk

(4)3K, the string one-loop amplitudes are de-
rived from those associated with a flat space-time by insert-
ing the correction factor

ZW~t, t̄ ![
G„SU~2!k…

V„SU~2!k…
[2

X8~m!

2pV~m!

[
~At2hh̄ !3

V~m!

1

2 (
ab50,~1/2!

e22ipabZFab G~t, t̄ !

5
~At2hh̄ !3

V~m! F (
l 50~even!

k

x l ,k~t! x̄ l ,k~ t̄ !

1 (
l 51~odd!

k

x l ,k~t! x̄ k2 l ,k~ t̄ !G , ~8!

where the derivative is defined asX8(m)5(]/]m2)X(m),
and the normalization factor V„SU(2)k…51/8pm3

5(k12)3/2/8p corresponds to the~string theory-corrected!
volume of the group space manifold, SU~2! k;S3, with a
dimensionless radial scale parameter,r 5(k12)1/251/m.
The prefactor (At2hh̄ )3 accounts for the determinant of the
free bosonic spatial coordinates. Furthermore, describing the
momentum modes in the time coordinate U~1! Q model by
the continuous series of unitary representations
exp@A2/a8bX0(z, z̄ )#, @b5 ip02(Q/2)# will yield for
X0(z, z̄ ) the same determinantal factor 1/(At2hh̄ ) as for a
free bosonic coordinate.

The following two representations of the functionX(m),
defining the semiwormhole partition function, Eq.~8!, will
prove useful later:

X~m!5
1

2m (
~m,n!PZ2

eip~m1n1mn!expF2S pum2ntu2

4m2t2
D G

5At2 (
~m,n!PZ2

eipnq[2m$m2~n11!/2%1n/2m] 2

3 q̄ [2m$m2~n11!/2%2n/2m] 2
,

X~m!5@ZT~m!2ZT~2m!#,

ZT~m!5At2 (
~m,n!PZ2

q~1/4!~mm1n/m!2
q̄ ~1/4!~mm2n/m!2

. ~9!

These formulas were obtained in@22# and can be derived by
use of the familiar conformal field theory methodology@54#.
The representation given by the first line in Eq.~9! is well
suited to studying the decompactification limit,k→`. At
fixed t2, one directly infers that limm→0ZW

511O(e21/m2
,e2t2 /m2

). The representation in the second
line involves the partition functionZT(m51/r ) for the lattice
G(1,1) of radius R5rAa85Aa8/m. This is a modular-
invariant function of t obeying the duality property,
ZT(m)5ZT(1/m). The second representation in Eq.~9! can
be directly used in the limitt2→` to derive an exponen-
tially convergent asymptotic expansion

lim
t2→`

ZW~t, t̄ !52
1

2pV~m!

]X~m!

]m2 5
~t2!3/2

V~m! F S e2pm2t2

2
1

m4e2~pt2 /m2!1••• D24~m→2m!G ,
~10!

valid for fixed m. We observe that the limitsm→0 and
t2→` do not commute, reflecting the nonuniform conver-
gence of the sums over momentum and winding integersm
and n, respectively. Indeed, whereasZW→1 if the limit
m→0 is taken first, taking the limitt2→` prior to m→0,
yields ZW→0.

2. Marginal deformations

Consider the regularized zero-mode conformal generators
for the heterotic string semiwormhole solutionWk

(4) with an
orbifold six-dimensional internal spaceK:

L05

S j 1
1

2D 2

k12
1(

a

Ja
2

ka
1N1E021,

L̄ 05

S j 1
1

2D 2

k12
1

Q̄2

2
1(

i 51

3 Q̄i
2

2
1N̄1E02

1

2
, ~11!

where the SU~2! k3U(1)Q conformal weights contribute

additively as @ j ( j 11)/(k12)1Q2/8#5@ j ( j 11)1 1
4 #/
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(k12), E0 is the vacuum energy shift from the internal space
degrees of freedom, andN,N̄ are the oscillator number op-
erators. We have denoted the zero-mode charges for the Car-
tan subalgebra of the fermionic SO~8!, level 1, affine algebra
~two-dimensional transverse space-time and six-dimensional
internal space! by (Q̄,Q̄1 ,Q̄2 ,Q̄3) and those for the Cartan
subalgebra of the unbroken gauge symmetry group,)aGa ,
of levelska , by Ja . The normalization conventions are such
that Ja(1)Jb(0)5dab(ka/2)1•••,
Q̄a(1)Q̄b(0)5dab1•••. No confusion should arise from us-
ing the same symbols to denote the current densities~func-
tions of z, z̄ ) and their associated zero modes.

Let us focus on the space-time (I 3 ; Ī 3 ,Q̄) and gaugeJa
operators and rewrite the conformal generators succinctly as

L̄ 05
Q̄2

2
1

Ī 3
2

k
1•••, L05(

a

Ja
2

ka
1

I 3
2

k
1•••, ~12!

where the ellipses in Eq.~12! stand for all the remaining
contributions implicit in Eq.~11!. Observing that the con-
served chargesĪ 3 and Ī 31Q̄ tend, in the decompactifica-
tion limit k→`, to the space orbital and angular momentum
helicity operators, one is led to describe the perturbations
due to finite gauge and gravitational background fields in
terms of the conformal vertex operators,

VF
a5

1

2pE d2s
Fa

Aka~k12!
Ja~z!@ Ī 3~ z̄ !1Q̄~ z̄ !#,

VR5
1

2pE d2s
R

Ak~k12!
I 3~z!@ Ī 3~ z̄ !1Q̄~ z̄ !#, ~13!

where Q̄( z̄ )5( i /2)e3i j c ic j5 ic1c2 is the spatial helicity
current density, havingQ̄5Q̄0 as the zero-mode component
of its Laurent series expansion,Q̄( z̄ )5(nPZQ̄n z̄2n21.
Added to the world sheet actionS0, the extra action
dS5VR1(aVF

a is a conformal weight ~1,1! marginal
perturbation leaving the conformal symmetry of the
model intact. While the case of greatest practical interest
of conformal operators with constant field strength
parameters exists only for nonflat theories, the flat
space time limit is useful to set the constant normaliza-
tion factors in Eq. ~13!. In the s-model classical limit
of large k, where the generators can be expanded with
respect to the space coordinatesXa(z, z̄ )@a51,2,3# as Ī a

[2 iAk/2Tr(tag21 ]̄ g)5Ak/2( ]̄ Xa2 1
2 eabcX

b ]̄ Xc1•••),
using,g(z, z̄ )5e( i /2)tW•XW , we find thatVF

a reproduces the ver-
tex operator for an uniform electromagnetic fieldFmn ,

V~Am
a !5

gst

2pE d2sAm
a ~ ]̄ Xm1••• !

Ja

Aka

,

@Am
a ~X!52 1

2 Fmn
a Xn#,

with the identificationFa5A2gstF12
a wheregst is the string

theory coupling constant. The fermionic terms, indicated by
ellipses, are reconstructed by supersymmetry. A similar

statement holds forVR in relation with a constant curvature
gravitational field (Rab)mn . With parametersFa andR inde-
pendent ofz, z̄ , the perturbed action depends then solely on
the zero-mode operators,

dS522p~2t2!F Fa

Aka~k12!
Ja~Q̄1 Ī 3!

1
R

Ak~k12!
I 3~Q̄1 Ī 3!G , ~14!

where we have accounted for the change of coordinate vari-
ables from the real~Euclidean metric! orthogonal set
s5(s1 ,s2)P@0,1#2 such thatds25ds1

21ds2
2, to the com-

plex setz5(s1tt)/2, z̄5(s1 t̄ t)/2 using*d2s5*d2zAh

52t2*dzd z̄. The zero-mode conformal generators of the
perturbed theory, (L08 , L̄ 08), can now be identified by compar-
ing the Lagrangian and Hamiltonian representations of the
world sheet one-loop functional integral,

Z5E @DX#@Dc#eS01dS

5
1

2EF

d2t

t2
Tr~e22pt2~L01 L̄ 08!e2ipt1~L02 L̄ 08!!.

One can then describe the conformal perturbationsdS as
deformations of the Cartan subalgebra tori for the conserved
fermionic and gauge symmetry groups by defining an asso-
ciated extended Narain orthogonal coset moduli space, with
a lattice of conserved charges,G(r 11, r̄ 11), wherer is the
rank of the gauge group andr̄ that of the SO(2r̄ ) group of
conserved fermionic charges. The one unit additions here
refer to theI 3 , Ī 3 charges. The vertex operator parameters
Fa,R provide us with a local description of the moduli space
of deformations. A description of the global structure, incor-
porating the back-reaction effects, is developed by acting
on the zero-mode lattice with the orthogonal group
SO(r 11, r̄ 11,R). The transformations which reproduce the
perturbations in Eq.~14! decompose into three factors:~i!
The right-moving sector rotation of angle u8
5cos21@k/(k12)#1/2 which introduces the total angular mo-
mentum projection and its orthogonal complement,

S Ī 3

Ak
,

Q̄

A2
D→S Ī 3u8

Ak
,
Q̄u8

A2
D [S Ī 31Q̄

~k12!1/2
,

22 Ī 31kQ̄

@2k~k12!#1/2D ;

~15!

~ii ! the left-moving sector rotation of angleu which mixes
the space-time and gauge group charges,

S I 3

Ak
,

Ja

Aka
D→S I 3u

Ak
,

Ju
a

Aka
D [S cosu

I 3

Ak
1sinu

Ja

Aka

,sinu
I 3

Ak

1cosu
Ja

Aka
D ; ~16!
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~iii ! the Lorentz boost of hyperbolic anglec/2 which mixes
the rotated left sector and right sector generators,

S Ī 3u8

Ak

I 3u

Ak

D→S Ī 3u8c

Ak

I 3uc

Ak

D 5S cosh
c

2
sinh

c

2

sinh
c

2
cosh

c

2

D S Ī 3u8

Ak

I 3u

Ak

D .

~17!

The induced conformal generators increments,

d L̄ 05F Q̄u8
2

2
1

Ī 3u8c
2

k
1•••G2F Q̄2

2
1

Ī 3
2

k
1•••G

5
coshc21

2 F ~Q̄1 Ī 3!2

k12
1S cosu

I 3

Ak
1sinu

Ja

Aka
D 2G

1sinhc
Q̄1 Ī 3

~k12!1/2S cosu
I 3

Ak
1sinu

Ja

Aka
D , ~18!

obey level matching,dL0[L082L05 L̄ 082 L̄ 0[d L̄ 0, by con-

struction. Comparing the dependence ofdL0 ,d L̄ 0 for infini-
tesimal values of the parametersR,Fa with that of the per-
turbed actiondS, Eq. ~14!, using the formal identification
dS.24pt2d L̄ 0 imposes the following connection formulas
between the two sets of parameters (R,Fa) and (u,c):

Fa5sinhc sinu, R5sinhc cosu,

S cosu
sinu D5

1

~Fa21R2!1/2S R
FaD , sinhc5~Fa21R2!1/2.

~19!

Using these relations, the conformal operator increments can
also be expressed in the alternate forms

d L̄ 05dL05
1

2
C2

F ~Q̄1 Ī 3!2

k12
1

S R
I 3

Ak
1Fa

Ja

Aka
D 2

~Fa21R2!
G

1
~Q̄1 Ī 3!

Ak12
S R

I 3

Ak
1Fa

Ja

Aka
D

5
1

2FAC1

~Q̄1 Ī 3!

Ak12
1

1

AC1
S R

I 3

Ak
1Fa

Ja

Aka
D G 2

2
~Q̄1 Ī 3!2

k12
, ~20!

whereC65611(11Fa21R2)1/2. The additional terms, of
O(Fa2,R2) and beyond, with respect to those in Eq.~14!,
which are given by the term involving the factorC2 in the
first line of Eq. ~20!, are associated with the back-reaction
corrections.

The deformed theory can be represented in still another
parametrization by means of the generalized gravitational
background fields @metric tensor Gmn(X), two-form

Bmn(X), dilaton F(X)# and gauge background fields
(Am

I 5Am
a Ĵa

I ) which appear as coupling constants in the
space-time and gauge sectors of the world sheets-model
action:

S52
1

4pa8
E E d2s$Ahhab@~]aXm]bXn

1 i c̄R
mra¹bcR

n !Gmn~X!1]aFI]bFI #

1 i eab@]aXm]bXnBmn~X!1]aXL
m]bFIAm

I ~X!#

2a8AhR~2!F~X!%, ~21!

using familiar notations for the world sheet metric and anti-
symmetric tensors, covariant derivative, and curvature,
h,e,¹b5]bXmDm ,R(2). To deduce the semiwormhole solu-
tion background fields, it is convenient to write the SU~2! k

WZW action in the realization @55# g(z, z̄ )
5e( i /2)g(z, z̄ )s2e( i /2)b(z, z̄ )s1e( i /2)a(z, z̄ )s2, with the spatial coor-
dinates angles,gP@0,2p#,bP@0,p#,aP@0,2p#. Including
the action for the U~1! gauge coordinate fields,
f(z)5A2/kaFI(z), such thatJa(z)5]f(z), and that for the
noncompact time coordinate fieldX0(z, z̄ ), the total action
reads

S05
k

8pE d2zS ]a ]̄ a1]b ]̄ b1]g ]̄ g12cosb]a ]̄ g

1
2ka

k
]f ]̄ f D2

1

2pE d2zS 1

a8
]X0 ]̄ X0

1
1

2A2a8
AhR~2!QX0D . ~22!

One can now represent the marginal perturbations associated
to a finite constant magnetic fieldH and an infinitesimal
constant gravitational fielddl in terms of the Cartan subal-
gebra generators,I 35]g1cosb]a, Ī 35 ]̄a1cosb]̄g, by
adding toS0 the extra action

dS5
Akka

2p
HE d2z Ī 3~ z̄ !Ja~z!1dl

k

8pE d2z Ī 3~ z̄ !I 3~z!

5
AkkaH

2p E d2z~ ]̄ a1cosb ]̄ g!]f

1
kdl

8p E d2z~ ]̄ a1cosb ]̄ g!~]g1cosb]a!. ~23!

