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In first-quantized string theory, spacetime symmetries are described by inner automorphisms of the under-
lying conformal field theory. In this paper we use this approach to illustrate the Higgs effect in string theory.
We consider string propagation di?*'x S, where the circle has radiug, and study S(R) symmetry
breaking asR moves away from its critical value. We find a gauge-covariant equation of motion for the
broken-symmetry gauge bosons and the would-be Goldstone bosons. We show that the Goldstone bosons can
be eliminated by an appropriate gauge transformation. In this unitary gauge, the Goldstone bosons become the
longitudinal components of massive gauge bosp88556-282197)07116-4

PACS numbeps): 11.25.Hf, 11.30.Qc

[. INTRODUCTION spacetime symmetries which mix states of different mass. It
places unbroken and spontaneously broken spacetime sym-
String theory remains the most promising candidate for anetries on exactly the same footing. Unbroken spacetime
unified description of nature. During the past few yearssymmetries are generated by conserved currents of the un-
many string dualities have been discovered, but it is fair taderlying conformal field theor}6], while spontaneously bro-
say that a deep understanding of string dynamics is still lackken symmetries are generated by currents that are not con-
ing. It is therefore important to understand the role of spaceserved.
time symmetries in string dynamics. In this paper we will study spontaneously broken symme-
At the classical level, every two-dimensional conformaltries in string theory. We will focus on a simple example:
field theory (of the appropriate central chajgis a solution  string propagation oM?**x St. For a generic value of the
to the string equations of motioii]. The two-dimensional yadius of S!, this string vacuum has an unbroken
couplings are the spacetime fields of the string. Conformaj;(1) x U(1), gauge symmetry. At a critical value &, the
invariance dgterm!nes the c_oupllngs, and hence the dy”am'%§/mmetry is enhanced to SU(2} SU(2)g. Away from this
of the spacetime fields. During the past decade, a large NUM;ticq value, the SU(2)X SU(2) is spontaneously broken
ber of string solutions have been constructed in this {24y to U(L), X U(1)g.

Fortun_ately, many of t_he string solutions are related by In field theory, the spontaneous breaking of a gauge sym-
symmetries. In ordinary field theory, symmetries are trans}m_ltr is associated with the Higas effect. throuah which the
formations of the spacetime fields which leave the classical Y 99 ' 9

action invariant. Barring anomalies, they also hold in the fuIIWOUld'be Goldstone bosons are absorbed by the spontane-

quantum theory. In string theory, the situation is different.USIy broken gauge bosons. The physical spectrum is mani-

The spacetime fields appear as couplings, so symmetries afest In unitary gauge, where one finds a set of massive gauge

not invariances of a spacetime action. bosons, one for each spontaneously broken generator.
There are good reasons to believe that string theory con- The formalism of 5] is especially well suited for describ-
tains an enormous degree of symmetry, of which gauge anéd the Higgs effect in string theory. Therefore, in what fol-
coordinate invariance are but remnants. First, the particléows, we will first review the status of symmetries (iper-
content and interactions of string theory are so tightly conturbative string theory. We will then restrict our attention to
strained that they are presumably fixed by some symmetnstring propagation o ?**x St. We will start at the critical
Second, high-energy fixed-angle string scattering obeys gadius and identify the generators of the SU(ZBU(2);
universal behavior which suggests that some large symmetiyauge symmetry. We will find the full set of massless scalar
is being restored3]. This symmetry mixes massless and fields, as well as the massless gauge bosons associated with
massive states, and is spontaneously broken by the vacuuithe unbroken gauge symmetry. We will then shift away from
Other aspects of symmetry breaking in string theory are disthe critical radius by giving a small expectation value to a
cussed if4]. modulus field. We will see that this vacuum expectation
Recently, a simple but powerful approach to string sym-value (VEV) spontaneously breaks the SU(X)SU(2)g
metries was developed jB]. In this work, string symmetries symmetry to U(1) XU(1)g. We will find that the scalar
are identified with similarity transformations of the underly- multiplets split into Goldstone and physical fields, and dis-
ing conformal field theory. The key idea is that automor-cover how the gauge bosons absorb the Goldstone modes.
phisms of the operator algebra change the Hamiltonian, bufVe shall see that this model illustrates one particularly
do not affect the physical results. simple way in which the full set of string symmetries is
The approach of Ref5] is very general. It gives rise to broken by the string vacuum.
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II. SYMMETRIES IN (PERTURBATIVE ) STRING 5T=—AB(X) TXEIX (5)
THEORY L '

In ordinary string theory, the classical string solutions areThis deformation preserves conformal invariance provided
in one-one correspondence with conformal field theories ofT is a primary field of dimension (1,1). This is equivalent

the appropriate central charge. Given one string solution, g, saying that the functionAf)(X) satisfy the conditions
physically equivalent solution can be found by making a

similarity transformation on the operator algeh#aof the
conformal field theory5]: DA(M@(X):O, (QMAS)(X):O_ (6)

P(0)—>e"P(0)e M. (D The first is an equation of motion, the second is a Lorentz
gauge condition.

