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In first-quantized string theory, spacetime symmetries are described by inner automorphisms of the under-
lying conformal field theory. In this paper we use this approach to illustrate the Higgs effect in string theory.
We consider string propagation onM24,13S1, where the circle has radiusR, and study SU~2! symmetry
breaking asR moves away from its critical value. We find a gauge-covariant equation of motion for the
broken-symmetry gauge bosons and the would-be Goldstone bosons. We show that the Goldstone bosons can
be eliminated by an appropriate gauge transformation. In this unitary gauge, the Goldstone bosons become the
longitudinal components of massive gauge bosons.@S0556-2821~97!07116-6#

PACS number~s!: 11.25.Hf, 11.30.Qc

I. INTRODUCTION

String theory remains the most promising candidate for a
unified description of nature. During the past few years,
many string dualities have been discovered, but it is fair to
say that a deep understanding of string dynamics is still lack-
ing. It is therefore important to understand the role of space-
time symmetries in string dynamics.

At the classical level, every two-dimensional conformal
field theory~of the appropriate central charge! is a solution
to the string equations of motion@1#. The two-dimensional
couplings are the spacetime fields of the string. Conformal
invariance determines the couplings, and hence the dynamics
of the spacetime fields. During the past decade, a large num-
ber of string solutions have been constructed in this way@2#.

Fortunately, many of the string solutions are related by
symmetries. In ordinary field theory, symmetries are trans-
formations of the spacetime fields which leave the classical
action invariant. Barring anomalies, they also hold in the full
quantum theory. In string theory, the situation is different.
The spacetime fields appear as couplings, so symmetries are
not invariances of a spacetime action.

There are good reasons to believe that string theory con-
tains an enormous degree of symmetry, of which gauge and
coordinate invariance are but remnants. First, the particle
content and interactions of string theory are so tightly con-
strained that they are presumably fixed by some symmetry.
Second, high-energy fixed-angle string scattering obeys a
universal behavior which suggests that some large symmetry
is being restored@3#. This symmetry mixes massless and
massive states, and is spontaneously broken by the vacuum.
Other aspects of symmetry breaking in string theory are dis-
cussed in@4#.

Recently, a simple but powerful approach to string sym-
metries was developed in@5#. In this work, string symmetries
are identified with similarity transformations of the underly-
ing conformal field theory. The key idea is that automor-
phisms of the operator algebra change the Hamiltonian, but
do not affect the physical results.

The approach of Ref.@5# is very general. It gives rise to

spacetime symmetries which mix states of different mass. It
places unbroken and spontaneously broken spacetime sym-
metries on exactly the same footing. Unbroken spacetime
symmetries are generated by conserved currents of the un-
derlying conformal field theory@6#, while spontaneously bro-
ken symmetries are generated by currents that are not con-
served.

In this paper we will study spontaneously broken symme-
tries in string theory. We will focus on a simple example:
string propagation onM24,13S1. For a generic value of the
radius of S1, this string vacuum has an unbroken
U(1)L3U(1)R gauge symmetry. At a critical value ofR, the
symmetry is enhanced to SU(2)L3SU(2)R . Away from this
critical value, the SU(2)L3SU(2)R is spontaneously broken
to U(1)L3U(1)R .

In field theory, the spontaneous breaking of a gauge sym-
metry is associated with the Higgs effect, through which the
would-be Goldstone bosons are absorbed by the spontane-
ously broken gauge bosons. The physical spectrum is mani-
fest in unitary gauge, where one finds a set of massive gauge
bosons, one for each spontaneously broken generator.