Since a,g are Killing ~isometry! coordinates of the semi-
wormhole manifold, this has an orthogonal coset moduli
space of vacua described byMPO(2,2,Z)\O(2,2,R)/
O(2,R)3O(2,R), where M is a 434 matrix constructed
from the metric and torsion tensors in the basis of Killing
coordinates, u65(g6a)/2, which transforms underV
PO(2,2,R), to leadingO(1/k), asM→M 85VMVT, along

with the dilaton shift,F→F85F1 1
4 ln det(G8G21). The

case of a finite parameterl can then be described by means
of the so-called solution-generating transformation method
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@55,56#. Starting with the unperturbed background fields, de-
notedĜ,B̂, one performs first the particular nonlinear trans-
formation,M̂→VMVT,

M̂5S Ĝ21 Ĝ21B̂

B̂TĜ21 Ĝ1B̂TĜ21B̂
D ,

V5
1

2S R1S R2S

R2S R1SD @R,SPO~2,R!#,

specialized to the caseR5ST, with R a two-dimensional
rotation of anglea, followed by the variables rescalings,
u1→u1 /cosa,u2→u2 /(cosa2ksina), and a constant shift of
Bu2u1→Bu2u11cosa(kcosa1sina), corresponding to a total
derivative term. The deformed WZW model background
fields depend on the rotation angle parametera through the
two parameters @55# l15cos2a1(k/2)(ksin2a2sin2a),
l25(k/2)(ksin2a2sin2a). Expressing the perturbed action
S01dS so as to achieve a matching with the generic form of
the world sheet action in Eq.~21!, gives us the following
background fields, solutions of the classical string equations
of motion:

Gtt51, Gbb5
k

4
, Gba50, Gbg50,

Gaa5
k

4Fl12l2cosb

d
2

8H2cos2b

d2 G ,
Ggg5

k

4Fl12l2cosb

d
2

8H2

d2 G ,
Gag5

k

4Fl1cosb2l2

d
2

8H2cosb

d2 G ,
Bba5Bbg50, Bag5

k

4Fl1cosb1l2

d G ,
F2F052

1

4
ln det

G

G0
52

1

2
lnd1 ln~gX!,

AkaAa

cosb
5AkaAg52A 2k

kaa8

H

d
@d5l11l2cosb#.

~24!

Because of the invariance under a uniform constant rescaling
of l1 ,l2 ,H, one can groupl6 in a single parameter,l
P@0,̀ #, which is defined as,l65l6(1/l). The unper-
turbed space-time case,H50,l51, is described by the
gravitational background fields,

Gtt51, Gaa5Gbb5Ggg5k/4,

Bag5Gag5~k/4!cosb,

F052QX0/A2a852X0/Aa8~k12!.

The spatial coordinates are to be identified as
@a,b,g#5@Xm/Aa8k#@m51,2,3#. The dilaton field is nor-

malized with respect to the flat space-time limit,
k→`,l→1, such thate^F&5gst5gX /A2, the string theory
loop expansion parameter, identifies with the four-
dimensional gauge coupling constant in the string theory
normalization.~The relationship between the field and string
theories normalized coupling constants and gauge potentials,
characterized by a highest root of squared lengthc251 and
c252, respectively, is described bygf t5A2gst ,
Ast5Af tA2, leaving the productAg invariant.!

The comparison of the dependence of the conformal
weights on the background fields, Eq.~24!, with the corre-
sponding dependence of the mass spectrum for particle
propagation in the same background fields, based on the
mass-shell conditions (a8/4)M25L0 can be used@33# to es-
tablish the connection formulas between thes-model param-
eters@H,l# and the vertex operators parameters@Fa,R#:

H5
Fa

A2C1

, l15A2C1 , l25A2
R

C1
. ~25!

This yields the explicit formulas

H5
Fa/A2

11~11Fa21R2!1/2

5
Fa

A2
@12 1

4 Fa22 1
4 R21 1

4 Fa2R21 1
8 R41O~Fa2R4,R6!#,

l5F11R1~11Fa21R2!1/2

12R1~11Fa21R2!1/2G 1/2

511 1
2 ~12 1

4 Fa2!R1 1
8 ~12 1

2 Fa2!R21O~Fa2R3,R3!,

~26!

where the second equations give the power expansions for
small deformation parameters.

B. String theory vacuum functional
and field theory effective action

The one-loop partition function for the deformed string
theory,

Z~Fa,R!5
1

2EF

d2t

t2
Tr~qL08 q̄ L̄ 08!, ~27!

definesZ(Fa,R) as the generating functional of one-loop
vacuum-to-vacuum transition amplitudes with external line
insertions of the background fieldsFa,R. For four-
dimensional heterotic string orbifold models, one can write
the explicit formula

Z~Fa,R!5
V~4!

~4p!2 EF

d2t

t2

1

2p2t2
2

ZW

uhu4

3( 8 Z0~q, q̄ !ZG~q!e24pt2dL0,
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( 8 5
1

2(ā ,b̄
~21!2ā12b̄

1

uGu(g,h
x~g,h!e~g,h!

3
1

2(a,b

1

2 (
a8b8

h~g,h;a,b;a8,b8!, ~28!

Z0~q, q̄ !5

q̄F ā
b̄ G

h̄
)
i 51

3 q̄F ā1gi

b̄1hi
G

h̄
)
i 51

3 U h

q F1/21gi
1/21hi

GU
2

,

ZG~q!5)
I 51

8 qFa1gI
b1hI

G
h )

I 851

8 qFa81gI 8
b81hI 8

G
h

. ~29!

The factor 1/t2 in Eq. ~27! arises from the ghost contribu-
tions. The internal and gauge spaces determinantal factors in
the partition function, Eq.~29!, are denoted byZ0 andZG ,
respectively. The summations over the right and left sector
spin structures (ā ,b̄ ) and (a,b,a8,b8) and the left and
right sector orbifold spatial and gauge twists
(gi ,hi),(gI ,hI ,gI 8,hI 8) are represented by the primed sum-
mation symbol. The sums include the twisted subsector de-
generacy factorsx(g,h), the discrete torsion phase factor
e(g,h), and the phase factorsh(g,h;a,b;a8,b8), which af-
fect the extended GSO orbifold projection. More information
concerning these factors, the definition of Dedekindh func-
tion h(t) and Jacobiu functions q@a

b#(t), especially the
phase conventions, is provided in@20#. The space-time vol-
ume V(4) appears through the integration over the flat limit
D54 Minkowski space-time translations zero modes,

a82V~D !E dDp

~2p!De2pt2a8p2
5

V~D !

~4p2t2!D/2
. ~30!

The dependence on the background field parameters can be
exposed by expanding the exponential factor inside the trace:

Z~Fa,R!5 (
~m,n!PZ2

Zm,nFmRn.

The power expansions ofZ(Fa,R) out to quartic orders in
Fa,R are provided in Appendix A1. The first few terms,
relevant for our purposes here, read

Z0,05
V~4!

2~2p!4EF

d2t

t2
3

ZW

h2h̄2 ( 8 Z0~q, q̄ !ZG~q!,

~4p!2@Z2,0F
a2;Z0,2R

2#

54V~4!E
F

d2t

t2

ZW

h2h̄2 ( 8 Z0~q, q̄ !ZG~q!H Fa2

ka~k12!

3S F ~Q̄1 Ī 3!22
k12

8pt2
GFJa22

ka

8pt2
G

2
ka~k12!

~8pt2!2 D ;
R2

k~k12!S F ~Q̄1 Ī 3!22
k12

8pt2
G

3F I 3
22

k

8pt2
G2

k~k12!

~8pt2!2D J ,

~4p!2Z4,0F
a4

5
16p2V~4!Fa4

3ka
2~k12!2 EF

d2tt2

ZW

h2h̄2( 8 Z0~q, q̄ !ZG~q!

3H ~Q̄1 Ī 3!4Ja
416@ka~Q̄1 Ī 3!21~k12!Ja

2#

3Fka~k12!

256p3t2
3 2

1

8pt2
~Q̄1 Ī 3!2Ja

2G
1

3

64p2t2
2 @ka~Q̄1 Ī 3!21~k12!Ja

2#2J . ~31!

The basic assumption of the background field approach con-
cerns the equivalence of the low energy string theory limit to
an effective point field theory. Substituting in the corre-
sponding effective action, denotedSeff , the expressions for
the gauge and gravitational fields for the semiwormhole
background, we expect thatSeff will take the same functional
form asZ with respect toFa and R. Specifically, we shall
proceed as follows: First, we write a general ansatz for the
effective action, at the tree and one-loop levels, as a function
of the bosonic components of the gravitational and gauge
fields Gmn ,Bmn ,F,Am

a of universal character. The motiva-
tions for including the two-form and dilaton fields are in-
spired partly from consideration of the underlying four-
dimensional string theory, partly from a possible embedding
in a ten-dimensional theory, where these fields are part of the
gravitational supermultiplet. The structure ofSeff is strongly
constrained by the requirements of gauge symmetry, global
~holomorphic couplings! and localN51 supersymmetry,
and of the combined axionicdB5dL and Peccei-Quinn
symmetries acting on the two-form and dilaton fields, which
are bosonic partners in the dilaton four-dimensional chiral
superfield. Next, we substitute inSeff the semiwormhole
background field solutions. Finally, we make a term-by-term
identification of powers ofFa,R between the string theory
functional Z and the corresponding field theory functional
formed by adding toSeff the contributions from the one-
loop massless modes. The matching equations for the coef-
ficients of Fa,R are further analyzed as functional relations
with respect to the infrared cutoff 1/k.

The N51 supersymmetric four-dimensional effective
bosonic action, including the tree and one-loop level terms,
up to quadratic~quartic! order in derivatives of the gravita-
tional ~gauge! fields, but omitting momentarily matter fields,
takes the general form
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Seff5
1

a8
E d4XAGF 1

a8
ZL1~e22F1ZR!R1~e22F1ZF!4~DmF!22~e22F1ZH!

1

12
~Hmnr!22

a8ka

8 (
a

~e22F1ZFa!

3~Fmn
a !21a8@~e22F1Z1R!t1~Rmnrs!21~e22F1Z2R!t2~Rmn!21~e22F1Z3R!t3R2#2

a82ka
3/2

8 (
a

~e22F

1Z0Fa!r ~Fmn
a Fnr

a Frm
a !2

a83

16(
a

ka
2@~e22F1Z1Fa!s1~Fmn

a !2~Frs!21~e22F1Z2Fa!s2Fmn
a Fnr

a Frs
a Fsm

a #G1•••,

~32!

where the saturation of space-time indices employs the fa-
miliar convention (Fmn)25FmnFmn, . . . , using the metric
tensorGmn to raise and lower indices. In terms of the differ-
ential form notations, withA5AmdXm,v5vmdXm as the
gauge and spin connections one-forms, matrices in the gauge
and tangent space-time SO~4! group, A5AaTa ,v
5vabJab , the field strength two-forms and space-covariant
derivative are F5dA1A2,R5dv1v2,D5d1v, where

R5 1
2 RabmndXm`dXn. The alternate tensorial notation will

also be used for the curvature scalarR5Rm
m , and the Rie-

mann and Ricci curvature tensorsRmnrs ,Rmn5Rmln
l . The

tree and one-loop level terms in Eq.~32! can be recognized
by the specific coupling with the dilaton fielde(2g22)F, with
the valuesg50,1 for the genus parameter of the world sheet
surface. We have accounted for the fact that a cosmological
constant termZL is only present at one-loop level. The
modified three-form field strengthH, associated with the
two-form Neveu-Schwarz field, includes the gauge and
gravitational second Chern-Simons three-form terms
@v3Y ,v3L , such thatdv3Y5Tr(F`F),dv3L5Tr(R`R)#
in the form familiar from ten-dimensional string theory,

Hmnr5] [mBnr]2
a8

4
@~v3Y!mnr2~v3L!mnr#,

~v3Y!mnr5Tr~A[mFnr]2
1
3 A[mAn]Ar] !,

~v3L!mnr5Tr~v [mRnr]2
1
3 v [mvn]vr] !,

] [mBnr]5]mBnr2]nBmr2]rBnm . ~33!

While the structure ofH in the ten-dimensional case is mo-
tivated by considerations of supergravity and anomalies can-
cellation, the analogous structure for the four-dimensional
case rather relies on the fact that the stringS-matrix elements
for the three-point functionsBGG,BAA, . . . are insensitive
to the internal space sector. Moreover, since the vertex
BAA is not renormalized by string loop effects@57#, no in-
ternal renormalization constant is needed in the definition
of H.

The familiar unification relations@58# for the tree-level
coupling constants of the~Einstein-Hilbert! gravitational and
~Yang-Mills! gauge interactions,

2k2

a8
5

16pGN

a8
5gst

2 5
gX

2

2
5

kaga
2

2
,

have been explicitly incorporated in Eq.~32!. The renormal-
ization constantZFa in Eq. ~32! identifies then with the one-
loop contribution to the inverse squared gauge coupling con-
stant 1/ga

2 . For a shortcut derivation of the above tree-level
relations, one can apply a dimensional reduction argument
starting with the ten-dimensional heterotic string effective
action @59,60#. This is a valid procedure in the heterotic
string for the gravitational interactions and for those gauge
interactions which arise from the gauge space~as opposed to
the internal space! sector. The internal space coordinates
contribute then through a volume factor which can be ab-
sorbed by transforming the ten-dimensional into the four-
dimensional dilaton field.

We shall also need information about the higher-
derivative gauge and gravitational interactions at the tree
level. Unfortunately, no systematic studies seem to exist for
the gravitational coupling constants of naive dimension-four,
t1,2,3, and even less for the gauge coupling constants of
dimension-six,r , or dimension-eight,s1,2. The cubic gauge
interaction termFa3 in Eq. ~32! has been included for com-
pleteness purposes only, since its projection onto the Cartan
subalgebra vanishes by virtue of the antisymmetry with re-
spect to the space-time indices. We have considered only the
subset of higher-derivative operators with a maximal number
of field strength factors, and disregarded the independent in-
teractions involving covariant derivatives, such as the naive
dimension-six interactionsDmFamnDrFrn

a •••, which can be
expressed in terms of quartic order fermionic couplings by
use of the equations of motion. We have also omitted writing
a large number of dimension-four generalized gravitational
interactions, involving the two-form and dilaton fields,
given schematically as@59# dSeff5*AG@(DH)21RHH
1R(DF)21(DF)2(D2F)1H(DH)(DF)1•••#.