Equations(5) and(6) provide an example of aanonical
deformation[5], defined bysT(o)=V(o), whereV(o) is a
vertex operator, a primary field of dimension (1,1). Canoni-
" i cal deformations take one conformal field theory into an-
Ty(o)—e"Ty(a)e ) other. Furthermore, they induce a variation in the stress ten-

) ) — ] sor which can be expressed as a change in the spacetime
[and likewise forT 4(o) ], where¢ denotes a generic space- fig|ds.

time field. In what follows, we shall restrict our attention o canonical deformations turn on gauge fields in the Lor-
automorphisms which change the spacetime fields. Thergstz gauge. To describe the Higgs effect, however, we would

This determines an equivalent solution for any operator
This automorphism(1) acts on the stress tensor in the
obvious way:

fore, we require like to transform the spacetime fields to arbitrary gauge
[7]. This can be achieved by performing an automorphism
T¢+§¢(O’)_T¢(O'):|[h,T¢(O’)], (3) 5T:|[h,T¢(U)], Whereh |S giVen by

for some infinitesimal operatoh. The transformation

¢— ¢+ 6¢ is asymmetryit is an infinitesimal change of the ]

spacetime fields which does not change the physics. hzf do A®(X)i 20X (7)
From this point of view, symmetries are infinitesimal de-

formations of the stress tensdr,(o)—T (o) + T, where . .
® ® (3)
6T=i[h,T4(o)]. More general deformations are not sym- f\lln? Ath (txf)D'SAEQE_%aﬁme_“? of tk:je_ ga?%(_a tran_sformlagon.
metry transformations, but describe physically distinct solu- ote that | =%, e integrand IS of dimension (1,0),
nd the transformatio() preserves the Lorentz gauge.

'Rz)zrﬁ.XFSolr’ eaxn%mgli\,l;\;vl? Qli?::?gmsgél:\Z?igsvsg?/J I?rsgzgz;[ilrr?gg To see this, let us start with the fiehf>(X) in the Lor-
through it. These two solutions are not related by any sym&NtZ gauge:
metry transformation.

For string propagation oM?*!x S!, the vacuum stress-

_ v 3 v
energy tensor is given by T(o)= _%WV‘?XM‘?X — 3 IXZ9X— AL)(X) 9 XHIXZS,

®

T(0) == 3 7,,0X"IX"— 3IX?%9X?® (4)

2w ? where DAS)(X)=(9“A§L3)(X)=O. Let us then compute the

at the radiusR=R,=2. A weak U(1) electromagnetic commutatori[h,T(c)]. This gives rise to the deformed
wave can be obtained by adding stress-energy tensor

T'(0)=T(0)+i[h,T(0)]= — 3 7,,dX"IX"— 3IXPIX?—~[ AP (X) + 9,4 P (X)] 9 X*9X?0— FOIA P(X) 32X?°
—303,A®(X)IXEIXP+ 3009, A P (X) dXHIX?. 9
Writing
AP (X)=AP(X)+3,A3(X) (10

and imposing the conformal conditigh), we find the general stress tensor

T'(0)= =57, dXHIX" = $IXZ0IX%0— A" 3 (X) 9 XHaX?0— FaA" (3 (X) 9?X?0— FTIA" (3 (X) aXHX28

+30A" D (X) 9XFIX?, (12)
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and the gauge-covariant equations of motion These operators have fixed, radius-independent commutation
- @ relations. At the critical radiusR=R.= /2, they reduce to
OA"(X)=3d,d"A" (X)=0. (12 the light-cone derivatives.

The light-cone derivativegX* anddX?® can be expressed

Note that this gauge-invariant equation of motion reduces t?n terms of the fixed operatord6). The result is

Eq. (6) when #*A’(P(X)=0.
2

- - 1R _ _
IIl. STRINGS ON M?241x Sl IXH= gXH, 0x25:§ R—Czr(ax26+ IX2) 4 (gX%— 9x29)|.