The formalism of@5# is especially well suited for describ-
ing the Higgs effect in string theory. Therefore, in what fol-
lows, we will first review the status of symmetries in~per-
turbative! string theory. We will then restrict our attention to
string propagation onM24,13S1. We will start at the critical
radius and identify the generators of the SU(2)L3SU(2)R
gauge symmetry. We will find the full set of massless scalar
fields, as well as the massless gauge bosons associated with
the unbroken gauge symmetry. We will then shift away from
the critical radius by giving a small expectation value to a
modulus field. We will see that this vacuum expectation
value ~VEV! spontaneously breaks the SU(2)L3SU(2)R
symmetry to U(1)L3U(1)R . We will find that the scalar
multiplets split into Goldstone and physical fields, and dis-
cover how the gauge bosons absorb the Goldstone modes.
We shall see that this model illustrates one particularly
simple way in which the full set of string symmetries is
broken by the string vacuum.
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II. SYMMETRIES IN „PERTURBATIVE … STRING
THEORY

In ordinary string theory, the classical string solutions are
in one-one correspondence with conformal field theories of
the appropriate central charge. Given one string solution, a
physically equivalent solution can be found by making a
similarity transformation on the operator algebraA of the
conformal field theory@5#:

F~s!°eihF~s!e2 ih. ~1!

This determines an equivalent solution for any operatorh.
This automorphism~1! acts on the stress tensor in the

obvious way:

Tf~s!°eihTf~s!e2 ih ~2!

@and likewise forT̄f(s)#, wheref denotes a generic space-
time field. In what follows, we shall restrict our attention to
automorphisms which change the spacetime fields. There-
fore, we require

Tf1df~s!2Tf~s!5 i @h,Tf~s!#, ~3!

for some infinitesimal operatorh. The transformation
f°f1df is asymmetry: it is an infinitesimal change of the
spacetime fields which does not change the physics.

From this point of view, symmetries are infinitesimal de-
formations of the stress tensor,Tf(s)°Tf(s)1dT, where
dT5 i @h,Tf(s)#. More general deformations are not sym-
metry transformations, but describe physically distinct solu-
tions. For example, two nearby solutions are flat spacetime
M24,13S1, and a weak electromagnetic wave propagating
through it. These two solutions are not related by any sym-
metry transformation.

For string propagation onM24,13S1, the vacuum stress-
energy tensor is given by

T~s!52 1
2 hmn]Xm]Xn2 1

2 ]X26]X26 ~4!

at the radiusR5Rcr5A2. A weak U(1)L electromagnetic
wave can be obtained by adding

dT52Am
~3!~X! ]̄ Xm]X26. ~5!

This deformation preserves conformal invariance provided
dT is a primary field of dimension (1,1). This is equivalent
to saying that the functionsAm

(3)(X) satisfy the conditions

hAm
~3!~X!50, ]mAm

~3!~X!50. ~6!

The first is an equation of motion, the second is a Lorentz
gauge condition.

Equations~5! and ~6! provide an example of acanonical
deformation@5#, defined bydT(s)5V(s), whereV(s) is a
vertex operator, a primary field of dimension (1,1). Canoni-
cal deformations take one conformal field theory into an-
other. Furthermore, they induce a variation in the stress ten-
sor which can be expressed as a change in the spacetime
fields.

Canonical deformations turn on gauge fields in the Lor-
entz gauge. To describe the Higgs effect, however, we would
like to transform the spacetime fields to anarbitrary gauge
@7#. This can be achieved by performing an automorphism
dT5 i @h,Tf(s)#, whereh is given by

h5E ds L~3!~X!iA2]X26 ~7!

and L (3)(X) is the parameter of the gauge transformation.
Note that ifhL (3)50, the integrand is of dimension (1,0),
and the transformation~7! preserves the Lorentz gauge.

To see this, let us start with the fieldAm
(3)(X) in the Lor-

entz gauge:

T~s!52 1
2 hmn]Xm]Xn2 1

2 ]X26]X262Am
~3!~X! ]̄ Xm]X26,

~8!

where hAm
(3)(X)5]mAm

(3)(X)50. Let us then compute the
commutator i @h,T(s)#. This gives rise to the deformed
stress-energy tensor

T8~s!5T~s!1 i @h,T~s!#52 1
2 hmn]Xm]Xn2 1

2 ]X26]X262@Am
~3!~X!1]mL~3!~X!# ]̄ Xm]X262 1

2 hL~3!~X!]2X26

2 1
2 h]mL~3!~X!]Xm]X261 1

2 h]mL~3!~X! ]̄ Xm]X26. ~9!