At this point we should recall that a subset of the coupling
constants inSeff are ambiguous due to the freedom of field
redefinition. These inherent limitations of the first-quantized
on-shell formalism of string theory afflict the description of
the four-dimensional effective action in the same manner as
they do in the ten-dimensional case, at the tree level@59,60#
as well as the one-loop level@47#. Thus, the metric tensor
redefinitionsdGmn5a8(b1Rmn1b3RGmn1•••), with field-
independent constant coefficientsbi leave the structure of
Seff unaffected, except for the following shifts in the qua-

dratic interactionsdt252b1 ,dt35 1
2 @b11(D22)b3#. More

generally, the consideration of both metric and dilaton field
redefinitions is known to leave one with only two so-called
essential gravitational constants at ordera8 @60#,
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Seff;*AGe22F@(Rmnrs)21r1(]mF)4#. For the gravita-
tional interactions, a convenient, physically motivated choice
is to set the values of the two, so-calleda priori ambiguous
coupling constants,t2 ,t3 in Eq. ~32!, in such a way that the
tree-level quadratic gravitation interactions become propor-
tional to the so-called Gauss-BonnetT(GB) topological term:

T~GB!5~Rmnrs!224~Rmn!21R2

5~Cmnrs!222~Rmn!21 2
3 R2

Fx~M !5
1

32p2E
M

d4XAGT~GB!

5
1

16p2E
M

Tr~R`Rd!G , ~34!

whereCmnrs is the conformal invariant Weyl curvature ten-

sor andRab
d 5 1

2 eabcdRcd is the dual curvature two-form. The
formula in the second line summarizes the Gauss-Bonnet
theorem, withx(M ) denoting the Euler characteristic of the
four-dimensional manifoldM . In order to fix now the abso-
lute size of the quadratic gravitation terms, one can apply a
dimensional reduction procedure starting with the known re-
sults for the tree-level ten-dimensional action@59#. This

yields the results,t15 1
8 ,t252 1

2 ,t35 1
8.

The local and global supersymmetry transformations in
Seff provide useful information on certain additional bosonic
interactions. Thus, the necessity of quadratic gravitational
interactions arises from the fact that these are related by ten-
dimensional supergravity to the gravitational Chern-Simons
term inH. More directly, the four-dimensional supersymme-
try constraints on the quadratic derivative order interactions,
impose the following supersymmetry completion in the tree-
level action,

dSeff5E d4XAG
1

4
$R~S!@~Fmn

a !21T~GB!#

1I ~S!@Fmn
a F̃amn1RmnrsRdmnrs#%, ~35!

whereS(X)5 1
2 $e22F(X)1 i @a(X)/8p2#% is the dilaton chiral

superfield combining the dilaton with the real scalar field
dual to the two-form,dB5!da, such that ^a& is the
u-vacuum angle. The one-loop contributions are strongly
constrained by consideration of supersymmetry in combina-
tion with the duality symmetries@8,45#. Of course, a fixed
T(GB) interaction at the tree level does not imply that the
same combination should also occur in the one-loop interac-
tion, excluding there the so-called naked (Rmnrs)2 or
(Cmnrs)2 terms.

An analogous situation arises with the cubic and quartic
order gauge interactions. The terms appearing in Eq.~32!
comprise the set of independent space-time structures, con-
sistent with the use of equations of motion and neglect of
fermionic terms. However, the decomposition with respect to
the gauge symmetry group dependence in Eq.~32!, where we
have ignored the charged generators and the cross terms be-
tween the Cartan subalgebra generators, will bring more in-
dependent terms depending on the gauge group. Also, the

dimensional reduction prescription lacks generality here
since compactification partially breaks the ten-dimensional
gauge symmetry. Nevertheless, for orientation purposes, let
us rewrite in our present notations the gauge interactions for
the ten-dimensional,E83E8 heterotic string theory, as given
in @59#,

L105AG10e
22F10F(

a
2 1

8 tr~FaFa!

1
a82

211(a,b
@8tr~FaFaFbFb!14tr~FaFbFaFb!

2tr~FaFa!tr~FbFb!22tr~FaFb!tr~FaFb!#G ,

~36!

where the group indicesa,b run over all the group~charged
and uncharged! generators and we use an operator notation
where the trace symbol refers to a sum over the space-time
indices, tr(FaFb)5Fmn

a Fnm
b , . . . . Identifying the part of the

dimensionally reduced interaction diagonal in the Cartan
subalgebra generators with Eq.~32!, gives us the following
qualitative estimates for the four-dimensional tree-level cou-
pling constants:s152(s2/4)53/275 3

128.
The dependence on the three independent constantsZiR2t i

could possibly be resolved by considering background fields
depending on two deformation parameters in addition toR2.
There is no guarantee, however, that such a procedure would
be successful, due to the field redefinition ambiguities. We
are led, at a preliminary stage, to restrict consideration to the
specific, but unknown, linear combinations of the higher-
derivative interactions which are singled out by the structure
of the string theory background fields. Before discussing this
point, we need to express the effective actionSeff in terms of
the parametersFa,R. For this purpose, we substitute the so-
lutions~24! for the gravitational and gauge field backgrounds
in the effective action~32!, perform the integration over the
space-time manifold by using

E d4XAG5
k3/2

4
~122H2!1/2

3E dX0E
0

2p

daE
0

2p

dgE
0

p

db
sinb

d

5V~4!~122H2!1/2E
21

1 d~cosb!

l1
1

l
1S l2

1

l D cosb

,

where

V~4!

E dX0

5
1

a82E d3XAG05p2k3/25~2p!3V~me!, ~37!
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and expand the integrals in powers ofR,Fa. To perform
these tasks we have used the symbolic calculations
MATHEMATICA software package. The leading terms in the
power expansion of the one-loop part of the action read:

Seff
1 loop5V~4!FZLS 12

Fa2

8
2

R2

24D1ZR

4

kS 3

2
2

Fa2

16
1

3R2

16 D
1ZF

4

kS 12
Fa2

8
1

R2

8 D2ZH

4

k
~81Fa21R2!

2ZFa
1

kka
~Fa2!1

4

k2H Z3R2t3S 91
3Fa2

8
1

263R2

24 D
1Z2R2t2S 31

101R2

24
1O~Fa2! D

1Z1R2t1S 31
141R2

24
1O~Fa2! D J

2
1

k2ka
2S s1Z1F

a
41

s2

2
Z2F

a
4DFa41•••G . ~38!

The cubic gauge interactionsFa3 cancel out, as already
pointed out. The renormalization constants associated with
the interactions of increasing derivative order are accompa-
nied by increasing powers of 1/k, as follows simply from the
fact thatk/a8 is thes-model loop expansion parameter. We
have only displayed in Eq.~38! the leading powers of 1/k for
each interaction. The omitted dimension-four interactions,
(DH)2, . . . , enter atO(1/k2). Higher powers in 1/k should
also be present, since the background fields in Eq.~24! are
solutions of the tree-level actionSeff truncated to the
dimension-four interactions, or equivalently, prior to the con-
sideration ofs-model loop contributions. Accounting for
these effects will induce, for each of the interactions, correc-
tion factors of the form @11(1/k)(a11a2R2

1a3Fa21•••)1O(1/k2)], which multiply the renormaliza-
tion constantsZL ,ZR , . . . . Theneed for these subleading
terms in 1/k will appear explicitly in the following.

While the coefficients ofFamRn in Seff stand for 1PI~one-
particle irreducible! amplitudes with respect to the massless
modes, the corresponding coefficients inZ stand for the full
amplitudes, including massless and massive modes. One can
match the two expansions, Eqs.~38! and ~31!, only after
adding toSeff ~or subtracting fromZ) the one-loop massless
mode contributions, which we shall denote
z(Fa,R)5( (m,n)PZ2zm,nFamRn. The leading order constant
term yields the functional equality, as a function ofk,

V~4!FZL1
4

k
~ 3

2 ZR1ZF28ZH1x1ZL!1
12

k2 ~3Z3R2t3

1Z2R2t21Z1R2t11x2ZL1y1!1••• G5Z0,02z0,0,

~39!

where the coefficientsx1,2 are associated with the omitted
higher-derivative interactions andy1 with the uncalculated
s-model loop corrections. The dependence onk in the string
theory functionsZn,m appears explicitly through the powers
of k and k12 and implicitly through the zero-mode opera-
tors and the partition function factorZW . The identification
for the quadraticFa2 term, retaining the leading order at
k→`, involves a specific linear combination of the gauge
and gravitational field one-loop renormalization constants,
denoted byga8 :

~4p!2

ga8
2

[~4p!2F 1

ga
21

ka

4
~2ZF1ZR116ZH!1

kka

8
ZLG

5
1

V~4!
~Z2,02z2,0!52

4k

~k12!
E

F

d2t

t2
ZW

3( 8
Z0ZG

h2h̄2
F i

pH ] t̄ S ln
q̄ F ā

b̄
G

h̄
D 1

k12

6
] t̄ J

3S Ja22
ka

8pt2
D2

ka~k12!

~8pt2!2 G2
z2,0

V~4!
. ~40!

We have used an explicit representation of the zero-mode
operators discussed in Appendix A2. The action of (Q̄
1 Ī 3)2 gives rise to the terms involving the derivative] t̄.
The free derivative operator, in Eq.~40!, is understood to act
only on the factorX8(m). The discussion greatly simplifies
in the supersymmetric case, since the only nonvanishing con-
tributions there are those arising from theQ̄2 operator inser-
tions. The functional relations,Z0,050, z0,050, in Eq.~39!,
imply then, ZL50, corresponding to a vanishing one-loop
cosmological constant. If one accepts the fact thatQ̄2 on the
right-hand side of Eq.~40! contributes toZFa only, then one
easily infers from theO(k0) term the equality, (2ZF1ZR
116ZH)50. Since a derivation based on theS-matrix ap-
proach for the heterotic string, provides us with the equalities
@36# ZR50 ~nonrenormalized Newton constant! and ZH
50, one deducesZF50, so that the absence of wave-
function renormalization for the two-form field entails its
absence for the dilation field. These relations are consistent
with the matching of theO(1/k) terms in Eq.~39!. It also
follows that, for supersymmetric vacua, the right-hand side
of Eq. ~40! gives us the entire one-loop corrections to the
gauge coupling constantsga

22. We shall continue using the
primed coupling constant notation to remind ourselves of the
general case.

The quadratic order gravitational constants appear first in
the quadratic order,R2 terms, where they are mixed with the
renormalization constants of the gravitational multiplet,
ZF. . . . . It would be desirable, of course, to be able to
separate the various constants here. The consideration of
higher-order or mixed termsO(Fa2R2) or O(R4), not pro-
vided in Eq.~38!, could possibly give us other independent
linear combinations. However, these relations would involve
still higher-order interactions. Resolving the dependence on
the three independent coupling constantsZiR2t i is probably
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beyond the possibilities of the present formalism, because of
the field redefinition ambiguities. Also, for the quartic gauge
interactions, resolving the dependence on the two coupling
constantssi and unfolding their group theory substructure,
raises technical complications beyond the scope of this work.
As stated above, we shall restrict ourselves in this work to
the specific linear combinations arising from the string
theory perturbationsR andFa. This leads us to introduce two
effective quadratic gravitational and quartic gauge coupling
constantsgR2 andgF

a
4 defined as linear combinations of the

independent coupling constants by the equality

Seff
1 loop5

4V~4!

24k2
~263Z3R2t31101Z2R2t21141Z1R2t1!R2

2
V~4!

k2ka
2S s1Z1F

a
41

s2

2
Z2F

a
4DFa4

5FV~4!
2R2

k2

1

gR2
2 2

4V~4!Fa4

k2ka
2

1

gF
a
4

2 G
1 loop

. ~41!

The tree-level value ofgR2 may be obtained indirectly
through a comparison with the results from theS-matrix ap-
proach@5,45,46#. We findgR25gX . For the gauge case, the
tree-level value ofgF

a
4 is unknown. If one could only retain

the constants1, say, then a comparison with Eq.~36! would
give gFa45gX . In the following, we shall parametrize the
tree-level value asgFa4

2
5gX

2/sa , where sa are group-
dependent unknown quantities which are expected, however,
to be of order unity.

The identification between Eqs.~31! and ~38! for the R2

term gives an equation for a linear combination, denoted
1/gR282, of the gravitational coupling constant and the other
renormalization constants,

~4p!2

gR282 [~4p!2F 1

gR2
2 1

k

8
~2ZF13ZR216ZH!2

k2

48
ZLG

5
1

V~4!
~Z0,22z0,2!

5
2k

~k12!
E

F

d2t

t2
ZW( 8

Z0ZG

h2h̄2

3F i

pH ] t̄ S ln
q̄@ ā

b̄
#

h̄
D 1

k12

6
] t̄ J

3
i

pS Ẽ2~t!2
k12

6
]tD2

k~k12!

~8pt2!2G2
z0,2

V~4!
. ~42!

The formulas in Eqs.~40! and~42! essentially agree with the
results reported by@36#, up to a few minor modifications due
to different conventions. The derivatives]t , ]̄ t̄ in Eq. ~42!
do not act on any of the factors other than the space-time
partition functionX8(m). In the limit m→0, their action is
simply given by] t̄ lnX8(m).2(1/4i t2), with ]t obtained by
complex conjugation. For supersymmetric vacua, the vanish-
ing of the constantsZL,F,R,H give us in principle the equality
gR28 5gR2. This would seem to imply that no terms ofO(k)
can be present on the right-hand side of Eq.~42!, in contra-
diction to what is actually found by a careful analysis of the
k dependence@see Eq.~60! below#. The reason for the mis-
match in Eq.~42! is due to our omission of the higher-
derivative interactionsRH2,(DH)2, . . . in constructing
Seff .

The identification of Eq.~31! for the string theory quartic
orderFa4 term, with the corresponding field theory term in
Eq. ~38!, gives us an equation for a linear combination of the
quartic gauge interaction coupling constantgFa4

22 and the
renormalization constants of the lower-order interactions.
Denoting the uncalculated coefficients asxL ,xF , . . . , we
have

~4p!2

g8F4a
2 [~4p!2F 1

gF4a
2 1k2ka

2xLZL1kka
2~xRZR1xFZF1xHZH1xL8 ZL!1kkaxF~ZFa1x9LZL!1ka

2S (
i 51

3

xiR2ZiR21y18D G
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1

V~4!
~Z4,02z4,0!52

p2ka
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3 E
F
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2 ZW

uhu4( 8 Z0ZGF zQ̄84S 1

4
~Qa!42

3ka

2pt2
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21
3

4p2t2
2D

1jQ̄82S 3Qa
4

8pt2
2

3

8p2t2
2 Qa
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3

4p3t2
3D 1k2S 3

256p2t2
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41
3

64p3t2
3 Qa

2D G2
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52
p2

3 E
F
d2tt2

ZW

uhu4( 8 Z0ZGF16Q̄82Ja
4S Q̄821

3

2pt2
D
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12

pt2
Ja2Q̄82S Q̄821

1
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4p2t2
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1

pt2
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, ~43!