In this section we will take a closer look at bosonic string (17

H 24,1 1 26 FPR
propagation onM®™> S, We take X* to be periodic: \ypen substituted into Eq14), they give the stress tensor in
XP~XP+27R, whereR is the radius of the circl&™. On 4 4 ad basis:

this space there are two types of excitations: strings with

guantized momenta in the compact dimension, and strings 1l /R R \2
that wind around the compact dimension a fixed number off ;= — 19, dX*9X"~ 5 (FCH- = IX%9x?8
times. The mass formula for the 25-dimensional particle cr

states receives contributions from both:

R R 2_ o R 2 2 .
n2  m2R2 —(—cr—R—) AX?9X%6—2 %——2 IXZ6 X8|,
M2= g+ ——+ N +Np—2, (13 or Rer
(18
wherem ar_1d n are integers, andl,__(NR) denote the os_cil— For small variation®R= R+ &R, one finds
lator contributions from the lefi(right) sectors. Physical
strin_g states must also satisfy the reparametrization con- SR (8R)?| SR (8R)?
straintN_. —Ng=mn. aX28= X6 1- o +3—— + 9X?6 = 'l
The spaceM?*1xS! is a consistent string vacuum for o 2Ry o 2Rg
arbitrary radiusR. The vacuum stress tensor is
- SR (SR)?| — SR (8R)?
o 1R, 9X%8=gx26 —R—+3( Z >+ax26(1—R—+3( 3 )
Tr(o)=— % mngﬂ(;xv_ 5 _2(9)(260)(26, (14) cr 2R¢, cr 2Rg,
RS (19
together with its conjugat& (o). The operatord is the ~2Nd
usual light-cone derivative. Note thak* remains invariant (6R)2
as the radiuR is varied, but that the operatéX?® does not. TR= =37, dX*X"— >t IXZB9x 26
This is easy to see by writing the operators in terms of the 2R
string coordinatesX*,X?®), together with the conjugate mo- 2 2
menta @, , 7): — @5@6&26_ _ §+ (oR) IX26 %26
R 2RZ
cr cr cr
- 1 - 1
axﬂzﬁ(nﬂ”wﬁ X'#), ax*‘:ﬁ(r;‘”w,,—x’“), (20

The vertex operators for the emission or absorption of
s 1 Rgr - particle states should also be written in terms of the fixed
o OXTE | e X basis. At the critical radius, the vertex operators

2
gxzazi(_u Lz
> 726

V2| R V2| R

15  VO(o)=AP(X)ax X%, V& (a)=AP(X)aX* X,
To exhibit the Higgs effect, we will need to compare con- .

formal field theories at different radii—that is, at different V()= ¢33 (X) X269 X2 (21)
values of the background fields. It is therefore essential to ] -
express the stress tensors in terms of fixed, backgrounde subject to the conditions
independent operators, such ass and X2, Therefore, in
what follows, wedefinethe symbolsaX*, 9X25, 9X*, and
9 X?8 (without the hatsto be

(3) — AR — 33 _
DAY (X)=0AP (X)=0¢%3(X)=0,

I"AP(X)="AP(X)=0. (22
1 — 1
ﬁX'U‘:T(T]’U“V'JT,,-F X'#y, ﬁX“zT( g, —X'H), They describe the emission or absorption of massless gauge
2 2 and scalar bosons. As in Sec. Il, the vertex operators create

1 1 gauge bosons in Lorentz gauge.
GX26=_—_ £X'2) gx2=__ —X'26). ForR= R_cr, there are other massless particles in the spec-
\/E(WZG ) \/E(er ) trum. They include four massless gauge bosons, whose ver-
(16)  tex operators are given by
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() )= AE) (XY X~ ; 26 SR)2
V()= AL (X) d Xrexpl £i2XE9), DAﬁ?(X)Jr( 2) AC(X)=0,
VE () =R (X) axrexp £iy2XE), (23) s (6R)2 .
D¢ D (X)+—— ¢ 3(X)=0,
together with eight massless scalars, whose vertex operators
take the form . SR (8R)?) |
PAIX)==| - [ 6N (@)
RCI‘ 2RCI‘