Writing

A8m
~3!~X!5Am

~3!~X!1]mL~3!~X! ~10!

and imposing the conformal condition~6!, we find the general stress tensor

T8~s!52 1
2 hmn]Xm]Xn2 1

2 ]X26]X262A8m
~3!~X! ]̄ Xm]X262 1

2 ]mA8m
~3!~X!]2X262 1

2 hA8m
~3!~X!]Xm]X26

1 1
2 hA8m

~3!~X! ]̄ Xm]X26, ~11!
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and the gauge-covariant equations of motion

hA8m
~3!~X!2]m]nA8n

~3!~X!50. ~12!

Note that this gauge-invariant equation of motion reduces to
Eq. ~6! when]mA8m

(3)(X)50.

III. STRINGS ON M 24,13S1

In this section we will take a closer look at bosonic string
propagation onM24,13S1. We take X26 to be periodic:
X26;X2612pR, whereR is the radius of the circleS1. On
this space there are two types of excitations: strings with
quantized momenta in the compact dimension, and strings
that wind around the compact dimension a fixed number of
times. The mass formula for the 25-dimensional particle
states receives contributions from both:

M25
n2

R2 1
m2R2

4
1NL1NR22, ~13!

wherem andn are integers, andNL (NR) denote the oscil-
lator contributions from the left~right! sectors. Physical
string states must also satisfy the reparametrization con-
straintNL2NR5mn.

The spaceM24,13S1 is a consistent string vacuum for
arbitrary radiusR. The vacuum stress tensor is

TR~s!52 1
2 hmn]̂Xm]̂Xn2

1

2

R2

Rcr
2
]̂X26]̂X26, ~14!

together with its conjugateT̄R(s). The operator]̂ is the
usual light-cone derivative. Note that]̂Xm remains invariant
as the radiusR is varied, but that the operator]̂X26 does not.
This is easy to see by writing the operators in terms of the
string coordinates (Xm,X26), together with the conjugate mo-
menta (pm ,p26):

]̂Xm5
1

A2
~hmnpn1X8m!, ]̂̄ Xm5

1

A2
~hmnpn2X8m!,

]̂X265
1

A2S Rcr
2

R2
p261X826D , ]̂̄ X265

1

A2S Rcr
2

R2
p262X826D .

~15!

To exhibit the Higgs effect, we will need to compare con-
formal field theories at different radii—that is, at different
values of the background fields. It is therefore essential to
express the stress tensors in terms of fixed, background-
independent operators, such asp26 and X26. Therefore, in
what follows, wedefinethe symbols]Xm, ]X26, ]̄ Xm, and
]̄ X26 ~without the hats! to be

]Xm5
1

A2
~hmnpn1X8m!, ]̄ Xm5

1

A2
~hmnpn2X8m!,

]X265
1

A2
~p261X826!, ]̄ X265

1

A2
~p262X826!.

~16!

These operators have fixed, radius-independent commutation
relations. At the critical radius,R5Rcr5A2, they reduce to
the light-cone derivatives.

The light-cone derivatives]̂Xm and]̂X26 can be expressed
in terms of the fixed operators~16!. The result is

]̂Xm5]Xm, ]̂X265
1

2FRcr
2

R2 ~]X261 ]̄ X26!1~]X262 ]̄ X26!G .
~17!

When substituted into Eq.~14!, they give the stress tensor in
the fixed basis:

TR52 1
2 hmn]Xm]Xn2

1

8F S Rcr

R
1

R

Rcr
D 2

]X26]X26

2S Rcr

R
2

R

Rcr
D 2

]̄ X26]̄ X2622S Rcr
2

R2
2

R2

Rcr
2D ]X26]̄ X26G .

~18!