2334 56M. CHEMTOB



where we use the convenient abbreviationsQ̄85Q̄1 Ī 3 and
Qa

25(8/ka)Ja
2 , such that Tr(Qa

2)52. In the linear combina-
tion, denoted bygF4a8 , the unspecified coefficients of type
xL ,xR , . . . correspond to the easily calculable higher-order
terms in the expansion ofe24pt2L0. The coefficients of type
xL8 ,y18 , . . . arise from the omitted higher-derivative interac-
tions and from thes-model loop corrections to the back-
ground fields which we have not calculated. It is advisable to
refrain from expanding the right-hand side in powers ofk
until one exhibits thek dependence of the modular integrals.
This is the reason for introducing the auxiliary quantities,

z5@k/~k12!#2512~4/k!1O~1/k2!,

j52k2/@2~k12!#52~k/2!112~2/k!1O~1/k2!.

The last equation in Eq.~43! provides a useful simplified
formula for the loop correction to theFa4 interaction, where
we retained theO(k0) term only, while dropping theO(k)
andO(1/kn) terms.

C. Renormalized effective action

1. Gauge interaction coupling constants

We proceed now to the final stage of the discussion,
which consists in identifying the string vacuum functional
integral Z with the effective actionSeff , after subtracting
from Z the one-loop field theory contributions induced by
Seff . For this purpose, we shall need to expose, on the one
hand, the string theory ‘‘massless mode’’ contributions and,
on the other hand, the field theory high energy mode contri-
butions. We use quotes here to remind ourselves that, be-
cause of the finite mass gap, set bym, the finite curvature
theory has no massless modes as such, but instead a tower of
momentum and winding massive modes whose masses are
sent to zero at the four-dimensional decompactification limit.
The contributions of the would-be massless modes are iso-
lated by taking the limitq→0, inside the integrand of Eq.
~40!, individually for the different terms associated with the
power factors 1/t2

n for all the factors exceptZW . As long as
one works with a finite infrared cutoffm, the limit q→0 can
be taken safely. The various terms in the partition function
reduce, atq→0, to appropriate supertrace@fermion parity
(21)F-weighted# sums over the would-be massless modes.
The connection formulas can be obtained by using the results
describing the action of the zero-mode operators on the states
or on the determinantal factors, which are detailed in Appen-
dix A2. The q→0 limit for the angular momentum projec-
tion operator is given by

~Q̄1 Ī 3!2→2 q̄
d

d q̄
ln

q̄ F ā
b̄

G
h̄

52
1

12
12(

n51

`
n q̄n

12 q̄ n
1

i

p

] t̄ q̄ F ā
b̄

G
q̄ F ā

b̄
G

5~21!FS 2
1

12
1x2D1O~ q̄ !, ~44!

wherex denotes the space-time helicity. The dependence on
q, q̄ which appears in the lowq, q̄ expansions, may be writ-
ten schematically as

( 8
Z0ZG

uhu4 ~Q̄1 Ī 3!2S Ja
2

1

E2~t!
D

→~21!F~ 1
12 2x2!S Ja

2

1

1224q1O~q2!
D

3 S l 21

q
1 l 01O~q1/N! D „r 01O~ q̄1/N!…, ~45!

where the power 1/N of the next-to-leading order terms is
determined for orbifold models by the order of the orbifold
point symmetry group. The string theory trace sums include
the contributions from the physical, on-shell modes,

^L02 L̄ 0&50, as well as from the non-level-matched modes,

^L02 L̄ 0&PZ. The modular invariance constraints are essen-
tial to ensure the convergence in the projected sums of the
modular integrals att2→`. While the massless mode con-
tributions to theJa

2 and 1 operators involve then the product
l 0r 0, those of E2(t) enter with the combination
l 0r 0224l 21r 0.

Since we keep the infrared cutoff fixed, the low energy
theory must be defined accordingly as a finite curvature field
theory with respect to the same set of space-time background
fields as in the string theory. Fortunately, there is no need to
redo a new calculation for this case, since the result can be
obtained by applying thea8→0 limit and using the familiar
correspondence formulas between the string theory modular
integral and the field theory heat kernel~Schwinger proper-
time! representations,

m25
1

k12
→me

25
1

k
, t5t11 i t2→ i t25 i

tH

pa8
,

E
F

d2t

t2
→E

1/L2

` dtH
tH

5E
1/pa8L2

` dt2

t2
, ~46!

based on the identificatione2tHp2
;e2pa8t2p2

. The field
theory-truncated space-time partition function factor is ob-
tained by removing the winding mode terms in the sum rep-
resentation, which corresponds to performing the substitu-
tions

ZT~m!→ẐT~me!5At2 (
mPZ

e2pt2me
2m2

5At2q3~ i t2me
2!5

1

me
q3S 1

2 i t2me
2D ,

X~m!→X̂~me!5At2@q3~ i t2me
2!2q3~4i t2me

2!#. ~47!

The ultraviolet finiteness of closed strings, which follows
from the restriction to a fundamental domain of the modular
group, so thattH5pa8t2>(A3/2)pa8, indicates that the
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parameter 1/a8 actually plays the role of a string theory ul-
traviolet cutoff. In order to separate out the divergent contri-
butions arising from the effective field theory high energy
modes, this must be equipped with an ultraviolet cutoff,
which will be represented by a dimensional mass parameter
L. A convenient ultraviolet regularization within the heat
kernel formalism is by imposing a lower bound on the inte-
grals, in the manner exhibited in Eq.~46!. The logarithmic
and power divergences atL→` will appear in close corre-
spondence with the string theory divergences in the infrared
cutoff at m→0. As required by naive dimensional analysis,
the cutoff dependence must involve the productL2a8→0.
Since the limita8→0 must precede theL→` limit, by the
very definition of the string theory effective action, there is
no need worrying about the positive power divergences in
L2a8, which will simply cancel away in the limita8→0.
Special care is needed for the logarithmic dependence on
cutoff. This must be absorbed inside the bare coupling con-
stants in the process of defining the renormalized, cutoff-
independent coupling constant. A convenient super-
symmetry-preserving renormalization is the so-called modi-
fied dimensional reduction (DR̄) prescription@61#. This is
defined by performing an analytic continuation in the space-
time dimension,D542e, only for the integration measure,
while evaluating all algebraic expressions atD54. Once the
DR̄-renormalized scheme constant is defined, the conversion
to other schemes is straightforward.

For the gauge interactions case, the relationship between
the DR̄-renormalized coupling constant, denoted byga(p),
and the bare~or unrenormalized! field theory coupling con-
stantga5ga(L), using, for convenience, a Gaussian factor
cutoff, in place of the sharp cutoff in Eq.~46!, is described at
one-loop order by the formula

~4p!2

ga
2~L!

2
~4p!2

ga
2~p!

5baF E
0

`

dtH
e2~ tHp2/L2!

tH
12e

2
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e G
5baF S p2

L2D 2e

G~e!2
1

e G
5baF2gE2 ln

p2

L2G
5baF2gE1E

1/L2

1/p2dtH
tH

G , ~48!

where ba identifies with theb-function slope parameter,
ba(g)5]ga /] lnp52baga

3/(4p)21•••. If so required,
momentum-dependent coupling constants could also be in-
troduced for the other low-order interactionsR,(DF)2,
(H)2 in an analogous way. However, since no logarithmic
divergences will arise from these interactions, there is no
need in considering the renormalized coupling constants as-
sociated withZL,F,R,H . In order to account for the general
case, including the nonsupersymmetric solutions where these
renormalization constants are nonvanishing, we shall con-
sider the primed coupling constantsga8 ,gR28 ,gFa48 . It will also
prove unnecessary to consider the tree-level values of the
R,(DF)2,(H)2 interaction coupling constants since these
will cancel between the left-hand and right-hand sides.

Recapitulating our procedure, we consider for the low-
order interaction coupling constants inZ andSeff the sum of
the tree-level and one-loop level contributions to theFa2

term, rewrite the string theory one-loop contributions as
Z2,05( i 51

3 I i5( i 51
3 (I i2I i

0)1( i 51
3 I i

0 , by subtracting and
adding the massless mode contributions~designated below
by the quantitiesI i

0 with a suffix 0) and rewrite the field
theory one-loop contributions, denotedz2,05( i 51

3 Li
0 , after

trading the bare coupling constant for the DR-̄renormalized
coupling constant. Equating the total tree and one-loop string
and field theory unrenormalized coupling constants as

~4p!2ka

gX
2 1(

i 51

3

I i5
~4p!2ka

g8a
2~L!

1(
i 51

3

Li
0 ,

the matching equation, with string and field theory terms
placed on the left-hand and right-hand sides, respectively, is
given by

~4p!2ka

gX
2 1(

i 51

3

~ I i2I i
0!1(

i 51

3
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~4p!2
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Z0~q, q̄ !ZG~q!. ~50!

No confusion should arise from the fact that the definition
ga8

22(p) 5 ga
22(p)1(ka/4)(2ZF1ZR116ZH)1(kka/8)ZL ,

uses a mixed notation involving the DR̄-renormalized gauge
coupling constant along with the unrenormalized
R,(DF)2, . . . interactions coupling constants. The
would-be massless string mode contributions are obtained by
taking the limitt2→`,

I 1
052

2k
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12 2x2!Ja2#

2
ka

8p
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I 2
052

k

12p2FJ2Str~Ja2!2
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where the (21)F ~space-time fermion number signature!-
weighted supertraces over massless modes are defined as

ba524STr@Ja
2~ 1

12 2x2!#

52
ka

6
@nSc~RS!12nFc~RF!211nVc~RV!#,

h52STr@~ 1
12 2x2!I #5 1

3 @nS12nF211nV#,

ca52STr~Ja
2I !, z52STr~ I !. ~52!

The symbolI stands for the notation STr(I )5((21)Fl 0r 0,
using Eq.~45!. The normalization of the gauge charges is
such that Tr(Ja

2)5(ka/2)Tr(Ĵa
2)5(ka/4)c(R), with c(R) the

Dynkin index of the groupGa representationR, andnS,F,V
denote the numbers of real scalar, chiral, or Majorana fer-
mion, vector massless modes. Note thatba is theb-function
slope parameter introduced earlier in Eq.~48!. The proper
massive threshold corrections are isolated in the differences
Da8[( i 51

3 dI i5I i2I i
0 , which are defined by the same inte-

grals as theI i , Eq.~50!, with the massless limit partq→0 of
the integrands subtracted out. These subtracted integrals are
infrared finite, so one can safely take the limitm→0 and,
therefore, setZW→1. The quantities corresponding toI i

0 in
the field theory case, which appear asLi

0 in Eq. ~49!, are
defined as
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2!%#G . ~53!

The divergent dependence atk→` in the formulas given by
Eqs. ~50!, ~51!, and ~53! originates from the explicit power
factors of k or (k12) and from the contributions to the
modular integrals in the cusp region,t2→`. The ultraviolet
divergences atL→` in the field theory integrals, Eq.~53!,
arise in close correspondence with the infrared divergences
of the string and field theory modular integrals att2 ,t→`.
The dependence on these cutoff parameters can be easily
isolated through the simple estimates

E
F
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;~m2!n21, E

1/L2
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2dt

tn

X̂8~me!
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;S L2

me
2D 2n11

,

where for the casen51, one must substitute for the right-
hand sides, lnm and lnL/me, respectively. In order to analyti-
cally evaluate the modular integralsI i

0 ,Li
0 , so as to expose

the dependence on the infrared and ultraviolet cutoffs, it is
convenient to use an approximate expression for the space-
time partition function factor corresponding to a truncation
which leaves only the momentum modes, analogously to Eq.
~47!. We follow an approximate procedure, due to@22#,
which is detailed in Appendix A3. Useful formulas for the
integralsJn ,Kn , accurate toO(e2(1/m2)) andO(e2(L2/m2)),
are
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Substituting in Eq.~49! yields the final formula for the
DR̄-renormalized field theory coupling constant,

~4p!2

ga8
2~p!

[~4p!2F 1

ga
2~p2!

1
ka

4
~2ZF1ZR116ZH!1

kka

8
ZLG

5
~4p!2ka

gX
2

1balnS p2
2pA27

e12gE MS
2 D 1Da ,

Da5S 2
hka

12
1

ca~k12!

36 D ~123L2a8!

2
zka~k12!

96 S 2
ln3

p2 1~L2a8!2D1Da8 , ~55!
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where we have reinstated the string scale through the substi-
tutionsp2→a8p2[4p2/MS

2 ,L2→L2a8, while choosing the
following convention for the string mass scalea8[4/MS

2 .
We have exhibited theL2-dependent terms, although these
cancel away in the relevant limita8→0, fixedL. The loga-
rithmic dependence on the infrared and ultraviolet cutoffs
m,me andL has canceled away, leaving the familiar running
scale dependence with an improved string unification scale,

MX
25

2e12gE

a8pA27
5MS

2 e12gE

2pA27
. ~56!

Interestingly, our result for the effective unification scale is
equal to that of Kaplunovsky@2#, although his derivation
employed a sharp infrared cutoff on the modular integral.
The coincidence of the two results reflects an infrared insen-
sitivity of the unification scale.

The positive powers ofk present inDa arise from the
massless supertracesca ,z and the corresponding massive su-
pertraces included insideDa8 . The term of O(k) in the
matching equation~55!, relates the cosmological constant
ZL to the linear terms ink in Da , arising with the massless
tracesca ,z and their massive mode counterparts inDa8 . The
implication here is that the potentially divergent string loop
divergences can be absorbed inside the constantZL . Equiva-
lently said, the infrared divergences signal instabilities asso-
ciated with tadpoles~one-point functions! of the dilaton and
trace of the graviton fields, which can be removed by con-
sidering a loop-corrected effective actionSeff with a finite
cosmological constant term. This is the familiar Fischler-
Susskind mechanism@62# of cancellation of string loop di-
vergences by massless tadpole corrections to the equations of
motions. Since the renormalization constantsZL ,ZF , . . .
can be interpreted as string loop effect corrections to the
conformal invariance constraints, it is natural to find that the
renormalization constants accompany the divergent depen-
dence in the infrared parameterk.