VE=)(g) = ¢ (X) aXP%exp( =i y2XZ),
IV. HIGGS MECHANISM IN STRING THEORY
VEI (o) = ¢(i3)(x)5(26exqii\/ixf6), We are now ready to exhibit the string theory Higgs ef-

fect. We first need to relax the,-like gauge condition. As in
the previous section, we can do this by carrying out a general

++ +x : ; 2 2 fi i h i
VED(g) = ¢ )(X)eXF(iI\/EXEG)exﬁil\/EXZRG), Eelfés_)l_ [or SU(2)] gauge transformation on the spacetime
The SU(2) gauge transformation is most easily specified
VED (o) = ¢<i1)(X)exp(+i\/fxze)exqii\/fxm) at the critical radius. It is generated by an operdtpr
- - L R/-
(24)
h=f do A®(X)I¥(a), (28)

The fieldsA{?(X), AlY(X), and ¢(“P)(X) satisfy the con-
formal conditions where the dimension (1,0) current§’, a=1,2,3, are con-
served. For the case at hand, the Sy(&yrrents are simply

OAY(X)=0AM (X)=0¢“#(X)=0, IO =iv20X, I(o)=exg£iv2X). (29

_ Therefore, the operatdr can be written as
I"AL(X)=g"AlY(X) =0, (25)

h= f do [A®i29X%8+ A Hexp(i 2X?°)
for a,8=3,%=. As above, they are massless equations of mo-

tion and Lorentz gauge conditions for the gauge and scalar + AT exp —i \/EXEG)], (30)
bosons. The full set of massless gauge bosons fills out the

adjoint representation of SU(2XSU(2)g; the massless \ nere the functions\(®) are functions ofX* only. [There
scalars transform in the (3,3) representation of the gaugge similar currents and transformations for SW(2)

group. ' . Away from the critical radius, the curredt® deforms,

l.f one deforms the conformal field theory by varying the but the SU(2) symmetry algebra continues to hold. For
radllus_ler]: the circle, the vertex operatorbs Chagbi%?? Cogtlnuhq&Rcr, however, the current*)() are not of dimension
ously. The new vertex operatqrs are as above, an (1,0) with respect to the deformed stress-energy tensor. This
dX?® replaced by the operatossX®® and d X?. (The opera- implies that the currents are not conserved, and the space-
tors 9X* and 9X* do not depend oR.) time symmetry is spontaneously broken.

For arbitrary radiusR, the condition that the deformed  In this section we will study the Higgs effect by imple-
vertex operators be (1,1) primary fields with respect to thementing an arbitrary SU(2) gauge transformation for
deformed stress tensor, EQO), gives rise to massless equa- R#R.,. We shall start at the critical radius, and turn on a
tions of motion and Lorentz gauge conditions for the follow- constant value for the fiel¢®®. We shall see that this de-
ing spacetime fields: fines a new stress tensdf (o) which is equivalent to the

stress tensor Tr(o) at a radius R=R+ R
_ =R (1—(4®?)). We will then turn on fieldsp**)(X) and
OAR(X)=0A%(X)=0¢33(X)=0, AU)(X). This defines a new stress tend8i( o) which de-
scribes infinitesimal fluctuations of the would-be Goldstone
bosons ¢(*3)(X) and the broken-symmetry gauge fields
AR (X)=9"AP(X)=0. (26)  ALP(X) about the string vacuum at radifs Once we have
the stress tensoi”(o), we will compute an arbitrary
_ broken-symmetry gauge transformation. We will see that the
In contrast, AL7(X), ALI(X), $G)(X), and ¢*3(X)  would-be Goldstone fields transform by a shift. This will
obey massive equations of motion and modifi&};like permit us to pass to unitary gauge and identify the physical
gauge conditions fields.
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Therefore, let us start at the radii, and turn on a Conformal invariance is satisfied becagé®®) is constant.
constant value for the fiel@®. To first order, the stress Comparing Eq.(31) with Eq. (20), we see tha®R can be
tensor is just identified with — ()R,
Let us now deform this stress tensor by turning on the
T/ ()= — 3 7, 0XBIX" — 1 GX209X 20— ( $(39) X265 X2 fields ¢(=*)(X) and A(")(X), following the techniques of

Sec. Il. Therefore, we add t®’(o) a deformation of the
+ .- (31 form

ST =— ¢ I(X) 9X2expli V2X20) — ¢~ (X) 9X2exp( i V2XZ%) — ALF)(X) a X exp(i 2X29)
— AL (X) aXrexp —iV2XP9), (32)

where the hatted derivatives are given by Ep), with 6R=—($)R,,. This deformation is conformal if the functions
dE3(X) andAEf)(X) obey the condition$§27). The resulting stress tensof (o) =T' (o) + 6T’ describes a consistent string
background with excitations of the broken-symmetry gauge bosons and the would-be Goldstone bosons around a vacuum with
arbitrary radiusR—that is, a nonzero vacuum expectation value for the spacetimedéf{X).