For small variationsR5Rcr1dR, one finds

]̂X265]X26S 12
dR

Rcr
13

~dR!2

2Rcr
2 D 1 ]̄ X26S 2

dR

Rcr
13

~dR!2

2Rcr
2 D ,

]̂̄ X265]X26S 2
dR

Rcr
13

~dR!2

2Rcr
2 D 1 ]̄ X26S 12

dR

Rcr
13

~dR!2

2Rcr
2 D ,

~19!

and

TR52 1
2 hmn]Xm]Xn2S 1

2
1

~dR!2

2Rcr
2 D ]X26]X26

2
~dR!2

2Rcr
2

]̄ X26]̄ X262S 2
dR

Rcr
1

~dR!2

2Rcr
2 D ]X26]̄ X26.

~20!

The vertex operators for the emission or absorption of
particle states should also be written in terms of the fixed
basis. At the critical radius, the vertex operators

V~3!~s!5Am
~3!~X! ]̄ Xm]X26, Ṽ~3!~s!5Ãm

~3!~X!]Xm ]̄ X26,

V~33!~s!5f~33!~X!]X26]̄ X26 ~21!

are subject to the conditions

hAm
~3!~X!5hÃm

~3!~X!5hf~33!~X!50,

]nAn
~3!~X!5]nÃn

~3!~X!50. ~22!

They describe the emission or absorption of massless gauge
and scalar bosons. As in Sec. II, the vertex operators create
gauge bosons in Lorentz gauge.

For R5Rcr , there are other massless particles in the spec-
trum. They include four massless gauge bosons, whose ver-
tex operators are given by
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V~6 !~s!5Am
~6 !~X! ]̄ Xmexp~6 iA2XL

26!,

Ṽ~6 !~s!5Ãm
~6 !~X!]Xmexp~6 iA2XR

26!, ~23!

together with eight massless scalars, whose vertex operators
take the form

V~36 !~s!5f~36 !~X!]X26exp~6 iA2XR
26!,

Ṽ~63!~s!5f~63!~X! ]̄ X26exp~6 iA2XL
26!,

V~66 !~s!5f~66 !~X!exp~6 iA2XL
26!exp~6 iA2XR

26!,

V~67 !~s!5f~67 !~X!exp~6 iA2XL
26!exp~7 iA2XR

26!.
~24!

The fieldsAm
(a)(X), Ãm

(a)(X), andf (ab)(X) satisfy the con-
formal conditions

hAm
~a!~X!5hÃm

~a!~X!5hf~ab!~X!50,

]nAn
~a!~X!5]nÃn

~a!~X!50, ~25!

for a,b53,6. As above, they are massless equations of mo-
tion and Lorentz gauge conditions for the gauge and scalar
bosons. The full set of massless gauge bosons fills out the
adjoint representation of SU(2)L3SU(2)R ; the massless
scalars transform in the (3,3) representation of the gauge
group.

If one deforms the conformal field theory by varying the
radius of the circle, the vertex operators change continu-
ously. The new vertex operators are as above, with]X26 and

]̄ X26 replaced by the operators]̂X26 and ]̂̄ X26. ~The opera-
tors ]Xm and ]̄ Xm do not depend onR.!

For arbitrary radiusR, the condition that the deformed
vertex operators be (1,1) primary fields with respect to the
deformed stress tensor, Eq.~20!, gives rise to massless equa-
tions of motion and Lorentz gauge conditions for the follow-
ing spacetime fields:

hAm
~3!~X!5hÃm

~3!~X!5hf~33!~X!50,

]nAn
~3!~X!5]nÃn

~3!~X!50. ~26!

In contrast, Am
(6)(X), Ãm

(6)(X), f (36)(X), and f (63)(X)
obey massive equations of motion and modified,Rj-like
gauge conditions

hAm
~6 !~X!1

~dR!2

2
Am

~6 !~X!50,

hf~63!~X!1
~dR!2

2
f~63!~X!50,

]nAn
~6 !~X!52S dR

Rcr
2

2
~dR!2

2Rcr
3 D f~63!~X!. ~27!

IV. HIGGS MECHANISM IN STRING THEORY

We are now ready to exhibit the string theory Higgs ef-
fect. We first need to relax theRj-like gauge condition. As in
the previous section, we can do this by carrying out a general
SU(2)L @or SU(2)R# gauge transformation on the spacetime
fields.