The supersymmetric case should be immune to a dilaton
tadpole instability, as indeed follows from the fact that the
massless supertracesca ,z and the corresponding massive
ones inDa8 have canceling contributions from bosons and
fermions within each of the~massless and massive! super-
multiplets. The massless supertracesba ,h are nonvanishing
helicity-weighted sums, which induce finite corrections in
the gauge coupling constants.

2. Quadratic gravitational interactions

The above derivation can be repeated word by word for
the quadratic gravitational interaction coupling constant, de-
noted gR25gR2(L). Again, one decomposes the string
theory one-loop contribution into the sum of three integrals
I i

R and writes the matching equation as

~4p!2

gX
2

1(
i 51

3

I i
R5

~4p!2

gR282
~L!

1(
i 51

3

Li
R0 ,

S I 1
R

I 2
RD 5

1

p3V~m!

k

k12EF

d2t

t2

X8~m!

h2h̄2 S ] t̄ ln
q̄ F ā

b̄
G

h̄
1

6m2 ] t̄ lnX8
D

3S Ẽ21
i ~k12!

24t2
D( 8 Z0~q, q̄ !ZG~q!,

I 3
R5

k2

64p3V~m!
E

F

d2t

t2
3

X8~m!

h2h̄2 ( 8 Z0~q, q̄ !ZG~q!

F Ẽ2~t!5
ip

12S E2~t!2
3

pt2
D

5]tlnh2
i

4t2
5

ip

12S 1224(
n.0

nqn

12qnD 2
i

4t2
G . ~57!

Next, one separates out the contributions of would-be mass-
less modes by taking the limitq→0 in the various terms in
the integrands with fixed 1/t2

n powers, for all factors except
ZW . The integralsI i

R reduce then to

I 1
R052

k

24p~k12!FhRJ11
k24

2p
hJ2G ,

I 2
R052

k

576p2FzRJ21
k24

2p
zJ3G , I 3

R05
k2z

128p3 J3 , ~58!

whereJi are defined in Eq.~51!. The corresponding one-loop
field theory integrals, entering asz0,25( i 51

3 Li
R0 , are given

by analogous formulas to those forI i
R0 , with the substitution

Ji→Ki , and the insertion of an overall factor@11(k/3)# in
L2

R0. The proper massive threshold corrections are isolated in
the quantityDR85( i 51

3 (I i
R2I i

R0), given by the same integrals
as ( i I i

R with the asymptoticq→0 limit removed out. The
divergent dependence on the infrared cutoff parameter is in-
terpreted along similar lines as in the gauge interaction case,
by matching the functional dependence onk of the string and
field theory amplitudes, including tree and one-loop contri-
butions. The logarithmic divergences are handled by intro-
ducing a renormalized coupling constant. The matching
equation for the quantityg8R2(p), corresponding to the
DR̄-renormalized quadratic gravitation coupling constant
combined with the lower dimension-unrenormalized cou-
pling constants, reads

~4p!2

g8R2
2

~p!
5

~4p!2

gX
2~p!

1(
i 51

3

~ I i
R02Li

R0!2bRS gE1 ln
L2

p2 D1DR8 .

~59!

Substituting the expressions for the massless mode contribu-
tions yields the final formula
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~4p!2

g8R2
2

~p!
[~4p!2F 1

gR2
2

~p!
1

k

8
~2ZF13ZR216ZH!2

k2

48
ZLG

5
~4p!2

gX
2

1bRlnS p2a8p
A27

2e12gED 1DR ,

DR52
1

4F2
h

18
~k24!~123L2a8!2~k12!

3H zR~123L2a8!

216
2

z~k24!

288 S 2
ln3

p2 1~L2a8!2D J
2

z~k12!2

32 S 2 ln3

p2 1~L2a8!2D G1DR8 , ~60!

where

hR5212bR52STr@~ 1
12 2x2!~ l 0r 0224l 21r 0!#,

zR52STr~ l 0r 0224l 21r 0!, z5STr~ l 0r 0!. ~61!

The b-function slope parameterbR is related to the confor-
mal anomaly@45,63,64#. In the expression ofDR , Eq. ~60!,
the terms involving the massless supertraceshR ,zR ,z origi-
nate fromI 1

R,I 2
R,I 3

R , respectively. BothzR ,z and their mas-
sive counterparts inI 2,3

R vanish for supersymmetric solutions,
because of the bosonic and fermionic mode cancellations.
The vanishing of the termsO(k2) and a subset of theO(k)
terms inDR is consistent with the vanishing of the renormal-
ization constantsZL,R,H,F for that case, as already encoun-
tered in discussing the quadratic gauge interactions. How-
ever, since the helicity supertraceshR ,h are finite, in
general, the infrared-divergent term ofO(k), which origi-
nates in the term (k12)/24t2 in I 2

R seems to remain un-
matched by a corresponding term in the effective action. We
attribute this discrepancy to the higher-derivative interac-
tions, such asRH2,(DH)2, . . . , which we have discarded
from the effective action. Thus, a subset of these interactions
should acquire one-loop renormalization corrections in order
to ensure a consistent infrared finite theory.

3. Quartic gauge interactions

We shall use an analogous procedure to describe the one-
loop corrections in the quarticFa4 gauge coupling constants.
The separation of massless modes, by subtraction of the
t2→` limit, introduces the following massless mode super-
traces:

h522STr@~Q̄1 Ī 3!2I #, h252STr@~Q̄1 Ī 3!4I #,

ba54STr@~Q̄1 Ī 3!2Ja
2#,

ca52STr~Ja
2!, l a54STr~Ja

4!, da54STr@~Q̄1 Ī 3!4Ja
4#,

ea52STr@~Q̄1 Ī 3!4Ja
2#, f a54STr@~Q̄1 Ī 3!2Ja

4#. ~62!

Modular integralsJn @n521,0,1,2# are introduced by using
the same defining equation, Eq.~51!. The field theory one-
loop contributions are obtained through the substitution

m→me , with corresponding integralsKn @n521,0,1,2#. A
renormalized running coupling constant is introduced within
a DR̄ scheme, using the relationship with the bare coupling
constant gF4a

22 (p)2gF4a
22 (L)5(4p)2bF4aln(p2egE/L2). The

matching equation, including the singular dependence at
k→`, reads

~4p!2

gF4a82 [F ~4p!2

gF4a
2 1k2ka

2xLZL1kka
2~xRZR1xFZF1xHZH!

1kkaxFZF1ka
2xR2ZR2G

5
~4p!2ka

2sa

gX
2

1
1

8S zh222jba1
k2

2
l aD

3 lnS p2pA27

2e12gE D 1
1

~4p!2S k2

2
ca1jhD

3~J22K2!1~j f a2zea!~J02K0!

1
2p

3
zda~J212K21!1Ga8 , ~63!

wherej52(k/2)112(2/k)1•••,z512(4/k)1•••, as de-
fined previously. The proper massive one-loop contributions,
denoted byGa8 , are given by the same integral as in Eq.~43!
with the asymptotict2→` limit removed. To complete the
list of formulas for theJn integrals given in Eq.~54!, we
quote the results for the two other needed integrals, valid up
to the same exponential accuracy

J215F2
155

8pm4 1
3p

4
2A6p2m21O~m4!G ,

J05F2
21

2m2 1pA32
3p2m2

2
1O~m4!G .

We have used the same approximate representation as for
J1 in Eq. ~A12!. The corresponding field theory integrals
K21 ,K0 can also be evaluated by using the analogue of the
approximate representation in Eq.~A13!,

S K0

K21
D54me

2F ]

]me

e2me
2/L2

me
3 S 1

11me
2/L2

pme
2

D 22~me→2me!G ,

which indicates that the integralsK0 ,K21 vanish in the limit
L2a8→0, finite m. The field theory dependence onk in Eq.
~63! involves several unknown coefficientsxL , . . . . For in-
teractions of increasing derivative order, the matching rela-
tions impose nontrivial relations among wider subsets of the
renormalization constants. The identification for the
O(k2),O(k),O(k0) terms, respectively, yields the equations

ZL.F ĉaj 21 l̂ alnp22
f a

2k
j 01

d̂a

k2 j 21G
k0

1•••,
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~xRZR1xFZF1xHZH1xFZFa!

.F2ĥ j 21
ba

8
lnp21

f̂ a

k
j 01

d̂a

k
j 21G

k0

1•••,

S 1

gF4a
2 1xR2ZR2D

.F22ĥ j 21
h222ba

8
lnp21 f̂ a j 01d̂aj 21G

k0

1•••, ~64!

where the ellipses stand for the corresponding massive con-
tributions included in Ga8 . We use the abbreviations

@ ĉa ,ĥ# 5 1/@2(4p)2#[ca ,h], l̂ a 5 l a/16,d̂a 5 2p/3@12(4/k)#

3da , f̂ a5@12(k/2)# f a2ea , j n5Jn2Kn . For the supersym-
metric case, whereca5 l a50, with the other supertraces
f a ,da , . . . , nonvanishing in general, theO(k2) equation for
ZL seems to contradict the expectation of a vanishing one-
loop cosmological constantZL50. A similar mismatch
arises with theO(k) equation, since we expectZF,R,H50.
As already observed, these discrepancies probably originate
in our neglect of the higher-derivative gravitational interac-
tions. A detailed analysis of these matching equations is be-
yond the scope of this work. TheO(k0) equation indicates
that the string theoryO(Fa4) amplitude involves an un-
known combination of the quartic gauge and quadratic gravi-
tational interactions. We shall not attempt here to separate
these two couplings.

D. D-term auxiliary fields

The background field approach can also be applied to per-
turbations involving the subset of conserved internal space
fermionic currents,Q̄i @ i 51,2,3#. In cases where all of the
world sheet fermions are free, as in orbifold models, all three
currentsQ̄i @ i 51,2,3# are conserved and contribute directly
to the right-moving sector conformal weight operators. Since
the conformal vertex operators associated with the auxiliary
D terms are constructed with the linear combination
( i 51

3 Q̄i( z̄ ), along with the gauge sector currentsJa(z), a
D-term perturbation can be represented as a deformation of
the extended lattice for the corresponding charges.~A similar
extension, involving the space-time fermionic currentsJmn

and the internal space currentsi ]Xi , can be made for the
auxiliary F terms.!

The discussion for the auxiliaryD-term field was initiated
by Petropoulos@35#, and we review the main arguments
here. Let us introduce the world sheet fields
Hi(z) @ i 51,2,3#, corresponding to the bosonic counterparts
of the internal space fermion fieldsc i , ī 5e6 iH i, which de-
scribe the SO~6! affine algebra, with the Cartan subalgebra
generatorsQ̄i( z̄ )5 ic ic ī 5 i ]̄ Hi . In terms of the fieldsHi ,
one can express the conserved U~1! current J̄ ( z̄ ) of the
N52 superconformal algebra of the right-moving sector, the
space-time supersymmetry~SUSY! currents,QSUSY

6 ( z̄ ), and

the antiholomorphic three-form fieldē 6( z̄ ) as

J̄ ~ z̄ !5 iA3 ]̄ H, QSUSY~ z̄ !5expS 6 i
A3

2
H D ,

e6~ z̄ !5e6 i ~H11H21H3!FH5
1

A3
~H11H21H3!G .

TheD-term vertex operator for a gauge group factorGa may
then be written as@65#

VD
a ~z, z̄ !52

i

A6ka

J̄ ~ z̄ !Ja~z!, ~65!

whereJa(z) is the U~1! gauge charge density. Starting from
the conformal generators known dependence on the fermi-
onic and gauge charges L̄ 05( i 51

3 (Q̄i
2/2)1•••,

L05(Ja
2/ka)1•••, a D-term deformation of the associated

zero-mode lattice can be induced by performing an orthogo-
nal transformation to the basis,

@Q̄1 ,Q̄2 ,Q̄3#→F Q̄~0!5
Q̄11Q̄21Q̄3

A6
,

Q̄~8!5
Q̄11Q̄222Q̄3

A12
, Q̄~3!5

Q̄12Q̄2

2 G , ~66!

with L̄ 05Q̄(0)
2 1Q̄(8)

2 1Q̄(3)
2 1•••, followed by a Lorentz

transformation of hyperbolic anglev acting on the
components@Q̄(0) ,Ja/Aka#. The deformed theory one-loop
vacuum functional in Hamiltonian formalism Z

}Tr(qL0 q̄ L̄ 0e24pt2dL0), with the conformal weight operator
incrementdL05@(Ja/Aka)coshv1Q̄(0)sinhv#22(Ja/Aka)2 is
to be compared with that obtained in the Lagrangian func-
tional integral formalism by adding the perturbed action,

dS5
Da

2pE d2sAhVDa5
Da

2p
~2t2!E dzd z̄VDa

524pt2

Da

A6ka

~Q̄11Q̄21Q̄3!Ja. ~67!

Identifying dS with 24pt2L0, yieldsDa5sinh2v. Proceed-
ing next to the field theory description, one considers the part
of the four-dimensional supersymmetric Lagrangian depend-
ing on the auxiliary fieldDa ,

Leff5
Da

2

2ga
2 1Daf i

!~ Ĵa! i j f j1caDa1•••, ~68!

where f i denotes the charged matter fields in the gauge
group representation with generatorsĴa andca stands for a
Fayet-Iliopoulos interaction coupling constant. We can now
matchLeff to the string theory vacuum functional,
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Z5
V~4!

2~2p!4E d2t

t2
3

ZW

uhu4( 8 Z0ZG

3exp$24pt2[sinh2vQ̄~0!~Ja /Aka!1 1
2 ~cosh2v21!

3~Q̄~0!
2 1Ja

2/ka!] %,

after expanding the exponential factor in powers ofDa . The
linear and quadratic terms inDa give us, respectively,

ca52
1

16A3kap3EF

d2t

t2
2

ZW

uhu4( 8 Z0ZG~Q̄11Q̄21Q̄3!Ja

5
1

48p2Tr~ Ĵa!,

~4p!2

ga
2 5

4

3EF

d2t

t2
ZW( 8

Z0ZG

uh~t!u4

3F ~Q̄11Q̄21Q̄3!2S Ja22
ka

8pt2
D G . ~69!