We now perform a local gauge transformation generated by

hzf do [AMexp(i V2X25) + A exp(—i12X29)]. (33)

The operatoh contains the SU(2)gauge transformations which do not respect the string vacuum. As in Sec. Il, we compute
the commutator[h,T"(o)] and find

T"(0) +ilhy T"(0) 1= —[ ¢ +3(X) + SRA)(X)T7XZexpi V2X29) — [ ¢ ~3(X) + SRA)(X) ToX2%exp — i y2X79)
—[ALV(X)+ 3, A(X) ] Xrexpliv2XE0) —[AL ) (X)+a,A T (X)Ta X exp(—iy2X%).  (34)
Defining
¢ =3(X)= ¢ =I(X)+ SRAFI(X), AL (X)=AL(X)+3,AF(X), (35
we see we can writd”' (o) =T"(o)+i[h,,T"(0)] as

T"(0)=T' ()= ¢'*3(X) 9XZexp(iV2XZ) — ¢’ ~I(X) aXPexp( —i 2X2) — A’ () (X) a X exp(i V2X29)

—ATC(X) aXexp( — i 2X2), (36)
where the conformal conditiof27) is the gauge-covariant equation of motion
5R)? SR (SR)?
DA’?(X)—a#aVA'(f)(X)Jr(—)A'gﬁ(X): —2—( ; 9,6 3 (X). (37)
2 Rcr 2Rcr

From this we see that the broken-symmetry gauge bosons To exhibit the Higgs effect explicitly, let us choose the
and the would-be Goldstone bosons obey coupled equatiorieansformation parameters to eliminate the would-be Gold-
of motion. stone bosons from the spectrum:

The stress-energy tensbf (o) describes a string vacuum
that is physically equivalent to that @f (o). Note that under
the automorphism(33), the would-be Goldstone bosons
transform by a shift:

SRAF)(X)=— ¢ =3(X). (39

In this unitary gauge, the stress tensor reduces to
H 3 (X)—> I (X) + SRAF)(X). (38)

This confirms that the would-be Goldstone bosons are gauge T"(0)—=T' (o) = A" (X) g XHexp(i V2XE9)

artifacts, and that they can be transformed away by a suitable s ) 26
gauge transformation. —A", (X)) aXtexp( —i V2X29). (40)
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The conformal condition(37) reduces to a set of massive symmetry algebra is SU(2X SU(2)s. Using a fixed basis

equations of motion for the vectoss' Ef)(X): of operators, we constructed the stress tensor and vertex op-
(5R)? erators for the gauge and scalar bosons, as well as the gen-
XY — g gP AN (X) + 1) (y) — erators of the SU(2)X SU(2)z symmetry algebra.
DAT ()= 0,0"AT,(X) 2 AT (X)=0. We then deformed the conformal field theory by varying

(4D  the radius of the circle away from its critical value. We stud-
. jed the change in the vertex operators along the deformation
The would-be Goldstone bosons have become the Iong'tUdElass. We found the SU(2)X SU(2)g gauge symmetry to be

nal components of the massive gauge bosons.
: ) . . spontaneously broken to U(IXU(1)r, and the corre-
Itis dstra|ghtforvr\1/ard to ver;]fy tth th‘? num.btar ?fdphydsmal ﬁponding world-sheet currents to be no longer conserved.
states does not change as the radius is varied. Indeed, at the, yhe'fina| section of the paper, we derived the gauge-

critical pg)nt, Fhe spectru.m !ncludes the massless 9aU8&oyariant equation of motion for the broken-symmetry gauge
bosonsA, ™", with 23 polarizations each, as well as the real,osqns and the would-be Goldstone bosons. We eliminated

scalar fields¢(*%). Away from the critical point, the scalars the scalars from the spectrum by performing a suitable gauge
are gone, but the gauge bosons are massive, with 24 polagansformation. In this unitary gauge, the would-be Gold-
izations each, so the total number of degrees of freedongione bosons became the longitudinal components of the

remains the same. massive gauge bosons.
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