The SU(2)L gauge transformation is most easily specified
at the critical radius. It is generated by an operatorh,

h5E ds L~a!~X!J~a!~s!, ~28!

where the dimension (1,0) currentsJ(a), a51,2,3, are con-
served. For the case at hand, the SU(2)L currents are simply

J~3!~s!5 iA2]X, J~6 !~s!5exp~6 iA2XL!. ~29!

Therefore, the operatorh can be written as

h5E ds @L~3!iA2]X261L~1 !exp~ iA2XL
26!

1L~2 !exp~2 iA2XL
26!#, ~30!

where the functionsL (a) are functions ofXm only. @There
are similar currents and transformations for SU(2)R .#

Away from the critical radius, the currentJ(3) deforms,
but the SU(2)L symmetry algebra continues to hold. For
RÞRcr , however, the currentsJ(6)(s) are not of dimension
(1,0) with respect to the deformed stress-energy tensor. This
implies that the currents are not conserved, and the space-
time symmetry is spontaneously broken.

In this section we will study the Higgs effect by imple-
menting an arbitrary SU(2)L gauge transformation for
RÞRcr . We shall start at the critical radius, and turn on a
constant value for the fieldf (33). We shall see that this de-
fines a new stress tensorT8(s) which is equivalent to the
stress tensor TR(s) at a radius R5Rcr1dR
5Rcr(12^f (33)&). We will then turn on fieldsf (63)(X) and
Am

(6)(X). This defines a new stress tensorT9(s) which de-
scribes infinitesimal fluctuations of the would-be Goldstone
bosons f (63)(X) and the broken-symmetry gauge fields
Am

(6)(X) about the string vacuum at radiusR. Once we have
the stress tensorT9(s), we will compute an arbitrary
broken-symmetry gauge transformation. We will see that the
would-be Goldstone fields transform by a shift. This will
permit us to pass to unitary gauge and identify the physical
fields.
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Therefore, let us start at the radiusRcr and turn on a
constant value for the fieldf (33). To first order, the stress
tensor is just

T8~s!52 1
2 hmn]Xm]Xn2 1

2 ]X26]X262^f~33!&]X26]̄ X26

1•••. ~31!

Conformal invariance is satisfied because^f (33)& is constant.
Comparing Eq.~31! with Eq. ~20!, we see thatdR can be
identified with2^f (33)&Rcr .

Let us now deform this stress tensor by turning on the
fields f (63)(X) and Am

(6)~X!, following the techniques of
Sec. II. Therefore, we add toT8(s) a deformation of the
form

dT852f~13!~X! ]̂̄ X26exp~ iA2XL
26!2f~23!~X! ]̂̄ X26exp~2 iA2XL

26!2Am
~1 !~X! ]̄ Xmexp~ iA2XL

26!

2Am
~2 !~X! ]̄ Xmexp~2 iA2XL

26!, ~32!

where the hatted derivatives are given by Eq.~15!, with dR52^f (33)&Rcr . This deformation is conformal if the functions
f (63)(X) andAm

(6)(X) obey the conditions~27!. The resulting stress tensorT9(s)5T8(s)1dT8 describes a consistent string
background with excitations of the broken-symmetry gauge bosons and the would-be Goldstone bosons around a vacuum with
arbitrary radiusR—that is, a nonzero vacuum expectation value for the spacetime fieldf (33)(X).

We now perform a local gauge transformation generated by

h5E ds @L~1 !exp~ iA2XL
26!1L~2 !exp~2 iA2XL

26!#. ~33!

The operatorh contains the SU(2)L gauge transformations which do not respect the string vacuum. As in Sec. II, we compute
the commutatori @h,T9(s)# and find

T9~s!1 i @h1 ,T9~s!#52@f~13!~X!1dRL~1 !~X!# ]̂̄ X26exp~ iA2XL
26!2@f~23!~X!1dRL~2 !~X!# ]̂̄ X26exp~2 iA2XL

26!