To obtain the second equation for the linear termca , we
have used the property which identifies the world sheet
charge (Q̄11Q̄21Q̄3)/A3 as a space-timeR-charge opera-
tor, whose trace for massive supermultiplets gives a net zero
and for massless supermultiplets combines to21. Thus,ca
is proportional to the trace over the massless fermions of the
charge generatorĴa @normalized as Tr(Ĵa

2)5 1
2#, which is

nonvanishing only for U~1! gauge group factors. This ex-
pectedly reproduces the known result@65# that an apparently
anomalous U~1! can indeed arise in string theory with a one-
loop order finite, universal coefficient@66#.

The quadratic term inDa gives us an equation for the
one-loop correction to the gauge coupling constant. The for-
mula in Eq.~69! is, of course, valid in the supersymmetric
case only. The comparison with the corresponding result ob-
tained with a constant magnetic background field, as given in
Eq. ~31!, would show agreement if one had the operator
identity (Q̄11Q̄21Q̄3)2523Q̄2, noting that here
(Q̄1 Ī 3)25Q̄2, since the term] t̄ lnh̄ vanishes for supersym-
metric solutions. This identity can indeed be established for
orbifold models by use of the generalized Riemann-Jacobi
identity, as was first shown in@35#.

III. NUMERICAL RESULTS

A. Quadratic order gauge and gravitational interactions

The grand desert scenario for the minimal supersymmet-
ric standard model is known@67# to favor an unification
scale, MGUT5231016 GeV, with a grand unified theory
~GUT! gauge coupling constantgGUT5(4paGUT)

1/2

.(4p/25)1/2.0.71. Transposed to a string theory frame-
work, where the unification scale is determined at the tree
level in terms of the Planck massM P and string constantgX

as MX5@e(12g)/2/4p(27)1/4#gXM P.gX35.2731017 GeV,
the same type of scenario seems to overestimate the unifica-
tion scaleMGUT by a factor 20. If one insisted on setting
MX5MGUT, this would lead to an overestimate of Newton

constantGN51/M P
2 , by a factor 400. Reasoning in terms of

the underlying compactified ten-dimensional string theory,
would even turn this estimate into a lower bound
GN>aGUT

4/3 /MGUT
2 . This problem has motivated recent pro-

posals to examine the alternative option of a strongly
coupled string theory@68,48#. Remaining, however, within
the perturbative framework, three main known effects could
possibly cure this discrepancy: adjustable Kac-Moody levels;
intermediate thresholds; heavy thresholds. Of these three
items, the last one, on which we shall concentrate in this
section, appears as the most controllable one. Consider the
general splitting of threshold corrections@57#, Da
52baD1kaY1Ra , involving two components of universal
character,D and Y, whose contributions can be absorbed
into redefinitions of the unification scale and gauge coupling
constant,

MX→MX85MXeD/2,
1

gX
2
→

1

g8X
2

5
1

gX
2

1
Y

~4p!2 , ~70!

along with a nonuniversal residual componentRa . Several
studies of threshold corrections using solvable models of
string vacua have attempted to justify a decomposition of
this type @21#. In this section, we shall pursue the effort
started in our previous paper@20# with the purpose of updat-
ing the numerical results reported there for the gauge cou-
pling constants by use of the more complete formalism pre-
sented in the previous section. We perform numerical
calculations for the following selection of 16 Abelian orbi-
fold models:~i! the seven standard embeddingZN orbifolds
described for N53,4,6, by the internal shift vectors,
Nv i5(1,1,22); for N57,8, by Nv i5(1,2,23); and for
N512, by Nv i5(1,4,25); ~ii ! four nonstandard
embedding models described by the gauge sector shifts,
(NVI)(NV8I)5(11205)(11205)8, (1106)(207)8, (14203)
3(207)8, for Z3, and (11205)(2206)8, for Z4; ~iii ! three non-
standard embeddingZ3 models with two discrete Wilson
lines, due to Fontet al. @69# and Kim and Kim@70#; ~iv! two
nonstandard embeddingZ7 models with one discrete Wilson
line, due to Katsukiet al. @71# and Casaset al. @72#. The
inputs and gauge group factors for these models are de-
scribed in@20#. The affine algebra levels for the models con-
sidered here areka51 for non-Abelian group factors and
ka52( I 51

16 Ĵa
I2 for the Abelian U~1! factors.

Let us refer to the two contributions in Eq.~40!, which are
associated with the squared gauge charge termJa

2 and the
modular anomaly compensating term2(ka/8pt2!, as the
zero-mode~or charge! and anomaly~or back-reaction! con-
tributions, respectively. The following general trends for the
zero-mode contributions were found in the results quoted in
our previous paper@20#. TheZ3 orbifolds show marked uni-
versal features, withD50.068,Y53.4,Ra50. Larger values
for the universal components appear for theZ7 orbifolds,
D50.20–0.40,Y515, along withRaÞ0. For the nonprime
ZN orbifolds, the situation is less clear-cut since the universal
components cover wider ranges,D520.2–10.6,Y510–
40.

Turning now to the contributions from the back-reaction
component, we find that this brings a large negative contri-
bution toY. ~We draw attention to a factor 1/2 discrepancy
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with the results for the back-reaction component reported in
@38#, making ourY twice larger in absolute value.! The com-
ponentD is clearly unaffected. The numerical results for the
back-reaction correction alone, as well as for the total cor-
rection, are shown in Fig. 1. We see on the plot~a! of Fig. 1
that the spread between the various group factors is small
and that it slightly increases with the orbifold symmetry or-
der N. The back-reaction term dominates and partially can-
cels the zero-mode term. It is the largest contribution in ab-
solute value for theZ3 orbifolds, where it reachesY5226,
independently of the gauge embedding and Wilson line
twists. The largest contribution to the modular integral here
arises from thet2→` tail, which is determined by the
helicity-weighted massless mode supertrace term2hka/12.
Sinceh takes different signs for chiral and vector supermul-
tiplets, the untwisted sector contributes with an opposite sign
to that of the twisted sectors. One indeed finds large cancel-
lations between the untwisted and twisted sectors, the twisted
part being the larger.

The results for the orbifolds other thanZ3 indicate the
presence of a residual componentRa . This appears in a
clearer way on plot~b! in Fig. 1. The signature for a decom-
position of Da in terms of only two universal components
would appear in this plot as a clustering of the points along a
single straight line whose intercept and slope identify withY
and D, respectively. The conclusion from Fig. 1 is that no
clear systematic trend towards such a universal behavior is
visible on the results. However, for a fixed orbifold orderN,
the deviationsRa are quite small and alignments along
straight lines are observed. The purest case is that ofZ3
orbifolds. For the higher-order orbifolds, common trends do
appear, such as a positiveD ~negativeY) which increases
~decreases! with increasingN.

It is interesting to contrast the predictions for the gauge
coupling constants with the phenomenologically favored
ones. Naively, a reduction ofMX8;1018 down to
MGUT;1016 would requireD.210, while a shift from a
dilaton vacuum expectation value set at a strongly coupled

regime, say, 4p/gX
2;1, or at the self-dual point ofS duality,

S→(4p)2/S, to the empirical value, 4p/g8X
2;25, would re-

quire Y.300. It appears then that the predicted moduli-
independent corrections are much too small, and even of
wrong sign forD andY, with respect to a naive perturbative
string theory unification scenario. Nevertheless, viable sce-
narios can be found in association with the other expected
mechanisms of an anomalous U~1! threshold and small affine
level for U~1! Y @20#.

The threshold corrections for the quadratic gravitational
interactions arising from the termẼ2(t) in Eq. ~42! are also
shown in plot~a! of Fig. 1. The zero-mode contribution is
again dominated by the anomaly-compensating back-
reaction contribution from the2(3/pt2) term, which nu-
merically coincides with that of the gauge interactions case.
The net correction toDR shows some model dependence for
orbifold ordersN>6 and smoothly increases from216 for
Z3 to 18 for Z12 orbifolds. Thus, expressed as a shift in the
tree-level coupling constantd(4p/gX

2)5DR/4p, the thresh-
old correction represents a tiny few percent effect.

B. Moduli-dependent threshold corrections

In this section we present a comparison with the moduli-
dependent threshold corrections in the quadratic gauge and
gravitational interactions. We apply the methods initiated in
@3# and further developed in@14# to the curved space-time
regularization approach of Sec. II. The one-loop contribu-
tions from theN52 supersymmetric suborbifolds~with an
unrotated two-dimensional torus! have a simple representa-
tion in terms of a summation involving the right-moving
sector massive BPS~Bogomol’nyi-Prasad-Sommerfield!
states, along with an unrestricted sum over the left-moving
sector states. The so-called perturbative BPS states are the
stable string modes which saturate the mass bound
(a8/4)MR

2>pR
2/2, where theN52 central chargepR identi-

fies with the zero-mode momentum of the unrotated two-

FIG. 1. ~a! The one-loop-normalized thresh-
old correctionsDa /ka to the gauge coupling con-
stants are plotted as a function of the orbifold
order N for the 16 orbifold models described in
the text. The triangles and squares plotting sym-
bols give the totalDa /ka for the various gauge
group factors. The back-reaction contributions to
Da /ka are shown by points joined by continuous
lines. The full gravitational correctionDR is
shown by points joined by dashed lines.~b! The
one-loop-normalized threshold corrections are
plotted as a function of the normalized slope pa-
rameter 2(ba /ka) . We denote results for the
gauge group factors ofZ3 orbifolds by open tri-
angles;Z4 by open squares;Z6 by filled triangles
pointing up;Z7 by filled triangles pointing down;
Z8 by open parallelograms; andZ12 by filled tri-
angles pointing leftwards.
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dimensional torus@73#. The one-loop contributions in the
gauge and gravitational coupling constants read

F ~4p!2

kaga
2 ;

~4p!2

gR
2 G52

1

4EF

d2t

t2
2 ZW~t, t̄ !@t2ZG~y, ȳ !#

3FF1~q!1
F2~q!

pt2
;F1

g~q!1
F2~q!

pt2
G ,
~71!

where the partition function for the zero-mode lattice of the
internal space-fixed two-dimensional torus, denoted

ZG(y, ȳ )5(qpL
2/2q̄ pR

2 /2, depends on the two complex moduli
fields, y5@y15T5T11 iT2 ,y25U5U11 iU 2#, param-
etrizing the coset space, SO(2,2,R)/SO(2,R)3SO(2,R). A
similar procedure to that of Sec. II~separation of the mass-
less modes at thet2→` degeneration limit, subtraction of
the field theory one-loop contribution, and introduction of
the DR̄renormalized constant! is used to define the threshold
correctionsDa ,DR . The string theory contributions involve
the following periodic Ramond sector traces associated with
the so-called new supersymmetry index:

@F1~q!,F1
g~q!,F2~q!#

5
1

h2

i

2
TrRS J0eipJ0F8Ĵa

2 ,
E2~t!

3
,21GqH q̄ H̄D

5 (
m>21

`

@c~m!,cg~m!,ĉ~m!#qm, ~72!

which are meromorphic functions ofq, with at most simple
poles at the cusp pointt5 i`, and Laurent series expansions
given by the second line of Eq.~72!. The zero-mode
componentJ0 of the U~1! current J( z̄ ), is related to the
fermion number operator F such that,
( i /2)TrR(J0eipJ0

•••)5TrR„(21)F
•••…. All three functions

F1 ,F1
g ,F2 are modular functions for the SL(2,Z) modular

group, of weight 0 forF1 ,F1
g , and 22 for F2, except for

modular anomalies of the same form as for 1/t2, which can-
cel exactly in the relevant modular-invariant combinations
@F11(F2 /pt2) ,F1

g1(F2 /pt2)#. These functions exhibit
simple universality properties for the class of nonprimeZN
orbifold models associated with decomposable six-
dimensional toriT65T4/G% T2. For the subclass of standard
gauge embedding orbifolds, we find, by explicit calculation,

F1~q!5c~0!F11
11

11 088S E6
22E2E4E6

D
1720D G

5c~0!~11330q126 400q21881 100q31••• !,

F2~q!52
4

uGuD
E6E4

5
4

uGuS 2
1

q
12401141 444q18 529 280q21••• D ,

F1
g~q!5

4

3uGuD
E6E4E2

5
4

3uGuS 1

q
22642135 756q25 117 440q22••• D ,

~73!

where D(t)5h24(t) and E2k(t) are the Eisenstein series
functions, normalized asE2k( i`)51. The model depen-
dence in Eq.~73! resides only in the slope parameter coeffi-

cientsba5c(0)/4,bR5cg(0)/452 1
48 (NH2NV124), and in

the orbifold orderuGu. (NH ,NV are the numbers ofN52
hyper and vector supermultiplets, including the dilaton and
graviphoton, respectively.! Substituting in Eq.~71! and car-
rying the modular integrals by means of familiar methods
@3,14,22#, one finds the following formula for the threshold
corrections in the gauge coupling constants:

Da5
c~0!

4 F ln~2T2U2!2
p

3
U21K8G2

p

12
T2@c~0!224c~21!#1R(

r .0
c~kl !ln~12e2p ix!2

ĉ~0!

4p2U2T2
S z~3!1

2

p
z~4!U2

3D
2

p

72
T2@ ĉ~0!248ĉ~21!#2

1

pU2T2
R(

r .0
ĉ~kl !P~x!, ~74!

where K8 5 ln(4pe323gE/9A3) 5 K 1 ln@e2(12gE)/3#,
z(3)51.202 056 9 . . . , z(4)5p4/90, gE50.577 215 6 . . .
~Euler-Mascheroni constant!; r 5(2 l ,2k) is the lattice vec-
tor of the fixed two-dimensional torus, such that the scalar
product r •y5ky11 ly2 , with the special definition
x5r •̂y5uR(kT1 lU )u1 i uI (kT1 lU )u, whereR,I mean real
and imaginary parts; r .0 means (k.0,l PZ;) or
(k50,l .0); P(x) 5(Ix)Li 2(Q) 1(1/2p)Li 3(Q),
@Q5e2p ix#, with Li j (Q)5(p.0(Qp/pj ), the polylogarithm

functions. To translate the automorphic fields notation used
here into the string fields notation, one must apply the trans-
formation y6→ iy6 (T→ iT, U→ iU ). As functions of
T,U, the Da are invariant under the modular group,
O(2,2,Z);SL(2,Z)T3SL(2,Z)U which includes the inter-
changeT↔U. The representation in Eq.~74!, which is only
valid in the domainT2.U2, is transformed when passing
through the wall atT25U2, by the substitutionT↔U.