2@Am
~1 !~X!1]mL~1 !~X!# ]̄ Xmexp~ iA2XL

26!2@Am
~2 !~X!1]mL~2 !~X!# ]̄ Xmexp~2 iA2XL

26!. ~34!

Defining

f8~63!~X!5f~63!~X!1dRL~6 !~X!, A8m
~6 !~X!5Am

~6 !~X!1]mL~6 !~X!, ~35!

we see we can writeT-(s)5T9(s)1 i @h1 ,T9(s)# as

T-~s!5T8~s!2f8~13!~X! ]̂̄ X26exp~ i&XL
26!2f8~23!~X! ]̂̄ X26exp~2 iA2XL

26!2A8m
~1 !~X! ]̄ Xmexp~ iA2XL

26!

2A8m
~2 !~X! ]̄ Xmexp~2 iA2XL

26!, ~36!

where the conformal condition~27! is the gauge-covariant equation of motion

hA8m
~6 !~X!2]m]nA8n

~6 !~X!1
~dR!2

2
A8m

~6 !~X!5S dR

Rcr
2

2
~dR!2

2Rcr
3 D ]mf8~63!~X!. ~37!

From this we see that the broken-symmetry gauge bosons
and the would-be Goldstone bosons obey coupled equations
of motion.

The stress-energy tensorT-(s) describes a string vacuum
that is physically equivalent to that ofT9(s). Note that under
the automorphism~33!, the would-be Goldstone bosons
transform by a shift:

f~63!~X!°f~63!~X!1dRL~6 !~X!. ~38!

This confirms that the would-be Goldstone bosons are gauge
artifacts, and that they can be transformed away by a suitable
gauge transformation.

To exhibit the Higgs effect explicitly, let us choose the
transformation parameters to eliminate the would-be Gold-
stone bosons from the spectrum:

dRL~6 !~X!52f~63!~X!. ~39!

In this unitary gauge, the stress tensor reduces to

T-~s!→T8~s!2A8m
~1 !~X! ]̄ Xmexp~ iA2XL

26!

2A8m
~2 !~X! ]̄ Xmexp~2 iA2XL

26!. ~40!
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The conformal condition~37! reduces to a set of massive
equations of motion for the vectorsA8m

(6)(X):

hA8m
~6 !~X!2]m]nA8n

~6 !~X!1
~dR!2

2
A8m

~6 !~X!50.

~41!

The would-be Goldstone bosons have become the longitudi-
nal components of the massive gauge bosons.

It is straightforward to verify that the number of physical
states does not change as the radius is varied. Indeed, at the
critical point, the spectrum includes the massless gauge
bosonsAm

(6) , with 23 polarizations each, as well as the real
scalar fieldsf (63). Away from the critical point, the scalars
are gone, but the gauge bosons are massive, with 24 polar-
izations each, so the total number of degrees of freedom
remains the same.

V. CONCLUSIONS

In this paper we illustrated the Higgs mechanism in string
theory. We considered the simple example of string propa-
gation onM24,13S1, but our procedure may be readily gen-
eralized to other string backgrounds. We started with the
operator algebraA, at the critical radius ofS1, where the

symmetry algebra is SU(2)L3SU(2)R . Using a fixed basis
of operators, we constructed the stress tensor and vertex op-
erators for the gauge and scalar bosons, as well as the gen-
erators of the SU(2)L3SU(2)R symmetry algebra.

We then deformed the conformal field theory by varying
the radius of the circle away from its critical value. We stud-
ied the change in the vertex operators along the deformation
class. We found the SU(2)L3SU(2)R gauge symmetry to be
spontaneously broken to U(1)L3U(1)R , and the corre-
sponding world-sheet currents to be no longer conserved.

In the final section of the paper, we derived the gauge-
covariant equation of motion for the broken-symmetry gauge
bosons and the would-be Goldstone bosons. We eliminated
the scalars from the spectrum by performing a suitable gauge
transformation. In this unitary gauge, the would-be Gold-
stone bosons became the longitudinal components of the
massive gauge bosons.
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