The formula corresponding to Eq.~74! for the gravita-
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tional correction DR is obtained by simply changing
c(n)→cg(n), keeping the coefficientsĉ(m) unchanged.

The only discrepancy between our result and those found
in the approach of@3,14# resides in a shift of the constant
term corresponding to the numerically small difference
K82K 5K82 ln(4pe12gE/A27) 5222gE2 ln3.20.253.
The effective unification scale, incorporating the constant
term from the N52 sector MX8

25MX
2e2K8

53/(a8e2(12gE)2p2 )56MS
2/@e2(12gE)(4p)2# is then a fac-

tor 3e22(12gE)'1.29 larger than that given in@3#. The mis-
match originates from the use there of the simple-minded
infrared regularization factor (12e2N/t2)(N/t2)e, with the
limits N→`, e→0. In contrast with our curvature infrared
regularization, which is realized by the partition function fac-
tor,

ZW~t, t̄ !.@112f~m!2f~2m!#,

Ff~m!5S 12m
]

]m D (
mÞ0

e2pm2/m2t2G , ~75!

the regularization prescription in@3# clashes with modular
invariance.

The constantO(q0) term in the decomposition ofF1(q)
in Eq. ~73! gives rise to the gauge group-dependent contri-
bution involving c(0) in Eq. ~74!, which is associated
with the subset of the BPS states withkl50, namely,
(k50, l PZ) or (k.0, l 50). This sums up to (Da)DKL
5ba@ ln$2T2U2uh(T)h(U)u4%1K8#, which identifies with the
total correction initially discussed by Dixon, Kaplunovsky,
and Louis ~DKL ! @3#. The nonconstant terms inF1(q) of
O(qn) @n.0#, which arise from the combination

E6
2~t!2E2~t!E4~t!E6~t!

D~t!
1720

5 j ~t!2
E2~t!E4~t!E6~t!

D~t!
21008,

are associated with the contribution from the subset of states
(k.0,l PZ) in Eq. ~74!. Based on the represen-
tation j (t)27445(1/q)1196 884q121 493 760q21•••

5(m>21cj (m)qm, and the Borcherds product formula@14#,
the term involving j (t) yields a contribution toDa pro-
portional to lnqT

21)k.0,l PZ(12qT
kqU

l )cj (kl)5 ln@ j(T)2j(U)#,
where qT,U5e2p i [T,U] . The singularity at the submanifold
T5U mod SL(2,Z) is a reflection of the stringy Higgs
mechanism responsible for the enhanced symmetry
U~1! T3U(1)U→SU(3) in the gauge group associated with
the internal space coordinates of the fixed two-dimensional
torus @73#. The absence of singularities in the threshold cor-
rections Da , associated with gauge symmetries from the
gauge sector space, is due to the compensation by a corre-
sponding singular ln(T2U) contribution from the remaining
terms inF1(q). For the gravitational case, the compensation
of the singularity atT5U in DR takes place upon adding the
contributions fromF1

g andF2(q).
A related discussion of the universality properties for the

subclass ofN52 models obtained by toroidal compactifica-
tion of N51 models in six dimensions is given in@34,37#.
Another interesting class ofN52 compactification models
with nonuniversal behavior is discussed in@36#.

We shall now present results for the class of models de-
scribed by Eq.~73!. In terms of the two-component decom-
positionDa52baD1kaY, the quantitiesD,Y are then iden-
tified with the zero-mode and back-reaction contributions
associated withF1(q) andF2(q), respectively. The numeri-
cal results are shown in Fig. 2. The relationship between
T,U and the representations of the metric and torsion tensors
in the zero-mode lattice basis is given by

T52~B121 iAdetG!5~b1 ir 1r 2sinu!,

U5~G121 iAdetG!/G115
r 2

r 1
eiu, ~76!

where 2@G11,G22,G12,B12#5@r 1
2 ,r 2

2 ,r 1r 2cosu,b# such that
T,b,r i

2 are expressed in unitsa851. Close to the self-dual
pointsT5U5 i , the moduli-dependent corrections are com-

FIG. 2. The one-loop threshold corrections for
decomposable tori models, specialized to theZ4

orbifold case, are plotted as a function of
T5T11 iT2 ,U5U11 iU 2 at T15U150, with
the variablesT2 ,U2 along the horizontal axes.
The three plots from left to right show the uni-
versal componentsD,Y for the gauge interactions
and DR for the quadratic gravitational interac-
tions.
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parable in size with the moduli-independent corrections, but
with an opposite negative sign forD. For example, at
T253,U254, one hasD522.17,Y5260,DR516. The
variations are rather smooth and have a linear power law
increase at largeT or U. At fixed U, say,U54i or i /4, one
finds D.20.66uTu,Y.212.7uTu,DR.10.5uTu. The depen-
dence on the real parts is weak. Recall thatD,DR , andY are
symmetric underT↔U and that their values forT,U below
and abovei are connected by the duality transformations
T→21/T,U→21/U. For large compactification volumes,
the correctionD has the right sign for a reduced unification
scale, and the right magnitude provided thatT;10. The cor-
rection Y, although of sizable magnitude, also has a wrong
sign to shift the dilaton vacuum expectation value towards
weak coupling. The total correctionDR in the gravitational
case is of opposite sign to~and same magnitude as! that in
the gauge case. The associated unification scale
MX8

R5e2DR /bRMX is enhanced~reduced! for negative~posi-
tive! bR .

For comparison with the work of Kiritsis, Kounnas,
Petropoulos, and Rizos~KKPR! @37#, where theZ23Z2 or-
bifold was considered, we observe that, whereas their func-
tion F1(q) has the same formal structure as in our class of
models, the decompositionDa5(baD2kaY)KKPR there iden-
tifies the gauge-dependent term (baD)KKPR, with our term
denoted (Da)DKL and the universal term2(kaY)KKPR, with
the remainder contributions fromF1(q) andF2(q). Our total
results are compatible with those in@34,37#.

C. Quartic order gauge interactions

The numerical calculations for theFa4 interactions are
more intricate than those of the lower-order interactions.
Larger number of contributing terms are involved, as can be
seen in Eq.~43!. The various terms contribute more or less
equally. We have simply subtracted out the larget2→` tails
for all terms, except for the twoO(1/t2

2) terms, whose con-
tribution to the modular integral is finite.

The results for the moduli-independent threshold correc-
tions obtained for our sample of 16 orbifold models are
shown in plot~a! of Fig. 3. For a given orbifold order, the
correctionsGa are rather widely spread, somewhat more than
for Da . They cover an interval ranging from 10 to280. The
contributions from the back-reaction~gauge group-
independent! terms lie near220 and significantly cancel
those of the zero modes.

The correctionsGa include a sizable part independent of
the particular gauge group factor. A dependence on the factor
group is also present, as is seen on the plot~b! in Fig. 3.
While a correlation betweenGa and the slope parameters is
not immediately apparent in the figure, there appears a sys-
tematic trend for an increase of the corrections with
2(ba /ka) . For a comparison with the tree-level coupling
constant, we make the bold approximation that one structure
only is present, say, that associated withs1. The total contri-
bution would read then, Seff /F

a4;s1(e22F1Z1Fa)
5(s1/2p)@(4p/gX

2)1(Ga/2ps1)#. For Ga;10 ands15 3
128,

it appears that the one-loop threshold corrections correspond
to a large, almost one order of magnitude effect.

IV. DISCUSSION AND CONCLUSIONS

The need for an infrared scale parameter which separates
the low and high energy theories mass spectra is an inevi-
table auxiliary item in any description of threshold correc-
tions. Of course, it is always possible to circumvent the in-
frared regularization by restricting oneself to the
consideration of~moduli or matter fields! derivatives of the
coupling constants]G/]y6 @G5ga

2 ,gR2
2

#, as in the calcula-
tions of @5,6#, or to gauge group and moduli-dependent com-
ponents, as in@3#. In so doing, however, one gives up useful
information on the absolute size of threshold corrections.

In point quantum field theories, a standard choice for the
infrared parameter is the floating off-shell momentum scale
used in the renormalization group method. The description

FIG. 3. ~a! The one-loop threshold corrections
to the quarticFa

4 gauge interactions coupling con-
stants are plotted as a function of the orbifold
orderN for the 16 orbifolds described in the text.
The triangles and squares plotting symbols give
the normalized quantitiesGa /ka

2 for the various
gauge group factors in each model. The points
joined by continuous lines give the contributions
of the two gauge group-independent terms.~b!
The one-loop-normalized threshold corrections
are plotted as a function of the normalized slope
parameters2(ba /ka) . We denoteZ3 orbifolds
by open triangles;Z4 by open squares;Z6 by
filled triangles pointing up;Z7 by filled triangles
pointing down;Z8 by open parallelograms; and
Z12 by filled triangles pointing leftwards.
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here proceeds by equating the summed tree-level and
ultraviolet-divergent loop contributions to the unrenormal-
ized coupling constants in the low and high energy theories,
after expressing these in terms of the renormalized running
coupling constants at the infrared scaleM . The threshold
corrections emerge then as the boundary condition terms at
the ultraviolet decoupling scaleMX @74#, as is exhibited on
the formal equation,

1

G~MX!
1bln

M

MX
1D5

1

G~p!
1bln

M

p
.

Things differ for string theories because the first-quantized
~Polyakov or operator! formalisms are on-shellS-matrix ap-
proaches, where the~tadpoles, mass shifts! divergences in
the modular variable integrals arise through 0/0 ill-defined
expressions~see Chap. 8 in@75#!. What is most specific
about string theory is that infinities are of infrared rather than
ultraviolet origin. In particular, the notion of renormalized
string theory coupling constants is pointless. Several propos-
als of off-shell formalisms@76#, and of extensions of the
space-time dimensional continuation procedure@77#, have
been made in the literature. No simple satisfactory method
has emerged so far. Thus, to extract the infrared scale loga-
rithmic dependence of the gauge coupling constant, Minahan
@1# had to evaluate the world sheet correlator for three gauge
bosons, using a prescription for going off the energy shell
consistent with conformal and modular invariance. The
background field approach stands as one promising alterna-
tive approach. In the approximate treatment of Kaplunovsky
@2#, an infrared cutoff was introduced implicitly, as can be
seen by writing his matching formula in the notations of the
present paper,

~4p!2

ga
2~p!

2
~4p!2ka

gX
2

2baln
p2

L2 2Da5(
i

~ I i
02Li

0!

52baS E
F

d2t

t2
2E

0

`dt

t
CL~ t ! D

52baF12gE1 ln
2

pA27L2G . ~77!

The choice of the ultraviolet cutoff functionCL(t)
5(12e2tL2

), which characterizesga(p) as the Pauli-Villars
renormalized field theory coupling constant, yields the same
answer as the DR̄prescription. The infrared divergences at
large values oft2 and t5pa8t2, when regularized by a
sharp cutofft2<(M2a8)21, mutually cancel out, so that one
is led to an effective unification scaleMX which coincides
with ours in Eq. ~56!. On the other hand, as we already
pointed out after Eq.~74!, for the moduli-dependent thresh-
old corrections, the use of a similar technically inspired cut-
off in the modular integrals@3# leads to a different constant
term.

The crucial advantage of the infrared regularization by a
space-time curvature is that it can be implemented for both
the string and field theories using well-defined correspon-
dence rules. The infrared cutoff on the string theory side
is the dimensionless Kac-Moody level parameterm2

51/(k12), while the corresponding parameter on the effec-
tive field theory side,me

251/k, identifies with the spatial
manifold S3 radial scale factor. Since all dimensions are set
by the string theory tension, the analogue of the dimensional
floating scale here isM25m2/a8. In fact, by exploiting the
representation of the semiwormhole partition function in
terms of aG(1,1) lattice partition function, the analogy can
be extended at a deeper level by deriving an infrared renor-
malization group flow equation for the string theory vacuum
functional @22#.

The motivations for the finite curvature approach of Kir-
itsis and Kounnas@22# bear a remote analogy with those
which inspired earlier proposals in field theory@78#. These
applications rather aimed at formulations of scale-invariant
theories exhibiting manifest invariance with respect to the
conformal transformations group, O~4,1! or O~5!. Negative
curvature space-time, in particular, was argued to have ben-
eficial effects on the dynamics, for example, by suppressing
certain nonperturbative effects@79#. The full implementation
of a curvature-regularized theory would run into significant
technical complications if one needed an explicit construc-
tion of the world sheet correlators, as this would entail solv-
ing an interacting two-dimensionals model. Fortunately,
with threshold corrections, one is only concerned with the
spectrum of would-be massless states and their degeneracy,
an information which is encoded in the partition function.

The use of curved space-time string theory solutions
formed from N54 superconformal field theory building
blocks has desirable features listed in@22#: a free curvature
parameter to monitor the decompactification limit; a well-
identified classical field theory limit; preservation of the
space-time supersymmetry properties; solvable marginal de-
formations to represent covariantly constant gauge and gravi-
tational background fields. The simplest models of type
M (4)3K, where theN54 block M (4) is substituted for the
flat space-timeR4, allows one to explore the class of phe-
nomenologically viable orbifold compactification models for
the internal space K. The semiwormhole solution
M (4)5Wk

(4) presents the enormous advantage of the partition
function factorizability. The consideration of the other
known solutions@27,28,52#, M (4)5Dk

(4) or Ck
(4) , may in-

volve a less transparent formalism which has not been devel-
oped so far.

The combination of a conformal algebra structure along
with a geometricals-model description is the main attraction
of the approach of@22#. This completes the approach of@2#
by a consistent account for the back-reaction terms, which
are essential for ensuring the modular invariance. While the
form of these terms for the gauge coupling constants could
have been guessed on the basis of modular invariance, a
systematic procedure is clearly needed for the higher-
derivative interactions.

The reason that only the knowledge of the space-time
block partition function is needed in calculating the threshold
corrections rests on the conjectured equivalence between the
low energy limit of the string theory vacuum functional and
the effective action encoding the world sheet conformal sym-
metry constraints@80#. The dependence on the background
fields must then be identical in the string and field theory
functionals, up to appropriate field redefinitions. The term-
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by-term identification of powers of the background fields
uses in an essential way the connection formulas between the
vertex operators and thes-model deformation parameters.
These matching equations provide sets of relations between
the string one-loop contributions and the renormalization
constants. They can also be interpreted as corrections to the
string theory equations of motion involving renormalization
contributions to the various interactions. The matching as-
sumption can be viewed as an implementation of the
Fischler-Susskind mechanism@62#, where the world sheet
infrared regulator associated with the size of the world sheet
torus handle is replaced by the space-time curvature param-
eter.

The connection formulas between the string theory and
s-model deformation parameters follow from a consider-
ation of the mass spectra. However, once the semiwormhole
solution is deformed or tensored with a nontrivial internal
space, as inWk

(4)3K, the dependence of the effective action
on the background fields is only valid in the classical limit,
corresponding to the leading powers of 1/k for a given inter-
action. The semiwormhole would be an exact quantum solu-
tion only for the special modelWk

(4)3R6, also known as the
five-brane soliton@30#. Thus, unlike the string theory func-
tional dependence onk, which is exactly known thanks to the
conformal and modular symmetry constraints, the informa-
tion on thek dependence of the effective action is only lim-
ited to the leading powers. This fact is responsible for the
restricted predictive power of the approach. The higher or-
ders could possibly be generated perturbatively by solving
the string theory equations of motion, which would then in-
volve more detailed information contained in the Green’s
functions. To develop the background field formalism in an
order by order in 1/k identification would also require a sys-
tematic consideration of all the higher-derivative interactions
in the effective action. Dealing with these technicalities
would make the analysis quite unwieldy, but perhaps not
beyond reach.

The implication of our numerical results for the moduli-
independent threshold corrections is that these represent
small effects for the quadratic order interactions, correspond-
ing to a few percent corrections on the improved coupling
constant or scale. Thus, a simple-minded explanation for the
standard model gauge coupling constant unification, as being

solely due to heavy threshold corrections, is ruled out. The
new revised results leave the initial conclusions@20,21# un-
changed. The scenarios for perturbative string theory unifi-
cation appealing to the combined effects of affine algebra
levels, anomalous U~1! factor, and enhanced threshold cor-
rections from large compactification volumes should con-
tinue to provide a viable alternative. However, the last item
here may prove less effective, since considerations from
string duality indicate the existence of an upper bound on the
compactification radius@81#, R<1/aXM P .

The one-loop threshold corrections to the higher-
derivativeR2 gravitational interactions could possibly inform
us about the existence of higher-derivative interactions
which are not reducible to the topological Gauss-Bonnet
combination. Unfortunately, we have been unable to answer
this question, because of the technical difficulties in disen-
tangling the three invariant structures. For the quartic order
Fa4 gauge interactions, we also had to restrict consideration
to a linear combination of the invariant couplings which re-
mains unknown. Our treatment is also qualitative with re-
spect to the group theory factors and the unresolved mixing
with the quadratic gravitational interactions. However, the
numerical results here indicate the presence of large moduli-
independent threshold corrections relative to the tree-level
coupling constants.
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APPENDIX A

1. Expansion of partition function in background fields

We consider the expansion of the deformed theory parti-
tion functionZ(Fa,R), Eq. ~27!, in powers of the gauge and
gravitational field strength parametersFa,R, using Eq.~20!
to describe the perturbed conformal weights. The power ex-
pansion up to quartic order is

e24pt2dL0512
I 3Q̄8tR

2 AKAk
1S 2~ I 3

2t !

8 k
2

Q̄82t

8 K
1

I 3
2Q̄82t2

8 Kk
DR21S I 3

3Q̄8t2

16AKk3/21
I 3Q̄83t2

16K3/2Ak
2

I 3
3Q̄83t3

48K3/2k3/2DR3

1S I 3
2t

32k
1

Q̄82t

32K
1

I 3
4t2

128k2 1
I 3

2Q̄82t2

64Kk
1

Q̄84t2

128K2 2
I 3

4Q̄82t3

64Kk2 2
I 3

2Q̄84t3

64K2k
1

I 3
4Q̄84t4

384K2k2DR4

1S 2~Ja
2t !

8 ka
2

Q̄82t

8 K
1

Ja
2Q̄82t2

8 Kka
DFa

21S Ja
3Q̄8t2

16AKka
3/21

JaQ̄83t2

16K3/2Aka
2

Ja
3Q̄83t3

48K3/2ka
3/2DFa

3

1S Ja
2t

32ka
1

Q̄82t

32K
1

Ja
4t2

128ka
2 1

Ja
2Q̄82t2

64Kka
1

Q̄84t2

128K2 2
Ja

4Q̄82t3

64Kka
2 2

Ja
2Q̄84t3

64K2ka
1

Ja
4Q̄84t4

384K2ka
2DFa

41O~R!51O~Fa!5.

~A1!

56 2347SYSTEMATICS OF STRING LOOP THRESHOLD . . .



We have omitted, for simplicity, the mixed power terms
O(FnRm), and used the following abbreviationsQ̄85Q̄

1 Ī 3 ,K5k12,t58pt2.

2. Zero-mode operators

Let us first recall our normalization conventions for the
SU~2! k and U~1! ka

affine algebras,

I i~z!I j~0!.
kd i j

2z2
, Ja~z!Jb~0!.

kadab

2z2
,

Q̄a~ z̄ !Q̄b~0!.
dab

z̄2
, ~A2!

and the definition of the conformal weight operators in Eq.
~12!. The zero-mode operators for the Cartan subalgebra of
commuting generators act essentially by inserting the charge
component as a factor inside the sum representation of the
correspondingu function or character function. This state-
ment can be schematically expressed asQ̄2→q̄ab9

;(p2qp2/2,Q̄4→q̄ab
( iv);(p4qp2/2, with derivatives operat-

ing onqab(nut);(qp2/2e2p inp as]/(2p i ]n). More specifi-
cally, the action can be expressed as a logarithmic derivative
with respect toq or q̄ acting on the corresponding determi-
nantal factor which occurs in the partition function Tr
(qL0 q̄ L̄ 0). For the gauge operator zero mode, using
L0

gauge5Ja
2/ka , the component decomposition of the world

sheet current operatorJa5Aka/2Ĵa(z),Ĵa(z)5( I 51
16 Ja

I i ]FI ,

normalized as TrĴa
25c2/25 1

2, and the schematic correspon-
dence,

Ja
2→kaL05

ka

2
2q

d

dq
5

ka

2
Ja

I2S 2q
d

dqD
I

5
ka

2
Ja

I2S ]

2p i ]n I
D 2

,

~A3!

one derives the general formula,

S Ja
22

ka

8pt2
D)

I 51

16

q I

→
ka

2 F(
I

Ja
I2S 2q

d

dqD
I

1(
IÞJ

Ja
I Ja

J ]2

~2p i !2]n I]nJ

2
1

4pt2
G)

I

16

q I~n I ut!un I50 . ~A4!

The fermionic SO~8! Cartan subalgebra helicity generators
Q̄a5(Q̄,Q̄i) @ i 51,2,3# contribute to the conformal weight
as L̄ 05(a(Q̄a

2/2), so that their action on the spinor fields
u-function factors reads

Q̄2→2 q̄
d

d q̄
lnq̄F ā

b̄
G , Q̄i

2→2 q̄
d

d q̄
lnq̄F ā1gi

b̄1hi
G .

~A5!

The space-time orbital helicity generatorsI 3 , Ī 3, for the
SU~2! k factor, enter the conformal weight asL0

SU(2)k

5 IW2/(k12), which implies that @ IW2, Ī 2W #→(k12)
3@L0 , L̄ 0#5@(k12)/2#@2q(d/dq),2q̄ (d/d q̄)#, operating
on the corresponding character function factorsx l ,k , x̄ l ,k in
the partition functionX8(m), namely, on the factorX2 in the
decomposition, X8(m)5X1X2 , @X15„At2h(t) h̄ ( t̄ )…3#,
whereX1 comprises the flat space limit contributions from
the zero modes and oscillator excitations. Simultaneously,
we must subtract the free coordinate contributions
I 3

2→(k/2)2q(d/dq)(1/h). It is convenient to express the ac-

tion of I 3
2 , Ī 3

2 directly as derivatives acting onX8(m), so as
to exploit the known properties of this function at the various
limits. For this purpose, as just stated, we need to correct for
the contributions arising from the explicit action of the de-
rivatives on the flat space and oscillator terms inX1, and to
subtract out the action on the free coordinate oscillator con-
tribution. Using the group symmetry properties^I i

2p11&
50,̂ I 3

2&5 1
3 ^ IW2&, and writing,

I 3
2FX8

h G5
k12

h F1

6S 2q
d

dqD 1
1

8pt2
2

1

2S 2q
d

dqD lnhGX81
k

2

X8

h S 2q
d

dqD lnh

5Fk12

6
2q

d

dq
X81

k12

8pt2
X8G 1

h
2

X8

h
2q

d

dq
lnh, ~A6!

we find the explicit formulas

F ~Q̄1 Ī 3!22
k12

8pt2
GX8~m!5F 2 q̄

d

d q̄
ln

q̄F S a
b D G

h̄
1

k12

6
2 q̄

d

d q̄
GX8,

S I 3
22

k

8pt2
DX8~m!5F22q

d

dq
lnh~q!1

1

4pt2
1

k12

6
2q

d

dqGX8~m!5
i

pF Ẽ2~t!2
k12

6
]tGX8~m!
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F Ẽ2~t!5]tlnh~t!2
i

4t2
5

1

2
]tln@h2~t!Im~t!#5

ip

12S E2~t!2
3

pt2
D ,

E2~t!5
12

ip
]tlnh51224(

n51

`

s1~n!qnG . ~A7!

In the sum representation of thez-function-regularized Eisenstein functions1(n)5(dund denotes the sum of the divisors ofn.
The antiholomorphic quantities are deduced by complex conjugation.

The treatment of higher powers of the zero-mode operators follows from similar considerations. One finds

I 3
4@X8#5

1

5F S k12

2 D 2

X1S 2q
d

dqD 2

X22S k

2D 2

X8~m!S 2q
d

dqD 2

ln
1

h3G
52

1

5p2H S k12

2 D 2F ]t
213S h82

h2
2

h9

h
2

1

8t2
2D 16S i

4t2
2

h8

h D ]tG1
3k2

4 S h9

h
2

h82

h2 D J X8~m!

→2
3

5
X8S 2q

d

dqD 2

lnh5
3X8

5p2S h9

h
2

h82

h2 D , ~A8!

whereh85]th(t) and we expressed the angle averaging by means of the classical formulaI 3
4→ IW2/5. The result appearing on

the last line in Eq.~A8! is obtained by selecting theO(k0) term and dropping all terms proportional to powers ofk or (k12).
The corresponding formula for the total angular momentum projection is

~Q̄1 Ī 3!45Q̄41 Ī 3
416Q̄2 Ī 3

2→
q̄ab

~ iv !

q̄ab

26
q̄ab9

q̄ab
S 2 q̄

d

d q̄
lnh̄ D 2

3

5S 2 q̄
d

d q̄
D 2

lnh̄ . ~A9!

The gauge zero-mode operators action is given by

Ja4→(
I

JI
a4] IIII

4 1(
IÞJ

~3JI
a2JJ

a2] II
2 ]JJ

2 14JI
a3JJ

a] III
3 ]J!1 (

IÞJÞK
6JI

a2JJ
aJK

a ] II
2 ]JK

2 1 (
IÞJÞKÞL

JI
aJJ

aJK
a JL

a] IJKL
4 , ~A10!

where the derivatives] I5]/2p i ]n I operate on theE83E8 Cartan subalgebra components of the fermionic gauge fields
determinantal factorsq@a

b#(n I ut).

3. Modular integrals

To evaluate the modular integrals in the limitm→0, it is convenient to use the representationX(m)5ZT(m)2ZT(2m),
while truncating the winding modes summation to then50 term,

ZT~m!5At2 (
~m,n!PZ2

e2p imnt1expF2pt2S m2m21
n2

m2D G.At2q3~ i t2m2!5
1

m
q3S 1

2 i t2m2D ,

where the equation in the last step is deduced by means of the duality transformationt→21/t. An important observation is
that in the differenceZT(m)2ZT(2m), the contribution from them50 term in the momentum modes sum cancels out, so that
there occurs an overall damping factore2pt2m2

, as required by the regularization. If one simply factored out thee2pm2t2

dependence, this would prevent one from simplifying the integrands by using the duality transformation. Nevertheless, a
convenient approximation for the integralsJ1 ,K1, valid up to small correctionsO(e21/m2

),O(e2L2/m2
), can be obtained by

using the two truncations detailed in the following steps:

X~m!.At2e2pt2m2

(
mÞ0

e2pt2~m221!2~m→2m!,

.At2e2pt2m2 1

mAt2
Fq3S 1

2 i t2m2D21G2~m→2m!

.
1

m
e2pt2m2

2~m→2m!, ~A11!
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where the first truncation amounts to the substitution (m221)→m2, and the second to retain the leading term in the limit
m→0. One can now evaluate the integral analytically,

J154pm2
]

]mF 1

mE21/2

1/2

dt1EA12t1
2

` dt2

t2
e2pt2m2

2~m→2m!G
524pm2

]

]mF 1

mE21/2

1/2

dt1Ei„2pm2~12t1
2!1/2

…2~m→2m!G
52pFgE231 lnS p

A27

8
m2D G , ~A12!

where Ei is the exponential integral function and we have used*21/2
1/2 dxln(12x2)5(3ln32222ln2),Ei(̀ )→0,Ei(z)

.gE1 lnz1O(z). A similar approximation applies to the corresponding field theory integral,

K1.4pme
2 ]

]me
F 1

me
E

1/pL2

` dt

t
e2ptm2

2~me→2me!G52pFgE221 ln
me

2

4L2G . ~A13!

A useful approximation for the integrals,Jn ,Kn , for (n52,3), is again to truncate the winding modesnÞ0, but to retain all
the momentum modesmPZ, while extending the range of the modular integral form.0 to the entire upper half-strip. The
procedure, valid up to the same exponential accuracy as quoted above, can be described as

E
F

d2t

t2
n ZT~m!.

1

mF E
F

d2t

t2
n 1E

21/2

1/2

dt1E
0

`dt2

t2
n H q3S 1

2 i t2m2D21J G5
1

m
@ f n12m2n22p12nG~n21!z~2n22!#

F f n5S p

3
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1

2
ln3D @n52,3#G . ~A14!
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